1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/pci.h>
37 
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
40 
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4fw_api.h"
43 
44 /*
45  * Wait for the device to become ready (signified by our "who am I" register
46  * returning a value other than all 1's).  Return an error if it doesn't
47  * become ready ...
48  */
49 int __devinit t4vf_wait_dev_ready(struct adapter *adapter)
50 {
51 	const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
52 	const u32 notready1 = 0xffffffff;
53 	const u32 notready2 = 0xeeeeeeee;
54 	u32 val;
55 
56 	val = t4_read_reg(adapter, whoami);
57 	if (val != notready1 && val != notready2)
58 		return 0;
59 	msleep(500);
60 	val = t4_read_reg(adapter, whoami);
61 	if (val != notready1 && val != notready2)
62 		return 0;
63 	else
64 		return -EIO;
65 }
66 
67 /*
68  * Get the reply to a mailbox command and store it in @rpl in big-endian order
69  * (since the firmware data structures are specified in a big-endian layout).
70  */
71 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
72 			 u32 mbox_data)
73 {
74 	for ( ; size; size -= 8, mbox_data += 8)
75 		*rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
76 }
77 
78 /*
79  * Dump contents of mailbox with a leading tag.
80  */
81 static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data)
82 {
83 	dev_err(adapter->pdev_dev,
84 		"mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag,
85 		(unsigned long long)t4_read_reg64(adapter, mbox_data +  0),
86 		(unsigned long long)t4_read_reg64(adapter, mbox_data +  8),
87 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 16),
88 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 24),
89 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 32),
90 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 40),
91 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 48),
92 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 56));
93 }
94 
95 /**
96  *	t4vf_wr_mbox_core - send a command to FW through the mailbox
97  *	@adapter: the adapter
98  *	@cmd: the command to write
99  *	@size: command length in bytes
100  *	@rpl: where to optionally store the reply
101  *	@sleep_ok: if true we may sleep while awaiting command completion
102  *
103  *	Sends the given command to FW through the mailbox and waits for the
104  *	FW to execute the command.  If @rpl is not %NULL it is used to store
105  *	the FW's reply to the command.  The command and its optional reply
106  *	are of the same length.  FW can take up to 500 ms to respond.
107  *	@sleep_ok determines whether we may sleep while awaiting the response.
108  *	If sleeping is allowed we use progressive backoff otherwise we spin.
109  *
110  *	The return value is 0 on success or a negative errno on failure.  A
111  *	failure can happen either because we are not able to execute the
112  *	command or FW executes it but signals an error.  In the latter case
113  *	the return value is the error code indicated by FW (negated).
114  */
115 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
116 		      void *rpl, bool sleep_ok)
117 {
118 	static const int delay[] = {
119 		1, 1, 3, 5, 10, 10, 20, 50, 100
120 	};
121 
122 	u32 v;
123 	int i, ms, delay_idx;
124 	const __be64 *p;
125 	u32 mbox_data = T4VF_MBDATA_BASE_ADDR;
126 	u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
127 
128 	/*
129 	 * Commands must be multiples of 16 bytes in length and may not be
130 	 * larger than the size of the Mailbox Data register array.
131 	 */
132 	if ((size % 16) != 0 ||
133 	    size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
134 		return -EINVAL;
135 
136 	/*
137 	 * Loop trying to get ownership of the mailbox.  Return an error
138 	 * if we can't gain ownership.
139 	 */
140 	v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
141 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
142 		v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
143 	if (v != MBOX_OWNER_DRV)
144 		return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT;
145 
146 	/*
147 	 * Write the command array into the Mailbox Data register array and
148 	 * transfer ownership of the mailbox to the firmware.
149 	 *
150 	 * For the VFs, the Mailbox Data "registers" are actually backed by
151 	 * T4's "MA" interface rather than PL Registers (as is the case for
152 	 * the PFs).  Because these are in different coherency domains, the
153 	 * write to the VF's PL-register-backed Mailbox Control can race in
154 	 * front of the writes to the MA-backed VF Mailbox Data "registers".
155 	 * So we need to do a read-back on at least one byte of the VF Mailbox
156 	 * Data registers before doing the write to the VF Mailbox Control
157 	 * register.
158 	 */
159 	for (i = 0, p = cmd; i < size; i += 8)
160 		t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
161 	t4_read_reg(adapter, mbox_data);         /* flush write */
162 
163 	t4_write_reg(adapter, mbox_ctl,
164 		     MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
165 	t4_read_reg(adapter, mbox_ctl);          /* flush write */
166 
167 	/*
168 	 * Spin waiting for firmware to acknowledge processing our command.
169 	 */
170 	delay_idx = 0;
171 	ms = delay[0];
172 
173 	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
174 		if (sleep_ok) {
175 			ms = delay[delay_idx];
176 			if (delay_idx < ARRAY_SIZE(delay) - 1)
177 				delay_idx++;
178 			msleep(ms);
179 		} else
180 			mdelay(ms);
181 
182 		/*
183 		 * If we're the owner, see if this is the reply we wanted.
184 		 */
185 		v = t4_read_reg(adapter, mbox_ctl);
186 		if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
187 			/*
188 			 * If the Message Valid bit isn't on, revoke ownership
189 			 * of the mailbox and continue waiting for our reply.
190 			 */
191 			if ((v & MBMSGVALID) == 0) {
192 				t4_write_reg(adapter, mbox_ctl,
193 					     MBOWNER(MBOX_OWNER_NONE));
194 				continue;
195 			}
196 
197 			/*
198 			 * We now have our reply.  Extract the command return
199 			 * value, copy the reply back to our caller's buffer
200 			 * (if specified) and revoke ownership of the mailbox.
