1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/pci.h> 37 38 #include "t4vf_common.h" 39 #include "t4vf_defs.h" 40 41 #include "../cxgb4/t4_regs.h" 42 #include "../cxgb4/t4fw_api.h" 43 44 /* 45 * Wait for the device to become ready (signified by our "who am I" register 46 * returning a value other than all 1's). Return an error if it doesn't 47 * become ready ... 48 */ 49 int t4vf_wait_dev_ready(struct adapter *adapter) 50 { 51 const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI; 52 const u32 notready1 = 0xffffffff; 53 const u32 notready2 = 0xeeeeeeee; 54 u32 val; 55 56 val = t4_read_reg(adapter, whoami); 57 if (val != notready1 && val != notready2) 58 return 0; 59 msleep(500); 60 val = t4_read_reg(adapter, whoami); 61 if (val != notready1 && val != notready2) 62 return 0; 63 else 64 return -EIO; 65 } 66 67 /* 68 * Get the reply to a mailbox command and store it in @rpl in big-endian order 69 * (since the firmware data structures are specified in a big-endian layout). 70 */ 71 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size, 72 u32 mbox_data) 73 { 74 for ( ; size; size -= 8, mbox_data += 8) 75 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data)); 76 } 77 78 /* 79 * Dump contents of mailbox with a leading tag. 80 */ 81 static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data) 82 { 83 dev_err(adapter->pdev_dev, 84 "mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag, 85 (unsigned long long)t4_read_reg64(adapter, mbox_data + 0), 86 (unsigned long long)t4_read_reg64(adapter, mbox_data + 8), 87 (unsigned long long)t4_read_reg64(adapter, mbox_data + 16), 88 (unsigned long long)t4_read_reg64(adapter, mbox_data + 24), 89 (unsigned long long)t4_read_reg64(adapter, mbox_data + 32), 90 (unsigned long long)t4_read_reg64(adapter, mbox_data + 40), 91 (unsigned long long)t4_read_reg64(adapter, mbox_data + 48), 92 (unsigned long long)t4_read_reg64(adapter, mbox_data + 56)); 93 } 94 95 /** 96 * t4vf_wr_mbox_core - send a command to FW through the mailbox 97 * @adapter: the adapter 98 * @cmd: the command to write 99 * @size: command length in bytes 100 * @rpl: where to optionally store the reply 101 * @sleep_ok: if true we may sleep while awaiting command completion 102 * 103 * Sends the given command to FW through the mailbox and waits for the 104 * FW to execute the command. If @rpl is not %NULL it is used to store 105 * the FW's reply to the command. The command and its optional reply 106 * are of the same length. FW can take up to 500 ms to respond. 107 * @sleep_ok determines whether we may sleep while awaiting the response. 108 * If sleeping is allowed we use progressive backoff otherwise we spin. 109 * 110 * The return value is 0 on success or a negative errno on failure. A 111 * failure can happen either because we are not able to execute the 112 * command or FW executes it but signals an error. In the latter case 113 * the return value is the error code indicated by FW (negated). 114 */ 115 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size, 116 void *rpl, bool sleep_ok) 117 { 118 static const int delay[] = { 119 1, 1, 3, 5, 10, 10, 20, 50, 100 120 }; 121 122 u32 v; 123 int i, ms, delay_idx; 124 const __be64 *p; 125 u32 mbox_data = T4VF_MBDATA_BASE_ADDR; 126 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL; 127 128 /* 129 * Commands must be multiples of 16 bytes in length and may not be 130 * larger than the size of the Mailbox Data register array. 131 */ 132 if ((size % 16) != 0 || 133 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4) 134 return -EINVAL; 135 136 /* 137 * Loop trying to get ownership of the mailbox. Return an error 138 * if we can't gain ownership. 139 */ 140 v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl)); 141 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 142 v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl)); 143 if (v != MBOX_OWNER_DRV) 144 return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT; 145 146 /* 147 * Write the command array into the Mailbox Data register array and 148 * transfer ownership of the mailbox to the firmware. 149 * 150 * For the VFs, the Mailbox Data "registers" are actually backed by 151 * T4's "MA" interface rather than PL Registers (as is the case for 152 * the PFs). Because these are in different coherency domains, the 153 * write to the VF's PL-register-backed Mailbox Control can race in 154 * front of the writes to the MA-backed VF Mailbox Data "registers". 155 * So we need to do a read-back on at least one byte of the VF Mailbox 156 * Data registers before doing the write to the VF Mailbox Control 157 * register. 158 */ 159 for (i = 0, p = cmd; i < size; i += 8) 160 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++)); 161 t4_read_reg(adapter, mbox_data); /* flush write */ 162 163 t4_write_reg(adapter, mbox_ctl, 164 MBMSGVALID | MBOWNER(MBOX_OWNER_FW)); 165 t4_read_reg(adapter, mbox_ctl); /* flush write */ 166 167 /* 168 * Spin waiting for firmware to acknowledge processing our command. 169 */ 170 delay_idx = 0; 171 ms = delay[0]; 172 173 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) { 174 if (sleep_ok) { 175 ms = delay[delay_idx]; 176 if (delay_idx < ARRAY_SIZE(delay) - 1) 177 delay_idx++; 178 msleep(ms); 179 } else 180 mdelay(ms); 181 182 /* 183 * If we're the owner, see if this is the reply we wanted. 184 */ 185 v = t4_read_reg(adapter, mbox_ctl); 186 if (MBOWNER_GET(v) == MBOX_OWNER_DRV) { 187 /* 188 * If the Message Valid bit isn't on, revoke ownership 189 * of the mailbox and continue waiting for our reply. 190 */ 191 if ((v & MBMSGVALID) == 0) { 192 t4_write_reg(adapter, mbox_ctl, 193 MBOWNER(MBOX_OWNER_NONE)); 194 continue; 195 } 196 197 /* 198 * We now have our reply. Extract the command return 199 * value, copy the reply back to our caller's buffer 200 * (if specified) and revoke ownership of the mailbox. 