1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/pci.h> 37 38 #include "t4vf_common.h" 39 #include "t4vf_defs.h" 40 41 #include "../cxgb4/t4_regs.h" 42 #include "../cxgb4/t4_values.h" 43 #include "../cxgb4/t4fw_api.h" 44 45 /* 46 * Wait for the device to become ready (signified by our "who am I" register 47 * returning a value other than all 1's). Return an error if it doesn't 48 * become ready ... 49 */ 50 int t4vf_wait_dev_ready(struct adapter *adapter) 51 { 52 const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI; 53 const u32 notready1 = 0xffffffff; 54 const u32 notready2 = 0xeeeeeeee; 55 u32 val; 56 57 val = t4_read_reg(adapter, whoami); 58 if (val != notready1 && val != notready2) 59 return 0; 60 msleep(500); 61 val = t4_read_reg(adapter, whoami); 62 if (val != notready1 && val != notready2) 63 return 0; 64 else 65 return -EIO; 66 } 67 68 /* 69 * Get the reply to a mailbox command and store it in @rpl in big-endian order 70 * (since the firmware data structures are specified in a big-endian layout). 71 */ 72 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size, 73 u32 mbox_data) 74 { 75 for ( ; size; size -= 8, mbox_data += 8) 76 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data)); 77 } 78 79 /** 80 * t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log 81 * @adapter: the adapter 82 * @cmd: the Firmware Mailbox Command or Reply 83 * @size: command length in bytes 84 * @access: the time (ms) needed to access the Firmware Mailbox 85 * @execute: the time (ms) the command spent being executed 86 */ 87 static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd, 88 int size, int access, int execute) 89 { 90 struct mbox_cmd_log *log = adapter->mbox_log; 91 struct mbox_cmd *entry; 92 int i; 93 94 entry = mbox_cmd_log_entry(log, log->cursor++); 95 if (log->cursor == log->size) 96 log->cursor = 0; 97 98 for (i = 0; i < size / 8; i++) 99 entry->cmd[i] = be64_to_cpu(cmd[i]); 100 while (i < MBOX_LEN / 8) 101 entry->cmd[i++] = 0; 102 entry->timestamp = jiffies; 103 entry->seqno = log->seqno++; 104 entry->access = access; 105 entry->execute = execute; 106 } 107 108 /** 109 * t4vf_wr_mbox_core - send a command to FW through the mailbox 110 * @adapter: the adapter 111 * @cmd: the command to write 112 * @size: command length in bytes 113 * @rpl: where to optionally store the reply 114 * @sleep_ok: if true we may sleep while awaiting command completion 115 * 116 * Sends the given command to FW through the mailbox and waits for the 117 * FW to execute the command. If @rpl is not %NULL it is used to store 118 * the FW's reply to the command. The command and its optional reply 119 * are of the same length. FW can take up to 500 ms to respond. 120 * @sleep_ok determines whether we may sleep while awaiting the response. 121 * If sleeping is allowed we use progressive backoff otherwise we spin. 122 * 123 * The return value is 0 on success or a negative errno on failure. A 124 * failure can happen either because we are not able to execute the 125 * command or FW executes it but signals an error. In the latter case 126 * the return value is the error code indicated by FW (negated). 127 */ 128 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size, 129 void *rpl, bool sleep_ok) 130 { 131 static const int delay[] = { 132 1, 1, 3, 5, 10, 10, 20, 50, 100 133 }; 134 135 u16 access = 0, execute = 0; 136 u32 v, mbox_data; 137 int i, ms, delay_idx, ret; 138 const __be64 *p; 139 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL; 140 u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi)); 141 __be64 cmd_rpl[MBOX_LEN / 8]; 142 struct mbox_list entry; 143 144 /* In T6, mailbox size is changed to 128 bytes to avoid 145 * invalidating the entire prefetch buffer. 146 */ 147 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 148 mbox_data = T4VF_MBDATA_BASE_ADDR; 149 else 150 mbox_data = T6VF_MBDATA_BASE_ADDR; 151 152 /* 153 * Commands must be multiples of 16 bytes in length and may not be 154 * larger than the size of the Mailbox Data register array. 155 */ 156 if ((size % 16) != 0 || 157 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4) 158 return -EINVAL; 159 160 /* Queue ourselves onto the mailbox access list. When our entry is at 161 * the front of the list, we have rights to access the mailbox. So we 162 * wait [for a while] till we're at the front [or bail out with an 163 * EBUSY] ... 164 */ 165 spin_lock(&adapter->mbox_lock); 166 list_add_tail(&entry.list, &adapter->mlist.list); 167 spin_unlock(&adapter->mbox_lock); 168 169 delay_idx = 0; 170 ms = delay[0]; 171 172 for (i = 0; ; i += ms) { 173 /* If we've waited too long, return a busy indication. This 174 * really ought to be based on our initial position in the 175 * mailbox access list but this is a start. We very rearely 176 * contend on access to the mailbox ... 177 */ 178 if (i > FW_CMD_MAX_TIMEOUT) { 179 spin_lock(&adapter->mbox_lock); 180 list_del(&entry.list); 181 spin_unlock(&adapter->mbox_lock); 182 ret = -EBUSY; 183 t4vf_record_mbox(adapter, cmd, size, access, ret); 184 return ret; 185 } 186 187 /* If we're at the head, break out and start the mailbox 188 * protocol. 189 */ 190 if (list_first_entry(&adapter->mlist.list, struct mbox_list, 191 list) == &entry) 192 break; 193 194 /* Delay for a bit before checking again ... */ 195 if (sleep_ok) { 196 ms = delay[delay_idx]; /* last element may repeat */ 197 if (delay_idx < ARRAY_SIZE(delay) - 1) 198 delay_idx++; 199 msleep(ms); 200 } else { 201 mdelay(ms); 202 } 203 } 204 205 /* 206 * Loop trying to get ownership of the mailbox. Return an error 207 * if we can't gain ownership. 208 */ 209 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl)); 210 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 211 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl)); 212 if (v != MBOX_OWNER_DRV) { 213 spin_lock(&adapter->mbox_lock); 214 list_del(&entry.list); 215 spin_unlock(&adapter->mbox_lock); 216 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 217 t4vf_record_mbox(adapter, cmd, size, access, ret); 218 return ret; 219 } 220 221 /* 222 * Write the command array into the Mailbox Data register array and 223 * transfer ownership of the mailbox to the firmware. 224 * 225 * For the VFs, the Mailbox Data "registers" are actually backed by 226 * T4's "MA" interface rather than PL Registers (as is the case for 227 * the PFs). Because these are in different coherency domains, the 228 * write to the VF's PL-register-backed Mailbox Control can race in 229 * front of the writes to the MA-backed VF Mailbox Data "registers". 230 * So we need to do a read-back on at least one byte of the VF Mailbox 231 * Data registers before doing the write to the VF Mailbox Control 232 * register. 233 */ 234 if (cmd_op != FW_VI_STATS_CMD) 235 t4vf_record_mbox(adapter, cmd, size, access, 0); 236 for (i = 0, p = cmd; i < size; i += 8) 237 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++)); 238 t4_read_reg(adapter, mbox_data); /* flush write */ 239 240 t4_write_reg(adapter, mbox_ctl, 241 MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 242 t4_read_reg(adapter, mbox_ctl); /* flush write */ 243 244 /* 245 * Spin waiting for firmware to acknowledge processing our command. 246 */ 247 delay_idx = 0; 248 ms = delay[0]; 249 250 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) { 251 if (sleep_ok) { 252 ms = delay[delay_idx]; 253 if (delay_idx < ARRAY_SIZE(delay) - 1) 254 delay_idx++; 255 msleep(ms); 256 } else 257 mdelay(ms); 258 259 /* 260 * If we're the owner, see if this is the reply we wanted. 