1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/pci.h> 37 38 #include "t4vf_common.h" 39 #include "t4vf_defs.h" 40 41 #include "../cxgb4/t4_regs.h" 42 #include "../cxgb4/t4_values.h" 43 #include "../cxgb4/t4fw_api.h" 44 45 /* 46 * Wait for the device to become ready (signified by our "who am I" register 47 * returning a value other than all 1's). Return an error if it doesn't 48 * become ready ... 49 */ 50 int t4vf_wait_dev_ready(struct adapter *adapter) 51 { 52 const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI; 53 const u32 notready1 = 0xffffffff; 54 const u32 notready2 = 0xeeeeeeee; 55 u32 val; 56 57 val = t4_read_reg(adapter, whoami); 58 if (val != notready1 && val != notready2) 59 return 0; 60 msleep(500); 61 val = t4_read_reg(adapter, whoami); 62 if (val != notready1 && val != notready2) 63 return 0; 64 else 65 return -EIO; 66 } 67 68 /* 69 * Get the reply to a mailbox command and store it in @rpl in big-endian order 70 * (since the firmware data structures are specified in a big-endian layout). 71 */ 72 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size, 73 u32 mbox_data) 74 { 75 for ( ; size; size -= 8, mbox_data += 8) 76 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data)); 77 } 78 79 /* 80 * Dump contents of mailbox with a leading tag. 81 */ 82 static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data) 83 { 84 dev_err(adapter->pdev_dev, 85 "mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag, 86 (unsigned long long)t4_read_reg64(adapter, mbox_data + 0), 87 (unsigned long long)t4_read_reg64(adapter, mbox_data + 8), 88 (unsigned long long)t4_read_reg64(adapter, mbox_data + 16), 89 (unsigned long long)t4_read_reg64(adapter, mbox_data + 24), 90 (unsigned long long)t4_read_reg64(adapter, mbox_data + 32), 91 (unsigned long long)t4_read_reg64(adapter, mbox_data + 40), 92 (unsigned long long)t4_read_reg64(adapter, mbox_data + 48), 93 (unsigned long long)t4_read_reg64(adapter, mbox_data + 56)); 94 } 95 96 /** 97 * t4vf_wr_mbox_core - send a command to FW through the mailbox 98 * @adapter: the adapter 99 * @cmd: the command to write 100 * @size: command length in bytes 101 * @rpl: where to optionally store the reply 102 * @sleep_ok: if true we may sleep while awaiting command completion 103 * 104 * Sends the given command to FW through the mailbox and waits for the 105 * FW to execute the command. If @rpl is not %NULL it is used to store 106 * the FW's reply to the command. The command and its optional reply 107 * are of the same length. FW can take up to 500 ms to respond. 108 * @sleep_ok determines whether we may sleep while awaiting the response. 109 * If sleeping is allowed we use progressive backoff otherwise we spin. 110 * 111 * The return value is 0 on success or a negative errno on failure. A 112 * failure can happen either because we are not able to execute the 113 * command or FW executes it but signals an error. In the latter case 114 * the return value is the error code indicated by FW (negated). 115 */ 116 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size, 117 void *rpl, bool sleep_ok) 118 { 119 static const int delay[] = { 120 1, 1, 3, 5, 10, 10, 20, 50, 100 121 }; 122 123 u32 v, mbox_data; 124 int i, ms, delay_idx; 125 const __be64 *p; 126 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL; 127 128 /* In T6, mailbox size is changed to 128 bytes to avoid 129 * invalidating the entire prefetch buffer. 130 */ 131 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 132 mbox_data = T4VF_MBDATA_BASE_ADDR; 133 else 134 mbox_data = T6VF_MBDATA_BASE_ADDR; 135 136 /* 137 * Commands must be multiples of 16 bytes in length and may not be 138 * larger than the size of the Mailbox Data register array. 139 */ 140 if ((size % 16) != 0 || 141 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4) 142 return -EINVAL; 143 144 /* 145 * Loop trying to get ownership of the mailbox. Return an error 146 * if we can't gain ownership. 147 */ 148 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl)); 149 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 150 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl)); 151 if (v != MBOX_OWNER_DRV) 152 return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT; 153 154 /* 155 * Write the command array into the Mailbox Data register array and 156 * transfer ownership of the mailbox to the firmware. 157 * 158 * For the VFs, the Mailbox Data "registers" are actually backed by 159 * T4's "MA" interface rather than PL Registers (as is the case for 160 * the PFs). Because these are in different coherency domains, the 161 * write to the VF's PL-register-backed Mailbox Control can race in 162 * front of the writes to the MA-backed VF Mailbox Data "registers". 163 * So we need to do a read-back on at least one byte of the VF Mailbox 164 * Data registers before doing the write to the VF Mailbox Control 165 * register. 166 */ 167 for (i = 0, p = cmd; i < size; i += 8) 168 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++)); 169 t4_read_reg(adapter, mbox_data); /* flush write */ 170 171 t4_write_reg(adapter, mbox_ctl, 172 MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 173 t4_read_reg(adapter, mbox_ctl); /* flush write */ 174 175 /* 176 * Spin waiting for firmware to acknowledge processing our command. 177 */ 178 delay_idx = 0; 179 ms = delay[0]; 180 181 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) { 182 if (sleep_ok) { 183 ms = delay[delay_idx]; 184 if (delay_idx < ARRAY_SIZE(delay) - 1) 185 delay_idx++; 186 msleep(ms); 187 } else 188 mdelay(ms); 189 190 /* 191 * If we're the owner, see if this is the reply we wanted. 192 */ 193 v = t4_read_reg(adapter, mbox_ctl); 194 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 195 /* 196 * If the Message Valid bit isn't on, revoke ownership 197 * of the mailbox and continue waiting for our reply. 198 */ 199 if ((v & MBMSGVALID_F) == 0) { 200 t4_write_reg(adapter, mbox_ctl, 201 MBOWNER_V(MBOX_OWNER_NONE)); 202 continue; 203 } 204 205 /* 206 * We now have our reply. Extract the command return 207 * value, copy the reply back to our caller's buffer 208 * (if specified) and revoke ownership of the mailbox. 209 * We return the (negated) firmware command return 210 * code (this depends on FW_SUCCESS == 0). 211 */ 212 213 /* return value in low-order little-endian word */ 214 v = t4_read_reg(adapter, mbox_data); 215 if (FW_CMD_RETVAL_G(v)) 216 dump_mbox(adapter, "FW Error", mbox_data); 217 218 if (rpl) { 219 /* request bit in high-order BE word */ 220 WARN_ON((be32_to_cpu(*(const __be32 *)cmd) 221 & FW_CMD_REQUEST_F) == 0); 222 get_mbox_rpl(adapter, rpl, size, mbox_data); 223 WARN_ON((be32_to_cpu(*(__be32 *)rpl) 224 & FW_CMD_REQUEST_F) != 0); 225 } 226 t4_write_reg(adapter, mbox_ctl, 227 MBOWNER_V(MBOX_OWNER_NONE)); 228 return -FW_CMD_RETVAL_G(v); 229 } 230 } 231 232 /* 233 * We timed out. Return the error ... 