201 * We return the (negated) firmware command return 202 * code (this depends on FW_SUCCESS == 0). 203 */ 204 205 /* return value in low-order little-endian word */ 206 v = t4_read_reg(adapter, mbox_data); 207 if (FW_CMD_RETVAL_GET(v)) 208 dump_mbox(adapter, "FW Error", mbox_data); 209 210 if (rpl) { 211 /* request bit in high-order BE word */ 212 WARN_ON((be32_to_cpu(*(const u32 *)cmd) 213 & FW_CMD_REQUEST) == 0); 214 get_mbox_rpl(adapter, rpl, size, mbox_data); 215 WARN_ON((be32_to_cpu(*(u32 *)rpl) 216 & FW_CMD_REQUEST) != 0); 217 } 218 t4_write_reg(adapter, mbox_ctl, 219 MBOWNER(MBOX_OWNER_NONE)); 220 return -FW_CMD_RETVAL_GET(v); 221 } 222 } 223 224 /* 225 * We timed out. Return the error ... 226 */ 227 dump_mbox(adapter, "FW Timeout", mbox_data); 228 return -ETIMEDOUT; 229 } 230 231 /** 232 * hash_mac_addr - return the hash value of a MAC address 233 * @addr: the 48-bit Ethernet MAC address 234 * 235 * Hashes a MAC address according to the hash function used by hardware 236 * inexact (hash) address matching. 237 */ 238 static int hash_mac_addr(const u8 *addr) 239 { 240 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; 241 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; 242 a ^= b; 243 a ^= (a >> 12); 244 a ^= (a >> 6); 245 return a & 0x3f; 246 } 247 248 /** 249 * init_link_config - initialize a link's SW state 250 * @lc: structure holding the link state 251 * @caps: link capabilities 252 * 253 * Initializes the SW state maintained for each link, including the link's 254 * capabilities and default speed/flow-control/autonegotiation settings. 255 */ 256 static void init_link_config(struct link_config *lc, unsigned int caps) 257 { 258 lc->supported = caps; 259 lc->requested_speed = 0; 260 lc->speed = 0; 261 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 262 if (lc->supported & SUPPORTED_Autoneg) { 263 lc->advertising = lc->supported; 264 lc->autoneg = AUTONEG_ENABLE; 265 lc->requested_fc |= PAUSE_AUTONEG; 266 } else { 267 lc->advertising = 0; 268 lc->autoneg = AUTONEG_DISABLE; 269 } 270 } 271 272 /** 273 * t4vf_port_init - initialize port hardware/software state 274 * @adapter: the adapter 275 * @pidx: the adapter port index 276 */ 277 int t4vf_port_init(struct adapter *adapter, int pidx) 278 { 279 struct port_info *pi = adap2pinfo(adapter, pidx); 280 struct fw_vi_cmd vi_cmd, vi_rpl; 281 struct fw_port_cmd port_cmd, port_rpl; 282 int v; 283 u32 word; 284 285 /* 286 * Execute a VI Read command to get our Virtual Interface information 287 * like MAC address, etc. 288 */ 289 memset(&vi_cmd, 0, sizeof(vi_cmd)); 290 vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) | 291 FW_CMD_REQUEST | 292 FW_CMD_READ); 293 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd)); 294 vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(pi->viid)); 295 v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl); 296 if (v) 297 return v; 298 299 BUG_ON(pi->port_id != FW_VI_CMD_PORTID_GET(vi_rpl.portid_pkd)); 300 pi->rss_size = FW_VI_CMD_RSSSIZE_GET(be16_to_cpu(vi_rpl.rsssize_pkd)); 301 t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac); 302 303 /* 304 * If we don't have read access to our port information, we're done 305 * now. Otherwise, execute a PORT Read command to get it ... 306 */ 307 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT)) 308 return 0; 309 310 memset(&port_cmd, 0, sizeof(port_cmd)); 311 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP(FW_PORT_CMD) | 312 FW_CMD_REQUEST | 313 FW_CMD_READ | 314 FW_PORT_CMD_PORTID(pi->port_id)); 315 port_cmd.action_to_len16 = 316 cpu_to_be32(FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) | 317 FW_LEN16(port_cmd)); 318 v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl); 319 if (v) 320 return v; 321 322 v = 0; 323 word = be16_to_cpu(port_rpl.u.info.pcap); 324 if (word & FW_PORT_CAP_SPEED_100M) 325 v |= SUPPORTED_100baseT_Full; 326 if (word & FW_PORT_CAP_SPEED_1G) 327 v |= SUPPORTED_1000baseT_Full; 328 if (word & FW_PORT_CAP_SPEED_10G) 329 v |= SUPPORTED_10000baseT_Full; 330 if (word & FW_PORT_CAP_SPEED_40G) 331 v |= SUPPORTED_40000baseSR4_Full; 332 if (word & FW_PORT_CAP_ANEG) 333 v |= SUPPORTED_Autoneg; 334 init_link_config(&pi->link_cfg, v); 335 336 return 0; 337 } 338 339 /** 340 * t4vf_fw_reset - issue a reset to FW 341 * @adapter: the adapter 342 * 343 * Issues a reset command to FW. For a Physical Function this would 344 * result in the Firmware reseting all of its state. For a Virtual 345 * Function this just resets the state associated with the VF. 346 */ 347 int t4vf_fw_reset(struct adapter *adapter) 348 { 349 struct fw_reset_cmd cmd; 350 351 memset(&cmd, 0, sizeof(cmd)); 352 cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RESET_CMD) | 353 FW_CMD_WRITE); 354 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 355 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 356 } 357 358 /** 359 * t4vf_query_params - query FW or device parameters 360 * @adapter: the adapter 361 * @nparams: the number of parameters 362 * @params: the parameter names 363 * @vals: the parameter values 364 * 365 * Reads the values of firmware or device parameters. Up to 7 parameters 366 * can be queried at once. 367 */ 368 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams, 369 const u32 *params, u32 *vals) 370 { 371 int i, ret; 372 struct fw_params_cmd cmd, rpl; 373 struct fw_params_param *p; 374 size_t len16; 375 376 if (nparams > 7) 377 return -EINVAL; 378 379 memset(&cmd, 0, sizeof(cmd)); 380 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) | 381 FW_CMD_REQUEST | 382 FW_CMD_READ); 383 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, 384 param[nparams].mnem), 16); 385 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16)); 