1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/pci.h>
37 
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
40 
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4_values.h"
43 #include "../cxgb4/t4fw_api.h"
44 
45 /*
46  * Wait for the device to become ready (signified by our "who am I" register
47  * returning a value other than all 1's).  Return an error if it doesn't
48  * become ready ...
49  */
50 int t4vf_wait_dev_ready(struct adapter *adapter)
51 {
52 	const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53 	const u32 notready1 = 0xffffffff;
54 	const u32 notready2 = 0xeeeeeeee;
55 	u32 val;
56 
57 	val = t4_read_reg(adapter, whoami);
58 	if (val != notready1 && val != notready2)
59 		return 0;
60 	msleep(500);
61 	val = t4_read_reg(adapter, whoami);
62 	if (val != notready1 && val != notready2)
63 		return 0;
64 	else
65 		return -EIO;
66 }
67 
68 /*
69  * Get the reply to a mailbox command and store it in @rpl in big-endian order
70  * (since the firmware data structures are specified in a big-endian layout).
71  */
72 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73 			 u32 mbox_data)
74 {
75 	for ( ; size; size -= 8, mbox_data += 8)
76 		*rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77 }
78 
79 /**
80  *	t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
81  *	@adapter: the adapter
82  *	@cmd: the Firmware Mailbox Command or Reply
83  *	@size: command length in bytes
84  *	@access: the time (ms) needed to access the Firmware Mailbox
85  *	@execute: the time (ms) the command spent being executed
86  */
87 static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
88 			     int size, int access, int execute)
89 {
90 	struct mbox_cmd_log *log = adapter->mbox_log;
91 	struct mbox_cmd *entry;
92 	int i;
93 
94 	entry = mbox_cmd_log_entry(log, log->cursor++);
95 	if (log->cursor == log->size)
96 		log->cursor = 0;
97 
98 	for (i = 0; i < size / 8; i++)
99 		entry->cmd[i] = be64_to_cpu(cmd[i]);
100 	while (i < MBOX_LEN / 8)
101 		entry->cmd[i++] = 0;
102 	entry->timestamp = jiffies;
103 	entry->seqno = log->seqno++;
104 	entry->access = access;
105 	entry->execute = execute;
106 }
107 
108 /**
109  *	t4vf_wr_mbox_core - send a command to FW through the mailbox
110  *	@adapter: the adapter
111  *	@cmd: the command to write
112  *	@size: command length in bytes
113  *	@rpl: where to optionally store the reply
114  *	@sleep_ok: if true we may sleep while awaiting command completion
115  *
116  *	Sends the given command to FW through the mailbox and waits for the
117  *	FW to execute the command.  If @rpl is not %NULL it is used to store
118  *	the FW's reply to the command.  The command and its optional reply
119  *	are of the same length.  FW can take up to 500 ms to respond.
120  *	@sleep_ok determines whether we may sleep while awaiting the response.
121  *	If sleeping is allowed we use progressive backoff otherwise we spin.
122  *
123  *	The return value is 0 on success or a negative errno on failure.  A
124  *	failure can happen either because we are not able to execute the
125  *	command or FW executes it but signals an error.  In the latter case
126  *	the return value is the error code indicated by FW (negated).
127  */
128 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
129 		      void *rpl, bool sleep_ok)
130 {
131 	static const int delay[] = {
132 		1, 1, 3, 5, 10, 10, 20, 50, 100
133 	};
134 
135 	u16 access = 0, execute = 0;
136 	u32 v, mbox_data;
137 	int i, ms, delay_idx, ret;
138 	const __be64 *p;
139 	u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
140 	u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
141 	__be64 cmd_rpl[MBOX_LEN / 8];
142 	struct mbox_list entry;
143 
144 	/* In T6, mailbox size is changed to 128 bytes to avoid
145 	 * invalidating the entire prefetch buffer.
146 	 */
147 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
148 		mbox_data = T4VF_MBDATA_BASE_ADDR;
149 	else
150 		mbox_data = T6VF_MBDATA_BASE_ADDR;
151 
152 	/*
153 	 * Commands must be multiples of 16 bytes in length and may not be
154 	 * larger than the size of the Mailbox Data register array.
155 	 */
156 	if ((size % 16) != 0 ||
157 	    size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
158 		return -EINVAL;
159 
160 	/* Queue ourselves onto the mailbox access list.  When our entry is at
161 	 * the front of the list, we have rights to access the mailbox.  So we
162 	 * wait [for a while] till we're at the front [or bail out with an
163 	 * EBUSY] ...
164 	 */
165 	spin_lock(&adapter->mbox_lock);
166 	list_add_tail(&entry.list, &adapter->mlist.list);
167 	spin_unlock(&adapter->mbox_lock);
168 
169 	delay_idx = 0;
170 	ms = delay[0];
171 
172 	for (i = 0; ; i += ms) {
173 		/* If we've waited too long, return a busy indication.  This
174 		 * really ought to be based on our initial position in the
175 		 * mailbox access list but this is a start.  We very rearely
176 		 * contend on access to the mailbox ...
177 		 */
178 		if (i > FW_CMD_MAX_TIMEOUT) {
179 			spin_lock(&adapter->mbox_lock);
180 			list_del(&entry.list);
181 			spin_unlock(&adapter->mbox_lock);
182 			ret = -EBUSY;
183 			t4vf_record_mbox(adapter, cmd, size, access, ret);
184 			return ret;
185 		}
186 
187 		/* If we're at the head, break out and start the mailbox
188 		 * protocol.
189 		 */
190 		if (list_first_entry(&adapter->mlist.list, struct mbox_list,
191 				     list) == &entry)
192 			break;
193 
194 		/* Delay for a bit before checking again ... */
195 		if (sleep_ok) {
196 			ms = delay[delay_idx];  /* last element may repeat */
197 			if (delay_idx < ARRAY_SIZE(delay) - 1)
198 				delay_idx++;
199 			msleep(ms);
200 		} else {
201 			mdelay(ms);
202 		}
203 	}
204 
205 	/*
206 	 * Loop trying to get ownership of the mailbox.  Return an error
207 	 * if we can't gain ownership.
208 	 */
209 	v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
210 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
211 		v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
212 	if (v != MBOX_OWNER_DRV) {
213 		spin_lock(&adapter->mbox_lock);
214 		list_del(&entry.list);
215 		spin_unlock(&adapter->mbox_lock);
216 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
217 		t4vf_record_mbox(adapter, cmd, size, access, ret);
218 		return ret;
219 	}
220 
221 	/*
222 	 * Write the command array into the Mailbox Data register array and
223 	 * transfer ownership of the mailbox to the firmware.
224 	 *
225 	 * For the VFs, the Mailbox Data "registers" are actually backed by
226 	 * T4's "MA" interface rather than PL Registers (as is the case for
227 	 * the PFs).  Because these are in different coherency domains, the
228 	 * write to the VF's PL-register-backed Mailbox Control can race in
229 	 * front of the writes to the MA-backed VF Mailbox Data "registers".
230 	 * So we need to do a read-back on at least one byte of the VF Mailbox
231 	 * Data registers before doing the write to the VF Mailbox Control
232 	 * register.
233 	 */
234 	if (cmd_op != FW_VI_STATS_CMD)
235 		t4vf_record_mbox(adapter, cmd, size, access, 0);
236 	for (i = 0, p = cmd; i < size; i += 8)
237 		t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
238 	t4_read_reg(adapter, mbox_data);         /* flush write */
239 
240 	t4_write_reg(adapter, mbox_ctl,
241 		     MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
242 	t4_read_reg(adapter, mbox_ctl);          /* flush write */
243 
244 	/*
245 	 * Spin waiting for firmware to acknowledge processing our command.
246 	 */
247 	delay_idx = 0;
248 	ms = delay[0];
249 
250 	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
251 		if (sleep_ok) {
252 			ms = delay[delay_idx];
253 			if (delay_idx < ARRAY_SIZE(delay) - 1)
254 				delay_idx++;
255 			msleep(ms);
256 		} else
257 			mdelay(ms);
258 
259 		/*
260 		 * If we're the owner, see if this is the reply we wanted.
261 		 */
262 		v = t4_read_reg(adapter, mbox_ctl);
263 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
264 			/*
265 			 * If the Message Valid bit isn't on, revoke ownership
266 			 * of the mailbox and continue waiting for our reply.
267 			 */
268 			if ((v & MBMSGVALID_F) == 0) {
269 				t4_write_reg(adapter, mbox_ctl,
270 					     MBOWNER_V(MBOX_OWNER_NONE));
271 				continue;
272 			}
273 
274 			/*
275 			 * We now have our reply.  Extract the command return
276 			 * value, copy the reply back to our caller's buffer
277 			 * (if specified) and revoke ownership of the mailbox.
278 			 * We return the (negated) firmware command return
279 			 * code (this depends on FW_SUCCESS == 0).
