1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/pci.h>
37 
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
40 
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4fw_api.h"
43 
44 /*
45  * Wait for the device to become ready (signified by our "who am I" register
46  * returning a value other than all 1's).  Return an error if it doesn't
47  * become ready ...
48  */
49 int t4vf_wait_dev_ready(struct adapter *adapter)
50 {
51 	const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
52 	const u32 notready1 = 0xffffffff;
53 	const u32 notready2 = 0xeeeeeeee;
54 	u32 val;
55 
56 	val = t4_read_reg(adapter, whoami);
57 	if (val != notready1 && val != notready2)
58 		return 0;
59 	msleep(500);
60 	val = t4_read_reg(adapter, whoami);
61 	if (val != notready1 && val != notready2)
62 		return 0;
63 	else
64 		return -EIO;
65 }
66 
67 /*
68  * Get the reply to a mailbox command and store it in @rpl in big-endian order
69  * (since the firmware data structures are specified in a big-endian layout).
70  */
71 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
72 			 u32 mbox_data)
73 {
74 	for ( ; size; size -= 8, mbox_data += 8)
75 		*rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
76 }
77 
78 /*
79  * Dump contents of mailbox with a leading tag.
80  */
81 static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data)
82 {
83 	dev_err(adapter->pdev_dev,
84 		"mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag,
85 		(unsigned long long)t4_read_reg64(adapter, mbox_data +  0),
86 		(unsigned long long)t4_read_reg64(adapter, mbox_data +  8),
87 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 16),
88 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 24),
89 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 32),
90 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 40),
91 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 48),
92 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 56));
93 }
94 
95 /**
96  *	t4vf_wr_mbox_core - send a command to FW through the mailbox
97  *	@adapter: the adapter
98  *	@cmd: the command to write
99  *	@size: command length in bytes
100  *	@rpl: where to optionally store the reply
101  *	@sleep_ok: if true we may sleep while awaiting command completion
102  *
103  *	Sends the given command to FW through the mailbox and waits for the
104  *	FW to execute the command.  If @rpl is not %NULL it is used to store
105  *	the FW's reply to the command.  The command and its optional reply
106  *	are of the same length.  FW can take up to 500 ms to respond.
107  *	@sleep_ok determines whether we may sleep while awaiting the response.
108  *	If sleeping is allowed we use progressive backoff otherwise we spin.
109  *
110  *	The return value is 0 on success or a negative errno on failure.  A
111  *	failure can happen either because we are not able to execute the
112  *	command or FW executes it but signals an error.  In the latter case
113  *	the return value is the error code indicated by FW (negated).
114  */
115 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
116 		      void *rpl, bool sleep_ok)
117 {
118 	static const int delay[] = {
119 		1, 1, 3, 5, 10, 10, 20, 50, 100
120 	};
121 
122 	u32 v;
123 	int i, ms, delay_idx;
124 	const __be64 *p;
125 	u32 mbox_data = T4VF_MBDATA_BASE_ADDR;
126 	u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
127 
128 	/*
129 	 * Commands must be multiples of 16 bytes in length and may not be
130 	 * larger than the size of the Mailbox Data register array.
131 	 */
132 	if ((size % 16) != 0 ||
133 	    size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
134 		return -EINVAL;
135 
136 	/*
137 	 * Loop trying to get ownership of the mailbox.  Return an error
138 	 * if we can't gain ownership.
139 	 */
140 	v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
141 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
142 		v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
143 	if (v != MBOX_OWNER_DRV)
144 		return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT;
145 
146 	/*
147 	 * Write the command array into the Mailbox Data register array and
148 	 * transfer ownership of the mailbox to the firmware.
149 	 *
150 	 * For the VFs, the Mailbox Data "registers" are actually backed by
151 	 * T4's "MA" interface rather than PL Registers (as is the case for
152 	 * the PFs).  Because these are in different coherency domains, the
153 	 * write to the VF's PL-register-backed Mailbox Control can race in
154 	 * front of the writes to the MA-backed VF Mailbox Data "registers".
155 	 * So we need to do a read-back on at least one byte of the VF Mailbox
156 	 * Data registers before doing the write to the VF Mailbox Control
157 	 * register.
158 	 */
159 	for (i = 0, p = cmd; i < size; i += 8)
160 		t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
161 	t4_read_reg(adapter, mbox_data);         /* flush write */
162 
163 	t4_write_reg(adapter, mbox_ctl,
164 		     MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
165 	t4_read_reg(adapter, mbox_ctl);          /* flush write */
166 
167 	/*
168 	 * Spin waiting for firmware to acknowledge processing our command.
169 	 */
170 	delay_idx = 0;
171 	ms = delay[0];
172 
173 	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
174 		if (sleep_ok) {
175 			ms = delay[delay_idx];
176 			if (delay_idx < ARRAY_SIZE(delay) - 1)
177 				delay_idx++;
178 			msleep(ms);
179 		} else
180 			mdelay(ms);
181 
182 		/*
183 		 * If we're the owner, see if this is the reply we wanted.
184 		 */
185 		v = t4_read_reg(adapter, mbox_ctl);
186 		if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
187 			/*
188 			 * If the Message Valid bit isn't on, revoke ownership
189 			 * of the mailbox and continue waiting for our reply.
190 			 */
191 			if ((v & MBMSGVALID) == 0) {
192 				t4_write_reg(adapter, mbox_ctl,
193 					     MBOWNER(MBOX_OWNER_NONE));
194 				continue;
195 			}
196 
197 			/*
198 			 * We now have our reply.  Extract the command return
199 			 * value, copy the reply back to our caller's buffer
200 			 * (if specified) and revoke ownership of the mailbox.
201 			 * We return the (negated) firmware command return
202 			 * code (this depends on FW_SUCCESS == 0).
203 			 */
204 
205 			/* return value in low-order little-endian word */
206 			v = t4_read_reg(adapter, mbox_data);
207 			if (FW_CMD_RETVAL_G(v))
208 				dump_mbox(adapter, "FW Error", mbox_data);
209 
210 			if (rpl) {
211 				/* request bit in high-order BE word */
212 				WARN_ON((be32_to_cpu(*(const u32 *)cmd)
213 					 & FW_CMD_REQUEST_F) == 0);
214 				get_mbox_rpl(adapter, rpl, size, mbox_data);
215 				WARN_ON((be32_to_cpu(*(u32 *)rpl)
216 					 & FW_CMD_REQUEST_F) != 0);
217 			}
218 			t4_write_reg(adapter, mbox_ctl,
219 				     MBOWNER(MBOX_OWNER_NONE));
220 			return -FW_CMD_RETVAL_G(v);
221 		}
222 	}
223 
224 	/*
225 	 * We timed out.  Return the error ...