261 */ 262 v = t4_read_reg(adapter, mbox_ctl); 263 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 264 /* 265 * If the Message Valid bit isn't on, revoke ownership 266 * of the mailbox and continue waiting for our reply. 267 */ 268 if ((v & MBMSGVALID_F) == 0) { 269 t4_write_reg(adapter, mbox_ctl, 270 MBOWNER_V(MBOX_OWNER_NONE)); 271 continue; 272 } 273 274 /* 275 * We now have our reply. Extract the command return 276 * value, copy the reply back to our caller's buffer 277 * (if specified) and revoke ownership of the mailbox. 278 * We return the (negated) firmware command return 279 * code (this depends on FW_SUCCESS == 0). 280 */ 281 get_mbox_rpl(adapter, cmd_rpl, size, mbox_data); 282 283 /* return value in low-order little-endian word */ 284 v = be64_to_cpu(cmd_rpl[0]); 285 286 if (rpl) { 287 /* request bit in high-order BE word */ 288 WARN_ON((be32_to_cpu(*(const __be32 *)cmd) 289 & FW_CMD_REQUEST_F) == 0); 290 memcpy(rpl, cmd_rpl, size); 291 WARN_ON((be32_to_cpu(*(__be32 *)rpl) 292 & FW_CMD_REQUEST_F) != 0); 293 } 294 t4_write_reg(adapter, mbox_ctl, 295 MBOWNER_V(MBOX_OWNER_NONE)); 296 execute = i + ms; 297 if (cmd_op != FW_VI_STATS_CMD) 298 t4vf_record_mbox(adapter, cmd_rpl, size, access, 299 execute); 300 spin_lock(&adapter->mbox_lock); 301 list_del(&entry.list); 302 spin_unlock(&adapter->mbox_lock); 303 return -FW_CMD_RETVAL_G(v); 304 } 305 } 306 307 /* We timed out. Return the error ... */ 308 ret = -ETIMEDOUT; 309 t4vf_record_mbox(adapter, cmd, size, access, ret); 310 spin_lock(&adapter->mbox_lock); 311 list_del(&entry.list); 312 spin_unlock(&adapter->mbox_lock); 313 return ret; 314 } 315 316 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\ 317 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \ 318 FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG) 319 320 /** 321 * init_link_config - initialize a link's SW state 322 * @lc: structure holding the link state 323 * @caps: link capabilities 324 * 325 * Initializes the SW state maintained for each link, including the link's 326 * capabilities and default speed/flow-control/autonegotiation settings. 327 */ 328 static void init_link_config(struct link_config *lc, unsigned int caps) 329 { 330 lc->supported = caps; 331 lc->lp_advertising = 0; 332 lc->requested_speed = 0; 333 lc->speed = 0; 334 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 335 if (lc->supported & FW_PORT_CAP_ANEG) { 336 lc->advertising = lc->supported & ADVERT_MASK; 337 lc->autoneg = AUTONEG_ENABLE; 338 lc->requested_fc |= PAUSE_AUTONEG; 339 } else { 340 lc->advertising = 0; 341 lc->autoneg = AUTONEG_DISABLE; 342 } 343 } 344 345 /** 346 * t4vf_port_init - initialize port hardware/software state 347 * @adapter: the adapter 348 * @pidx: the adapter port index 349 */ 350 int t4vf_port_init(struct adapter *adapter, int pidx) 351 { 352 struct port_info *pi = adap2pinfo(adapter, pidx); 353 struct fw_vi_cmd vi_cmd, vi_rpl; 354 struct fw_port_cmd port_cmd, port_rpl; 355 int v; 356 357 /* 358 * Execute a VI Read command to get our Virtual Interface information 359 * like MAC address, etc. 360 */ 361 memset(&vi_cmd, 0, sizeof(vi_cmd)); 362 vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 363 FW_CMD_REQUEST_F | 364 FW_CMD_READ_F); 365 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd)); 366 vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid)); 367 v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl); 368 if (v) 369 return v; 370 371 BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd)); 372 pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd)); 373 t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac); 374 375 /* 376 * If we don't have read access to our port information, we're done 377 * now. Otherwise, execute a PORT Read command to get it ... 378 */ 379 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT)) 380 return 0; 381 382 memset(&port_cmd, 0, sizeof(port_cmd)); 383 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 384 FW_CMD_REQUEST_F | 385 FW_CMD_READ_F | 386 FW_PORT_CMD_PORTID_V(pi->port_id)); 387 port_cmd.action_to_len16 = 388 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) | 389 FW_LEN16(port_cmd)); 390 v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl); 391 if (v) 392 return v; 393 394 v = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype); 395 pi->mdio_addr = (v & FW_PORT_CMD_MDIOCAP_F) ? 396 FW_PORT_CMD_MDIOADDR_G(v) : -1; 397 pi->port_type = FW_PORT_CMD_PTYPE_G(v); 398 pi->mod_type = FW_PORT_MOD_TYPE_NA; 399 400 init_link_config(&pi->link_cfg, be16_to_cpu(port_rpl.u.info.pcap)); 401 402 return 0; 403 } 404 405 /** 406 * t4vf_fw_reset - issue a reset to FW 407 * @adapter: the adapter 408 * 409 * Issues a reset command to FW. For a Physical Function this would 410 * result in the Firmware resetting all of its state. For a Virtual 411 * Function this just resets the state associated with the VF. 412 */ 413 int t4vf_fw_reset(struct adapter *adapter) 414 { 415 struct fw_reset_cmd cmd; 416 417 memset(&cmd, 0, sizeof(cmd)); 418 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) | 419 FW_CMD_WRITE_F); 420 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 421 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 422 } 423 424 /** 425 * t4vf_query_params - query FW or device parameters 426 * @adapter: the adapter 427 * @nparams: the number of parameters 428 * @params: the parameter names 429 * @vals: the parameter values 430 * 431 * Reads the values of firmware or device parameters. Up to 7 parameters 432 * can be queried at once. 433 */ 434 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams, 435 const u32 *params, u32 *vals) 436 { 437 int i, ret; 438 struct fw_params_cmd cmd, rpl; 439 struct fw_params_param *p; 440 size_t len16; 441 442 if (nparams > 7) 443 return -EINVAL; 444 445 memset(&cmd, 0, sizeof(cmd)); 446 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 447 FW_CMD_REQUEST_F | 448 FW_CMD_READ_F); 449 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, 450 param[nparams].mnem), 16); 451 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); 452 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) 453 p->mnem = htonl(*params++); 454 455 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 456 if (ret == 0) 457 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++) 458 *vals++ = be32_to_cpu(p->val); 459 return ret; 460 } 461 462 /** 463 * t4vf_set_params - sets FW or device parameters 464 * @adapter: the adapter 465 * @nparams: the number of parameters 466 * @params: the parameter names 467 * @vals: the parameter values 468 * 469 * Sets the values of firmware or device parameters. Up to 7 parameters 470 * can be specified at once. 471 */ 472 int t4vf_set_params(struct adapter *adapter, unsigned int nparams, 473 const u32 *params, const u32 *vals) 474 { 475 int i; 476 struct fw_params_cmd cmd; 477 struct fw_params_param *p; 478 size_t len16; 479 480 if (nparams > 7) 481 return -EINVAL; 482 483 memset(&cmd, 0, sizeof(cmd)); 484 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 485 FW_CMD_REQUEST_F | 486 FW_CMD_WRITE_F); 487 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, 488 param[nparams]), 16); 489 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); 490 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) { 491 p->mnem = cpu_to_be32(*params++); 492 p->val = cpu_to_be32(*vals++); 493 } 494 495 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 496 } 497 498 /** 499 * t4vf_fl_pkt_align - return the fl packet alignment 500 * @adapter: the adapter 501 * 502 * T4 has a single field to specify the packing and padding boundary. 