280 			 */
281 			get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
282 
283 			/* return value in low-order little-endian word */
284 			v = be64_to_cpu(cmd_rpl[0]);
285 
286 			if (rpl) {
287 				/* request bit in high-order BE word */
288 				WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
289 					 & FW_CMD_REQUEST_F) == 0);
290 				memcpy(rpl, cmd_rpl, size);
291 				WARN_ON((be32_to_cpu(*(__be32 *)rpl)
292 					 & FW_CMD_REQUEST_F) != 0);
293 			}
294 			t4_write_reg(adapter, mbox_ctl,
295 				     MBOWNER_V(MBOX_OWNER_NONE));
296 			execute = i + ms;
297 			if (cmd_op != FW_VI_STATS_CMD)
298 				t4vf_record_mbox(adapter, cmd_rpl, size, access,
299 						 execute);
300 			spin_lock(&adapter->mbox_lock);
301 			list_del(&entry.list);
302 			spin_unlock(&adapter->mbox_lock);
303 			return -FW_CMD_RETVAL_G(v);
304 		}
305 	}
306 
307 	/* We timed out.  Return the error ... */
308 	ret = -ETIMEDOUT;
309 	t4vf_record_mbox(adapter, cmd, size, access, ret);
310 	spin_lock(&adapter->mbox_lock);
311 	list_del(&entry.list);
312 	spin_unlock(&adapter->mbox_lock);
313 	return ret;
314 }
315 
316 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
317 		     FW_PORT_CAP32_ANEG)
318 
319 /**
320  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
321  *	@caps16: a 16-bit Port Capabilities value
322  *
323  *	Returns the equivalent 32-bit Port Capabilities value.
324  */
325 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
326 {
327 	fw_port_cap32_t caps32 = 0;
328 
329 	#define CAP16_TO_CAP32(__cap) \
330 		do { \
331 			if (caps16 & FW_PORT_CAP_##__cap) \
332 				caps32 |= FW_PORT_CAP32_##__cap; \
333 		} while (0)
334 
335 	CAP16_TO_CAP32(SPEED_100M);
336 	CAP16_TO_CAP32(SPEED_1G);
337 	CAP16_TO_CAP32(SPEED_25G);
338 	CAP16_TO_CAP32(SPEED_10G);
339 	CAP16_TO_CAP32(SPEED_40G);
340 	CAP16_TO_CAP32(SPEED_100G);
341 	CAP16_TO_CAP32(FC_RX);
342 	CAP16_TO_CAP32(FC_TX);
343 	CAP16_TO_CAP32(ANEG);
344 	CAP16_TO_CAP32(MDIAUTO);
345 	CAP16_TO_CAP32(MDISTRAIGHT);
346 	CAP16_TO_CAP32(FEC_RS);
347 	CAP16_TO_CAP32(FEC_BASER_RS);
348 	CAP16_TO_CAP32(802_3_PAUSE);
349 	CAP16_TO_CAP32(802_3_ASM_DIR);
350 
351 	#undef CAP16_TO_CAP32
352 
353 	return caps32;
354 }
355 
356 /* Translate Firmware Pause specification to Common Code */
357 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
358 {
359 	enum cc_pause cc_pause = 0;
360 
361 	if (fw_pause & FW_PORT_CAP32_FC_RX)
362 		cc_pause |= PAUSE_RX;
363 	if (fw_pause & FW_PORT_CAP32_FC_TX)
364 		cc_pause |= PAUSE_TX;
365 
366 	return cc_pause;
367 }
368 
369 /* Translate Firmware Forward Error Correction specification to Common Code */
370 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
371 {
372 	enum cc_fec cc_fec = 0;
373 
374 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
375 		cc_fec |= FEC_RS;
376 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
377 		cc_fec |= FEC_BASER_RS;
378 
379 	return cc_fec;
380 }
381 
382 /**
383  * Return the highest speed set in the port capabilities, in Mb/s.
384  */
385 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
386 {
387 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
388 		do { \
389 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
390 				return __speed; \
391 		} while (0)
392 
393 	TEST_SPEED_RETURN(400G, 400000);
394 	TEST_SPEED_RETURN(200G, 200000);
395 	TEST_SPEED_RETURN(100G, 100000);
396 	TEST_SPEED_RETURN(50G,   50000);
397 	TEST_SPEED_RETURN(40G,   40000);
398 	TEST_SPEED_RETURN(25G,   25000);
399 	TEST_SPEED_RETURN(10G,   10000);
400 	TEST_SPEED_RETURN(1G,     1000);
401 	TEST_SPEED_RETURN(100M,    100);
402 
403 	#undef TEST_SPEED_RETURN
404 
405 	return 0;
406 }
407 
408 /**
409  *      fwcap_to_fwspeed - return highest speed in Port Capabilities
410  *      @acaps: advertised Port Capabilities
411  *
412  *      Get the highest speed for the port from the advertised Port
413  *      Capabilities.  It will be either the highest speed from the list of
414  *      speeds or whatever user has set using ethtool.
415  */
416 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
417 {
418 	#define TEST_SPEED_RETURN(__caps_speed) \
419 		do { \
420 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
421 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
422 		} while (0)
423 
424 	TEST_SPEED_RETURN(400G);
425 	TEST_SPEED_RETURN(200G);
426 	TEST_SPEED_RETURN(100G);
427 	TEST_SPEED_RETURN(50G);
428 	TEST_SPEED_RETURN(40G);
429 	TEST_SPEED_RETURN(25G);
430 	TEST_SPEED_RETURN(10G);
431 	TEST_SPEED_RETURN(1G);
432 	TEST_SPEED_RETURN(100M);
433 
434 	#undef TEST_SPEED_RETURN
435 	return 0;
436 }
437 
438 /*
439  *	init_link_config - initialize a link's SW state
440  *	@lc: structure holding the link state
441  *	@pcaps: link Port Capabilities
442  *	@acaps: link current Advertised Port Capabilities
443  *
444  *	Initializes the SW state maintained for each link, including the link's
445  *	capabilities and default speed/flow-control/autonegotiation settings.
446  */
447 static void init_link_config(struct link_config *lc,
448 			     fw_port_cap32_t pcaps,
449 			     fw_port_cap32_t acaps)
450 {
451 	lc->pcaps = pcaps;
452 	lc->lpacaps = 0;
453 	lc->speed_caps = 0;
454 	lc->speed = 0;
455 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
456 
457 	/* For Forward Error Control, we default to whatever the Firmware
458 	 * tells us the Link is currently advertising.
459 	 */
460 	lc->auto_fec = fwcap_to_cc_fec(acaps);
461 	lc->requested_fec = FEC_AUTO;
462 	lc->fec = lc->auto_fec;
463 
464 	/* If the Port is capable of Auto-Negtotiation, initialize it as
465 	 * "enabled" and copy over all of the Physical Port Capabilities
466 	 * to the Advertised Port Capabilities.  Otherwise mark it as
467 	 * Auto-Negotiate disabled and select the highest supported speed
468 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
469 	 * and t4_handle_get_port_info().
470 	 */
471 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
472 		lc->acaps = acaps & ADVERT_MASK;
473 		lc->autoneg = AUTONEG_ENABLE;
474 		lc->requested_fc |= PAUSE_AUTONEG;
475 	} else {
476 		lc->acaps = 0;
477 		lc->autoneg = AUTONEG_DISABLE;
478 		lc->speed_caps = fwcap_to_fwspeed(acaps);
479 	}
480 }
481 
482 /**
483  *	t4vf_port_init - initialize port hardware/software state
484  *	@adapter: the adapter
485  *	@pidx: the adapter port index
486  */
487 int t4vf_port_init(struct adapter *adapter, int pidx)
488 {
489 	struct port_info *pi = adap2pinfo(adapter, pidx);
490 	unsigned int fw_caps = adapter->params.fw_caps_support;
491 	struct fw_vi_cmd vi_cmd, vi_rpl;
492 	struct fw_port_cmd port_cmd, port_rpl;
493 	enum fw_port_type port_type;
494 	int mdio_addr;
495 	fw_port_cap32_t pcaps, acaps;
496 	int ret;
497 
498 	/* If we haven't yet determined whether we're talking to Firmware
499 	 * which knows the new 32-bit Port Capabilities, it's time to find
500 	 * out now.  This will also tell new Firmware to send us Port Status
501 	 * Updates using the new 32-bit Port Capabilities version of the
502 	 * Port Information message.
503 	 */
504 	if (fw_caps == FW_CAPS_UNKNOWN) {
505 		u32 param, val;
506 
507 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
508 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
509 		val = 1;
510 		ret = t4vf_set_params(adapter, 1, &param, &val);
511 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
512 		adapter->params.fw_caps_support = fw_caps;
513 	}
514 
515 	/*
516 	 * Execute a VI Read command to get our Virtual Interface information
517 	 * like MAC address, etc.
518 	 */
519 	memset(&vi_cmd, 0, sizeof(vi_cmd));
520 	vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
521 				       FW_CMD_REQUEST_F |
522 				       FW_CMD_READ_F);
523 	vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
524 	vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
525 	ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
526 	if (ret != FW_SUCCESS)
527 		return ret;
528 
529 	BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
530 	pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
531 	t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
532 
533 	/*
534 	 * If we don't have read access to our port information, we're done
535 	 * now.  Otherwise, execute a PORT Read command to get it ...