226 	 */
227 	dump_mbox(adapter, "FW Timeout", mbox_data);
228 	return -ETIMEDOUT;
229 }
230 
231 /**
232  *	hash_mac_addr - return the hash value of a MAC address
233  *	@addr: the 48-bit Ethernet MAC address
234  *
235  *	Hashes a MAC address according to the hash function used by hardware
236  *	inexact (hash) address matching.
237  */
238 static int hash_mac_addr(const u8 *addr)
239 {
240 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
241 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
242 	a ^= b;
243 	a ^= (a >> 12);
244 	a ^= (a >> 6);
245 	return a & 0x3f;
246 }
247 
248 /**
249  *	init_link_config - initialize a link's SW state
250  *	@lc: structure holding the link state
251  *	@caps: link capabilities
252  *
253  *	Initializes the SW state maintained for each link, including the link's
254  *	capabilities and default speed/flow-control/autonegotiation settings.
255  */
256 static void init_link_config(struct link_config *lc, unsigned int caps)
257 {
258 	lc->supported = caps;
259 	lc->requested_speed = 0;
260 	lc->speed = 0;
261 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
262 	if (lc->supported & SUPPORTED_Autoneg) {
263 		lc->advertising = lc->supported;
264 		lc->autoneg = AUTONEG_ENABLE;
265 		lc->requested_fc |= PAUSE_AUTONEG;
266 	} else {
267 		lc->advertising = 0;
268 		lc->autoneg = AUTONEG_DISABLE;
269 	}
270 }
271 
272 /**
273  *	t4vf_port_init - initialize port hardware/software state
274  *	@adapter: the adapter
275  *	@pidx: the adapter port index
276  */
277 int t4vf_port_init(struct adapter *adapter, int pidx)
278 {
279 	struct port_info *pi = adap2pinfo(adapter, pidx);
280 	struct fw_vi_cmd vi_cmd, vi_rpl;
281 	struct fw_port_cmd port_cmd, port_rpl;
282 	int v;
283 	u32 word;
284 
285 	/*
286 	 * Execute a VI Read command to get our Virtual Interface information
287 	 * like MAC address, etc.
288 	 */
289 	memset(&vi_cmd, 0, sizeof(vi_cmd));
290 	vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
291 				       FW_CMD_REQUEST_F |
292 				       FW_CMD_READ_F);
293 	vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
294 	vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
295 	v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
296 	if (v)
297 		return v;
298 
299 	BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
300 	pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
301 	t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
302 
303 	/*
304 	 * If we don't have read access to our port information, we're done
305 	 * now.  Otherwise, execute a PORT Read command to get it ...
306 	 */
307 	if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
308 		return 0;
309 
310 	memset(&port_cmd, 0, sizeof(port_cmd));
311 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
312 					    FW_CMD_REQUEST_F |
313 					    FW_CMD_READ_F |
314 					    FW_PORT_CMD_PORTID_V(pi->port_id));
315 	port_cmd.action_to_len16 =
316 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
317 			    FW_LEN16(port_cmd));
318 	v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
319 	if (v)
320 		return v;
321 
322 	v = 0;
323 	word = be16_to_cpu(port_rpl.u.info.pcap);
324 	if (word & FW_PORT_CAP_SPEED_100M)
325 		v |= SUPPORTED_100baseT_Full;
326 	if (word & FW_PORT_CAP_SPEED_1G)
327 		v |= SUPPORTED_1000baseT_Full;
328 	if (word & FW_PORT_CAP_SPEED_10G)
329 		v |= SUPPORTED_10000baseT_Full;
330 	if (word & FW_PORT_CAP_SPEED_40G)
331 		v |= SUPPORTED_40000baseSR4_Full;
332 	if (word & FW_PORT_CAP_ANEG)
333 		v |= SUPPORTED_Autoneg;
334 	init_link_config(&pi->link_cfg, v);
335 
336 	return 0;
337 }
338 
339 /**
340  *      t4vf_fw_reset - issue a reset to FW
341  *      @adapter: the adapter
342  *
343  *	Issues a reset command to FW.  For a Physical Function this would
344  *	result in the Firmware reseting all of its state.  For a Virtual
345  *	Function this just resets the state associated with the VF.
346  */
347 int t4vf_fw_reset(struct adapter *adapter)
348 {
349 	struct fw_reset_cmd cmd;
350 
351 	memset(&cmd, 0, sizeof(cmd));
352 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
353 				      FW_CMD_WRITE_F);
354 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
355 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
356 }
357 
358 /**
359  *	t4vf_query_params - query FW or device parameters
360  *	@adapter: the adapter
361  *	@nparams: the number of parameters
362  *	@params: the parameter names
363  *	@vals: the parameter values
364  *
365  *	Reads the values of firmware or device parameters.  Up to 7 parameters
366  *	can be queried at once.
367  */
368 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
369 			     const u32 *params, u32 *vals)
370 {
371 	int i, ret;
372 	struct fw_params_cmd cmd, rpl;
373 	struct fw_params_param *p;
374 	size_t len16;
375 
376 	if (nparams > 7)
377 		return -EINVAL;
378 
379 	memset(&cmd, 0, sizeof(cmd));
380 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
381 				    FW_CMD_REQUEST_F |
382 				    FW_CMD_READ_F);
383 	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
384 				      param[nparams].mnem), 16);
385 	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
386 	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
387 		p->mnem = htonl(*params++);
388 
389 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
390 	if (ret == 0)
391 		for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
392 			*vals++ = be32_to_cpu(p->val);
393 	return ret;
394 }
395 
396 /**
397  *	t4vf_set_params - sets FW or device parameters
398  *	@adapter: the adapter
399  *	@nparams: the number of parameters
400  *	@params: the parameter names
401  *	@vals: the parameter values
402  *
403  *	Sets the values of firmware or device parameters.  Up to 7 parameters
404  *	can be specified at once.
