1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/pci.h> 37 38 #include "t4vf_common.h" 39 #include "t4vf_defs.h" 40 41 #include "../cxgb4/t4_regs.h" 42 #include "../cxgb4/t4fw_api.h" 43 44 /* 45 * Wait for the device to become ready (signified by our "who am I" register 46 * returning a value other than all 1's). Return an error if it doesn't 47 * become ready ... 48 */ 49 int t4vf_wait_dev_ready(struct adapter *adapter) 50 { 51 const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI; 52 const u32 notready1 = 0xffffffff; 53 const u32 notready2 = 0xeeeeeeee; 54 u32 val; 55 56 val = t4_read_reg(adapter, whoami); 57 if (val != notready1 && val != notready2) 58 return 0; 59 msleep(500); 60 val = t4_read_reg(adapter, whoami); 61 if (val != notready1 && val != notready2) 62 return 0; 63 else 64 return -EIO; 65 } 66 67 /* 68 * Get the reply to a mailbox command and store it in @rpl in big-endian order 69 * (since the firmware data structures are specified in a big-endian layout). 70 */ 71 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size, 72 u32 mbox_data) 73 { 74 for ( ; size; size -= 8, mbox_data += 8) 75 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data)); 76 } 77 78 /* 79 * Dump contents of mailbox with a leading tag. 80 */ 81 static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data) 82 { 83 dev_err(adapter->pdev_dev, 84 "mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag, 85 (unsigned long long)t4_read_reg64(adapter, mbox_data + 0), 86 (unsigned long long)t4_read_reg64(adapter, mbox_data + 8), 87 (unsigned long long)t4_read_reg64(adapter, mbox_data + 16), 88 (unsigned long long)t4_read_reg64(adapter, mbox_data + 24), 89 (unsigned long long)t4_read_reg64(adapter, mbox_data + 32), 90 (unsigned long long)t4_read_reg64(adapter, mbox_data + 40), 91 (unsigned long long)t4_read_reg64(adapter, mbox_data + 48), 92 (unsigned long long)t4_read_reg64(adapter, mbox_data + 56)); 93 } 94 95 /** 96 * t4vf_wr_mbox_core - send a command to FW through the mailbox 97 * @adapter: the adapter 98 * @cmd: the command to write 99 * @size: command length in bytes 100 * @rpl: where to optionally store the reply 101 * @sleep_ok: if true we may sleep while awaiting command completion 102 * 103 * Sends the given command to FW through the mailbox and waits for the 104 * FW to execute the command. If @rpl is not %NULL it is used to store 105 * the FW's reply to the command. The command and its optional reply 106 * are of the same length. FW can take up to 500 ms to respond. 107 * @sleep_ok determines whether we may sleep while awaiting the response. 108 * If sleeping is allowed we use progressive backoff otherwise we spin. 109 * 110 * The return value is 0 on success or a negative errno on failure. A 111 * failure can happen either because we are not able to execute the 112 * command or FW executes it but signals an error. In the latter case 113 * the return value is the error code indicated by FW (negated). 114 */ 115 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size, 116 void *rpl, bool sleep_ok) 117 { 118 static const int delay[] = { 119 1, 1, 3, 5, 10, 10, 20, 50, 100 120 }; 121 122 u32 v; 123 int i, ms, delay_idx; 124 const __be64 *p; 125 u32 mbox_data = T4VF_MBDATA_BASE_ADDR; 126 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL; 127 128 /* 129 * Commands must be multiples of 16 bytes in length and may not be 130 * larger than the size of the Mailbox Data register array. 131 */ 132 if ((size % 16) != 0 || 133 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4) 134 return -EINVAL; 135 136 /* 137 * Loop trying to get ownership of the mailbox. Return an error 138 * if we can't gain ownership. 139 */ 140 v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl)); 141 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 142 v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl)); 143 if (v != MBOX_OWNER_DRV) 144 return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT; 145 146 /* 147 * Write the command array into the Mailbox Data register array and 148 * transfer ownership of the mailbox to the firmware. 149 * 150 * For the VFs, the Mailbox Data "registers" are actually backed by 151 * T4's "MA" interface rather than PL Registers (as is the case for 152 * the PFs). Because these are in different coherency domains, the 153 * write to the VF's PL-register-backed Mailbox Control can race in 154 * front of the writes to the MA-backed VF Mailbox Data "registers". 155 * So we need to do a read-back on at least one byte of the VF Mailbox 156 * Data registers before doing the write to the VF Mailbox Control 157 * register. 158 */ 159 for (i = 0, p = cmd; i < size; i += 8) 160 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++)); 161 t4_read_reg(adapter, mbox_data); /* flush write */ 162 163 t4_write_reg(adapter, mbox_ctl, 164 MBMSGVALID | MBOWNER(MBOX_OWNER_FW)); 165 t4_read_reg(adapter, mbox_ctl); /* flush write */ 166 167 /* 168 * Spin waiting for firmware to acknowledge processing our command. 169 */ 170 delay_idx = 0; 171 ms = delay[0]; 172 173 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) { 174 if (sleep_ok) { 175 ms = delay[delay_idx]; 176 if (delay_idx < ARRAY_SIZE(delay) - 1) 177 delay_idx++; 178 msleep(ms); 179 } else 180 mdelay(ms); 181 182 /* 183 * If we're the owner, see if this is the reply we wanted. 184 */ 185 v = t4_read_reg(adapter, mbox_ctl); 186 if (MBOWNER_GET(v) == MBOX_OWNER_DRV) { 187 /* 188 * If the Message Valid bit isn't on, revoke ownership 189 * of the mailbox and continue waiting for our reply. 190 */ 191 if ((v & MBMSGVALID) == 0) { 192 t4_write_reg(adapter, mbox_ctl, 193 MBOWNER(MBOX_OWNER_NONE)); 194 continue; 195 } 196 197 /* 198 * We now have our reply. Extract the command return 199 * value, copy the reply back to our caller's buffer 200 * (if specified) and revoke ownership of the mailbox. 201 * We return the (negated) firmware command return 202 * code (this depends on FW_SUCCESS == 0). 203 */ 204 205 /* return value in low-order little-endian word */ 206 v = t4_read_reg(adapter, mbox_data); 207 if (FW_CMD_RETVAL_G(v)) 208 dump_mbox(adapter, "FW Error", mbox_data); 209 210 if (rpl) { 211 /* request bit in high-order BE word */ 212 WARN_ON((be32_to_cpu(*(const u32 *)cmd) 213 & FW_CMD_REQUEST_F) == 0); 214 get_mbox_rpl(adapter, rpl, size, mbox_data); 215 WARN_ON((be32_to_cpu(*(u32 *)rpl) 216 & FW_CMD_REQUEST_F) != 0); 217 } 218 t4_write_reg(adapter, mbox_ctl, 219 MBOWNER(MBOX_OWNER_NONE)); 220 return -FW_CMD_RETVAL_G(v); 221 } 222 } 223 224 /* 225 * We timed out. Return the error ... 