1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/pci.h>
37 
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
40 
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4fw_api.h"
43 
44 /*
45  * Wait for the device to become ready (signified by our "who am I" register
46  * returning a value other than all 1's).  Return an error if it doesn't
47  * become ready ...
48  */
49 int t4vf_wait_dev_ready(struct adapter *adapter)
50 {
51 	const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
52 	const u32 notready1 = 0xffffffff;
53 	const u32 notready2 = 0xeeeeeeee;
54 	u32 val;
55 
56 	val = t4_read_reg(adapter, whoami);
57 	if (val != notready1 && val != notready2)
58 		return 0;
59 	msleep(500);
60 	val = t4_read_reg(adapter, whoami);
61 	if (val != notready1 && val != notready2)
62 		return 0;
63 	else
64 		return -EIO;
65 }
66 
67 /*
68  * Get the reply to a mailbox command and store it in @rpl in big-endian order
69  * (since the firmware data structures are specified in a big-endian layout).
70  */
71 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
72 			 u32 mbox_data)
73 {
74 	for ( ; size; size -= 8, mbox_data += 8)
75 		*rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
76 }
77 
78 /*
79  * Dump contents of mailbox with a leading tag.
80  */
81 static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data)
82 {
83 	dev_err(adapter->pdev_dev,
84 		"mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag,
85 		(unsigned long long)t4_read_reg64(adapter, mbox_data +  0),
86 		(unsigned long long)t4_read_reg64(adapter, mbox_data +  8),
87 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 16),
88 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 24),
89 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 32),
90 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 40),
91 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 48),
92 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 56));
93 }
94 
95 /**
96  *	t4vf_wr_mbox_core - send a command to FW through the mailbox
97  *	@adapter: the adapter
98  *	@cmd: the command to write
99  *	@size: command length in bytes
100  *	@rpl: where to optionally store the reply
101  *	@sleep_ok: if true we may sleep while awaiting command completion
102  *
103  *	Sends the given command to FW through the mailbox and waits for the
104  *	FW to execute the command.  If @rpl is not %NULL it is used to store
105  *	the FW's reply to the command.  The command and its optional reply
106  *	are of the same length.  FW can take up to 500 ms to respond.
107  *	@sleep_ok determines whether we may sleep while awaiting the response.
108  *	If sleeping is allowed we use progressive backoff otherwise we spin.
109  *
110  *	The return value is 0 on success or a negative errno on failure.  A
111  *	failure can happen either because we are not able to execute the
112  *	command or FW executes it but signals an error.  In the latter case
113  *	the return value is the error code indicated by FW (negated).
114  */
115 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
116 		      void *rpl, bool sleep_ok)
117 {
118 	static const int delay[] = {
119 		1, 1, 3, 5, 10, 10, 20, 50, 100
120 	};
121 
122 	u32 v;
123 	int i, ms, delay_idx;
124 	const __be64 *p;
125 	u32 mbox_data = T4VF_MBDATA_BASE_ADDR;
126 	u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
127 
128 	/*
129 	 * Commands must be multiples of 16 bytes in length and may not be
130 	 * larger than the size of the Mailbox Data register array.
131 	 */
132 	if ((size % 16) != 0 ||
133 	    size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
134 		return -EINVAL;
135 
136 	/*
137 	 * Loop trying to get ownership of the mailbox.  Return an error
138 	 * if we can't gain ownership.
139 	 */
140 	v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
141 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
142 		v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
143 	if (v != MBOX_OWNER_DRV)
144 		return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT;
145 
146 	/*
147 	 * Write the command array into the Mailbox Data register array and
148 	 * transfer ownership of the mailbox to the firmware.
149 	 *
150 	 * For the VFs, the Mailbox Data "registers" are actually backed by
151 	 * T4's "MA" interface rather than PL Registers (as is the case for
152 	 * the PFs).  Because these are in different coherency domains, the
153 	 * write to the VF's PL-register-backed Mailbox Control can race in
154 	 * front of the writes to the MA-backed VF Mailbox Data "registers".
155 	 * So we need to do a read-back on at least one byte of the VF Mailbox
156 	 * Data registers before doing the write to the VF Mailbox Control
157 	 * register.
158 	 */
159 	for (i = 0, p = cmd; i < size; i += 8)
160 		t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
161 	t4_read_reg(adapter, mbox_data);         /* flush write */
162 
163 	t4_write_reg(adapter, mbox_ctl,
164 		     MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
165 	t4_read_reg(adapter, mbox_ctl);          /* flush write */
166 
167 	/*
168 	 * Spin waiting for firmware to acknowledge processing our command.
169 	 */
170 	delay_idx = 0;
171 	ms = delay[0];
172 
173 	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
174 		if (sleep_ok) {
175 			ms = delay[delay_idx];
176 			if (delay_idx < ARRAY_SIZE(delay) - 1)
177 				delay_idx++;
178 			msleep(ms);
179 		} else
180 			mdelay(ms);
181 
182 		/*
183 		 * If we're the owner, see if this is the reply we wanted.
184 		 */
185 		v = t4_read_reg(adapter, mbox_ctl);
186 		if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
187 			/*
188 			 * If the Message Valid bit isn't on, revoke ownership
189 			 * of the mailbox and continue waiting for our reply.
190 			 */
191 			if ((v & MBMSGVALID) == 0) {
192 				t4_write_reg(adapter, mbox_ctl,
193 					     MBOWNER(MBOX_OWNER_NONE));
194 				continue;
195 			}
196 
197 			/*
198 			 * We now have our reply.  Extract the command return
199 			 * value, copy the reply back to our caller's buffer
200 			 * (if specified) and revoke ownership of the mailbox.
201 			 * We return the (negated) firmware command return
202 			 * code (this depends on FW_SUCCESS == 0).
203 			 */
204 
205 			/* return value in low-order little-endian word */
206 			v = t4_read_reg(adapter, mbox_data);
207 			if (FW_CMD_RETVAL_G(v))
208 				dump_mbox(adapter, "FW Error", mbox_data);
209 
210 			if (rpl) {
211 				/* request bit in high-order BE word */
212 				WARN_ON((be32_to_cpu(*(const u32 *)cmd)
213 					 & FW_CMD_REQUEST_F) == 0);
214 				get_mbox_rpl(adapter, rpl, size, mbox_data);
215 				WARN_ON((be32_to_cpu(*(u32 *)rpl)
216 					 & FW_CMD_REQUEST_F) != 0);
217 			}
218 			t4_write_reg(adapter, mbox_ctl,
219 				     MBOWNER(MBOX_OWNER_NONE));
220 			return -FW_CMD_RETVAL_G(v);
221 		}
222 	}
223 
224 	/*
225 	 * We timed out.  Return the error ...