503 * T5 onwards has separate fields for this and hence the alignment for 504 * next packet offset is maximum of these two. And T6 changes the 505 * Ingress Padding Boundary Shift, so it's all a mess and it's best 506 * if we put this in low-level Common Code ... 507 * 508 */ 509 int t4vf_fl_pkt_align(struct adapter *adapter) 510 { 511 u32 sge_control, sge_control2; 512 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 513 514 sge_control = adapter->params.sge.sge_control; 515 516 /* T4 uses a single control field to specify both the PCIe Padding and 517 * Packing Boundary. T5 introduced the ability to specify these 518 * separately. The actual Ingress Packet Data alignment boundary 519 * within Packed Buffer Mode is the maximum of these two 520 * specifications. (Note that it makes no real practical sense to 521 * have the Pading Boudary be larger than the Packing Boundary but you 522 * could set the chip up that way and, in fact, legacy T4 code would 523 * end doing this because it would initialize the Padding Boundary and 524 * leave the Packing Boundary initialized to 0 (16 bytes).) 525 * Padding Boundary values in T6 starts from 8B, 526 * where as it is 32B for T4 and T5. 527 */ 528 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 529 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 530 else 531 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 532 533 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 534 535 fl_align = ingpadboundary; 536 if (!is_t4(adapter->params.chip)) { 537 /* T5 has a different interpretation of one of the PCIe Packing 538 * Boundary values. 539 */ 540 sge_control2 = adapter->params.sge.sge_control2; 541 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 542 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 543 ingpackboundary = 16; 544 else 545 ingpackboundary = 1 << (ingpackboundary + 546 INGPACKBOUNDARY_SHIFT_X); 547 548 fl_align = max(ingpadboundary, ingpackboundary); 549 } 550 return fl_align; 551 } 552 553 /** 554 * t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information 555 * @adapter: the adapter 556 * @qid: the Queue ID 557 * @qtype: the Ingress or Egress type for @qid 558 * @pbar2_qoffset: BAR2 Queue Offset 559 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 560 * 561 * Returns the BAR2 SGE Queue Registers information associated with the 562 * indicated Absolute Queue ID. These are passed back in return value 563 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 564 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 565 * 566 * This may return an error which indicates that BAR2 SGE Queue 567 * registers aren't available. If an error is not returned, then the 568 * following values are returned: 569 * 570 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 571 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 572 * 573 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 574 * require the "Inferred Queue ID" ability may be used. E.g. the 575 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 576 * then these "Inferred Queue ID" register may not be used. 577 */ 578 int t4vf_bar2_sge_qregs(struct adapter *adapter, 579 unsigned int qid, 580 enum t4_bar2_qtype qtype, 581 u64 *pbar2_qoffset, 582 unsigned int *pbar2_qid) 583 { 584 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 585 u64 bar2_page_offset, bar2_qoffset; 586 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 587 588 /* T4 doesn't support BAR2 SGE Queue registers. 589 */ 590 if (is_t4(adapter->params.chip)) 591 return -EINVAL; 592 593 /* Get our SGE Page Size parameters. 594 */ 595 page_shift = adapter->params.sge.sge_vf_hps + 10; 596 page_size = 1 << page_shift; 597 598 /* Get the right Queues per Page parameters for our Queue. 599 */ 600 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 601 ? adapter->params.sge.sge_vf_eq_qpp 602 : adapter->params.sge.sge_vf_iq_qpp); 603 qpp_mask = (1 << qpp_shift) - 1; 604 605 /* Calculate the basics of the BAR2 SGE Queue register area: 606 * o The BAR2 page the Queue registers will be in. 607 * o The BAR2 Queue ID. 608 * o The BAR2 Queue ID Offset into the BAR2 page. 609 */ 610 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 611 bar2_qid = qid & qpp_mask; 612 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 613 614 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 615 * hardware will infer the Absolute Queue ID simply from the writes to 616 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 617 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 618 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 619 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 620 * from the BAR2 Page and BAR2 Queue ID. 621 * 622 * One important censequence of this is that some BAR2 SGE registers 623 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 624 * there. But other registers synthesize the SGE Queue ID purely 625 * from the writes to the registers -- the Write Combined Doorbell 626 * Buffer is a good example. These BAR2 SGE Registers are only 627 * available for those BAR2 SGE Register areas where the SGE Absolute 628 * Queue ID can be inferred from simple writes. 629 */ 630 bar2_qoffset = bar2_page_offset; 631 bar2_qinferred = (bar2_qid_offset < page_size); 632 if (bar2_qinferred) { 633 bar2_qoffset += bar2_qid_offset; 634 bar2_qid = 0; 635 } 636 637 *pbar2_qoffset = bar2_qoffset; 638 *pbar2_qid = bar2_qid; 639 return 0; 640 } 641 642 /** 643 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters 644 * @adapter: the adapter 645 * 646 * Retrieves various core SGE parameters in the form of hardware SGE 647 * register values. The caller is responsible for decoding these as 648 * needed. The SGE parameters are stored in @adapter->params.sge. 649 */ 650 int t4vf_get_sge_params(struct adapter *adapter) 651 { 652 struct sge_params *sge_params = &adapter->params.sge; 653 u32 params[7], vals[7]; 654 int v; 655 656 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 657 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A)); 658 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 659 FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A)); 660 params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 661 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A)); 662 params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 663 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A)); 664 params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 665 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A)); 666 params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 667 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A)); 668 params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 669 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A)); 670 v = t4vf_query_params(adapter, 7, params, vals); 671 if (v) 672 return v; 673 sge_params->sge_control = vals[0]; 674 sge_params->sge_host_page_size = vals[1]; 675 sge_params->sge_fl_buffer_size[0] = vals[2]; 676 sge_params->sge_fl_buffer_size[1] = vals[3]; 677 sge_params->sge_timer_value_0_and_1 = vals[4]; 678 sge_params->sge_timer_value_2_and_3 = vals[5]; 679 sge_params->sge_timer_value_4_and_5 = vals[6]; 680 681 /* T4 uses a single control field to specify both the PCIe Padding and 682 * Packing Boundary. T5 introduced the ability to specify these 683 * separately with the Padding Boundary in SGE_CONTROL and and Packing 684 * Boundary in SGE_CONTROL2. So for T5 and later we need to grab 685 * SGE_CONTROL in order to determine how ingress packet data will be 686 * laid out in Packed Buffer Mode. Unfortunately, older versions of 687 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a 688 * failure grabbing it we throw an error since we can't figure out the 689 * right value. 