226 */ 227 dump_mbox(adapter, "FW Timeout", mbox_data); 228 return -ETIMEDOUT; 229 } 230 231 /** 232 * hash_mac_addr - return the hash value of a MAC address 233 * @addr: the 48-bit Ethernet MAC address 234 * 235 * Hashes a MAC address according to the hash function used by hardware 236 * inexact (hash) address matching. 237 */ 238 static int hash_mac_addr(const u8 *addr) 239 { 240 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; 241 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; 242 a ^= b; 243 a ^= (a >> 12); 244 a ^= (a >> 6); 245 return a & 0x3f; 246 } 247 248 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\ 249 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \ 250 FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG) 251 252 /** 253 * init_link_config - initialize a link's SW state 254 * @lc: structure holding the link state 255 * @caps: link capabilities 256 * 257 * Initializes the SW state maintained for each link, including the link's 258 * capabilities and default speed/flow-control/autonegotiation settings. 259 */ 260 static void init_link_config(struct link_config *lc, unsigned int caps) 261 { 262 lc->supported = caps; 263 lc->requested_speed = 0; 264 lc->speed = 0; 265 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 266 if (lc->supported & FW_PORT_CAP_ANEG) { 267 lc->advertising = lc->supported & ADVERT_MASK; 268 lc->autoneg = AUTONEG_ENABLE; 269 lc->requested_fc |= PAUSE_AUTONEG; 270 } else { 271 lc->advertising = 0; 272 lc->autoneg = AUTONEG_DISABLE; 273 } 274 } 275 276 /** 277 * t4vf_port_init - initialize port hardware/software state 278 * @adapter: the adapter 279 * @pidx: the adapter port index 280 */ 281 int t4vf_port_init(struct adapter *adapter, int pidx) 282 { 283 struct port_info *pi = adap2pinfo(adapter, pidx); 284 struct fw_vi_cmd vi_cmd, vi_rpl; 285 struct fw_port_cmd port_cmd, port_rpl; 286 int v; 287 288 /* 289 * Execute a VI Read command to get our Virtual Interface information 290 * like MAC address, etc. 291 */ 292 memset(&vi_cmd, 0, sizeof(vi_cmd)); 293 vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 294 FW_CMD_REQUEST_F | 295 FW_CMD_READ_F); 296 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd)); 297 vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid)); 298 v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl); 299 if (v) 300 return v; 301 302 BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd)); 303 pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd)); 304 t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac); 305 306 /* 307 * If we don't have read access to our port information, we're done 308 * now. Otherwise, execute a PORT Read command to get it ... 309 */ 310 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT)) 311 return 0; 312 313 memset(&port_cmd, 0, sizeof(port_cmd)); 314 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 315 FW_CMD_REQUEST_F | 316 FW_CMD_READ_F | 317 FW_PORT_CMD_PORTID_V(pi->port_id)); 318 port_cmd.action_to_len16 = 319 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) | 320 FW_LEN16(port_cmd)); 321 v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl); 322 if (v) 323 return v; 324 325 v = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype); 326 pi->port_type = FW_PORT_CMD_PTYPE_G(v); 327 pi->mod_type = FW_PORT_MOD_TYPE_NA; 328 329 init_link_config(&pi->link_cfg, be16_to_cpu(port_rpl.u.info.pcap)); 330 331 return 0; 332 } 333 334 /** 335 * t4vf_fw_reset - issue a reset to FW 336 * @adapter: the adapter 337 * 338 * Issues a reset command to FW. For a Physical Function this would 339 * result in the Firmware reseting all of its state. For a Virtual 340 * Function this just resets the state associated with the VF. 341 */ 342 int t4vf_fw_reset(struct adapter *adapter) 343 { 344 struct fw_reset_cmd cmd; 345 346 memset(&cmd, 0, sizeof(cmd)); 347 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) | 348 FW_CMD_WRITE_F); 349 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 350 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 351 } 352 353 /** 354 * t4vf_query_params - query FW or device parameters 355 * @adapter: the adapter 356 * @nparams: the number of parameters 357 * @params: the parameter names 358 * @vals: the parameter values 359 * 360 * Reads the values of firmware or device parameters. Up to 7 parameters 361 * can be queried at once. 362 */ 363 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams, 364 const u32 *params, u32 *vals) 365 { 366 int i, ret; 367 struct fw_params_cmd cmd, rpl; 368 struct fw_params_param *p; 369 size_t len16; 370 371 if (nparams > 7) 372 return -EINVAL; 373 374 memset(&cmd, 0, sizeof(cmd)); 375 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 376 FW_CMD_REQUEST_F | 377 FW_CMD_READ_F); 378 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, 379 param[nparams].mnem), 16); 380 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); 381 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) 382 p->mnem = htonl(*params++); 383 384 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 385 if (ret == 0) 386 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++) 387 *vals++ = be32_to_cpu(p->val); 388 return ret; 389 } 390 391 /** 392 * t4vf_set_params - sets FW or device parameters 393 * @adapter: the adapter 394 * @nparams: the number of parameters 395 * @params: the parameter names 396 * @vals: the parameter values 397 * 398 * Sets the values of firmware or device parameters. Up to 7 parameters 399 * can be specified at once. 400 */ 401 int t4vf_set_params(struct adapter *adapter, unsigned int nparams, 402 const u32 *params, const u32 *vals) 403 { 404 int i; 405 struct fw_params_cmd cmd; 406 struct fw_params_param *p; 407 size_t len16; 408 409 if (nparams > 7) 410 return -EINVAL; 411 412 memset(&cmd, 0, sizeof(cmd)); 413 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 414 FW_CMD_REQUEST_F | 415 FW_CMD_WRITE_F); 416 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, 417 param[nparams]), 16); 418 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); 419 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) { 420 p->mnem = cpu_to_be32(*params++); 421 p->val = cpu_to_be32(*vals++); 422 } 423 424 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 425 } 426 427 /** 428 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 429 * @adapter: the adapter 430 * @qid: the Queue ID 431 * @qtype: the Ingress or Egress type for @qid 432 * @pbar2_qoffset: BAR2 Queue Offset 433 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 434 * 435 * Returns the BAR2 SGE Queue Registers information associated