1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/pci.h>
37 
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
40 
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4fw_api.h"
43 
44 /*
45  * Wait for the device to become ready (signified by our "who am I" register
46  * returning a value other than all 1's).  Return an error if it doesn't
47  * become ready ...
48  */
49 int t4vf_wait_dev_ready(struct adapter *adapter)
50 {
51 	const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
52 	const u32 notready1 = 0xffffffff;
53 	const u32 notready2 = 0xeeeeeeee;
54 	u32 val;
55 
56 	val = t4_read_reg(adapter, whoami);
57 	if (val != notready1 && val != notready2)
58 		return 0;
59 	msleep(500);
60 	val = t4_read_reg(adapter, whoami);
61 	if (val != notready1 && val != notready2)
62 		return 0;
63 	else
64 		return -EIO;
65 }
66 
67 /*
68  * Get the reply to a mailbox command and store it in @rpl in big-endian order
69  * (since the firmware data structures are specified in a big-endian layout).
70  */
71 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
72 			 u32 mbox_data)
73 {
74 	for ( ; size; size -= 8, mbox_data += 8)
75 		*rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
76 }
77 
78 /*
79  * Dump contents of mailbox with a leading tag.
80  */
81 static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data)
82 {
83 	dev_err(adapter->pdev_dev,
84 		"mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag,
85 		(unsigned long long)t4_read_reg64(adapter, mbox_data +  0),
86 		(unsigned long long)t4_read_reg64(adapter, mbox_data +  8),
87 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 16),
88 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 24),
89 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 32),
90 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 40),
91 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 48),
92 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 56));
93 }
94 
95 /**
96  *	t4vf_wr_mbox_core - send a command to FW through the mailbox
97  *	@adapter: the adapter
98  *	@cmd: the command to write
99  *	@size: command length in bytes
100  *	@rpl: where to optionally store the reply
101  *	@sleep_ok: if true we may sleep while awaiting command completion
102  *
103  *	Sends the given command to FW through the mailbox and waits for the
104  *	FW to execute the command.  If @rpl is not %NULL it is used to store
105  *	the FW's reply to the command.  The command and its optional reply
106  *	are of the same length.  FW can take up to 500 ms to respond.
107  *	@sleep_ok determines whether we may sleep while awaiting the response.
108  *	If sleeping is allowed we use progressive backoff otherwise we spin.
109  *
110  *	The return value is 0 on success or a negative errno on failure.  A
111  *	failure can happen either because we are not able to execute the
112  *	command or FW executes it but signals an error.  In the latter case
113  *	the return value is the error code indicated by FW (negated).
114  */
115 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
116 		      void *rpl, bool sleep_ok)
117 {
118 	static const int delay[] = {
119 		1, 1, 3, 5, 10, 10, 20, 50, 100
120 	};
121 
122 	u32 v;
123 	int i, ms, delay_idx;
124 	const __be64 *p;
125 	u32 mbox_data = T4VF_MBDATA_BASE_ADDR;
126 	u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
127 
128 	/*
129 	 * Commands must be multiples of 16 bytes in length and may not be
130 	 * larger than the size of the Mailbox Data register array.
131 	 */
132 	if ((size % 16) != 0 ||
133 	    size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
134 		return -EINVAL;
135 
136 	/*
137 	 * Loop trying to get ownership of the mailbox.  Return an error
138 	 * if we can't gain ownership.
139 	 */
140 	v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
141 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
142 		v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
143 	if (v != MBOX_OWNER_DRV)
144 		return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT;
145 
146 	/*
147 	 * Write the command array into the Mailbox Data register array and
148 	 * transfer ownership of the mailbox to the firmware.
149 	 *
150 	 * For the VFs, the Mailbox Data "registers" are actually backed by
151 	 * T4's "MA" interface rather than PL Registers (as is the case for
152 	 * the PFs).  Because these are in different coherency domains, the
153 	 * write to the VF's PL-register-backed Mailbox Control can race in
154 	 * front of the writes to the MA-backed VF Mailbox Data "registers".
155 	 * So we need to do a read-back on at least one byte of the VF Mailbox
156 	 * Data registers before doing the write to the VF Mailbox Control
157 	 * register.
158 	 */
159 	for (i = 0, p = cmd; i < size; i += 8)
160 		t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
161 	t4_read_reg(adapter, mbox_data);         /* flush write */
162 
163 	t4_write_reg(adapter, mbox_ctl,
164 		     MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
165 	t4_read_reg(adapter, mbox_ctl);          /* flush write */
166 
167 	/*
168 	 * Spin waiting for firmware to acknowledge processing our command.
169 	 */
170 	delay_idx = 0;
171 	ms = delay[0];
172 
173 	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
174 		if (sleep_ok) {
175 			ms = delay[delay_idx];
176 			if (delay_idx < ARRAY_SIZE(delay) - 1)
177 				delay_idx++;
178 			msleep(ms);
179 		} else
180 			mdelay(ms);
181 
182 		/*
183 		 * If we're the owner, see if this is the reply we wanted.
184 		 */
185 		v = t4_read_reg(adapter, mbox_ctl);
186 		if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
187 			/*
188 			 * If the Message Valid bit isn't on, revoke ownership
189 			 * of the mailbox and continue waiting for our reply.
190 			 */
191 			if ((v & MBMSGVALID) == 0) {
192 				t4_write_reg(adapter, mbox_ctl,
193 					     MBOWNER(MBOX_OWNER_NONE));
194 				continue;
195 			}
196 
197 			/*
198 			 * We now have our reply.  Extract the command return
199 			 * value, copy the reply back to our caller's buffer
200 			 * (if specified) and revoke ownership of the mailbox.
201 			 * We return the (negated) firmware command return
202 			 * code (this depends on FW_SUCCESS == 0).
