xref: /openbmc/linux/drivers/net/ethernet/cisco/enic/vnic_dev.c (revision c83eeec79ff64f777cbd59a8bd15d0a3fe1f92c0)
1 /*
2  * Copyright 2008-2010 Cisco Systems, Inc.  All rights reserved.
3  * Copyright 2007 Nuova Systems, Inc.  All rights reserved.
4  *
5  * This program is free software; you may redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; version 2 of the License.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
10  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
11  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
12  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
13  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
14  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
15  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
16  * SOFTWARE.
17  *
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/delay.h>
25 #include <linux/if_ether.h>
26 
27 #include "vnic_resource.h"
28 #include "vnic_devcmd.h"
29 #include "vnic_dev.h"
30 #include "vnic_wq.h"
31 #include "vnic_stats.h"
32 #include "enic.h"
33 
34 #define VNIC_MAX_RES_HDR_SIZE \
35 	(sizeof(struct vnic_resource_header) + \
36 	sizeof(struct vnic_resource) * RES_TYPE_MAX)
37 #define VNIC_RES_STRIDE	128
38 
39 void *vnic_dev_priv(struct vnic_dev *vdev)
40 {
41 	return vdev->priv;
42 }
43 
44 static int vnic_dev_discover_res(struct vnic_dev *vdev,
45 	struct vnic_dev_bar *bar, unsigned int num_bars)
46 {
47 	struct vnic_resource_header __iomem *rh;
48 	struct mgmt_barmap_hdr __iomem *mrh;
49 	struct vnic_resource __iomem *r;
50 	u8 type;
51 
52 	if (num_bars == 0)
53 		return -EINVAL;
54 
55 	if (bar->len < VNIC_MAX_RES_HDR_SIZE) {
56 		vdev_err(vdev, "vNIC BAR0 res hdr length error\n");
57 		return -EINVAL;
58 	}
59 
60 	rh  = bar->vaddr;
61 	mrh = bar->vaddr;
62 	if (!rh) {
63 		vdev_err(vdev, "vNIC BAR0 res hdr not mem-mapped\n");
64 		return -EINVAL;
65 	}
66 
67 	/* Check for mgmt vnic in addition to normal vnic */
68 	if ((ioread32(&rh->magic) != VNIC_RES_MAGIC) ||
69 		(ioread32(&rh->version) != VNIC_RES_VERSION)) {
70 		if ((ioread32(&mrh->magic) != MGMTVNIC_MAGIC) ||
71 			(ioread32(&mrh->version) != MGMTVNIC_VERSION)) {
72 			vdev_err(vdev, "vNIC BAR0 res magic/version error exp (%lx/%lx) or (%lx/%lx), curr (%x/%x)\n",
73 				 VNIC_RES_MAGIC, VNIC_RES_VERSION,
74 				 MGMTVNIC_MAGIC, MGMTVNIC_VERSION,
75 				 ioread32(&rh->magic), ioread32(&rh->version));
76 			return -EINVAL;
77 		}
78 	}
79 
80 	if (ioread32(&mrh->magic) == MGMTVNIC_MAGIC)
81 		r = (struct vnic_resource __iomem *)(mrh + 1);
82 	else
83 		r = (struct vnic_resource __iomem *)(rh + 1);
84 
85 
86 	while ((type = ioread8(&r->type)) != RES_TYPE_EOL) {
87 
88 		u8 bar_num = ioread8(&r->bar);
89 		u32 bar_offset = ioread32(&r->bar_offset);
90 		u32 count = ioread32(&r->count);
91 		u32 len;
92 
93 		r++;
94 
95 		if (bar_num >= num_bars)
96 			continue;
97 
98 		if (!bar[bar_num].len || !bar[bar_num].vaddr)
99 			continue;
100 
101 		switch (type) {
102 		case RES_TYPE_WQ:
103 		case RES_TYPE_RQ:
104 		case RES_TYPE_CQ:
105 		case RES_TYPE_INTR_CTRL:
106 			/* each count is stride bytes long */
107 			len = count * VNIC_RES_STRIDE;
108 			if (len + bar_offset > bar[bar_num].len) {
109 				vdev_err(vdev, "vNIC BAR0 resource %d out-of-bounds, offset 0x%x + size 0x%x > bar len 0x%lx\n",
110 					 type, bar_offset, len,
111 					 bar[bar_num].len);
112 				return -EINVAL;
113 			}
114 			break;
115 		case RES_TYPE_INTR_PBA_LEGACY:
116 		case RES_TYPE_DEVCMD:
117 		case RES_TYPE_DEVCMD2:
118 			len = count;
119 			break;
120 		default:
121 			continue;
122 		}
123 
124 		vdev->res[type].count = count;
125 		vdev->res[type].vaddr = (char __iomem *)bar[bar_num].vaddr +
126 			bar_offset;
127 		vdev->res[type].bus_addr = bar[bar_num].bus_addr + bar_offset;
128 	}
129 
130 	return 0;
131 }
132 
133 unsigned int vnic_dev_get_res_count(struct vnic_dev *vdev,
134 	enum vnic_res_type type)
135 {
136 	return vdev->res[type].count;
137 }
138 EXPORT_SYMBOL(vnic_dev_get_res_count);
139 
140 void __iomem *vnic_dev_get_res(struct vnic_dev *vdev, enum vnic_res_type type,
141 	unsigned int index)
142 {
143 	if (!vdev->res[type].vaddr)
144 		return NULL;
145 
146 	switch (type) {
147 	case RES_TYPE_WQ:
148 	case RES_TYPE_RQ:
149 	case RES_TYPE_CQ:
150 	case RES_TYPE_INTR_CTRL:
151 		return (char __iomem *)vdev->res[type].vaddr +
152 			index * VNIC_RES_STRIDE;
153 	default:
154 		return (char __iomem *)vdev->res[type].vaddr;
155 	}
156 }
157 EXPORT_SYMBOL(vnic_dev_get_res);
158 
159 static unsigned int vnic_dev_desc_ring_size(struct vnic_dev_ring *ring,
160 	unsigned int desc_count, unsigned int desc_size)
161 {
162 	/* The base address of the desc rings must be 512 byte aligned.
163 	 * Descriptor count is aligned to groups of 32 descriptors.  A
164 	 * count of 0 means the maximum 4096 descriptors.  Descriptor
165 	 * size is aligned to 16 bytes.
