1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2018 Chelsio Communications, Inc. 4 * 5 * Written by: Atul Gupta (atul.gupta@chelsio.com) 6 */ 7 8 #include <linux/module.h> 9 #include <linux/list.h> 10 #include <linux/workqueue.h> 11 #include <linux/skbuff.h> 12 #include <linux/timer.h> 13 #include <linux/notifier.h> 14 #include <linux/inetdevice.h> 15 #include <linux/ip.h> 16 #include <linux/tcp.h> 17 #include <linux/tls.h> 18 #include <net/tls.h> 19 20 #include "chtls.h" 21 #include "chtls_cm.h" 22 23 static void __set_tcb_field_direct(struct chtls_sock *csk, 24 struct cpl_set_tcb_field *req, u16 word, 25 u64 mask, u64 val, u8 cookie, int no_reply) 26 { 27 struct ulptx_idata *sc; 28 29 INIT_TP_WR_CPL(req, CPL_SET_TCB_FIELD, csk->tid); 30 req->wr.wr_mid |= htonl(FW_WR_FLOWID_V(csk->tid)); 31 req->reply_ctrl = htons(NO_REPLY_V(no_reply) | 32 QUEUENO_V(csk->rss_qid)); 33 req->word_cookie = htons(TCB_WORD_V(word) | TCB_COOKIE_V(cookie)); 34 req->mask = cpu_to_be64(mask); 35 req->val = cpu_to_be64(val); 36 sc = (struct ulptx_idata *)(req + 1); 37 sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_NOOP)); 38 sc->len = htonl(0); 39 } 40 41 static void __set_tcb_field(struct sock *sk, struct sk_buff *skb, u16 word, 42 u64 mask, u64 val, u8 cookie, int no_reply) 43 { 44 struct cpl_set_tcb_field *req; 45 struct chtls_sock *csk; 46 struct ulptx_idata *sc; 47 unsigned int wrlen; 48 49 wrlen = roundup(sizeof(*req) + sizeof(*sc), 16); 50 csk = rcu_dereference_sk_user_data(sk); 51 52 req = (struct cpl_set_tcb_field *)__skb_put(skb, wrlen); 53 __set_tcb_field_direct(csk, req, word, mask, val, cookie, no_reply); 54 set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->port_id); 55 } 56 57 /* 58 * Send control message to HW, message go as immediate data and packet 59 * is freed immediately. 60 */ 61 static int chtls_set_tcb_field(struct sock *sk, u16 word, u64 mask, u64 val) 62 { 63 struct cpl_set_tcb_field *req; 64 unsigned int credits_needed; 65 struct chtls_sock *csk; 66 struct ulptx_idata *sc; 67 struct sk_buff *skb; 68 unsigned int wrlen; 69 int ret; 70 71 wrlen = roundup(sizeof(*req) + sizeof(*sc), 16); 72 73 skb = alloc_skb(wrlen, GFP_ATOMIC); 74 if (!skb) 75 return -ENOMEM; 76 77 credits_needed = DIV_ROUND_UP(wrlen, 16); 78 csk = rcu_dereference_sk_user_data(sk); 79 80 __set_tcb_field(sk, skb, word, mask, val, 0, 1); 81 skb_set_queue_mapping(skb, (csk->txq_idx << 1) | CPL_PRIORITY_DATA); 82 csk->wr_credits -= credits_needed; 83 csk->wr_unacked += credits_needed; 84 enqueue_wr(csk, skb); 85 ret = cxgb4_ofld_send(csk->egress_dev, skb); 86 if (ret < 0) 87 kfree_skb(skb); 88 return ret < 0 ? ret : 0; 89 } 90 91 /* 92 * Set one of the t_flags bits in the TCB. 93 */ 94 int chtls_set_tcb_tflag(struct sock *sk, unsigned int bit_pos, int val) 95 { 96 return chtls_set_tcb_field(sk, 1, 1ULL << bit_pos, 97 (u64)val << bit_pos); 98 } 99 100 static int chtls_set_tcb_keyid(struct sock *sk, int keyid) 101 { 102 return chtls_set_tcb_field(sk, 31, 0xFFFFFFFFULL, keyid); 103 } 104 105 