1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/pci.h> 37 38 #include "t4vf_common.h" 39 #include "t4vf_defs.h" 40 41 #include "../cxgb4/t4_regs.h" 42 #include "../cxgb4/t4fw_api.h" 43 44 /* 45 * Wait for the device to become ready (signified by our "who am I" register 46 * returning a value other than all 1's). Return an error if it doesn't 47 * become ready ... 48 */ 49 int __devinit t4vf_wait_dev_ready(struct adapter *adapter) 50 { 51 const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI; 52 const u32 notready1 = 0xffffffff; 53 const u32 notready2 = 0xeeeeeeee; 54 u32 val; 55 56 val = t4_read_reg(adapter, whoami); 57 if (val != notready1 && val != notready2) 58 return 0; 59 msleep(500); 60 val = t4_read_reg(adapter, whoami); 61 if (val != notready1 && val != notready2) 62 return 0; 63 else 64 return -EIO; 65 } 66 67 /* 68 * Get the reply to a mailbox command and store it in @rpl in big-endian order 69 * (since the firmware data structures are specified in a big-endian layout). 70 */ 71 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size, 72 u32 mbox_data) 73 { 74 for ( ; size; size -= 8, mbox_data += 8) 75 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data)); 76 } 77 78 /* 79 * Dump contents of mailbox with a leading tag. 80 */ 81 static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data) 82 { 83 dev_err(adapter->pdev_dev, 84 "mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag, 85 (unsigned long long)t4_read_reg64(adapter, mbox_data + 0), 86 (unsigned long long)t4_read_reg64(adapter, mbox_data + 8), 87 (unsigned long long)t4_read_reg64(adapter, mbox_data + 16), 88 (unsigned long long)t4_read_reg64(adapter, mbox_data + 24), 89 (unsigned long long)t4_read_reg64(adapter, mbox_data + 32), 90 (unsigned long long)t4_read_reg64(adapter, mbox_data + 40), 91 (unsigned long long)t4_read_reg64(adapter, mbox_data + 48), 92 (unsigned long long)t4_read_reg64(adapter, mbox_data + 56)); 93 } 94 95 /** 96 * t4vf_wr_mbox_core - send a command to FW through the mailbox 97 * @adapter: the adapter 98 * @cmd: the command to write 99 * @size: command length in bytes 100 * @rpl: where to optionally store the reply 101 * @sleep_ok: if true we may sleep while awaiting command completion 102 * 103 * Sends the given command to FW through the mailbox and waits for the 104 * FW to execute the command. If @rpl is not %NULL it is used to store 105 * the FW's reply to the command. The command and its optional reply 106 * are of the same length. FW can take up to 500 ms to respond. 107 * @sleep_ok determines whether we may sleep while awaiting the response. 108 * If sleeping is allowed we use progressive backoff otherwise we spin. 109 * 110 * The return value is 0 on success or a negative errno on failure. A 111 * failure can happen either because we are not able to execute the 112 * command or FW executes it but signals an error. In the latter case 113 * the return value is the error code indicated by FW (negated). 114 */ 115 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size, 116 void *rpl, bool sleep_ok) 117 { 118 static const int delay[] = { 119 1, 1, 3, 5, 10, 10, 20, 50, 100 120 }; 121 122 u32 v; 123 int i, ms, delay_idx; 124 const __be64 *p; 125 u32 mbox_data = T4VF_MBDATA_BASE_ADDR; 126 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL; 127 128 /* 129 * Commands must be multiples of 16 bytes in length and may not be 130 * larger than the size of the Mailbox Data register array. 131 */ 132 if ((size % 16) != 0 || 133 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4) 134 return -EINVAL; 135 136 /* 137 * Loop trying to get ownership of the mailbox. Return an error 138 * if we can't gain ownership. 139 */ 140 v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl)); 141 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 142 v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl)); 143 if (v != MBOX_OWNER_DRV) 144 return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT; 145 146 /* 147 * Write the command array into the Mailbox Data register array and 148 * transfer ownership of the mailbox to the firmware. 149 * 150 * For the VFs, the Mailbox Data "registers" are actually backed by 151 * T4's "MA" interface rather than PL Registers (as is the case for 152 * the PFs). Because these are in different coherency domains, the 153 * write to the VF's PL-register-backed Mailbox Control can race in 154 * front of the writes to the MA-backed VF Mailbox Data "registers". 155 * So we need to do a read-back on at least one byte of the VF Mailbox 156 * Data registers before doing the write to the VF Mailbox Control 157 * register. 158 */ 159 for (i = 0, p = cmd; i < size; i += 8) 160 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++)); 161 t4_read_reg(adapter, mbox_data); /* flush write */ 162 163 t4_write_reg(adapter, mbox_ctl, 164 MBMSGVALID | MBOWNER(MBOX_OWNER_FW)); 165 t4_read_reg(adapter, mbox_ctl); /* flush write */ 166 167 /* 168 * Spin waiting for firmware to acknowledge processing our command. 169 */ 170 delay_idx = 0; 171 ms = delay[0]; 172 173 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) { 174 if (sleep_ok) { 175 ms = delay[delay_idx]; 176 if (delay_idx < ARRAY_SIZE(delay) - 1) 177 delay_idx++; 178 msleep(ms); 179 } else 180 mdelay(ms); 181 182 /* 183 * If we're the owner, see if this is the reply we wanted. 184 */ 185 v = t4_read_reg(adapter, mbox_ctl); 186 if (MBOWNER_GET(v) == MBOX_OWNER_DRV) { 187 /* 188 * If the Message Valid bit isn't on, revoke ownership 189 * of the mailbox and continue waiting for our reply. 