405  */
406 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
407 		    const u32 *params, const u32 *vals)
408 {
409 	int i;
410 	struct fw_params_cmd cmd;
411 	struct fw_params_param *p;
412 	size_t len16;
413 
414 	if (nparams > 7)
415 		return -EINVAL;
416 
417 	memset(&cmd, 0, sizeof(cmd));
418 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
419 				    FW_CMD_REQUEST_F |
420 				    FW_CMD_WRITE_F);
421 	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
422 				      param[nparams]), 16);
423 	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
424 	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
425 		p->mnem = cpu_to_be32(*params++);
426 		p->val = cpu_to_be32(*vals++);
427 	}
428 
429 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
430 }
431 
432 /**
433  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
434  *	@adapter: the adapter
435  *	@qid: the Queue ID
436  *	@qtype: the Ingress or Egress type for @qid
437  *	@pbar2_qoffset: BAR2 Queue Offset
438  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
439  *
440  *	Returns the BAR2 SGE Queue Registers information associated with the
441  *	indicated Absolute Queue ID.  These are passed back in return value
442  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
443  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
444  *
445  *	This may return an error which indicates that BAR2 SGE Queue
446  *	registers aren't available.  If an error is not returned, then the
447  *	following values are returned:
448  *
449  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
450  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
451  *
452  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
453  *	require the "Inferred Queue ID" ability may be used.  E.g. the
454  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
455  *	then these "Inferred Queue ID" register may not be used.
456  */
457 int t4_bar2_sge_qregs(struct adapter *adapter,
458 		      unsigned int qid,
459 		      enum t4_bar2_qtype qtype,
460 		      u64 *pbar2_qoffset,
461 		      unsigned int *pbar2_qid)
462 {
463 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
464 	u64 bar2_page_offset, bar2_qoffset;
465 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
466 
467 	/* T4 doesn't support BAR2 SGE Queue registers.
468 	 */
469 	if (is_t4(adapter->params.chip))
470 		return -EINVAL;
471 
472 	/* Get our SGE Page Size parameters.
473 	 */
474 	page_shift = adapter->params.sge.sge_vf_hps + 10;
475 	page_size = 1 << page_shift;
476 
477 	/* Get the right Queues per Page parameters for our Queue.
478 	 */
479 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
480 		     ? adapter->params.sge.sge_vf_eq_qpp
481 		     : adapter->params.sge.sge_vf_iq_qpp);
482 	qpp_mask = (1 << qpp_shift) - 1;
483 
484 	/* Calculate the basics of the BAR2 SGE Queue register area:
485 	 *  o The BAR2 page the Queue registers will be in.
486 	 *  o The BAR2 Queue ID.
487 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
488 	 */
489 	bar2_page_offset = ((qid >> qpp_shift) << page_shift);
490 	bar2_qid = qid & qpp_mask;
491 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
492 
493 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
494 	 * hardware will infer the Absolute Queue ID simply from the writes to
495 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
496 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
497 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
498 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
499 	 * from the BAR2 Page and BAR2 Queue ID.
500 	 *
501 	 * One important censequence of this is that some BAR2 SGE registers
502 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
503 	 * there.  But other registers synthesize the SGE Queue ID purely
504 	 * from the writes to the registers -- the Write Combined Doorbell
505 	 * Buffer is a good example.  These BAR2 SGE Registers are only
506 	 * available for those BAR2 SGE Register areas where the SGE Absolute
507 	 * Queue ID can be inferred from simple writes.
508 	 */
509 	bar2_qoffset = bar2_page_offset;
510 	bar2_qinferred = (bar2_qid_offset < page_size);
511 	if (bar2_qinferred) {
512 		bar2_qoffset += bar2_qid_offset;
513 		bar2_qid = 0;
514 	}
515 
516 	*pbar2_qoffset = bar2_qoffset;
517 	*pbar2_qid = bar2_qid;
518 	return 0;
519 }
520 
521 /**
522  *	t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
523  *	@adapter: the adapter
524  *
525  *	Retrieves various core SGE parameters in the form of hardware SGE
526  *	register values.  The caller is responsible for decoding these as
527  *	needed.  The SGE parameters are stored in @adapter->params.sge.
528  */
529 int t4vf_get_sge_params(struct adapter *adapter)
530 {
531 	struct sge_params *sge_params = &adapter->params.sge;
532 	u32 params[7], vals[7];
533 	int v;
534 
535 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
536 		     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL));
537 	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
538 		     FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE));
539 	params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
540 		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0));
541 	params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
542 		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1));
543 	params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
544 		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1));
545 	params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
546 		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3));
547 	params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
548 		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5));
549 	v = t4vf_query_params(adapter, 7, params, vals);
550 	if (v)
551 		return v;
552 	sge_params->sge_control = vals[0];
553 	sge_params->sge_host_page_size = vals[1];
554 	sge_params->sge_fl_buffer_size[0] = vals[2];
555 	sge_params->sge_fl_buffer_size[1] = vals[3];
556 	sge_params->sge_timer_value_0_and_1 = vals[4];
557 	sge_params->sge_timer_value_2_and_3 = vals[5];
558 	sge_params->sge_timer_value_4_and_5 = vals[6];
559 
560 	/* T4 uses a single control field to specify both the PCIe Padding and
561 	 * Packing Boundary.  T5 introduced the ability to specify these
562 	 * separately with the Padding Boundary in SGE_CONTROL and and Packing
563 	 * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
564 	 * SGE_CONTROL in order to determine how ingress packet data will be
565 	 * laid out in Packed Buffer Mode.  Unfortunately, older versions of
566 	 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
567 	 * failure grabbing it we throw an error since we can't figure out the
568 	 * right value.
569 	 */
570 	if (!is_t4(adapter->params.chip)) {
571 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
572 			     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
573 		v = t4vf_query_params(adapter, 1, params, vals);
574 		if (v != FW_SUCCESS) {
575 			dev_err(adapter->pdev_dev,
576 				"Unable to get SGE Control2; "
577 				"probably old firmware.\n");
578 			return v;
579 		}
580 		sge_params->sge_control2 = vals[0];
581 	}
582 
583 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
584 		     FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD));
585 	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
586 		     FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL));
587 	v = t4vf_query_params(adapter, 2, params, vals);
588 	if (v)
589 		return v;
590 	sge_params->sge_ingress_rx_threshold = vals[0];
591 	sge_params->sge_congestion_control = vals[1];
592 
593 	/* For T5 and later we want to use the new BAR2 Doorbells.
594 	 * Unfortunately, older firmware didn't allow the this register to be
595 	 * read.