166 	 */
167 
168 	unsigned int count_align = 32;
169 	unsigned int desc_align = 16;
170 
171 	ring->base_align = 512;
172 
173 	if (desc_count == 0)
174 		desc_count = 4096;
175 
176 	ring->desc_count = ALIGN(desc_count, count_align);
177 
178 	ring->desc_size = ALIGN(desc_size, desc_align);
179 
180 	ring->size = ring->desc_count * ring->desc_size;
181 	ring->size_unaligned = ring->size + ring->base_align;
182 
183 	return ring->size_unaligned;
184 }
185 
186 void vnic_dev_clear_desc_ring(struct vnic_dev_ring *ring)
187 {
188 	memset(ring->descs, 0, ring->size);
189 }
190 
191 int vnic_dev_alloc_desc_ring(struct vnic_dev *vdev, struct vnic_dev_ring *ring,
192 	unsigned int desc_count, unsigned int desc_size)
193 {
194 	vnic_dev_desc_ring_size(ring, desc_count, desc_size);
195 
196 	ring->descs_unaligned = dma_alloc_coherent(&vdev->pdev->dev,
197 						   ring->size_unaligned,
198 						   &ring->base_addr_unaligned,
199 						   GFP_KERNEL);
200 
201 	if (!ring->descs_unaligned) {
202 		vdev_err(vdev, "Failed to allocate ring (size=%d), aborting\n",
203 			 (int)ring->size);
204 		return -ENOMEM;
205 	}
206 
207 	ring->base_addr = ALIGN(ring->base_addr_unaligned,
208 		ring->base_align);
209 	ring->descs = (u8 *)ring->descs_unaligned +
210 		(ring->base_addr - ring->base_addr_unaligned);
211 
212 	vnic_dev_clear_desc_ring(ring);
213 
214 	ring->desc_avail = ring->desc_count - 1;
215 
216 	return 0;
217 }
218 
219 void vnic_dev_free_desc_ring(struct vnic_dev *vdev, struct vnic_dev_ring *ring)
220 {
221 	if (ring->descs) {
222 		dma_free_coherent(&vdev->pdev->dev, ring->size_unaligned,
223 				  ring->descs_unaligned,
224 				  ring->base_addr_unaligned);
225 		ring->descs = NULL;
226 	}
227 }
228 
229 static int _vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
230 	int wait)
231 {
232 	struct vnic_devcmd __iomem *devcmd = vdev->devcmd;
233 	unsigned int i;
234 	int delay;
235 	u32 status;
236 	int err;
237 
238 	status = ioread32(&devcmd->status);
239 	if (status == 0xFFFFFFFF) {
240 		/* PCI-e target device is gone */
241 		return -ENODEV;
242 	}
243 	if (status & STAT_BUSY) {
244 		vdev_neterr(vdev, "Busy devcmd %d\n", _CMD_N(cmd));
245 		return -EBUSY;
246 	}
247 
248 	if (_CMD_DIR(cmd) & _CMD_DIR_WRITE) {
249 		for (i = 0; i < VNIC_DEVCMD_NARGS; i++)
250 			writeq(vdev->args[i], &devcmd->args[i]);
251 		wmb();
252 	}
253 
254 	iowrite32(cmd, &devcmd->cmd);
255 
256 	if ((_CMD_FLAGS(cmd) & _CMD_FLAGS_NOWAIT))
257 		return 0;
258 
259 	for (delay = 0; delay < wait; delay++) {
260 
261 		udelay(100);
262 
263 		status = ioread32(&devcmd->status);
264 		if (status == 0xFFFFFFFF) {
265 			/* PCI-e target device is gone */
266 			return -ENODEV;
267 		}
268 
269 		if (!(status & STAT_BUSY)) {
270 
271 			if (status & STAT_ERROR) {
272 				err = (int)readq(&devcmd->args[0]);
273 				if (err == ERR_EINVAL &&
274 				    cmd == CMD_CAPABILITY)
275 					return -err;
276 				if (err != ERR_ECMDUNKNOWN ||
277 				    cmd != CMD_CAPABILITY)
278 					vdev_neterr(vdev, "Error %d devcmd %d\n",
279 						    err, _CMD_N(cmd));
280 				return -err;
281 			}
282 
283 			if (_CMD_DIR(cmd) & _CMD_DIR_READ) {
284 				rmb();
285 				for (i = 0; i < VNIC_DEVCMD_NARGS; i++)
286 					vdev->args[i] = readq(&devcmd->args[i]);
287 			}
288 
289 			return 0;
290 		}
291 	}
292 
293 	vdev_neterr(vdev, "Timedout devcmd %d\n", _CMD_N(cmd));
294 	return -ETIMEDOUT;
295 }
296 
297 static int _vnic_dev_cmd2(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
298 			  int wait)
299 {
300 	struct devcmd2_controller *dc2c = vdev->devcmd2;
301 	struct devcmd2_result *result;
302 	u8 color;
303 	unsigned int i;
304 	int delay, err;
305 	u32 fetch_index, new_posted;
306 	u32 posted = dc2c->posted;
307 
308 	fetch_index = ioread32(&dc2c->wq_ctrl->fetch_index);
309 
310 	if (fetch_index == 0xFFFFFFFF)
311 		return -ENODEV;
312 
313 	new_posted = (posted + 1) % DEVCMD2_RING_SIZE;
314 
315 	if (new_posted == fetch_index) {
316 		vdev_neterr(vdev, "devcmd2 %d: wq is full. fetch index: %u, posted index: %u\n",
317 			    _CMD_N(cmd), fetch_index, posted);
318 		return -EBUSY;
319 	}
320 	dc2c->cmd_ring[posted].cmd = cmd;
321 	dc2c->cmd_ring[posted].flags = 0;
322 
323 	if ((_CMD_FLAGS(cmd) & _CMD_FLAGS_NOWAIT))
324 		dc2c->cmd_ring[posted].flags |= DEVCMD2_FNORESULT;
325 	if (_CMD_DIR(cmd) & _CMD_DIR_WRITE)
326 		for (i = 0; i < VNIC_DEVCMD_NARGS; i++)
327 			dc2c->cmd_ring[posted].args[i] = vdev->args[i];
328 
329 	/* Adding write memory barrier prevents compiler and/or CPU reordering,
330 	 * thus avoiding descriptor posting before descriptor is initialized.