386 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) 387 p->mnem = htonl(*params++); 388 389 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 390 if (ret == 0) 391 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++) 392 *vals++ = be32_to_cpu(p->val); 393 return ret; 394 } 395 396 /** 397 * t4vf_set_params - sets FW or device parameters 398 * @adapter: the adapter 399 * @nparams: the number of parameters 400 * @params: the parameter names 401 * @vals: the parameter values 402 * 403 * Sets the values of firmware or device parameters. Up to 7 parameters 404 * can be specified at once. 405 */ 406 int t4vf_set_params(struct adapter *adapter, unsigned int nparams, 407 const u32 *params, const u32 *vals) 408 { 409 int i; 410 struct fw_params_cmd cmd; 411 struct fw_params_param *p; 412 size_t len16; 413 414 if (nparams > 7) 415 return -EINVAL; 416 417 memset(&cmd, 0, sizeof(cmd)); 418 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) | 419 FW_CMD_REQUEST | 420 FW_CMD_WRITE); 421 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, 422 param[nparams]), 16); 423 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16)); 424 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) { 425 p->mnem = cpu_to_be32(*params++); 426 p->val = cpu_to_be32(*vals++); 427 } 428 429 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 430 } 431 432 /** 433 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters 434 * @adapter: the adapter 435 * 436 * Retrieves various core SGE parameters in the form of hardware SGE 437 * register values. The caller is responsible for decoding these as 438 * needed. The SGE parameters are stored in @adapter->params.sge. 439 */ 440 int t4vf_get_sge_params(struct adapter *adapter) 441 { 442 struct sge_params *sge_params = &adapter->params.sge; 443 u32 params[7], vals[7]; 444 int v; 445 446 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 447 FW_PARAMS_PARAM_XYZ(SGE_CONTROL)); 448 params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 449 FW_PARAMS_PARAM_XYZ(SGE_HOST_PAGE_SIZE)); 450 params[2] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 451 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE0)); 452 params[3] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 453 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE1)); 454 params[4] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 455 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_0_AND_1)); 456 params[5] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 457 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_2_AND_3)); 458 params[6] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 459 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_4_AND_5)); 460 v = t4vf_query_params(adapter, 7, params, vals); 461 if (v) 462 return v; 463 sge_params->sge_control = vals[0]; 464 sge_params->sge_host_page_size = vals[1]; 465 sge_params->sge_fl_buffer_size[0] = vals[2]; 466 sge_params->sge_fl_buffer_size[1] = vals[3]; 467 sge_params->sge_timer_value_0_and_1 = vals[4]; 468 sge_params->sge_timer_value_2_and_3 = vals[5]; 469 sge_params->sge_timer_value_4_and_5 = vals[6]; 470 471 /* T4 uses a single control field to specify both the PCIe Padding and 472 * Packing Boundary. T5 introduced the ability to specify these 473 * separately with the Padding Boundary in SGE_CONTROL and and Packing 474 * Boundary in SGE_CONTROL2. So for T5 and later we need to grab 475 * SGE_CONTROL in order to determine how ingress packet data will be 476 * laid out in Packed Buffer Mode. Unfortunately, older versions of 477 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a 478 * failure grabbing it we throw an error since we can't figure out the 479 * right value. 480 */ 481 if (!is_t4(adapter->params.chip)) { 482 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 483 FW_PARAMS_PARAM_XYZ(SGE_CONTROL2_A)); 484 v = t4vf_query_params(adapter, 1, params, vals); 485 if (v != FW_SUCCESS) { 486 dev_err(adapter->pdev_dev, 487 "Unable to get SGE Control2; " 488 "probably old firmware.\n"); 489 return v; 490 } 491 sge_params->sge_control2 = vals[0]; 492 } 493 494 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 495 FW_PARAMS_PARAM_XYZ(SGE_INGRESS_RX_THRESHOLD)); 496 params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 497 FW_PARAMS_PARAM_XYZ(SGE_CONM_CTRL)); 498 v = t4vf_query_params(adapter, 2, params, vals); 499 if (v) 500 return v; 501 sge_params->sge_ingress_rx_threshold = vals[0]; 502 sge_params->sge_congestion_control = vals[1]; 503 504 return 0; 505 } 506 507 /** 508 * t4vf_get_vpd_params - retrieve device VPD paremeters 509 * @adapter: the adapter 510 * 511 * Retrives various device Vital Product Data parameters. The parameters 512 * are stored in @adapter->params.vpd. 513 */ 514 int t4vf_get_vpd_params(struct adapter *adapter) 515 { 516 struct vpd_params *vpd_params = &adapter->params.vpd; 517 u32 params[7], vals[7]; 518 int v; 519 520 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 521 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK)); 522 v = t4vf_query_params(adapter, 1, params, vals); 523 if (v) 524 return v; 525 vpd_params->cclk = vals[0]; 526 527 return 0; 528 } 529 530 /** 531 * t4vf_get_dev_params - retrieve device paremeters 532 * @adapter: the adapter 533 * 534 * Retrives various device parameters. The parameters are stored in 535 * @adapter->params.dev. 536 */ 537 int t4vf_get_dev_params(struct adapter *adapter) 538 { 539 struct dev_params *dev_params = &adapter->params.dev; 540 u32 params[7], vals[7]; 541 int v; 542 543 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 544 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV)); 545 params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 546 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV)); 547 v = t4vf_query_params(adapter, 2, params, vals); 548 if (v) 549 return v; 550 dev_params->fwrev = vals[0]; 551 dev_params->tprev = vals[1]; 552 553 return 0; 554 } 555 556 /** 557 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration 558 * @adapter: the adapter 559 * 560 * Retrieves global RSS mode and parameters with which we have to live 561 * and stores them in the @adapter's RSS parameters. 