static int chtls_set_tcb_seqno(struct sock *sk) 106 { 107 return chtls_set_tcb_field(sk, 28, ~0ULL, 0); 108 } 109 110 static int chtls_set_tcb_quiesce(struct sock *sk, int val) 111 { 112 return chtls_set_tcb_field(sk, 1, (1ULL << TF_RX_QUIESCE_S), 113 TF_RX_QUIESCE_V(val)); 114 } 115 116 /* TLS Key bitmap processing */ 117 int chtls_init_kmap(struct chtls_dev *cdev, struct cxgb4_lld_info *lldi) 118 { 119 unsigned int num_key_ctx, bsize; 120 int ksize; 121 122 num_key_ctx = (lldi->vr->key.size / TLS_KEY_CONTEXT_SZ); 123 bsize = BITS_TO_LONGS(num_key_ctx); 124 125 cdev->kmap.size = num_key_ctx; 126 cdev->kmap.available = bsize; 127 ksize = sizeof(*cdev->kmap.addr) * bsize; 128 cdev->kmap.addr = kvzalloc(ksize, GFP_KERNEL); 129 if (!cdev->kmap.addr) 130 return -ENOMEM; 131 132 cdev->kmap.start = lldi->vr->key.start; 133 spin_lock_init(&cdev->kmap.lock); 134 return 0; 135 } 136 137 static int get_new_keyid(struct chtls_sock *csk, u32 optname) 138 { 139 struct net_device *dev = csk->egress_dev; 140 struct chtls_dev *cdev = csk->cdev; 141 struct chtls_hws *hws; 142 struct adapter *adap; 143 int keyid; 144 145 adap = netdev2adap(dev); 146 hws = &csk->tlshws; 147 148 spin_lock_bh(&cdev->kmap.lock); 149 keyid = find_first_zero_bit(cdev->kmap.addr, cdev->kmap.size); 150 if (keyid < cdev->kmap.size) { 151 __set_bit(keyid, cdev->kmap.addr); 152 if (optname == TLS_RX) 153 hws->rxkey = keyid; 154 else 155 hws->txkey = keyid; 156 atomic_inc(&adap->chcr_stats.tls_key); 157 } else { 158 keyid = -1; 159 } 160 spin_unlock_bh(&cdev->kmap.lock); 161 return keyid; 162 } 163 164 void free_tls_keyid(struct sock *sk) 165 { 166 struct chtls_sock *csk = rcu_dereference_sk_user_data(sk); 167 struct net_device *dev = csk->egress_dev; 168 struct chtls_dev *cdev = csk->cdev; 169 struct chtls_hws *hws; 170 struct adapter *adap; 171 172 if (!cdev->kmap.addr) 173 return; 174 175 adap = netdev2adap(dev); 176 hws = &csk->tlshws; 177 178 spin_lock_bh(&cdev->kmap.lock); 179 if (hws->rxkey >= 0) { 180 __clear_bit(hws->rxkey, cdev->kmap.addr); 181 atomic_dec(&adap->chcr_stats.tls_key); 182 hws->rxkey = -1; 183 } 184 if (hws->txkey >= 0) { 185 __clear_bit(hws->txkey, cdev->kmap.addr); 186 atomic_dec(&adap->chcr_stats.tls_key); 187 hws->txkey = -1; 188 } 189 spin_unlock_bh(&cdev->kmap.lock); 190 } 191 192 unsigned int keyid_to_addr(int start_addr, int keyid) 193 { 194 return (start_addr + (keyid * TLS_KEY_CONTEXT_SZ)) >> 5; 195 } 196 197 static void chtls_rxkey_ivauth(struct _key_ctx *kctx) 198 { 199 kctx->iv_to_auth = cpu_to_be64(KEYCTX_TX_WR_IV_V(6ULL) | 200 KEYCTX_TX_WR_AAD_V(1ULL) | 201 KEYCTX_TX_WR_AADST_V(5ULL) | 202 KEYCTX_TX_WR_CIPHER_V(14ULL) | 203 KEYCTX_TX_WR_CIPHERST_V(0ULL) | 204 KEYCTX_TX_WR_AUTH_V(14ULL) | 205 KEYCTX_TX_WR_AUTHST_V(16ULL) | 206 KEYCTX_TX_WR_AUTHIN_V(16ULL)); 207 } 208 209 static int chtls_key_info(struct chtls_sock *csk, 210 struct _key_ctx *kctx, 211 u32 keylen, u32 optname, 212 int cipher_type) 213 { 214 unsigned char key[AES_MAX_KEY_SIZE]; 215 unsigned char *key_p, *salt; 216 