190 */ 191 if ((v & MBMSGVALID) == 0) { 192 t4_write_reg(adapter, mbox_ctl, 193 MBOWNER(MBOX_OWNER_NONE)); 194 continue; 195 } 196 197 /* 198 * We now have our reply. Extract the command return 199 * value, copy the reply back to our caller's buffer 200 * (if specified) and revoke ownership of the mailbox. 201 * We return the (negated) firmware command return 202 * code (this depends on FW_SUCCESS == 0). 203 */ 204 205 /* return value in low-order little-endian word */ 206 v = t4_read_reg(adapter, mbox_data); 207 if (FW_CMD_RETVAL_GET(v)) 208 dump_mbox(adapter, "FW Error", mbox_data); 209 210 if (rpl) { 211 /* request bit in high-order BE word */ 212 WARN_ON((be32_to_cpu(*(const u32 *)cmd) 213 & FW_CMD_REQUEST) == 0); 214 get_mbox_rpl(adapter, rpl, size, mbox_data); 215 WARN_ON((be32_to_cpu(*(u32 *)rpl) 216 & FW_CMD_REQUEST) != 0); 217 } 218 t4_write_reg(adapter, mbox_ctl, 219 MBOWNER(MBOX_OWNER_NONE)); 220 return -FW_CMD_RETVAL_GET(v); 221 } 222 } 223 224 /* 225 * We timed out. Return the error ... 226 */ 227 dump_mbox(adapter, "FW Timeout", mbox_data); 228 return -ETIMEDOUT; 229 } 230 231 /** 232 * hash_mac_addr - return the hash value of a MAC address 233 * @addr: the 48-bit Ethernet MAC address 234 * 235 * Hashes a MAC address according to the hash function used by hardware 236 * inexact (hash) address matching. 237 */ 238 static int hash_mac_addr(const u8 *addr) 239 { 240 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; 241 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; 242 a ^= b; 243 a ^= (a >> 12); 244 a ^= (a >> 6); 245 return a & 0x3f; 246 } 247 248 /** 249 * init_link_config - initialize a link's SW state 250 * @lc: structure holding the link state 251 * @caps: link capabilities 252 * 253 * Initializes the SW state maintained for each link, including the link's 254 * capabilities and default speed/flow-control/autonegotiation settings. 255 */ 256 static void __devinit init_link_config(struct link_config *lc, 257 unsigned int caps) 258 { 259 lc->supported = caps; 260 lc->requested_speed = 0; 261 lc->speed = 0; 262 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 263 if (lc->supported & SUPPORTED_Autoneg) { 264 lc->advertising = lc->supported; 265 lc->autoneg = AUTONEG_ENABLE; 266 lc->requested_fc |= PAUSE_AUTONEG; 267 } else { 268 lc->advertising = 0; 269 lc->autoneg = AUTONEG_DISABLE; 270 } 271 } 272 273 /** 274 * t4vf_port_init - initialize port hardware/software state 275 * @adapter: the adapter 276 * @pidx: the adapter port index 277 */ 278 int __devinit t4vf_port_init(struct adapter *adapter, int pidx) 279 { 280 struct port_info *pi = adap2pinfo(adapter, pidx); 281 struct fw_vi_cmd vi_cmd, vi_rpl; 282 struct fw_port_cmd port_cmd, port_rpl; 283 int v; 284 u32 word; 285 286 /* 287 * Execute a VI Read command to get our Virtual Interface information 288 * like MAC address, etc. 289 */ 290 memset(&vi_cmd, 0, sizeof(vi_cmd)); 291 vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) | 292 FW_CMD_REQUEST | 293 FW_CMD_READ); 294 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd)); 295 vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(pi->viid)); 296 v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl); 297 if (v) 298 return v; 299 300 BUG_ON(pi->port_id != FW_VI_CMD_PORTID_GET(vi_rpl.portid_pkd)); 301 pi->rss_size = FW_VI_CMD_RSSSIZE_GET(be16_to_cpu(vi_rpl.rsssize_pkd)); 302 t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac); 303 304 /* 305 * If we don't have read access to our port information, we're done 306 * now. Otherwise, execute a PORT Read command to get it ... 307 */ 308 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT)) 309 return 0; 310 311 memset(&port_cmd, 0, sizeof(port_cmd)); 312 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP(FW_PORT_CMD) | 313 FW_CMD_REQUEST | 314 FW_CMD_READ | 315 FW_PORT_CMD_PORTID(pi->port_id)); 316 port_cmd.action_to_len16 = 317 cpu_to_be32(FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) | 318 FW_LEN16(port_cmd)); 319 v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl); 320 if (v) 321 return v; 322 323 v = 0; 324 word = be16_to_cpu(port_rpl.u.info.pcap); 325 if (word & FW_PORT_CAP_SPEED_100M) 326 v |= SUPPORTED_100baseT_Full; 327 if (word & FW_PORT_CAP_SPEED_1G) 328 v |= SUPPORTED_1000baseT_Full; 329 if (word & FW_PORT_CAP_SPEED_10G) 330 v |= SUPPORTED_10000baseT_Full; 331 if (word & FW_PORT_CAP_ANEG) 332 v |= SUPPORTED_Autoneg; 333 init_link_config(&pi->link_cfg, v); 334 335 return 0; 336 } 337 338 /** 339 * t4vf_fw_reset - issue a reset to FW 340 * @adapter: the adapter 341 * 342 * Issues a reset command to FW. For a Physical Function this would 343 * result in the Firmware reseting all of its state. For a Virtual 344 * Function this just resets the state associated with the VF. 345 */ 346 int t4vf_fw_reset(struct adapter *adapter) 347 { 348 struct fw_reset_cmd cmd; 349 350 memset(&cmd, 0, sizeof(cmd)); 351 cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RESET_CMD) | 352 FW_CMD_WRITE); 353 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 354 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 355 } 356 357 /** 358 * t4vf_query_params - query FW or device parameters 359 * @adapter: the adapter 360 * @nparams: the number of parameters 361 * @params: the parameter names 362 * @vals: the parameter values 363 * 364 * Reads the values of firmware or device parameters. Up to 7 parameters 365 * can be queried at once. 366 */ 367 int t4vf_query_params(struct adapter *adapter, unsigned int nparams, 368 const u32 *params, u32 *vals) 369 { 370 int i, ret; 371 struct fw_params_cmd cmd, rpl; 372 struct fw_params_param *p; 373 