331 	 * Otherwise, hardware can read stale descriptor fields.
332 	 */
333 	wmb();
334 	iowrite32(new_posted, &dc2c->wq_ctrl->posted_index);
335 	dc2c->posted = new_posted;
336 
337 	if (dc2c->cmd_ring[posted].flags & DEVCMD2_FNORESULT)
338 		return 0;
339 
340 	result = dc2c->result + dc2c->next_result;
341 	color = dc2c->color;
342 
343 	dc2c->next_result++;
344 	if (dc2c->next_result == dc2c->result_size) {
345 		dc2c->next_result = 0;
346 		dc2c->color = dc2c->color ? 0 : 1;
347 	}
348 
349 	for (delay = 0; delay < wait; delay++) {
350 		if (result->color == color) {
351 			if (result->error) {
352 				err = result->error;
353 				if (err != ERR_ECMDUNKNOWN ||
354 				    cmd != CMD_CAPABILITY)
355 					vdev_neterr(vdev, "Error %d devcmd %d\n",
356 						    err, _CMD_N(cmd));
357 				return -err;
358 			}
359 			if (_CMD_DIR(cmd) & _CMD_DIR_READ)
360 				for (i = 0; i < VNIC_DEVCMD2_NARGS; i++)
361 					vdev->args[i] = result->results[i];
362 
363 			return 0;
364 		}
365 		udelay(100);
366 	}
367 
368 	vdev_neterr(vdev, "devcmd %d timed out\n", _CMD_N(cmd));
369 
370 	return -ETIMEDOUT;
371 }
372 
373 static int vnic_dev_init_devcmd1(struct vnic_dev *vdev)
374 {
375 	vdev->devcmd = vnic_dev_get_res(vdev, RES_TYPE_DEVCMD, 0);
376 	if (!vdev->devcmd)
377 		return -ENODEV;
378 	vdev->devcmd_rtn = _vnic_dev_cmd;
379 
380 	return 0;
381 }
382 
383 static int vnic_dev_init_devcmd2(struct vnic_dev *vdev)
384 {
385 	int err;
386 	unsigned int fetch_index;
387 
388 	if (vdev->devcmd2)
389 		return 0;
390 
391 	vdev->devcmd2 = kzalloc(sizeof(*vdev->devcmd2), GFP_KERNEL);
392 	if (!vdev->devcmd2)
393 		return -ENOMEM;
394 
395 	vdev->devcmd2->color = 1;
396 	vdev->devcmd2->result_size = DEVCMD2_RING_SIZE;
397 	err = enic_wq_devcmd2_alloc(vdev, &vdev->devcmd2->wq, DEVCMD2_RING_SIZE,
398 				    DEVCMD2_DESC_SIZE);
399 	if (err)
400 		goto err_free_devcmd2;
401 
402 	fetch_index = ioread32(&vdev->devcmd2->wq.ctrl->fetch_index);
403 	if (fetch_index == 0xFFFFFFFF) { /* check for hardware gone  */
404 		vdev_err(vdev, "Fatal error in devcmd2 init - hardware surprise removal\n");
405 		err = -ENODEV;
406 		goto err_free_wq;
407 	}
408 
409 	enic_wq_init_start(&vdev->devcmd2->wq, 0, fetch_index, fetch_index, 0,
410 			   0);
411 	vdev->devcmd2->posted = fetch_index;
412 	vnic_wq_enable(&vdev->devcmd2->wq);
413 
414 	err = vnic_dev_alloc_desc_ring(vdev, &vdev->devcmd2->results_ring,
415 				       DEVCMD2_RING_SIZE, DEVCMD2_DESC_SIZE);
416 	if (err)
417 		goto err_disable_wq;
418 
419 	vdev->devcmd2->result = vdev->devcmd2->results_ring.descs;
420 	vdev->devcmd2->cmd_ring = vdev->devcmd2->wq.ring.descs;
421 	vdev->devcmd2->wq_ctrl = vdev->devcmd2->wq.ctrl;
422 	vdev->args[0] = (u64)vdev->devcmd2->results_ring.base_addr |
423 			VNIC_PADDR_TARGET;
424 	vdev->args[1] = DEVCMD2_RING_SIZE;
425 
426 	err = _vnic_dev_cmd2(vdev, CMD_INITIALIZE_DEVCMD2, 1000);
427 	if (err)
428 		goto err_free_desc_ring;
429 
430 	vdev->devcmd_rtn = _vnic_dev_cmd2;
431 
432 	return 0;
433 
434 err_free_desc_ring:
435 	vnic_dev_free_desc_ring(vdev, &vdev->devcmd2->results_ring);
436 err_disable_wq:
437 	vnic_wq_disable(&vdev->devcmd2->wq);
438 err_free_wq:
439 	vnic_wq_free(&vdev->devcmd2->wq);
440 err_free_devcmd2:
441 	kfree(vdev->devcmd2);
442 	vdev->devcmd2 = NULL;
443 
444 	return err;
445 }
446 
447 static void vnic_dev_deinit_devcmd2(struct vnic_dev *vdev)
448 {
449 	vnic_dev_free_desc_ring(vdev, &vdev->devcmd2->results_ring);
450 	vnic_wq_disable(&vdev->devcmd2->wq);
451 	vnic_wq_free(&vdev->devcmd2->wq);
452 	kfree(vdev->devcmd2);
453 }
454 
455 static int vnic_dev_cmd_proxy(struct vnic_dev *vdev,
456 	enum vnic_devcmd_cmd proxy_cmd, enum vnic_devcmd_cmd cmd,
457 	u64 *a0, u64 *a1, int wait)
458 {
459 	u32 status;
460 	int err;
461 
462 	memset(vdev->args, 0, sizeof(vdev->args));
463 
464 	vdev->args[0] = vdev->proxy_index;
465 	vdev->args[1] = cmd;
466 	vdev->args[2] = *a0;
467 	vdev->args[3] = *a1;
468 
469 	err = vdev->devcmd_rtn(vdev, proxy_cmd, wait);
470 	if (err)
471 		return err;
472 
473 	status = (u32)vdev->args[0];
474 	if (status & STAT_ERROR) {
475 		err = (int)vdev->args[1];
476 		if (err != ERR_ECMDUNKNOWN ||
477 		    cmd != CMD_CAPABILITY)
478 			vdev_neterr(vdev, "Error %d proxy devcmd %d\n",
479 				    err, _CMD_N(cmd));
480 		return err;
481 	}
482 
483 	*a0 = vdev->args[1];
484 	*a1 = vdev->args[2];
485 
486 	return 0;
487 }
488 
489 static int vnic_dev_cmd_no_proxy(struct vnic_dev *vdev,
490 	enum vnic_devcmd_cmd cmd, u64 *a0, u64 *a1, int wait)
491 {