562 */ 563 int t4vf_get_rss_glb_config(struct adapter *adapter) 564 { 565 struct rss_params *rss = &adapter->params.rss; 566 struct fw_rss_glb_config_cmd cmd, rpl; 567 int v; 568 569 /* 570 * Execute an RSS Global Configuration read command to retrieve 571 * our RSS configuration. 572 */ 573 memset(&cmd, 0, sizeof(cmd)); 574 cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) | 575 FW_CMD_REQUEST | 576 FW_CMD_READ); 577 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 578 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 579 if (v) 580 return v; 581 582 /* 583 * Transate the big-endian RSS Global Configuration into our 584 * cpu-endian format based on the RSS mode. We also do first level 585 * filtering at this point to weed out modes which don't support 586 * VF Drivers ... 587 */ 588 rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_GET( 589 be32_to_cpu(rpl.u.manual.mode_pkd)); 590 switch (rss->mode) { 591 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 592 u32 word = be32_to_cpu( 593 rpl.u.basicvirtual.synmapen_to_hashtoeplitz); 594 595 rss->u.basicvirtual.synmapen = 596 ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0); 597 rss->u.basicvirtual.syn4tupenipv6 = 598 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0); 599 rss->u.basicvirtual.syn2tupenipv6 = 600 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0); 601 rss->u.basicvirtual.syn4tupenipv4 = 602 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0); 603 rss->u.basicvirtual.syn2tupenipv4 = 604 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0); 605 606 rss->u.basicvirtual.ofdmapen = 607 ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0); 608 609 rss->u.basicvirtual.tnlmapen = 610 ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0); 611 rss->u.basicvirtual.tnlalllookup = 612 ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0); 613 614 rss->u.basicvirtual.hashtoeplitz = 615 ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0); 616 617 /* we need at least Tunnel Map Enable to be set */ 618 if (!rss->u.basicvirtual.tnlmapen) 619 return -EINVAL; 620 break; 621 } 622 623 default: 624 /* all unknown/unsupported RSS modes result in an error */ 625 return -EINVAL; 626 } 627 628 return 0; 629 } 630 631 /** 632 * t4vf_get_vfres - retrieve VF resource limits 633 * @adapter: the adapter 634 * 635 * Retrieves configured resource limits and capabilities for a virtual 636 * function. The results are stored in @adapter->vfres. 637 */ 638 int t4vf_get_vfres(struct adapter *adapter) 639 { 640 struct vf_resources *vfres = &adapter->params.vfres; 641 struct fw_pfvf_cmd cmd, rpl; 642 int v; 643 u32 word; 644 645 /* 646 * Execute PFVF Read command to get VF resource limits; bail out early 647 * with error on command failure. 648 */ 649 memset(&cmd, 0, sizeof(cmd)); 650 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PFVF_CMD) | 651 FW_CMD_REQUEST | 652 FW_CMD_READ); 653 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 654 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 655 if (v) 656 return v; 657 658 /* 659 * Extract VF resource limits and return success. 660 */ 661 word = be32_to_cpu(rpl.niqflint_niq); 662 vfres->niqflint = FW_PFVF_CMD_NIQFLINT_GET(word); 663 vfres->niq = FW_PFVF_CMD_NIQ_GET(word); 664 665 word = be32_to_cpu(rpl.type_to_neq); 666 vfres->neq = FW_PFVF_CMD_NEQ_GET(word); 667 vfres->pmask = FW_PFVF_CMD_PMASK_GET(word); 668 669 word = be32_to_cpu(rpl.tc_to_nexactf); 670 vfres->tc = FW_PFVF_CMD_TC_GET(word); 671 vfres->nvi = FW_PFVF_CMD_NVI_GET(word); 672 vfres->nexactf = FW_PFVF_CMD_NEXACTF_GET(word); 673 674 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 675 vfres->r_caps = FW_PFVF_CMD_R_CAPS_GET(word); 676 vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_GET(word); 677 vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_GET(word); 678 679 return 0; 680 } 681 682 /** 683 * t4vf_read_rss_vi_config - read a VI's RSS configuration 684 * @adapter: the adapter 685 * @viid: Virtual Interface ID 686 * @config: pointer to host-native VI RSS Configuration buffer 687 * 688 * Reads the Virtual Interface's RSS configuration information and 689 * translates it into CPU-native format. 690 */ 691 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid, 692 union rss_vi_config *config) 693 { 694 struct fw_rss_vi_config_cmd cmd, rpl; 695 int v; 696 697 memset(&cmd, 0, sizeof(cmd)); 698 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | 699 FW_CMD_REQUEST | 700 FW_CMD_READ | 701 FW_RSS_VI_CONFIG_CMD_VIID(viid)); 702 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 703 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 704 if (v) 705 return v; 706 707 switch (adapter->params.rss.mode) { 708 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 709 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen); 710 711 config->basicvirtual.ip6fourtupen = 712 ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) != 0); 713 config->basicvirtual.ip6twotupen = 714 ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) != 0); 715 config->basicvirtual.ip4fourtupen = 716 ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) != 0); 717 config->basicvirtual.ip4twotupen = 718 ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) != 0); 719 config->basicvirtual.udpen = 720 ((word & FW_RSS_VI_CONFIG_CMD_UDPEN) != 0); 721 config->basicvirtual.defaultq = 722 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_GET(word); 723 break; 724 } 725 726 default: 727 return -EINVAL; 728 } 729 730 return 0; 731 } 732 733 /** 734 * t4vf_write_rss_vi_config - write a VI's RSS configuration 735 * @adapter: the adapter 736 * @viid: Virtual Interface ID 737 * @config: pointer to host-native VI RSS Configuration buffer 738 * 739 * Write the Virtual Interface's RSS configuration information 740 * (translating it into firmware-native format before writing). 