596 	 */
597 	if (!is_t4(adapter->params.chip)) {
598 		u32 whoami;
599 		unsigned int pf, s_hps, s_qpp;
600 
601 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
602 			     FW_PARAMS_PARAM_XYZ_V(
603 				     SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
604 		params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
605 			     FW_PARAMS_PARAM_XYZ_V(
606 				     SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
607 		v = t4vf_query_params(adapter, 2, params, vals);
608 		if (v != FW_SUCCESS) {
609 			dev_warn(adapter->pdev_dev,
610 				 "Unable to get VF SGE Queues/Page; "
611 				 "probably old firmware.\n");
612 			return v;
613 		}
614 		sge_params->sge_egress_queues_per_page = vals[0];
615 		sge_params->sge_ingress_queues_per_page = vals[1];
616 
617 		/* We need the Queues/Page for our VF.  This is based on the
618 		 * PF from which we're instantiated and is indexed in the
619 		 * register we just read. Do it once here so other code in
620 		 * the driver can just use it.
621 		 */
622 		whoami = t4_read_reg(adapter,
623 				     T4VF_PL_BASE_ADDR + A_PL_VF_WHOAMI);
624 		pf = SOURCEPF_GET(whoami);
625 
626 		s_hps = (HOSTPAGESIZEPF0_S +
627 			 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
628 		sge_params->sge_vf_hps =
629 			((sge_params->sge_host_page_size >> s_hps)
630 			 & HOSTPAGESIZEPF0_M);
631 
632 		s_qpp = (QUEUESPERPAGEPF0_S +
633 			 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
634 		sge_params->sge_vf_eq_qpp =
635 			((sge_params->sge_egress_queues_per_page >> s_qpp)
636 			 & QUEUESPERPAGEPF0_MASK);
637 		sge_params->sge_vf_iq_qpp =
638 			((sge_params->sge_ingress_queues_per_page >> s_qpp)
639 			 & QUEUESPERPAGEPF0_MASK);
640 	}
641 
642 	return 0;
643 }
644 
645 /**
646  *	t4vf_get_vpd_params - retrieve device VPD paremeters
647  *	@adapter: the adapter
648  *
649  *	Retrives various device Vital Product Data parameters.  The parameters
650  *	are stored in @adapter->params.vpd.
651  */
652 int t4vf_get_vpd_params(struct adapter *adapter)
653 {
654 	struct vpd_params *vpd_params = &adapter->params.vpd;
655 	u32 params[7], vals[7];
656 	int v;
657 
658 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
659 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
660 	v = t4vf_query_params(adapter, 1, params, vals);
661 	if (v)
662 		return v;
663 	vpd_params->cclk = vals[0];
664 
665 	return 0;
666 }
667 
668 /**
669  *	t4vf_get_dev_params - retrieve device paremeters
670  *	@adapter: the adapter
671  *
672  *	Retrives various device parameters.  The parameters are stored in
673  *	@adapter->params.dev.
674  */
675 int t4vf_get_dev_params(struct adapter *adapter)
676 {
677 	struct dev_params *dev_params = &adapter->params.dev;
678 	u32 params[7], vals[7];
679 	int v;
680 
681 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
682 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
683 	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
684 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
685 	v = t4vf_query_params(adapter, 2, params, vals);
686 	if (v)
687 		return v;
688 	dev_params->fwrev = vals[0];
689 	dev_params->tprev = vals[1];
690 
691 	return 0;
692 }
693 
694 /**
695  *	t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
696  *	@adapter: the adapter
697  *
698  *	Retrieves global RSS mode and parameters with which we have to live
699  *	and stores them in the @adapter's RSS parameters.
700  */
701 int t4vf_get_rss_glb_config(struct adapter *adapter)
702 {
703 	struct rss_params *rss = &adapter->params.rss;
704 	struct fw_rss_glb_config_cmd cmd, rpl;
705 	int v;
706 
707 	/*
708 	 * Execute an RSS Global Configuration read command to retrieve
709 	 * our RSS configuration.
710 	 */
711 	memset(&cmd, 0, sizeof(cmd));
712 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
713 				      FW_CMD_REQUEST_F |
714 				      FW_CMD_READ_F);
715 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
716 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
717 	if (v)
718 		return v;
719 
720 	/*
721 	 * Transate the big-endian RSS Global Configuration into our
722 	 * cpu-endian format based on the RSS mode.  We also do first level
723 	 * filtering at this point to weed out modes which don't support
724 	 * VF Drivers ...
725 	 */
726 	rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
727 			be32_to_cpu(rpl.u.manual.mode_pkd));
728 	switch (rss->mode) {
729 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
730 		u32 word = be32_to_cpu(
731 				rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
732 
733 		rss->u.basicvirtual.synmapen =
734 			((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
735 		rss->u.basicvirtual.syn4tupenipv6 =
736 			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
737 		rss->u.basicvirtual.syn2tupenipv6 =
738 			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
739 		rss->u.basicvirtual.syn4tupenipv4 =
740 			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
741 		rss->u.basicvirtual.syn2tupenipv4 =
742 			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
743 
744 		rss->u.basicvirtual.ofdmapen =
745 			((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
746 
747 		rss->u.basicvirtual.tnlmapen =
748 			((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
749 		rss->u.basicvirtual.tnlalllookup =
750 			((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
751 
752 		rss->u.basicvirtual.hashtoeplitz =
753 			((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
754 
755 		/* we need at least Tunnel Map Enable to be set */
756 		if (!rss->u.basicvirtual.tnlmapen)
757 			return -EINVAL;
758 		break;
759 	}
760 
761 	default:
762 		/* all unknown/unsupported RSS modes result in an error */
763 		return -EINVAL;
764 	}
765 
766 	return 0;
767 }
768 
769 /**
770  *	t4vf_get_vfres - retrieve VF resource limits
771  *	@adapter: the adapter
772  *
773  *	Retrieves configured resource limits and capabilities for a virtual
774  *	function.  The results are stored in @adapter->vfres.
775  */
776 int t4vf_get_vfres(struct adapter *adapter)
777 {
778 	struct vf_resources *vfres = &adapter->params.vfres;
779 	struct fw_pfvf_cmd cmd, rpl;
780 	int v;
781 	u32 word;
782 
783 	/*
784 	 * Execute PFVF Read command to get VF resource limits; bail out early
785 	 * with error on command failure.
786 	 */
787 	memset(&cmd, 0, sizeof(cmd));
788 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
789 				    FW_CMD_REQUEST_F |
790 				    FW_CMD_READ_F);
791 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
792 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
793 	if (v)
794 		return v;
795 
796 	/*
797 	 * Extract VF resource limits and return success.