492 	int err;
493 
494 	vdev->args[0] = *a0;
495 	vdev->args[1] = *a1;
496 
497 	err = vdev->devcmd_rtn(vdev, cmd, wait);
498 
499 	*a0 = vdev->args[0];
500 	*a1 = vdev->args[1];
501 
502 	return err;
503 }
504 
505 void vnic_dev_cmd_proxy_by_index_start(struct vnic_dev *vdev, u16 index)
506 {
507 	vdev->proxy = PROXY_BY_INDEX;
508 	vdev->proxy_index = index;
509 }
510 
511 void vnic_dev_cmd_proxy_end(struct vnic_dev *vdev)
512 {
513 	vdev->proxy = PROXY_NONE;
514 	vdev->proxy_index = 0;
515 }
516 
517 int vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
518 	u64 *a0, u64 *a1, int wait)
519 {
520 	memset(vdev->args, 0, sizeof(vdev->args));
521 
522 	switch (vdev->proxy) {
523 	case PROXY_BY_INDEX:
524 		return vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_INDEX, cmd,
525 				a0, a1, wait);
526 	case PROXY_BY_BDF:
527 		return vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_BDF, cmd,
528 				a0, a1, wait);
529 	case PROXY_NONE:
530 	default:
531 		return vnic_dev_cmd_no_proxy(vdev, cmd, a0, a1, wait);
532 	}
533 }
534 
535 static int vnic_dev_capable(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd)
536 {
537 	u64 a0 = (u32)cmd, a1 = 0;
538 	int wait = 1000;
539 	int err;
540 
541 	err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
542 
543 	return !(err || a0);
544 }
545 
546 int vnic_dev_fw_info(struct vnic_dev *vdev,
547 	struct vnic_devcmd_fw_info **fw_info)
548 {
549 	u64 a0, a1 = 0;
550 	int wait = 1000;
551 	int err = 0;
552 
553 	if (!vdev->fw_info) {
554 		vdev->fw_info = dma_alloc_coherent(&vdev->pdev->dev,
555 						   sizeof(struct vnic_devcmd_fw_info),
556 						   &vdev->fw_info_pa, GFP_ATOMIC);
557 		if (!vdev->fw_info)
558 			return -ENOMEM;
559 
560 		a0 = vdev->fw_info_pa;
561 		a1 = sizeof(struct vnic_devcmd_fw_info);
562 
563 		/* only get fw_info once and cache it */
564 		if (vnic_dev_capable(vdev, CMD_MCPU_FW_INFO))
565 			err = vnic_dev_cmd(vdev, CMD_MCPU_FW_INFO,
566 				&a0, &a1, wait);
567 		else
568 			err = vnic_dev_cmd(vdev, CMD_MCPU_FW_INFO_OLD,
569 				&a0, &a1, wait);
570 	}
571 
572 	*fw_info = vdev->fw_info;
573 
574 	return err;
575 }
576 
577 int vnic_dev_spec(struct vnic_dev *vdev, unsigned int offset, unsigned int size,
578 	void *value)
579 {
580 	u64 a0, a1;
581 	int wait = 1000;
582 	int err;
583 
584 	a0 = offset;
585 	a1 = size;
586 
587 	err = vnic_dev_cmd(vdev, CMD_DEV_SPEC, &a0, &a1, wait);
588 
589 	switch (size) {
590 	case 1: *(u8 *)value = (u8)a0; break;
591 	case 2: *(u16 *)value = (u16)a0; break;
592 	case 4: *(u32 *)value = (u32)a0; break;
593 	case 8: *(u64 *)value = a0; break;
594 	default: BUG(); break;
595 	}
596 
597 	return err;
598 }
599 
600 int vnic_dev_stats_dump(struct vnic_dev *vdev, struct vnic_stats **stats)
601 {
602 	u64 a0, a1;
603 	int wait = 1000;
604 
605 	if (!vdev->stats) {
606 		vdev->stats = dma_alloc_coherent(&vdev->pdev->dev,
607 						 sizeof(struct vnic_stats),
608 						 &vdev->stats_pa, GFP_ATOMIC);
609 		if (!vdev->stats)
610 			return -ENOMEM;
611 	}
612 
613 	*stats = vdev->stats;
614 	a0 = vdev->stats_pa;
615 	a1 = sizeof(struct vnic_stats);
616 
617 	return vnic_dev_cmd(vdev, CMD_STATS_DUMP, &a0, &a1, wait);
618 }
619 
620 int vnic_dev_close(struct vnic_dev *vdev)
621 {
622 	u64 a0 = 0, a1 = 0;
623 	int wait = 1000;
624 	return vnic_dev_cmd(vdev, CMD_CLOSE, &a0, &a1, wait);
625 }
626 
627 int vnic_dev_enable_wait(struct vnic_dev *vdev)
628 {
629 	u64 a0 = 0, a1 = 0;
630 	int wait = 1000;
631 
632 	if (vnic_dev_capable(vdev, CMD_ENABLE_WAIT))
633 		return vnic_dev_cmd(vdev, CMD_ENABLE_WAIT, &a0, &a1, wait);
634 	else
635 		return vnic_dev_cmd(vdev, CMD_ENABLE, &a0, &a1, wait);
636 }
637 
638 int vnic_dev_disable(struct vnic_dev *vdev)
639 {
640 	u64 a0 = 0, a1 = 0;
641 	int wait = 1000;
642 	return vnic_dev_cmd(vdev, CMD_DISABLE, &a0, &a1, wait);
643 }
644 
645 int vnic_dev_open(struct vnic_dev *vdev, int arg)
646 {
647 	u64 a0 = (u32)arg, a1 = 0;
648 	int wait = 1000;
649 	return vnic_dev_cmd(vdev, CMD_OPEN, &a0, &a1, wait);
650 }
651 
652 int vnic_dev_open_done(struct vnic_dev *vdev, int *done)
653 {
654 	u64 a0 = 0, a1 = 0;
655 	int wait = 1000;
656 	int err;
657 
658 	*done = 0;
659 
660 	err = vnic_dev_cmd(vdev, CMD_OPEN_STATUS, &a0, &a1, wait);
661 	if (err)
662 		return err;
663 
664 	*done = (a0 == 0);
665 
666 	return 0;
667 }
668 
669 int vnic_dev_soft_reset(struct vnic_dev *vdev, int arg)
670 {
671 	u64 a0 = (u32)arg, a1 = 0;
672 	int wait = 1000;
673 	return vnic_dev_cmd(vdev, CMD_SOFT_RESET, &a0, &a1, wait);
674 }
675 