203 			 */
204 
205 			/* return value in low-order little-endian word */
206 			v = t4_read_reg(adapter, mbox_data);
207 			if (FW_CMD_RETVAL_GET(v))
208 				dump_mbox(adapter, "FW Error", mbox_data);
209 
210 			if (rpl) {
211 				/* request bit in high-order BE word */
212 				WARN_ON((be32_to_cpu(*(const u32 *)cmd)
213 					 & FW_CMD_REQUEST) == 0);
214 				get_mbox_rpl(adapter, rpl, size, mbox_data);
215 				WARN_ON((be32_to_cpu(*(u32 *)rpl)
216 					 & FW_CMD_REQUEST) != 0);
217 			}
218 			t4_write_reg(adapter, mbox_ctl,
219 				     MBOWNER(MBOX_OWNER_NONE));
220 			return -FW_CMD_RETVAL_GET(v);
221 		}
222 	}
223 
224 	/*
225 	 * We timed out.  Return the error ...
226 	 */
227 	dump_mbox(adapter, "FW Timeout", mbox_data);
228 	return -ETIMEDOUT;
229 }
230 
231 /**
232  *	hash_mac_addr - return the hash value of a MAC address
233  *	@addr: the 48-bit Ethernet MAC address
234  *
235  *	Hashes a MAC address according to the hash function used by hardware
236  *	inexact (hash) address matching.
237  */
238 static int hash_mac_addr(const u8 *addr)
239 {
240 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
241 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
242 	a ^= b;
243 	a ^= (a >> 12);
244 	a ^= (a >> 6);
245 	return a & 0x3f;
246 }
247 
248 /**
249  *	init_link_config - initialize a link's SW state
250  *	@lc: structure holding the link state
251  *	@caps: link capabilities
252  *
253  *	Initializes the SW state maintained for each link, including the link's
254  *	capabilities and default speed/flow-control/autonegotiation settings.
255  */
256 static void init_link_config(struct link_config *lc, unsigned int caps)
257 {
258 	lc->supported = caps;
259 	lc->requested_speed = 0;
260 	lc->speed = 0;
261 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
262 	if (lc->supported & SUPPORTED_Autoneg) {
263 		lc->advertising = lc->supported;
264 		lc->autoneg = AUTONEG_ENABLE;
265 		lc->requested_fc |= PAUSE_AUTONEG;
266 	} else {
267 		lc->advertising = 0;
268 		lc->autoneg = AUTONEG_DISABLE;
269 	}
270 }
271 
272 /**
273  *	t4vf_port_init - initialize port hardware/software state
274  *	@adapter: the adapter
275  *	@pidx: the adapter port index
276  */
277 int t4vf_port_init(struct adapter *adapter, int pidx)
278 {
279 	struct port_info *pi = adap2pinfo(adapter, pidx);
280 	struct fw_vi_cmd vi_cmd, vi_rpl;
281 	struct fw_port_cmd port_cmd, port_rpl;
282 	int v;
283 	u32 word;
284 
285 	/*
286 	 * Execute a VI Read command to get our Virtual Interface information
287 	 * like MAC address, etc.
288 	 */
289 	memset(&vi_cmd, 0, sizeof(vi_cmd));
290 	vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
291 				       FW_CMD_REQUEST |
292 				       FW_CMD_READ);
293 	vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
294 	vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(pi->viid));
295 	v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
296 	if (v)
297 		return v;
298 
299 	BUG_ON(pi->port_id != FW_VI_CMD_PORTID_GET(vi_rpl.portid_pkd));
300 	pi->rss_size = FW_VI_CMD_RSSSIZE_GET(be16_to_cpu(vi_rpl.rsssize_pkd));
301 	t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
302 
303 	/*
304 	 * If we don't have read access to our port information, we're done
305 	 * now.  Otherwise, execute a PORT Read command to get it ...
306 	 */
307 	if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
308 		return 0;
309 
310 	memset(&port_cmd, 0, sizeof(port_cmd));
311 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP(FW_PORT_CMD) |
312 					    FW_CMD_REQUEST |
313 					    FW_CMD_READ |
314 					    FW_PORT_CMD_PORTID(pi->port_id));
315 	port_cmd.action_to_len16 =
316 		cpu_to_be32(FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
317 			    FW_LEN16(port_cmd));
318 	v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
319 	if (v)
320 		return v;
321 
322 	v = 0;
323 	word = be16_to_cpu(port_rpl.u.info.pcap);
324 	if (word & FW_PORT_CAP_SPEED_100M)
325 		v |= SUPPORTED_100baseT_Full;
326 	if (word & FW_PORT_CAP_SPEED_1G)
327 		v |= SUPPORTED_1000baseT_Full;
328 	if (word & FW_PORT_CAP_SPEED_10G)
329 		v |= SUPPORTED_10000baseT_Full;
330 	if (word & FW_PORT_CAP_ANEG)
331 		v |= SUPPORTED_Autoneg;
332 	init_link_config(&pi->link_cfg, v);
333 
334 	return 0;
335 }
336 
337 /**
338  *      t4vf_fw_reset - issue a reset to FW
339  *      @adapter: the adapter
340  *
341  *	Issues a reset command to FW.  For a Physical Function this would
342  *	result in the Firmware reseting all of its state.  For a Virtual
343  *	Function this just resets the state associated with the VF.
344  */
345 int t4vf_fw_reset(struct adapter *adapter)
346 {
347 	struct fw_reset_cmd cmd;
348 
349 	memset(&cmd, 0, sizeof(cmd));
350 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RESET_CMD) |
351 				      FW_CMD_WRITE);
352 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
353 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
354 }
355 
356 /**
357  *	t4vf_query_params - query FW or device parameters
358  *	@adapter: the adapter
359  *	@nparams: the number of parameters
360  *	@params: the parameter names
361  *	@vals: the parameter values
362  *
363  *	Reads the values of firmware or device parameters.  Up to 7 parameters
364  *	can be queried at once.