536 	 */
537 	if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
538 		return 0;
539 
540 	memset(&port_cmd, 0, sizeof(port_cmd));
541 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
542 					    FW_CMD_REQUEST_F |
543 					    FW_CMD_READ_F |
544 					    FW_PORT_CMD_PORTID_V(pi->port_id));
545 	port_cmd.action_to_len16 = cpu_to_be32(
546 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
547 				     ? FW_PORT_ACTION_GET_PORT_INFO
548 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
549 		FW_LEN16(port_cmd));
550 	ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
551 	if (ret != FW_SUCCESS)
552 		return ret;
553 
554 	/* Extract the various fields from the Port Information message. */
555 	if (fw_caps == FW_CAPS16) {
556 		u32 lstatus = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
557 
558 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
559 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
560 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
561 			     : -1);
562 		pcaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.pcap));
563 		acaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.acap));
564 	} else {
565 		u32 lstatus32 =
566 			   be32_to_cpu(port_rpl.u.info32.lstatus32_to_cbllen32);
567 
568 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
569 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
570 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
571 			     : -1);
572 		pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
573 		acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
574 	}
575 
576 	pi->port_type = port_type;
577 	pi->mdio_addr = mdio_addr;
578 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
579 
580 	init_link_config(&pi->link_cfg, pcaps, acaps);
581 	return 0;
582 }
583 
584 /**
585  *      t4vf_fw_reset - issue a reset to FW
586  *      @adapter: the adapter
587  *
588  *	Issues a reset command to FW.  For a Physical Function this would
589  *	result in the Firmware resetting all of its state.  For a Virtual
590  *	Function this just resets the state associated with the VF.
591  */
592 int t4vf_fw_reset(struct adapter *adapter)
593 {
594 	struct fw_reset_cmd cmd;
595 
596 	memset(&cmd, 0, sizeof(cmd));
597 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
598 				      FW_CMD_WRITE_F);
599 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
600 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
601 }
602 
603 /**
604  *	t4vf_query_params - query FW or device parameters
605  *	@adapter: the adapter
606  *	@nparams: the number of parameters
607  *	@params: the parameter names
608  *	@vals: the parameter values
609  *
610  *	Reads the values of firmware or device parameters.  Up to 7 parameters
611  *	can be queried at once.
612  */
613 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
614 			     const u32 *params, u32 *vals)
615 {
616 	int i, ret;
617 	struct fw_params_cmd cmd, rpl;
618 	struct fw_params_param *p;
619 	size_t len16;
620 
621 	if (nparams > 7)
622 		return -EINVAL;
623 
624 	memset(&cmd, 0, sizeof(cmd));
625 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
626 				    FW_CMD_REQUEST_F |
627 				    FW_CMD_READ_F);
628 	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
629 				      param[nparams].mnem), 16);
630 	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
631 	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
632 		p->mnem = htonl(*params++);
633 
634 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
635 	if (ret == 0)
636 		for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
637 			*vals++ = be32_to_cpu(p->val);
638 	return ret;
639 }
640 
641 /**
642  *	t4vf_set_params - sets FW or device parameters
643  *	@adapter: the adapter
644  *	@nparams: the number of parameters
645  *	@params: the parameter names
646  *	@vals: the parameter values
647  *
648  *	Sets the values of firmware or device parameters.  Up to 7 parameters
649  *	can be specified at once.
650  */
651 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
652 		    const u32 *params, const u32 *vals)
653 {
654 	int i;
655 	struct fw_params_cmd cmd;
656 	struct fw_params_param *p;
657 	size_t len16;
658 
659 	if (nparams > 7)
660 		return -EINVAL;
661 
662 	memset(&cmd, 0, sizeof(cmd));
663 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
664 				    FW_CMD_REQUEST_F |
665 				    FW_CMD_WRITE_F);
666 	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
667 				      param[nparams]), 16);
668 	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
669 	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
670 		p->mnem = cpu_to_be32(*params++);
671 		p->val = cpu_to_be32(*vals++);
672 	}
673 
674 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
675 }
676 
677 /**
678  *	t4vf_fl_pkt_align - return the fl packet alignment
679  *	@adapter: the adapter
680  *
681  *	T4 has a single field to specify the packing and padding boundary.
682  *	T5 onwards has separate fields for this and hence the alignment for
683  *	next packet offset is maximum of these two.  And T6 changes the
684  *	Ingress Padding Boundary Shift, so it's all a mess and it's best
685  *	if we put this in low-level Common Code ...
686  *
687  */
688 int t4vf_fl_pkt_align(struct adapter *adapter)
689 {
690 	u32 sge_control, sge_control2;
691 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
692 
693 	sge_control = adapter->params.sge.sge_control;
694 
695 	/* T4 uses a single control field to specify both the PCIe Padding and
696 	 * Packing Boundary.  T5 introduced the ability to specify these
697 	 * separately.  The actual Ingress Packet Data alignment boundary
698 	 * within Packed Buffer Mode is the maximum of these two
699 	 * specifications.  (Note that it makes no real practical sense to
700 	 * have the Pading Boudary be larger than the Packing Boundary but you
701 	 * could set the chip up that way and, in fact, legacy T4 code would
702 	 * end doing this because it would initialize the Padding Boundary and
703 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
704 	 * Padding Boundary values in T6 starts from 8B,
705 	 * where as it is 32B for T4 and T5.
706 	 */
707 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
708 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
709 	else
710 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
711 
712 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
713 
714 	fl_align = ingpadboundary;
715 	if (!is_t4(adapter->params.chip)) {
716 		/* T5 has a different interpretation of one of the PCIe Packing
717 		 * Boundary values.
718 		 */
719 		sge_control2 = adapter->params.sge.sge_control2;
720 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
721 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
722 			ingpackboundary = 16;
723 		else
724 			ingpackboundary = 1 << (ingpackboundary +
725 						INGPACKBOUNDARY_SHIFT_X);
726 
727 		fl_align = max(ingpadboundary, ingpackboundary);
728 	}
729 	return fl_align;
730 }
731 
732 /**
733  *	t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
734  *	@adapter: the adapter
735  *	@qid: the Queue ID
736  *	@qtype: the Ingress or Egress type for @qid
737  *	@pbar2_qoffset: BAR2 Queue Offset
738  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
739  *
740  *	Returns the BAR2 SGE Queue Registers information associated with the
741  *	indicated Absolute Queue ID.  These are passed back in return value
742  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
743  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
744  *
745  *	This may return an error which indicates that BAR2 SGE Queue
746  *	registers aren't available.  If an error is not returned, then the
747  *	following values are returned:
748  *
749  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
750  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
751  *
752  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
753  *	require the "Inferred Queue ID" ability may be used.  E.g. the
754  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
755  *	then these "Inferred Queue ID" register may not be used.
756  */
757 int t4vf_bar2_sge_qregs(struct adapter *adapter,
758 			unsigned int qid,
759 			enum t4_bar2_qtype qtype,
760 			u64 *pbar2_qoffset,
761 			unsigned int *pbar2_qid)
762 {
763 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
764 	u64 bar2_page_offset, bar2_qoffset;
765 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
766 
767 	/* T4 doesn't support BAR2 SGE Queue registers.
768 	 */
769 	if (is_t4(adapter->params.chip))
770 		return -EINVAL;
771 
772 	/* Get our SGE Page Size parameters.
773 	 */
774 	page_shift = adapter->params.sge.sge_vf_hps + 10;
775 	page_size = 1 << page_shift;
776 
777 	/* Get the right Queues per Page parameters for our Queue.
778 	 */
779 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
780 		     ? adapter->params.sge.sge_vf_eq_qpp
781 		     : adapter->params.sge.sge_vf_iq_qpp);
782 	qpp_mask = (1 << qpp_shift) - 1;
783 
784 	/* Calculate the basics of the BAR2 SGE Queue register area:
785 	 *  o The BAR2 page the Queue registers will be in.
786 	 *  o The BAR2 Queue ID.
787 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
788 	 */
789 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
790 	bar2_qid = qid & qpp_mask;
791 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
792 
793 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
794 	 * hardware will infer the Absolute Queue ID simply from the writes to
795 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
796 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
797 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
798 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
799 	 * from the BAR2 Page and BAR2 Queue ID.
800 	 *
801 	 * One important censequence of this is that some BAR2 SGE registers
802 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
803 	 * there.  But other registers synthesize the SGE Queue ID purely
804 	 * from the writes to the registers -- the Write Combined Doorbell
805 	 * Buffer is a good example.  These BAR2 SGE Registers are only
806 	 * available for those BAR2 SGE Register areas where the SGE Absolute
807 	 * Queue ID can be inferred from simple writes.
808 	 */
809 	bar2_qoffset = bar2_page_offset;
810 	bar2_qinferred = (bar2_qid_offset < page_size);
811 	if (bar2_qinferred) {
812 		bar2_qoffset += bar2_qid_offset;
813 		bar2_qid = 0;
814 	}
815 
816 	*pbar2_qoffset = bar2_qoffset;
817 	*pbar2_qid = bar2_qid;
818 	return 0;
819 }
820 
821 unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
822 {
823 	u32 whoami;
824 
825 	whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
826 	return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
827 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
828 }
829 
830 /**
831  *	t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
832  *	@adapter: the adapter
833  *
834  *	Retrieves various core SGE parameters in the form of hardware SGE
835  *	register values.  The caller is responsible for decoding these as
836  *	needed.  The SGE parameters are stored in @adapter->params.sge.