676 int vnic_dev_soft_reset_done(struct vnic_dev *vdev, int *done)
677 {
678 	u64 a0 = 0, a1 = 0;
679 	int wait = 1000;
680 	int err;
681 
682 	*done = 0;
683 
684 	err = vnic_dev_cmd(vdev, CMD_SOFT_RESET_STATUS, &a0, &a1, wait);
685 	if (err)
686 		return err;
687 
688 	*done = (a0 == 0);
689 
690 	return 0;
691 }
692 
693 int vnic_dev_hang_reset(struct vnic_dev *vdev, int arg)
694 {
695 	u64 a0 = (u32)arg, a1 = 0;
696 	int wait = 1000;
697 	int err;
698 
699 	if (vnic_dev_capable(vdev, CMD_HANG_RESET)) {
700 		return vnic_dev_cmd(vdev, CMD_HANG_RESET,
701 				&a0, &a1, wait);
702 	} else {
703 		err = vnic_dev_soft_reset(vdev, arg);
704 		if (err)
705 			return err;
706 		return vnic_dev_init(vdev, 0);
707 	}
708 }
709 
710 int vnic_dev_hang_reset_done(struct vnic_dev *vdev, int *done)
711 {
712 	u64 a0 = 0, a1 = 0;
713 	int wait = 1000;
714 	int err;
715 
716 	*done = 0;
717 
718 	if (vnic_dev_capable(vdev, CMD_HANG_RESET_STATUS)) {
719 		err = vnic_dev_cmd(vdev, CMD_HANG_RESET_STATUS,
720 				&a0, &a1, wait);
721 		if (err)
722 			return err;
723 	} else {
724 		return vnic_dev_soft_reset_done(vdev, done);
725 	}
726 
727 	*done = (a0 == 0);
728 
729 	return 0;
730 }
731 
732 int vnic_dev_hang_notify(struct vnic_dev *vdev)
733 {
734 	u64 a0, a1;
735 	int wait = 1000;
736 	return vnic_dev_cmd(vdev, CMD_HANG_NOTIFY, &a0, &a1, wait);
737 }
738 
739 int vnic_dev_get_mac_addr(struct vnic_dev *vdev, u8 *mac_addr)
740 {
741 	u64 a0, a1;
742 	int wait = 1000;
743 	int err, i;
744 
745 	for (i = 0; i < ETH_ALEN; i++)
746 		mac_addr[i] = 0;
747 
748 	err = vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait);
749 	if (err)
750 		return err;
751 
752 	for (i = 0; i < ETH_ALEN; i++)
753 		mac_addr[i] = ((u8 *)&a0)[i];
754 
755 	return 0;
756 }
757 
758 int vnic_dev_packet_filter(struct vnic_dev *vdev, int directed, int multicast,
759 	int broadcast, int promisc, int allmulti)
760 {
761 	u64 a0, a1 = 0;
762 	int wait = 1000;
763 	int err;
764 
765 	a0 = (directed ? CMD_PFILTER_DIRECTED : 0) |
766 	     (multicast ? CMD_PFILTER_MULTICAST : 0) |
767 	     (broadcast ? CMD_PFILTER_BROADCAST : 0) |
768 	     (promisc ? CMD_PFILTER_PROMISCUOUS : 0) |
769 	     (allmulti ? CMD_PFILTER_ALL_MULTICAST : 0);
770 
771 	err = vnic_dev_cmd(vdev, CMD_PACKET_FILTER, &a0, &a1, wait);
772 	if (err)
773 		vdev_neterr(vdev, "Can't set packet filter\n");
774 
775 	return err;
776 }
777 
778 int vnic_dev_add_addr(struct vnic_dev *vdev, const u8 *addr)
779 {
780 	u64 a0 = 0, a1 = 0;
781 	int wait = 1000;
782 	int err;
783 	int i;
784 
785 	for (i = 0; i < ETH_ALEN; i++)
786 		((u8 *)&a0)[i] = addr[i];
787 
788 	err = vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait);
789 	if (err)
790 		vdev_neterr(vdev, "Can't add addr [%pM], %d\n", addr, err);
791 
792 	return err;
793 }
794 
795 int vnic_dev_del_addr(struct vnic_dev *vdev, const u8 *addr)
796 {
797 	u64 a0 = 0, a1 = 0;
798 	int wait = 1000;
799 	int err;
800 	int i;
801 
802 	for (i = 0; i < ETH_ALEN; i++)
803 		((u8 *)&a0)[i] = addr[i];
804 
805 	err = vnic_dev_cmd(vdev, CMD_ADDR_DEL, &a0, &a1, wait);
806 	if (err)
807 		vdev_neterr(vdev, "Can't del addr [%pM], %d\n", addr, err);
808 
809 	return err;
810 }
811 
812 int vnic_dev_set_ig_vlan_rewrite_mode(struct vnic_dev *vdev,
813 	u8 ig_vlan_rewrite_mode)
814 {
815 	u64 a0 = ig_vlan_rewrite_mode, a1 = 0;
816 	int wait = 1000;
817 
818 	if (vnic_dev_capable(vdev, CMD_IG_VLAN_REWRITE_MODE))
819 		return vnic_dev_cmd(vdev, CMD_IG_VLAN_REWRITE_MODE,
820 				&a0, &a1, wait);
821 	else
822 		return 0;
823 }
824 
825 static int vnic_dev_notify_setcmd(struct vnic_dev *vdev,
826 	void *notify_addr, dma_addr_t notify_pa, u16 intr)
827 {
828 	u64 a0, a1;
829 	int wait = 1000;
830 	int r;
831 
832 	memset(notify_addr, 0, sizeof(struct vnic_devcmd_notify));
833 	vdev->notify = notify_addr;
834 	vdev->notify_pa = notify_pa;
835 
836 	a0 = (u64)notify_pa;
837 	a1 = ((u64)intr << 32) & 0x0000ffff00000000ULL;
838 	a1 += sizeof(struct vnic_devcmd_notify);
839 
840 	r = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait);
841 	vdev->notify_sz = (r == 0) ? (u32)a1 : 0;
842 	return r;
843 }
844 
845 int vnic_dev_notify_set(struct vnic_dev *vdev, u16 intr)
846 {
847 	void *notify_addr;
848 	dma_addr_t notify_pa;
849 
850 	if (vdev->notify || vdev->notify_pa) {
851 		vdev_neterr(vdev, "notify block %p still allocated\n",
852 			    vdev->notify);
853 		return -EINVAL;
854 	}
855 
856 	notify_addr = dma_alloc_coherent(&vdev->pdev->dev,
857 					 sizeof(struct vnic_devcmd_notify),