201 			 * We return the (negated) firmware command return
202 			 * code (this depends on FW_SUCCESS == 0).
203 			 */
204 
205 			/* return value in low-order little-endian word */
206 			v = t4_read_reg(adapter, mbox_data);
207 			if (FW_CMD_RETVAL_GET(v))
208 				dump_mbox(adapter, "FW Error", mbox_data);
209 
210 			if (rpl) {
211 				/* request bit in high-order BE word */
212 				WARN_ON((be32_to_cpu(*(const u32 *)cmd)
213 					 & FW_CMD_REQUEST) == 0);
214 				get_mbox_rpl(adapter, rpl, size, mbox_data);
215 				WARN_ON((be32_to_cpu(*(u32 *)rpl)
216 					 & FW_CMD_REQUEST) != 0);
217 			}
218 			t4_write_reg(adapter, mbox_ctl,
219 				     MBOWNER(MBOX_OWNER_NONE));
220 			return -FW_CMD_RETVAL_GET(v);
221 		}
222 	}
223 
224 	/*
225 	 * We timed out.  Return the error ...
226 	 */
227 	dump_mbox(adapter, "FW Timeout", mbox_data);
228 	return -ETIMEDOUT;
229 }
230 
231 /**
232  *	hash_mac_addr - return the hash value of a MAC address
233  *	@addr: the 48-bit Ethernet MAC address
234  *
235  *	Hashes a MAC address according to the hash function used by hardware
236  *	inexact (hash) address matching.
237  */
238 static int hash_mac_addr(const u8 *addr)
239 {
240 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
241 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
242 	a ^= b;
243 	a ^= (a >> 12);
244 	a ^= (a >> 6);
245 	return a & 0x3f;
246 }
247 
248 /**
249  *	init_link_config - initialize a link's SW state
250  *	@lc: structure holding the link state
251  *	@caps: link capabilities
252  *
253  *	Initializes the SW state maintained for each link, including the link's
254  *	capabilities and default speed/flow-control/autonegotiation settings.
255  */
256 static void __devinit init_link_config(struct link_config *lc,
257 				       unsigned int caps)
258 {
259 	lc->supported = caps;
260 	lc->requested_speed = 0;
261 	lc->speed = 0;
262 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
263 	if (lc->supported & SUPPORTED_Autoneg) {
264 		lc->advertising = lc->supported;
265 		lc->autoneg = AUTONEG_ENABLE;
266 		lc->requested_fc |= PAUSE_AUTONEG;
267 	} else {
268 		lc->advertising = 0;
269 		lc->autoneg = AUTONEG_DISABLE;
270 	}
271 }
272 
273 /**
274  *	t4vf_port_init - initialize port hardware/software state
275  *	@adapter: the adapter
276  *	@pidx: the adapter port index
277  */
278 int __devinit t4vf_port_init(struct adapter *adapter, int pidx)
279 {
280 	struct port_info *pi = adap2pinfo(adapter, pidx);
281 	struct fw_vi_cmd vi_cmd, vi_rpl;
282 	struct fw_port_cmd port_cmd, port_rpl;
283 	int v;
284 	u32 word;
285 
286 	/*
287 	 * Execute a VI Read command to get our Virtual Interface information
288 	 * like MAC address, etc.
289 	 */
290 	memset(&vi_cmd, 0, sizeof(vi_cmd));
291 	vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
292 				       FW_CMD_REQUEST |
293 				       FW_CMD_READ);
294 	vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
295 	vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(pi->viid));
296 	v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
297 	if (v)
298 		return v;
299 
300 	BUG_ON(pi->port_id != FW_VI_CMD_PORTID_GET(vi_rpl.portid_pkd));
301 	pi->rss_size = FW_VI_CMD_RSSSIZE_GET(be16_to_cpu(vi_rpl.rsssize_pkd));
302 	t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
303 
304 	/*
305 	 * If we don't have read access to our port information, we're done
306 	 * now.  Otherwise, execute a PORT Read command to get it ...
307 	 */
308 	if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
309 		return 0;
310 
311 	memset(&port_cmd, 0, sizeof(port_cmd));
312 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP(FW_PORT_CMD) |
313 					    FW_CMD_REQUEST |
314 					    FW_CMD_READ |
315 					    FW_PORT_CMD_PORTID(pi->port_id));
316 	port_cmd.action_to_len16 =
317 		cpu_to_be32(FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
318 			    FW_LEN16(port_cmd));
319 	v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
320 	if (v)
321 		return v;
322 
323 	v = 0;
324 	word = be16_to_cpu(port_rpl.u.info.pcap);
325 	if (word & FW_PORT_CAP_SPEED_100M)
326 		v |= SUPPORTED_100baseT_Full;
327 	if (word & FW_PORT_CAP_SPEED_1G)
328 		v |= SUPPORTED_1000baseT_Full;
329 	if (word & FW_PORT_CAP_SPEED_10G)
330 		v |= SUPPORTED_10000baseT_Full;
331 	if (word & FW_PORT_CAP_ANEG)
332 		v |= SUPPORTED_Autoneg;
333 	init_link_config(&pi->link_cfg, v);
334 
335 	return 0;
336 }
337 
338 /**
339  *      t4vf_fw_reset - issue a reset to FW
340  *      @adapter: the adapter
341  *
342  *	Issues a reset command to FW.  For a Physical Function this would
343  *	result in the Firmware reseting all of its state.  For a Virtual
344  *	Function this just resets the state associated with the VF.
345  */
346 int t4vf_fw_reset(struct adapter *adapter)
347 {
348 	struct fw_reset_cmd cmd;
349 
350 	memset(&cmd, 0, sizeof(cmd));
351 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RESET_CMD) |
352 				      FW_CMD_WRITE);
353 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
354 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
355 }
356 
357 /**
358  *	t4vf_query_params - query FW or device parameters
359  *	@adapter: the adapter
360  *	@nparams: the number of parameters
361  *	@params: the parameter names
362  *	@vals: the parameter values
363  *
364  *	Reads the values of firmware or device parameters.  Up to 7 parameters
365  *	can be queried at once.