365  */
366 int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
367 		      const u32 *params, u32 *vals)
368 {
369 	int i, ret;
370 	struct fw_params_cmd cmd, rpl;
371 	struct fw_params_param *p;
372 	size_t len16;
373 
374 	if (nparams > 7)
375 		return -EINVAL;
376 
377 	memset(&cmd, 0, sizeof(cmd));
378 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
379 				    FW_CMD_REQUEST |
380 				    FW_CMD_READ);
381 	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
382 				      param[nparams].mnem), 16);
383 	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
384 	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
385 		p->mnem = htonl(*params++);
386 
387 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
388 	if (ret == 0)
389 		for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
390 			*vals++ = be32_to_cpu(p->val);
391 	return ret;
392 }
393 
394 /**
395  *	t4vf_set_params - sets FW or device parameters
396  *	@adapter: the adapter
397  *	@nparams: the number of parameters
398  *	@params: the parameter names
399  *	@vals: the parameter values
400  *
401  *	Sets the values of firmware or device parameters.  Up to 7 parameters
402  *	can be specified at once.
403  */
404 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
405 		    const u32 *params, const u32 *vals)
406 {
407 	int i;
408 	struct fw_params_cmd cmd;
409 	struct fw_params_param *p;
410 	size_t len16;
411 
412 	if (nparams > 7)
413 		return -EINVAL;
414 
415 	memset(&cmd, 0, sizeof(cmd));
416 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
417 				    FW_CMD_REQUEST |
418 				    FW_CMD_WRITE);
419 	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
420 				      param[nparams]), 16);
421 	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
422 	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
423 		p->mnem = cpu_to_be32(*params++);
424 		p->val = cpu_to_be32(*vals++);
425 	}
426 
427 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
428 }
429 
430 /**
431  *	t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
432  *	@adapter: the adapter
433  *
434  *	Retrieves various core SGE parameters in the form of hardware SGE
435  *	register values.  The caller is responsible for decoding these as
436  *	needed.  The SGE parameters are stored in @adapter->params.sge.
437  */
438 int t4vf_get_sge_params(struct adapter *adapter)
439 {
440 	struct sge_params *sge_params = &adapter->params.sge;
441 	u32 params[7], vals[7];
442 	int v;
443 
444 	params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
445 		     FW_PARAMS_PARAM_XYZ(SGE_CONTROL));
446 	params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
447 		     FW_PARAMS_PARAM_XYZ(SGE_HOST_PAGE_SIZE));
448 	params[2] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
449 		     FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE0));
450 	params[3] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
451 		     FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE1));
452 	params[4] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
453 		     FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_0_AND_1));
454 	params[5] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
455 		     FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_2_AND_3));
456 	params[6] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
457 		     FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_4_AND_5));
458 	v = t4vf_query_params(adapter, 7, params, vals);
459 	if (v)
460 		return v;
461 	sge_params->sge_control = vals[0];
462 	sge_params->sge_host_page_size = vals[1];
463 	sge_params->sge_fl_buffer_size[0] = vals[2];
464 	sge_params->sge_fl_buffer_size[1] = vals[3];
465 	sge_params->sge_timer_value_0_and_1 = vals[4];
466 	sge_params->sge_timer_value_2_and_3 = vals[5];
467 	sge_params->sge_timer_value_4_and_5 = vals[6];
468 
469 	params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
470 		     FW_PARAMS_PARAM_XYZ(SGE_INGRESS_RX_THRESHOLD));
471 	v = t4vf_query_params(adapter, 1, params, vals);
472 	if (v)
473 		return v;
474 	sge_params->sge_ingress_rx_threshold = vals[0];
475 
476 	return 0;
477 }
478 
479 /**
480  *	t4vf_get_vpd_params - retrieve device VPD paremeters
481  *	@adapter: the adapter
482  *
483  *	Retrives various device Vital Product Data parameters.  The parameters
484  *	are stored in @adapter->params.vpd.
485  */
486 int t4vf_get_vpd_params(struct adapter *adapter)
487 {
488 	struct vpd_params *vpd_params = &adapter->params.vpd;
489 	u32 params[7], vals[7];
490 	int v;
491 
492 	params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
493 		     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
494 	v = t4vf_query_params(adapter, 1, params, vals);
495 	if (v)
496 		return v;
497 	vpd_params->cclk = vals[0];
498 
499 	return 0;
500 }
501 
502 /**
503  *	t4vf_get_dev_params - retrieve device paremeters
504  *	@adapter: the adapter
505  *
506  *	Retrives various device parameters.  The parameters are stored in
507  *	@adapter->params.dev.
508  */
509 int t4vf_get_dev_params(struct adapter *adapter)
510 {
511 	struct dev_params *dev_params = &adapter->params.dev;
512 	u32 params[7], vals[7];
513 	int v;
514 
515 	params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
516 		     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV));
517 	params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
518 		     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV));
519 	v = t4vf_query_params(adapter, 2, params, vals);
520 	if (v)
521 		return v;
522 	dev_params->fwrev = vals[0];
523 	dev_params->tprev = vals[1];
524 
525 	return 0;
526 }
527 
528 /**
529  *	t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
530  *	@adapter: the adapter
531  *
532  *	Retrieves global RSS mode and parameters with which we have to live
533  *	and stores them in the @adapter's RSS parameters.