798 	 */
799 	word = be32_to_cpu(rpl.niqflint_niq);
800 	vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
801 	vfres->niq = FW_PFVF_CMD_NIQ_G(word);
802 
803 	word = be32_to_cpu(rpl.type_to_neq);
804 	vfres->neq = FW_PFVF_CMD_NEQ_G(word);
805 	vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
806 
807 	word = be32_to_cpu(rpl.tc_to_nexactf);
808 	vfres->tc = FW_PFVF_CMD_TC_G(word);
809 	vfres->nvi = FW_PFVF_CMD_NVI_G(word);
810 	vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
811 
812 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
813 	vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
814 	vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
815 	vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
816 
817 	return 0;
818 }
819 
820 /**
821  *	t4vf_read_rss_vi_config - read a VI's RSS configuration
822  *	@adapter: the adapter
823  *	@viid: Virtual Interface ID
824  *	@config: pointer to host-native VI RSS Configuration buffer
825  *
826  *	Reads the Virtual Interface's RSS configuration information and
827  *	translates it into CPU-native format.
828  */
829 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
830 			    union rss_vi_config *config)
831 {
832 	struct fw_rss_vi_config_cmd cmd, rpl;
833 	int v;
834 
835 	memset(&cmd, 0, sizeof(cmd));
836 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
837 				     FW_CMD_REQUEST_F |
838 				     FW_CMD_READ_F |
839 				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
840 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
841 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
842 	if (v)
843 		return v;
844 
845 	switch (adapter->params.rss.mode) {
846 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
847 		u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
848 
849 		config->basicvirtual.ip6fourtupen =
850 			((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
851 		config->basicvirtual.ip6twotupen =
852 			((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
853 		config->basicvirtual.ip4fourtupen =
854 			((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
855 		config->basicvirtual.ip4twotupen =
856 			((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
857 		config->basicvirtual.udpen =
858 			((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
859 		config->basicvirtual.defaultq =
860 			FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
861 		break;
862 	}
863 
864 	default:
865 		return -EINVAL;
866 	}
867 
868 	return 0;
869 }
870 
871 /**
872  *	t4vf_write_rss_vi_config - write a VI's RSS configuration
873  *	@adapter: the adapter
874  *	@viid: Virtual Interface ID
875  *	@config: pointer to host-native VI RSS Configuration buffer
876  *
877  *	Write the Virtual Interface's RSS configuration information
878  *	(translating it into firmware-native format before writing).
879  */
880 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
881 			     union rss_vi_config *config)
882 {
883 	struct fw_rss_vi_config_cmd cmd, rpl;
884 
885 	memset(&cmd, 0, sizeof(cmd));
886 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
887 				     FW_CMD_REQUEST_F |
888 				     FW_CMD_WRITE_F |
889 				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
890 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
891 	switch (adapter->params.rss.mode) {
892 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
893 		u32 word = 0;
894 
895 		if (config->basicvirtual.ip6fourtupen)
896 			word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
897 		if (config->basicvirtual.ip6twotupen)
898 			word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
899 		if (config->basicvirtual.ip4fourtupen)
900 			word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
901 		if (config->basicvirtual.ip4twotupen)
902 			word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
903 		if (config->basicvirtual.udpen)
904 			word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
905 		word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
906 				config->basicvirtual.defaultq);
907 		cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
908 		break;
909 	}
910 
911 	default:
912 		return -EINVAL;
913 	}
914 
915 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
916 }
917 
918 /**
919  *	t4vf_config_rss_range - configure a portion of the RSS mapping table
920  *	@adapter: the adapter
921  *	@viid: Virtual Interface of RSS Table Slice
922  *	@start: starting entry in the table to write
923  *	@n: how many table entries to write
924  *	@rspq: values for the "Response Queue" (Ingress Queue) lookup table
925  *	@nrspq: number of values in @rspq
926  *
927  *	Programs the selected part of the VI's RSS mapping table with the
928  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
929  *	until the full table range is populated.
930  *
931  *	The caller must ensure the values in @rspq are in the range 0..1023.
932  */
933 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
934 			  int start, int n, const u16 *rspq, int nrspq)
935 {
936 	const u16 *rsp = rspq;
937 	const u16 *rsp_end = rspq+nrspq;
938 	struct fw_rss_ind_tbl_cmd cmd;
939 
940 	/*
941 	 * Initialize firmware command template to write the RSS table.
942 	 */
943 	memset(&cmd, 0, sizeof(cmd));
944 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
945 				     FW_CMD_REQUEST_F |
946 				     FW_CMD_WRITE_F |
947 				     FW_RSS_IND_TBL_CMD_VIID_V(viid));
948 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
949 
950 	/*
951 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
952 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
953 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
954 	 * reserved.
955 	 */
956 	while (n > 0) {
957 		__be32 *qp = &cmd.iq0_to_iq2;
958 		int nq = min(n, 32);
959 		int ret;
960 
961 		/*
962 		 * Set up the firmware RSS command header to send the next
963 		 * "nq" Ingress Queue IDs to the firmware.
964 		 */
965 		cmd.niqid = cpu_to_be16(nq);
966 		cmd.startidx = cpu_to_be16(start);
967 
968 		/*
969 		 * "nq" more done for the start of the next loop.
970 		 */
971 		start += nq;
972 		n -= nq;
973 
974 		/*
975 		 * While there are still Ingress Queue IDs to stuff into the
976 		 * current firmware RSS command, retrieve them from the
977 		 * Ingress Queue ID array and insert them into the command.
978 		 */
979 		while (nq > 0) {
980 			/*
981 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
982 			 * around the Ingress Queue ID array if necessary) and
983 			 * insert them into the firmware RSS command at the
984 			 * current 3-tuple position within the commad.
985 			 */
986 			u16 qbuf[3];
987 			u16 *qbp = qbuf;
988 			int nqbuf = min(3, nq);
989 
990 			nq -= nqbuf;
991 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
992 			while (nqbuf) {
993 				nqbuf--;
994 				*qbp++ = *rsp++;
995 				if (rsp >= rsp_end)
996 					rsp = rspq;
997 			}
998 			*qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
999 					    FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1000 					    FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1001 		}
1002 
1003 		/*
1004 		 * Send this portion of the RRS table update to the firmware;
1005 		 * bail out on any errors.