234 */ 235 dump_mbox(adapter, "FW Timeout", mbox_data); 236 return -ETIMEDOUT; 237 } 238 239 /** 240 * hash_mac_addr - return the hash value of a MAC address 241 * @addr: the 48-bit Ethernet MAC address 242 * 243 * Hashes a MAC address according to the hash function used by hardware 244 * inexact (hash) address matching. 245 */ 246 static int hash_mac_addr(const u8 *addr) 247 { 248 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; 249 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; 250 a ^= b; 251 a ^= (a >> 12); 252 a ^= (a >> 6); 253 return a & 0x3f; 254 } 255 256 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\ 257 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \ 258 FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG) 259 260 /** 261 * init_link_config - initialize a link's SW state 262 * @lc: structure holding the link state 263 * @caps: link capabilities 264 * 265 * Initializes the SW state maintained for each link, including the link's 266 * capabilities and default speed/flow-control/autonegotiation settings. 267 */ 268 static void init_link_config(struct link_config *lc, unsigned int caps) 269 { 270 lc->supported = caps; 271 lc->requested_speed = 0; 272 lc->speed = 0; 273 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 274 if (lc->supported & FW_PORT_CAP_ANEG) { 275 lc->advertising = lc->supported & ADVERT_MASK; 276 lc->autoneg = AUTONEG_ENABLE; 277 lc->requested_fc |= PAUSE_AUTONEG; 278 } else { 279 lc->advertising = 0; 280 lc->autoneg = AUTONEG_DISABLE; 281 } 282 } 283 284 /** 285 * t4vf_port_init - initialize port hardware/software state 286 * @adapter: the adapter 287 * @pidx: the adapter port index 288 */ 289 int t4vf_port_init(struct adapter *adapter, int pidx) 290 { 291 struct port_info *pi = adap2pinfo(adapter, pidx); 292 struct fw_vi_cmd vi_cmd, vi_rpl; 293 struct fw_port_cmd port_cmd, port_rpl; 294 int v; 295 296 /* 297 * Execute a VI Read command to get our Virtual Interface information 298 * like MAC address, etc. 299 */ 300 memset(&vi_cmd, 0, sizeof(vi_cmd)); 301 vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 302 FW_CMD_REQUEST_F | 303 FW_CMD_READ_F); 304 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd)); 305 vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid)); 306 v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl); 307 if (v) 308 return v; 309 310 BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd)); 311 pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd)); 312 t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac); 313 314 /* 315 * If we don't have read access to our port information, we're done 316 * now. Otherwise, execute a PORT Read command to get it ... 317 */ 318 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT)) 319 return 0; 320 321 memset(&port_cmd, 0, sizeof(port_cmd)); 322 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 323 FW_CMD_REQUEST_F | 324 FW_CMD_READ_F | 325 FW_PORT_CMD_PORTID_V(pi->port_id)); 326 port_cmd.action_to_len16 = 327 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) | 328 FW_LEN16(port_cmd)); 329 v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl); 330 if (v) 331 return v; 332 333 v = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype); 334 pi->mdio_addr = (v & FW_PORT_CMD_MDIOCAP_F) ? 335 FW_PORT_CMD_MDIOADDR_G(v) : -1; 336 pi->port_type = FW_PORT_CMD_PTYPE_G(v); 337 pi->mod_type = FW_PORT_MOD_TYPE_NA; 338 339 init_link_config(&pi->link_cfg, be16_to_cpu(port_rpl.u.info.pcap)); 340 341 return 0; 342 } 343 344 /** 345 * t4vf_fw_reset - issue a reset to FW 346 * @adapter: the adapter 347 * 348 * Issues a reset command to FW. For a Physical Function this would 349 * result in the Firmware resetting all of its state. For a Virtual 350 * Function this just resets the state associated with the VF. 351 */ 352 int t4vf_fw_reset(struct adapter *adapter) 353 { 354 struct fw_reset_cmd cmd; 355 356 memset(&cmd, 0, sizeof(cmd)); 357 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) | 358 FW_CMD_WRITE_F); 359 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 360 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 361 } 362 363 /** 364 * t4vf_query_params - query FW or device parameters 365 * @adapter: the adapter 366 * @nparams: the number of parameters 367 * @params: the parameter names 368 * @vals: the parameter values 369 * 370 * Reads the values of firmware or device parameters. Up to 7 parameters 371 * can be queried at once. 372 */ 373 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams, 374 const u32 *params, u32 *vals) 375 { 376 int i, ret; 377 struct fw_params_cmd cmd, rpl; 378 struct fw_params_param *p; 379 size_t len16; 380 381 if (nparams > 7) 382 return -EINVAL; 383 384 memset(&cmd, 0, sizeof(cmd)); 385 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 386 FW_CMD_REQUEST_F | 387 FW_CMD_READ_F); 388 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, 389 param[nparams].mnem), 16); 390 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); 391 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) 392 p->mnem = htonl(*params++); 393 394 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 395 if (ret == 0) 396 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++) 397 *vals++ = be32_to_cpu(p->val); 398 return ret; 399 } 400 401 /** 402 * t4vf_set_params - sets FW or device parameters 403 * @adapter: the adapter 404 * @nparams: the number of parameters 405 * @params: the parameter names 406 * @vals: the parameter values 407 * 408 * Sets the values of firmware or device parameters. Up to 7 parameters 409 * can be specified at once. 410 */ 411 int t4vf_set_params(struct adapter *adapter, unsigned int nparams, 412 const u32 *params, const u32 *vals) 413 { 414 int i; 415 struct fw_params_cmd cmd; 416 struct fw_params_param *p; 417 size_t len16; 418 419 if (nparams > 7) 420 return -EINVAL; 421 422 memset(&cmd, 0, sizeof(cmd)); 423 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 424 FW_CMD_REQUEST_F | 425 FW_CMD_WRITE_F); 426 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, 427 param[nparams]), 16); 428 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); 429 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) { 430 p->mnem = cpu_to_be32(*params++); 431 p->val = cpu_to_be32(*vals++); 432 } 433 434 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 435 } 436 437 /** 438 * t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information 439 * @adapter: the adapter 440 * @qid: the Queue ID 441 * @qtype: the Ingress or Egress type for @qid 