858 					 &notify_pa, GFP_ATOMIC);
859 	if (!notify_addr)
860 		return -ENOMEM;
861 
862 	return vnic_dev_notify_setcmd(vdev, notify_addr, notify_pa, intr);
863 }
864 
865 static int vnic_dev_notify_unsetcmd(struct vnic_dev *vdev)
866 {
867 	u64 a0, a1;
868 	int wait = 1000;
869 	int err;
870 
871 	a0 = 0;  /* paddr = 0 to unset notify buffer */
872 	a1 = 0x0000ffff00000000ULL; /* intr num = -1 to unreg for intr */
873 	a1 += sizeof(struct vnic_devcmd_notify);
874 
875 	err = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait);
876 	vdev->notify = NULL;
877 	vdev->notify_pa = 0;
878 	vdev->notify_sz = 0;
879 
880 	return err;
881 }
882 
883 int vnic_dev_notify_unset(struct vnic_dev *vdev)
884 {
885 	if (vdev->notify) {
886 		dma_free_coherent(&vdev->pdev->dev,
887 				  sizeof(struct vnic_devcmd_notify),
888 				  vdev->notify, vdev->notify_pa);
889 	}
890 
891 	return vnic_dev_notify_unsetcmd(vdev);
892 }
893 
894 static int vnic_dev_notify_ready(struct vnic_dev *vdev)
895 {
896 	u32 *words;
897 	unsigned int nwords = vdev->notify_sz / 4;
898 	unsigned int i;
899 	u32 csum;
900 
901 	if (!vdev->notify || !vdev->notify_sz)
902 		return 0;
903 
904 	do {
905 		csum = 0;
906 		memcpy(&vdev->notify_copy, vdev->notify, vdev->notify_sz);
907 		words = (u32 *)&vdev->notify_copy;
908 		for (i = 1; i < nwords; i++)
909 			csum += words[i];
910 	} while (csum != words[0]);
911 
912 	return 1;
913 }
914 
915 int vnic_dev_init(struct vnic_dev *vdev, int arg)
916 {
917 	u64 a0 = (u32)arg, a1 = 0;
918 	int wait = 1000;
919 	int r = 0;
920 
921 	if (vnic_dev_capable(vdev, CMD_INIT))
922 		r = vnic_dev_cmd(vdev, CMD_INIT, &a0, &a1, wait);
923 	else {
924 		vnic_dev_cmd(vdev, CMD_INIT_v1, &a0, &a1, wait);
925 		if (a0 & CMD_INITF_DEFAULT_MAC) {
926 			/* Emulate these for old CMD_INIT_v1 which
927 			 * didn't pass a0 so no CMD_INITF_*.
928 			 */
929 			vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait);
930 			vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait);
931 		}
932 	}
933 	return r;
934 }
935 
936 int vnic_dev_deinit(struct vnic_dev *vdev)
937 {
938 	u64 a0 = 0, a1 = 0;
939 	int wait = 1000;
940 
941 	return vnic_dev_cmd(vdev, CMD_DEINIT, &a0, &a1, wait);
942 }
943 
944 void vnic_dev_intr_coal_timer_info_default(struct vnic_dev *vdev)
945 {
946 	/* Default: hardware intr coal timer is in units of 1.5 usecs */
947 	vdev->intr_coal_timer_info.mul = 2;
948 	vdev->intr_coal_timer_info.div = 3;
949 	vdev->intr_coal_timer_info.max_usec =
950 		vnic_dev_intr_coal_timer_hw_to_usec(vdev, 0xffff);
951 }
952 
953 int vnic_dev_intr_coal_timer_info(struct vnic_dev *vdev)
954 {
955 	int wait = 1000;
956 	int err;
957 
958 	memset(vdev->args, 0, sizeof(vdev->args));
959 
960 	if (vnic_dev_capable(vdev, CMD_INTR_COAL_CONVERT))
961 		err = vdev->devcmd_rtn(vdev, CMD_INTR_COAL_CONVERT, wait);
962 	else
963 		err = ERR_ECMDUNKNOWN;
964 
965 	/* Use defaults when firmware doesn't support the devcmd at all or
966 	 * supports it for only specific hardware
967 	 */
968 	if ((err == ERR_ECMDUNKNOWN) ||
969 		(!err && !(vdev->args[0] && vdev->args[1] && vdev->args[2]))) {
970 		vdev_netwarn(vdev, "Using default conversion factor for interrupt coalesce timer\n");
971 		vnic_dev_intr_coal_timer_info_default(vdev);
972 		return 0;
973 	}
974 
975 	if (!err) {
976 		vdev->intr_coal_timer_info.mul = (u32) vdev->args[0];
977 		vdev->intr_coal_timer_info.div = (u32) vdev->args[1];
978 		vdev->intr_coal_timer_info.max_usec = (u32) vdev->args[2];
979 	}
980 
981 	return err;
982 }
983 
984 int vnic_dev_link_status(struct vnic_dev *vdev)
985 {
986 	if (!vnic_dev_notify_ready(vdev))
987 		return 0;
988 
989 	return vdev->notify_copy.link_state;
990 }
991 
992 u32 vnic_dev_port_speed(struct vnic_dev *vdev)
993 {
994 	if (!vnic_dev_notify_ready(vdev))
995 		return 0;
996 
997 	return vdev->notify_copy.port_speed;
998 }
999 
1000 u32 vnic_dev_msg_lvl(struct vnic_dev *vdev)
1001 {
1002 	if (!vnic_dev_notify_ready(vdev))
1003 		return 0;
1004 
1005 	return vdev->notify_copy.msglvl;
1006 }
1007 
1008 u32 vnic_dev_mtu(struct vnic_dev *vdev)
1009 {
1010 	if (!vnic_dev_notify_ready(vdev))
1011 		return 0;
1012 
1013 	return vdev->notify_copy.mtu;
1014 }
1015 
1016 void vnic_dev_set_intr_mode(struct vnic_dev *vdev,
1017 	enum vnic_dev_intr_mode intr_mode)
1018 {
1019 	vdev->intr_mode = intr_mode;
1020 }
1021 
1022 enum vnic_dev_intr_mode vnic_dev_get_intr_mode(
1023 	struct vnic_dev *vdev)
1024 {
1025 	return vdev->intr_mode;
1026 }
1027 
1028 u32 vnic_dev_intr_coal_timer_usec_to_hw(struct vnic_dev *vdev, u32 usec)