741 */ 742 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid, 743 union rss_vi_config *config) 744 { 745 struct fw_rss_vi_config_cmd cmd, rpl; 746 747 memset(&cmd, 0, sizeof(cmd)); 748 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | 749 FW_CMD_REQUEST | 750 FW_CMD_WRITE | 751 FW_RSS_VI_CONFIG_CMD_VIID(viid)); 752 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 753 switch (adapter->params.rss.mode) { 754 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 755 u32 word = 0; 756 757 if (config->basicvirtual.ip6fourtupen) 758 word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 759 if (config->basicvirtual.ip6twotupen) 760 word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 761 if (config->basicvirtual.ip4fourtupen) 762 word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 763 if (config->basicvirtual.ip4twotupen) 764 word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 765 if (config->basicvirtual.udpen) 766 word |= FW_RSS_VI_CONFIG_CMD_UDPEN; 767 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ( 768 config->basicvirtual.defaultq); 769 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word); 770 break; 771 } 772 773 default: 774 return -EINVAL; 775 } 776 777 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 778 } 779 780 /** 781 * t4vf_config_rss_range - configure a portion of the RSS mapping table 782 * @adapter: the adapter 783 * @viid: Virtual Interface of RSS Table Slice 784 * @start: starting entry in the table to write 785 * @n: how many table entries to write 786 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table 787 * @nrspq: number of values in @rspq 788 * 789 * Programs the selected part of the VI's RSS mapping table with the 790 * provided values. If @nrspq < @n the supplied values are used repeatedly 791 * until the full table range is populated. 792 * 793 * The caller must ensure the values in @rspq are in the range 0..1023. 794 */ 795 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid, 796 int start, int n, const u16 *rspq, int nrspq) 797 { 798 const u16 *rsp = rspq; 799 const u16 *rsp_end = rspq+nrspq; 800 struct fw_rss_ind_tbl_cmd cmd; 801 802 /* 803 * Initialize firmware command template to write the RSS table. 804 */ 805 memset(&cmd, 0, sizeof(cmd)); 806 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_IND_TBL_CMD) | 807 FW_CMD_REQUEST | 808 FW_CMD_WRITE | 809 FW_RSS_IND_TBL_CMD_VIID(viid)); 810 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 811 812 /* 813 * Each firmware RSS command can accommodate up to 32 RSS Ingress 814 * Queue Identifiers. These Ingress Queue IDs are packed three to 815 * a 32-bit word as 10-bit values with the upper remaining 2 bits 816 * reserved. 817 */ 818 while (n > 0) { 819 __be32 *qp = &cmd.iq0_to_iq2; 820 int nq = min(n, 32); 821 int ret; 822 823 /* 824 * Set up the firmware RSS command header to send the next 825 * "nq" Ingress Queue IDs to the firmware. 826 */ 827 cmd.niqid = cpu_to_be16(nq); 828 cmd.startidx = cpu_to_be16(start); 829 830 /* 831 * "nq" more done for the start of the next loop. 832 */ 833 start += nq; 834 n -= nq; 835 836 /* 837 * While there are still Ingress Queue IDs to stuff into the 838 * current firmware RSS command, retrieve them from the 839 * Ingress Queue ID array and insert them into the command. 840 */ 841 while (nq > 0) { 842 /* 843 * Grab up to the next 3 Ingress Queue IDs (wrapping 844 * around the Ingress Queue ID array if necessary) and 845 * insert them into the firmware RSS command at the 846 * current 3-tuple position within the commad. 847 */ 848 u16 qbuf[3]; 849 u16 *qbp = qbuf; 850 int nqbuf = min(3, nq); 851 852 nq -= nqbuf; 853 qbuf[0] = qbuf[1] = qbuf[2] = 0; 854 while (nqbuf) { 855 nqbuf--; 856 *qbp++ = *rsp++; 857 if (rsp >= rsp_end) 858 rsp = rspq; 859 } 860 *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) | 861 FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) | 862 FW_RSS_IND_TBL_CMD_IQ2(qbuf[2])); 863 } 864 865 /* 866 * Send this portion of the RRS table update to the firmware; 867 * bail out on any errors. 868 */ 869 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 870 if (ret) 871 return ret; 872 } 873 return 0; 874 } 875 876 /** 877 * t4vf_alloc_vi - allocate a virtual interface on a port 878 * @adapter: the adapter 879 * @port_id: physical port associated with the VI 880 * 881 * Allocate a new Virtual Interface and bind it to the indicated 882 * physical port. Return the new Virtual Interface Identifier on 883 * success, or a [negative] error number on failure. 884 */ 885 int t4vf_alloc_vi(struct adapter *adapter, int port_id) 886 { 887 struct fw_vi_cmd cmd, rpl; 888 int v; 889 890 /* 891 * Execute a VI command to allocate Virtual Interface and return its 892 * VIID. 893 */ 894 memset(&cmd, 0, sizeof(cmd)); 895 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) | 896 FW_CMD_REQUEST | 897 FW_CMD_WRITE | 898 FW_CMD_EXEC); 899 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | 900 FW_VI_CMD_ALLOC); 901 cmd.portid_pkd = FW_VI_CMD_PORTID(port_id); 902 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 903 if (v) 904 return v; 905 906 return FW_VI_CMD_VIID_GET(be16_to_cpu(rpl.type_viid)); 907 } 908 909 /** 910 * t4vf_free_vi -- free a virtual interface 911 * @adapter: the adapter 912 * @viid: the virtual interface identifier 913 * 914 * Free a previously allocated Virtual Interface. Return an error on 915 * failure. 