size_t len16; 374 375 if (nparams > 7) 376 return -EINVAL; 377 378 memset(&cmd, 0, sizeof(cmd)); 379 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) | 380 FW_CMD_REQUEST | 381 FW_CMD_READ); 382 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, 383 param[nparams].mnem), 16); 384 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16)); 385 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) 386 p->mnem = htonl(*params++); 387 388 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 389 if (ret == 0) 390 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++) 391 *vals++ = be32_to_cpu(p->val); 392 return ret; 393 } 394 395 /** 396 * t4vf_set_params - sets FW or device parameters 397 * @adapter: the adapter 398 * @nparams: the number of parameters 399 * @params: the parameter names 400 * @vals: the parameter values 401 * 402 * Sets the values of firmware or device parameters. Up to 7 parameters 403 * can be specified at once. 404 */ 405 int t4vf_set_params(struct adapter *adapter, unsigned int nparams, 406 const u32 *params, const u32 *vals) 407 { 408 int i; 409 struct fw_params_cmd cmd; 410 struct fw_params_param *p; 411 size_t len16; 412 413 if (nparams > 7) 414 return -EINVAL; 415 416 memset(&cmd, 0, sizeof(cmd)); 417 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) | 418 FW_CMD_REQUEST | 419 FW_CMD_WRITE); 420 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, 421 param[nparams]), 16); 422 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16)); 423 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) { 424 p->mnem = cpu_to_be32(*params++); 425 p->val = cpu_to_be32(*vals++); 426 } 427 428 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 429 } 430 431 /** 432 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters 433 * @adapter: the adapter 434 * 435 * Retrieves various core SGE parameters in the form of hardware SGE 436 * register values. The caller is responsible for decoding these as 437 * needed. The SGE parameters are stored in @adapter->params.sge. 438 */ 439 int t4vf_get_sge_params(struct adapter *adapter) 440 { 441 struct sge_params *sge_params = &adapter->params.sge; 442 u32 params[7], vals[7]; 443 int v; 444 445 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 446 FW_PARAMS_PARAM_XYZ(SGE_CONTROL)); 447 params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 448 FW_PARAMS_PARAM_XYZ(SGE_HOST_PAGE_SIZE)); 449 params[2] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 450 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE0)); 451 params[3] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 452 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE1)); 453 params[4] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 454 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_0_AND_1)); 455 params[5] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 456 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_2_AND_3)); 457 params[6] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 458 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_4_AND_5)); 459 v = t4vf_query_params(adapter, 7, params, vals); 460 if (v) 461 return v; 462 sge_params->sge_control = vals[0]; 463 sge_params->sge_host_page_size = vals[1]; 464 sge_params->sge_fl_buffer_size[0] = vals[2]; 465 sge_params->sge_fl_buffer_size[1] = vals[3]; 466 sge_params->sge_timer_value_0_and_1 = vals[4]; 467 sge_params->sge_timer_value_2_and_3 = vals[5]; 468 sge_params->sge_timer_value_4_and_5 = vals[6]; 469 470 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 471 FW_PARAMS_PARAM_XYZ(SGE_INGRESS_RX_THRESHOLD)); 472 v = t4vf_query_params(adapter, 1, params, vals); 473 if (v) 474 return v; 475 sge_params->sge_ingress_rx_threshold = vals[0]; 476 477 return 0; 478 } 479 480 /** 481 * t4vf_get_vpd_params - retrieve device VPD paremeters 482 * @adapter: the adapter 483 * 484 * Retrives various device Vital Product Data parameters. The parameters 485 * are stored in @adapter->params.vpd. 486 */ 487 int t4vf_get_vpd_params(struct adapter *adapter) 488 { 489 struct vpd_params *vpd_params = &adapter->params.vpd; 490 u32 params[7], vals[7]; 491 int v; 492 493 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 494 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK)); 495 v = t4vf_query_params(adapter, 1, params, vals); 496 if (v) 497 return v; 498 vpd_params->cclk = vals[0]; 499 500 return 0; 501 } 502 503 /** 504 * t4vf_get_dev_params - retrieve device paremeters 505 * @adapter: the adapter 506 * 507 * Retrives various device parameters. The parameters are stored in 508 * @adapter->params.dev. 509 */ 510 int t4vf_get_dev_params(struct adapter *adapter) 511 { 512 struct dev_params *dev_params = &adapter->params.dev; 513 u32 params[7], vals[7]; 514 int v; 515 516 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 517 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV)); 518 params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 519 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV)); 520 v = t4vf_query_params(adapter, 2, params, vals); 521 if (v) 522 return v; 523 dev_params->fwrev = vals[0]; 524 dev_params->tprev = vals[1]; 525 526 return 0; 527 } 528 529 /** 530 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration 531 * @adapter: the adapter 532 * 533 * Retrieves global RSS mode and parameters with which we have to live 534 * and stores them in the @adapter's RSS parameters. 535 */ 536 int t4vf_get_rss_glb_config(struct adapter *adapter) 537 { 538 struct rss_params *rss = &adapter->params.rss; 539 struct fw_rss_glb_config_cmd cmd, rpl; 540 int v; 541 542 /* 543 * Execute an RSS Global Configuration read command to retrieve 544 * our RSS configuration. 