with the 436 * indicated Absolute Queue ID. These are passed back in return value 437 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 438 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 439 * 440 * This may return an error which indicates that BAR2 SGE Queue 441 * registers aren't available. If an error is not returned, then the 442 * following values are returned: 443 * 444 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 445 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 446 * 447 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 448 * require the "Inferred Queue ID" ability may be used. E.g. the 449 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 450 * then these "Inferred Queue ID" register may not be used. 451 */ 452 int t4_bar2_sge_qregs(struct adapter *adapter, 453 unsigned int qid, 454 enum t4_bar2_qtype qtype, 455 u64 *pbar2_qoffset, 456 unsigned int *pbar2_qid) 457 { 458 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 459 u64 bar2_page_offset, bar2_qoffset; 460 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 461 462 /* T4 doesn't support BAR2 SGE Queue registers. 463 */ 464 if (is_t4(adapter->params.chip)) 465 return -EINVAL; 466 467 /* Get our SGE Page Size parameters. 468 */ 469 page_shift = adapter->params.sge.sge_vf_hps + 10; 470 page_size = 1 << page_shift; 471 472 /* Get the right Queues per Page parameters for our Queue. 473 */ 474 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 475 ? adapter->params.sge.sge_vf_eq_qpp 476 : adapter->params.sge.sge_vf_iq_qpp); 477 qpp_mask = (1 << qpp_shift) - 1; 478 479 /* Calculate the basics of the BAR2 SGE Queue register area: 480 * o The BAR2 page the Queue registers will be in. 481 * o The BAR2 Queue ID. 482 * o The BAR2 Queue ID Offset into the BAR2 page. 483 */ 484 bar2_page_offset = ((qid >> qpp_shift) << page_shift); 485 bar2_qid = qid & qpp_mask; 486 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 487 488 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 489 * hardware will infer the Absolute Queue ID simply from the writes to 490 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 491 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 492 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 493 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 494 * from the BAR2 Page and BAR2 Queue ID. 495 * 496 * One important censequence of this is that some BAR2 SGE registers 497 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 498 * there. But other registers synthesize the SGE Queue ID purely 499 * from the writes to the registers -- the Write Combined Doorbell 500 * Buffer is a good example. These BAR2 SGE Registers are only 501 * available for those BAR2 SGE Register areas where the SGE Absolute 502 * Queue ID can be inferred from simple writes. 503 */ 504 bar2_qoffset = bar2_page_offset; 505 bar2_qinferred = (bar2_qid_offset < page_size); 506 if (bar2_qinferred) { 507 bar2_qoffset += bar2_qid_offset; 508 bar2_qid = 0; 509 } 510 511 *pbar2_qoffset = bar2_qoffset; 512 *pbar2_qid = bar2_qid; 513 return 0; 514 } 515 516 /** 517 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters 518 * @adapter: the adapter 519 * 520 * Retrieves various core SGE parameters in the form of hardware SGE 521 * register values. The caller is responsible for decoding these as 522 * needed. The SGE parameters are stored in @adapter->params.sge. 523 */ 524 int t4vf_get_sge_params(struct adapter *adapter) 525 { 526 struct sge_params *sge_params = &adapter->params.sge; 527 u32 params[7], vals[7]; 528 int v; 529 530 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 531 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL)); 532 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 533 FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE)); 534 params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 535 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0)); 536 params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 537 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1)); 538 params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 539 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1)); 540 params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 541 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3)); 542 params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 543 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5)); 544 v = t4vf_query_params(adapter, 7, params, vals); 545 if (v) 546 return v; 547 sge_params->sge_control = vals[0]; 548 sge_params->sge_host_page_size = vals[1]; 549 sge_params->sge_fl_buffer_size[0] = vals[2]; 550 sge_params->sge_fl_buffer_size[1] = vals[3]; 551 sge_params->sge_timer_value_0_and_1 = vals[4]; 552 sge_params->sge_timer_value_2_and_3 = vals[5]; 553 sge_params->sge_timer_value_4_and_5 = vals[6]; 554 555 /* T4 uses a single control field to specify both the PCIe Padding and 556 * Packing Boundary. T5 introduced the ability to specify these 557 * separately with the Padding Boundary in SGE_CONTROL and and Packing 558 * Boundary in SGE_CONTROL2. So for T5 and later we need to grab 559 * SGE_CONTROL in order to determine how ingress packet data will be 560 * laid out in Packed Buffer Mode. Unfortunately, older versions of 561 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a 562 * failure grabbing it we throw an error since we can't figure out the 563 * right value. 564 */ 565 if (!is_t4(adapter->params.chip)) { 566 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 567 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A)); 568 v = t4vf_query_params(adapter, 1, params, vals); 569 if (v != FW_SUCCESS) { 570 dev_err(adapter->pdev_dev, 571 "Unable to get SGE Control2; " 572 "probably old firmware.\n"); 573 return v; 574 } 575 sge_params->sge_control2 = vals[0]; 576 } 577 578 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 579 FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD)); 580 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 581 FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL)); 582 v = t4vf_query_params(adapter, 2, params, vals); 583 if (v) 584 return v; 585 sge_params->sge_ingress_rx_threshold = vals[0]; 586 sge_params->sge_congestion_control = vals[1]; 587 588 /* For T5 and later we want to use the new BAR2 Doorbells. 