442 * @pbar2_qoffset: BAR2 Queue Offset 443 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 444 * 445 * Returns the BAR2 SGE Queue Registers information associated with the 446 * indicated Absolute Queue ID. These are passed back in return value 447 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 448 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 449 * 450 * This may return an error which indicates that BAR2 SGE Queue 451 * registers aren't available. If an error is not returned, then the 452 * following values are returned: 453 * 454 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 455 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 456 * 457 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 458 * require the "Inferred Queue ID" ability may be used. E.g. the 459 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 460 * then these "Inferred Queue ID" register may not be used. 461 */ 462 int t4vf_bar2_sge_qregs(struct adapter *adapter, 463 unsigned int qid, 464 enum t4_bar2_qtype qtype, 465 u64 *pbar2_qoffset, 466 unsigned int *pbar2_qid) 467 { 468 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 469 u64 bar2_page_offset, bar2_qoffset; 470 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 471 472 /* T4 doesn't support BAR2 SGE Queue registers. 473 */ 474 if (is_t4(adapter->params.chip)) 475 return -EINVAL; 476 477 /* Get our SGE Page Size parameters. 478 */ 479 page_shift = adapter->params.sge.sge_vf_hps + 10; 480 page_size = 1 << page_shift; 481 482 /* Get the right Queues per Page parameters for our Queue. 483 */ 484 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 485 ? adapter->params.sge.sge_vf_eq_qpp 486 : adapter->params.sge.sge_vf_iq_qpp); 487 qpp_mask = (1 << qpp_shift) - 1; 488 489 /* Calculate the basics of the BAR2 SGE Queue register area: 490 * o The BAR2 page the Queue registers will be in. 491 * o The BAR2 Queue ID. 492 * o The BAR2 Queue ID Offset into the BAR2 page. 493 */ 494 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 495 bar2_qid = qid & qpp_mask; 496 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 497 498 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 499 * hardware will infer the Absolute Queue ID simply from the writes to 500 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 501 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 502 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 503 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 504 * from the BAR2 Page and BAR2 Queue ID. 505 * 506 * One important censequence of this is that some BAR2 SGE registers 507 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 508 * there. But other registers synthesize the SGE Queue ID purely 509 * from the writes to the registers -- the Write Combined Doorbell 510 * Buffer is a good example. These BAR2 SGE Registers are only 511 * available for those BAR2 SGE Register areas where the SGE Absolute 512 * Queue ID can be inferred from simple writes. 513 */ 514 bar2_qoffset = bar2_page_offset; 515 bar2_qinferred = (bar2_qid_offset < page_size); 516 if (bar2_qinferred) { 517 bar2_qoffset += bar2_qid_offset; 518 bar2_qid = 0; 519 } 520 521 *pbar2_qoffset = bar2_qoffset; 522 *pbar2_qid = bar2_qid; 523 return 0; 524 } 525 526 /** 527 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters 528 * @adapter: the adapter 529 * 530 * Retrieves various core SGE parameters in the form of hardware SGE 531 * register values. The caller is responsible for decoding these as 532 * needed. The SGE parameters are stored in @adapter->params.sge. 533 */ 534 int t4vf_get_sge_params(struct adapter *adapter) 535 { 536 struct sge_params *sge_params = &adapter->params.sge; 537 u32 params[7], vals[7]; 538 int v; 539 540 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 541 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A)); 542 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 543 FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A)); 544 params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 545 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A)); 546 params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 547 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A)); 548 params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 549 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A)); 550 params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 551 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A)); 552 params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 553 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A)); 554 v = t4vf_query_params(adapter, 7, params, vals); 555 if (v) 556 return v; 557 sge_params->sge_control = vals[0]; 558 sge_params->sge_host_page_size = vals[1]; 559 sge_params->sge_fl_buffer_size[0] = vals[2]; 560 sge_params->sge_fl_buffer_size[1] = vals[3]; 561 sge_params->sge_timer_value_0_and_1 = vals[4]; 562 sge_params->sge_timer_value_2_and_3 = vals[5]; 563 sge_params->sge_timer_value_4_and_5 = vals[6]; 564 565 /* T4 uses a single control field to specify both the PCIe Padding and 566 * Packing Boundary. T5 introduced the ability to specify these 567 * separately with the Padding Boundary in SGE_CONTROL and and Packing 568 * Boundary in SGE_CONTROL2. So for T5 and later we need to grab 569 * SGE_CONTROL in order to determine how ingress packet data will be 570 * laid out in Packed Buffer Mode. Unfortunately, older versions of 571 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a 572 * failure grabbing it we throw an error since we can't figure out the 573 * right value. 574 */ 575 if (!is_t4(adapter->params.chip)) { 576 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 577 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A)); 578 v = t4vf_query_params(adapter, 1, params, vals); 579 if (v != FW_SUCCESS) { 580 dev_err(adapter->pdev_dev, 581 "Unable to get SGE Control2; " 582 "probably old firmware.\n"); 583 return v; 584 } 585 sge_params->sge_control2 = vals[0]; 586 } 587 588 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 589 FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A)); 590 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 591 FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A)); 592 v = t4vf_query_params(adapter, 2, params, vals); 593 if (v) 594 return v; 595 sge_params->sge_ingress_rx_threshold = vals[0]; 596 sge_params->sge_congestion_control = vals[1]; 597 598 /* For T5 and later we want to use the new BAR2 Doorbells. 