916 */ 917 int t4vf_free_vi(struct adapter *adapter, int viid) 918 { 919 struct fw_vi_cmd cmd; 920 921 /* 922 * Execute a VI command to free the Virtual Interface. 923 */ 924 memset(&cmd, 0, sizeof(cmd)); 925 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) | 926 FW_CMD_REQUEST | 927 FW_CMD_EXEC); 928 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | 929 FW_VI_CMD_FREE); 930 cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(viid)); 931 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 932 } 933 934 /** 935 * t4vf_enable_vi - enable/disable a virtual interface 936 * @adapter: the adapter 937 * @viid: the Virtual Interface ID 938 * @rx_en: 1=enable Rx, 0=disable Rx 939 * @tx_en: 1=enable Tx, 0=disable Tx 940 * 941 * Enables/disables a virtual interface. 942 */ 943 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid, 944 bool rx_en, bool tx_en) 945 { 946 struct fw_vi_enable_cmd cmd; 947 948 memset(&cmd, 0, sizeof(cmd)); 949 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) | 950 FW_CMD_REQUEST | 951 FW_CMD_EXEC | 952 FW_VI_ENABLE_CMD_VIID(viid)); 953 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN(rx_en) | 954 FW_VI_ENABLE_CMD_EEN(tx_en) | 955 FW_LEN16(cmd)); 956 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 957 } 958 959 /** 960 * t4vf_identify_port - identify a VI's port by blinking its LED 961 * @adapter: the adapter 962 * @viid: the Virtual Interface ID 963 * @nblinks: how many times to blink LED at 2.5 Hz 964 * 965 * Identifies a VI's port by blinking its LED. 966 */ 967 int t4vf_identify_port(struct adapter *adapter, unsigned int viid, 968 unsigned int nblinks) 969 { 970 struct fw_vi_enable_cmd cmd; 971 972 memset(&cmd, 0, sizeof(cmd)); 973 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) | 974 FW_CMD_REQUEST | 975 FW_CMD_EXEC | 976 FW_VI_ENABLE_CMD_VIID(viid)); 977 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED | 978 FW_LEN16(cmd)); 979 cmd.blinkdur = cpu_to_be16(nblinks); 980 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 981 } 982 983 /** 984 * t4vf_set_rxmode - set Rx properties of a virtual interface 985 * @adapter: the adapter 986 * @viid: the VI id 987 * @mtu: the new MTU or -1 for no change 988 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 989 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 990 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 991 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it, 992 * -1 no change 993 * 994 * Sets Rx properties of a virtual interface. 995 */ 996 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid, 997 int mtu, int promisc, int all_multi, int bcast, int vlanex, 998 bool sleep_ok) 999 { 1000 struct fw_vi_rxmode_cmd cmd; 1001 1002 /* convert to FW values */ 1003 if (mtu < 0) 1004 mtu = FW_VI_RXMODE_CMD_MTU_MASK; 1005 if (promisc < 0) 1006 promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK; 1007 if (all_multi < 0) 1008 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK; 1009 if (bcast < 0) 1010 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK; 1011 if (vlanex < 0) 1012 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK; 1013 1014 memset(&cmd, 0, sizeof(cmd)); 1015 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_RXMODE_CMD) | 1016 FW_CMD_REQUEST | 1017 FW_CMD_WRITE | 1018 FW_VI_RXMODE_CMD_VIID(viid)); 1019 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 1020 cmd.mtu_to_vlanexen = 1021 cpu_to_be32(FW_VI_RXMODE_CMD_MTU(mtu) | 1022 FW_VI_RXMODE_CMD_PROMISCEN(promisc) | 1023 FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) | 1024 FW_VI_RXMODE_CMD_BROADCASTEN(bcast) | 1025 FW_VI_RXMODE_CMD_VLANEXEN(vlanex)); 1026 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); 1027 } 1028 1029 /** 1030 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses 1031 * @adapter: the adapter 1032 * @viid: the Virtual Interface Identifier 1033 * @free: if true any existing filters for this VI id are first removed 1034 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 1035 * @addr: the MAC address(es) 1036 * @idx: where to store the index of each allocated filter 1037 * @hash: pointer to hash address filter bitmap 1038 * @sleep_ok: call is allowed to sleep 1039 * 1040 * Allocates an exact-match filter for each of the supplied addresses and 1041 * sets it to the corresponding address. If @idx is not %NULL it should 1042 * have at least @naddr entries, each of which will be set to the index of 1043 * the filter allocated for the corresponding MAC address. If a filter 1044 * could not be allocated for an address its index is set to 0xffff. 1045 * If @hash is not %NULL addresses that fail to allocate an exact filter 1046 * are hashed and update the hash filter bitmap pointed at by @hash. 1047 * 1048 * Returns a negative error number or the number of filters allocated. 1049 */ 1050 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free, 1051 unsigned int naddr, const u8 **addr, u16 *idx, 1052 u64 *hash, bool sleep_ok) 1053 { 1054 int offset, ret = 0; 1055 unsigned nfilters = 0; 1056 unsigned int rem = naddr; 1057 struct fw_vi_mac_cmd cmd, rpl; 1058 unsigned int max_naddr = is_t4(adapter->params.chip) ? 