589 * Unfortunately, older firmware didn't allow the this register to be 590 * read. 591 */ 592 if (!is_t4(adapter->params.chip)) { 593 u32 whoami; 594 unsigned int pf, s_hps, s_qpp; 595 596 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 597 FW_PARAMS_PARAM_XYZ_V( 598 SGE_EGRESS_QUEUES_PER_PAGE_VF_A)); 599 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | 600 FW_PARAMS_PARAM_XYZ_V( 601 SGE_INGRESS_QUEUES_PER_PAGE_VF_A)); 602 v = t4vf_query_params(adapter, 2, params, vals); 603 if (v != FW_SUCCESS) { 604 dev_warn(adapter->pdev_dev, 605 "Unable to get VF SGE Queues/Page; " 606 "probably old firmware.\n"); 607 return v; 608 } 609 sge_params->sge_egress_queues_per_page = vals[0]; 610 sge_params->sge_ingress_queues_per_page = vals[1]; 611 612 /* We need the Queues/Page for our VF. This is based on the 613 * PF from which we're instantiated and is indexed in the 614 * register we just read. Do it once here so other code in 615 * the driver can just use it. 616 */ 617 whoami = t4_read_reg(adapter, 618 T4VF_PL_BASE_ADDR + A_PL_VF_WHOAMI); 619 pf = SOURCEPF_GET(whoami); 620 621 s_hps = (HOSTPAGESIZEPF0_S + 622 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf); 623 sge_params->sge_vf_hps = 624 ((sge_params->sge_host_page_size >> s_hps) 625 & HOSTPAGESIZEPF0_M); 626 627 s_qpp = (QUEUESPERPAGEPF0_S + 628 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf); 629 sge_params->sge_vf_eq_qpp = 630 ((sge_params->sge_egress_queues_per_page >> s_qpp) 631 & QUEUESPERPAGEPF0_MASK); 632 sge_params->sge_vf_iq_qpp = 633 ((sge_params->sge_ingress_queues_per_page >> s_qpp) 634 & QUEUESPERPAGEPF0_MASK); 635 } 636 637 return 0; 638 } 639 640 /** 641 * t4vf_get_vpd_params - retrieve device VPD paremeters 642 * @adapter: the adapter 643 * 644 * Retrives various device Vital Product Data parameters. The parameters 645 * are stored in @adapter->params.vpd. 646 */ 647 int t4vf_get_vpd_params(struct adapter *adapter) 648 { 649 struct vpd_params *vpd_params = &adapter->params.vpd; 650 u32 params[7], vals[7]; 651 int v; 652 653 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 654 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 655 v = t4vf_query_params(adapter, 1, params, vals); 656 if (v) 657 return v; 658 vpd_params->cclk = vals[0]; 659 660 return 0; 661 } 662 663 /** 664 * t4vf_get_dev_params - retrieve device paremeters 665 * @adapter: the adapter 666 * 667 * Retrives various device parameters. The parameters are stored in 668 * @adapter->params.dev. 669 */ 670 int t4vf_get_dev_params(struct adapter *adapter) 671 { 672 struct dev_params *dev_params = &adapter->params.dev; 673 u32 params[7], vals[7]; 674 int v; 675 676 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 677 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV)); 678 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 679 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV)); 680 v = t4vf_query_params(adapter, 2, params, vals); 681 if (v) 682 return v; 683 dev_params->fwrev = vals[0]; 684 dev_params->tprev = vals[1]; 685 686 return 0; 687 } 688 689 /** 690 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration 691 * @adapter: the adapter 692 * 693 * Retrieves global RSS mode and parameters with which we have to live 694 * and stores them in the @adapter's RSS parameters. 695 */ 696 int t4vf_get_rss_glb_config(struct adapter *adapter) 697 { 698 struct rss_params *rss = &adapter->params.rss; 699 struct fw_rss_glb_config_cmd cmd, rpl; 700 int v; 701 702 /* 703 * Execute an RSS Global Configuration read command to retrieve 704 * our RSS configuration. 705 */ 706 memset(&cmd, 0, sizeof(cmd)); 707 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 708 FW_CMD_REQUEST_F | 709 FW_CMD_READ_F); 710 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 711 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 712 if (v) 713 return v; 714 715 /* 716 * Transate the big-endian RSS Global Configuration into our 717 * cpu-endian format based on the RSS mode. We also do first level 718 * filtering at this point to weed out modes which don't support 719 * VF Drivers ... 720 */ 721 rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G( 722 be32_to_cpu(rpl.u.manual.mode_pkd)); 723 switch (rss->mode) { 724 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 725 u32 word = be32_to_cpu( 726 rpl.u.basicvirtual.synmapen_to_hashtoeplitz); 727 728 rss->u.basicvirtual.synmapen = 729 ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0); 730 rss->u.basicvirtual.syn4tupenipv6 = 731 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0); 732 rss->u.basicvirtual.syn2tupenipv6 = 733 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0); 734 rss->u.basicvirtual.syn4tupenipv4 = 735 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0); 736 rss->u.basicvirtual.syn2tupenipv4 = 737 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0); 738 739 rss->u.basicvirtual.ofdmapen = 740 ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0); 741 742 rss->u.basicvirtual.tnlmapen = 743 ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0); 744 rss->u.basicvirtual.tnlalllookup = 745 ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0); 746 747 rss->u.basicvirtual.hashtoeplitz = 748 ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0); 749 750 /* we need at least Tunnel Map Enable to be set */ 751 if (!rss->u.basicvirtual.tnlmapen) 752 return -EINVAL; 753 break; 754 } 755 756 default: 757 /* all unknown/unsupported RSS modes result in an error */ 758 return -EINVAL; 759 } 760 761 return 0; 762 } 763 764 /** 765 * t4vf_get_vfres - retrieve VF resource limits 766 * @adapter: the adapter 767 * 768 * Retrieves configured resource limits and capabilities for a virtual 769 * function. The results are stored in @adapter->vfres. 770 */ 771 int t4vf_get_vfres(struct adapter *adapter) 772 { 773 struct vf_resources *vfres = &adapter->params.vfres; 774 struct fw_pfvf_cmd cmd, rpl; 775 int v; 776 u32 word; 777 778 /* 779 * Execute PFVF Read command to get VF resource limits; bail out early 780 * with error on command failure. 781 */ 782 memset(&cmd, 0, sizeof(cmd)); 783 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 784 FW_CMD_REQUEST_F | 785 FW_CMD_READ_F); 786 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 787 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 788 if (v) 789 return v; 790 791 /* 792 * Extract VF resource limits and return success. 