837  */
838 int t4vf_get_sge_params(struct adapter *adapter)
839 {
840 	struct sge_params *sge_params = &adapter->params.sge;
841 	u32 params[7], vals[7];
842 	int v;
843 
844 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
845 		     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
846 	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
847 		     FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
848 	params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
849 		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
850 	params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
851 		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
852 	params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
853 		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
854 	params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
855 		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
856 	params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
857 		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
858 	v = t4vf_query_params(adapter, 7, params, vals);
859 	if (v)
860 		return v;
861 	sge_params->sge_control = vals[0];
862 	sge_params->sge_host_page_size = vals[1];
863 	sge_params->sge_fl_buffer_size[0] = vals[2];
864 	sge_params->sge_fl_buffer_size[1] = vals[3];
865 	sge_params->sge_timer_value_0_and_1 = vals[4];
866 	sge_params->sge_timer_value_2_and_3 = vals[5];
867 	sge_params->sge_timer_value_4_and_5 = vals[6];
868 
869 	/* T4 uses a single control field to specify both the PCIe Padding and
870 	 * Packing Boundary.  T5 introduced the ability to specify these
871 	 * separately with the Padding Boundary in SGE_CONTROL and and Packing
872 	 * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
873 	 * SGE_CONTROL in order to determine how ingress packet data will be
874 	 * laid out in Packed Buffer Mode.  Unfortunately, older versions of
875 	 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
876 	 * failure grabbing it we throw an error since we can't figure out the
877 	 * right value.
878 	 */
879 	if (!is_t4(adapter->params.chip)) {
880 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
881 			     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
882 		v = t4vf_query_params(adapter, 1, params, vals);
883 		if (v != FW_SUCCESS) {
884 			dev_err(adapter->pdev_dev,
885 				"Unable to get SGE Control2; "
886 				"probably old firmware.\n");
887 			return v;
888 		}
889 		sge_params->sge_control2 = vals[0];
890 	}
891 
892 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
893 		     FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
894 	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
895 		     FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
896 	v = t4vf_query_params(adapter, 2, params, vals);
897 	if (v)
898 		return v;
899 	sge_params->sge_ingress_rx_threshold = vals[0];
900 	sge_params->sge_congestion_control = vals[1];
901 
902 	/* For T5 and later we want to use the new BAR2 Doorbells.
903 	 * Unfortunately, older firmware didn't allow the this register to be
904 	 * read.
905 	 */
906 	if (!is_t4(adapter->params.chip)) {
907 		unsigned int pf, s_hps, s_qpp;
908 
909 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
910 			     FW_PARAMS_PARAM_XYZ_V(
911 				     SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
912 		params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
913 			     FW_PARAMS_PARAM_XYZ_V(
914 				     SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
915 		v = t4vf_query_params(adapter, 2, params, vals);
916 		if (v != FW_SUCCESS) {
917 			dev_warn(adapter->pdev_dev,
918 				 "Unable to get VF SGE Queues/Page; "
919 				 "probably old firmware.\n");
920 			return v;
921 		}
922 		sge_params->sge_egress_queues_per_page = vals[0];
923 		sge_params->sge_ingress_queues_per_page = vals[1];
924 
925 		/* We need the Queues/Page for our VF.  This is based on the
926 		 * PF from which we're instantiated and is indexed in the
927 		 * register we just read. Do it once here so other code in
928 		 * the driver can just use it.
929 		 */
930 		pf = t4vf_get_pf_from_vf(adapter);
931 		s_hps = (HOSTPAGESIZEPF0_S +
932 			 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
933 		sge_params->sge_vf_hps =
934 			((sge_params->sge_host_page_size >> s_hps)
935 			 & HOSTPAGESIZEPF0_M);
936 
937 		s_qpp = (QUEUESPERPAGEPF0_S +
938 			 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
939 		sge_params->sge_vf_eq_qpp =
940 			((sge_params->sge_egress_queues_per_page >> s_qpp)
941 			 & QUEUESPERPAGEPF0_M);
942 		sge_params->sge_vf_iq_qpp =
943 			((sge_params->sge_ingress_queues_per_page >> s_qpp)
944 			 & QUEUESPERPAGEPF0_M);
945 	}
946 
947 	return 0;
948 }
949 
950 /**
951  *	t4vf_get_vpd_params - retrieve device VPD paremeters
952  *	@adapter: the adapter
953  *
954  *	Retrives various device Vital Product Data parameters.  The parameters
955  *	are stored in @adapter->params.vpd.
956  */
957 int t4vf_get_vpd_params(struct adapter *adapter)
958 {
959 	struct vpd_params *vpd_params = &adapter->params.vpd;
960 	u32 params[7], vals[7];
961 	int v;
962 
963 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
964 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
965 	v = t4vf_query_params(adapter, 1, params, vals);
966 	if (v)
967 		return v;
968 	vpd_params->cclk = vals[0];
969 
970 	return 0;
971 }
972 
973 /**
974  *	t4vf_get_dev_params - retrieve device paremeters
975  *	@adapter: the adapter
976  *
977  *	Retrives various device parameters.  The parameters are stored in
978  *	@adapter->params.dev.
979  */
980 int t4vf_get_dev_params(struct adapter *adapter)
981 {
982 	struct dev_params *dev_params = &adapter->params.dev;
983 	u32 params[7], vals[7];
984 	int v;
985 
986 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
987 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
988 	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
989 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
990 	v = t4vf_query_params(adapter, 2, params, vals);
991 	if (v)
992 		return v;
993 	dev_params->fwrev = vals[0];
994 	dev_params->tprev = vals[1];
995 
996 	return 0;
997 }
998 
999 /**
1000  *	t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
1001  *	@adapter: the adapter
1002  *
1003  *	Retrieves global RSS mode and parameters with which we have to live
1004  *	and stores them in the @adapter's RSS parameters.
1005  */
1006 int t4vf_get_rss_glb_config(struct adapter *adapter)
1007 {
1008 	struct rss_params *rss = &adapter->params.rss;
1009 	struct fw_rss_glb_config_cmd cmd, rpl;
1010 	int v;
1011 
1012 	/*
1013 	 * Execute an RSS Global Configuration read command to retrieve
1014 	 * our RSS configuration.
1015 	 */
1016 	memset(&cmd, 0, sizeof(cmd));
1017 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
1018 				      FW_CMD_REQUEST_F |
1019 				      FW_CMD_READ_F);
1020 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1021 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1022 	if (v)
1023 		return v;
1024 
1025 	/*
1026 	 * Transate the big-endian RSS Global Configuration into our
1027 	 * cpu-endian format based on the RSS mode.  We also do first level
1028 	 * filtering at this point to weed out modes which don't support
1029 	 * VF Drivers ...
1030 	 */
1031 	rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
1032 			be32_to_cpu(rpl.u.manual.mode_pkd));
1033 	switch (rss->mode) {
1034 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1035 		u32 word = be32_to_cpu(
1036 				rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
1037 
1038 		rss->u.basicvirtual.synmapen =
1039 			((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
1040 		rss->u.basicvirtual.syn4tupenipv6 =
1041 			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
1042 		rss->u.basicvirtual.syn2tupenipv6 =
1043 			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
1044 		rss->u.basicvirtual.syn4tupenipv4 =
1045 			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
1046 		rss->u.basicvirtual.syn2tupenipv4 =
1047 			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
1048 
1049 		rss->u.basicvirtual.ofdmapen =
1050 			((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
1051 
1052 		rss->u.basicvirtual.tnlmapen =
1053 			((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
1054 		rss->u.basicvirtual.tnlalllookup =
1055 			((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
1056 
1057 		rss->u.basicvirtual.hashtoeplitz =
1058 			((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
1059 
1060 		/* we need at least Tunnel Map Enable to be set */
1061 		if (!rss->u.basicvirtual.tnlmapen)
1062 			return -EINVAL;
1063 		break;
1064 	}
1065 
1066 	default:
1067 		/* all unknown/unsupported RSS modes result in an error */
1068 		return -EINVAL;
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 /**
1075  *	t4vf_get_vfres - retrieve VF resource limits
1076  *	@adapter: the adapter
1077  *
1078  *	Retrieves configured resource limits and capabilities for a virtual
1079  *	function.  The results are stored in @adapter->vfres.
1080  */
1081 int t4vf_get_vfres(struct adapter *adapter)
1082 {
1083 	struct vf_resources *vfres = &adapter->params.vfres;
1084 	struct fw_pfvf_cmd cmd, rpl;
1085 	int v;
1086 	u32 word;
1087 
1088 	/*
1089 	 * Execute PFVF Read command to get VF resource limits; bail out early
1090 	 * with error on command failure.
1091 	 */
1092 	memset(&cmd, 0, sizeof(cmd));
1093 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
1094 				    FW_CMD_REQUEST_F |
1095 				    FW_CMD_READ_F);
1096 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1097 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1098 	if (v)
1099 		return v;
1100 
1101 	/*
1102 	 * Extract VF resource limits and return success.
1103 	 */
1104 	word = be32_to_cpu(rpl.niqflint_niq);
1105 	vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
1106 	vfres->niq = FW_PFVF_CMD_NIQ_G(word);
1107 
1108 	word = be32_to_cpu(rpl.type_to_neq);
1109 	vfres->neq = FW_PFVF_CMD_NEQ_G(word);
1110 	vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
1111 
1112 	word = be32_to_cpu(rpl.tc_to_nexactf);
1113 	vfres->tc = FW_PFVF_CMD_TC_G(word);
1114 	vfres->nvi = FW_PFVF_CMD_NVI_G(word);
1115 	vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
1116 
1117 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
1118 	vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
1119 	vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
1120 	vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
1121 
1122 	return 0;
1123 }
1124 
1125 /**
1126  *	t4vf_read_rss_vi_config - read a VI's RSS configuration
1127  *	@adapter: the adapter
1128  *	@viid: Virtual Interface ID
1129  *	@config: pointer to host-native VI RSS Configuration buffer
1130  *
1131  *	Reads the Virtual Interface's RSS configuration information and
1132  *	translates it into CPU-native format.