unsigned char ghash_h[AEAD_H_SIZE]; 217 int ck_size, key_ctx_size, kctx_mackey_size, salt_size; 218 struct crypto_aes_ctx aes; 219 int ret; 220 221 key_ctx_size = sizeof(struct _key_ctx) + 222 roundup(keylen, 16) + AEAD_H_SIZE; 223 224 /* GCM mode of AES supports 128 and 256 bit encryption, so 225 * prepare key context base on GCM cipher type 226 */ 227 switch (cipher_type) { 228 case TLS_CIPHER_AES_GCM_128: { 229 struct tls12_crypto_info_aes_gcm_128 *gcm_ctx_128 = 230 (struct tls12_crypto_info_aes_gcm_128 *) 231 &csk->tlshws.crypto_info; 232 memcpy(key, gcm_ctx_128->key, keylen); 233 234 key_p = gcm_ctx_128->key; 235 salt = gcm_ctx_128->salt; 236 ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128; 237 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 238 kctx_mackey_size = CHCR_KEYCTX_MAC_KEY_SIZE_128; 239 break; 240 } 241 case TLS_CIPHER_AES_GCM_256: { 242 struct tls12_crypto_info_aes_gcm_256 *gcm_ctx_256 = 243 (struct tls12_crypto_info_aes_gcm_256 *) 244 &csk->tlshws.crypto_info; 245 memcpy(key, gcm_ctx_256->key, keylen); 246 247 key_p = gcm_ctx_256->key; 248 salt = gcm_ctx_256->salt; 249 ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256; 250 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 251 kctx_mackey_size = CHCR_KEYCTX_MAC_KEY_SIZE_256; 252 break; 253 } 254 default: 255 pr_err("GCM: Invalid key length %d\n", keylen); 256 return -EINVAL; 257 } 258 259 /* Calculate the H = CIPH(K, 0 repeated 16 times). 260 * It will go in key context 261 */ 262 ret = aes_expandkey(&aes, key, keylen); 263 if (ret) 264 return ret; 265 266 memset(ghash_h, 0, AEAD_H_SIZE); 267 aes_encrypt(&aes, ghash_h, ghash_h); 268 memzero_explicit(&aes, sizeof(aes)); 269 csk->tlshws.keylen = key_ctx_size; 270 271 /* Copy the Key context */ 272 if (optname == TLS_RX) { 273 int key_ctx; 274 275 key_ctx = ((key_ctx_size >> 4) << 3); 276 kctx->ctx_hdr = FILL_KEY_CRX_HDR(ck_size, 277 kctx_mackey_size, 278 0, 0, key_ctx); 279 chtls_rxkey_ivauth(kctx); 280 } else { 281 kctx->ctx_hdr = FILL_KEY_CTX_HDR(ck_size, 282 kctx_mackey_size, 283 0, 0, key_ctx_size >> 4); 284 } 285 286 memcpy(kctx->salt, salt, salt_size); 287 memcpy(kctx->key, key_p, keylen); 288 memcpy(kctx->key + keylen, ghash_h, AEAD_H_SIZE); 289 /* erase key info from driver */ 290 memset(key_p, 0, keylen); 291 292 return 0; 293 } 294 295 static void chtls_set_scmd(struct chtls_sock *csk) 296 { 297 struct chtls_hws *hws = &csk->tlshws; 298 299 hws->scmd.seqno_numivs = 300 SCMD_SEQ_NO_CTRL_V(3) | 301 SCMD_PROTO_VERSION_V(0) | 302 SCMD_ENC_DEC_CTRL_V(0) | 303 SCMD_CIPH_AUTH_SEQ_CTRL_V(1) | 304 SCMD_CIPH_MODE_V(2) | 305 SCMD_AUTH_MODE_V(4) | 306 SCMD_HMAC_CTRL_V(0) | 307 SCMD_IV_SIZE_V(4) | 308 SCMD_NUM_IVS_V(1); 309 310 hws->scmd.ivgen_hdrlen = 311 SCMD_IV_GEN_CTRL_V(1) | 312 SCMD_KEY_CTX_INLINE_V(0) | 313 SCMD_TLS_FRAG_ENABLE_V(1); 314 } 315 316 int chtls_setkey(struct chtls_sock *csk, u32 keylen, 317 u32 optname, int cipher_type) 318 { 319 struct tls_key_req *kwr; 320 struct chtls_dev *cdev; 321 struct _key_ctx *kctx; 322 