793 */ 794 word = be32_to_cpu(rpl.niqflint_niq); 795 vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); 796 vfres->niq = FW_PFVF_CMD_NIQ_G(word); 797 798 word = be32_to_cpu(rpl.type_to_neq); 799 vfres->neq = FW_PFVF_CMD_NEQ_G(word); 800 vfres->pmask = FW_PFVF_CMD_PMASK_G(word); 801 802 word = be32_to_cpu(rpl.tc_to_nexactf); 803 vfres->tc = FW_PFVF_CMD_TC_G(word); 804 vfres->nvi = FW_PFVF_CMD_NVI_G(word); 805 vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); 806 807 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 808 vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); 809 vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); 810 vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); 811 812 return 0; 813 } 814 815 /** 816 * t4vf_read_rss_vi_config - read a VI's RSS configuration 817 * @adapter: the adapter 818 * @viid: Virtual Interface ID 819 * @config: pointer to host-native VI RSS Configuration buffer 820 * 821 * Reads the Virtual Interface's RSS configuration information and 822 * translates it into CPU-native format. 823 */ 824 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid, 825 union rss_vi_config *config) 826 { 827 struct fw_rss_vi_config_cmd cmd, rpl; 828 int v; 829 830 memset(&cmd, 0, sizeof(cmd)); 831 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 832 FW_CMD_REQUEST_F | 833 FW_CMD_READ_F | 834 FW_RSS_VI_CONFIG_CMD_VIID(viid)); 835 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 836 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 837 if (v) 838 return v; 839 840 switch (adapter->params.rss.mode) { 841 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 842 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen); 843 844 config->basicvirtual.ip6fourtupen = 845 ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0); 846 config->basicvirtual.ip6twotupen = 847 ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0); 848 config->basicvirtual.ip4fourtupen = 849 ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0); 850 config->basicvirtual.ip4twotupen = 851 ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0); 852 config->basicvirtual.udpen = 853 ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0); 854 config->basicvirtual.defaultq = 855 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word); 856 break; 857 } 858 859 default: 860 return -EINVAL; 861 } 862 863 return 0; 864 } 865 866 /** 867 * t4vf_write_rss_vi_config - write a VI's RSS configuration 868 * @adapter: the adapter 869 * @viid: Virtual Interface ID 870 * @config: pointer to host-native VI RSS Configuration buffer 871 * 872 * Write the Virtual Interface's RSS configuration information 873 * (translating it into firmware-native format before writing). 874 */ 875 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid, 876 union rss_vi_config *config) 877 { 878 struct fw_rss_vi_config_cmd cmd, rpl; 879 880 memset(&cmd, 0, sizeof(cmd)); 881 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 882 FW_CMD_REQUEST_F | 883 FW_CMD_WRITE_F | 884 FW_RSS_VI_CONFIG_CMD_VIID(viid)); 885 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 886 switch (adapter->params.rss.mode) { 887 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 888 u32 word = 0; 889 890 if (config->basicvirtual.ip6fourtupen) 891 word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F; 892 if (config->basicvirtual.ip6twotupen) 893 word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F; 894 if (config->basicvirtual.ip4fourtupen) 895 word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F; 896 if (config->basicvirtual.ip4twotupen) 897 word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F; 898 if (config->basicvirtual.udpen) 899 word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F; 900 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V( 901 config->basicvirtual.defaultq); 902 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word); 903 break; 904 } 905 906 default: 907 return -EINVAL; 908 } 909 910 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 911 } 912 913 /** 914 * t4vf_config_rss_range - configure a portion of the RSS mapping table 915 * @adapter: the adapter 916 * @viid: Virtual Interface of RSS Table Slice 917 * @start: starting entry in the table to write 918 * @n: how many table entries to write 919 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table 920 * @nrspq: number of values in @rspq 921 * 922 * Programs the selected part of the VI's RSS mapping table with the 923 * provided values. If @nrspq < @n the supplied values are used repeatedly 924 * until the full table range is populated. 925 * 926 * The caller must ensure the values in @rspq are in the range 0..1023. 927 */ 928 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid, 929 int start, int n, const u16 *rspq, int nrspq) 930 { 931 const u16 *rsp = rspq; 932 const u16 *rsp_end = rspq+nrspq; 933 struct fw_rss_ind_tbl_cmd cmd; 934 935 /* 936 * Initialize firmware command template to write the RSS table. 937 */ 938 memset(&cmd, 0, sizeof(cmd)); 939 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 940 FW_CMD_REQUEST_F | 941 FW_CMD_WRITE_F | 942 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 943 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 944 945 /* 946 * Each firmware RSS command can accommodate up to 32 RSS Ingress 947 * Queue Identifiers. These Ingress Queue IDs are packed three to 948 * a 32-bit word as 10-bit values with the upper remaining 2 bits 949 * reserved. 950 */ 951 while (n > 0) { 952 __be32 *qp = &cmd.iq0_to_iq2; 953 int nq = min(n, 32); 954 int ret; 955 956 /* 957 * Set up the firmware RSS command header to send the next 958 * "nq" Ingress Queue IDs to the firmware. 959 */ 960 cmd.niqid = cpu_to_be16(nq); 961 cmd.startidx = cpu_to_be16(start); 962 963 /* 964 * "nq" more done for the start of the next loop. 965 */ 966 start += nq; 967 n -= nq; 968 969 /* 970 * While there are still Ingress Queue IDs to stuff into the 971 * current firmware RSS command, retrieve them from the 972 * Ingress Queue ID array and insert them into the command. 973 */ 974 while (nq > 0) { 975 /* 976 * Grab up to the next 3 Ingress Queue IDs (wrapping 977 * around the Ingress Queue ID array if necessary) and 978 * insert them into the firmware RSS command at the 979 * current 3-tuple position within the commad. 980 */ 981 u16 qbuf[3]; 982 u16 *qbp = qbuf; 983 int nqbuf = min(3, nq); 984 985 nq -= nqbuf; 986 qbuf[0] = qbuf[1] = qbuf[2] = 0; 987 while (nqbuf) { 988 nqbuf--; 989 *qbp++ = *rsp++; 990 if (rsp >= rsp_end) 991 rsp = rspq; 992 } 993 *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) | 994 FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) | 995 FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2])); 996 } 997 998 /* 999 * Send this portion of the RRS table update to the firmware; 1000 * bail out on any errors. 