690 */ 691 if (!is_t4(adapter->params.chip)) { 692 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 693 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A)); 694 v = t4vf_query_params(adapter, 1, params, vals); 695 if (v != FW_SUCCESS) { 696 dev_err(adapter->pdev_dev, 697 "Unable to get SGE Control2; " 698 "probably old firmware.\n"); 699 return v; 700 } 701 sge_params->sge_control2 = vals[0]; 702 } 703 704 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 705 FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A)); 706 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 707 FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A)); 708 v = t4vf_query_params(adapter, 2, params, vals); 709 if (v) 710 return v; 711 sge_params->sge_ingress_rx_threshold = vals[0]; 712 sge_params->sge_congestion_control = vals[1]; 713 714 /* For T5 and later we want to use the new BAR2 Doorbells. 715 * Unfortunately, older firmware didn't allow the this register to be 716 * read. 717 */ 718 if (!is_t4(adapter->params.chip)) { 719 u32 whoami; 720 unsigned int pf, s_hps, s_qpp; 721 722 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 723 FW_PARAMS_PARAM_XYZ_V( 724 SGE_EGRESS_QUEUES_PER_PAGE_VF_A)); 725 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 726 FW_PARAMS_PARAM_XYZ_V( 727 SGE_INGRESS_QUEUES_PER_PAGE_VF_A)); 728 v = t4vf_query_params(adapter, 2, params, vals); 729 if (v != FW_SUCCESS) { 730 dev_warn(adapter->pdev_dev, 731 "Unable to get VF SGE Queues/Page; " 732 "probably old firmware.\n"); 733 return v; 734 } 735 sge_params->sge_egress_queues_per_page = vals[0]; 736 sge_params->sge_ingress_queues_per_page = vals[1]; 737 738 /* We need the Queues/Page for our VF. This is based on the 739 * PF from which we're instantiated and is indexed in the 740 * register we just read. Do it once here so other code in 741 * the driver can just use it. 742 */ 743 whoami = t4_read_reg(adapter, 744 T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A); 745 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 746 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 747 748 s_hps = (HOSTPAGESIZEPF0_S + 749 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf); 750 sge_params->sge_vf_hps = 751 ((sge_params->sge_host_page_size >> s_hps) 752 & HOSTPAGESIZEPF0_M); 753 754 s_qpp = (QUEUESPERPAGEPF0_S + 755 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf); 756 sge_params->sge_vf_eq_qpp = 757 ((sge_params->sge_egress_queues_per_page >> s_qpp) 758 & QUEUESPERPAGEPF0_M); 759 sge_params->sge_vf_iq_qpp = 760 ((sge_params->sge_ingress_queues_per_page >> s_qpp) 761 & QUEUESPERPAGEPF0_M); 762 } 763 764 return 0; 765 } 766 767 /** 768 * t4vf_get_vpd_params - retrieve device VPD paremeters 769 * @adapter: the adapter 770 * 771 * Retrives various device Vital Product Data parameters. The parameters 772 * are stored in @adapter->params.vpd. 773 */ 774 int t4vf_get_vpd_params(struct adapter *adapter) 775 { 776 struct vpd_params *vpd_params = &adapter->params.vpd; 777 u32 params[7], vals[7]; 778 int v; 779 780 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 781 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 782 v = t4vf_query_params(adapter, 1, params, vals); 783 if (v) 784 return v; 785 vpd_params->cclk = vals[0]; 786 787 return 0; 788 } 789 790 /** 791 * t4vf_get_dev_params - retrieve device paremeters 792 * @adapter: the adapter 793 * 794 * Retrives various device parameters. The parameters are stored in 795 * @adapter->params.dev. 796 */ 797 int t4vf_get_dev_params(struct adapter *adapter) 798 { 799 struct dev_params *dev_params = &adapter->params.dev; 800 u32 params[7], vals[7]; 801 int v; 802 803 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 804 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV)); 805 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 806 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV)); 807 v = t4vf_query_params(adapter, 2, params, vals); 808 if (v) 809 return v; 810 dev_params->fwrev = vals[0]; 811 dev_params->tprev = vals[1]; 812 813 return 0; 814 } 815 816 /** 817 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration 818 * @adapter: the adapter 819 * 820 * Retrieves global RSS mode and parameters with which we have to live 821 * and stores them in the @adapter's RSS parameters. 822 */ 823 int t4vf_get_rss_glb_config(struct adapter *adapter) 824 { 825 struct rss_params *rss = &adapter->params.rss; 826 struct fw_rss_glb_config_cmd cmd, rpl; 827 int v; 828 829 /* 830 * Execute an RSS Global Configuration read command to retrieve 831 * our RSS configuration. 832 */ 833 memset(&cmd, 0, sizeof(cmd)); 834 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 835 FW_CMD_REQUEST_F | 836 FW_CMD_READ_F); 837 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 838 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 839 if (v) 840 return v; 841 842 /* 843 * Transate the big-endian RSS Global Configuration into our 844 * cpu-endian format based on the RSS mode. We also do first level 845 * filtering at this point to weed out modes which don't support 846 * VF Drivers ... 847 */ 848 rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G( 849 be32_to_cpu(rpl.u.manual.mode_pkd)); 850 switch (rss->mode) { 851 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 852 u32 word = be32_to_cpu( 853 rpl.u.basicvirtual.synmapen_to_hashtoeplitz); 854 855 rss->u.basicvirtual.synmapen = 856 ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0); 857 rss->u.basicvirtual.syn4tupenipv6 = 858 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0); 859 rss->u.basicvirtual.syn2tupenipv6 = 860 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0); 861 rss->u.basicvirtual.syn4tupenipv4 = 862 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0); 863 rss->u.basicvirtual.syn2tupenipv4 = 864 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0); 865 866 rss->u.basicvirtual.ofdmapen = 867 ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0); 868 869 rss->u.basicvirtual.tnlmapen = 870 ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0); 871 rss->u.basicvirtual.tnlalllookup = 872 ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0); 873 874 rss->u.basicvirtual.hashtoeplitz = 875 ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0); 876 877 /* we need at least Tunnel Map Enable to be set */ 878 if (!rss->u.basicvirtual.tnlmapen) 879 return -EINVAL; 880 break; 881 } 882 883 default: 884 /* all unknown/unsupported RSS modes result in an error */ 885 return -EINVAL; 886 } 887 888 return 0; 889 } 890 891 /** 892 * t4vf_get_vfres - retrieve VF resource limits 893 * @adapter: the adapter 894 * 895 * Retrieves configured resource limits and capabilities for a virtual 896 * function. The results are stored in @adapter->vfres. 897 */ 898 int t4vf_get_vfres(struct adapter *adapter) 899 { 900 struct vf_resources *vfres = &adapter->params.vfres; 901 struct fw_pfvf_cmd cmd, rpl; 902 int v; 903 u32 word; 904 905 /* 906 * Execute PFVF Read command to get VF resource limits; bail out early 907 * with error on command failure. 