534  */
535 int t4vf_get_rss_glb_config(struct adapter *adapter)
536 {
537 	struct rss_params *rss = &adapter->params.rss;
538 	struct fw_rss_glb_config_cmd cmd, rpl;
539 	int v;
540 
541 	/*
542 	 * Execute an RSS Global Configuration read command to retrieve
543 	 * our RSS configuration.
544 	 */
545 	memset(&cmd, 0, sizeof(cmd));
546 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
547 				      FW_CMD_REQUEST |
548 				      FW_CMD_READ);
549 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
550 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
551 	if (v)
552 		return v;
553 
554 	/*
555 	 * Transate the big-endian RSS Global Configuration into our
556 	 * cpu-endian format based on the RSS mode.  We also do first level
557 	 * filtering at this point to weed out modes which don't support
558 	 * VF Drivers ...
559 	 */
560 	rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_GET(
561 			be32_to_cpu(rpl.u.manual.mode_pkd));
562 	switch (rss->mode) {
563 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
564 		u32 word = be32_to_cpu(
565 				rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
566 
567 		rss->u.basicvirtual.synmapen =
568 			((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0);
569 		rss->u.basicvirtual.syn4tupenipv6 =
570 			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0);
571 		rss->u.basicvirtual.syn2tupenipv6 =
572 			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0);
573 		rss->u.basicvirtual.syn4tupenipv4 =
574 			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0);
575 		rss->u.basicvirtual.syn2tupenipv4 =
576 			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0);
577 
578 		rss->u.basicvirtual.ofdmapen =
579 			((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0);
580 
581 		rss->u.basicvirtual.tnlmapen =
582 			((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0);
583 		rss->u.basicvirtual.tnlalllookup =
584 			((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0);
585 
586 		rss->u.basicvirtual.hashtoeplitz =
587 			((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0);
588 
589 		/* we need at least Tunnel Map Enable to be set */
590 		if (!rss->u.basicvirtual.tnlmapen)
591 			return -EINVAL;
592 		break;
593 	}
594 
595 	default:
596 		/* all unknown/unsupported RSS modes result in an error */
597 		return -EINVAL;
598 	}
599 
600 	return 0;
601 }
602 
603 /**
604  *	t4vf_get_vfres - retrieve VF resource limits
605  *	@adapter: the adapter
606  *
607  *	Retrieves configured resource limits and capabilities for a virtual
608  *	function.  The results are stored in @adapter->vfres.
609  */
610 int t4vf_get_vfres(struct adapter *adapter)
611 {
612 	struct vf_resources *vfres = &adapter->params.vfres;
613 	struct fw_pfvf_cmd cmd, rpl;
614 	int v;
615 	u32 word;
616 
617 	/*
618 	 * Execute PFVF Read command to get VF resource limits; bail out early
619 	 * with error on command failure.
620 	 */
621 	memset(&cmd, 0, sizeof(cmd));
622 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PFVF_CMD) |
623 				    FW_CMD_REQUEST |
624 				    FW_CMD_READ);
625 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
626 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
627 	if (v)
628 		return v;
629 
630 	/*
631 	 * Extract VF resource limits and return success.
632 	 */
633 	word = be32_to_cpu(rpl.niqflint_niq);
634 	vfres->niqflint = FW_PFVF_CMD_NIQFLINT_GET(word);
635 	vfres->niq = FW_PFVF_CMD_NIQ_GET(word);
636 
637 	word = be32_to_cpu(rpl.type_to_neq);
638 	vfres->neq = FW_PFVF_CMD_NEQ_GET(word);
639 	vfres->pmask = FW_PFVF_CMD_PMASK_GET(word);
640 
641 	word = be32_to_cpu(rpl.tc_to_nexactf);
642 	vfres->tc = FW_PFVF_CMD_TC_GET(word);
643 	vfres->nvi = FW_PFVF_CMD_NVI_GET(word);
644 	vfres->nexactf = FW_PFVF_CMD_NEXACTF_GET(word);
645 
646 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
647 	vfres->r_caps = FW_PFVF_CMD_R_CAPS_GET(word);
648 	vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_GET(word);
649 	vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_GET(word);
650 
651 	return 0;
652 }
653 
654 /**
655  *	t4vf_read_rss_vi_config - read a VI's RSS configuration
656  *	@adapter: the adapter
657  *	@viid: Virtual Interface ID
658  *	@config: pointer to host-native VI RSS Configuration buffer
659  *
660  *	Reads the Virtual Interface's RSS configuration information and
661  *	translates it into CPU-native format.
662  */
663 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
664 			    union rss_vi_config *config)
665 {
666 	struct fw_rss_vi_config_cmd cmd, rpl;
667 	int v;
668 
669 	memset(&cmd, 0, sizeof(cmd));
670 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
671 				     FW_CMD_REQUEST |
672 				     FW_CMD_READ |
673 				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
674 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
675 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
676 	if (v)
677 		return v;
678 
679 	switch (adapter->params.rss.mode) {
680 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
681 		u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
682 
683 		config->basicvirtual.ip6fourtupen =
684 			((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) != 0);
685 		config->basicvirtual.ip6twotupen =
686 			((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) != 0);
687 		config->basicvirtual.ip4fourtupen =
688 			((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) != 0);
689 		config->basicvirtual.ip4twotupen =
690 			((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) != 0);
691 		config->basicvirtual.udpen =
692 			((word & FW_RSS_VI_CONFIG_CMD_UDPEN) != 0);
693 		config->basicvirtual.defaultq =
694 			FW_RSS_VI_CONFIG_CMD_DEFAULTQ_GET(word);
695 		break;
696 	}
697 
698 	default:
699 		return -EINVAL;
700 	}
701 
702 	return 0;
703 }
704 
705 /**
706  *	t4vf_write_rss_vi_config - write a VI's RSS configuration
707  *	@adapter: the adapter
708  *	@viid: Virtual Interface ID
709  *	@config: pointer to host-native VI RSS Configuration buffer
710  *
711  *	Write the Virtual Interface's RSS configuration information
712  *	(translating it into firmware-native format before writing).