366  */
367 int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
368 		      const u32 *params, u32 *vals)
369 {
370 	int i, ret;
371 	struct fw_params_cmd cmd, rpl;
372 	struct fw_params_param *p;
373 	size_t len16;
374 
375 	if (nparams > 7)
376 		return -EINVAL;
377 
378 	memset(&cmd, 0, sizeof(cmd));
379 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
380 				    FW_CMD_REQUEST |
381 				    FW_CMD_READ);
382 	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
383 				      param[nparams].mnem), 16);
384 	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
385 	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
386 		p->mnem = htonl(*params++);
387 
388 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
389 	if (ret == 0)
390 		for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
391 			*vals++ = be32_to_cpu(p->val);
392 	return ret;
393 }
394 
395 /**
396  *	t4vf_set_params - sets FW or device parameters
397  *	@adapter: the adapter
398  *	@nparams: the number of parameters
399  *	@params: the parameter names
400  *	@vals: the parameter values
401  *
402  *	Sets the values of firmware or device parameters.  Up to 7 parameters
403  *	can be specified at once.
404  */
405 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
406 		    const u32 *params, const u32 *vals)
407 {
408 	int i;
409 	struct fw_params_cmd cmd;
410 	struct fw_params_param *p;
411 	size_t len16;
412 
413 	if (nparams > 7)
414 		return -EINVAL;
415 
416 	memset(&cmd, 0, sizeof(cmd));
417 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
418 				    FW_CMD_REQUEST |
419 				    FW_CMD_WRITE);
420 	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
421 				      param[nparams]), 16);
422 	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
423 	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
424 		p->mnem = cpu_to_be32(*params++);
425 		p->val = cpu_to_be32(*vals++);
426 	}
427 
428 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
429 }
430 
431 /**
432  *	t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
433  *	@adapter: the adapter
434  *
435  *	Retrieves various core SGE parameters in the form of hardware SGE
436  *	register values.  The caller is responsible for decoding these as
437  *	needed.  The SGE parameters are stored in @adapter->params.sge.
438  */
439 int t4vf_get_sge_params(struct adapter *adapter)
440 {
441 	struct sge_params *sge_params = &adapter->params.sge;
442 	u32 params[7], vals[7];
443 	int v;
444 
445 	params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
446 		     FW_PARAMS_PARAM_XYZ(SGE_CONTROL));
447 	params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
448 		     FW_PARAMS_PARAM_XYZ(SGE_HOST_PAGE_SIZE));
449 	params[2] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
450 		     FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE0));
451 	params[3] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
452 		     FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE1));
453 	params[4] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
454 		     FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_0_AND_1));
455 	params[5] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
456 		     FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_2_AND_3));
457 	params[6] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
458 		     FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_4_AND_5));
459 	v = t4vf_query_params(adapter, 7, params, vals);
460 	if (v)
461 		return v;
462 	sge_params->sge_control = vals[0];
463 	sge_params->sge_host_page_size = vals[1];
464 	sge_params->sge_fl_buffer_size[0] = vals[2];
465 	sge_params->sge_fl_buffer_size[1] = vals[3];
466 	sge_params->sge_timer_value_0_and_1 = vals[4];
467 	sge_params->sge_timer_value_2_and_3 = vals[5];
468 	sge_params->sge_timer_value_4_and_5 = vals[6];
469 
470 	params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
471 		     FW_PARAMS_PARAM_XYZ(SGE_INGRESS_RX_THRESHOLD));
472 	v = t4vf_query_params(adapter, 1, params, vals);
473 	if (v)
474 		return v;
475 	sge_params->sge_ingress_rx_threshold = vals[0];
476 
477 	return 0;
478 }
479 
480 /**
481  *	t4vf_get_vpd_params - retrieve device VPD paremeters
482  *	@adapter: the adapter
483  *
484  *	Retrives various device Vital Product Data parameters.  The parameters
485  *	are stored in @adapter->params.vpd.
486  */
487 int t4vf_get_vpd_params(struct adapter *adapter)
488 {
489 	struct vpd_params *vpd_params = &adapter->params.vpd;
490 	u32 params[7], vals[7];
491 	int v;
492 
493 	params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
494 		     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
495 	v = t4vf_query_params(adapter, 1, params, vals);
496 	if (v)
497 		return v;
498 	vpd_params->cclk = vals[0];
499 
500 	return 0;
501 }
502 
503 /**
504  *	t4vf_get_dev_params - retrieve device paremeters
505  *	@adapter: the adapter
506  *
507  *	Retrives various device parameters.  The parameters are stored in
508  *	@adapter->params.dev.
509  */
510 int t4vf_get_dev_params(struct adapter *adapter)
511 {
512 	struct dev_params *dev_params = &adapter->params.dev;
513 	u32 params[7], vals[7];
514 	int v;
515 
516 	params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
517 		     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV));
518 	params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
519 		     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV));
520 	v = t4vf_query_params(adapter, 2, params, vals);
521 	if (v)
522 		return v;
523 	dev_params->fwrev = vals[0];
524 	dev_params->tprev = vals[1];
525 
526 	return 0;
527 }
528 
529 /**
530  *	t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
531  *	@adapter: the adapter
532  *
533  *	Retrieves global RSS mode and parameters with which we have to live
534  *	and stores them in the @adapter's RSS parameters.