1006 		 */
1007 		ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1008 		if (ret)
1009 			return ret;
1010 	}
1011 	return 0;
1012 }
1013 
1014 /**
1015  *	t4vf_alloc_vi - allocate a virtual interface on a port
1016  *	@adapter: the adapter
1017  *	@port_id: physical port associated with the VI
1018  *
1019  *	Allocate a new Virtual Interface and bind it to the indicated
1020  *	physical port.  Return the new Virtual Interface Identifier on
1021  *	success, or a [negative] error number on failure.
1022  */
1023 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1024 {
1025 	struct fw_vi_cmd cmd, rpl;
1026 	int v;
1027 
1028 	/*
1029 	 * Execute a VI command to allocate Virtual Interface and return its
1030 	 * VIID.
1031 	 */
1032 	memset(&cmd, 0, sizeof(cmd));
1033 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1034 				    FW_CMD_REQUEST_F |
1035 				    FW_CMD_WRITE_F |
1036 				    FW_CMD_EXEC_F);
1037 	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1038 					 FW_VI_CMD_ALLOC_F);
1039 	cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1040 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1041 	if (v)
1042 		return v;
1043 
1044 	return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1045 }
1046 
1047 /**
1048  *	t4vf_free_vi -- free a virtual interface
1049  *	@adapter: the adapter
1050  *	@viid: the virtual interface identifier
1051  *
1052  *	Free a previously allocated Virtual Interface.  Return an error on
1053  *	failure.
1054  */
1055 int t4vf_free_vi(struct adapter *adapter, int viid)
1056 {
1057 	struct fw_vi_cmd cmd;
1058 
1059 	/*
1060 	 * Execute a VI command to free the Virtual Interface.
1061 	 */
1062 	memset(&cmd, 0, sizeof(cmd));
1063 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1064 				    FW_CMD_REQUEST_F |
1065 				    FW_CMD_EXEC_F);
1066 	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1067 					 FW_VI_CMD_FREE_F);
1068 	cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1069 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1070 }
1071 
1072 /**
1073  *	t4vf_enable_vi - enable/disable a virtual interface
1074  *	@adapter: the adapter
1075  *	@viid: the Virtual Interface ID
1076  *	@rx_en: 1=enable Rx, 0=disable Rx
1077  *	@tx_en: 1=enable Tx, 0=disable Tx
1078  *
1079  *	Enables/disables a virtual interface.
1080  */
1081 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1082 		   bool rx_en, bool tx_en)
1083 {
1084 	struct fw_vi_enable_cmd cmd;
1085 
1086 	memset(&cmd, 0, sizeof(cmd));
1087 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1088 				     FW_CMD_REQUEST_F |
1089 				     FW_CMD_EXEC_F |
1090 				     FW_VI_ENABLE_CMD_VIID_V(viid));
1091 	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1092 				       FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1093 				       FW_LEN16(cmd));
1094 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1095 }
1096 
1097 /**
1098  *	t4vf_identify_port - identify a VI's port by blinking its LED
1099  *	@adapter: the adapter
1100  *	@viid: the Virtual Interface ID
1101  *	@nblinks: how many times to blink LED at 2.5 Hz
1102  *
1103  *	Identifies a VI's port by blinking its LED.
1104  */
1105 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1106 		       unsigned int nblinks)
1107 {
1108 	struct fw_vi_enable_cmd cmd;
1109 
1110 	memset(&cmd, 0, sizeof(cmd));
1111 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1112 				     FW_CMD_REQUEST_F |
1113 				     FW_CMD_EXEC_F |
1114 				     FW_VI_ENABLE_CMD_VIID_V(viid));
1115 	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1116 				       FW_LEN16(cmd));
1117 	cmd.blinkdur = cpu_to_be16(nblinks);
1118 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1119 }
1120 
1121 /**
1122  *	t4vf_set_rxmode - set Rx properties of a virtual interface
1123  *	@adapter: the adapter
1124  *	@viid: the VI id
1125  *	@mtu: the new MTU or -1 for no change
1126  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1127  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1128  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1129  *	@vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1130  *		-1 no change
1131  *
1132  *	Sets Rx properties of a virtual interface.
1133  */
1134 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1135 		    int mtu, int promisc, int all_multi, int bcast, int vlanex,
1136 		    bool sleep_ok)
1137 {
1138 	struct fw_vi_rxmode_cmd cmd;
1139 
1140 	/* convert to FW values */
1141 	if (mtu < 0)
1142 		mtu = FW_VI_RXMODE_CMD_MTU_M;
1143 	if (promisc < 0)
1144 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1145 	if (all_multi < 0)
1146 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1147 	if (bcast < 0)
1148 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1149 	if (vlanex < 0)
1150 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1151 
1152 	memset(&cmd, 0, sizeof(cmd));
1153 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1154 				     FW_CMD_REQUEST_F |
1155 				     FW_CMD_WRITE_F |
1156 				     FW_VI_RXMODE_CMD_VIID_V(viid));
1157 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1158 	cmd.mtu_to_vlanexen =
1159 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1160 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1161 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1162 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1163 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1164 	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1165 }
1166 
1167 /**
1168  *	t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1169  *	@adapter: the adapter
1170  *	@viid: the Virtual Interface Identifier
1171  *	@free: if true any existing filters for this VI id are first removed
1172  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
1173  *	@addr: the MAC address(es)
1174  *	@idx: where to store the index of each allocated filter
1175  *	@hash: pointer to hash address filter bitmap
1176  *	@sleep_ok: call is allowed to sleep
1177  *
1178  *	Allocates an exact-match filter for each of the supplied addresses and
1179  *	sets it to the corresponding address.  If @idx is not %NULL it should
1180  *	have at least @naddr entries, each of which will be set to the index of
1181  *	the filter allocated for the corresponding MAC address.  If a filter
1182  *	could not be allocated for an address its index is set to 0xffff.
1183  *	If @hash is not %NULL addresses that fail to allocate an exact filter
1184  *	are hashed and update the hash filter bitmap pointed at by @hash.
1185  *
1186  *	Returns a negative error number or the number of filters allocated.
1187  */
1188 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1189 			unsigned int naddr, const u8 **addr, u16 *idx,
1190 			u64 *hash, bool sleep_ok)
1191 {
1192 	int offset, ret = 0;
1193 	unsigned nfilters = 0;
1194 	unsigned int rem = naddr;
1195 	struct fw_vi_mac_cmd cmd, rpl;
1196 	unsigned int max_naddr = is_t4(adapter->params.chip) ?