908 */ 909 memset(&cmd, 0, sizeof(cmd)); 910 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 911 FW_CMD_REQUEST_F | 912 FW_CMD_READ_F); 913 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 914 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 915 if (v) 916 return v; 917 918 /* 919 * Extract VF resource limits and return success. 920 */ 921 word = be32_to_cpu(rpl.niqflint_niq); 922 vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); 923 vfres->niq = FW_PFVF_CMD_NIQ_G(word); 924 925 word = be32_to_cpu(rpl.type_to_neq); 926 vfres->neq = FW_PFVF_CMD_NEQ_G(word); 927 vfres->pmask = FW_PFVF_CMD_PMASK_G(word); 928 929 word = be32_to_cpu(rpl.tc_to_nexactf); 930 vfres->tc = FW_PFVF_CMD_TC_G(word); 931 vfres->nvi = FW_PFVF_CMD_NVI_G(word); 932 vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); 933 934 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 935 vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); 936 vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); 937 vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); 938 939 return 0; 940 } 941 942 /** 943 * t4vf_read_rss_vi_config - read a VI's RSS configuration 944 * @adapter: the adapter 945 * @viid: Virtual Interface ID 946 * @config: pointer to host-native VI RSS Configuration buffer 947 * 948 * Reads the Virtual Interface's RSS configuration information and 949 * translates it into CPU-native format. 950 */ 951 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid, 952 union rss_vi_config *config) 953 { 954 struct fw_rss_vi_config_cmd cmd, rpl; 955 int v; 956 957 memset(&cmd, 0, sizeof(cmd)); 958 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 959 FW_CMD_REQUEST_F | 960 FW_CMD_READ_F | 961 FW_RSS_VI_CONFIG_CMD_VIID(viid)); 962 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 963 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 964 if (v) 965 return v; 966 967 switch (adapter->params.rss.mode) { 968 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 969 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen); 970 971 config->basicvirtual.ip6fourtupen = 972 ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0); 973 config->basicvirtual.ip6twotupen = 974 ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0); 975 config->basicvirtual.ip4fourtupen = 976 ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0); 977 config->basicvirtual.ip4twotupen = 978 ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0); 979 config->basicvirtual.udpen = 980 ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0); 981 config->basicvirtual.defaultq = 982 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word); 983 break; 984 } 985 986 default: 987 return -EINVAL; 988 } 989 990 return 0; 991 } 992 993 /** 994 * t4vf_write_rss_vi_config - write a VI's RSS configuration 995 * @adapter: the adapter 996 * @viid: Virtual Interface ID 997 * @config: pointer to host-native VI RSS Configuration buffer 998 * 999 * Write the Virtual Interface's RSS configuration information 1000 * (translating it into firmware-native format before writing). 1001 */ 1002 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid, 1003 union rss_vi_config *config) 1004 { 1005 struct fw_rss_vi_config_cmd cmd, rpl; 1006 1007 memset(&cmd, 0, sizeof(cmd)); 1008 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 1009 FW_CMD_REQUEST_F | 1010 FW_CMD_WRITE_F | 1011 FW_RSS_VI_CONFIG_CMD_VIID(viid)); 1012 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 1013 switch (adapter->params.rss.mode) { 1014 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 1015 u32 word = 0; 1016 1017 if (config->basicvirtual.ip6fourtupen) 1018 word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F; 1019 if (config->basicvirtual.ip6twotupen) 1020 word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F; 1021 if (config->basicvirtual.ip4fourtupen) 1022 word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F; 1023 if (config->basicvirtual.ip4twotupen) 1024 word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F; 1025 if (config->basicvirtual.udpen) 1026 word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F; 1027 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V( 1028 config->basicvirtual.defaultq); 1029 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word); 1030 break; 1031 } 1032 1033 default: 1034 return -EINVAL; 1035 } 1036 1037 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 1038 } 1039 1040 /** 1041 * t4vf_config_rss_range - configure a portion of the RSS mapping table 1042 * @adapter: the adapter 1043 * @viid: Virtual Interface of RSS Table Slice 1044 * @start: starting entry in the table to write 1045 * @n: how many table entries to write 1046 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table 1047 * @nrspq: number of values in @rspq 1048 * 1049 * Programs the selected part of the VI's RSS mapping table with the 1050 * provided values. If @nrspq < @n the supplied values are used repeatedly 1051 * until the full table range is populated. 1052 * 1053 * The caller must ensure the values in @rspq are in the range 0..1023. 1054 */ 1055 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid, 1056 int start, int n, const u16 *rspq, int nrspq) 1057 { 1058 const u16 *rsp = rspq; 1059 const u16 *rsp_end = rspq+nrspq; 1060 struct fw_rss_ind_tbl_cmd cmd; 1061 1062 /* 1063 * Initialize firmware command template to write the RSS table. 1064 */ 1065 memset(&cmd, 0, sizeof(cmd)); 1066 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 1067 FW_CMD_REQUEST_F | 1068 FW_CMD_WRITE_F | 1069 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 1070 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 1071 1072 /* 1073 * Each firmware RSS command can accommodate up to 32 RSS Ingress 1074 * Queue Identifiers. These Ingress Queue IDs are packed three to 1075 * a 32-bit word as 10-bit values with the upper remaining 2 bits 1076 * reserved. 1077 */ 1078 while (n > 0) { 1079 __be32 *qp = &cmd.iq0_to_iq2; 1080 int nq = min(n, 32); 1081 int ret; 1082 1083 /* 1084 * Set up the firmware RSS command header to send the next 1085 * "nq" Ingress Queue IDs to the firmware. 1086 */ 1087 cmd.niqid = cpu_to_be16(nq); 1088 cmd.startidx = cpu_to_be16(start); 1089 1090 /* 1091 * "nq" more done for the start of the next loop. 1092 */ 1093 start += nq; 1094 n -= nq; 1095 1096 /* 1097 * While there are still Ingress Queue IDs to stuff into the 1098 * current firmware RSS command, retrieve them from the 1099 * Ingress Queue ID array and insert them into the command. 1100 */ 1101 while (nq > 0) { 1102 /* 1103 * Grab up to the next 3 Ingress Queue IDs (wrapping 1104 * around the Ingress Queue ID array if necessary) and 1105 * insert them into the firmware RSS command at the 1106 * current 3-tuple position within the commad. 1107 */ 1108 u16 qbuf[3]; 1109 u16 *qbp = qbuf; 1110 int nqbuf = min(3, nq); 1111 1112 nq -= nqbuf; 1113 qbuf[0] = qbuf[1] = qbuf[2] = 0; 1114 while (nqbuf) { 1115 nqbuf--; 1116 *qbp++ = *rsp++; 1117 if (rsp >= rsp_end) 1118 rsp = rspq; 1119 } 1120 *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) | 1121 FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) | 1122 FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2])); 1123 } 1124 1125 /* 1126 * Send this portion of the RRS table update to the firmware; 1127 * bail out on any errors. 