1133  */
1134 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
1135 			    union rss_vi_config *config)
1136 {
1137 	struct fw_rss_vi_config_cmd cmd, rpl;
1138 	int v;
1139 
1140 	memset(&cmd, 0, sizeof(cmd));
1141 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1142 				     FW_CMD_REQUEST_F |
1143 				     FW_CMD_READ_F |
1144 				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
1145 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1146 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1147 	if (v)
1148 		return v;
1149 
1150 	switch (adapter->params.rss.mode) {
1151 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1152 		u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
1153 
1154 		config->basicvirtual.ip6fourtupen =
1155 			((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
1156 		config->basicvirtual.ip6twotupen =
1157 			((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
1158 		config->basicvirtual.ip4fourtupen =
1159 			((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
1160 		config->basicvirtual.ip4twotupen =
1161 			((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
1162 		config->basicvirtual.udpen =
1163 			((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
1164 		config->basicvirtual.defaultq =
1165 			FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
1166 		break;
1167 	}
1168 
1169 	default:
1170 		return -EINVAL;
1171 	}
1172 
1173 	return 0;
1174 }
1175 
1176 /**
1177  *	t4vf_write_rss_vi_config - write a VI's RSS configuration
1178  *	@adapter: the adapter
1179  *	@viid: Virtual Interface ID
1180  *	@config: pointer to host-native VI RSS Configuration buffer
1181  *
1182  *	Write the Virtual Interface's RSS configuration information
1183  *	(translating it into firmware-native format before writing).
1184  */
1185 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1186 			     union rss_vi_config *config)
1187 {
1188 	struct fw_rss_vi_config_cmd cmd, rpl;
1189 
1190 	memset(&cmd, 0, sizeof(cmd));
1191 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1192 				     FW_CMD_REQUEST_F |
1193 				     FW_CMD_WRITE_F |
1194 				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
1195 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1196 	switch (adapter->params.rss.mode) {
1197 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1198 		u32 word = 0;
1199 
1200 		if (config->basicvirtual.ip6fourtupen)
1201 			word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1202 		if (config->basicvirtual.ip6twotupen)
1203 			word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1204 		if (config->basicvirtual.ip4fourtupen)
1205 			word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1206 		if (config->basicvirtual.ip4twotupen)
1207 			word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1208 		if (config->basicvirtual.udpen)
1209 			word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1210 		word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1211 				config->basicvirtual.defaultq);
1212 		cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1213 		break;
1214 	}
1215 
1216 	default:
1217 		return -EINVAL;
1218 	}
1219 
1220 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1221 }
1222 
1223 /**
1224  *	t4vf_config_rss_range - configure a portion of the RSS mapping table
1225  *	@adapter: the adapter
1226  *	@viid: Virtual Interface of RSS Table Slice
1227  *	@start: starting entry in the table to write
1228  *	@n: how many table entries to write
1229  *	@rspq: values for the "Response Queue" (Ingress Queue) lookup table
1230  *	@nrspq: number of values in @rspq
1231  *
1232  *	Programs the selected part of the VI's RSS mapping table with the
1233  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
1234  *	until the full table range is populated.
1235  *
1236  *	The caller must ensure the values in @rspq are in the range 0..1023.
1237  */
1238 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1239 			  int start, int n, const u16 *rspq, int nrspq)
1240 {
1241 	const u16 *rsp = rspq;
1242 	const u16 *rsp_end = rspq+nrspq;
1243 	struct fw_rss_ind_tbl_cmd cmd;
1244 
1245 	/*
1246 	 * Initialize firmware command template to write the RSS table.
1247 	 */
1248 	memset(&cmd, 0, sizeof(cmd));
1249 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1250 				     FW_CMD_REQUEST_F |
1251 				     FW_CMD_WRITE_F |
1252 				     FW_RSS_IND_TBL_CMD_VIID_V(viid));
1253 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1254 
1255 	/*
1256 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
1257 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
1258 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
1259 	 * reserved.
1260 	 */
1261 	while (n > 0) {
1262 		__be32 *qp = &cmd.iq0_to_iq2;
1263 		int nq = min(n, 32);
1264 		int ret;
1265 
1266 		/*
1267 		 * Set up the firmware RSS command header to send the next
1268 		 * "nq" Ingress Queue IDs to the firmware.
1269 		 */
1270 		cmd.niqid = cpu_to_be16(nq);
1271 		cmd.startidx = cpu_to_be16(start);
1272 
1273 		/*
1274 		 * "nq" more done for the start of the next loop.
1275 		 */
1276 		start += nq;
1277 		n -= nq;
1278 
1279 		/*
1280 		 * While there are still Ingress Queue IDs to stuff into the
1281 		 * current firmware RSS command, retrieve them from the
1282 		 * Ingress Queue ID array and insert them into the command.
1283 		 */
1284 		while (nq > 0) {
1285 			/*
1286 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
1287 			 * around the Ingress Queue ID array if necessary) and
1288 			 * insert them into the firmware RSS command at the
1289 			 * current 3-tuple position within the commad.
1290 			 */
1291 			u16 qbuf[3];
1292 			u16 *qbp = qbuf;
1293 			int nqbuf = min(3, nq);
1294 
1295 			nq -= nqbuf;
1296 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
1297 			while (nqbuf) {
1298 				nqbuf--;
1299 				*qbp++ = *rsp++;
1300 				if (rsp >= rsp_end)
1301 					rsp = rspq;
1302 			}
1303 			*qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1304 					    FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1305 					    FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1306 		}
1307 
1308 		/*
1309 		 * Send this portion of the RRS table update to the firmware;
1310 		 * bail out on any errors.
1311 		 */
1312 		ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1313 		if (ret)
1314 			return ret;
1315 	}
1316 	return 0;
1317 }
1318 
1319 /**
1320  *	t4vf_alloc_vi - allocate a virtual interface on a port
1321  *	@adapter: the adapter
1322  *	@port_id: physical port associated with the VI
1323  *
1324  *	Allocate a new Virtual Interface and bind it to the indicated
1325  *	physical port.  Return the new Virtual Interface Identifier on
1326  *	success, or a [negative] error number on failure.
1327  */
1328 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1329 {
1330 	struct fw_vi_cmd cmd, rpl;
1331 	int v;
1332 
1333 	/*
1334 	 * Execute a VI command to allocate Virtual Interface and return its
1335 	 * VIID.
1336 	 */
1337 	memset(&cmd, 0, sizeof(cmd));
1338 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1339 				    FW_CMD_REQUEST_F |
1340 				    FW_CMD_WRITE_F |
1341 				    FW_CMD_EXEC_F);
1342 	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1343 					 FW_VI_CMD_ALLOC_F);
1344 	cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1345 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1346 	if (v)
1347 		return v;
1348 
1349 	return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1350 }
1351 
1352 /**
1353  *	t4vf_free_vi -- free a virtual interface
1354  *	@adapter: the adapter
1355  *	@viid: the virtual interface identifier
1356  *
1357  *	Free a previously allocated Virtual Interface.  Return an error on
1358  *	failure.
1359  */
1360 int t4vf_free_vi(struct adapter *adapter, int viid)
1361 {
1362 	struct fw_vi_cmd cmd;
1363 
1364 	/*
1365 	 * Execute a VI command to free the Virtual Interface.
1366 	 */
1367 	memset(&cmd, 0, sizeof(cmd));
1368 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1369 				    FW_CMD_REQUEST_F |
1370 				    FW_CMD_EXEC_F);
1371 	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1372 					 FW_VI_CMD_FREE_F);
1373 	cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1374 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1375 }
1376 
1377 /**
1378  *	t4vf_enable_vi - enable/disable a virtual interface
1379  *	@adapter: the adapter
1380  *	@viid: the Virtual Interface ID
1381  *	@rx_en: 1=enable Rx, 0=disable Rx
1382  *	@tx_en: 1=enable Tx, 0=disable Tx
1383  *
1384  *	Enables/disables a virtual interface.
1385  */
1386 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1387 		   bool rx_en, bool tx_en)
1388 {
1389 	struct fw_vi_enable_cmd cmd;
1390 
1391 	memset(&cmd, 0, sizeof(cmd));
1392 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1393 				     FW_CMD_REQUEST_F |
1394 				     FW_CMD_EXEC_F |
1395 				     FW_VI_ENABLE_CMD_VIID_V(viid));
1396 	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1397 				       FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1398 				       FW_LEN16(cmd));
1399 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1400 }
1401 
1402 /**
1403  *	t4vf_enable_pi - enable/disable a Port's virtual interface
1404  *	@adapter: the adapter
1405  *	@pi: the Port Information structure
1406  *	@rx_en: 1=enable Rx, 0=disable Rx
1407  *	@tx_en: 1=enable Tx, 0=disable Tx
1408  *
1409  *	Enables/disables a Port's virtual interface.  If the Virtual
1410  *	Interface enable/disable operation is successful, we notify the
1411  *	OS-specific code of a potential Link Status change via the OS Contract
1412  *	API t4vf_os_link_changed().