226 	 */
227 	dump_mbox(adapter, "FW Timeout", mbox_data);
228 	return -ETIMEDOUT;
229 }
230 
231 /**
232  *	hash_mac_addr - return the hash value of a MAC address
233  *	@addr: the 48-bit Ethernet MAC address
234  *
235  *	Hashes a MAC address according to the hash function used by hardware
236  *	inexact (hash) address matching.
237  */
238 static int hash_mac_addr(const u8 *addr)
239 {
240 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
241 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
242 	a ^= b;
243 	a ^= (a >> 12);
244 	a ^= (a >> 6);
245 	return a & 0x3f;
246 }
247 
248 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
249 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
250 		     FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
251 
252 /**
253  *	init_link_config - initialize a link's SW state
254  *	@lc: structure holding the link state
255  *	@caps: link capabilities
256  *
257  *	Initializes the SW state maintained for each link, including the link's
258  *	capabilities and default speed/flow-control/autonegotiation settings.
259  */
260 static void init_link_config(struct link_config *lc, unsigned int caps)
261 {
262 	lc->supported = caps;
263 	lc->requested_speed = 0;
264 	lc->speed = 0;
265 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
266 	if (lc->supported & FW_PORT_CAP_ANEG) {
267 		lc->advertising = lc->supported & ADVERT_MASK;
268 		lc->autoneg = AUTONEG_ENABLE;
269 		lc->requested_fc |= PAUSE_AUTONEG;
270 	} else {
271 		lc->advertising = 0;
272 		lc->autoneg = AUTONEG_DISABLE;
273 	}
274 }
275 
276 /**
277  *	t4vf_port_init - initialize port hardware/software state
278  *	@adapter: the adapter
279  *	@pidx: the adapter port index
280  */
281 int t4vf_port_init(struct adapter *adapter, int pidx)
282 {
283 	struct port_info *pi = adap2pinfo(adapter, pidx);
284 	struct fw_vi_cmd vi_cmd, vi_rpl;
285 	struct fw_port_cmd port_cmd, port_rpl;
286 	int v;
287 
288 	/*
289 	 * Execute a VI Read command to get our Virtual Interface information
290 	 * like MAC address, etc.
291 	 */
292 	memset(&vi_cmd, 0, sizeof(vi_cmd));
293 	vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
294 				       FW_CMD_REQUEST_F |
295 				       FW_CMD_READ_F);
296 	vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
297 	vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
298 	v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
299 	if (v)
300 		return v;
301 
302 	BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
303 	pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
304 	t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
305 
306 	/*
307 	 * If we don't have read access to our port information, we're done
308 	 * now.  Otherwise, execute a PORT Read command to get it ...
309 	 */
310 	if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
311 		return 0;
312 
313 	memset(&port_cmd, 0, sizeof(port_cmd));
314 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
315 					    FW_CMD_REQUEST_F |
316 					    FW_CMD_READ_F |
317 					    FW_PORT_CMD_PORTID_V(pi->port_id));
318 	port_cmd.action_to_len16 =
319 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
320 			    FW_LEN16(port_cmd));
321 	v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
322 	if (v)
323 		return v;
324 
325 	v = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
326 	pi->port_type = FW_PORT_CMD_PTYPE_G(v);
327 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
328 
329 	init_link_config(&pi->link_cfg, be16_to_cpu(port_rpl.u.info.pcap));
330 
331 	return 0;
332 }
333 
334 /**
335  *      t4vf_fw_reset - issue a reset to FW
336  *      @adapter: the adapter
337  *
338  *	Issues a reset command to FW.  For a Physical Function this would
339  *	result in the Firmware reseting all of its state.  For a Virtual
340  *	Function this just resets the state associated with the VF.
341  */
342 int t4vf_fw_reset(struct adapter *adapter)
343 {
344 	struct fw_reset_cmd cmd;
345 
346 	memset(&cmd, 0, sizeof(cmd));
347 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
348 				      FW_CMD_WRITE_F);
349 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
350 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
351 }
352 
353 /**
354  *	t4vf_query_params - query FW or device parameters
355  *	@adapter: the adapter
356  *	@nparams: the number of parameters
357  *	@params: the parameter names
358  *	@vals: the parameter values
359  *
360  *	Reads the values of firmware or device parameters.  Up to 7 parameters
361  *	can be queried at once.
362  */
363 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
364 			     const u32 *params, u32 *vals)
365 {
366 	int i, ret;
367 	struct fw_params_cmd cmd, rpl;
368 	struct fw_params_param *p;
369 	size_t len16;
370 
371 	if (nparams > 7)
372 		return -EINVAL;
373 
374 	memset(&cmd, 0, sizeof(cmd));
375 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
376 				    FW_CMD_REQUEST_F |
377 				    FW_CMD_READ_F);
378 	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
379 				      param[nparams].mnem), 16);
380 	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
381 	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
382 		p->mnem = htonl(*params++);
383 
384 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
385 	if (ret == 0)
386 		for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
387 			*vals++ = be32_to_cpu(p->val);
388 	return ret;
389 }
390 
391 /**
392  *	t4vf_set_params - sets FW or device parameters
393  *	@adapter: the adapter
394  *	@nparams: the number of parameters
395  *	@params: the parameter names
396  *	@vals: the parameter values
397  *
398  *	Sets the values of firmware or device parameters.  Up to 7 parameters
399  *	can be specified at once.
400  */
401 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
402 		    const u32 *params, const u32 *vals)
403 {
404 	int i;
405 	struct fw_params_cmd cmd;
406 	struct fw_params_param *p;
407 	size_t len16;
408 
409 	if (nparams > 7)
410 		return -EINVAL;
411 
412 	memset(&cmd, 0, sizeof(cmd));
413 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
414 				    FW_CMD_REQUEST_F |
415 				    FW_CMD_WRITE_F);
416 	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
417 				      param[nparams]), 16);
418 	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
419 	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
420 		p->mnem = cpu_to_be32(*params++);
421 		p->val = cpu_to_be32(*vals++);
422 	}
423 
424 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
425 }
426 
427 /**
428  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
429  *	@adapter: the adapter
430  *	@qid: the Queue ID
431  *	@qtype: the Ingress or Egress type for @qid
432  *	@pbar2_qoffset: BAR2 Queue Offset
433  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
434  *
435  *	Returns the BAR2 SGE Queue Registers information associated with the
436  *	indicated Absolute Queue ID.  These are passed back in return value
437  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
438  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
439  *
440  *	This may return an error which indicates that BAR2 SGE Queue
441  *	registers aren't available.  If an error is not returned, then the
442  *	following values are returned:
443  *
444  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
445  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
446  *
447  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
448  *	require the "Inferred Queue ID" ability may be used.  E.g. the
449  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
450  *	then these "Inferred Queue ID" register may not be used.