1128 */ 1129 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1130 if (ret) 1131 return ret; 1132 } 1133 return 0; 1134 } 1135 1136 /** 1137 * t4vf_alloc_vi - allocate a virtual interface on a port 1138 * @adapter: the adapter 1139 * @port_id: physical port associated with the VI 1140 * 1141 * Allocate a new Virtual Interface and bind it to the indicated 1142 * physical port. Return the new Virtual Interface Identifier on 1143 * success, or a [negative] error number on failure. 1144 */ 1145 int t4vf_alloc_vi(struct adapter *adapter, int port_id) 1146 { 1147 struct fw_vi_cmd cmd, rpl; 1148 int v; 1149 1150 /* 1151 * Execute a VI command to allocate Virtual Interface and return its 1152 * VIID. 1153 */ 1154 memset(&cmd, 0, sizeof(cmd)); 1155 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 1156 FW_CMD_REQUEST_F | 1157 FW_CMD_WRITE_F | 1158 FW_CMD_EXEC_F); 1159 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | 1160 FW_VI_CMD_ALLOC_F); 1161 cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id); 1162 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 1163 if (v) 1164 return v; 1165 1166 return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid)); 1167 } 1168 1169 /** 1170 * t4vf_free_vi -- free a virtual interface 1171 * @adapter: the adapter 1172 * @viid: the virtual interface identifier 1173 * 1174 * Free a previously allocated Virtual Interface. Return an error on 1175 * failure. 1176 */ 1177 int t4vf_free_vi(struct adapter *adapter, int viid) 1178 { 1179 struct fw_vi_cmd cmd; 1180 1181 /* 1182 * Execute a VI command to free the Virtual Interface. 1183 */ 1184 memset(&cmd, 0, sizeof(cmd)); 1185 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 1186 FW_CMD_REQUEST_F | 1187 FW_CMD_EXEC_F); 1188 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | 1189 FW_VI_CMD_FREE_F); 1190 cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 1191 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1192 } 1193 1194 /** 1195 * t4vf_enable_vi - enable/disable a virtual interface 1196 * @adapter: the adapter 1197 * @viid: the Virtual Interface ID 1198 * @rx_en: 1=enable Rx, 0=disable Rx 1199 * @tx_en: 1=enable Tx, 0=disable Tx 1200 * 1201 * Enables/disables a virtual interface. 1202 */ 1203 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid, 1204 bool rx_en, bool tx_en) 1205 { 1206 struct fw_vi_enable_cmd cmd; 1207 1208 memset(&cmd, 0, sizeof(cmd)); 1209 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 1210 FW_CMD_REQUEST_F | 1211 FW_CMD_EXEC_F | 1212 FW_VI_ENABLE_CMD_VIID_V(viid)); 1213 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 1214 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 1215 FW_LEN16(cmd)); 1216 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1217 } 1218 1219 /** 1220 * t4vf_identify_port - identify a VI's port by blinking its LED 1221 * @adapter: the adapter 1222 * @viid: the Virtual Interface ID 1223 * @nblinks: how many times to blink LED at 2.5 Hz 1224 * 1225 * Identifies a VI's port by blinking its LED. 1226 */ 1227 int t4vf_identify_port(struct adapter *adapter, unsigned int viid, 1228 unsigned int nblinks) 1229 { 1230 struct fw_vi_enable_cmd cmd; 1231 1232 memset(&cmd, 0, sizeof(cmd)); 1233 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 1234 FW_CMD_REQUEST_F | 1235 FW_CMD_EXEC_F | 1236 FW_VI_ENABLE_CMD_VIID_V(viid)); 1237 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | 1238 FW_LEN16(cmd)); 1239 cmd.blinkdur = cpu_to_be16(nblinks); 1240 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1241 } 1242 1243 /** 1244 * t4vf_set_rxmode - set Rx properties of a virtual interface 1245 * @adapter: the adapter 1246 * @viid: the VI id 1247 * @mtu: the new MTU or -1 for no change 1248 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 1249 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 1250 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 1251 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it, 1252 * -1 no change 1253 * 1254 * Sets Rx properties of a virtual interface. 1255 */ 1256 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid, 1257 int mtu, int promisc, int all_multi, int bcast, int vlanex, 1258 bool sleep_ok) 1259 { 1260 struct fw_vi_rxmode_cmd cmd; 1261 1262 /* convert to FW values */ 1263 if (mtu < 0) 1264 mtu = FW_VI_RXMODE_CMD_MTU_M; 1265 if (promisc < 0) 1266 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 1267 if (all_multi < 0) 1268 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 1269 if (bcast < 0) 1270 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 1271 if (vlanex < 0) 1272 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 1273 1274 memset(&cmd, 0, sizeof(cmd)); 1275 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 1276 FW_CMD_REQUEST_F | 1277 FW_CMD_WRITE_F | 1278 FW_VI_RXMODE_CMD_VIID_V(viid)); 1279 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 1280 cmd.mtu_to_vlanexen = 1281 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 1282 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 1283 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 1284 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 1285 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 1286 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); 1287 } 1288 1289 /** 1290 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses 1291 * @adapter: the adapter 1292 * @viid: the Virtual Interface Identifier 1293 * @free: if true any existing filters for this VI id are first removed 1294 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 1295 * @addr: the MAC address(es) 1296 * @idx: where to store the index of each allocated filter 1297 * @hash: pointer to hash address filter bitmap 1298 * @sleep_ok: call is allowed to sleep 1299 * 1300 * Allocates an exact-match filter for each of the supplied addresses and 1301 * sets it to the corresponding address. If @idx is not %NULL it should 1302 * have at least @naddr entries, each of which will be set to the index of 1303 * the filter allocated for the corresponding MAC address. If a filter 1304 * could not be allocated for an address its index is set to 0xffff. 1305 * If @hash is not %NULL addresses that fail to allocate an exact filter 1306 * are hashed and update the hash filter bitmap pointed at by @hash. 1307 * 1308 * Returns a negative error number or the number of filters allocated. 1309 */ 1310 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free, 1311 unsigned int naddr, const u8 **addr, u16 *idx, 1312 u64 *hash, bool sleep_ok) 1313 { 1314 int offset, ret = 0; 1315 unsigned nfilters = 0; 1316 unsigned int rem = naddr; 1317 struct fw_vi_mac_cmd cmd, rpl; 1318 unsigned int max_naddr = adapter->params.arch.mps_tcam_size; 1319 1320 if (naddr > max_naddr) 1321 return -EINVAL; 1322 1323 for (offset = 0; offset < naddr; /**/) { 1324 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) 1325 ? rem 1326 : ARRAY_SIZE(cmd.u.exact)); 1327 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1328 u.exact[fw_naddr]), 16); 1329 struct fw_vi_mac_exact *p; 1330 int i; 1331 1332 memset(&cmd, 0, sizeof(cmd)); 1333 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 1334 FW_CMD_REQUEST_F | 1335 FW_CMD_WRITE_F | 1336 (free ? FW_CMD_EXEC_F : 0) | 1337 FW_VI_MAC_CMD_VIID_V(viid)); 1338 cmd.freemacs_to_len16 = 1339 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 1340 FW_CMD_LEN16_V(len16)); 1341 1342 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) { 1343 p->valid_to_idx = cpu_to_be16( 1344 FW_VI_MAC_CMD_VALID_F | 1345 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 1346 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 1347 } 1348 1349 1350 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl, 1351 sleep_ok); 1352 if (ret && ret != -ENOMEM) 1353 break; 1354 1355 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) { 1356 u16 index = FW_VI_MAC_CMD_IDX_G( 1357 be16_to_cpu(p->valid_to_idx)); 1358 1359 if (idx) 1360 idx[offset+i] = 1361 (index >= max_naddr 1362 ? 