599 * Unfortunately, older firmware didn't allow the this register to be 600 * read. 601 */ 602 if (!is_t4(adapter->params.chip)) { 603 u32 whoami; 604 unsigned int pf, s_hps, s_qpp; 605 606 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 607 FW_PARAMS_PARAM_XYZ_V( 608 SGE_EGRESS_QUEUES_PER_PAGE_VF_A)); 609 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 610 FW_PARAMS_PARAM_XYZ_V( 611 SGE_INGRESS_QUEUES_PER_PAGE_VF_A)); 612 v = t4vf_query_params(adapter, 2, params, vals); 613 if (v != FW_SUCCESS) { 614 dev_warn(adapter->pdev_dev, 615 "Unable to get VF SGE Queues/Page; " 616 "probably old firmware.\n"); 617 return v; 618 } 619 sge_params->sge_egress_queues_per_page = vals[0]; 620 sge_params->sge_ingress_queues_per_page = vals[1]; 621 622 /* We need the Queues/Page for our VF. This is based on the 623 * PF from which we're instantiated and is indexed in the 624 * register we just read. Do it once here so other code in 625 * the driver can just use it. 626 */ 627 whoami = t4_read_reg(adapter, 628 T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A); 629 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 630 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 631 632 s_hps = (HOSTPAGESIZEPF0_S + 633 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf); 634 sge_params->sge_vf_hps = 635 ((sge_params->sge_host_page_size >> s_hps) 636 & HOSTPAGESIZEPF0_M); 637 638 s_qpp = (QUEUESPERPAGEPF0_S + 639 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf); 640 sge_params->sge_vf_eq_qpp = 641 ((sge_params->sge_egress_queues_per_page >> s_qpp) 642 & QUEUESPERPAGEPF0_M); 643 sge_params->sge_vf_iq_qpp = 644 ((sge_params->sge_ingress_queues_per_page >> s_qpp) 645 & QUEUESPERPAGEPF0_M); 646 } 647 648 return 0; 649 } 650 651 /** 652 * t4vf_get_vpd_params - retrieve device VPD paremeters 653 * @adapter: the adapter 654 * 655 * Retrives various device Vital Product Data parameters. The parameters 656 * are stored in @adapter->params.vpd. 657 */ 658 int t4vf_get_vpd_params(struct adapter *adapter) 659 { 660 struct vpd_params *vpd_params = &adapter->params.vpd; 661 u32 params[7], vals[7]; 662 int v; 663 664 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 665 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 666 v = t4vf_query_params(adapter, 1, params, vals); 667 if (v) 668 return v; 669 vpd_params->cclk = vals[0]; 670 671 return 0; 672 } 673 674 /** 675 * t4vf_get_dev_params - retrieve device paremeters 676 * @adapter: the adapter 677 * 678 * Retrives various device parameters. The parameters are stored in 679 * @adapter->params.dev. 680 */ 681 int t4vf_get_dev_params(struct adapter *adapter) 682 { 683 struct dev_params *dev_params = &adapter->params.dev; 684 u32 params[7], vals[7]; 685 int v; 686 687 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 688 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV)); 689 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 690 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV)); 691 v = t4vf_query_params(adapter, 2, params, vals); 692 if (v) 693 return v; 694 dev_params->fwrev = vals[0]; 695 dev_params->tprev = vals[1]; 696 697 return 0; 698 } 699 700 /** 701 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration 702 * @adapter: the adapter 703 * 704 * Retrieves global RSS mode and parameters with which we have to live 705 * and stores them in the @adapter's RSS parameters. 706 */ 707 int t4vf_get_rss_glb_config(struct adapter *adapter) 708 { 709 struct rss_params *rss = &adapter->params.rss; 710 struct fw_rss_glb_config_cmd cmd, rpl; 711 int v; 712 713 /* 714 * Execute an RSS Global Configuration read command to retrieve 715 * our RSS configuration. 716 */ 717 memset(&cmd, 0, sizeof(cmd)); 718 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 719 FW_CMD_REQUEST_F | 720 FW_CMD_READ_F); 721 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 722 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 723 if (v) 724 return v; 725 726 /* 727 * Transate the big-endian RSS Global Configuration into our 728 * cpu-endian format based on the RSS mode. We also do first level 729 * filtering at this point to weed out modes which don't support 730 * VF Drivers ... 731 */ 732 rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G( 733 be32_to_cpu(rpl.u.manual.mode_pkd)); 734 switch (rss->mode) { 735 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 736 u32 word = be32_to_cpu( 737 rpl.u.basicvirtual.synmapen_to_hashtoeplitz); 738 739 rss->u.basicvirtual.synmapen = 740 ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0); 741 rss->u.basicvirtual.syn4tupenipv6 = 742 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0); 743 rss->u.basicvirtual.syn2tupenipv6 = 744 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0); 745 rss->u.basicvirtual.syn4tupenipv4 = 746 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0); 747 rss->u.basicvirtual.syn2tupenipv4 = 748 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0); 749 750 rss->u.basicvirtual.ofdmapen = 751 ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0); 752 753 rss->u.basicvirtual.tnlmapen = 754 ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0); 755 rss->u.basicvirtual.tnlalllookup = 756 ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0); 757 758 rss->u.basicvirtual.hashtoeplitz = 759 ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0); 760 761 /* we need at least Tunnel Map Enable to be set */ 762 if (!rss->u.basicvirtual.tnlmapen) 763 return -EINVAL; 764 break; 765 } 766 767 default: 768 /* all unknown/unsupported RSS modes result in an error */ 769 return -EINVAL; 770 } 771 772 return 0; 773 } 774 775 /** 776 * t4vf_get_vfres - retrieve VF resource limits 777 * @adapter: the adapter 778 * 779 * Retrieves configured resource limits and capabilities for a virtual 780 * function. The results are stored in @adapter->vfres. 781 */ 782 int t4vf_get_vfres(struct adapter *adapter) 783 { 784 struct vf_resources *vfres = &adapter->params.vfres; 785 struct fw_pfvf_cmd cmd, rpl; 786 int v; 787 u32 word; 788 789 /* 790 * Execute PFVF Read command to get VF resource limits; bail out early 791 * with error on command failure. 792 */ 793 memset(&cmd, 0, sizeof(cmd)); 794 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 795 FW_CMD_REQUEST_F | 796 FW_CMD_READ_F); 797 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 798 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 799 if (v) 800 return v; 801 802 /* 803 * Extract VF resource limits and return success. 