1197 				 NUM_MPS_CLS_SRAM_L_INSTANCES :
1198 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1199 
1200 	if (naddr > max_naddr)
1201 		return -EINVAL;
1202 
1203 	for (offset = 0; offset < naddr; /**/) {
1204 		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1205 					 ? rem
1206 					 : ARRAY_SIZE(cmd.u.exact));
1207 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1208 						     u.exact[fw_naddr]), 16);
1209 		struct fw_vi_mac_exact *p;
1210 		int i;
1211 
1212 		memset(&cmd, 0, sizeof(cmd));
1213 		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1214 					     FW_CMD_REQUEST_F |
1215 					     FW_CMD_WRITE_F |
1216 					     (free ? FW_CMD_EXEC_F : 0) |
1217 					     FW_VI_MAC_CMD_VIID_V(viid));
1218 		cmd.freemacs_to_len16 =
1219 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1220 				    FW_CMD_LEN16_V(len16));
1221 
1222 		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1223 			p->valid_to_idx = cpu_to_be16(
1224 				FW_VI_MAC_CMD_VALID_F |
1225 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1226 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1227 		}
1228 
1229 
1230 		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1231 					sleep_ok);
1232 		if (ret && ret != -ENOMEM)
1233 			break;
1234 
1235 		for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1236 			u16 index = FW_VI_MAC_CMD_IDX_G(
1237 				be16_to_cpu(p->valid_to_idx));
1238 
1239 			if (idx)
1240 				idx[offset+i] =
1241 					(index >= max_naddr
1242 					 ? 0xffff
1243 					 : index);
1244 			if (index < max_naddr)
1245 				nfilters++;
1246 			else if (hash)
1247 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1248 		}
1249 
1250 		free = false;
1251 		offset += fw_naddr;
1252 		rem -= fw_naddr;
1253 	}
1254 
1255 	/*
1256 	 * If there were no errors or we merely ran out of room in our MAC
1257 	 * address arena, return the number of filters actually written.
1258 	 */
1259 	if (ret == 0 || ret == -ENOMEM)
1260 		ret = nfilters;
1261 	return ret;
1262 }
1263 
1264 /**
1265  *	t4vf_change_mac - modifies the exact-match filter for a MAC address
1266  *	@adapter: the adapter
1267  *	@viid: the Virtual Interface ID
1268  *	@idx: index of existing filter for old value of MAC address, or -1
1269  *	@addr: the new MAC address value
1270  *	@persist: if idx < 0, the new MAC allocation should be persistent
1271  *
1272  *	Modifies an exact-match filter and sets it to the new MAC address.
1273  *	Note that in general it is not possible to modify the value of a given
1274  *	filter so the generic way to modify an address filter is to free the
1275  *	one being used by the old address value and allocate a new filter for
1276  *	the new address value.  @idx can be -1 if the address is a new
1277  *	addition.
1278  *
1279  *	Returns a negative error number or the index of the filter with the new
1280  *	MAC value.
1281  */
1282 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1283 		    int idx, const u8 *addr, bool persist)
1284 {
1285 	int ret;
1286 	struct fw_vi_mac_cmd cmd, rpl;
1287 	struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1288 	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1289 					     u.exact[1]), 16);
1290 	unsigned int max_naddr = is_t4(adapter->params.chip) ?
1291 				 NUM_MPS_CLS_SRAM_L_INSTANCES :
1292 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1293 
1294 	/*
1295 	 * If this is a new allocation, determine whether it should be
1296 	 * persistent (across a "freemacs" operation) or not.
1297 	 */
1298 	if (idx < 0)
1299 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1300 
1301 	memset(&cmd, 0, sizeof(cmd));
1302 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1303 				     FW_CMD_REQUEST_F |
1304 				     FW_CMD_WRITE_F |
1305 				     FW_VI_MAC_CMD_VIID_V(viid));
1306 	cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1307 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1308 				      FW_VI_MAC_CMD_IDX_V(idx));
1309 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
1310 
1311 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1312 	if (ret == 0) {
1313 		p = &rpl.u.exact[0];
1314 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1315 		if (ret >= max_naddr)
1316 			ret = -ENOMEM;
1317 	}
1318 	return ret;
1319 }
1320 
1321 /**
1322  *	t4vf_set_addr_hash - program the MAC inexact-match hash filter
1323  *	@adapter: the adapter
1324  *	@viid: the Virtual Interface Identifier
1325  *	@ucast: whether the hash filter should also match unicast addresses
1326  *	@vec: the value to be written to the hash filter
1327  *	@sleep_ok: call is allowed to sleep
1328  *
1329  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
1330  */
1331 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1332 		       bool ucast, u64 vec, bool sleep_ok)
1333 {
1334 	struct fw_vi_mac_cmd cmd;
1335 	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1336 					     u.exact[0]), 16);
1337 
1338 	memset(&cmd, 0, sizeof(cmd));
1339 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1340 				     FW_CMD_REQUEST_F |
1341 				     FW_CMD_WRITE_F |
1342 				     FW_VI_ENABLE_CMD_VIID_V(viid));
1343 	cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1344 					    FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1345 					    FW_CMD_LEN16_V(len16));
1346 	cmd.u.hash.hashvec = cpu_to_be64(vec);
1347 	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1348 }
1349 
1350 /**
1351  *	t4vf_get_port_stats - collect "port" statistics
1352  *	@adapter: the adapter
1353  *	@pidx: the port index
1354  *	@s: the stats structure to fill
1355  *
1356  *	Collect statistics for the "port"'s Virtual Interface.
1357  */
1358 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1359 			struct t4vf_port_stats *s)
1360 {
1361 	struct port_info *pi = adap2pinfo(adapter, pidx);
1362 	struct fw_vi_stats_vf fwstats;
1363 	unsigned int rem = VI_VF_NUM_STATS;
1364 	__be64 *fwsp = (__be64 *)&fwstats;
1365 
1366 	/*
1367 	 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1368 	 * commands.  We could use a Work Request and get all of them at once
1369 	 * but that's an asynchronous interface which is awkward to use.
1370 	 */
1371 	while (rem) {
1372 		unsigned int ix = VI_VF_NUM_STATS - rem;
1373 		unsigned int nstats = min(6U, rem);
1374 		struct fw_vi_stats_cmd cmd, rpl;
1375 		size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1376 			      sizeof(struct fw_vi_stats_ctl));
1377 		size_t len16 = DIV_ROUND_UP(len, 16);
1378 		int ret;
1379 
1380 		memset(&cmd, 0, sizeof(cmd));
1381 		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1382 					     FW_VI_STATS_CMD_VIID_V(pi->viid) |
1383 					     FW_CMD_REQUEST_F |
1384 					     FW_CMD_READ_F);
1385 		cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1386 		cmd.u.ctl.nstats_ix =
1387 			cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1388 				    FW_VI_STATS_CMD_NSTATS_V(nstats));
1389 		ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1390 		if (ret)
1391 			return ret;
1392 
1393 		memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1394 
1395 		rem -= nstats;
1396 		fwsp += nstats;
1397 	}
1398 
1399 	/*
1400 	 * Translate firmware statistics into host native statistics.