1001 */ 1002 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1003 if (ret) 1004 return ret; 1005 } 1006 return 0; 1007 } 1008 1009 /** 1010 * t4vf_alloc_vi - allocate a virtual interface on a port 1011 * @adapter: the adapter 1012 * @port_id: physical port associated with the VI 1013 * 1014 * Allocate a new Virtual Interface and bind it to the indicated 1015 * physical port. Return the new Virtual Interface Identifier on 1016 * success, or a [negative] error number on failure. 1017 */ 1018 int t4vf_alloc_vi(struct adapter *adapter, int port_id) 1019 { 1020 struct fw_vi_cmd cmd, rpl; 1021 int v; 1022 1023 /* 1024 * Execute a VI command to allocate Virtual Interface and return its 1025 * VIID. 1026 */ 1027 memset(&cmd, 0, sizeof(cmd)); 1028 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 1029 FW_CMD_REQUEST_F | 1030 FW_CMD_WRITE_F | 1031 FW_CMD_EXEC_F); 1032 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | 1033 FW_VI_CMD_ALLOC_F); 1034 cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id); 1035 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 1036 if (v) 1037 return v; 1038 1039 return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid)); 1040 } 1041 1042 /** 1043 * t4vf_free_vi -- free a virtual interface 1044 * @adapter: the adapter 1045 * @viid: the virtual interface identifier 1046 * 1047 * Free a previously allocated Virtual Interface. Return an error on 1048 * failure. 1049 */ 1050 int t4vf_free_vi(struct adapter *adapter, int viid) 1051 { 1052 struct fw_vi_cmd cmd; 1053 1054 /* 1055 * Execute a VI command to free the Virtual Interface. 1056 */ 1057 memset(&cmd, 0, sizeof(cmd)); 1058 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 1059 FW_CMD_REQUEST_F | 1060 FW_CMD_EXEC_F); 1061 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | 1062 FW_VI_CMD_FREE_F); 1063 cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 1064 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1065 } 1066 1067 /** 1068 * t4vf_enable_vi - enable/disable a virtual interface 1069 * @adapter: the adapter 1070 * @viid: the Virtual Interface ID 1071 * @rx_en: 1=enable Rx, 0=disable Rx 1072 * @tx_en: 1=enable Tx, 0=disable Tx 1073 * 1074 * Enables/disables a virtual interface. 1075 */ 1076 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid, 1077 bool rx_en, bool tx_en) 1078 { 1079 struct fw_vi_enable_cmd cmd; 1080 1081 memset(&cmd, 0, sizeof(cmd)); 1082 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 1083 FW_CMD_REQUEST_F | 1084 FW_CMD_EXEC_F | 1085 FW_VI_ENABLE_CMD_VIID_V(viid)); 1086 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 1087 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 1088 FW_LEN16(cmd)); 1089 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1090 } 1091 1092 /** 1093 * t4vf_identify_port - identify a VI's port by blinking its LED 1094 * @adapter: the adapter 1095 * @viid: the Virtual Interface ID 1096 * @nblinks: how many times to blink LED at 2.5 Hz 1097 * 1098 * Identifies a VI's port by blinking its LED. 1099 */ 1100 int t4vf_identify_port(struct adapter *adapter, unsigned int viid, 1101 unsigned int nblinks) 1102 { 1103 struct fw_vi_enable_cmd cmd; 1104 1105 memset(&cmd, 0, sizeof(cmd)); 1106 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 1107 FW_CMD_REQUEST_F | 1108 FW_CMD_EXEC_F | 1109 FW_VI_ENABLE_CMD_VIID_V(viid)); 1110 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | 1111 FW_LEN16(cmd)); 1112 cmd.blinkdur = cpu_to_be16(nblinks); 1113 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1114 } 1115 1116 /** 1117 * t4vf_set_rxmode - set Rx properties of a virtual interface 1118 * @adapter: the adapter 1119 * @viid: the VI id 1120 * @mtu: the new MTU or -1 for no change 1121 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 1122 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 1123 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 1124 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it, 1125 * -1 no change 1126 * 1127 * Sets Rx properties of a virtual interface. 1128 */ 1129 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid, 1130 int mtu, int promisc, int all_multi, int bcast, int vlanex, 1131 bool sleep_ok) 1132 { 1133 struct fw_vi_rxmode_cmd cmd; 1134 1135 /* convert to FW values */ 1136 if (mtu < 0) 1137 mtu = FW_VI_RXMODE_CMD_MTU_M; 1138 if (promisc < 0) 1139 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 1140 if (all_multi < 0) 1141 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 1142 if (bcast < 0) 1143 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 1144 if (vlanex < 0) 1145 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 1146 1147 memset(&cmd, 0, sizeof(cmd)); 1148 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 1149 FW_CMD_REQUEST_F | 1150 FW_CMD_WRITE_F | 1151 FW_VI_RXMODE_CMD_VIID_V(viid)); 1152 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 1153 cmd.mtu_to_vlanexen = 1154 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 1155 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 1156 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 1157 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 1158 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 1159 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); 1160 } 1161 1162 /** 1163 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses 1164 * @adapter: the adapter 1165 * @viid: the Virtual Interface Identifier 1166 * @free: if true any existing filters for this VI id are first removed 1167 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 1168 * @addr: the MAC address(es) 1169 * @idx: where to store the index of each allocated filter 1170 * @hash: pointer to hash address filter bitmap 1171 * @sleep_ok: call is allowed to sleep 1172 * 1173 * Allocates an exact-match filter for each of the supplied addresses and 1174 * sets it to the corresponding address. If @idx is not %NULL it should 1175 * have at least @naddr entries, each of which will be set to the index of 1176 * the filter allocated for the corresponding MAC address. If a filter 1177 * could not be allocated for an address its index is set to 0xffff. 1178 * If @hash is not %NULL addresses that fail to allocate an exact filter 1179 * are hashed and update the hash filter bitmap pointed at by @hash. 1180 * 1181 * Returns a negative error number or the number of filters allocated. 1182 */ 1183 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free, 1184 unsigned int naddr, const u8 **addr, u16 *idx, 1185 u64 *hash, bool sleep_ok) 1186 { 1187 int offset, ret = 0; 1188 unsigned nfilters = 0; 1189 unsigned int rem = naddr; 1190 struct fw_vi_mac_cmd cmd, rpl; 1191 unsigned int max_naddr = is_t4(adapter->params.chip) ? 