545 */ 546 memset(&cmd, 0, sizeof(cmd)); 547 cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) | 548 FW_CMD_REQUEST | 549 FW_CMD_READ); 550 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 551 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 552 if (v) 553 return v; 554 555 /* 556 * Transate the big-endian RSS Global Configuration into our 557 * cpu-endian format based on the RSS mode. We also do first level 558 * filtering at this point to weed out modes which don't support 559 * VF Drivers ... 560 */ 561 rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_GET( 562 be32_to_cpu(rpl.u.manual.mode_pkd)); 563 switch (rss->mode) { 564 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 565 u32 word = be32_to_cpu( 566 rpl.u.basicvirtual.synmapen_to_hashtoeplitz); 567 568 rss->u.basicvirtual.synmapen = 569 ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0); 570 rss->u.basicvirtual.syn4tupenipv6 = 571 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0); 572 rss->u.basicvirtual.syn2tupenipv6 = 573 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0); 574 rss->u.basicvirtual.syn4tupenipv4 = 575 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0); 576 rss->u.basicvirtual.syn2tupenipv4 = 577 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0); 578 579 rss->u.basicvirtual.ofdmapen = 580 ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0); 581 582 rss->u.basicvirtual.tnlmapen = 583 ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0); 584 rss->u.basicvirtual.tnlalllookup = 585 ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0); 586 587 rss->u.basicvirtual.hashtoeplitz = 588 ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0); 589 590 /* we need at least Tunnel Map Enable to be set */ 591 if (!rss->u.basicvirtual.tnlmapen) 592 return -EINVAL; 593 break; 594 } 595 596 default: 597 /* all unknown/unsupported RSS modes result in an error */ 598 return -EINVAL; 599 } 600 601 return 0; 602 } 603 604 /** 605 * t4vf_get_vfres - retrieve VF resource limits 606 * @adapter: the adapter 607 * 608 * Retrieves configured resource limits and capabilities for a virtual 609 * function. The results are stored in @adapter->vfres. 610 */ 611 int t4vf_get_vfres(struct adapter *adapter) 612 { 613 struct vf_resources *vfres = &adapter->params.vfres; 614 struct fw_pfvf_cmd cmd, rpl; 615 int v; 616 u32 word; 617 618 /* 619 * Execute PFVF Read command to get VF resource limits; bail out early 620 * with error on command failure. 621 */ 622 memset(&cmd, 0, sizeof(cmd)); 623 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PFVF_CMD) | 624 FW_CMD_REQUEST | 625 FW_CMD_READ); 626 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 627 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 628 if (v) 629 return v; 630 631 /* 632 * Extract VF resource limits and return success. 633 */ 634 word = be32_to_cpu(rpl.niqflint_niq); 635 vfres->niqflint = FW_PFVF_CMD_NIQFLINT_GET(word); 636 vfres->niq = FW_PFVF_CMD_NIQ_GET(word); 637 638 word = be32_to_cpu(rpl.type_to_neq); 639 vfres->neq = FW_PFVF_CMD_NEQ_GET(word); 640 vfres->pmask = FW_PFVF_CMD_PMASK_GET(word); 641 642 word = be32_to_cpu(rpl.tc_to_nexactf); 643 vfres->tc = FW_PFVF_CMD_TC_GET(word); 644 vfres->nvi = FW_PFVF_CMD_NVI_GET(word); 645 vfres->nexactf = FW_PFVF_CMD_NEXACTF_GET(word); 646 647 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 648 vfres->r_caps = FW_PFVF_CMD_R_CAPS_GET(word); 649 vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_GET(word); 650 vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_GET(word); 651 652 return 0; 653 } 654 655 /** 656 * t4vf_read_rss_vi_config - read a VI's RSS configuration 657 * @adapter: the adapter 658 * @viid: Virtual Interface ID 659 * @config: pointer to host-native VI RSS Configuration buffer 660 * 661 * Reads the Virtual Interface's RSS configuration information and 662 * translates it into CPU-native format. 663 */ 664 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid, 665 union rss_vi_config *config) 666 { 667 struct fw_rss_vi_config_cmd cmd, rpl; 668 int v; 669 670 memset(&cmd, 0, sizeof(cmd)); 671 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | 672 FW_CMD_REQUEST | 673 FW_CMD_READ | 674 FW_RSS_VI_CONFIG_CMD_VIID(viid)); 675 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 676 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 677 if (v) 678 return v; 679 680 switch (adapter->params.rss.mode) { 681 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 682 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen); 683 684 config->basicvirtual.ip6fourtupen = 685 ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) != 0); 686 config->basicvirtual.ip6twotupen = 687 ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) != 0); 688 config->basicvirtual.ip4fourtupen = 689 ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) != 0); 690 config->basicvirtual.ip4twotupen = 691 ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) != 0); 692 config->basicvirtual.udpen = 693 ((word & FW_RSS_VI_CONFIG_CMD_UDPEN) != 0); 694 config->basicvirtual.defaultq = 695 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_GET(word); 696 break; 697 } 698 699 default: 700 return -EINVAL; 701 } 702 703 return 0; 704 } 705 706 /** 707 * t4vf_write_rss_vi_config - write a VI's RSS configuration 708 * @adapter: the adapter 709 * @viid: Virtual Interface ID 710 * @config: pointer to host-native VI RSS Configuration buffer 711 * 712 * Write the Virtual Interface's RSS configuration information 713 * (translating it into firmware-native format before writing). 