804 */ 805 word = be32_to_cpu(rpl.niqflint_niq); 806 vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); 807 vfres->niq = FW_PFVF_CMD_NIQ_G(word); 808 809 word = be32_to_cpu(rpl.type_to_neq); 810 vfres->neq = FW_PFVF_CMD_NEQ_G(word); 811 vfres->pmask = FW_PFVF_CMD_PMASK_G(word); 812 813 word = be32_to_cpu(rpl.tc_to_nexactf); 814 vfres->tc = FW_PFVF_CMD_TC_G(word); 815 vfres->nvi = FW_PFVF_CMD_NVI_G(word); 816 vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); 817 818 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 819 vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); 820 vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); 821 vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); 822 823 return 0; 824 } 825 826 /** 827 * t4vf_read_rss_vi_config - read a VI's RSS configuration 828 * @adapter: the adapter 829 * @viid: Virtual Interface ID 830 * @config: pointer to host-native VI RSS Configuration buffer 831 * 832 * Reads the Virtual Interface's RSS configuration information and 833 * translates it into CPU-native format. 834 */ 835 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid, 836 union rss_vi_config *config) 837 { 838 struct fw_rss_vi_config_cmd cmd, rpl; 839 int v; 840 841 memset(&cmd, 0, sizeof(cmd)); 842 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 843 FW_CMD_REQUEST_F | 844 FW_CMD_READ_F | 845 FW_RSS_VI_CONFIG_CMD_VIID(viid)); 846 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 847 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 848 if (v) 849 return v; 850 851 switch (adapter->params.rss.mode) { 852 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 853 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen); 854 855 config->basicvirtual.ip6fourtupen = 856 ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0); 857 config->basicvirtual.ip6twotupen = 858 ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0); 859 config->basicvirtual.ip4fourtupen = 860 ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0); 861 config->basicvirtual.ip4twotupen = 862 ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0); 863 config->basicvirtual.udpen = 864 ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0); 865 config->basicvirtual.defaultq = 866 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word); 867 break; 868 } 869 870 default: 871 return -EINVAL; 872 } 873 874 return 0; 875 } 876 877 /** 878 * t4vf_write_rss_vi_config - write a VI's RSS configuration 879 * @adapter: the adapter 880 * @viid: Virtual Interface ID 881 * @config: pointer to host-native VI RSS Configuration buffer 882 * 883 * Write the Virtual Interface's RSS configuration information 884 * (translating it into firmware-native format before writing). 885 */ 886 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid, 887 union rss_vi_config *config) 888 { 889 struct fw_rss_vi_config_cmd cmd, rpl; 890 891 memset(&cmd, 0, sizeof(cmd)); 892 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 893 FW_CMD_REQUEST_F | 894 FW_CMD_WRITE_F | 895 FW_RSS_VI_CONFIG_CMD_VIID(viid)); 896 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 897 switch (adapter->params.rss.mode) { 898 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 899 u32 word = 0; 900 901 if (config->basicvirtual.ip6fourtupen) 902 word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F; 903 if (config->basicvirtual.ip6twotupen) 904 word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F; 905 if (config->basicvirtual.ip4fourtupen) 906 word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F; 907 if (config->basicvirtual.ip4twotupen) 908 word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F; 909 if (config->basicvirtual.udpen) 910 word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F; 911 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V( 912 config->basicvirtual.defaultq); 913 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word); 914 break; 915 } 916 917 default: 918 return -EINVAL; 919 } 920 921 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 922 } 923 924 /** 925 * t4vf_config_rss_range - configure a portion of the RSS mapping table 926 * @adapter: the adapter 927 * @viid: Virtual Interface of RSS Table Slice 928 * @start: starting entry in the table to write 929 * @n: how many table entries to write 930 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table 931 * @nrspq: number of values in @rspq 932 * 933 * Programs the selected part of the VI's RSS mapping table with the 934 * provided values. If @nrspq < @n the supplied values are used repeatedly 935 * until the full table range is populated. 936 * 937 * The caller must ensure the values in @rspq are in the range 0..1023. 938 */ 939 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid, 940 int start, int n, const u16 *rspq, int nrspq) 941 { 942 const u16 *rsp = rspq; 943 const u16 *rsp_end = rspq+nrspq; 944 struct fw_rss_ind_tbl_cmd cmd; 945 946 /* 947 * Initialize firmware command template to write the RSS table. 948 */ 949 memset(&cmd, 0, sizeof(cmd)); 950 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 951 FW_CMD_REQUEST_F | 952 FW_CMD_WRITE_F | 953 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 954 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 955 956 /* 957 * Each firmware RSS command can accommodate up to 32 RSS Ingress 958 * Queue Identifiers. These Ingress Queue IDs are packed three to 959 * a 32-bit word as 10-bit values with the upper remaining 2 bits 960 * reserved. 961 */ 962 while (n > 0) { 963 __be32 *qp = &cmd.iq0_to_iq2; 964 int nq = min(n, 32); 965 int ret; 966 967 /* 968 * Set up the firmware RSS command header to send the next 969 * "nq" Ingress Queue IDs to the firmware. 970 */ 971 cmd.niqid = cpu_to_be16(nq); 972 cmd.startidx = cpu_to_be16(start); 973 974 /* 975 * "nq" more done for the start of the next loop. 976 */ 977 start += nq; 978 n -= nq; 979 980 /* 981 * While there are still Ingress Queue IDs to stuff into the 982 * current firmware RSS command, retrieve them from the 983 * Ingress Queue ID array and insert them into the command. 984 */ 985 while (nq > 0) { 986 /* 987 * Grab up to the next 3 Ingress Queue IDs (wrapping 988 * around the Ingress Queue ID array if necessary) and 989 * insert them into the firmware RSS command at the 990 * current 3-tuple position within the commad. 991 */ 992 u16 qbuf[3]; 993 u16 *qbp = qbuf; 994 int nqbuf = min(3, nq); 995 996 nq -= nqbuf; 997 qbuf[0] = qbuf[1] = qbuf[2] = 0; 998 while (nqbuf) { 999 nqbuf--; 1000 *qbp++ = *rsp++; 1001 if (rsp >= rsp_end) 1002 rsp = rspq; 1003 } 1004 *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) | 1005 FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) | 1006 FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2])); 1007 } 1008 1009 /* 1010 * Send this portion of the RRS table update to the firmware; 1011 * bail out on any errors. 