713  */
714 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
715 			     union rss_vi_config *config)
716 {
717 	struct fw_rss_vi_config_cmd cmd, rpl;
718 
719 	memset(&cmd, 0, sizeof(cmd));
720 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
721 				     FW_CMD_REQUEST |
722 				     FW_CMD_WRITE |
723 				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
724 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
725 	switch (adapter->params.rss.mode) {
726 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
727 		u32 word = 0;
728 
729 		if (config->basicvirtual.ip6fourtupen)
730 			word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
731 		if (config->basicvirtual.ip6twotupen)
732 			word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
733 		if (config->basicvirtual.ip4fourtupen)
734 			word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
735 		if (config->basicvirtual.ip4twotupen)
736 			word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
737 		if (config->basicvirtual.udpen)
738 			word |= FW_RSS_VI_CONFIG_CMD_UDPEN;
739 		word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ(
740 				config->basicvirtual.defaultq);
741 		cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
742 		break;
743 	}
744 
745 	default:
746 		return -EINVAL;
747 	}
748 
749 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
750 }
751 
752 /**
753  *	t4vf_config_rss_range - configure a portion of the RSS mapping table
754  *	@adapter: the adapter
755  *	@viid: Virtual Interface of RSS Table Slice
756  *	@start: starting entry in the table to write
757  *	@n: how many table entries to write
758  *	@rspq: values for the "Response Queue" (Ingress Queue) lookup table
759  *	@nrspq: number of values in @rspq
760  *
761  *	Programs the selected part of the VI's RSS mapping table with the
762  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
763  *	until the full table range is populated.
764  *
765  *	The caller must ensure the values in @rspq are in the range 0..1023.
766  */
767 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
768 			  int start, int n, const u16 *rspq, int nrspq)
769 {
770 	const u16 *rsp = rspq;
771 	const u16 *rsp_end = rspq+nrspq;
772 	struct fw_rss_ind_tbl_cmd cmd;
773 
774 	/*
775 	 * Initialize firmware command template to write the RSS table.
776 	 */
777 	memset(&cmd, 0, sizeof(cmd));
778 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
779 				     FW_CMD_REQUEST |
780 				     FW_CMD_WRITE |
781 				     FW_RSS_IND_TBL_CMD_VIID(viid));
782 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
783 
784 	/*
785 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
786 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
787 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
788 	 * reserved.
789 	 */
790 	while (n > 0) {
791 		__be32 *qp = &cmd.iq0_to_iq2;
792 		int nq = min(n, 32);
793 		int ret;
794 
795 		/*
796 		 * Set up the firmware RSS command header to send the next
797 		 * "nq" Ingress Queue IDs to the firmware.
798 		 */
799 		cmd.niqid = cpu_to_be16(nq);
800 		cmd.startidx = cpu_to_be16(start);
801 
802 		/*
803 		 * "nq" more done for the start of the next loop.
804 		 */
805 		start += nq;
806 		n -= nq;
807 
808 		/*
809 		 * While there are still Ingress Queue IDs to stuff into the
810 		 * current firmware RSS command, retrieve them from the
811 		 * Ingress Queue ID array and insert them into the command.
812 		 */
813 		while (nq > 0) {
814 			/*
815 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
816 			 * around the Ingress Queue ID array if necessary) and
817 			 * insert them into the firmware RSS command at the
818 			 * current 3-tuple position within the commad.
819 			 */
820 			u16 qbuf[3];
821 			u16 *qbp = qbuf;
822 			int nqbuf = min(3, nq);
823 
824 			nq -= nqbuf;
825 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
826 			while (nqbuf) {
827 				nqbuf--;
828 				*qbp++ = *rsp++;
829 				if (rsp >= rsp_end)
830 					rsp = rspq;
831 			}
832 			*qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
833 					    FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
834 					    FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
835 		}
836 
837 		/*
838 		 * Send this portion of the RRS table update to the firmware;
839 		 * bail out on any errors.
840 		 */
841 		ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
842 		if (ret)
843 			return ret;
844 	}
845 	return 0;
846 }
847 
848 /**
849  *	t4vf_alloc_vi - allocate a virtual interface on a port
850  *	@adapter: the adapter
851  *	@port_id: physical port associated with the VI
852  *
853  *	Allocate a new Virtual Interface and bind it to the indicated
854  *	physical port.  Return the new Virtual Interface Identifier on
855  *	success, or a [negative] error number on failure.
856  */
857 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
858 {
859 	struct fw_vi_cmd cmd, rpl;
860 	int v;
861 
862 	/*
863 	 * Execute a VI command to allocate Virtual Interface and return its
864 	 * VIID.
865 	 */
866 	memset(&cmd, 0, sizeof(cmd));
867 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
868 				    FW_CMD_REQUEST |
869 				    FW_CMD_WRITE |
870 				    FW_CMD_EXEC);
871 	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
872 					 FW_VI_CMD_ALLOC);
873 	cmd.portid_pkd = FW_VI_CMD_PORTID(port_id);
874 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
875 	if (v)
876 		return v;
877 
878 	return FW_VI_CMD_VIID_GET(be16_to_cpu(rpl.type_viid));
879 }
880 
881 /**
882  *	t4vf_free_vi -- free a virtual interface
883  *	@adapter: the adapter
884  *	@viid: the virtual interface identifier
885  *
886  *	Free a previously allocated Virtual Interface.  Return an error on
887  *	failure.