535  */
536 int t4vf_get_rss_glb_config(struct adapter *adapter)
537 {
538 	struct rss_params *rss = &adapter->params.rss;
539 	struct fw_rss_glb_config_cmd cmd, rpl;
540 	int v;
541 
542 	/*
543 	 * Execute an RSS Global Configuration read command to retrieve
544 	 * our RSS configuration.
545 	 */
546 	memset(&cmd, 0, sizeof(cmd));
547 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
548 				      FW_CMD_REQUEST |
549 				      FW_CMD_READ);
550 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
551 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
552 	if (v)
553 		return v;
554 
555 	/*
556 	 * Transate the big-endian RSS Global Configuration into our
557 	 * cpu-endian format based on the RSS mode.  We also do first level
558 	 * filtering at this point to weed out modes which don't support
559 	 * VF Drivers ...
560 	 */
561 	rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_GET(
562 			be32_to_cpu(rpl.u.manual.mode_pkd));
563 	switch (rss->mode) {
564 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
565 		u32 word = be32_to_cpu(
566 				rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
567 
568 		rss->u.basicvirtual.synmapen =
569 			((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0);
570 		rss->u.basicvirtual.syn4tupenipv6 =
571 			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0);
572 		rss->u.basicvirtual.syn2tupenipv6 =
573 			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0);
574 		rss->u.basicvirtual.syn4tupenipv4 =
575 			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0);
576 		rss->u.basicvirtual.syn2tupenipv4 =
577 			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0);
578 
579 		rss->u.basicvirtual.ofdmapen =
580 			((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0);
581 
582 		rss->u.basicvirtual.tnlmapen =
583 			((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0);
584 		rss->u.basicvirtual.tnlalllookup =
585 			((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0);
586 
587 		rss->u.basicvirtual.hashtoeplitz =
588 			((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0);
589 
590 		/* we need at least Tunnel Map Enable to be set */
591 		if (!rss->u.basicvirtual.tnlmapen)
592 			return -EINVAL;
593 		break;
594 	}
595 
596 	default:
597 		/* all unknown/unsupported RSS modes result in an error */
598 		return -EINVAL;
599 	}
600 
601 	return 0;
602 }
603 
604 /**
605  *	t4vf_get_vfres - retrieve VF resource limits
606  *	@adapter: the adapter
607  *
608  *	Retrieves configured resource limits and capabilities for a virtual
609  *	function.  The results are stored in @adapter->vfres.
610  */
611 int t4vf_get_vfres(struct adapter *adapter)
612 {
613 	struct vf_resources *vfres = &adapter->params.vfres;
614 	struct fw_pfvf_cmd cmd, rpl;
615 	int v;
616 	u32 word;
617 
618 	/*
619 	 * Execute PFVF Read command to get VF resource limits; bail out early
620 	 * with error on command failure.
621 	 */
622 	memset(&cmd, 0, sizeof(cmd));
623 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PFVF_CMD) |
624 				    FW_CMD_REQUEST |
625 				    FW_CMD_READ);
626 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
627 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
628 	if (v)
629 		return v;
630 
631 	/*
632 	 * Extract VF resource limits and return success.
633 	 */
634 	word = be32_to_cpu(rpl.niqflint_niq);
635 	vfres->niqflint = FW_PFVF_CMD_NIQFLINT_GET(word);
636 	vfres->niq = FW_PFVF_CMD_NIQ_GET(word);
637 
638 	word = be32_to_cpu(rpl.type_to_neq);
639 	vfres->neq = FW_PFVF_CMD_NEQ_GET(word);
640 	vfres->pmask = FW_PFVF_CMD_PMASK_GET(word);
641 
642 	word = be32_to_cpu(rpl.tc_to_nexactf);
643 	vfres->tc = FW_PFVF_CMD_TC_GET(word);
644 	vfres->nvi = FW_PFVF_CMD_NVI_GET(word);
645 	vfres->nexactf = FW_PFVF_CMD_NEXACTF_GET(word);
646 
647 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
648 	vfres->r_caps = FW_PFVF_CMD_R_CAPS_GET(word);
649 	vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_GET(word);
650 	vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_GET(word);
651 
652 	return 0;
653 }
654 
655 /**
656  *	t4vf_read_rss_vi_config - read a VI's RSS configuration
657  *	@adapter: the adapter
658  *	@viid: Virtual Interface ID
659  *	@config: pointer to host-native VI RSS Configuration buffer
660  *
661  *	Reads the Virtual Interface's RSS configuration information and
662  *	translates it into CPU-native format.
663  */
664 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
665 			    union rss_vi_config *config)
666 {
667 	struct fw_rss_vi_config_cmd cmd, rpl;
668 	int v;
669 
670 	memset(&cmd, 0, sizeof(cmd));
671 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
672 				     FW_CMD_REQUEST |
673 				     FW_CMD_READ |
674 				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
675 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
676 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
677 	if (v)
678 		return v;
679 
680 	switch (adapter->params.rss.mode) {
681 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
682 		u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
683 
684 		config->basicvirtual.ip6fourtupen =
685 			((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) != 0);
686 		config->basicvirtual.ip6twotupen =
687 			((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) != 0);
688 		config->basicvirtual.ip4fourtupen =
689 			((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) != 0);
690 		config->basicvirtual.ip4twotupen =
691 			((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) != 0);
692 		config->basicvirtual.udpen =
693 			((word & FW_RSS_VI_CONFIG_CMD_UDPEN) != 0);
694 		config->basicvirtual.defaultq =
695 			FW_RSS_VI_CONFIG_CMD_DEFAULTQ_GET(word);
696 		break;
697 	}
698 
699 	default:
700 		return -EINVAL;
701 	}
702 
703 	return 0;
704 }
705 
706 /**
707  *	t4vf_write_rss_vi_config - write a VI's RSS configuration
708  *	@adapter: the adapter
709  *	@viid: Virtual Interface ID
710  *	@config: pointer to host-native VI RSS Configuration buffer
711  *
712  *	Write the Virtual Interface's RSS configuration information
713  *	(translating it into firmware-native format before writing).