714 */ 715 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid, 716 union rss_vi_config *config) 717 { 718 struct fw_rss_vi_config_cmd cmd, rpl; 719 720 memset(&cmd, 0, sizeof(cmd)); 721 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | 722 FW_CMD_REQUEST | 723 FW_CMD_WRITE | 724 FW_RSS_VI_CONFIG_CMD_VIID(viid)); 725 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 726 switch (adapter->params.rss.mode) { 727 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 728 u32 word = 0; 729 730 if (config->basicvirtual.ip6fourtupen) 731 word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 732 if (config->basicvirtual.ip6twotupen) 733 word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 734 if (config->basicvirtual.ip4fourtupen) 735 word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 736 if (config->basicvirtual.ip4twotupen) 737 word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 738 if (config->basicvirtual.udpen) 739 word |= FW_RSS_VI_CONFIG_CMD_UDPEN; 740 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ( 741 config->basicvirtual.defaultq); 742 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word); 743 break; 744 } 745 746 default: 747 return -EINVAL; 748 } 749 750 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 751 } 752 753 /** 754 * t4vf_config_rss_range - configure a portion of the RSS mapping table 755 * @adapter: the adapter 756 * @viid: Virtual Interface of RSS Table Slice 757 * @start: starting entry in the table to write 758 * @n: how many table entries to write 759 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table 760 * @nrspq: number of values in @rspq 761 * 762 * Programs the selected part of the VI's RSS mapping table with the 763 * provided values. If @nrspq < @n the supplied values are used repeatedly 764 * until the full table range is populated. 765 * 766 * The caller must ensure the values in @rspq are in the range 0..1023. 767 */ 768 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid, 769 int start, int n, const u16 *rspq, int nrspq) 770 { 771 const u16 *rsp = rspq; 772 const u16 *rsp_end = rspq+nrspq; 773 struct fw_rss_ind_tbl_cmd cmd; 774 775 /* 776 * Initialize firmware command template to write the RSS table. 777 */ 778 memset(&cmd, 0, sizeof(cmd)); 779 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_IND_TBL_CMD) | 780 FW_CMD_REQUEST | 781 FW_CMD_WRITE | 782 FW_RSS_IND_TBL_CMD_VIID(viid)); 783 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 784 785 /* 786 * Each firmware RSS command can accommodate up to 32 RSS Ingress 787 * Queue Identifiers. These Ingress Queue IDs are packed three to 788 * a 32-bit word as 10-bit values with the upper remaining 2 bits 789 * reserved. 790 */ 791 while (n > 0) { 792 __be32 *qp = &cmd.iq0_to_iq2; 793 int nq = min(n, 32); 794 int ret; 795 796 /* 797 * Set up the firmware RSS command header to send the next 798 * "nq" Ingress Queue IDs to the firmware. 799 */ 800 cmd.niqid = cpu_to_be16(nq); 801 cmd.startidx = cpu_to_be16(start); 802 803 /* 804 * "nq" more done for the start of the next loop. 805 */ 806 start += nq; 807 n -= nq; 808 809 /* 810 * While there are still Ingress Queue IDs to stuff into the 811 * current firmware RSS command, retrieve them from the 812 * Ingress Queue ID array and insert them into the command. 813 */ 814 while (nq > 0) { 815 /* 816 * Grab up to the next 3 Ingress Queue IDs (wrapping 817 * around the Ingress Queue ID array if necessary) and 818 * insert them into the firmware RSS command at the 819 * current 3-tuple position within the commad. 820 */ 821 u16 qbuf[3]; 822 u16 *qbp = qbuf; 823 int nqbuf = min(3, nq); 824 825 nq -= nqbuf; 826 qbuf[0] = qbuf[1] = qbuf[2] = 0; 827 while (nqbuf) { 828 nqbuf--; 829 *qbp++ = *rsp++; 830 if (rsp >= rsp_end) 831 rsp = rspq; 832 } 833 *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) | 834 FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) | 835 FW_RSS_IND_TBL_CMD_IQ2(qbuf[2])); 836 } 837 838 /* 839 * Send this portion of the RRS table update to the firmware; 840 * bail out on any errors. 841 */ 842 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 843 if (ret) 844 return ret; 845 } 846 return 0; 847 } 848 849 /** 850 * t4vf_alloc_vi - allocate a virtual interface on a port 851 * @adapter: the adapter 852 * @port_id: physical port associated with the VI 853 * 854 * Allocate a new Virtual Interface and bind it to the indicated 855 * physical port. Return the new Virtual Interface Identifier on 856 * success, or a [negative] error number on failure. 857 */ 858 int t4vf_alloc_vi(struct adapter *adapter, int port_id) 859 { 860 struct fw_vi_cmd cmd, rpl; 861 int v; 862 863 /* 864 * Execute a VI command to allocate Virtual Interface and return its 865 * VIID. 866 */ 867 memset(&cmd, 0, sizeof(cmd)); 868 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) | 869 FW_CMD_REQUEST | 870 FW_CMD_WRITE | 871 FW_CMD_EXEC); 872 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | 873 FW_VI_CMD_ALLOC); 874 cmd.portid_pkd = FW_VI_CMD_PORTID(port_id); 875 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 876 if (v) 877 return v; 878 879 return FW_VI_CMD_VIID_GET(be16_to_cpu(rpl.type_viid)); 880 } 881 882 /** 883 * t4vf_free_vi -- free a virtual interface 884 * @adapter: the adapter 885 * @viid: the virtual interface identifier 886 * 887 * Free a previously allocated Virtual Interface. Return an error on 888 * failure. 889 */ 890 int t4vf_free_vi(struct adapter *adapter, int viid) 891 { 892 struct fw_vi_cmd cmd; 893 894 /* 895 * Execute a VI command to free the Virtual Interface. 