451  */
452 int t4_bar2_sge_qregs(struct adapter *adapter,
453 		      unsigned int qid,
454 		      enum t4_bar2_qtype qtype,
455 		      u64 *pbar2_qoffset,
456 		      unsigned int *pbar2_qid)
457 {
458 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
459 	u64 bar2_page_offset, bar2_qoffset;
460 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
461 
462 	/* T4 doesn't support BAR2 SGE Queue registers.
463 	 */
464 	if (is_t4(adapter->params.chip))
465 		return -EINVAL;
466 
467 	/* Get our SGE Page Size parameters.
468 	 */
469 	page_shift = adapter->params.sge.sge_vf_hps + 10;
470 	page_size = 1 << page_shift;
471 
472 	/* Get the right Queues per Page parameters for our Queue.
473 	 */
474 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
475 		     ? adapter->params.sge.sge_vf_eq_qpp
476 		     : adapter->params.sge.sge_vf_iq_qpp);
477 	qpp_mask = (1 << qpp_shift) - 1;
478 
479 	/* Calculate the basics of the BAR2 SGE Queue register area:
480 	 *  o The BAR2 page the Queue registers will be in.
481 	 *  o The BAR2 Queue ID.
482 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
483 	 */
484 	bar2_page_offset = ((qid >> qpp_shift) << page_shift);
485 	bar2_qid = qid & qpp_mask;
486 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
487 
488 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
489 	 * hardware will infer the Absolute Queue ID simply from the writes to
490 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
491 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
492 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
493 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
494 	 * from the BAR2 Page and BAR2 Queue ID.
495 	 *
496 	 * One important censequence of this is that some BAR2 SGE registers
497 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
498 	 * there.  But other registers synthesize the SGE Queue ID purely
499 	 * from the writes to the registers -- the Write Combined Doorbell
500 	 * Buffer is a good example.  These BAR2 SGE Registers are only
501 	 * available for those BAR2 SGE Register areas where the SGE Absolute
502 	 * Queue ID can be inferred from simple writes.
503 	 */
504 	bar2_qoffset = bar2_page_offset;
505 	bar2_qinferred = (bar2_qid_offset < page_size);
506 	if (bar2_qinferred) {
507 		bar2_qoffset += bar2_qid_offset;
508 		bar2_qid = 0;
509 	}
510 
511 	*pbar2_qoffset = bar2_qoffset;
512 	*pbar2_qid = bar2_qid;
513 	return 0;
514 }
515 
516 /**
517  *	t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
518  *	@adapter: the adapter
519  *
520  *	Retrieves various core SGE parameters in the form of hardware SGE
521  *	register values.  The caller is responsible for decoding these as
522  *	needed.  The SGE parameters are stored in @adapter->params.sge.
523  */
524 int t4vf_get_sge_params(struct adapter *adapter)
525 {
526 	struct sge_params *sge_params = &adapter->params.sge;
527 	u32 params[7], vals[7];
528 	int v;
529 
530 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
531 		     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL));
532 	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
533 		     FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE));
534 	params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
535 		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0));
536 	params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
537 		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1));
538 	params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
539 		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1));
540 	params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
541 		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3));
542 	params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
543 		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5));
544 	v = t4vf_query_params(adapter, 7, params, vals);
545 	if (v)
546 		return v;
547 	sge_params->sge_control = vals[0];
548 	sge_params->sge_host_page_size = vals[1];
549 	sge_params->sge_fl_buffer_size[0] = vals[2];
550 	sge_params->sge_fl_buffer_size[1] = vals[3];
551 	sge_params->sge_timer_value_0_and_1 = vals[4];
552 	sge_params->sge_timer_value_2_and_3 = vals[5];
553 	sge_params->sge_timer_value_4_and_5 = vals[6];
554 
555 	/* T4 uses a single control field to specify both the PCIe Padding and
556 	 * Packing Boundary.  T5 introduced the ability to specify these
557 	 * separately with the Padding Boundary in SGE_CONTROL and and Packing
558 	 * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
559 	 * SGE_CONTROL in order to determine how ingress packet data will be
560 	 * laid out in Packed Buffer Mode.  Unfortunately, older versions of
561 	 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
562 	 * failure grabbing it we throw an error since we can't figure out the
563 	 * right value.
564 	 */
565 	if (!is_t4(adapter->params.chip)) {
566 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
567 			     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
568 		v = t4vf_query_params(adapter, 1, params, vals);
569 		if (v != FW_SUCCESS) {
570 			dev_err(adapter->pdev_dev,
571 				"Unable to get SGE Control2; "
572 				"probably old firmware.\n");
573 			return v;
574 		}
575 		sge_params->sge_control2 = vals[0];
576 	}
577 
578 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
579 		     FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD));
580 	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
581 		     FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL));
582 	v = t4vf_query_params(adapter, 2, params, vals);
583 	if (v)
584 		return v;
585 	sge_params->sge_ingress_rx_threshold = vals[0];
586 	sge_params->sge_congestion_control = vals[1];
587 
588 	/* For T5 and later we want to use the new BAR2 Doorbells.
589 	 * Unfortunately, older firmware didn't allow the this register to be
590 	 * read.
591 	 */
592 	if (!is_t4(adapter->params.chip)) {
593 		u32 whoami;
594 		unsigned int pf, s_hps, s_qpp;
595 
596 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
597 			     FW_PARAMS_PARAM_XYZ_V(
598 				     SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
599 		params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
600 			     FW_PARAMS_PARAM_XYZ_V(
601 				     SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
602 		v = t4vf_query_params(adapter, 2, params, vals);
603 		if (v != FW_SUCCESS) {
604 			dev_warn(adapter->pdev_dev,
605 				 "Unable to get VF SGE Queues/Page; "
606 				 "probably old firmware.\n");
607 			return v;
608 		}
609 		sge_params->sge_egress_queues_per_page = vals[0];
610 		sge_params->sge_ingress_queues_per_page = vals[1];
611 
612 		/* We need the Queues/Page for our VF.  This is based on the
613 		 * PF from which we're instantiated and is indexed in the
614 		 * register we just read. Do it once here so other code in
615 		 * the driver can just use it.