1059 NUM_MPS_CLS_SRAM_L_INSTANCES : 1060 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 1061 1062 if (naddr > max_naddr) 1063 return -EINVAL; 1064 1065 for (offset = 0; offset < naddr; /**/) { 1066 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) 1067 ? rem 1068 : ARRAY_SIZE(cmd.u.exact)); 1069 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1070 u.exact[fw_naddr]), 16); 1071 struct fw_vi_mac_exact *p; 1072 int i; 1073 1074 memset(&cmd, 0, sizeof(cmd)); 1075 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) | 1076 FW_CMD_REQUEST | 1077 FW_CMD_WRITE | 1078 (free ? FW_CMD_EXEC : 0) | 1079 FW_VI_MAC_CMD_VIID(viid)); 1080 cmd.freemacs_to_len16 = 1081 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS(free) | 1082 FW_CMD_LEN16(len16)); 1083 1084 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) { 1085 p->valid_to_idx = cpu_to_be16( 1086 FW_VI_MAC_CMD_VALID | 1087 FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC)); 1088 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 1089 } 1090 1091 1092 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl, 1093 sleep_ok); 1094 if (ret && ret != -ENOMEM) 1095 break; 1096 1097 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) { 1098 u16 index = FW_VI_MAC_CMD_IDX_GET( 1099 be16_to_cpu(p->valid_to_idx)); 1100 1101 if (idx) 1102 idx[offset+i] = 1103 (index >= max_naddr 1104 ? 0xffff 1105 : index); 1106 if (index < max_naddr) 1107 nfilters++; 1108 else if (hash) 1109 *hash |= (1ULL << hash_mac_addr(addr[offset+i])); 1110 } 1111 1112 free = false; 1113 offset += fw_naddr; 1114 rem -= fw_naddr; 1115 } 1116 1117 /* 1118 * If there were no errors or we merely ran out of room in our MAC 1119 * address arena, return the number of filters actually written. 1120 */ 1121 if (ret == 0 || ret == -ENOMEM) 1122 ret = nfilters; 1123 return ret; 1124 } 1125 1126 /** 1127 * t4vf_change_mac - modifies the exact-match filter for a MAC address 1128 * @adapter: the adapter 1129 * @viid: the Virtual Interface ID 1130 * @idx: index of existing filter for old value of MAC address, or -1 1131 * @addr: the new MAC address value 1132 * @persist: if idx < 0, the new MAC allocation should be persistent 1133 * 1134 * Modifies an exact-match filter and sets it to the new MAC address. 1135 * Note that in general it is not possible to modify the value of a given 1136 * filter so the generic way to modify an address filter is to free the 1137 * one being used by the old address value and allocate a new filter for 1138 * the new address value. @idx can be -1 if the address is a new 1139 * addition. 1140 * 1141 * Returns a negative error number or the index of the filter with the new 1142 * MAC value. 1143 */ 1144 int t4vf_change_mac(struct adapter *adapter, unsigned int viid, 1145 int idx, const u8 *addr, bool persist) 1146 { 1147 int ret; 1148 struct fw_vi_mac_cmd cmd, rpl; 1149 struct fw_vi_mac_exact *p = &cmd.u.exact[0]; 1150 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1151 u.exact[1]), 16); 1152 unsigned int max_naddr = is_t4(adapter->params.chip) ? 1153 NUM_MPS_CLS_SRAM_L_INSTANCES : 1154 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 1155 1156 /* 1157 * If this is a new allocation, determine whether it should be 1158 * persistent (across a "freemacs" operation) or not. 1159 */ 1160 if (idx < 0) 1161 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 1162 1163 memset(&cmd, 0, sizeof(cmd)); 1164 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) | 1165 FW_CMD_REQUEST | 1166 FW_CMD_WRITE | 1167 FW_VI_MAC_CMD_VIID(viid)); 1168 cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16(len16)); 1169 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID | 1170 FW_VI_MAC_CMD_IDX(idx)); 1171 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 1172 1173 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 1174 if (ret == 0) { 1175 p = &rpl.u.exact[0]; 1176 ret = FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p->valid_to_idx)); 1177 if (ret >= max_naddr) 1178 ret = -ENOMEM; 1179 } 1180 return ret; 1181 } 1182 1183 /** 1184 * t4vf_set_addr_hash - program the MAC inexact-match hash filter 1185 * @adapter: the adapter 1186 * @viid: the Virtual Interface Identifier 1187 * @ucast: whether the hash filter should also match unicast addresses 1188 * @vec: the value to be written to the hash filter 1189 * @sleep_ok: call is allowed to sleep 1190 * 1191 * Sets the 64-bit inexact-match hash filter for a virtual interface. 1192 */ 1193 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid, 1194 bool ucast, u64 vec, bool sleep_ok) 1195 { 1196 struct fw_vi_mac_cmd cmd; 1197 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1198 u.exact[0]), 16); 1199 1200 memset(&cmd, 0, sizeof(cmd)); 1201 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) | 1202 FW_CMD_REQUEST | 1203 FW_CMD_WRITE | 1204 FW_VI_ENABLE_CMD_VIID(viid)); 1205 cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN | 1206 FW_VI_MAC_CMD_HASHUNIEN(ucast) | 1207 FW_CMD_LEN16(len16)); 1208 cmd.u.hash.hashvec = cpu_to_be64(vec); 1209 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); 1210 } 1211 1212 /** 1213 * t4vf_get_port_stats - collect "port" statistics 1214 * @adapter: the adapter 1215 * @pidx: the port index 1216 * @s: the stats structure to fill 1217 * 1218 * Collect statistics for the "port"'s Virtual Interface. 1219 */ 1220 int t4vf_get_port_stats(struct adapter *adapter, int pidx, 1221 struct t4vf_port_stats *s) 1222 { 1223 struct port_info *pi = adap2pinfo(adapter, pidx); 1224 struct fw_vi_stats_vf fwstats; 1225 unsigned int rem = VI_VF_NUM_STATS; 1226 __be64 *fwsp = (__be64 *)&fwstats; 1227 1228 /* 1229 * Grab the Virtual Interface statistics a chunk at a time via mailbox 1230 * commands. We could use a Work Request and get all of them at once 1231 * but that's an asynchronous interface which is awkward to use. 1232 */ 1233 while (rem) { 1234 unsigned int ix = VI_VF_NUM_STATS - rem; 1235 unsigned int nstats = min(6U, rem); 1236 struct fw_vi_stats_cmd cmd, rpl; 1237 size_t len = (offsetof(struct fw_vi_stats_cmd, u) + 1238 sizeof(struct fw_vi_stats_ctl)); 1239 size_t len16 = DIV_ROUND_UP(len, 16); 1240 int ret; 1241 1242 memset(&cmd, 0, sizeof(cmd)); 1243 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_STATS_CMD) | 1244 FW_VI_STATS_CMD_VIID(pi->viid) | 1245 FW_CMD_REQUEST | 1246 FW_CMD_READ); 1247 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16)); 1248 cmd.u.ctl.nstats_ix = 1249 cpu_to_be16(FW_VI_STATS_CMD_IX(ix) | 1250 FW_VI_STATS_CMD_NSTATS(nstats)); 1251 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl); 1252 if (ret) 1253 return ret; 1254 1255 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats); 1256 1257 rem -= nstats; 1258 fwsp += nstats; 1259 } 1260 1261 /* 1262 * Translate firmware statistics into host native statistics. 