1413  */
1414 int t4vf_enable_pi(struct adapter *adapter, struct port_info *pi,
1415 		   bool rx_en, bool tx_en)
1416 {
1417 	int ret = t4vf_enable_vi(adapter, pi->viid, rx_en, tx_en);
1418 
1419 	if (ret)
1420 		return ret;
1421 	t4vf_os_link_changed(adapter, pi->pidx,
1422 			     rx_en && tx_en && pi->link_cfg.link_ok);
1423 	return 0;
1424 }
1425 
1426 /**
1427  *	t4vf_identify_port - identify a VI's port by blinking its LED
1428  *	@adapter: the adapter
1429  *	@viid: the Virtual Interface ID
1430  *	@nblinks: how many times to blink LED at 2.5 Hz
1431  *
1432  *	Identifies a VI's port by blinking its LED.
1433  */
1434 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1435 		       unsigned int nblinks)
1436 {
1437 	struct fw_vi_enable_cmd cmd;
1438 
1439 	memset(&cmd, 0, sizeof(cmd));
1440 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1441 				     FW_CMD_REQUEST_F |
1442 				     FW_CMD_EXEC_F |
1443 				     FW_VI_ENABLE_CMD_VIID_V(viid));
1444 	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1445 				       FW_LEN16(cmd));
1446 	cmd.blinkdur = cpu_to_be16(nblinks);
1447 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1448 }
1449 
1450 /**
1451  *	t4vf_set_rxmode - set Rx properties of a virtual interface
1452  *	@adapter: the adapter
1453  *	@viid: the VI id
1454  *	@mtu: the new MTU or -1 for no change
1455  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1456  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1457  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1458  *	@vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1459  *		-1 no change
1460  *
1461  *	Sets Rx properties of a virtual interface.
1462  */
1463 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1464 		    int mtu, int promisc, int all_multi, int bcast, int vlanex,
1465 		    bool sleep_ok)
1466 {
1467 	struct fw_vi_rxmode_cmd cmd;
1468 
1469 	/* convert to FW values */
1470 	if (mtu < 0)
1471 		mtu = FW_VI_RXMODE_CMD_MTU_M;
1472 	if (promisc < 0)
1473 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1474 	if (all_multi < 0)
1475 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1476 	if (bcast < 0)
1477 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1478 	if (vlanex < 0)
1479 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1480 
1481 	memset(&cmd, 0, sizeof(cmd));
1482 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1483 				     FW_CMD_REQUEST_F |
1484 				     FW_CMD_WRITE_F |
1485 				     FW_VI_RXMODE_CMD_VIID_V(viid));
1486 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1487 	cmd.mtu_to_vlanexen =
1488 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1489 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1490 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1491 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1492 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1493 	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1494 }
1495 
1496 /**
1497  *	t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1498  *	@adapter: the adapter
1499  *	@viid: the Virtual Interface Identifier
1500  *	@free: if true any existing filters for this VI id are first removed
1501  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
1502  *	@addr: the MAC address(es)
1503  *	@idx: where to store the index of each allocated filter
1504  *	@hash: pointer to hash address filter bitmap
1505  *	@sleep_ok: call is allowed to sleep
1506  *
1507  *	Allocates an exact-match filter for each of the supplied addresses and
1508  *	sets it to the corresponding address.  If @idx is not %NULL it should
1509  *	have at least @naddr entries, each of which will be set to the index of
1510  *	the filter allocated for the corresponding MAC address.  If a filter
1511  *	could not be allocated for an address its index is set to 0xffff.
1512  *	If @hash is not %NULL addresses that fail to allocate an exact filter
1513  *	are hashed and update the hash filter bitmap pointed at by @hash.
1514  *
1515  *	Returns a negative error number or the number of filters allocated.
1516  */
1517 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1518 			unsigned int naddr, const u8 **addr, u16 *idx,
1519 			u64 *hash, bool sleep_ok)
1520 {
1521 	int offset, ret = 0;
1522 	unsigned nfilters = 0;
1523 	unsigned int rem = naddr;
1524 	struct fw_vi_mac_cmd cmd, rpl;
1525 	unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1526 
1527 	if (naddr > max_naddr)
1528 		return -EINVAL;
1529 
1530 	for (offset = 0; offset < naddr; /**/) {
1531 		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1532 					 ? rem
1533 					 : ARRAY_SIZE(cmd.u.exact));
1534 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1535 						     u.exact[fw_naddr]), 16);
1536 		struct fw_vi_mac_exact *p;
1537 		int i;
1538 
1539 		memset(&cmd, 0, sizeof(cmd));
1540 		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1541 					     FW_CMD_REQUEST_F |
1542 					     FW_CMD_WRITE_F |
1543 					     (free ? FW_CMD_EXEC_F : 0) |
1544 					     FW_VI_MAC_CMD_VIID_V(viid));
1545 		cmd.freemacs_to_len16 =
1546 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1547 				    FW_CMD_LEN16_V(len16));
1548 
1549 		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1550 			p->valid_to_idx = cpu_to_be16(
1551 				FW_VI_MAC_CMD_VALID_F |
1552 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1553 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1554 		}
1555 
1556 
1557 		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1558 					sleep_ok);
1559 		if (ret && ret != -ENOMEM)
1560 			break;
1561 
1562 		for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1563 			u16 index = FW_VI_MAC_CMD_IDX_G(
1564 				be16_to_cpu(p->valid_to_idx));
1565 
1566 			if (idx)
1567 				idx[offset+i] =
1568 					(index >= max_naddr
1569 					 ? 0xffff
1570 					 : index);
1571 			if (index < max_naddr)
1572 				nfilters++;
1573 			else if (hash)
1574 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1575 		}
1576 
1577 		free = false;
1578 		offset += fw_naddr;
1579 		rem -= fw_naddr;
1580 	}
1581 
1582 	/*
1583 	 * If there were no errors or we merely ran out of room in our MAC
1584 	 * address arena, return the number of filters actually written.
1585 	 */
1586 	if (ret == 0 || ret == -ENOMEM)
1587 		ret = nfilters;
1588 	return ret;
1589 }
1590 
1591 /**
1592  *	t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1593  *	@adapter: the adapter
1594  *	@viid: the VI id
1595  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
1596  *	@addr: the MAC address(es)
1597  *	@sleep_ok: call is allowed to sleep
1598  *
1599  *	Frees the exact-match filter for each of the supplied addresses
1600  *
1601  *	Returns a negative error number or the number of filters freed.
1602  */
1603 int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1604 		       unsigned int naddr, const u8 **addr, bool sleep_ok)
1605 {
1606 	int offset, ret = 0;
1607 	struct fw_vi_mac_cmd cmd;
1608 	unsigned int nfilters = 0;
1609 	unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1610 	unsigned int rem = naddr;
1611 
1612 	if (naddr > max_naddr)
1613 		return -EINVAL;
1614 
1615 	for (offset = 0; offset < (int)naddr ; /**/) {
1616 		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1617 					 rem : ARRAY_SIZE(cmd.u.exact));
1618 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1619 						     u.exact[fw_naddr]), 16);
1620 		struct fw_vi_mac_exact *p;
1621 		int i;
1622 
1623 		memset(&cmd, 0, sizeof(cmd));
1624 		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1625 				     FW_CMD_REQUEST_F |
1626 				     FW_CMD_WRITE_F |
1627 				     FW_CMD_EXEC_V(0) |
1628 				     FW_VI_MAC_CMD_VIID_V(viid));
1629 		cmd.freemacs_to_len16 =
1630 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1631 					    FW_CMD_LEN16_V(len16));
1632 
1633 		for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1634 			p->valid_to_idx = cpu_to_be16(
1635 				FW_VI_MAC_CMD_VALID_F |
1636 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1637 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1638 		}
1639 
1640 		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1641 					sleep_ok);
1642 		if (ret)
1643 			break;
1644 
1645 		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1646 			u16 index = FW_VI_MAC_CMD_IDX_G(
1647 						be16_to_cpu(p->valid_to_idx));
1648 
1649 			if (index < max_naddr)
1650 				nfilters++;
1651 		}
1652 
1653 		offset += fw_naddr;
1654 		rem -= fw_naddr;
1655 	}
1656 
1657 	if (ret == 0)
1658 		ret = nfilters;
1659 	return ret;
1660 }
1661 
1662 /**
1663  *	t4vf_change_mac - modifies the exact-match filter for a MAC address
1664  *	@adapter: the adapter
1665  *	@viid: the Virtual Interface ID
1666  *	@idx: index of existing filter for old value of MAC address, or -1
1667  *	@addr: the new MAC address value
1668  *	@persist: if idx < 0, the new MAC allocation should be persistent
1669  *
1670  *	Modifies an exact-match filter and sets it to the new MAC address.
1671  *	Note that in general it is not possible to modify the value of a given
1672  *	filter so the generic way to modify an address filter is to free the
1673  *	one being used by the old address value and allocate a new filter for
1674  *	the new address value.  @idx can be -1 if the address is a new
1675  *	addition.
1676  *
1677  *	Returns a negative error number or the index of the filter with the new
1678  *	MAC value.
1679  */
1680 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1681 		    int idx, const u8 *addr, bool persist)
1682 {
1683 	int ret;
1684 	struct fw_vi_mac_cmd cmd, rpl;
1685 	struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1686 	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1687 					     u.exact[1]), 16);
1688 	unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1689 
1690 	/*
1691 	 * If this is a new allocation, determine whether it should be
1692 	 * persistent (across a "freemacs" operation) or not.