1192 NUM_MPS_CLS_SRAM_L_INSTANCES : 1193 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 1194 1195 if (naddr > max_naddr) 1196 return -EINVAL; 1197 1198 for (offset = 0; offset < naddr; /**/) { 1199 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) 1200 ? rem 1201 : ARRAY_SIZE(cmd.u.exact)); 1202 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1203 u.exact[fw_naddr]), 16); 1204 struct fw_vi_mac_exact *p; 1205 int i; 1206 1207 memset(&cmd, 0, sizeof(cmd)); 1208 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 1209 FW_CMD_REQUEST_F | 1210 FW_CMD_WRITE_F | 1211 (free ? FW_CMD_EXEC_F : 0) | 1212 FW_VI_MAC_CMD_VIID_V(viid)); 1213 cmd.freemacs_to_len16 = 1214 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 1215 FW_CMD_LEN16_V(len16)); 1216 1217 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) { 1218 p->valid_to_idx = cpu_to_be16( 1219 FW_VI_MAC_CMD_VALID_F | 1220 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 1221 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 1222 } 1223 1224 1225 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl, 1226 sleep_ok); 1227 if (ret && ret != -ENOMEM) 1228 break; 1229 1230 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) { 1231 u16 index = FW_VI_MAC_CMD_IDX_G( 1232 be16_to_cpu(p->valid_to_idx)); 1233 1234 if (idx) 1235 idx[offset+i] = 1236 (index >= max_naddr 1237 ? 0xffff 1238 : index); 1239 if (index < max_naddr) 1240 nfilters++; 1241 else if (hash) 1242 *hash |= (1ULL << hash_mac_addr(addr[offset+i])); 1243 } 1244 1245 free = false; 1246 offset += fw_naddr; 1247 rem -= fw_naddr; 1248 } 1249 1250 /* 1251 * If there were no errors or we merely ran out of room in our MAC 1252 * address arena, return the number of filters actually written. 1253 */ 1254 if (ret == 0 || ret == -ENOMEM) 1255 ret = nfilters; 1256 return ret; 1257 } 1258 1259 /** 1260 * t4vf_change_mac - modifies the exact-match filter for a MAC address 1261 * @adapter: the adapter 1262 * @viid: the Virtual Interface ID 1263 * @idx: index of existing filter for old value of MAC address, or -1 1264 * @addr: the new MAC address value 1265 * @persist: if idx < 0, the new MAC allocation should be persistent 1266 * 1267 * Modifies an exact-match filter and sets it to the new MAC address. 1268 * Note that in general it is not possible to modify the value of a given 1269 * filter so the generic way to modify an address filter is to free the 1270 * one being used by the old address value and allocate a new filter for 1271 * the new address value. @idx can be -1 if the address is a new 1272 * addition. 1273 * 1274 * Returns a negative error number or the index of the filter with the new 1275 * MAC value. 1276 */ 1277 int t4vf_change_mac(struct adapter *adapter, unsigned int viid, 1278 int idx, const u8 *addr, bool persist) 1279 { 1280 int ret; 1281 struct fw_vi_mac_cmd cmd, rpl; 1282 struct fw_vi_mac_exact *p = &cmd.u.exact[0]; 1283 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1284 u.exact[1]), 16); 1285 unsigned int max_naddr = is_t4(adapter->params.chip) ? 1286 NUM_MPS_CLS_SRAM_L_INSTANCES : 1287 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 1288 1289 /* 1290 * If this is a new allocation, determine whether it should be 1291 * persistent (across a "freemacs" operation) or not. 1292 */ 1293 if (idx < 0) 1294 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 1295 1296 memset(&cmd, 0, sizeof(cmd)); 1297 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 1298 FW_CMD_REQUEST_F | 1299 FW_CMD_WRITE_F | 1300 FW_VI_MAC_CMD_VIID_V(viid)); 1301 cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); 1302 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 1303 FW_VI_MAC_CMD_IDX_V(idx)); 1304 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 1305 1306 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 1307 if (ret == 0) { 1308 p = &rpl.u.exact[0]; 1309 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 1310 if (ret >= max_naddr) 1311 ret = -ENOMEM; 1312 } 1313 return ret; 1314 } 1315 1316 /** 1317 * t4vf_set_addr_hash - program the MAC inexact-match hash filter 1318 * @adapter: the adapter 1319 * @viid: the Virtual Interface Identifier 1320 * @ucast: whether the hash filter should also match unicast addresses 1321 * @vec: the value to be written to the hash filter 1322 * @sleep_ok: call is allowed to sleep 1323 * 1324 * Sets the 64-bit inexact-match hash filter for a virtual interface. 1325 */ 1326 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid, 1327 bool ucast, u64 vec, bool sleep_ok) 1328 { 1329 struct fw_vi_mac_cmd cmd; 1330 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1331 u.exact[0]), 16); 1332 1333 memset(&cmd, 0, sizeof(cmd)); 1334 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 1335 FW_CMD_REQUEST_F | 1336 FW_CMD_WRITE_F | 1337 FW_VI_ENABLE_CMD_VIID_V(viid)); 1338 cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 1339 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 1340 FW_CMD_LEN16_V(len16)); 1341 cmd.u.hash.hashvec = cpu_to_be64(vec); 1342 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); 1343 } 1344 1345 /** 1346 * t4vf_get_port_stats - collect "port" statistics 1347 * @adapter: the adapter 1348 * @pidx: the port index 1349 * @s: the stats structure to fill 1350 * 1351 * Collect statistics for the "port"'s Virtual Interface. 1352 */ 1353 int t4vf_get_port_stats(struct adapter *adapter, int pidx, 1354 struct t4vf_port_stats *s) 1355 { 1356 struct port_info *pi = adap2pinfo(adapter, pidx); 1357 struct fw_vi_stats_vf fwstats; 1358 unsigned int rem = VI_VF_NUM_STATS; 1359 __be64 *fwsp = (__be64 *)&fwstats; 1360 1361 /* 1362 * Grab the Virtual Interface statistics a chunk at a time via mailbox 1363 * commands. We could use a Work Request and get all of them at once 1364 * but that's an asynchronous interface which is awkward to use. 1365 */ 1366 while (rem) { 1367 unsigned int ix = VI_VF_NUM_STATS - rem; 1368 unsigned int nstats = min(6U, rem); 1369 struct fw_vi_stats_cmd cmd, rpl; 1370 size_t len = (offsetof(struct fw_vi_stats_cmd, u) + 1371 sizeof(struct fw_vi_stats_ctl)); 1372 size_t len16 = DIV_ROUND_UP(len, 16); 1373 int ret; 1374 1375 memset(&cmd, 0, sizeof(cmd)); 1376 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) | 1377 FW_VI_STATS_CMD_VIID_V(pi->viid) | 1378 FW_CMD_REQUEST_F | 1379 FW_CMD_READ_F); 1380 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); 1381 cmd.u.ctl.nstats_ix = 1382 cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) | 1383 FW_VI_STATS_CMD_NSTATS_V(nstats)); 1384 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl); 1385 if (ret) 1386 return ret; 1387 1388 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats); 1389 1390 rem -= nstats; 1391 fwsp += nstats; 1392 } 1393 1394 /* 1395 * Translate firmware statistics into host native statistics. 