1401 	 */
1402 	s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1403 	s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1404 	s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1405 	s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1406 	s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1407 	s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1408 	s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1409 	s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1410 	s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1411 
1412 	s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1413 	s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1414 	s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1415 	s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1416 	s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1417 	s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1418 
1419 	s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1420 
1421 	return 0;
1422 }
1423 
1424 /**
1425  *	t4vf_iq_free - free an ingress queue and its free lists
1426  *	@adapter: the adapter
1427  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1428  *	@iqid: ingress queue ID
1429  *	@fl0id: FL0 queue ID or 0xffff if no attached FL0
1430  *	@fl1id: FL1 queue ID or 0xffff if no attached FL1
1431  *
1432  *	Frees an ingress queue and its associated free lists, if any.
1433  */
1434 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1435 		 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1436 {
1437 	struct fw_iq_cmd cmd;
1438 
1439 	memset(&cmd, 0, sizeof(cmd));
1440 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1441 				    FW_CMD_REQUEST_F |
1442 				    FW_CMD_EXEC_F);
1443 	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1444 					 FW_LEN16(cmd));
1445 	cmd.type_to_iqandstindex =
1446 		cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1447 
1448 	cmd.iqid = cpu_to_be16(iqid);
1449 	cmd.fl0id = cpu_to_be16(fl0id);
1450 	cmd.fl1id = cpu_to_be16(fl1id);
1451 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1452 }
1453 
1454 /**
1455  *	t4vf_eth_eq_free - free an Ethernet egress queue
1456  *	@adapter: the adapter
1457  *	@eqid: egress queue ID
1458  *
1459  *	Frees an Ethernet egress queue.
1460  */
1461 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1462 {
1463 	struct fw_eq_eth_cmd cmd;
1464 
1465 	memset(&cmd, 0, sizeof(cmd));
1466 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1467 				    FW_CMD_REQUEST_F |
1468 				    FW_CMD_EXEC_F);
1469 	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1470 					 FW_LEN16(cmd));
1471 	cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1472 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1473 }
1474 
1475 /**
1476  *	t4vf_handle_fw_rpl - process a firmware reply message
1477  *	@adapter: the adapter
1478  *	@rpl: start of the firmware message
1479  *
1480  *	Processes a firmware message, such as link state change messages.
1481  */
1482 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1483 {
1484 	const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
1485 	u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
1486 
1487 	switch (opcode) {
1488 	case FW_PORT_CMD: {
1489 		/*
1490 		 * Link/module state change message.
1491 		 */
1492 		const struct fw_port_cmd *port_cmd =
1493 			(const struct fw_port_cmd *)rpl;
1494 		u32 word;
1495 		int action, port_id, link_ok, speed, fc, pidx;
1496 
1497 		/*
1498 		 * Extract various fields from port status change message.
1499 		 */
1500 		action = FW_PORT_CMD_ACTION_G(
1501 			be32_to_cpu(port_cmd->action_to_len16));
1502 		if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1503 			dev_err(adapter->pdev_dev,
1504 				"Unknown firmware PORT reply action %x\n",
1505 				action);
1506 			break;
1507 		}
1508 
1509 		port_id = FW_PORT_CMD_PORTID_G(
1510 			be32_to_cpu(port_cmd->op_to_portid));
1511 
1512 		word = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1513 		link_ok = (word & FW_PORT_CMD_LSTATUS_F) != 0;
1514 		speed = 0;
1515 		fc = 0;
1516 		if (word & FW_PORT_CMD_RXPAUSE_F)
1517 			fc |= PAUSE_RX;
1518 		if (word & FW_PORT_CMD_TXPAUSE_F)
1519 			fc |= PAUSE_TX;
1520 		if (word & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1521 			speed = 100;
1522 		else if (word & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1523 			speed = 1000;
1524 		else if (word & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1525 			speed = 10000;
1526 		else if (word & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1527 			speed = 40000;
1528 
1529 		/*
1530 		 * Scan all of our "ports" (Virtual Interfaces) looking for
1531 		 * those bound to the physical port which has changed.  If
1532 		 * our recorded state doesn't match the current state,
1533 		 * signal that change to the OS code.
1534 		 */
1535 		for_each_port(adapter, pidx) {
1536 			struct port_info *pi = adap2pinfo(adapter, pidx);
1537 			struct link_config *lc;
1538 
1539 			if (pi->port_id != port_id)
1540 				continue;
1541 
1542 			lc = &pi->link_cfg;
1543 			if (link_ok != lc->link_ok || speed != lc->speed ||
1544 			    fc != lc->fc) {
1545 				/* something changed */
1546 				lc->link_ok = link_ok;
1547 				lc->speed = speed;
1548 				lc->fc = fc;
1549 				t4vf_os_link_changed(adapter, pidx, link_ok);
1550 			}
1551 		}
1552 		break;
1553 	}
1554 
1555 	default:
1556 		dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1557 			opcode);
1558 	}
1559 	return 0;
1560 }
1561 
1562 /**
1563  */
1564 int t4vf_prep_adapter(struct adapter *adapter)
1565 {
1566 	int err;
1567 	unsigned int chipid;
1568 
1569 	/* Wait for the device to become ready before proceeding ...
1570 	 */
1571 	err = t4vf_wait_dev_ready(adapter);
1572 	if (err)
1573 		return err;
1574 
1575 	/* Default port and clock for debugging in case we can't reach
1576 	 * firmware.
1577 	 */
1578 	adapter->params.nports = 1;
1579 	adapter->params.vfres.pmask = 1;
1580 	adapter->params.vpd.cclk = 50000;
1581 
1582 	adapter->params.chip = 0;
1583 	switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
1584 	case CHELSIO_T4:
1585 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
1586 		break;
1587 
1588 	case CHELSIO_T5:
1589 		chipid = G_REV(t4_read_reg(adapter, A_PL_VF_REV));
1590 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
1591 		break;
1592 	}
1593 
1594 	return 0;
1595 }
1596