1693 	 */
1694 	if (idx < 0)
1695 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1696 
1697 	memset(&cmd, 0, sizeof(cmd));
1698 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1699 				     FW_CMD_REQUEST_F |
1700 				     FW_CMD_WRITE_F |
1701 				     FW_VI_MAC_CMD_VIID_V(viid));
1702 	cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1703 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1704 				      FW_VI_MAC_CMD_IDX_V(idx));
1705 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
1706 
1707 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1708 	if (ret == 0) {
1709 		p = &rpl.u.exact[0];
1710 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1711 		if (ret >= max_mac_addr)
1712 			ret = -ENOMEM;
1713 	}
1714 	return ret;
1715 }
1716 
1717 /**
1718  *	t4vf_set_addr_hash - program the MAC inexact-match hash filter
1719  *	@adapter: the adapter
1720  *	@viid: the Virtual Interface Identifier
1721  *	@ucast: whether the hash filter should also match unicast addresses
1722  *	@vec: the value to be written to the hash filter
1723  *	@sleep_ok: call is allowed to sleep
1724  *
1725  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
1726  */
1727 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1728 		       bool ucast, u64 vec, bool sleep_ok)
1729 {
1730 	struct fw_vi_mac_cmd cmd;
1731 	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1732 					     u.exact[0]), 16);
1733 
1734 	memset(&cmd, 0, sizeof(cmd));
1735 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1736 				     FW_CMD_REQUEST_F |
1737 				     FW_CMD_WRITE_F |
1738 				     FW_VI_ENABLE_CMD_VIID_V(viid));
1739 	cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1740 					    FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1741 					    FW_CMD_LEN16_V(len16));
1742 	cmd.u.hash.hashvec = cpu_to_be64(vec);
1743 	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1744 }
1745 
1746 /**
1747  *	t4vf_get_port_stats - collect "port" statistics
1748  *	@adapter: the adapter
1749  *	@pidx: the port index
1750  *	@s: the stats structure to fill
1751  *
1752  *	Collect statistics for the "port"'s Virtual Interface.
1753  */
1754 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1755 			struct t4vf_port_stats *s)
1756 {
1757 	struct port_info *pi = adap2pinfo(adapter, pidx);
1758 	struct fw_vi_stats_vf fwstats;
1759 	unsigned int rem = VI_VF_NUM_STATS;
1760 	__be64 *fwsp = (__be64 *)&fwstats;
1761 
1762 	/*
1763 	 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1764 	 * commands.  We could use a Work Request and get all of them at once
1765 	 * but that's an asynchronous interface which is awkward to use.
1766 	 */
1767 	while (rem) {
1768 		unsigned int ix = VI_VF_NUM_STATS - rem;
1769 		unsigned int nstats = min(6U, rem);
1770 		struct fw_vi_stats_cmd cmd, rpl;
1771 		size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1772 			      sizeof(struct fw_vi_stats_ctl));
1773 		size_t len16 = DIV_ROUND_UP(len, 16);
1774 		int ret;
1775 
1776 		memset(&cmd, 0, sizeof(cmd));
1777 		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1778 					     FW_VI_STATS_CMD_VIID_V(pi->viid) |
1779 					     FW_CMD_REQUEST_F |
1780 					     FW_CMD_READ_F);
1781 		cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1782 		cmd.u.ctl.nstats_ix =
1783 			cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1784 				    FW_VI_STATS_CMD_NSTATS_V(nstats));
1785 		ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1786 		if (ret)
1787 			return ret;
1788 
1789 		memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1790 
1791 		rem -= nstats;
1792 		fwsp += nstats;
1793 	}
1794 
1795 	/*
1796 	 * Translate firmware statistics into host native statistics.
1797 	 */
1798 	s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1799 	s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1800 	s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1801 	s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1802 	s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1803 	s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1804 	s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1805 	s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1806 	s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1807 
1808 	s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1809 	s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1810 	s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1811 	s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1812 	s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1813 	s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1814 
1815 	s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1816 
1817 	return 0;
1818 }
1819 
1820 /**
1821  *	t4vf_iq_free - free an ingress queue and its free lists
1822  *	@adapter: the adapter
1823  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1824  *	@iqid: ingress queue ID
1825  *	@fl0id: FL0 queue ID or 0xffff if no attached FL0
1826  *	@fl1id: FL1 queue ID or 0xffff if no attached FL1
1827  *
1828  *	Frees an ingress queue and its associated free lists, if any.
1829  */
1830 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1831 		 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1832 {
1833 	struct fw_iq_cmd cmd;
1834 
1835 	memset(&cmd, 0, sizeof(cmd));
1836 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1837 				    FW_CMD_REQUEST_F |
1838 				    FW_CMD_EXEC_F);
1839 	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1840 					 FW_LEN16(cmd));
1841 	cmd.type_to_iqandstindex =
1842 		cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1843 
1844 	cmd.iqid = cpu_to_be16(iqid);
1845 	cmd.fl0id = cpu_to_be16(fl0id);
1846 	cmd.fl1id = cpu_to_be16(fl1id);
1847 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1848 }
1849 
1850 /**
1851  *	t4vf_eth_eq_free - free an Ethernet egress queue
1852  *	@adapter: the adapter
1853  *	@eqid: egress queue ID
1854  *
1855  *	Frees an Ethernet egress queue.
1856  */
1857 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1858 {
1859 	struct fw_eq_eth_cmd cmd;
1860 
1861 	memset(&cmd, 0, sizeof(cmd));
1862 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1863 				    FW_CMD_REQUEST_F |
1864 				    FW_CMD_EXEC_F);
1865 	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1866 					 FW_LEN16(cmd));
1867 	cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1868 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1869 }
1870 
1871 /**
1872  *	t4vf_link_down_rc_str - return a string for a Link Down Reason Code
1873  *	@link_down_rc: Link Down Reason Code
1874  *
1875  *	Returns a string representation of the Link Down Reason Code.
1876  */
1877 static const char *t4vf_link_down_rc_str(unsigned char link_down_rc)
1878 {
1879 	static const char * const reason[] = {
1880 		"Link Down",
1881 		"Remote Fault",
1882 		"Auto-negotiation Failure",
1883 		"Reserved",
1884 		"Insufficient Airflow",
1885 		"Unable To Determine Reason",
1886 		"No RX Signal Detected",
1887 		"Reserved",
1888 	};
1889 
1890 	if (link_down_rc >= ARRAY_SIZE(reason))
1891 		return "Bad Reason Code";
1892 
1893 	return reason[link_down_rc];
1894 }
1895 
1896 /**
1897  *	t4vf_handle_get_port_info - process a FW reply message
1898  *	@pi: the port info
1899  *	@rpl: start of the FW message
1900  *
1901  *	Processes a GET_PORT_INFO FW reply message.
1902  */
1903 static void t4vf_handle_get_port_info(struct port_info *pi,
1904 				      const struct fw_port_cmd *cmd)
1905 {
1906 	int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
1907 	struct adapter *adapter = pi->adapter;
1908 	struct link_config *lc = &pi->link_cfg;
1909 	int link_ok, linkdnrc;
1910 	enum fw_port_type port_type;
1911 	enum fw_port_module_type mod_type;
1912 	unsigned int speed, fc, fec;
1913 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
1914 
1915 	/* Extract the various fields from the Port Information message. */
1916 	switch (action) {
1917 	case FW_PORT_ACTION_GET_PORT_INFO: {
1918 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
1919 
1920 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
1921 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
1922 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
1923 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
1924 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
1925 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
1926 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
1927 
1928 		/* Unfortunately the format of the Link Status in the old
1929 		 * 16-bit Port Information message isn't the same as the
1930 		 * 16-bit Port Capabilities bitfield used everywhere else ...
1931 		 */
1932 		linkattr = 0;
1933 		if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1934 			linkattr |= FW_PORT_CAP32_FC_RX;
1935 		if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1936 			linkattr |= FW_PORT_CAP32_FC_TX;
1937 		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1938 			linkattr |= FW_PORT_CAP32_SPEED_100M;
1939 		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1940 			linkattr |= FW_PORT_CAP32_SPEED_1G;
1941 		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1942 			linkattr |= FW_PORT_CAP32_SPEED_10G;
1943 		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1944 			linkattr |= FW_PORT_CAP32_SPEED_25G;
1945 		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1946 			linkattr |= FW_PORT_CAP32_SPEED_40G;
1947 		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1948 			linkattr |= FW_PORT_CAP32_SPEED_100G;
1949 
1950 		break;
1951 	}
1952 
1953 	case FW_PORT_ACTION_GET_PORT_INFO32: {
1954 		u32 lstatus32;
1955 
1956 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
1957 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
1958 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
1959 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
1960 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
1961 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
1962 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
1963 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
1964 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
1965 		break;
1966 	}
1967 
1968 	default:
1969 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
1970 			be32_to_cpu(cmd->action_to_len16));
1971 		return;
1972 	}
1973 
1974 	fec = fwcap_to_cc_fec(acaps);
1975 	fc = fwcap_to_cc_pause(linkattr);
1976 	speed = fwcap_to_speed(linkattr);
1977 
1978 	if (mod_type != pi->mod_type) {
1979 		/* When a new Transceiver Module is inserted, the Firmware
1980 		 * will examine any Forward Error Correction parameters
1981 		 * present in the Transceiver Module i2c EPROM and determine
1982 		 * the supported and recommended FEC settings from those
1983 		 * based on IEEE 802.3 standards.  We always record the
1984 		 * IEEE 802.3 recommended "automatic" settings.