616 		 */
617 		whoami = t4_read_reg(adapter,
618 				     T4VF_PL_BASE_ADDR + A_PL_VF_WHOAMI);
619 		pf = SOURCEPF_GET(whoami);
620 
621 		s_hps = (HOSTPAGESIZEPF0_S +
622 			 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
623 		sge_params->sge_vf_hps =
624 			((sge_params->sge_host_page_size >> s_hps)
625 			 & HOSTPAGESIZEPF0_M);
626 
627 		s_qpp = (QUEUESPERPAGEPF0_S +
628 			 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
629 		sge_params->sge_vf_eq_qpp =
630 			((sge_params->sge_egress_queues_per_page >> s_qpp)
631 			 & QUEUESPERPAGEPF0_MASK);
632 		sge_params->sge_vf_iq_qpp =
633 			((sge_params->sge_ingress_queues_per_page >> s_qpp)
634 			 & QUEUESPERPAGEPF0_MASK);
635 	}
636 
637 	return 0;
638 }
639 
640 /**
641  *	t4vf_get_vpd_params - retrieve device VPD paremeters
642  *	@adapter: the adapter
643  *
644  *	Retrives various device Vital Product Data parameters.  The parameters
645  *	are stored in @adapter->params.vpd.
646  */
647 int t4vf_get_vpd_params(struct adapter *adapter)
648 {
649 	struct vpd_params *vpd_params = &adapter->params.vpd;
650 	u32 params[7], vals[7];
651 	int v;
652 
653 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
654 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
655 	v = t4vf_query_params(adapter, 1, params, vals);
656 	if (v)
657 		return v;
658 	vpd_params->cclk = vals[0];
659 
660 	return 0;
661 }
662 
663 /**
664  *	t4vf_get_dev_params - retrieve device paremeters
665  *	@adapter: the adapter
666  *
667  *	Retrives various device parameters.  The parameters are stored in
668  *	@adapter->params.dev.
669  */
670 int t4vf_get_dev_params(struct adapter *adapter)
671 {
672 	struct dev_params *dev_params = &adapter->params.dev;
673 	u32 params[7], vals[7];
674 	int v;
675 
676 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
677 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
678 	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
679 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
680 	v = t4vf_query_params(adapter, 2, params, vals);
681 	if (v)
682 		return v;
683 	dev_params->fwrev = vals[0];
684 	dev_params->tprev = vals[1];
685 
686 	return 0;
687 }
688 
689 /**
690  *	t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
691  *	@adapter: the adapter
692  *
693  *	Retrieves global RSS mode and parameters with which we have to live
694  *	and stores them in the @adapter's RSS parameters.
695  */
696 int t4vf_get_rss_glb_config(struct adapter *adapter)
697 {
698 	struct rss_params *rss = &adapter->params.rss;
699 	struct fw_rss_glb_config_cmd cmd, rpl;
700 	int v;
701 
702 	/*
703 	 * Execute an RSS Global Configuration read command to retrieve
704 	 * our RSS configuration.
705 	 */
706 	memset(&cmd, 0, sizeof(cmd));
707 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
708 				      FW_CMD_REQUEST_F |
709 				      FW_CMD_READ_F);
710 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
711 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
712 	if (v)
713 		return v;
714 
715 	/*
716 	 * Transate the big-endian RSS Global Configuration into our
717 	 * cpu-endian format based on the RSS mode.  We also do first level
718 	 * filtering at this point to weed out modes which don't support
719 	 * VF Drivers ...
720 	 */
721 	rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
722 			be32_to_cpu(rpl.u.manual.mode_pkd));
723 	switch (rss->mode) {
724 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
725 		u32 word = be32_to_cpu(
726 				rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
727 
728 		rss->u.basicvirtual.synmapen =
729 			((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
730 		rss->u.basicvirtual.syn4tupenipv6 =
731 			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
732 		rss->u.basicvirtual.syn2tupenipv6 =
733 			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
734 		rss->u.basicvirtual.syn4tupenipv4 =
735 			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
736 		rss->u.basicvirtual.syn2tupenipv4 =
737 			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
738 
739 		rss->u.basicvirtual.ofdmapen =
740 			((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
741 
742 		rss->u.basicvirtual.tnlmapen =
743 			((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
744 		rss->u.basicvirtual.tnlalllookup =
745 			((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
746 
747 		rss->u.basicvirtual.hashtoeplitz =
748 			((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
749 
750 		/* we need at least Tunnel Map Enable to be set */
751 		if (!rss->u.basicvirtual.tnlmapen)
752 			return -EINVAL;
753 		break;
754 	}
755 
756 	default:
757 		/* all unknown/unsupported RSS modes result in an error */
758 		return -EINVAL;
759 	}
760 
761 	return 0;
762 }
763 
764 /**
765  *	t4vf_get_vfres - retrieve VF resource limits
766  *	@adapter: the adapter
767  *
768  *	Retrieves configured resource limits and capabilities for a virtual
769  *	function.  The results are stored in @adapter->vfres.
770  */
771 int t4vf_get_vfres(struct adapter *adapter)
772 {
773 	struct vf_resources *vfres = &adapter->params.vfres;
774 	struct fw_pfvf_cmd cmd, rpl;
775 	int v;
776 	u32 word;
777 
778 	/*
779 	 * Execute PFVF Read command to get VF resource limits; bail out early
780 	 * with error on command failure.
781 	 */
782 	memset(&cmd, 0, sizeof(cmd));
783 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
784 				    FW_CMD_REQUEST_F |
785 				    FW_CMD_READ_F);
786 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
787 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
788 	if (v)
789 		return v;
790 
791 	/*
792 	 * Extract VF resource limits and return success.