1012 */ 1013 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1014 if (ret) 1015 return ret; 1016 } 1017 return 0; 1018 } 1019 1020 /** 1021 * t4vf_alloc_vi - allocate a virtual interface on a port 1022 * @adapter: the adapter 1023 * @port_id: physical port associated with the VI 1024 * 1025 * Allocate a new Virtual Interface and bind it to the indicated 1026 * physical port. Return the new Virtual Interface Identifier on 1027 * success, or a [negative] error number on failure. 1028 */ 1029 int t4vf_alloc_vi(struct adapter *adapter, int port_id) 1030 { 1031 struct fw_vi_cmd cmd, rpl; 1032 int v; 1033 1034 /* 1035 * Execute a VI command to allocate Virtual Interface and return its 1036 * VIID. 1037 */ 1038 memset(&cmd, 0, sizeof(cmd)); 1039 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 1040 FW_CMD_REQUEST_F | 1041 FW_CMD_WRITE_F | 1042 FW_CMD_EXEC_F); 1043 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | 1044 FW_VI_CMD_ALLOC_F); 1045 cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id); 1046 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 1047 if (v) 1048 return v; 1049 1050 return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid)); 1051 } 1052 1053 /** 1054 * t4vf_free_vi -- free a virtual interface 1055 * @adapter: the adapter 1056 * @viid: the virtual interface identifier 1057 * 1058 * Free a previously allocated Virtual Interface. Return an error on 1059 * failure. 1060 */ 1061 int t4vf_free_vi(struct adapter *adapter, int viid) 1062 { 1063 struct fw_vi_cmd cmd; 1064 1065 /* 1066 * Execute a VI command to free the Virtual Interface. 1067 */ 1068 memset(&cmd, 0, sizeof(cmd)); 1069 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 1070 FW_CMD_REQUEST_F | 1071 FW_CMD_EXEC_F); 1072 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | 1073 FW_VI_CMD_FREE_F); 1074 cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 1075 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1076 } 1077 1078 /** 1079 * t4vf_enable_vi - enable/disable a virtual interface 1080 * @adapter: the adapter 1081 * @viid: the Virtual Interface ID 1082 * @rx_en: 1=enable Rx, 0=disable Rx 1083 * @tx_en: 1=enable Tx, 0=disable Tx 1084 * 1085 * Enables/disables a virtual interface. 1086 */ 1087 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid, 1088 bool rx_en, bool tx_en) 1089 { 1090 struct fw_vi_enable_cmd cmd; 1091 1092 memset(&cmd, 0, sizeof(cmd)); 1093 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 1094 FW_CMD_REQUEST_F | 1095 FW_CMD_EXEC_F | 1096 FW_VI_ENABLE_CMD_VIID_V(viid)); 1097 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 1098 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 1099 FW_LEN16(cmd)); 1100 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1101 } 1102 1103 /** 1104 * t4vf_identify_port - identify a VI's port by blinking its LED 1105 * @adapter: the adapter 1106 * @viid: the Virtual Interface ID 1107 * @nblinks: how many times to blink LED at 2.5 Hz 1108 * 1109 * Identifies a VI's port by blinking its LED. 1110 */ 1111 int t4vf_identify_port(struct adapter *adapter, unsigned int viid, 1112 unsigned int nblinks) 1113 { 1114 struct fw_vi_enable_cmd cmd; 1115 1116 memset(&cmd, 0, sizeof(cmd)); 1117 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 1118 FW_CMD_REQUEST_F | 1119 FW_CMD_EXEC_F | 1120 FW_VI_ENABLE_CMD_VIID_V(viid)); 1121 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | 1122 FW_LEN16(cmd)); 1123 cmd.blinkdur = cpu_to_be16(nblinks); 1124 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1125 } 1126 1127 /** 1128 * t4vf_set_rxmode - set Rx properties of a virtual interface 1129 * @adapter: the adapter 1130 * @viid: the VI id 1131 * @mtu: the new MTU or -1 for no change 1132 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 1133 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 1134 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 1135 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it, 1136 * -1 no change 1137 * 1138 * Sets Rx properties of a virtual interface. 1139 */ 1140 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid, 1141 int mtu, int promisc, int all_multi, int bcast, int vlanex, 1142 bool sleep_ok) 1143 { 1144 struct fw_vi_rxmode_cmd cmd; 1145 1146 /* convert to FW values */ 1147 if (mtu < 0) 1148 mtu = FW_VI_RXMODE_CMD_MTU_M; 1149 if (promisc < 0) 1150 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 1151 if (all_multi < 0) 1152 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 1153 if (bcast < 0) 1154 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 1155 if (vlanex < 0) 1156 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 1157 1158 memset(&cmd, 0, sizeof(cmd)); 1159 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 1160 FW_CMD_REQUEST_F | 1161 FW_CMD_WRITE_F | 1162 FW_VI_RXMODE_CMD_VIID_V(viid)); 1163 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 1164 cmd.mtu_to_vlanexen = 1165 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 1166 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 1167 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 1168 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 1169 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 1170 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); 1171 } 1172 1173 /** 1174 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses 1175 * @adapter: the adapter 1176 * @viid: the Virtual Interface Identifier 1177 * @free: if true any existing filters for this VI id are first removed 1178 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 1179 * @addr: the MAC address(es) 1180 * @idx: where to store the index of each allocated filter 1181 * @hash: pointer to hash address filter bitmap 1182 * @sleep_ok: call is allowed to sleep 1183 * 1184 * Allocates an exact-match filter for each of the supplied addresses and 1185 * sets it to the corresponding address. If @idx is not %NULL it should 1186 * have at least @naddr entries, each of which will be set to the index of 1187 * the filter allocated for the corresponding MAC address. If a filter 1188 * could not be allocated for an address its index is set to 0xffff. 1189 * If @hash is not %NULL addresses that fail to allocate an exact filter 1190 * are hashed and update the hash filter bitmap pointed at by @hash. 1191 * 1192 * Returns a negative error number or the number of filters allocated. 