888  */
889 int t4vf_free_vi(struct adapter *adapter, int viid)
890 {
891 	struct fw_vi_cmd cmd;
892 
893 	/*
894 	 * Execute a VI command to free the Virtual Interface.
895 	 */
896 	memset(&cmd, 0, sizeof(cmd));
897 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
898 				    FW_CMD_REQUEST |
899 				    FW_CMD_EXEC);
900 	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
901 					 FW_VI_CMD_FREE);
902 	cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(viid));
903 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
904 }
905 
906 /**
907  *	t4vf_enable_vi - enable/disable a virtual interface
908  *	@adapter: the adapter
909  *	@viid: the Virtual Interface ID
910  *	@rx_en: 1=enable Rx, 0=disable Rx
911  *	@tx_en: 1=enable Tx, 0=disable Tx
912  *
913  *	Enables/disables a virtual interface.
914  */
915 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
916 		   bool rx_en, bool tx_en)
917 {
918 	struct fw_vi_enable_cmd cmd;
919 
920 	memset(&cmd, 0, sizeof(cmd));
921 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
922 				     FW_CMD_REQUEST |
923 				     FW_CMD_EXEC |
924 				     FW_VI_ENABLE_CMD_VIID(viid));
925 	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN(rx_en) |
926 				       FW_VI_ENABLE_CMD_EEN(tx_en) |
927 				       FW_LEN16(cmd));
928 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
929 }
930 
931 /**
932  *	t4vf_identify_port - identify a VI's port by blinking its LED
933  *	@adapter: the adapter
934  *	@viid: the Virtual Interface ID
935  *	@nblinks: how many times to blink LED at 2.5 Hz
936  *
937  *	Identifies a VI's port by blinking its LED.
938  */
939 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
940 		       unsigned int nblinks)
941 {
942 	struct fw_vi_enable_cmd cmd;
943 
944 	memset(&cmd, 0, sizeof(cmd));
945 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
946 				     FW_CMD_REQUEST |
947 				     FW_CMD_EXEC |
948 				     FW_VI_ENABLE_CMD_VIID(viid));
949 	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED |
950 				       FW_LEN16(cmd));
951 	cmd.blinkdur = cpu_to_be16(nblinks);
952 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
953 }
954 
955 /**
956  *	t4vf_set_rxmode - set Rx properties of a virtual interface
957  *	@adapter: the adapter
958  *	@viid: the VI id
959  *	@mtu: the new MTU or -1 for no change
960  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
961  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
962  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
963  *	@vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
964  *		-1 no change
965  *
966  *	Sets Rx properties of a virtual interface.
967  */
968 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
969 		    int mtu, int promisc, int all_multi, int bcast, int vlanex,
970 		    bool sleep_ok)
971 {
972 	struct fw_vi_rxmode_cmd cmd;
973 
974 	/* convert to FW values */
975 	if (mtu < 0)
976 		mtu = FW_VI_RXMODE_CMD_MTU_MASK;
977 	if (promisc < 0)
978 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
979 	if (all_multi < 0)
980 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
981 	if (bcast < 0)
982 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
983 	if (vlanex < 0)
984 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
985 
986 	memset(&cmd, 0, sizeof(cmd));
987 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_RXMODE_CMD) |
988 				     FW_CMD_REQUEST |
989 				     FW_CMD_WRITE |
990 				     FW_VI_RXMODE_CMD_VIID(viid));
991 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
992 	cmd.mtu_to_vlanexen =
993 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU(mtu) |
994 			    FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
995 			    FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
996 			    FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
997 			    FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
998 	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
999 }
1000 
1001 /**
1002  *	t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1003  *	@adapter: the adapter
1004  *	@viid: the Virtual Interface Identifier
1005  *	@free: if true any existing filters for this VI id are first removed
1006  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
1007  *	@addr: the MAC address(es)
1008  *	@idx: where to store the index of each allocated filter
1009  *	@hash: pointer to hash address filter bitmap
1010  *	@sleep_ok: call is allowed to sleep
1011  *
1012  *	Allocates an exact-match filter for each of the supplied addresses and
1013  *	sets it to the corresponding address.  If @idx is not %NULL it should
1014  *	have at least @naddr entries, each of which will be set to the index of
1015  *	the filter allocated for the corresponding MAC address.  If a filter
1016  *	could not be allocated for an address its index is set to 0xffff.
1017  *	If @hash is not %NULL addresses that fail to allocate an exact filter
1018  *	are hashed and update the hash filter bitmap pointed at by @hash.
1019  *
1020  *	Returns a negative error number or the number of filters allocated.
1021  */
1022 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1023 			unsigned int naddr, const u8 **addr, u16 *idx,
1024 			u64 *hash, bool sleep_ok)
1025 {
1026 	int offset, ret = 0;
1027 	unsigned nfilters = 0;
1028 	unsigned int rem = naddr;
1029 	struct fw_vi_mac_cmd cmd, rpl;
1030 
1031 	if (naddr > FW_CLS_TCAM_NUM_ENTRIES)
1032 		return -EINVAL;
1033 
1034 	for (offset = 0; offset < naddr; /**/) {
1035 		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1036 					 ? rem
1037 					 : ARRAY_SIZE(cmd.u.exact));
1038 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1039 						     u.exact[fw_naddr]), 16);
1040 		struct fw_vi_mac_exact *p;
1041 		int i;
1042 
1043 		memset(&cmd, 0, sizeof(cmd));
1044 		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1045 					     FW_CMD_REQUEST |
1046 					     FW_CMD_WRITE |
1047 					     (free ? FW_CMD_EXEC : 0) |
1048 					     FW_VI_MAC_CMD_VIID(viid));
1049 		cmd.freemacs_to_len16 =
1050 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS(free) |
1051 				    FW_CMD_LEN16(len16));
1052 
1053 		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1054 			p->valid_to_idx = cpu_to_be16(
1055 				FW_VI_MAC_CMD_VALID |
1056 				FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
1057 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1058 		}
1059 
1060 
1061 		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1062 					sleep_ok);
1063 		if (ret && ret != -ENOMEM)
1064 			break;
1065 
1066 		for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1067 			u16 index = FW_VI_MAC_CMD_IDX_GET(
1068 				be16_to_cpu(p->valid_to_idx));
1069 
1070 			if (idx)
1071 				idx[offset+i] =
1072 					(index >= FW_CLS_TCAM_NUM_ENTRIES
1073 					 ? 0xffff
1074 					 : index);
1075 			if (index < FW_CLS_TCAM_NUM_ENTRIES)
1076 				nfilters++;
1077 			else if (hash)
1078 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1079 		}
1080 
1081 		free = false;
1082 		offset += fw_naddr;
1083 		rem -= fw_naddr;
1084 	}
1085 
1086 	/*
1087 	 * If there were no errors or we merely ran out of room in our MAC
1088 	 * address arena, return the number of filters actually written.