793 	 */
794 	word = be32_to_cpu(rpl.niqflint_niq);
795 	vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
796 	vfres->niq = FW_PFVF_CMD_NIQ_G(word);
797 
798 	word = be32_to_cpu(rpl.type_to_neq);
799 	vfres->neq = FW_PFVF_CMD_NEQ_G(word);
800 	vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
801 
802 	word = be32_to_cpu(rpl.tc_to_nexactf);
803 	vfres->tc = FW_PFVF_CMD_TC_G(word);
804 	vfres->nvi = FW_PFVF_CMD_NVI_G(word);
805 	vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
806 
807 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
808 	vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
809 	vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
810 	vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
811 
812 	return 0;
813 }
814 
815 /**
816  *	t4vf_read_rss_vi_config - read a VI's RSS configuration
817  *	@adapter: the adapter
818  *	@viid: Virtual Interface ID
819  *	@config: pointer to host-native VI RSS Configuration buffer
820  *
821  *	Reads the Virtual Interface's RSS configuration information and
822  *	translates it into CPU-native format.
823  */
824 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
825 			    union rss_vi_config *config)
826 {
827 	struct fw_rss_vi_config_cmd cmd, rpl;
828 	int v;
829 
830 	memset(&cmd, 0, sizeof(cmd));
831 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
832 				     FW_CMD_REQUEST_F |
833 				     FW_CMD_READ_F |
834 				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
835 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
836 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
837 	if (v)
838 		return v;
839 
840 	switch (adapter->params.rss.mode) {
841 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
842 		u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
843 
844 		config->basicvirtual.ip6fourtupen =
845 			((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
846 		config->basicvirtual.ip6twotupen =
847 			((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
848 		config->basicvirtual.ip4fourtupen =
849 			((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
850 		config->basicvirtual.ip4twotupen =
851 			((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
852 		config->basicvirtual.udpen =
853 			((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
854 		config->basicvirtual.defaultq =
855 			FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
856 		break;
857 	}
858 
859 	default:
860 		return -EINVAL;
861 	}
862 
863 	return 0;
864 }
865 
866 /**
867  *	t4vf_write_rss_vi_config - write a VI's RSS configuration
868  *	@adapter: the adapter
869  *	@viid: Virtual Interface ID
870  *	@config: pointer to host-native VI RSS Configuration buffer
871  *
872  *	Write the Virtual Interface's RSS configuration information
873  *	(translating it into firmware-native format before writing).
874  */
875 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
876 			     union rss_vi_config *config)
877 {
878 	struct fw_rss_vi_config_cmd cmd, rpl;
879 
880 	memset(&cmd, 0, sizeof(cmd));
881 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
882 				     FW_CMD_REQUEST_F |
883 				     FW_CMD_WRITE_F |
884 				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
885 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
886 	switch (adapter->params.rss.mode) {
887 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
888 		u32 word = 0;
889 
890 		if (config->basicvirtual.ip6fourtupen)
891 			word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
892 		if (config->basicvirtual.ip6twotupen)
893 			word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
894 		if (config->basicvirtual.ip4fourtupen)
895 			word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
896 		if (config->basicvirtual.ip4twotupen)
897 			word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
898 		if (config->basicvirtual.udpen)
899 			word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
900 		word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
901 				config->basicvirtual.defaultq);
902 		cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
903 		break;
904 	}
905 
906 	default:
907 		return -EINVAL;
908 	}
909 
910 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
911 }
912 
913 /**
914  *	t4vf_config_rss_range - configure a portion of the RSS mapping table
915  *	@adapter: the adapter
916  *	@viid: Virtual Interface of RSS Table Slice
917  *	@start: starting entry in the table to write
918  *	@n: how many table entries to write
919  *	@rspq: values for the "Response Queue" (Ingress Queue) lookup table
920  *	@nrspq: number of values in @rspq
921  *
922  *	Programs the selected part of the VI's RSS mapping table with the
923  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
924  *	until the full table range is populated.
925  *
926  *	The caller must ensure the values in @rspq are in the range 0..1023.
927  */
928 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
929 			  int start, int n, const u16 *rspq, int nrspq)
930 {
931 	const u16 *rsp = rspq;
932 	const u16 *rsp_end = rspq+nrspq;
933 	struct fw_rss_ind_tbl_cmd cmd;
934 
935 	/*
936 	 * Initialize firmware command template to write the RSS table.
937 	 */
938 	memset(&cmd, 0, sizeof(cmd));
939 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
940 				     FW_CMD_REQUEST_F |
941 				     FW_CMD_WRITE_F |
942 				     FW_RSS_IND_TBL_CMD_VIID_V(viid));
943 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
944 
945 	/*
946 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
947 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
948 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
949 	 * reserved.
950 	 */
951 	while (n > 0) {
952 		__be32 *qp = &cmd.iq0_to_iq2;
953 		int nq = min(n, 32);
954 		int ret;
955 
956 		/*
957 		 * Set up the firmware RSS command header to send the next
958 		 * "nq" Ingress Queue IDs to the firmware.
959 		 */
960 		cmd.niqid = cpu_to_be16(nq);
961 		cmd.startidx = cpu_to_be16(start);
962 
963 		/*
964 		 * "nq" more done for the start of the next loop.
965 		 */
966 		start += nq;
967 		n -= nq;
968 
969 		/*
970 		 * While there are still Ingress Queue IDs to stuff into the
971 		 * current firmware RSS command, retrieve them from the
972 		 * Ingress Queue ID array and insert them into the command.
973 		 */
974 		while (nq > 0) {
975 			/*
976 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
977 			 * around the Ingress Queue ID array if necessary) and
978 			 * insert them into the firmware RSS command at the
979 			 * current 3-tuple position within the commad.
980 			 */
981 			u16 qbuf[3];
982 			u16 *qbp = qbuf;
983 			int nqbuf = min(3, nq);
984 
985 			nq -= nqbuf;
986 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
987 			while (nqbuf) {
988 				nqbuf--;
989 				*qbp++ = *rsp++;
990 				if (rsp >= rsp_end)
991 					rsp = rspq;
992 			}
993 			*qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
994 					    FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
995 					    FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
996 		}
997 
998 		/*
999 		 * Send this portion of the RRS table update to the firmware;
1000 		 * bail out on any errors.
1001 		 */
1002 		ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1003 		if (ret)
1004 			return ret;
1005 	}
1006 	return 0;
1007 }
1008 
1009 /**
1010  *	t4vf_alloc_vi - allocate a virtual interface on a port
1011  *	@adapter: the adapter
1012  *	@port_id: physical port associated with the VI
1013  *
1014  *	Allocate a new Virtual Interface and bind it to the indicated
1015  *	physical port.  Return the new Virtual Interface Identifier on
1016  *	success, or a [negative] error number on failure.