1029 {
1030 	return (usec * vdev->intr_coal_timer_info.mul) /
1031 		vdev->intr_coal_timer_info.div;
1032 }
1033 
1034 u32 vnic_dev_intr_coal_timer_hw_to_usec(struct vnic_dev *vdev, u32 hw_cycles)
1035 {
1036 	return (hw_cycles * vdev->intr_coal_timer_info.div) /
1037 		vdev->intr_coal_timer_info.mul;
1038 }
1039 
1040 u32 vnic_dev_get_intr_coal_timer_max(struct vnic_dev *vdev)
1041 {
1042 	return vdev->intr_coal_timer_info.max_usec;
1043 }
1044 
1045 void vnic_dev_unregister(struct vnic_dev *vdev)
1046 {
1047 	if (vdev) {
1048 		if (vdev->notify)
1049 			dma_free_coherent(&vdev->pdev->dev,
1050 					  sizeof(struct vnic_devcmd_notify),
1051 					  vdev->notify, vdev->notify_pa);
1052 		if (vdev->stats)
1053 			dma_free_coherent(&vdev->pdev->dev,
1054 					  sizeof(struct vnic_stats),
1055 					  vdev->stats, vdev->stats_pa);
1056 		if (vdev->fw_info)
1057 			dma_free_coherent(&vdev->pdev->dev,
1058 					  sizeof(struct vnic_devcmd_fw_info),
1059 					  vdev->fw_info, vdev->fw_info_pa);
1060 		if (vdev->devcmd2)
1061 			vnic_dev_deinit_devcmd2(vdev);
1062 
1063 		kfree(vdev);
1064 	}
1065 }
1066 EXPORT_SYMBOL(vnic_dev_unregister);
1067 
1068 struct vnic_dev *vnic_dev_register(struct vnic_dev *vdev,
1069 	void *priv, struct pci_dev *pdev, struct vnic_dev_bar *bar,
1070 	unsigned int num_bars)
1071 {
1072 	if (!vdev) {
1073 		vdev = kzalloc(sizeof(struct vnic_dev), GFP_KERNEL);
1074 		if (!vdev)
1075 			return NULL;
1076 	}
1077 
1078 	vdev->priv = priv;
1079 	vdev->pdev = pdev;
1080 
1081 	if (vnic_dev_discover_res(vdev, bar, num_bars))
1082 		goto err_out;
1083 
1084 	return vdev;
1085 
1086 err_out:
1087 	vnic_dev_unregister(vdev);
1088 	return NULL;
1089 }
1090 EXPORT_SYMBOL(vnic_dev_register);
1091 
1092 struct pci_dev *vnic_dev_get_pdev(struct vnic_dev *vdev)
1093 {
1094 	return vdev->pdev;
1095 }
1096 EXPORT_SYMBOL(vnic_dev_get_pdev);
1097 
1098 int vnic_devcmd_init(struct vnic_dev *vdev)
1099 {
1100 	void __iomem *res;
1101 	int err;
1102 
1103 	res = vnic_dev_get_res(vdev, RES_TYPE_DEVCMD2, 0);
1104 	if (res) {
1105 		err = vnic_dev_init_devcmd2(vdev);
1106 		if (err)
1107 			vdev_warn(vdev, "DEVCMD2 init failed: %d, Using DEVCMD1\n",
1108 				  err);
1109 		else
1110 			return 0;
1111 	} else {
1112 		vdev_warn(vdev, "DEVCMD2 resource not found (old firmware?) Using DEVCMD1\n");
1113 	}
1114 	err = vnic_dev_init_devcmd1(vdev);
1115 	if (err)
1116 		vdev_err(vdev, "DEVCMD1 initialization failed: %d\n", err);
1117 
1118 	return err;
1119 }
1120 
1121 int vnic_dev_init_prov2(struct vnic_dev *vdev, u8 *buf, u32 len)
1122 {
1123 	u64 a0, a1 = len;
1124 	int wait = 1000;
1125 	dma_addr_t prov_pa;
1126 	void *prov_buf;
1127 	int ret;
1128 
1129 	prov_buf = dma_alloc_coherent(&vdev->pdev->dev, len, &prov_pa, GFP_ATOMIC);
1130 	if (!prov_buf)
1131 		return -ENOMEM;
1132 
1133 	memcpy(prov_buf, buf, len);
1134 
1135 	a0 = prov_pa;
1136 
1137 	ret = vnic_dev_cmd(vdev, CMD_INIT_PROV_INFO2, &a0, &a1, wait);
1138 
1139 	dma_free_coherent(&vdev->pdev->dev, len, prov_buf, prov_pa);
1140 
1141 	return ret;
1142 }
1143 
1144 int vnic_dev_enable2(struct vnic_dev *vdev, int active)
1145 {
1146 	u64 a0, a1 = 0;
1147 	int wait = 1000;
1148 
1149 	a0 = (active ? CMD_ENABLE2_ACTIVE : 0);
1150 
1151 	return vnic_dev_cmd(vdev, CMD_ENABLE2, &a0, &a1, wait);
1152 }
1153 
1154 static int vnic_dev_cmd_status(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
1155 	int *status)
1156 {
1157 	u64 a0 = cmd, a1 = 0;
1158 	int wait = 1000;
1159 	int ret;
1160 
1161 	ret = vnic_dev_cmd(vdev, CMD_STATUS, &a0, &a1, wait);
1162 	if (!ret)
1163 		*status = (int)a0;
1164 
1165 	return ret;
1166 }
1167 
1168 int vnic_dev_enable2_done(struct vnic_dev *vdev, int *status)
1169 {
1170 	return vnic_dev_cmd_status(vdev, CMD_ENABLE2, status);
1171 }
1172 
1173 int vnic_dev_deinit_done(struct vnic_dev *vdev, int *status)
1174 {
1175 	return vnic_dev_cmd_status(vdev, CMD_DEINIT, status);
1176 }
1177 
1178 int vnic_dev_set_mac_addr(struct vnic_dev *vdev, u8 *mac_addr)
1179 {
1180 	u64 a0, a1;
1181 	int wait = 1000;
1182 	int i;
1183 
1184 	for (i = 0; i < ETH_ALEN; i++)
1185 		((u8 *)&a0)[i] = mac_addr[i];
1186 
1187 	return vnic_dev_cmd(vdev, CMD_SET_MAC_ADDR, &a0, &a1, wait);
1188 }
1189 
1190 /* vnic_dev_classifier: Add/Delete classifier entries
1191  * @vdev: vdev of the device
1192  * @cmd: CLSF_ADD for Add filter
1193  *	 CLSF_DEL for Delete filter
1194  * @entry: In case of ADD filter, the caller passes the RQ number in this
1195  *	   variable.