714  */
715 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
716 			     union rss_vi_config *config)
717 {
718 	struct fw_rss_vi_config_cmd cmd, rpl;
719 
720 	memset(&cmd, 0, sizeof(cmd));
721 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
722 				     FW_CMD_REQUEST |
723 				     FW_CMD_WRITE |
724 				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
725 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
726 	switch (adapter->params.rss.mode) {
727 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
728 		u32 word = 0;
729 
730 		if (config->basicvirtual.ip6fourtupen)
731 			word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
732 		if (config->basicvirtual.ip6twotupen)
733 			word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
734 		if (config->basicvirtual.ip4fourtupen)
735 			word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
736 		if (config->basicvirtual.ip4twotupen)
737 			word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
738 		if (config->basicvirtual.udpen)
739 			word |= FW_RSS_VI_CONFIG_CMD_UDPEN;
740 		word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ(
741 				config->basicvirtual.defaultq);
742 		cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
743 		break;
744 	}
745 
746 	default:
747 		return -EINVAL;
748 	}
749 
750 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
751 }
752 
753 /**
754  *	t4vf_config_rss_range - configure a portion of the RSS mapping table
755  *	@adapter: the adapter
756  *	@viid: Virtual Interface of RSS Table Slice
757  *	@start: starting entry in the table to write
758  *	@n: how many table entries to write
759  *	@rspq: values for the "Response Queue" (Ingress Queue) lookup table
760  *	@nrspq: number of values in @rspq
761  *
762  *	Programs the selected part of the VI's RSS mapping table with the
763  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
764  *	until the full table range is populated.
765  *
766  *	The caller must ensure the values in @rspq are in the range 0..1023.
767  */
768 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
769 			  int start, int n, const u16 *rspq, int nrspq)
770 {
771 	const u16 *rsp = rspq;
772 	const u16 *rsp_end = rspq+nrspq;
773 	struct fw_rss_ind_tbl_cmd cmd;
774 
775 	/*
776 	 * Initialize firmware command template to write the RSS table.
777 	 */
778 	memset(&cmd, 0, sizeof(cmd));
779 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
780 				     FW_CMD_REQUEST |
781 				     FW_CMD_WRITE |
782 				     FW_RSS_IND_TBL_CMD_VIID(viid));
783 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
784 
785 	/*
786 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
787 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
788 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
789 	 * reserved.
790 	 */
791 	while (n > 0) {
792 		__be32 *qp = &cmd.iq0_to_iq2;
793 		int nq = min(n, 32);
794 		int ret;
795 
796 		/*
797 		 * Set up the firmware RSS command header to send the next
798 		 * "nq" Ingress Queue IDs to the firmware.
799 		 */
800 		cmd.niqid = cpu_to_be16(nq);
801 		cmd.startidx = cpu_to_be16(start);
802 
803 		/*
804 		 * "nq" more done for the start of the next loop.
805 		 */
806 		start += nq;
807 		n -= nq;
808 
809 		/*
810 		 * While there are still Ingress Queue IDs to stuff into the
811 		 * current firmware RSS command, retrieve them from the
812 		 * Ingress Queue ID array and insert them into the command.
813 		 */
814 		while (nq > 0) {
815 			/*
816 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
817 			 * around the Ingress Queue ID array if necessary) and
818 			 * insert them into the firmware RSS command at the
819 			 * current 3-tuple position within the commad.
820 			 */
821 			u16 qbuf[3];
822 			u16 *qbp = qbuf;
823 			int nqbuf = min(3, nq);
824 
825 			nq -= nqbuf;
826 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
827 			while (nqbuf) {
828 				nqbuf--;
829 				*qbp++ = *rsp++;
830 				if (rsp >= rsp_end)
831 					rsp = rspq;
832 			}
833 			*qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
834 					    FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
835 					    FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
836 		}
837 
838 		/*
839 		 * Send this portion of the RRS table update to the firmware;
840 		 * bail out on any errors.
841 		 */
842 		ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
843 		if (ret)
844 			return ret;
845 	}
846 	return 0;
847 }
848 
849 /**
850  *	t4vf_alloc_vi - allocate a virtual interface on a port
851  *	@adapter: the adapter
852  *	@port_id: physical port associated with the VI
853  *
854  *	Allocate a new Virtual Interface and bind it to the indicated
855  *	physical port.  Return the new Virtual Interface Identifier on
856  *	success, or a [negative] error number on failure.
857  */
858 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
859 {
860 	struct fw_vi_cmd cmd, rpl;
861 	int v;
862 
863 	/*
864 	 * Execute a VI command to allocate Virtual Interface and return its
865 	 * VIID.
866 	 */
867 	memset(&cmd, 0, sizeof(cmd));
868 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
869 				    FW_CMD_REQUEST |
870 				    FW_CMD_WRITE |
871 				    FW_CMD_EXEC);
872 	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
873 					 FW_VI_CMD_ALLOC);
874 	cmd.portid_pkd = FW_VI_CMD_PORTID(port_id);
875 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
876 	if (v)
877 		return v;
878 
879 	return FW_VI_CMD_VIID_GET(be16_to_cpu(rpl.type_viid));
880 }
881 
882 /**
883  *	t4vf_free_vi -- free a virtual interface
884  *	@adapter: the adapter
885  *	@viid: the virtual interface identifier
886  *
887  *	Free a previously allocated Virtual Interface.  Return an error on
888  *	failure.