896 */ 897 memset(&cmd, 0, sizeof(cmd)); 898 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) | 899 FW_CMD_REQUEST | 900 FW_CMD_EXEC); 901 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | 902 FW_VI_CMD_FREE); 903 cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(viid)); 904 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 905 } 906 907 /** 908 * t4vf_enable_vi - enable/disable a virtual interface 909 * @adapter: the adapter 910 * @viid: the Virtual Interface ID 911 * @rx_en: 1=enable Rx, 0=disable Rx 912 * @tx_en: 1=enable Tx, 0=disable Tx 913 * 914 * Enables/disables a virtual interface. 915 */ 916 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid, 917 bool rx_en, bool tx_en) 918 { 919 struct fw_vi_enable_cmd cmd; 920 921 memset(&cmd, 0, sizeof(cmd)); 922 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) | 923 FW_CMD_REQUEST | 924 FW_CMD_EXEC | 925 FW_VI_ENABLE_CMD_VIID(viid)); 926 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN(rx_en) | 927 FW_VI_ENABLE_CMD_EEN(tx_en) | 928 FW_LEN16(cmd)); 929 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 930 } 931 932 /** 933 * t4vf_identify_port - identify a VI's port by blinking its LED 934 * @adapter: the adapter 935 * @viid: the Virtual Interface ID 936 * @nblinks: how many times to blink LED at 2.5 Hz 937 * 938 * Identifies a VI's port by blinking its LED. 939 */ 940 int t4vf_identify_port(struct adapter *adapter, unsigned int viid, 941 unsigned int nblinks) 942 { 943 struct fw_vi_enable_cmd cmd; 944 945 memset(&cmd, 0, sizeof(cmd)); 946 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) | 947 FW_CMD_REQUEST | 948 FW_CMD_EXEC | 949 FW_VI_ENABLE_CMD_VIID(viid)); 950 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED | 951 FW_LEN16(cmd)); 952 cmd.blinkdur = cpu_to_be16(nblinks); 953 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 954 } 955 956 /** 957 * t4vf_set_rxmode - set Rx properties of a virtual interface 958 * @adapter: the adapter 959 * @viid: the VI id 960 * @mtu: the new MTU or -1 for no change 961 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 962 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 963 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 964 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it, 965 * -1 no change 966 * 967 * Sets Rx properties of a virtual interface. 968 */ 969 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid, 970 int mtu, int promisc, int all_multi, int bcast, int vlanex, 971 bool sleep_ok) 972 { 973 struct fw_vi_rxmode_cmd cmd; 974 975 /* convert to FW values */ 976 if (mtu < 0) 977 mtu = FW_VI_RXMODE_CMD_MTU_MASK; 978 if (promisc < 0) 979 promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK; 980 if (all_multi < 0) 981 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK; 982 if (bcast < 0) 983 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK; 984 if (vlanex < 0) 985 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK; 986 987 memset(&cmd, 0, sizeof(cmd)); 988 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_RXMODE_CMD) | 989 FW_CMD_REQUEST | 990 FW_CMD_WRITE | 991 FW_VI_RXMODE_CMD_VIID(viid)); 992 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 993 cmd.mtu_to_vlanexen = 994 cpu_to_be32(FW_VI_RXMODE_CMD_MTU(mtu) | 995 FW_VI_RXMODE_CMD_PROMISCEN(promisc) | 996 FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) | 997 FW_VI_RXMODE_CMD_BROADCASTEN(bcast) | 998 FW_VI_RXMODE_CMD_VLANEXEN(vlanex)); 999 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); 1000 } 1001 1002 /** 1003 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses 1004 * @adapter: the adapter 1005 * @viid: the Virtual Interface Identifier 1006 * @free: if true any existing filters for this VI id are first removed 1007 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 1008 * @addr: the MAC address(es) 1009 * @idx: where to store the index of each allocated filter 1010 * @hash: pointer to hash address filter bitmap 1011 * @sleep_ok: call is allowed to sleep 1012 * 1013 * Allocates an exact-match filter for each of the supplied addresses and 1014 * sets it to the corresponding address. If @idx is not %NULL it should 1015 * have at least @naddr entries, each of which will be set to the index of 1016 * the filter allocated for the corresponding MAC address. If a filter 1017 * could not be allocated for an address its index is set to 0xffff. 1018 * If @hash is not %NULL addresses that fail to allocate an exact filter 1019 * are hashed and update the hash filter bitmap pointed at by @hash. 1020 * 1021 * Returns a negative error number or the number of filters allocated. 1022 */ 1023 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free, 1024 unsigned int naddr, const u8 **addr, u16 *idx, 1025 u64 *hash, bool sleep_ok) 1026 { 1027 int offset, ret = 0; 1028 unsigned nfilters = 0; 1029 unsigned int rem = naddr; 1030 struct fw_vi_mac_cmd cmd, rpl; 1031 1032 if (naddr > FW_CLS_TCAM_NUM_ENTRIES) 1033 return -EINVAL; 1034 1035 for (offset = 0; offset < naddr; /**/) { 1036 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) 1037 ? rem 1038 : ARRAY_SIZE(cmd.u.exact)); 1039 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1040 u.exact[fw_naddr]), 16); 1041 struct fw_vi_mac_exact *p; 1042 int i; 1043 1044 memset(&cmd, 0, sizeof(cmd)); 1045 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) | 1046 FW_CMD_REQUEST | 1047 FW_CMD_WRITE | 1048 (free ? FW_CMD_EXEC : 0) | 1049 FW_VI_MAC_CMD_VIID(viid)); 1050 cmd.freemacs_to_len16 = 1051 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS(free) | 1052 FW_CMD_LEN16(len16)); 1053 1054 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) { 1055 p->valid_to_idx = cpu_to_be16( 1056 FW_VI_MAC_CMD_VALID | 1057 FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC)); 1058 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 1059 } 1060 1061 1062 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl, 1063 sleep_ok); 1064 if (ret && ret != -ENOMEM) 1065 break; 1066 1067 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) { 1068 u16 index = FW_VI_MAC_CMD_IDX_GET( 1069 be16_to_cpu(p->valid_to_idx)); 1070 1071 if (idx) 1072 idx[offset+i] = 1073 (index >= FW_CLS_TCAM_NUM_ENTRIES 1074 ? 