1089 	 */
1090 	if (ret == 0 || ret == -ENOMEM)
1091 		ret = nfilters;
1092 	return ret;
1093 }
1094 
1095 /**
1096  *	t4vf_change_mac - modifies the exact-match filter for a MAC address
1097  *	@adapter: the adapter
1098  *	@viid: the Virtual Interface ID
1099  *	@idx: index of existing filter for old value of MAC address, or -1
1100  *	@addr: the new MAC address value
1101  *	@persist: if idx < 0, the new MAC allocation should be persistent
1102  *
1103  *	Modifies an exact-match filter and sets it to the new MAC address.
1104  *	Note that in general it is not possible to modify the value of a given
1105  *	filter so the generic way to modify an address filter is to free the
1106  *	one being used by the old address value and allocate a new filter for
1107  *	the new address value.  @idx can be -1 if the address is a new
1108  *	addition.
1109  *
1110  *	Returns a negative error number or the index of the filter with the new
1111  *	MAC value.
1112  */
1113 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1114 		    int idx, const u8 *addr, bool persist)
1115 {
1116 	int ret;
1117 	struct fw_vi_mac_cmd cmd, rpl;
1118 	struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1119 	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1120 					     u.exact[1]), 16);
1121 
1122 	/*
1123 	 * If this is a new allocation, determine whether it should be
1124 	 * persistent (across a "freemacs" operation) or not.
1125 	 */
1126 	if (idx < 0)
1127 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1128 
1129 	memset(&cmd, 0, sizeof(cmd));
1130 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1131 				     FW_CMD_REQUEST |
1132 				     FW_CMD_WRITE |
1133 				     FW_VI_MAC_CMD_VIID(viid));
1134 	cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
1135 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID |
1136 				      FW_VI_MAC_CMD_IDX(idx));
1137 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
1138 
1139 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1140 	if (ret == 0) {
1141 		p = &rpl.u.exact[0];
1142 		ret = FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p->valid_to_idx));
1143 		if (ret >= FW_CLS_TCAM_NUM_ENTRIES)
1144 			ret = -ENOMEM;
1145 	}
1146 	return ret;
1147 }
1148 
1149 /**
1150  *	t4vf_set_addr_hash - program the MAC inexact-match hash filter
1151  *	@adapter: the adapter
1152  *	@viid: the Virtual Interface Identifier
1153  *	@ucast: whether the hash filter should also match unicast addresses
1154  *	@vec: the value to be written to the hash filter
1155  *	@sleep_ok: call is allowed to sleep
1156  *
1157  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
1158  */
1159 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1160 		       bool ucast, u64 vec, bool sleep_ok)
1161 {
1162 	struct fw_vi_mac_cmd cmd;
1163 	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1164 					     u.exact[0]), 16);
1165 
1166 	memset(&cmd, 0, sizeof(cmd));
1167 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1168 				     FW_CMD_REQUEST |
1169 				     FW_CMD_WRITE |
1170 				     FW_VI_ENABLE_CMD_VIID(viid));
1171 	cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN |
1172 					    FW_VI_MAC_CMD_HASHUNIEN(ucast) |
1173 					    FW_CMD_LEN16(len16));
1174 	cmd.u.hash.hashvec = cpu_to_be64(vec);
1175 	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1176 }
1177 
1178 /**
1179  *	t4vf_get_port_stats - collect "port" statistics
1180  *	@adapter: the adapter
1181  *	@pidx: the port index
1182  *	@s: the stats structure to fill
1183  *
1184  *	Collect statistics for the "port"'s Virtual Interface.
1185  */
1186 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1187 			struct t4vf_port_stats *s)
1188 {
1189 	struct port_info *pi = adap2pinfo(adapter, pidx);
1190 	struct fw_vi_stats_vf fwstats;
1191 	unsigned int rem = VI_VF_NUM_STATS;
1192 	__be64 *fwsp = (__be64 *)&fwstats;
1193 
1194 	/*
1195 	 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1196 	 * commands.  We could use a Work Request and get all of them at once
1197 	 * but that's an asynchronous interface which is awkward to use.