1017  */
1018 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1019 {
1020 	struct fw_vi_cmd cmd, rpl;
1021 	int v;
1022 
1023 	/*
1024 	 * Execute a VI command to allocate Virtual Interface and return its
1025 	 * VIID.
1026 	 */
1027 	memset(&cmd, 0, sizeof(cmd));
1028 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1029 				    FW_CMD_REQUEST_F |
1030 				    FW_CMD_WRITE_F |
1031 				    FW_CMD_EXEC_F);
1032 	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1033 					 FW_VI_CMD_ALLOC_F);
1034 	cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1035 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1036 	if (v)
1037 		return v;
1038 
1039 	return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1040 }
1041 
1042 /**
1043  *	t4vf_free_vi -- free a virtual interface
1044  *	@adapter: the adapter
1045  *	@viid: the virtual interface identifier
1046  *
1047  *	Free a previously allocated Virtual Interface.  Return an error on
1048  *	failure.
1049  */
1050 int t4vf_free_vi(struct adapter *adapter, int viid)
1051 {
1052 	struct fw_vi_cmd cmd;
1053 
1054 	/*
1055 	 * Execute a VI command to free the Virtual Interface.
1056 	 */
1057 	memset(&cmd, 0, sizeof(cmd));
1058 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1059 				    FW_CMD_REQUEST_F |
1060 				    FW_CMD_EXEC_F);
1061 	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1062 					 FW_VI_CMD_FREE_F);
1063 	cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1064 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1065 }
1066 
1067 /**
1068  *	t4vf_enable_vi - enable/disable a virtual interface
1069  *	@adapter: the adapter
1070  *	@viid: the Virtual Interface ID
1071  *	@rx_en: 1=enable Rx, 0=disable Rx
1072  *	@tx_en: 1=enable Tx, 0=disable Tx
1073  *
1074  *	Enables/disables a virtual interface.
1075  */
1076 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1077 		   bool rx_en, bool tx_en)
1078 {
1079 	struct fw_vi_enable_cmd cmd;
1080 
1081 	memset(&cmd, 0, sizeof(cmd));
1082 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1083 				     FW_CMD_REQUEST_F |
1084 				     FW_CMD_EXEC_F |
1085 				     FW_VI_ENABLE_CMD_VIID_V(viid));
1086 	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1087 				       FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1088 				       FW_LEN16(cmd));
1089 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1090 }
1091 
1092 /**
1093  *	t4vf_identify_port - identify a VI's port by blinking its LED
1094  *	@adapter: the adapter
1095  *	@viid: the Virtual Interface ID
1096  *	@nblinks: how many times to blink LED at 2.5 Hz
1097  *
1098  *	Identifies a VI's port by blinking its LED.
1099  */
1100 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1101 		       unsigned int nblinks)
1102 {
1103 	struct fw_vi_enable_cmd cmd;
1104 
1105 	memset(&cmd, 0, sizeof(cmd));
1106 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1107 				     FW_CMD_REQUEST_F |
1108 				     FW_CMD_EXEC_F |
1109 				     FW_VI_ENABLE_CMD_VIID_V(viid));
1110 	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1111 				       FW_LEN16(cmd));
1112 	cmd.blinkdur = cpu_to_be16(nblinks);
1113 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1114 }
1115 
1116 /**
1117  *	t4vf_set_rxmode - set Rx properties of a virtual interface
1118  *	@adapter: the adapter
1119  *	@viid: the VI id
1120  *	@mtu: the new MTU or -1 for no change
1121  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1122  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1123  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1124  *	@vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1125  *		-1 no change
1126  *
1127  *	Sets Rx properties of a virtual interface.
1128  */
1129 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1130 		    int mtu, int promisc, int all_multi, int bcast, int vlanex,
1131 		    bool sleep_ok)
1132 {
1133 	struct fw_vi_rxmode_cmd cmd;
1134 
1135 	/* convert to FW values */
1136 	if (mtu < 0)
1137 		mtu = FW_VI_RXMODE_CMD_MTU_M;
1138 	if (promisc < 0)
1139 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1140 	if (all_multi < 0)
1141 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1142 	if (bcast < 0)
1143 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1144 	if (vlanex < 0)
1145 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1146 
1147 	memset(&cmd, 0, sizeof(cmd));
1148 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1149 				     FW_CMD_REQUEST_F |
1150 				     FW_CMD_WRITE_F |
1151 				     FW_VI_RXMODE_CMD_VIID_V(viid));
1152 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1153 	cmd.mtu_to_vlanexen =
1154 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1155 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1156 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1157 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1158 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1159 	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1160 }
1161 
1162 /**
1163  *	t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1164  *	@adapter: the adapter
1165  *	@viid: the Virtual Interface Identifier
1166  *	@free: if true any existing filters for this VI id are first removed
1167  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
1168  *	@addr: the MAC address(es)
1169  *	@idx: where to store the index of each allocated filter
1170  *	@hash: pointer to hash address filter bitmap
1171  *	@sleep_ok: call is allowed to sleep
1172  *
1173  *	Allocates an exact-match filter for each of the supplied addresses and
1174  *	sets it to the corresponding address.  If @idx is not %NULL it should
1175  *	have at least @naddr entries, each of which will be set to the index of
1176  *	the filter allocated for the corresponding MAC address.  If a filter
1177  *	could not be allocated for an address its index is set to 0xffff.
1178  *	If @hash is not %NULL addresses that fail to allocate an exact filter
1179  *	are hashed and update the hash filter bitmap pointed at by @hash.
1180  *
1181  *	Returns a negative error number or the number of filters allocated.
1182  */
1183 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1184 			unsigned int naddr, const u8 **addr, u16 *idx,
1185 			u64 *hash, bool sleep_ok)
1186 {
1187 	int offset, ret = 0;
1188 	unsigned nfilters = 0;
1189 	unsigned int rem = naddr;
1190 	struct fw_vi_mac_cmd cmd, rpl;
1191 	unsigned int max_naddr = is_t4(adapter->params.chip) ?