0xffff 1075 : index); 1076 if (index < FW_CLS_TCAM_NUM_ENTRIES) 1077 nfilters++; 1078 else if (hash) 1079 *hash |= (1ULL << hash_mac_addr(addr[offset+i])); 1080 } 1081 1082 free = false; 1083 offset += fw_naddr; 1084 rem -= fw_naddr; 1085 } 1086 1087 /* 1088 * If there were no errors or we merely ran out of room in our MAC 1089 * address arena, return the number of filters actually written. 1090 */ 1091 if (ret == 0 || ret == -ENOMEM) 1092 ret = nfilters; 1093 return ret; 1094 } 1095 1096 /** 1097 * t4vf_change_mac - modifies the exact-match filter for a MAC address 1098 * @adapter: the adapter 1099 * @viid: the Virtual Interface ID 1100 * @idx: index of existing filter for old value of MAC address, or -1 1101 * @addr: the new MAC address value 1102 * @persist: if idx < 0, the new MAC allocation should be persistent 1103 * 1104 * Modifies an exact-match filter and sets it to the new MAC address. 1105 * Note that in general it is not possible to modify the value of a given 1106 * filter so the generic way to modify an address filter is to free the 1107 * one being used by the old address value and allocate a new filter for 1108 * the new address value. @idx can be -1 if the address is a new 1109 * addition. 1110 * 1111 * Returns a negative error number or the index of the filter with the new 1112 * MAC value. 1113 */ 1114 int t4vf_change_mac(struct adapter *adapter, unsigned int viid, 1115 int idx, const u8 *addr, bool persist) 1116 { 1117 int ret; 1118 struct fw_vi_mac_cmd cmd, rpl; 1119 struct fw_vi_mac_exact *p = &cmd.u.exact[0]; 1120 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1121 u.exact[1]), 16); 1122 1123 /* 1124 * If this is a new allocation, determine whether it should be 1125 * persistent (across a "freemacs" operation) or not. 1126 */ 1127 if (idx < 0) 1128 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 1129 1130 memset(&cmd, 0, sizeof(cmd)); 1131 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) | 1132 FW_CMD_REQUEST | 1133 FW_CMD_WRITE | 1134 FW_VI_MAC_CMD_VIID(viid)); 1135 cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16(len16)); 1136 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID | 1137 FW_VI_MAC_CMD_IDX(idx)); 1138 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 1139 1140 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 1141 if (ret == 0) { 1142 p = &rpl.u.exact[0]; 1143 ret = FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p->valid_to_idx)); 1144 if (ret >= FW_CLS_TCAM_NUM_ENTRIES) 1145 ret = -ENOMEM; 1146 } 1147 return ret; 1148 } 1149 1150 /** 1151 * t4vf_set_addr_hash - program the MAC inexact-match hash filter 1152 * @adapter: the adapter 1153 * @viid: the Virtual Interface Identifier 1154 * @ucast: whether the hash filter should also match unicast addresses 1155 * @vec: the value to be written to the hash filter 1156 * @sleep_ok: call is allowed to sleep 1157 * 1158 * Sets the 64-bit inexact-match hash filter for a virtual interface. 1159 */ 1160 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid, 1161 bool ucast, u64 vec, bool sleep_ok) 1162 { 1163 struct fw_vi_mac_cmd cmd; 1164 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1165 u.exact[0]), 16); 1166 1167 memset(&cmd, 0, sizeof(cmd)); 1168 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) | 1169 FW_CMD_REQUEST | 1170 FW_CMD_WRITE | 1171 FW_VI_ENABLE_CMD_VIID(viid)); 1172 cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN | 1173 FW_VI_MAC_CMD_HASHUNIEN(ucast) | 1174 FW_CMD_LEN16(len16)); 1175 cmd.u.hash.hashvec = cpu_to_be64(vec); 1176 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); 1177 } 1178 1179 /** 1180 * t4vf_get_port_stats - collect "port" statistics 1181 * @adapter: the adapter 1182 * @pidx: the port index 1183 * @s: the stats structure to fill 1184 * 1185 * Collect statistics for the "port"'s Virtual Interface. 1186 */ 1187 int t4vf_get_port_stats(struct adapter *adapter, int pidx, 1188 struct t4vf_port_stats *s) 1189 { 1190 struct port_info *pi = adap2pinfo(adapter, pidx); 1191 struct fw_vi_stats_vf fwstats; 1192 unsigned int rem = VI_VF_NUM_STATS; 1193 __be64 *fwsp = (__be64 *)&fwstats; 1194 1195 /* 1196 * Grab the Virtual Interface statistics a chunk at a time via mailbox 1197 * commands. We could use a Work Request and get all of them at once 1198 * but that's an asynchronous interface which is awkward to use. 1199 */ 1200 while (rem) { 1201 unsigned int ix = VI_VF_NUM_STATS - rem; 1202 unsigned int nstats = min(6U, rem); 1203 struct fw_vi_stats_cmd cmd, rpl; 1204 size_t len = (offsetof(struct fw_vi_stats_cmd, u) + 1205 sizeof(struct fw_vi_stats_ctl)); 1206 size_t len16 = DIV_ROUND_UP(len, 16); 1207 int ret; 1208 1209 memset(&cmd, 0, sizeof(cmd)); 1210 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_STATS_CMD) | 1211 FW_VI_STATS_CMD_VIID(pi->viid) | 1212 FW_CMD_REQUEST | 1213 FW_CMD_READ); 1214 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16)); 1215 cmd.u.ctl.nstats_ix = 1216 cpu_to_be16(FW_VI_STATS_CMD_IX(ix) | 1217 FW_VI_STATS_CMD_NSTATS(nstats)); 1218 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl); 1219 if (ret) 1220 return ret; 1221 1222 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats); 1223 1224 rem -= nstats; 1225 fwsp += nstats; 1226 } 1227 1228 /* 1229 * Translate firmware statistics into host native statistics. 