889  */
890 int t4vf_free_vi(struct adapter *adapter, int viid)
891 {
892 	struct fw_vi_cmd cmd;
893 
894 	/*
895 	 * Execute a VI command to free the Virtual Interface.
896 	 */
897 	memset(&cmd, 0, sizeof(cmd));
898 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
899 				    FW_CMD_REQUEST |
900 				    FW_CMD_EXEC);
901 	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
902 					 FW_VI_CMD_FREE);
903 	cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(viid));
904 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
905 }
906 
907 /**
908  *	t4vf_enable_vi - enable/disable a virtual interface
909  *	@adapter: the adapter
910  *	@viid: the Virtual Interface ID
911  *	@rx_en: 1=enable Rx, 0=disable Rx
912  *	@tx_en: 1=enable Tx, 0=disable Tx
913  *
914  *	Enables/disables a virtual interface.
915  */
916 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
917 		   bool rx_en, bool tx_en)
918 {
919 	struct fw_vi_enable_cmd cmd;
920 
921 	memset(&cmd, 0, sizeof(cmd));
922 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
923 				     FW_CMD_REQUEST |
924 				     FW_CMD_EXEC |
925 				     FW_VI_ENABLE_CMD_VIID(viid));
926 	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN(rx_en) |
927 				       FW_VI_ENABLE_CMD_EEN(tx_en) |
928 				       FW_LEN16(cmd));
929 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
930 }
931 
932 /**
933  *	t4vf_identify_port - identify a VI's port by blinking its LED
934  *	@adapter: the adapter
935  *	@viid: the Virtual Interface ID
936  *	@nblinks: how many times to blink LED at 2.5 Hz
937  *
938  *	Identifies a VI's port by blinking its LED.
939  */
940 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
941 		       unsigned int nblinks)
942 {
943 	struct fw_vi_enable_cmd cmd;
944 
945 	memset(&cmd, 0, sizeof(cmd));
946 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
947 				     FW_CMD_REQUEST |
948 				     FW_CMD_EXEC |
949 				     FW_VI_ENABLE_CMD_VIID(viid));
950 	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED |
951 				       FW_LEN16(cmd));
952 	cmd.blinkdur = cpu_to_be16(nblinks);
953 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
954 }
955 
956 /**
957  *	t4vf_set_rxmode - set Rx properties of a virtual interface
958  *	@adapter: the adapter
959  *	@viid: the VI id
960  *	@mtu: the new MTU or -1 for no change
961  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
962  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
963  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
964  *	@vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
965  *		-1 no change
966  *
967  *	Sets Rx properties of a virtual interface.
968  */
969 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
970 		    int mtu, int promisc, int all_multi, int bcast, int vlanex,
971 		    bool sleep_ok)
972 {
973 	struct fw_vi_rxmode_cmd cmd;
974 
975 	/* convert to FW values */
976 	if (mtu < 0)
977 		mtu = FW_VI_RXMODE_CMD_MTU_MASK;
978 	if (promisc < 0)
979 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
980 	if (all_multi < 0)
981 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
982 	if (bcast < 0)
983 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
984 	if (vlanex < 0)
985 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
986 
987 	memset(&cmd, 0, sizeof(cmd));
988 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_RXMODE_CMD) |
989 				     FW_CMD_REQUEST |
990 				     FW_CMD_WRITE |
991 				     FW_VI_RXMODE_CMD_VIID(viid));
992 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
993 	cmd.mtu_to_vlanexen =
994 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU(mtu) |
995 			    FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
996 			    FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
997 			    FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
998 			    FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
999 	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1000 }
1001 
1002 /**
1003  *	t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1004  *	@adapter: the adapter
1005  *	@viid: the Virtual Interface Identifier
1006  *	@free: if true any existing filters for this VI id are first removed
1007  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
1008  *	@addr: the MAC address(es)
1009  *	@idx: where to store the index of each allocated filter
1010  *	@hash: pointer to hash address filter bitmap
1011  *	@sleep_ok: call is allowed to sleep
1012  *
1013  *	Allocates an exact-match filter for each of the supplied addresses and
1014  *	sets it to the corresponding address.  If @idx is not %NULL it should
1015  *	have at least @naddr entries, each of which will be set to the index of
1016  *	the filter allocated for the corresponding MAC address.  If a filter
1017  *	could not be allocated for an address its index is set to 0xffff.
1018  *	If @hash is not %NULL addresses that fail to allocate an exact filter
1019  *	are hashed and update the hash filter bitmap pointed at by @hash.
1020  *
1021  *	Returns a negative error number or the number of filters allocated.
1022  */
1023 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1024 			unsigned int naddr, const u8 **addr, u16 *idx,
1025 			u64 *hash, bool sleep_ok)
1026 {
1027 	int offset, ret = 0;
1028 	unsigned nfilters = 0;
1029 	unsigned int rem = naddr;
1030 	struct fw_vi_mac_cmd cmd, rpl;
1031 
1032 	if (naddr > FW_CLS_TCAM_NUM_ENTRIES)
1033 		return -EINVAL;
1034 
1035 	for (offset = 0; offset < naddr; /**/) {
1036 		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1037 					 ? rem
1038 					 : ARRAY_SIZE(cmd.u.exact));
1039 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1040 						     u.exact[fw_naddr]), 16);
1041 		struct fw_vi_mac_exact *p;
1042 		int i;
1043 
1044 		memset(&cmd, 0, sizeof(cmd));
1045 		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1046 					     FW_CMD_REQUEST |
1047 					     FW_CMD_WRITE |
1048 					     (free ? FW_CMD_EXEC : 0) |
1049 					     FW_VI_MAC_CMD_VIID(viid));
1050 		cmd.freemacs_to_len16 =
1051 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS(free) |
1052 				    FW_CMD_LEN16(len16));
1053 
1054 		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1055 			p->valid_to_idx = cpu_to_be16(
1056 				FW_VI_MAC_CMD_VALID |
1057 				FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
1058 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1059 		}
1060 
1061 
1062 		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1063 					sleep_ok);
1064 		if (ret && ret != -ENOMEM)
1065 			break;
1066 
1067 		for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1068 			u16 index = FW_VI_MAC_CMD_IDX_GET(
1069 				be16_to_cpu(p->valid_to_idx));
1070 
1071 			if (idx)
1072 				idx[offset+i] =
1073 					(index >= FW_CLS_TCAM_NUM_ENTRIES
1074 					 ? 0xffff
1075 					 : index);
1076 			if (index < FW_CLS_TCAM_NUM_ENTRIES)
1077 				nfilters++;
1078 			else if (hash)
1079 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1080 		}
1081 
1082 		free = false;
1083 		offset += fw_naddr;
1084 		rem -= fw_naddr;
1085 	}
1086 
1087 	/*
1088 	 * If there were no errors or we merely ran out of room in our MAC
1089 	 * address arena, return the number of filters actually written.