1193 */ 1194 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free, 1195 unsigned int naddr, const u8 **addr, u16 *idx, 1196 u64 *hash, bool sleep_ok) 1197 { 1198 int offset, ret = 0; 1199 unsigned nfilters = 0; 1200 unsigned int rem = naddr; 1201 struct fw_vi_mac_cmd cmd, rpl; 1202 unsigned int max_naddr = adapter->params.arch.mps_tcam_size; 1203 1204 if (naddr > max_naddr) 1205 return -EINVAL; 1206 1207 for (offset = 0; offset < naddr; /**/) { 1208 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) 1209 ? rem 1210 : ARRAY_SIZE(cmd.u.exact)); 1211 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1212 u.exact[fw_naddr]), 16); 1213 struct fw_vi_mac_exact *p; 1214 int i; 1215 1216 memset(&cmd, 0, sizeof(cmd)); 1217 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 1218 FW_CMD_REQUEST_F | 1219 FW_CMD_WRITE_F | 1220 (free ? FW_CMD_EXEC_F : 0) | 1221 FW_VI_MAC_CMD_VIID_V(viid)); 1222 cmd.freemacs_to_len16 = 1223 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 1224 FW_CMD_LEN16_V(len16)); 1225 1226 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) { 1227 p->valid_to_idx = cpu_to_be16( 1228 FW_VI_MAC_CMD_VALID_F | 1229 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 1230 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 1231 } 1232 1233 1234 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl, 1235 sleep_ok); 1236 if (ret && ret != -ENOMEM) 1237 break; 1238 1239 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) { 1240 u16 index = FW_VI_MAC_CMD_IDX_G( 1241 be16_to_cpu(p->valid_to_idx)); 1242 1243 if (idx) 1244 idx[offset+i] = 1245 (index >= max_naddr 1246 ? 0xffff 1247 : index); 1248 if (index < max_naddr) 1249 nfilters++; 1250 else if (hash) 1251 *hash |= (1ULL << hash_mac_addr(addr[offset+i])); 1252 } 1253 1254 free = false; 1255 offset += fw_naddr; 1256 rem -= fw_naddr; 1257 } 1258 1259 /* 1260 * If there were no errors or we merely ran out of room in our MAC 1261 * address arena, return the number of filters actually written. 1262 */ 1263 if (ret == 0 || ret == -ENOMEM) 1264 ret = nfilters; 1265 return ret; 1266 } 1267 1268 /** 1269 * t4vf_change_mac - modifies the exact-match filter for a MAC address 1270 * @adapter: the adapter 1271 * @viid: the Virtual Interface ID 1272 * @idx: index of existing filter for old value of MAC address, or -1 1273 * @addr: the new MAC address value 1274 * @persist: if idx < 0, the new MAC allocation should be persistent 1275 * 1276 * Modifies an exact-match filter and sets it to the new MAC address. 1277 * Note that in general it is not possible to modify the value of a given 1278 * filter so the generic way to modify an address filter is to free the 1279 * one being used by the old address value and allocate a new filter for 1280 * the new address value. @idx can be -1 if the address is a new 1281 * addition. 1282 * 1283 * Returns a negative error number or the index of the filter with the new 1284 * MAC value. 1285 */ 1286 int t4vf_change_mac(struct adapter *adapter, unsigned int viid, 1287 int idx, const u8 *addr, bool persist) 1288 { 1289 int ret; 1290 struct fw_vi_mac_cmd cmd, rpl; 1291 struct fw_vi_mac_exact *p = &cmd.u.exact[0]; 1292 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1293 u.exact[1]), 16); 1294 unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size; 1295 1296 /* 1297 * If this is a new allocation, determine whether it should be 1298 * persistent (across a "freemacs" operation) or not. 1299 */ 1300 if (idx < 0) 1301 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 1302 1303 memset(&cmd, 0, sizeof(cmd)); 1304 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 1305 FW_CMD_REQUEST_F | 1306 FW_CMD_WRITE_F | 1307 FW_VI_MAC_CMD_VIID_V(viid)); 1308 cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); 1309 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 1310 FW_VI_MAC_CMD_IDX_V(idx)); 1311 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 1312 1313 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 1314 if (ret == 0) { 1315 p = &rpl.u.exact[0]; 1316 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 1317 if (ret >= max_mac_addr) 1318 ret = -ENOMEM; 1319 } 1320 return ret; 1321 } 1322 1323 /** 1324 * t4vf_set_addr_hash - program the MAC inexact-match hash filter 1325 * @adapter: the adapter 1326 * @viid: the Virtual Interface Identifier 1327 * @ucast: whether the hash filter should also match unicast addresses 1328 * @vec: the value to be written to the hash filter 1329 * @sleep_ok: call is allowed to sleep 1330 * 1331 * Sets the 64-bit inexact-match hash filter for a virtual interface. 1332 */ 1333 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid, 1334 bool ucast, u64 vec, bool sleep_ok) 1335 { 1336 struct fw_vi_mac_cmd cmd; 1337 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1338 u.exact[0]), 16); 1339 1340 memset(&cmd, 0, sizeof(cmd)); 1341 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 1342 FW_CMD_REQUEST_F | 1343 FW_CMD_WRITE_F | 1344 FW_VI_ENABLE_CMD_VIID_V(viid)); 1345 cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 1346 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 1347 FW_CMD_LEN16_V(len16)); 1348 cmd.u.hash.hashvec = cpu_to_be64(vec); 1349 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); 1350 } 1351 1352 /** 1353 * t4vf_get_port_stats - collect "port" statistics 1354 * @adapter: the adapter 1355 * @pidx: the port index 1356 * @s: the stats structure to fill 1357 * 1358 * Collect statistics for the "port"'s Virtual Interface. 1359 */ 1360 int t4vf_get_port_stats(struct adapter *adapter, int pidx, 1361 struct t4vf_port_stats *s) 1362 { 1363 struct port_info *pi = adap2pinfo(adapter, pidx); 1364 struct fw_vi_stats_vf fwstats; 1365 unsigned int rem = VI_VF_NUM_STATS; 1366 __be64 *fwsp = (__be64 *)&fwstats; 1367 1368 /* 1369 * Grab the Virtual Interface statistics a chunk at a time via mailbox 1370 * commands. We could use a Work Request and get all of them at once 1371 * but that's an asynchronous interface which is awkward to use. 1372 */ 1373 while (rem) { 1374 unsigned int ix = VI_VF_NUM_STATS - rem; 1375 unsigned int nstats = min(6U, rem); 1376 struct fw_vi_stats_cmd cmd, rpl; 1377 size_t len = (offsetof(struct fw_vi_stats_cmd, u) + 1378 sizeof(struct fw_vi_stats_ctl)); 1379 size_t len16 = DIV_ROUND_UP(len, 16); 1380 int ret; 1381 1382 memset(&cmd, 0, sizeof(cmd)); 1383 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) | 1384 FW_VI_STATS_CMD_VIID_V(pi->viid) | 1385 FW_CMD_REQUEST_F | 1386 FW_CMD_READ_F); 1387 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); 1388 cmd.u.ctl.nstats_ix = 1389 cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) | 1390 FW_VI_STATS_CMD_NSTATS_V(nstats)); 1391 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl); 1392 if (ret) 1393 return ret; 1394 1395 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats); 1396 1397 rem -= nstats; 1398 fwsp += nstats; 1399 } 1400 1401 /* 1402 * Translate firmware statistics into host native statistics. 