0xffff 1363 : index); 1364 if (index < max_naddr) 1365 nfilters++; 1366 else if (hash) 1367 *hash |= (1ULL << hash_mac_addr(addr[offset+i])); 1368 } 1369 1370 free = false; 1371 offset += fw_naddr; 1372 rem -= fw_naddr; 1373 } 1374 1375 /* 1376 * If there were no errors or we merely ran out of room in our MAC 1377 * address arena, return the number of filters actually written. 1378 */ 1379 if (ret == 0 || ret == -ENOMEM) 1380 ret = nfilters; 1381 return ret; 1382 } 1383 1384 /** 1385 * t4vf_free_mac_filt - frees exact-match filters of given MAC addresses 1386 * @adapter: the adapter 1387 * @viid: the VI id 1388 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 1389 * @addr: the MAC address(es) 1390 * @sleep_ok: call is allowed to sleep 1391 * 1392 * Frees the exact-match filter for each of the supplied addresses 1393 * 1394 * Returns a negative error number or the number of filters freed. 1395 */ 1396 int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid, 1397 unsigned int naddr, const u8 **addr, bool sleep_ok) 1398 { 1399 int offset, ret = 0; 1400 struct fw_vi_mac_cmd cmd; 1401 unsigned int nfilters = 0; 1402 unsigned int max_naddr = adapter->params.arch.mps_tcam_size; 1403 unsigned int rem = naddr; 1404 1405 if (naddr > max_naddr) 1406 return -EINVAL; 1407 1408 for (offset = 0; offset < (int)naddr ; /**/) { 1409 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ? 1410 rem : ARRAY_SIZE(cmd.u.exact)); 1411 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1412 u.exact[fw_naddr]), 16); 1413 struct fw_vi_mac_exact *p; 1414 int i; 1415 1416 memset(&cmd, 0, sizeof(cmd)); 1417 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 1418 FW_CMD_REQUEST_F | 1419 FW_CMD_WRITE_F | 1420 FW_CMD_EXEC_V(0) | 1421 FW_VI_MAC_CMD_VIID_V(viid)); 1422 cmd.freemacs_to_len16 = 1423 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 1424 FW_CMD_LEN16_V(len16)); 1425 1426 for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) { 1427 p->valid_to_idx = cpu_to_be16( 1428 FW_VI_MAC_CMD_VALID_F | 1429 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 1430 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 1431 } 1432 1433 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd, 1434 sleep_ok); 1435 if (ret) 1436 break; 1437 1438 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) { 1439 u16 index = FW_VI_MAC_CMD_IDX_G( 1440 be16_to_cpu(p->valid_to_idx)); 1441 1442 if (index < max_naddr) 1443 nfilters++; 1444 } 1445 1446 offset += fw_naddr; 1447 rem -= fw_naddr; 1448 } 1449 1450 if (ret == 0) 1451 ret = nfilters; 1452 return ret; 1453 } 1454 1455 /** 1456 * t4vf_change_mac - modifies the exact-match filter for a MAC address 1457 * @adapter: the adapter 1458 * @viid: the Virtual Interface ID 1459 * @idx: index of existing filter for old value of MAC address, or -1 1460 * @addr: the new MAC address value 1461 * @persist: if idx < 0, the new MAC allocation should be persistent 1462 * 1463 * Modifies an exact-match filter and sets it to the new MAC address. 1464 * Note that in general it is not possible to modify the value of a given 1465 * filter so the generic way to modify an address filter is to free the 1466 * one being used by the old address value and allocate a new filter for 1467 * the new address value. @idx can be -1 if the address is a new 1468 * addition. 1469 * 1470 * Returns a negative error number or the index of the filter with the new 1471 * MAC value. 1472 */ 1473 int t4vf_change_mac(struct adapter *adapter, unsigned int viid, 1474 int idx, const u8 *addr, bool persist) 1475 { 1476 int ret; 1477 struct fw_vi_mac_cmd cmd, rpl; 1478 struct fw_vi_mac_exact *p = &cmd.u.exact[0]; 1479 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1480 u.exact[1]), 16); 1481 unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size; 1482 1483 /* 1484 * If this is a new allocation, determine whether it should be 1485 * persistent (across a "freemacs" operation) or not. 1486 */ 1487 if (idx < 0) 1488 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 1489 1490 memset(&cmd, 0, sizeof(cmd)); 1491 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 1492 FW_CMD_REQUEST_F | 1493 FW_CMD_WRITE_F | 1494 FW_VI_MAC_CMD_VIID_V(viid)); 1495 cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); 1496 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 1497 FW_VI_MAC_CMD_IDX_V(idx)); 1498 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 1499 1500 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 1501 if (ret == 0) { 1502 p = &rpl.u.exact[0]; 1503 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 1504 if (ret >= max_mac_addr) 1505 ret = -ENOMEM; 1506 } 1507 return ret; 1508 } 1509 1510 /** 1511 * t4vf_set_addr_hash - program the MAC inexact-match hash filter 1512 * @adapter: the adapter 1513 * @viid: the Virtual Interface Identifier 1514 * @ucast: whether the hash filter should also match unicast addresses 1515 * @vec: the value to be written to the hash filter 1516 * @sleep_ok: call is allowed to sleep 1517 * 1518 * Sets the 64-bit inexact-match hash filter for a virtual interface. 1519 */ 1520 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid, 1521 bool ucast, u64 vec, bool sleep_ok) 1522 { 1523 struct fw_vi_mac_cmd cmd; 1524 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1525 u.exact[0]), 16); 1526 1527 memset(&cmd, 0, sizeof(cmd)); 1528 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 1529 FW_CMD_REQUEST_F | 1530 FW_CMD_WRITE_F | 1531 FW_VI_ENABLE_CMD_VIID_V(viid)); 1532 cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 1533 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 1534 FW_CMD_LEN16_V(len16)); 1535 cmd.u.hash.hashvec = cpu_to_be64(vec); 1536 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); 1537 } 1538 1539 /** 1540 * t4vf_get_port_stats - collect "port" statistics 1541 * @adapter: the adapter 1542 * @pidx: the port index 1543 * @s: the stats structure to fill 1544 * 1545 * Collect statistics for the "port"'s Virtual Interface. 1546 */ 1547 int t4vf_get_port_stats(struct adapter *adapter, int pidx, 1548 struct t4vf_port_stats *s) 1549 { 1550 struct port_info *pi = adap2pinfo(adapter, pidx); 1551 struct fw_vi_stats_vf fwstats; 1552 unsigned int rem = VI_VF_NUM_STATS; 1553 __be64 *fwsp = (__be64 *)&fwstats; 1554 1555 /* 1556 * Grab the Virtual Interface statistics a chunk at a time via mailbox 1557 * commands. We could use a Work Request and get all of them at once 1558 * but that's an asynchronous interface which is awkward to use. 1559 */ 1560 while (rem) { 1561 unsigned int ix = VI_VF_NUM_STATS - rem; 1562 unsigned int nstats = min(6U, rem); 1563 struct fw_vi_stats_cmd cmd, rpl; 1564 size_t len = (offsetof(struct fw_vi_stats_cmd, u) + 1565 sizeof(struct fw_vi_stats_ctl)); 1566 size_t len16 = DIV_ROUND_UP(len, 16); 1567 int ret; 1568 1569 memset(&cmd, 0, sizeof(cmd)); 1570 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) | 1571 FW_VI_STATS_CMD_VIID_V(pi->viid) | 1572 FW_CMD_REQUEST_F | 1573 FW_CMD_READ_F); 1574 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); 1575 cmd.u.ctl.nstats_ix = 1576 cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) | 1577 FW_VI_STATS_CMD_NSTATS_V(nstats)); 1578 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl); 1579 if (ret) 1580 return ret; 1581 1582 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats); 1583 1584 rem -= nstats; 1585 fwsp += nstats; 1586 } 1587 1588 /* 1589 * Translate firmware statistics into host native statistics. 