1985 		 */
1986 		lc->auto_fec = fec;
1987 
1988 		/* Some versions of the early T6 Firmware "cheated" when
1989 		 * handling different Transceiver Modules by changing the
1990 		 * underlaying Port Type reported to the Host Drivers.  As
1991 		 * such we need to capture whatever Port Type the Firmware
1992 		 * sends us and record it in case it's different from what we
1993 		 * were told earlier.  Unfortunately, since Firmware is
1994 		 * forever, we'll need to keep this code here forever, but in
1995 		 * later T6 Firmware it should just be an assignment of the
1996 		 * same value already recorded.
1997 		 */
1998 		pi->port_type = port_type;
1999 
2000 		pi->mod_type = mod_type;
2001 		t4vf_os_portmod_changed(adapter, pi->pidx);
2002 	}
2003 
2004 	if (link_ok != lc->link_ok || speed != lc->speed ||
2005 	    fc != lc->fc || fec != lc->fec) {	/* something changed */
2006 		if (!link_ok && lc->link_ok) {
2007 			lc->link_down_rc = linkdnrc;
2008 			dev_warn_ratelimited(adapter->pdev_dev,
2009 					     "Port %d link down, reason: %s\n",
2010 					     pi->port_id,
2011 					     t4vf_link_down_rc_str(linkdnrc));
2012 		}
2013 		lc->link_ok = link_ok;
2014 		lc->speed = speed;
2015 		lc->fc = fc;
2016 		lc->fec = fec;
2017 
2018 		lc->pcaps = pcaps;
2019 		lc->lpacaps = lpacaps;
2020 		lc->acaps = acaps & ADVERT_MASK;
2021 
2022 		/* If we're not physically capable of Auto-Negotiation, note
2023 		 * this as Auto-Negotiation disabled.  Otherwise, we track
2024 		 * what Auto-Negotiation settings we have.  Note parallel
2025 		 * structure in init_link_config().
2026 		 */
2027 		if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
2028 			lc->autoneg = AUTONEG_DISABLE;
2029 		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
2030 			lc->autoneg = AUTONEG_ENABLE;
2031 		} else {
2032 			/* When Autoneg is disabled, user needs to set
2033 			 * single speed.
2034 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
2035 			 */
2036 			lc->acaps = 0;
2037 			lc->speed_caps = fwcap_to_speed(acaps);
2038 			lc->autoneg = AUTONEG_DISABLE;
2039 		}
2040 
2041 		t4vf_os_link_changed(adapter, pi->pidx, link_ok);
2042 	}
2043 }
2044 
2045 /**
2046  *	t4vf_update_port_info - retrieve and update port information if changed
2047  *	@pi: the port_info
2048  *
2049  *	We issue a Get Port Information Command to the Firmware and, if
2050  *	successful, we check to see if anything is different from what we
2051  *	last recorded and update things accordingly.
2052  */
2053 int t4vf_update_port_info(struct port_info *pi)
2054 {
2055 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
2056 	struct fw_port_cmd port_cmd;
2057 	int ret;
2058 
2059 	memset(&port_cmd, 0, sizeof(port_cmd));
2060 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2061 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
2062 					    FW_PORT_CMD_PORTID_V(pi->port_id));
2063 	port_cmd.action_to_len16 = cpu_to_be32(
2064 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
2065 				     ? FW_PORT_ACTION_GET_PORT_INFO
2066 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
2067 		FW_LEN16(port_cmd));
2068 	ret = t4vf_wr_mbox(pi->adapter, &port_cmd, sizeof(port_cmd),
2069 			   &port_cmd);
2070 	if (ret)
2071 		return ret;
2072 	t4vf_handle_get_port_info(pi, &port_cmd);
2073 	return 0;
2074 }
2075 
2076 /**
2077  *	t4vf_handle_fw_rpl - process a firmware reply message
2078  *	@adapter: the adapter
2079  *	@rpl: start of the firmware message
2080  *
2081  *	Processes a firmware message, such as link state change messages.
2082  */
2083 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
2084 {
2085 	const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
2086 	u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
2087 
2088 	switch (opcode) {
2089 	case FW_PORT_CMD: {
2090 		/*
2091 		 * Link/module state change message.
2092 		 */
2093 		const struct fw_port_cmd *port_cmd =
2094 			(const struct fw_port_cmd *)rpl;
2095 		int action = FW_PORT_CMD_ACTION_G(
2096 			be32_to_cpu(port_cmd->action_to_len16));
2097 		int port_id, pidx;
2098 
2099 		if (action != FW_PORT_ACTION_GET_PORT_INFO &&
2100 		    action != FW_PORT_ACTION_GET_PORT_INFO32) {
2101 			dev_err(adapter->pdev_dev,
2102 				"Unknown firmware PORT reply action %x\n",
2103 				action);
2104 			break;
2105 		}
2106 
2107 		port_id = FW_PORT_CMD_PORTID_G(
2108 			be32_to_cpu(port_cmd->op_to_portid));
2109 		for_each_port(adapter, pidx) {
2110 			struct port_info *pi = adap2pinfo(adapter, pidx);
2111 
2112 			if (pi->port_id != port_id)
2113 				continue;
2114 			t4vf_handle_get_port_info(pi, port_cmd);
2115 		}
2116 		break;
2117 	}
2118 
2119 	default:
2120 		dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
2121 			opcode);
2122 	}
2123 	return 0;
2124 }
2125 
2126 /**
2127  */
2128 int t4vf_prep_adapter(struct adapter *adapter)
2129 {
2130 	int err;
2131 	unsigned int chipid;
2132 
2133 	/* Wait for the device to become ready before proceeding ...
2134 	 */
2135 	err = t4vf_wait_dev_ready(adapter);
2136 	if (err)
2137 		return err;
2138 
2139 	/* Default port and clock for debugging in case we can't reach
2140 	 * firmware.
2141 	 */
2142 	adapter->params.nports = 1;
2143 	adapter->params.vfres.pmask = 1;
2144 	adapter->params.vpd.cclk = 50000;
2145 
2146 	adapter->params.chip = 0;
2147 	switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
2148 	case CHELSIO_T4:
2149 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
2150 		adapter->params.arch.sge_fl_db = DBPRIO_F;
2151 		adapter->params.arch.mps_tcam_size =
2152 				NUM_MPS_CLS_SRAM_L_INSTANCES;
2153 		break;
2154 
2155 	case CHELSIO_T5:
2156 		chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2157 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
2158 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
2159 		adapter->params.arch.mps_tcam_size =
2160 				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2161 		break;
2162 
2163 	case CHELSIO_T6:
2164 		chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2165 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
2166 		adapter->params.arch.sge_fl_db = 0;
2167 		adapter->params.arch.mps_tcam_size =
2168 				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2169 		break;
2170 	}
2171 
2172 	return 0;
2173 }
2174 
2175 /**
2176  *	t4vf_get_vf_mac_acl - Get the MAC address to be set to
2177  *			      the VI of this VF.
2178  *	@adapter: The adapter
2179  *	@pf: The pf associated with vf
2180  *	@naddr: the number of ACL MAC addresses returned in addr
2181  *	@addr: Placeholder for MAC addresses
2182  *
2183  *	Find the MAC address to be set to the VF's VI. The requested MAC address
2184  *	is from the host OS via callback in the PF driver.
2185  */
2186 int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int pf,
2187 			unsigned int *naddr, u8 *addr)
2188 {
2189 	struct fw_acl_mac_cmd cmd;
2190 	int ret;
2191 
2192 	memset(&cmd, 0, sizeof(cmd));
2193 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
2194 				    FW_CMD_REQUEST_F |
2195 				    FW_CMD_READ_F);
2196 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2197 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2198 	if (ret)
2199 		return ret;
2200 
2201 	if (cmd.nmac < *naddr)
2202 		*naddr = cmd.nmac;
2203 
2204 	switch (pf) {
2205 	case 3:
2206 		memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
2207 		break;
2208 	case 2:
2209 		memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
2210 		break;
2211 	case 1:
2212 		memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
2213 		break;
2214 	case 0:
2215 		memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
2216 		break;
2217 	}
2218 
2219 	return ret;
2220 }
2221 
2222 /**
2223  *	t4vf_get_vf_vlan_acl - Get the VLAN ID to be set to
2224  *                             the VI of this VF.
2225  *	@adapter: The adapter
2226  *
2227  *	Find the VLAN ID to be set to the VF's VI. The requested VLAN ID
2228  *	is from the host OS via callback in the PF driver.
2229  */
2230 int t4vf_get_vf_vlan_acl(struct adapter *adapter)
2231 {
2232 	struct fw_acl_vlan_cmd cmd;
2233 	int vlan = 0;
2234 	int ret = 0;
2235 
2236 	cmd.op_to_vfn = htonl(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
2237 			      FW_CMD_REQUEST_F | FW_CMD_READ_F);
2238 
2239 	/* Note: Do not enable the ACL */
2240 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2241 
2242 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2243 
2244 	if (!ret)
2245 		vlan = be16_to_cpu(cmd.vlanid[0]);
2246 
2247 	return vlan;
2248 }
2249