1192 				 NUM_MPS_CLS_SRAM_L_INSTANCES :
1193 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1194 
1195 	if (naddr > max_naddr)
1196 		return -EINVAL;
1197 
1198 	for (offset = 0; offset < naddr; /**/) {
1199 		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1200 					 ? rem
1201 					 : ARRAY_SIZE(cmd.u.exact));
1202 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1203 						     u.exact[fw_naddr]), 16);
1204 		struct fw_vi_mac_exact *p;
1205 		int i;
1206 
1207 		memset(&cmd, 0, sizeof(cmd));
1208 		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1209 					     FW_CMD_REQUEST_F |
1210 					     FW_CMD_WRITE_F |
1211 					     (free ? FW_CMD_EXEC_F : 0) |
1212 					     FW_VI_MAC_CMD_VIID_V(viid));
1213 		cmd.freemacs_to_len16 =
1214 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1215 				    FW_CMD_LEN16_V(len16));
1216 
1217 		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1218 			p->valid_to_idx = cpu_to_be16(
1219 				FW_VI_MAC_CMD_VALID_F |
1220 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1221 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1222 		}
1223 
1224 
1225 		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1226 					sleep_ok);
1227 		if (ret && ret != -ENOMEM)
1228 			break;
1229 
1230 		for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1231 			u16 index = FW_VI_MAC_CMD_IDX_G(
1232 				be16_to_cpu(p->valid_to_idx));
1233 
1234 			if (idx)
1235 				idx[offset+i] =
1236 					(index >= max_naddr
1237 					 ? 0xffff
1238 					 : index);
1239 			if (index < max_naddr)
1240 				nfilters++;
1241 			else if (hash)
1242 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1243 		}
1244 
1245 		free = false;
1246 		offset += fw_naddr;
1247 		rem -= fw_naddr;
1248 	}
1249 
1250 	/*
1251 	 * If there were no errors or we merely ran out of room in our MAC
1252 	 * address arena, return the number of filters actually written.
1253 	 */
1254 	if (ret == 0 || ret == -ENOMEM)
1255 		ret = nfilters;
1256 	return ret;
1257 }
1258 
1259 /**
1260  *	t4vf_change_mac - modifies the exact-match filter for a MAC address
1261  *	@adapter: the adapter
1262  *	@viid: the Virtual Interface ID
1263  *	@idx: index of existing filter for old value of MAC address, or -1
1264  *	@addr: the new MAC address value
1265  *	@persist: if idx < 0, the new MAC allocation should be persistent
1266  *
1267  *	Modifies an exact-match filter and sets it to the new MAC address.
1268  *	Note that in general it is not possible to modify the value of a given
1269  *	filter so the generic way to modify an address filter is to free the
1270  *	one being used by the old address value and allocate a new filter for
1271  *	the new address value.  @idx can be -1 if the address is a new
1272  *	addition.
1273  *
1274  *	Returns a negative error number or the index of the filter with the new
1275  *	MAC value.
1276  */
1277 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1278 		    int idx, const u8 *addr, bool persist)
1279 {
1280 	int ret;
1281 	struct fw_vi_mac_cmd cmd, rpl;
1282 	struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1283 	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1284 					     u.exact[1]), 16);
1285 	unsigned int max_naddr = is_t4(adapter->params.chip) ?
1286 				 NUM_MPS_CLS_SRAM_L_INSTANCES :
1287 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1288 
1289 	/*
1290 	 * If this is a new allocation, determine whether it should be
1291 	 * persistent (across a "freemacs" operation) or not.
1292 	 */
1293 	if (idx < 0)
1294 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1295 
1296 	memset(&cmd, 0, sizeof(cmd));
1297 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1298 				     FW_CMD_REQUEST_F |
1299 				     FW_CMD_WRITE_F |
1300 				     FW_VI_MAC_CMD_VIID_V(viid));
1301 	cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1302 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1303 				      FW_VI_MAC_CMD_IDX_V(idx));
1304 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
1305 
1306 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1307 	if (ret == 0) {
1308 		p = &rpl.u.exact[0];
1309 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1310 		if (ret >= max_naddr)
1311 			ret = -ENOMEM;
1312 	}
1313 	return ret;
1314 }
1315 
1316 /**
1317  *	t4vf_set_addr_hash - program the MAC inexact-match hash filter
1318  *	@adapter: the adapter
1319  *	@viid: the Virtual Interface Identifier
1320  *	@ucast: whether the hash filter should also match unicast addresses
1321  *	@vec: the value to be written to the hash filter
1322  *	@sleep_ok: call is allowed to sleep
1323  *
1324  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
1325  */
1326 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1327 		       bool ucast, u64 vec, bool sleep_ok)
1328 {
1329 	struct fw_vi_mac_cmd cmd;
1330 	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1331 					     u.exact[0]), 16);
1332 
1333 	memset(&cmd, 0, sizeof(cmd));
1334 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1335 				     FW_CMD_REQUEST_F |
1336 				     FW_CMD_WRITE_F |
1337 				     FW_VI_ENABLE_CMD_VIID_V(viid));
1338 	cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1339 					    FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1340 					    FW_CMD_LEN16_V(len16));
1341 	cmd.u.hash.hashvec = cpu_to_be64(vec);
1342 	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1343 }
1344 
1345 /**
1346  *	t4vf_get_port_stats - collect "port" statistics
1347  *	@adapter: the adapter
1348  *	@pidx: the port index
1349  *	@s: the stats structure to fill
1350  *
1351  *	Collect statistics for the "port"'s Virtual Interface.
1352  */
1353 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1354 			struct t4vf_port_stats *s)
1355 {
1356 	struct port_info *pi = adap2pinfo(adapter, pidx);
1357 	struct fw_vi_stats_vf fwstats;
1358 	unsigned int rem = VI_VF_NUM_STATS;
1359 	__be64 *fwsp = (__be64 *)&fwstats;
1360 
1361 	/*
1362 	 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1363 	 * commands.  We could use a Work Request and get all of them at once
1364 	 * but that's an asynchronous interface which is awkward to use.
1365 	 */
1366 	while (rem) {
1367 		unsigned int ix = VI_VF_NUM_STATS - rem;
1368 		unsigned int nstats = min(6U, rem);
1369 		struct fw_vi_stats_cmd cmd, rpl;
1370 		size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1371 			      sizeof(struct fw_vi_stats_ctl));
1372 		size_t len16 = DIV_ROUND_UP(len, 16);
1373 		int ret;
1374 
1375 		memset(&cmd, 0, sizeof(cmd));
1376 		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1377 					     FW_VI_STATS_CMD_VIID_V(pi->viid) |
1378 					     FW_CMD_REQUEST_F |
1379 					     FW_CMD_READ_F);
1380 		cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1381 		cmd.u.ctl.nstats_ix =
1382 			cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1383 				    FW_VI_STATS_CMD_NSTATS_V(nstats));
1384 		ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1385 		if (ret)
1386 			return ret;
1387 
1388 		memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1389 
1390 		rem -= nstats;
1391 		fwsp += nstats;
1392 	}
1393 
1394 	/*
1395 	 * Translate firmware statistics into host native statistics.