1196  *
1197  *	   This function stores the filter_id returned by the firmware in the
1198  *	   same variable before return;
1199  *
1200  *	   In case of DEL filter, the caller passes the RQ number. Return
1201  *	   value is irrelevant.
1202  * @data: filter data
1203  */
1204 int vnic_dev_classifier(struct vnic_dev *vdev, u8 cmd, u16 *entry,
1205 			struct filter *data)
1206 {
1207 	u64 a0, a1;
1208 	int wait = 1000;
1209 	dma_addr_t tlv_pa;
1210 	int ret = -EINVAL;
1211 	struct filter_tlv *tlv, *tlv_va;
1212 	struct filter_action *action;
1213 	u64 tlv_size;
1214 
1215 	if (cmd == CLSF_ADD) {
1216 		tlv_size = sizeof(struct filter) +
1217 			   sizeof(struct filter_action) +
1218 			   2 * sizeof(struct filter_tlv);
1219 		tlv_va = dma_alloc_coherent(&vdev->pdev->dev, tlv_size,
1220 					    &tlv_pa, GFP_ATOMIC);
1221 		if (!tlv_va)
1222 			return -ENOMEM;
1223 		tlv = tlv_va;
1224 		a0 = tlv_pa;
1225 		a1 = tlv_size;
1226 		memset(tlv, 0, tlv_size);
1227 		tlv->type = CLSF_TLV_FILTER;
1228 		tlv->length = sizeof(struct filter);
1229 		*(struct filter *)&tlv->val = *data;
1230 
1231 		tlv = (struct filter_tlv *)((char *)tlv +
1232 					    sizeof(struct filter_tlv) +
1233 					    sizeof(struct filter));
1234 
1235 		tlv->type = CLSF_TLV_ACTION;
1236 		tlv->length = sizeof(struct filter_action);
1237 		action = (struct filter_action *)&tlv->val;
1238 		action->type = FILTER_ACTION_RQ_STEERING;
1239 		action->u.rq_idx = *entry;
1240 
1241 		ret = vnic_dev_cmd(vdev, CMD_ADD_FILTER, &a0, &a1, wait);
1242 		*entry = (u16)a0;
1243 		dma_free_coherent(&vdev->pdev->dev, tlv_size, tlv_va, tlv_pa);
1244 	} else if (cmd == CLSF_DEL) {
1245 		a0 = *entry;
1246 		ret = vnic_dev_cmd(vdev, CMD_DEL_FILTER, &a0, &a1, wait);
1247 	}
1248 
1249 	return ret;
1250 }
1251 
1252 int vnic_dev_overlay_offload_ctrl(struct vnic_dev *vdev, u8 overlay, u8 config)
1253 {
1254 	u64 a0 = overlay;
1255 	u64 a1 = config;
1256 	int wait = 1000;
1257 
1258 	return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CTRL, &a0, &a1, wait);
1259 }
1260 
1261 int vnic_dev_overlay_offload_cfg(struct vnic_dev *vdev, u8 overlay,
1262 				 u16 vxlan_udp_port_number)
1263 {
1264 	u64 a1 = vxlan_udp_port_number;
1265 	u64 a0 = overlay;
1266 	int wait = 1000;
1267 
1268 	return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CFG, &a0, &a1, wait);
1269 }
1270 
1271 int vnic_dev_get_supported_feature_ver(struct vnic_dev *vdev, u8 feature,
1272 				       u64 *supported_versions, u64 *a1)
1273 {
1274 	u64 a0 = feature;
1275 	int wait = 1000;
1276 	int ret;
1277 
1278 	ret = vnic_dev_cmd(vdev, CMD_GET_SUPP_FEATURE_VER, &a0, a1, wait);
1279 	if (!ret)
1280 		*supported_versions = a0;
1281 
1282 	return ret;
1283 }
1284 
1285 int vnic_dev_capable_rss_hash_type(struct vnic_dev *vdev, u8 *rss_hash_type)
1286 {
1287 	u64 a0 = CMD_NIC_CFG, a1 = 0;
1288 	int wait = 1000;
1289 	int err;
1290 
1291 	err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
1292 	/* rss_hash_type is valid only when a0 is 1. Adapter which does not
1293 	 * support CMD_CAPABILITY for rss_hash_type has a0 = 0
1294 	 */
1295 	if (err || (a0 != 1))
1296 		return -EOPNOTSUPP;
1297 
1298 	a1 = (a1 >> NIC_CFG_RSS_HASH_TYPE_SHIFT) &
1299 	     NIC_CFG_RSS_HASH_TYPE_MASK_FIELD;
1300 
1301 	*rss_hash_type = (u8)a1;
1302 
1303 	return 0;
1304 }
1305