1198 	 */
1199 	while (rem) {
1200 		unsigned int ix = VI_VF_NUM_STATS - rem;
1201 		unsigned int nstats = min(6U, rem);
1202 		struct fw_vi_stats_cmd cmd, rpl;
1203 		size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1204 			      sizeof(struct fw_vi_stats_ctl));
1205 		size_t len16 = DIV_ROUND_UP(len, 16);
1206 		int ret;
1207 
1208 		memset(&cmd, 0, sizeof(cmd));
1209 		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_STATS_CMD) |
1210 					     FW_VI_STATS_CMD_VIID(pi->viid) |
1211 					     FW_CMD_REQUEST |
1212 					     FW_CMD_READ);
1213 		cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
1214 		cmd.u.ctl.nstats_ix =
1215 			cpu_to_be16(FW_VI_STATS_CMD_IX(ix) |
1216 				    FW_VI_STATS_CMD_NSTATS(nstats));
1217 		ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1218 		if (ret)
1219 			return ret;
1220 
1221 		memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1222 
1223 		rem -= nstats;
1224 		fwsp += nstats;
1225 	}
1226 
1227 	/*
1228 	 * Translate firmware statistics into host native statistics.
1229 	 */
1230 	s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1231 	s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1232 	s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1233 	s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1234 	s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1235 	s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1236 	s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1237 	s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1238 	s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1239 
1240 	s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1241 	s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1242 	s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1243 	s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1244 	s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1245 	s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1246 
1247 	s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1248 
1249 	return 0;
1250 }
1251 
1252 /**
1253  *	t4vf_iq_free - free an ingress queue and its free lists
1254  *	@adapter: the adapter
1255  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1256  *	@iqid: ingress queue ID
1257  *	@fl0id: FL0 queue ID or 0xffff if no attached FL0
1258  *	@fl1id: FL1 queue ID or 0xffff if no attached FL1
1259  *
1260  *	Frees an ingress queue and its associated free lists, if any.
1261  */
1262 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1263 		 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1264 {
1265 	struct fw_iq_cmd cmd;
1266 
1267 	memset(&cmd, 0, sizeof(cmd));
1268 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
1269 				    FW_CMD_REQUEST |
1270 				    FW_CMD_EXEC);
1271 	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE |
1272 					 FW_LEN16(cmd));
1273 	cmd.type_to_iqandstindex =
1274 		cpu_to_be32(FW_IQ_CMD_TYPE(iqtype));
1275 
1276 	cmd.iqid = cpu_to_be16(iqid);
1277 	cmd.fl0id = cpu_to_be16(fl0id);
1278 	cmd.fl1id = cpu_to_be16(fl1id);
1279 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1280 }
1281 
1282 /**
1283  *	t4vf_eth_eq_free - free an Ethernet egress queue
1284  *	@adapter: the adapter
1285  *	@eqid: egress queue ID
1286  *
1287  *	Frees an Ethernet egress queue.
1288  */
1289 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1290 {
1291 	struct fw_eq_eth_cmd cmd;
1292 
1293 	memset(&cmd, 0, sizeof(cmd));
1294 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
1295 				    FW_CMD_REQUEST |
1296 				    FW_CMD_EXEC);
1297 	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE |
1298 					 FW_LEN16(cmd));
1299 	cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID(eqid));
1300 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1301 }
1302 
1303 /**
1304  *	t4vf_handle_fw_rpl - process a firmware reply message
1305  *	@adapter: the adapter
1306  *	@rpl: start of the firmware message
1307  *
1308  *	Processes a firmware message, such as link state change messages.
1309  */
1310 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1311 {
1312 	const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
1313 	u8 opcode = FW_CMD_OP_GET(be32_to_cpu(cmd_hdr->hi));
1314 
1315 	switch (opcode) {
1316 	case FW_PORT_CMD: {
1317 		/*
1318 		 * Link/module state change message.
1319 		 */
1320 		const struct fw_port_cmd *port_cmd =
1321 			(const struct fw_port_cmd *)rpl;
1322 		u32 word;
1323 		int action, port_id, link_ok, speed, fc, pidx;
1324 
1325 		/*
1326 		 * Extract various fields from port status change message.
1327 		 */
1328 		action = FW_PORT_CMD_ACTION_GET(
1329 			be32_to_cpu(port_cmd->action_to_len16));
1330 		if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1331 			dev_err(adapter->pdev_dev,
1332 				"Unknown firmware PORT reply action %x\n",
1333 				action);
1334 			break;
1335 		}
1336 
1337 		port_id = FW_PORT_CMD_PORTID_GET(
1338 			be32_to_cpu(port_cmd->op_to_portid));
1339 
1340 		word = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1341 		link_ok = (word & FW_PORT_CMD_LSTATUS) != 0;
1342 		speed = 0;
1343 		fc = 0;
1344 		if (word & FW_PORT_CMD_RXPAUSE)
1345 			fc |= PAUSE_RX;
1346 		if (word & FW_PORT_CMD_TXPAUSE)
1347 			fc |= PAUSE_TX;
1348 		if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
1349 			speed = SPEED_100;
1350 		else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
1351 			speed = SPEED_1000;
1352 		else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
1353 			speed = SPEED_10000;
1354 
1355 		/*
1356 		 * Scan all of our "ports" (Virtual Interfaces) looking for
1357 		 * those bound to the physical port which has changed.  If
1358 		 * our recorded state doesn't match the current state,
1359 		 * signal that change to the OS code.
1360 		 */
1361 		for_each_port(adapter, pidx) {
1362 			struct port_info *pi = adap2pinfo(adapter, pidx);
1363 			struct link_config *lc;
1364 
1365 			if (pi->port_id != port_id)
1366 				continue;
1367 
1368 			lc = &pi->link_cfg;
1369 			if (link_ok != lc->link_ok || speed != lc->speed ||
1370 			    fc != lc->fc) {
1371 				/* something changed */
1372 				lc->link_ok = link_ok;
1373 				lc->speed = speed;
1374 				lc->fc = fc;
1375 				t4vf_os_link_changed(adapter, pidx, link_ok);
1376 			}
1377 		}
1378 		break;
1379 	}
1380 
1381 	default:
1382 		dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1383 			opcode);
1384 	}
1385 	return 0;
1386 }
1387