1263 */ 1264 s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes); 1265 s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames); 1266 s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes); 1267 s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames); 1268 s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes); 1269 s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames); 1270 s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames); 1271 s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes); 1272 s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames); 1273 1274 s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes); 1275 s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames); 1276 s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes); 1277 s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames); 1278 s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes); 1279 s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames); 1280 1281 s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames); 1282 1283 return 0; 1284 } 1285 1286 /** 1287 * t4vf_iq_free - free an ingress queue and its free lists 1288 * @adapter: the adapter 1289 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 1290 * @iqid: ingress queue ID 1291 * @fl0id: FL0 queue ID or 0xffff if no attached FL0 1292 * @fl1id: FL1 queue ID or 0xffff if no attached FL1 1293 * 1294 * Frees an ingress queue and its associated free lists, if any. 1295 */ 1296 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype, 1297 unsigned int iqid, unsigned int fl0id, unsigned int fl1id) 1298 { 1299 struct fw_iq_cmd cmd; 1300 1301 memset(&cmd, 0, sizeof(cmd)); 1302 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) | 1303 FW_CMD_REQUEST | 1304 FW_CMD_EXEC); 1305 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE | 1306 FW_LEN16(cmd)); 1307 cmd.type_to_iqandstindex = 1308 cpu_to_be32(FW_IQ_CMD_TYPE(iqtype)); 1309 1310 cmd.iqid = cpu_to_be16(iqid); 1311 cmd.fl0id = cpu_to_be16(fl0id); 1312 cmd.fl1id = cpu_to_be16(fl1id); 1313 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1314 } 1315 1316 /** 1317 * t4vf_eth_eq_free - free an Ethernet egress queue 1318 * @adapter: the adapter 1319 * @eqid: egress queue ID 1320 * 1321 * Frees an Ethernet egress queue. 1322 */ 1323 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid) 1324 { 1325 struct fw_eq_eth_cmd cmd; 1326 1327 memset(&cmd, 0, sizeof(cmd)); 1328 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) | 1329 FW_CMD_REQUEST | 1330 FW_CMD_EXEC); 1331 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE | 1332 FW_LEN16(cmd)); 1333 cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID(eqid)); 1334 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1335 } 1336 1337 /** 1338 * t4vf_handle_fw_rpl - process a firmware reply message 1339 * @adapter: the adapter 1340 * @rpl: start of the firmware message 1341 * 1342 * Processes a firmware message, such as link state change messages. 1343 */ 1344 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl) 1345 { 1346 const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl; 1347 u8 opcode = FW_CMD_OP_GET(be32_to_cpu(cmd_hdr->hi)); 1348 1349 switch (opcode) { 1350 case FW_PORT_CMD: { 1351 /* 1352 * Link/module state change message. 1353 */ 1354 const struct fw_port_cmd *port_cmd = 1355 (const struct fw_port_cmd *)rpl; 1356 u32 word; 1357 int action, port_id, link_ok, speed, fc, pidx; 1358 1359 /* 1360 * Extract various fields from port status change message. 1361 */ 1362 action = FW_PORT_CMD_ACTION_GET( 1363 be32_to_cpu(port_cmd->action_to_len16)); 1364 if (action != FW_PORT_ACTION_GET_PORT_INFO) { 1365 dev_err(adapter->pdev_dev, 1366 "Unknown firmware PORT reply action %x\n", 1367 action); 1368 break; 1369 } 1370 1371 port_id = FW_PORT_CMD_PORTID_GET( 1372 be32_to_cpu(port_cmd->op_to_portid)); 1373 1374 word = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype); 1375 link_ok = (word & FW_PORT_CMD_LSTATUS) != 0; 1376 speed = 0; 1377 fc = 0; 1378 if (word & FW_PORT_CMD_RXPAUSE) 1379 fc |= PAUSE_RX; 1380 if (word & FW_PORT_CMD_TXPAUSE) 1381 fc |= PAUSE_TX; 1382 if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M)) 1383 speed = 100; 1384 else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G)) 1385 speed = 1000; 1386 else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G)) 1387 speed = 10000; 1388 else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G)) 1389 speed = 40000; 1390 1391 /* 1392 * Scan all of our "ports" (Virtual Interfaces) looking for 1393 * those bound to the physical port which has changed. If 1394 * our recorded state doesn't match the current state, 1395 * signal that change to the OS code. 1396 */ 1397 for_each_port(adapter, pidx) { 1398 struct port_info *pi = adap2pinfo(adapter, pidx); 1399 struct link_config *lc; 1400 1401 if (pi->port_id != port_id) 1402 continue; 1403 1404 lc = &pi->link_cfg; 1405 if (link_ok != lc->link_ok || speed != lc->speed || 1406 fc != lc->fc) { 1407 /* something changed */ 1408 lc->link_ok = link_ok; 1409 lc->speed = speed; 1410 lc->fc = fc; 1411 t4vf_os_link_changed(adapter, pidx, link_ok); 1412 } 1413 } 1414 break; 1415 } 1416 1417 default: 1418 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n", 1419 opcode); 1420 } 1421 return 0; 1422 } 1423