1396 	 */
1397 	s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1398 	s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1399 	s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1400 	s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1401 	s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1402 	s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1403 	s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1404 	s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1405 	s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1406 
1407 	s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1408 	s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1409 	s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1410 	s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1411 	s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1412 	s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1413 
1414 	s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1415 
1416 	return 0;
1417 }
1418 
1419 /**
1420  *	t4vf_iq_free - free an ingress queue and its free lists
1421  *	@adapter: the adapter
1422  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1423  *	@iqid: ingress queue ID
1424  *	@fl0id: FL0 queue ID or 0xffff if no attached FL0
1425  *	@fl1id: FL1 queue ID or 0xffff if no attached FL1
1426  *
1427  *	Frees an ingress queue and its associated free lists, if any.
1428  */
1429 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1430 		 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1431 {
1432 	struct fw_iq_cmd cmd;
1433 
1434 	memset(&cmd, 0, sizeof(cmd));
1435 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1436 				    FW_CMD_REQUEST_F |
1437 				    FW_CMD_EXEC_F);
1438 	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1439 					 FW_LEN16(cmd));
1440 	cmd.type_to_iqandstindex =
1441 		cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1442 
1443 	cmd.iqid = cpu_to_be16(iqid);
1444 	cmd.fl0id = cpu_to_be16(fl0id);
1445 	cmd.fl1id = cpu_to_be16(fl1id);
1446 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1447 }
1448 
1449 /**
1450  *	t4vf_eth_eq_free - free an Ethernet egress queue
1451  *	@adapter: the adapter
1452  *	@eqid: egress queue ID
1453  *
1454  *	Frees an Ethernet egress queue.
1455  */
1456 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1457 {
1458 	struct fw_eq_eth_cmd cmd;
1459 
1460 	memset(&cmd, 0, sizeof(cmd));
1461 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1462 				    FW_CMD_REQUEST_F |
1463 				    FW_CMD_EXEC_F);
1464 	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1465 					 FW_LEN16(cmd));
1466 	cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1467 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1468 }
1469 
1470 /**
1471  *	t4vf_handle_fw_rpl - process a firmware reply message
1472  *	@adapter: the adapter
1473  *	@rpl: start of the firmware message
1474  *
1475  *	Processes a firmware message, such as link state change messages.
1476  */
1477 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1478 {
1479 	const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
1480 	u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
1481 
1482 	switch (opcode) {
1483 	case FW_PORT_CMD: {
1484 		/*
1485 		 * Link/module state change message.
1486 		 */
1487 		const struct fw_port_cmd *port_cmd =
1488 			(const struct fw_port_cmd *)rpl;
1489 		u32 stat, mod;
1490 		int action, port_id, link_ok, speed, fc, pidx;
1491 
1492 		/*
1493 		 * Extract various fields from port status change message.
1494 		 */
1495 		action = FW_PORT_CMD_ACTION_G(
1496 			be32_to_cpu(port_cmd->action_to_len16));
1497 		if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1498 			dev_err(adapter->pdev_dev,
1499 				"Unknown firmware PORT reply action %x\n",
1500 				action);
1501 			break;
1502 		}
1503 
1504 		port_id = FW_PORT_CMD_PORTID_G(
1505 			be32_to_cpu(port_cmd->op_to_portid));
1506 
1507 		stat = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1508 		link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
1509 		speed = 0;
1510 		fc = 0;
1511 		if (stat & FW_PORT_CMD_RXPAUSE_F)
1512 			fc |= PAUSE_RX;
1513 		if (stat & FW_PORT_CMD_TXPAUSE_F)
1514 			fc |= PAUSE_TX;
1515 		if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1516 			speed = 100;
1517 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1518 			speed = 1000;
1519 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1520 			speed = 10000;
1521 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1522 			speed = 40000;
1523 
1524 		/*
1525 		 * Scan all of our "ports" (Virtual Interfaces) looking for
1526 		 * those bound to the physical port which has changed.  If
1527 		 * our recorded state doesn't match the current state,
1528 		 * signal that change to the OS code.
1529 		 */
1530 		for_each_port(adapter, pidx) {
1531 			struct port_info *pi = adap2pinfo(adapter, pidx);
1532 			struct link_config *lc;
1533 
1534 			if (pi->port_id != port_id)
1535 				continue;
1536 
1537 			lc = &pi->link_cfg;
1538 
1539 			mod = FW_PORT_CMD_MODTYPE_G(stat);
1540 			if (mod != pi->mod_type) {
1541 				pi->mod_type = mod;
1542 				t4vf_os_portmod_changed(adapter, pidx);
1543 			}
1544 
1545 			if (link_ok != lc->link_ok || speed != lc->speed ||
1546 			    fc != lc->fc) {
1547 				/* something changed */
1548 				lc->link_ok = link_ok;
1549 				lc->speed = speed;
1550 				lc->fc = fc;
1551 				lc->supported =
1552 					be16_to_cpu(port_cmd->u.info.pcap);
1553 				t4vf_os_link_changed(adapter, pidx, link_ok);
1554 			}
1555 		}
1556 		break;
1557 	}
1558 
1559 	default:
1560 		dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1561 			opcode);
1562 	}
1563 	return 0;
1564 }
1565 
1566 /**
1567  */
1568 int t4vf_prep_adapter(struct adapter *adapter)
1569 {
1570 	int err;
1571 	unsigned int chipid;
1572 
1573 	/* Wait for the device to become ready before proceeding ...
1574 	 */
1575 	err = t4vf_wait_dev_ready(adapter);
1576 	if (err)
1577 		return err;
1578 
1579 	/* Default port and clock for debugging in case we can't reach
1580 	 * firmware.
1581 	 */
1582 	adapter->params.nports = 1;
1583 	adapter->params.vfres.pmask = 1;
1584 	adapter->params.vpd.cclk = 50000;
1585 
1586 	adapter->params.chip = 0;
1587 	switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
1588 	case CHELSIO_T4:
1589 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
1590 		break;
1591 
1592 	case CHELSIO_T5:
1593 		chipid = G_REV(t4_read_reg(adapter, A_PL_VF_REV));
1594 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
1595 		break;
1596 	}
1597 
1598 	return 0;
1599 }
1600