1090 	 */
1091 	if (ret == 0 || ret == -ENOMEM)
1092 		ret = nfilters;
1093 	return ret;
1094 }
1095 
1096 /**
1097  *	t4vf_change_mac - modifies the exact-match filter for a MAC address
1098  *	@adapter: the adapter
1099  *	@viid: the Virtual Interface ID
1100  *	@idx: index of existing filter for old value of MAC address, or -1
1101  *	@addr: the new MAC address value
1102  *	@persist: if idx < 0, the new MAC allocation should be persistent
1103  *
1104  *	Modifies an exact-match filter and sets it to the new MAC address.
1105  *	Note that in general it is not possible to modify the value of a given
1106  *	filter so the generic way to modify an address filter is to free the
1107  *	one being used by the old address value and allocate a new filter for
1108  *	the new address value.  @idx can be -1 if the address is a new
1109  *	addition.
1110  *
1111  *	Returns a negative error number or the index of the filter with the new
1112  *	MAC value.
1113  */
1114 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1115 		    int idx, const u8 *addr, bool persist)
1116 {
1117 	int ret;
1118 	struct fw_vi_mac_cmd cmd, rpl;
1119 	struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1120 	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1121 					     u.exact[1]), 16);
1122 
1123 	/*
1124 	 * If this is a new allocation, determine whether it should be
1125 	 * persistent (across a "freemacs" operation) or not.
1126 	 */
1127 	if (idx < 0)
1128 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1129 
1130 	memset(&cmd, 0, sizeof(cmd));
1131 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1132 				     FW_CMD_REQUEST |
1133 				     FW_CMD_WRITE |
1134 				     FW_VI_MAC_CMD_VIID(viid));
1135 	cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
1136 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID |
1137 				      FW_VI_MAC_CMD_IDX(idx));
1138 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
1139 
1140 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1141 	if (ret == 0) {
1142 		p = &rpl.u.exact[0];
1143 		ret = FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p->valid_to_idx));
1144 		if (ret >= FW_CLS_TCAM_NUM_ENTRIES)
1145 			ret = -ENOMEM;
1146 	}
1147 	return ret;
1148 }
1149 
1150 /**
1151  *	t4vf_set_addr_hash - program the MAC inexact-match hash filter
1152  *	@adapter: the adapter
1153  *	@viid: the Virtual Interface Identifier
1154  *	@ucast: whether the hash filter should also match unicast addresses
1155  *	@vec: the value to be written to the hash filter
1156  *	@sleep_ok: call is allowed to sleep
1157  *
1158  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
1159  */
1160 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1161 		       bool ucast, u64 vec, bool sleep_ok)
1162 {
1163 	struct fw_vi_mac_cmd cmd;
1164 	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1165 					     u.exact[0]), 16);
1166 
1167 	memset(&cmd, 0, sizeof(cmd));
1168 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1169 				     FW_CMD_REQUEST |
1170 				     FW_CMD_WRITE |
1171 				     FW_VI_ENABLE_CMD_VIID(viid));
1172 	cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN |
1173 					    FW_VI_MAC_CMD_HASHUNIEN(ucast) |
1174 					    FW_CMD_LEN16(len16));
1175 	cmd.u.hash.hashvec = cpu_to_be64(vec);
1176 	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1177 }
1178 
1179 /**
1180  *	t4vf_get_port_stats - collect "port" statistics
1181  *	@adapter: the adapter
1182  *	@pidx: the port index
1183  *	@s: the stats structure to fill
1184  *
1185  *	Collect statistics for the "port"'s Virtual Interface.
1186  */
1187 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1188 			struct t4vf_port_stats *s)
1189 {
1190 	struct port_info *pi = adap2pinfo(adapter, pidx);
1191 	struct fw_vi_stats_vf fwstats;
1192 	unsigned int rem = VI_VF_NUM_STATS;
1193 	__be64 *fwsp = (__be64 *)&fwstats;
1194 
1195 	/*
1196 	 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1197 	 * commands.  We could use a Work Request and get all of them at once
1198 	 * but that's an asynchronous interface which is awkward to use.