1403 */ 1404 s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes); 1405 s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames); 1406 s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes); 1407 s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames); 1408 s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes); 1409 s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames); 1410 s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames); 1411 s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes); 1412 s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames); 1413 1414 s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes); 1415 s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames); 1416 s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes); 1417 s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames); 1418 s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes); 1419 s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames); 1420 1421 s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames); 1422 1423 return 0; 1424 } 1425 1426 /** 1427 * t4vf_iq_free - free an ingress queue and its free lists 1428 * @adapter: the adapter 1429 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 1430 * @iqid: ingress queue ID 1431 * @fl0id: FL0 queue ID or 0xffff if no attached FL0 1432 * @fl1id: FL1 queue ID or 0xffff if no attached FL1 1433 * 1434 * Frees an ingress queue and its associated free lists, if any. 1435 */ 1436 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype, 1437 unsigned int iqid, unsigned int fl0id, unsigned int fl1id) 1438 { 1439 struct fw_iq_cmd cmd; 1440 1441 memset(&cmd, 0, sizeof(cmd)); 1442 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | 1443 FW_CMD_REQUEST_F | 1444 FW_CMD_EXEC_F); 1445 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | 1446 FW_LEN16(cmd)); 1447 cmd.type_to_iqandstindex = 1448 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 1449 1450 cmd.iqid = cpu_to_be16(iqid); 1451 cmd.fl0id = cpu_to_be16(fl0id); 1452 cmd.fl1id = cpu_to_be16(fl1id); 1453 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1454 } 1455 1456 /** 1457 * t4vf_eth_eq_free - free an Ethernet egress queue 1458 * @adapter: the adapter 1459 * @eqid: egress queue ID 1460 * 1461 * Frees an Ethernet egress queue. 1462 */ 1463 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid) 1464 { 1465 struct fw_eq_eth_cmd cmd; 1466 1467 memset(&cmd, 0, sizeof(cmd)); 1468 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 1469 FW_CMD_REQUEST_F | 1470 FW_CMD_EXEC_F); 1471 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | 1472 FW_LEN16(cmd)); 1473 cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 1474 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1475 } 1476 1477 /** 1478 * t4vf_handle_fw_rpl - process a firmware reply message 1479 * @adapter: the adapter 1480 * @rpl: start of the firmware message 1481 * 1482 * Processes a firmware message, such as link state change messages. 1483 */ 1484 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl) 1485 { 1486 const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl; 1487 u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi)); 1488 1489 switch (opcode) { 1490 case FW_PORT_CMD: { 1491 /* 1492 * Link/module state change message. 1493 */ 1494 const struct fw_port_cmd *port_cmd = 1495 (const struct fw_port_cmd *)rpl; 1496 u32 stat, mod; 1497 int action, port_id, link_ok, speed, fc, pidx; 1498 1499 /* 1500 * Extract various fields from port status change message. 1501 */ 1502 action = FW_PORT_CMD_ACTION_G( 1503 be32_to_cpu(port_cmd->action_to_len16)); 1504 if (action != FW_PORT_ACTION_GET_PORT_INFO) { 1505 dev_err(adapter->pdev_dev, 1506 "Unknown firmware PORT reply action %x\n", 1507 action); 1508 break; 1509 } 1510 1511 port_id = FW_PORT_CMD_PORTID_G( 1512 be32_to_cpu(port_cmd->op_to_portid)); 1513 1514 stat = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype); 1515 link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0; 1516 speed = 0; 1517 fc = 0; 1518 if (stat & FW_PORT_CMD_RXPAUSE_F) 1519 fc |= PAUSE_RX; 1520 if (stat & FW_PORT_CMD_TXPAUSE_F) 1521 fc |= PAUSE_TX; 1522 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 1523 speed = 100; 1524 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 1525 speed = 1000; 1526 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 1527 speed = 10000; 1528 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 1529 speed = 40000; 1530 1531 /* 1532 * Scan all of our "ports" (Virtual Interfaces) looking for 1533 * those bound to the physical port which has changed. If 1534 * our recorded state doesn't match the current state, 1535 * signal that change to the OS code. 1536 */ 1537 for_each_port(adapter, pidx) { 1538 struct port_info *pi = adap2pinfo(adapter, pidx); 1539 struct link_config *lc; 1540 1541 if (pi->port_id != port_id) 1542 continue; 1543 1544 lc = &pi->link_cfg; 1545 1546 mod = FW_PORT_CMD_MODTYPE_G(stat); 1547 if (mod != pi->mod_type) { 1548 pi->mod_type = mod; 1549 t4vf_os_portmod_changed(adapter, pidx); 1550 } 1551 1552 if (link_ok != lc->link_ok || speed != lc->speed || 1553 fc != lc->fc) { 1554 /* something changed */ 1555 lc->link_ok = link_ok; 1556 lc->speed = speed; 1557 lc->fc = fc; 1558 lc->supported = 1559 be16_to_cpu(port_cmd->u.info.pcap); 1560 t4vf_os_link_changed(adapter, pidx, link_ok); 1561 } 1562 } 1563 break; 1564 } 1565 1566 default: 1567 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n", 1568 opcode); 1569 } 1570 return 0; 1571 } 1572 1573 /** 1574 */ 1575 int t4vf_prep_adapter(struct adapter *adapter) 1576 { 1577 int err; 1578 unsigned int chipid; 1579 1580 /* Wait for the device to become ready before proceeding ... 1581 */ 1582 err = t4vf_wait_dev_ready(adapter); 1583 if (err) 1584 return err; 1585 1586 /* Default port and clock for debugging in case we can't reach 1587 * firmware. 1588 */ 1589 adapter->params.nports = 1; 1590 adapter->params.vfres.pmask = 1; 1591 adapter->params.vpd.cclk = 50000; 1592 1593 adapter->params.chip = 0; 1594 switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) { 1595 case CHELSIO_T4: 1596 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0); 1597 adapter->params.arch.sge_fl_db = DBPRIO_F; 1598 adapter->params.arch.mps_tcam_size = 1599 NUM_MPS_CLS_SRAM_L_INSTANCES; 1600 break; 1601 1602 case CHELSIO_T5: 1603 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A)); 1604 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid); 1605 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 1606 adapter->params.arch.mps_tcam_size = 1607 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 1608 break; 1609 1610 case CHELSIO_T6: 1611 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A)); 1612 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid); 1613 adapter->params.arch.sge_fl_db = 0; 1614 adapter->params.arch.mps_tcam_size = 1615 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 1616 break; 1617 } 1618 1619 return 0; 1620 } 1621