1590 */ 1591 s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes); 1592 s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames); 1593 s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes); 1594 s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames); 1595 s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes); 1596 s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames); 1597 s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames); 1598 s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes); 1599 s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames); 1600 1601 s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes); 1602 s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames); 1603 s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes); 1604 s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames); 1605 s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes); 1606 s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames); 1607 1608 s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames); 1609 1610 return 0; 1611 } 1612 1613 /** 1614 * t4vf_iq_free - free an ingress queue and its free lists 1615 * @adapter: the adapter 1616 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 1617 * @iqid: ingress queue ID 1618 * @fl0id: FL0 queue ID or 0xffff if no attached FL0 1619 * @fl1id: FL1 queue ID or 0xffff if no attached FL1 1620 * 1621 * Frees an ingress queue and its associated free lists, if any. 1622 */ 1623 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype, 1624 unsigned int iqid, unsigned int fl0id, unsigned int fl1id) 1625 { 1626 struct fw_iq_cmd cmd; 1627 1628 memset(&cmd, 0, sizeof(cmd)); 1629 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | 1630 FW_CMD_REQUEST_F | 1631 FW_CMD_EXEC_F); 1632 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | 1633 FW_LEN16(cmd)); 1634 cmd.type_to_iqandstindex = 1635 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 1636 1637 cmd.iqid = cpu_to_be16(iqid); 1638 cmd.fl0id = cpu_to_be16(fl0id); 1639 cmd.fl1id = cpu_to_be16(fl1id); 1640 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1641 } 1642 1643 /** 1644 * t4vf_eth_eq_free - free an Ethernet egress queue 1645 * @adapter: the adapter 1646 * @eqid: egress queue ID 1647 * 1648 * Frees an Ethernet egress queue. 1649 */ 1650 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid) 1651 { 1652 struct fw_eq_eth_cmd cmd; 1653 1654 memset(&cmd, 0, sizeof(cmd)); 1655 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 1656 FW_CMD_REQUEST_F | 1657 FW_CMD_EXEC_F); 1658 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | 1659 FW_LEN16(cmd)); 1660 cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 1661 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1662 } 1663 1664 /** 1665 * t4vf_handle_fw_rpl - process a firmware reply message 1666 * @adapter: the adapter 1667 * @rpl: start of the firmware message 1668 * 1669 * Processes a firmware message, such as link state change messages. 1670 */ 1671 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl) 1672 { 1673 const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl; 1674 u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi)); 1675 1676 switch (opcode) { 1677 case FW_PORT_CMD: { 1678 /* 1679 * Link/module state change message. 1680 */ 1681 const struct fw_port_cmd *port_cmd = 1682 (const struct fw_port_cmd *)rpl; 1683 u32 stat, mod; 1684 int action, port_id, link_ok, speed, fc, pidx; 1685 1686 /* 1687 * Extract various fields from port status change message. 1688 */ 1689 action = FW_PORT_CMD_ACTION_G( 1690 be32_to_cpu(port_cmd->action_to_len16)); 1691 if (action != FW_PORT_ACTION_GET_PORT_INFO) { 1692 dev_err(adapter->pdev_dev, 1693 "Unknown firmware PORT reply action %x\n", 1694 action); 1695 break; 1696 } 1697 1698 port_id = FW_PORT_CMD_PORTID_G( 1699 be32_to_cpu(port_cmd->op_to_portid)); 1700 1701 stat = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype); 1702 link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0; 1703 speed = 0; 1704 fc = 0; 1705 if (stat & FW_PORT_CMD_RXPAUSE_F) 1706 fc |= PAUSE_RX; 1707 if (stat & FW_PORT_CMD_TXPAUSE_F) 1708 fc |= PAUSE_TX; 1709 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 1710 speed = 100; 1711 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 1712 speed = 1000; 1713 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 1714 speed = 10000; 1715 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 1716 speed = 40000; 1717 1718 /* 1719 * Scan all of our "ports" (Virtual Interfaces) looking for 1720 * those bound to the physical port which has changed. If 1721 * our recorded state doesn't match the current state, 1722 * signal that change to the OS code. 1723 */ 1724 for_each_port(adapter, pidx) { 1725 struct port_info *pi = adap2pinfo(adapter, pidx); 1726 struct link_config *lc; 1727 1728 if (pi->port_id != port_id) 1729 continue; 1730 1731 lc = &pi->link_cfg; 1732 1733 mod = FW_PORT_CMD_MODTYPE_G(stat); 1734 if (mod != pi->mod_type) { 1735 pi->mod_type = mod; 1736 t4vf_os_portmod_changed(adapter, pidx); 1737 } 1738 1739 if (link_ok != lc->link_ok || speed != lc->speed || 1740 fc != lc->fc) { 1741 /* something changed */ 1742 lc->link_ok = link_ok; 1743 lc->speed = speed; 1744 lc->fc = fc; 1745 lc->supported = 1746 be16_to_cpu(port_cmd->u.info.pcap); 1747 lc->lp_advertising = 1748 be16_to_cpu(port_cmd->u.info.lpacap); 1749 t4vf_os_link_changed(adapter, pidx, link_ok); 1750 } 1751 } 1752 break; 1753 } 1754 1755 default: 1756 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n", 1757 opcode); 1758 } 1759 return 0; 1760 } 1761 1762 /** 1763 */ 1764 int t4vf_prep_adapter(struct adapter *adapter) 1765 { 1766 int err; 1767 unsigned int chipid; 1768 1769 /* Wait for the device to become ready before proceeding ... 1770 */ 1771 err = t4vf_wait_dev_ready(adapter); 1772 if (err) 1773 return err; 1774 1775 /* Default port and clock for debugging in case we can't reach 1776 * firmware. 1777 */ 1778 adapter->params.nports = 1; 1779 adapter->params.vfres.pmask = 1; 1780 adapter->params.vpd.cclk = 50000; 1781 1782 adapter->params.chip = 0; 1783 switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) { 1784 case CHELSIO_T4: 1785 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0); 1786 adapter->params.arch.sge_fl_db = DBPRIO_F; 1787 adapter->params.arch.mps_tcam_size = 1788 NUM_MPS_CLS_SRAM_L_INSTANCES; 1789 break; 1790 1791 case CHELSIO_T5: 1792 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A)); 1793 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid); 1794 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 1795 adapter->params.arch.mps_tcam_size = 1796 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 1797 break; 1798 1799 case CHELSIO_T6: 1800 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A)); 1801 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid); 1802 adapter->params.arch.sge_fl_db = 0; 1803 adapter->params.arch.mps_tcam_size = 1804 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 1805 break; 1806 } 1807 1808 return 0; 1809 } 1810