int wrlen, klen, len; 323 struct sk_buff *skb; 324 struct sock *sk; 325 int keyid; 326 int kaddr; 327 int ret; 328 329 cdev = csk->cdev; 330 sk = csk->sk; 331 332 klen = roundup((keylen + AEAD_H_SIZE) + sizeof(*kctx), 32); 333 wrlen = roundup(sizeof(*kwr), 16); 334 len = klen + wrlen; 335 336 /* Flush out-standing data before new key takes effect */ 337 if (optname == TLS_TX) { 338 lock_sock(sk); 339 if (skb_queue_len(&csk->txq)) 340 chtls_push_frames(csk, 0); 341 release_sock(sk); 342 } 343 344 skb = alloc_skb(len, GFP_KERNEL); 345 if (!skb) 346 return -ENOMEM; 347 348 keyid = get_new_keyid(csk, optname); 349 if (keyid < 0) { 350 ret = -ENOSPC; 351 goto out_nokey; 352 } 353 354 kaddr = keyid_to_addr(cdev->kmap.start, keyid); 355 kwr = (struct tls_key_req *)__skb_put_zero(skb, len); 356 kwr->wr.op_to_compl = 357 cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) | FW_WR_COMPL_F | 358 FW_WR_ATOMIC_V(1U)); 359 kwr->wr.flowid_len16 = 360 cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(len, 16) | 361 FW_WR_FLOWID_V(csk->tid))); 362 kwr->wr.protocol = 0; 363 kwr->wr.mfs = htons(TLS_MFS); 364 kwr->wr.reneg_to_write_rx = optname; 365 366 /* ulptx command */ 367 kwr->req.cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE) | 368 T5_ULP_MEMIO_ORDER_V(1) | 369 T5_ULP_MEMIO_IMM_V(1)); 370 kwr->req.len16 = cpu_to_be32((csk->tid << 8) | 371 DIV_ROUND_UP(len - sizeof(kwr->wr), 16)); 372 kwr->req.dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(klen >> 5)); 373 kwr->req.lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(kaddr)); 374 375 /* sub command */ 376 kwr->sc_imm.cmd_more = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_IMM)); 377 kwr->sc_imm.len = cpu_to_be32(klen); 378 379 lock_sock(sk); 380 /* key info */ 381 kctx = (struct _key_ctx *)(kwr + 1); 382 ret = chtls_key_info(csk, kctx, keylen, optname, cipher_type); 383 if (ret) 384 goto out_notcb; 385 386 if (unlikely(csk_flag(sk, CSK_ABORT_SHUTDOWN))) 387 goto out_notcb; 388 389 set_wr_txq(skb, CPL_PRIORITY_DATA, csk->tlshws.txqid); 390 csk->wr_credits -= DIV_ROUND_UP(len, 16); 391 csk->wr_unacked += DIV_ROUND_UP(len, 16); 392 enqueue_wr(csk, skb); 393 cxgb4_ofld_send(csk->egress_dev, skb); 394 skb = NULL; 395 396 chtls_set_scmd(csk); 397 /* Clear quiesce for Rx key */ 398 if (optname == TLS_RX) { 399 ret = chtls_set_tcb_keyid(sk, keyid); 400 if (ret) 401 goto out_notcb; 402 ret = chtls_set_tcb_field(sk, 0, 403 TCB_ULP_RAW_V(TCB_ULP_RAW_M), 404 TCB_ULP_RAW_V((TF_TLS_KEY_SIZE_V(1) | 405 TF_TLS_CONTROL_V(1) | 406 TF_TLS_ACTIVE_V(1) | 407 TF_TLS_ENABLE_V(1)))); 408 if (ret) 409 goto out_notcb; 410 ret = chtls_set_tcb_seqno(sk); 411 if (ret) 412 goto out_notcb; 413 ret = chtls_set_tcb_quiesce(sk, 0); 414 if (ret) 415 goto out_notcb; 416 csk->tlshws.rxkey = keyid; 417 } else { 418 csk->tlshws.tx_seq_no = 0; 419 csk->tlshws.txkey = keyid; 420 } 421 422 release_sock(sk); 423 return ret; 424 out_notcb: 425 release_sock(sk); 426 free_tls_keyid(sk); 427 out_nokey: 428 kfree_skb(skb); 429 return ret; 430 } 431