1199 	 */
1200 	while (rem) {
1201 		unsigned int ix = VI_VF_NUM_STATS - rem;
1202 		unsigned int nstats = min(6U, rem);
1203 		struct fw_vi_stats_cmd cmd, rpl;
1204 		size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1205 			      sizeof(struct fw_vi_stats_ctl));
1206 		size_t len16 = DIV_ROUND_UP(len, 16);
1207 		int ret;
1208 
1209 		memset(&cmd, 0, sizeof(cmd));
1210 		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_STATS_CMD) |
1211 					     FW_VI_STATS_CMD_VIID(pi->viid) |
1212 					     FW_CMD_REQUEST |
1213 					     FW_CMD_READ);
1214 		cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
1215 		cmd.u.ctl.nstats_ix =
1216 			cpu_to_be16(FW_VI_STATS_CMD_IX(ix) |
1217 				    FW_VI_STATS_CMD_NSTATS(nstats));
1218 		ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1219 		if (ret)
1220 			return ret;
1221 
1222 		memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1223 
1224 		rem -= nstats;
1225 		fwsp += nstats;
1226 	}
1227 
1228 	/*
1229 	 * Translate firmware statistics into host native statistics.
1230 	 */
1231 	s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1232 	s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1233 	s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1234 	s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1235 	s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1236 	s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1237 	s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1238 	s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1239 	s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1240 
1241 	s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1242 	s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1243 	s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1244 	s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1245 	s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1246 	s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1247 
1248 	s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1249 
1250 	return 0;
1251 }
1252 
1253 /**
1254  *	t4vf_iq_free - free an ingress queue and its free lists
1255  *	@adapter: the adapter
1256  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1257  *	@iqid: ingress queue ID
1258  *	@fl0id: FL0 queue ID or 0xffff if no attached FL0
1259  *	@fl1id: FL1 queue ID or 0xffff if no attached FL1
1260  *
1261  *	Frees an ingress queue and its associated free lists, if any.
1262  */
1263 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1264 		 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1265 {
1266 	struct fw_iq_cmd cmd;
1267 
1268 	memset(&cmd, 0, sizeof(cmd));
1269 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
1270 				    FW_CMD_REQUEST |
1271 				    FW_CMD_EXEC);
1272 	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE |
1273 					 FW_LEN16(cmd));
1274 	cmd.type_to_iqandstindex =
1275 		cpu_to_be32(FW_IQ_CMD_TYPE(iqtype));
1276 
1277 	cmd.iqid = cpu_to_be16(iqid);
1278 	cmd.fl0id = cpu_to_be16(fl0id);
1279 	cmd.fl1id = cpu_to_be16(fl1id);
1280 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1281 }
1282 
1283 /**
1284  *	t4vf_eth_eq_free - free an Ethernet egress queue
1285  *	@adapter: the adapter
1286  *	@eqid: egress queue ID
1287  *
1288  *	Frees an Ethernet egress queue.
1289  */
1290 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1291 {
1292 	struct fw_eq_eth_cmd cmd;
1293 
1294 	memset(&cmd, 0, sizeof(cmd));
1295 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
1296 				    FW_CMD_REQUEST |
1297 				    FW_CMD_EXEC);
1298 	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE |
1299 					 FW_LEN16(cmd));
1300 	cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID(eqid));
1301 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1302 }
1303 
1304 /**
1305  *	t4vf_handle_fw_rpl - process a firmware reply message
1306  *	@adapter: the adapter
1307  *	@rpl: start of the firmware message
1308  *
1309  *	Processes a firmware message, such as link state change messages.
1310  */
1311 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1312 {
1313 	const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
1314 	u8 opcode = FW_CMD_OP_GET(be32_to_cpu(cmd_hdr->hi));
1315 
1316 	switch (opcode) {
1317 	case FW_PORT_CMD: {
1318 		/*
1319 		 * Link/module state change message.
1320 		 */
1321 		const struct fw_port_cmd *port_cmd =
1322 			(const struct fw_port_cmd *)rpl;
1323 		u32 word;
1324 		int action, port_id, link_ok, speed, fc, pidx;
1325 
1326 		/*
1327 		 * Extract various fields from port status change message.
1328 		 */
1329 		action = FW_PORT_CMD_ACTION_GET(
1330 			be32_to_cpu(port_cmd->action_to_len16));
1331 		if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1332 			dev_err(adapter->pdev_dev,
1333 				"Unknown firmware PORT reply action %x\n",
1334 				action);
1335 			break;
1336 		}
1337 
1338 		port_id = FW_PORT_CMD_PORTID_GET(
1339 			be32_to_cpu(port_cmd->op_to_portid));
1340 
1341 		word = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1342 		link_ok = (word & FW_PORT_CMD_LSTATUS) != 0;
1343 		speed = 0;
1344 		fc = 0;
1345 		if (word & FW_PORT_CMD_RXPAUSE)
1346 			fc |= PAUSE_RX;
1347 		if (word & FW_PORT_CMD_TXPAUSE)
1348 			fc |= PAUSE_TX;
1349 		if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
1350 			speed = SPEED_100;
1351 		else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
1352 			speed = SPEED_1000;
1353 		else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
1354 			speed = SPEED_10000;
1355 
1356 		/*
1357 		 * Scan all of our "ports" (Virtual Interfaces) looking for
1358 		 * those bound to the physical port which has changed.  If
1359 		 * our recorded state doesn't match the current state,
1360 		 * signal that change to the OS code.
1361 		 */
1362 		for_each_port(adapter, pidx) {
1363 			struct port_info *pi = adap2pinfo(adapter, pidx);
1364 			struct link_config *lc;
1365 
1366 			if (pi->port_id != port_id)
1367 				continue;
1368 
1369 			lc = &pi->link_cfg;
1370 			if (link_ok != lc->link_ok || speed != lc->speed ||
1371 			    fc != lc->fc) {
1372 				/* something changed */
1373 				lc->link_ok = link_ok;
1374 				lc->speed = speed;
1375 				lc->fc = fc;
1376 				t4vf_os_link_changed(adapter, pidx, link_ok);
1377 			}
1378 		}
1379 		break;
1380 	}
1381 
1382 	default:
1383 		dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1384 			opcode);
1385 	}
1386 	return 0;
1387 }
1388