1230 */ 1231 s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes); 1232 s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames); 1233 s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes); 1234 s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames); 1235 s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes); 1236 s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames); 1237 s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames); 1238 s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes); 1239 s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames); 1240 1241 s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes); 1242 s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames); 1243 s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes); 1244 s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames); 1245 s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes); 1246 s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames); 1247 1248 s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames); 1249 1250 return 0; 1251 } 1252 1253 /** 1254 * t4vf_iq_free - free an ingress queue and its free lists 1255 * @adapter: the adapter 1256 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 1257 * @iqid: ingress queue ID 1258 * @fl0id: FL0 queue ID or 0xffff if no attached FL0 1259 * @fl1id: FL1 queue ID or 0xffff if no attached FL1 1260 * 1261 * Frees an ingress queue and its associated free lists, if any. 1262 */ 1263 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype, 1264 unsigned int iqid, unsigned int fl0id, unsigned int fl1id) 1265 { 1266 struct fw_iq_cmd cmd; 1267 1268 memset(&cmd, 0, sizeof(cmd)); 1269 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) | 1270 FW_CMD_REQUEST | 1271 FW_CMD_EXEC); 1272 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE | 1273 FW_LEN16(cmd)); 1274 cmd.type_to_iqandstindex = 1275 cpu_to_be32(FW_IQ_CMD_TYPE(iqtype)); 1276 1277 cmd.iqid = cpu_to_be16(iqid); 1278 cmd.fl0id = cpu_to_be16(fl0id); 1279 cmd.fl1id = cpu_to_be16(fl1id); 1280 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1281 } 1282 1283 /** 1284 * t4vf_eth_eq_free - free an Ethernet egress queue 1285 * @adapter: the adapter 1286 * @eqid: egress queue ID 1287 * 1288 * Frees an Ethernet egress queue. 1289 */ 1290 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid) 1291 { 1292 struct fw_eq_eth_cmd cmd; 1293 1294 memset(&cmd, 0, sizeof(cmd)); 1295 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) | 1296 FW_CMD_REQUEST | 1297 FW_CMD_EXEC); 1298 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE | 1299 FW_LEN16(cmd)); 1300 cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID(eqid)); 1301 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1302 } 1303 1304 /** 1305 * t4vf_handle_fw_rpl - process a firmware reply message 1306 * @adapter: the adapter 1307 * @rpl: start of the firmware message 1308 * 1309 * Processes a firmware message, such as link state change messages. 1310 */ 1311 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl) 1312 { 1313 const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl; 1314 u8 opcode = FW_CMD_OP_GET(be32_to_cpu(cmd_hdr->hi)); 1315 1316 switch (opcode) { 1317 case FW_PORT_CMD: { 1318 /* 1319 * Link/module state change message. 1320 */ 1321 const struct fw_port_cmd *port_cmd = 1322 (const struct fw_port_cmd *)rpl; 1323 u32 word; 1324 int action, port_id, link_ok, speed, fc, pidx; 1325 1326 /* 1327 * Extract various fields from port status change message. 1328 */ 1329 action = FW_PORT_CMD_ACTION_GET( 1330 be32_to_cpu(port_cmd->action_to_len16)); 1331 if (action != FW_PORT_ACTION_GET_PORT_INFO) { 1332 dev_err(adapter->pdev_dev, 1333 "Unknown firmware PORT reply action %x\n", 1334 action); 1335 break; 1336 } 1337 1338 port_id = FW_PORT_CMD_PORTID_GET( 1339 be32_to_cpu(port_cmd->op_to_portid)); 1340 1341 word = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype); 1342 link_ok = (word & FW_PORT_CMD_LSTATUS) != 0; 1343 speed = 0; 1344 fc = 0; 1345 if (word & FW_PORT_CMD_RXPAUSE) 1346 fc |= PAUSE_RX; 1347 if (word & FW_PORT_CMD_TXPAUSE) 1348 fc |= PAUSE_TX; 1349 if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M)) 1350 speed = SPEED_100; 1351 else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G)) 1352 speed = SPEED_1000; 1353 else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G)) 1354 speed = SPEED_10000; 1355 1356 /* 1357 * Scan all of our "ports" (Virtual Interfaces) looking for 1358 * those bound to the physical port which has changed. If 1359 * our recorded state doesn't match the current state, 1360 * signal that change to the OS code. 1361 */ 1362 for_each_port(adapter, pidx) { 1363 struct port_info *pi = adap2pinfo(adapter, pidx); 1364 struct link_config *lc; 1365 1366 if (pi->port_id != port_id) 1367 continue; 1368 1369 lc = &pi->link_cfg; 1370 if (link_ok != lc->link_ok || speed != lc->speed || 1371 fc != lc->fc) { 1372 /* something changed */ 1373 lc->link_ok = link_ok; 1374 lc->speed = speed; 1375 lc->fc = fc; 1376 t4vf_os_link_changed(adapter, pidx, link_ok); 1377 } 1378 } 1379 break; 1380 } 1381 1382 default: 1383 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n", 1384 opcode); 1385 } 1386 return 0; 1387 } 1388