1396 */ 1397 s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes); 1398 s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames); 1399 s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes); 1400 s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames); 1401 s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes); 1402 s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames); 1403 s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames); 1404 s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes); 1405 s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames); 1406 1407 s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes); 1408 s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames); 1409 s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes); 1410 s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames); 1411 s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes); 1412 s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames); 1413 1414 s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames); 1415 1416 return 0; 1417 } 1418 1419 /** 1420 * t4vf_iq_free - free an ingress queue and its free lists 1421 * @adapter: the adapter 1422 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 1423 * @iqid: ingress queue ID 1424 * @fl0id: FL0 queue ID or 0xffff if no attached FL0 1425 * @fl1id: FL1 queue ID or 0xffff if no attached FL1 1426 * 1427 * Frees an ingress queue and its associated free lists, if any. 1428 */ 1429 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype, 1430 unsigned int iqid, unsigned int fl0id, unsigned int fl1id) 1431 { 1432 struct fw_iq_cmd cmd; 1433 1434 memset(&cmd, 0, sizeof(cmd)); 1435 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | 1436 FW_CMD_REQUEST_F | 1437 FW_CMD_EXEC_F); 1438 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | 1439 FW_LEN16(cmd)); 1440 cmd.type_to_iqandstindex = 1441 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 1442 1443 cmd.iqid = cpu_to_be16(iqid); 1444 cmd.fl0id = cpu_to_be16(fl0id); 1445 cmd.fl1id = cpu_to_be16(fl1id); 1446 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1447 } 1448 1449 /** 1450 * t4vf_eth_eq_free - free an Ethernet egress queue 1451 * @adapter: the adapter 1452 * @eqid: egress queue ID 1453 * 1454 * Frees an Ethernet egress queue. 1455 */ 1456 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid) 1457 { 1458 struct fw_eq_eth_cmd cmd; 1459 1460 memset(&cmd, 0, sizeof(cmd)); 1461 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 1462 FW_CMD_REQUEST_F | 1463 FW_CMD_EXEC_F); 1464 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | 1465 FW_LEN16(cmd)); 1466 cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 1467 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1468 } 1469 1470 /** 1471 * t4vf_handle_fw_rpl - process a firmware reply message 1472 * @adapter: the adapter 1473 * @rpl: start of the firmware message 1474 * 1475 * Processes a firmware message, such as link state change messages. 1476 */ 1477 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl) 1478 { 1479 const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl; 1480 u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi)); 1481 1482 switch (opcode) { 1483 case FW_PORT_CMD: { 1484 /* 1485 * Link/module state change message. 1486 */ 1487 const struct fw_port_cmd *port_cmd = 1488 (const struct fw_port_cmd *)rpl; 1489 u32 stat, mod; 1490 int action, port_id, link_ok, speed, fc, pidx; 1491 1492 /* 1493 * Extract various fields from port status change message. 1494 */ 1495 action = FW_PORT_CMD_ACTION_G( 1496 be32_to_cpu(port_cmd->action_to_len16)); 1497 if (action != FW_PORT_ACTION_GET_PORT_INFO) { 1498 dev_err(adapter->pdev_dev, 1499 "Unknown firmware PORT reply action %x\n", 1500 action); 1501 break; 1502 } 1503 1504 port_id = FW_PORT_CMD_PORTID_G( 1505 be32_to_cpu(port_cmd->op_to_portid)); 1506 1507 stat = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype); 1508 link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0; 1509 speed = 0; 1510 fc = 0; 1511 if (stat & FW_PORT_CMD_RXPAUSE_F) 1512 fc |= PAUSE_RX; 1513 if (stat & FW_PORT_CMD_TXPAUSE_F) 1514 fc |= PAUSE_TX; 1515 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 1516 speed = 100; 1517 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 1518 speed = 1000; 1519 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 1520 speed = 10000; 1521 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 1522 speed = 40000; 1523 1524 /* 1525 * Scan all of our "ports" (Virtual Interfaces) looking for 1526 * those bound to the physical port which has changed. If 1527 * our recorded state doesn't match the current state, 1528 * signal that change to the OS code. 1529 */ 1530 for_each_port(adapter, pidx) { 1531 struct port_info *pi = adap2pinfo(adapter, pidx); 1532 struct link_config *lc; 1533 1534 if (pi->port_id != port_id) 1535 continue; 1536 1537 lc = &pi->link_cfg; 1538 1539 mod = FW_PORT_CMD_MODTYPE_G(stat); 1540 if (mod != pi->mod_type) { 1541 pi->mod_type = mod; 1542 t4vf_os_portmod_changed(adapter, pidx); 1543 } 1544 1545 if (link_ok != lc->link_ok || speed != lc->speed || 1546 fc != lc->fc) { 1547 /* something changed */ 1548 lc->link_ok = link_ok; 1549 lc->speed = speed; 1550 lc->fc = fc; 1551 lc->supported = 1552 be16_to_cpu(port_cmd->u.info.pcap); 1553 t4vf_os_link_changed(adapter, pidx, link_ok); 1554 } 1555 } 1556 break; 1557 } 1558 1559 default: 1560 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n", 1561 opcode); 1562 } 1563 return 0; 1564 } 1565 1566 /** 1567 */ 1568 int t4vf_prep_adapter(struct adapter *adapter) 1569 { 1570 int err; 1571 unsigned int chipid; 1572 1573 /* Wait for the device to become ready before proceeding ... 1574 */ 1575 err = t4vf_wait_dev_ready(adapter); 1576 if (err) 1577 return err; 1578 1579 /* Default port and clock for debugging in case we can't reach 1580 * firmware. 1581 */ 1582 adapter->params.nports = 1; 1583 adapter->params.vfres.pmask = 1; 1584 adapter->params.vpd.cclk = 50000; 1585 1586 adapter->params.chip = 0; 1587 switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) { 1588 case CHELSIO_T4: 1589 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0); 1590 break; 1591 1592 case CHELSIO_T5: 1593 chipid = G_REV(t4_read_reg(adapter, A_PL_VF_REV)); 1594 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid); 1595 break; 1596 } 1597 1598 return 0; 1599 } 1600