1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/pci.h>
37 
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
40 
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4_values.h"
43 #include "../cxgb4/t4fw_api.h"
44 
45 /*
46  * Wait for the device to become ready (signified by our "who am I" register
47  * returning a value other than all 1's).  Return an error if it doesn't
48  * become ready ...
49  */
50 int t4vf_wait_dev_ready(struct adapter *adapter)
51 {
52 	const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53 	const u32 notready1 = 0xffffffff;
54 	const u32 notready2 = 0xeeeeeeee;
55 	u32 val;
56 
57 	val = t4_read_reg(adapter, whoami);
58 	if (val != notready1 && val != notready2)
59 		return 0;
60 	msleep(500);
61 	val = t4_read_reg(adapter, whoami);
62 	if (val != notready1 && val != notready2)
63 		return 0;
64 	else
65 		return -EIO;
66 }
67 
68 /*
69  * Get the reply to a mailbox command and store it in @rpl in big-endian order
70  * (since the firmware data structures are specified in a big-endian layout).
71  */
72 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73 			 u32 mbox_data)
74 {
75 	for ( ; size; size -= 8, mbox_data += 8)
76 		*rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77 }
78 
79 /*
80  * Dump contents of mailbox with a leading tag.
81  */
82 static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data)
83 {
84 	dev_err(adapter->pdev_dev,
85 		"mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag,
86 		(unsigned long long)t4_read_reg64(adapter, mbox_data +  0),
87 		(unsigned long long)t4_read_reg64(adapter, mbox_data +  8),
88 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 16),
89 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 24),
90 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 32),
91 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 40),
92 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 48),
93 		(unsigned long long)t4_read_reg64(adapter, mbox_data + 56));
94 }
95 
96 /**
97  *	t4vf_wr_mbox_core - send a command to FW through the mailbox
98  *	@adapter: the adapter
99  *	@cmd: the command to write
100  *	@size: command length in bytes
101  *	@rpl: where to optionally store the reply
102  *	@sleep_ok: if true we may sleep while awaiting command completion
103  *
104  *	Sends the given command to FW through the mailbox and waits for the
105  *	FW to execute the command.  If @rpl is not %NULL it is used to store
106  *	the FW's reply to the command.  The command and its optional reply
107  *	are of the same length.  FW can take up to 500 ms to respond.
108  *	@sleep_ok determines whether we may sleep while awaiting the response.
109  *	If sleeping is allowed we use progressive backoff otherwise we spin.
110  *
111  *	The return value is 0 on success or a negative errno on failure.  A
112  *	failure can happen either because we are not able to execute the
113  *	command or FW executes it but signals an error.  In the latter case
114  *	the return value is the error code indicated by FW (negated).
115  */
116 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
117 		      void *rpl, bool sleep_ok)
118 {
119 	static const int delay[] = {
120 		1, 1, 3, 5, 10, 10, 20, 50, 100
121 	};
122 
123 	u32 v, mbox_data;
124 	int i, ms, delay_idx;
125 	const __be64 *p;
126 	u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
127 
128 	/* In T6, mailbox size is changed to 128 bytes to avoid
129 	 * invalidating the entire prefetch buffer.
130 	 */
131 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
132 		mbox_data = T4VF_MBDATA_BASE_ADDR;
133 	else
134 		mbox_data = T6VF_MBDATA_BASE_ADDR;
135 
136 	/*
137 	 * Commands must be multiples of 16 bytes in length and may not be
138 	 * larger than the size of the Mailbox Data register array.
139 	 */
140 	if ((size % 16) != 0 ||
141 	    size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
142 		return -EINVAL;
143 
144 	/*
145 	 * Loop trying to get ownership of the mailbox.  Return an error
146 	 * if we can't gain ownership.
147 	 */
148 	v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
149 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
150 		v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
151 	if (v != MBOX_OWNER_DRV)
152 		return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT;
153 
154 	/*
155 	 * Write the command array into the Mailbox Data register array and
156 	 * transfer ownership of the mailbox to the firmware.
157 	 *
158 	 * For the VFs, the Mailbox Data "registers" are actually backed by
159 	 * T4's "MA" interface rather than PL Registers (as is the case for
160 	 * the PFs).  Because these are in different coherency domains, the
161 	 * write to the VF's PL-register-backed Mailbox Control can race in
162 	 * front of the writes to the MA-backed VF Mailbox Data "registers".
163 	 * So we need to do a read-back on at least one byte of the VF Mailbox
164 	 * Data registers before doing the write to the VF Mailbox Control
165 	 * register.
166 	 */
167 	for (i = 0, p = cmd; i < size; i += 8)
168 		t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
169 	t4_read_reg(adapter, mbox_data);         /* flush write */
170 
171 	t4_write_reg(adapter, mbox_ctl,
172 		     MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
173 	t4_read_reg(adapter, mbox_ctl);          /* flush write */
174 
175 	/*
176 	 * Spin waiting for firmware to acknowledge processing our command.
177 	 */
178 	delay_idx = 0;
179 	ms = delay[0];
180 
181 	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
182 		if (sleep_ok) {
183 			ms = delay[delay_idx];
184 			if (delay_idx < ARRAY_SIZE(delay) - 1)
185 				delay_idx++;
186 			msleep(ms);
187 		} else
188 			mdelay(ms);
189 
190 		/*
191 		 * If we're the owner, see if this is the reply we wanted.
192 		 */
193 		v = t4_read_reg(adapter, mbox_ctl);
194 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
195 			/*
196 			 * If the Message Valid bit isn't on, revoke ownership
197 			 * of the mailbox and continue waiting for our reply.
198 			 */
199 			if ((v & MBMSGVALID_F) == 0) {
200 				t4_write_reg(adapter, mbox_ctl,
201 					     MBOWNER_V(MBOX_OWNER_NONE));
202 				continue;
203 			}
204 
205 			/*
206 			 * We now have our reply.  Extract the command return
207 			 * value, copy the reply back to our caller's buffer
208 			 * (if specified) and revoke ownership of the mailbox.
209 			 * We return the (negated) firmware command return
210 			 * code (this depends on FW_SUCCESS == 0).
211 			 */
212 
213 			/* return value in low-order little-endian word */
214 			v = t4_read_reg(adapter, mbox_data);
215 			if (FW_CMD_RETVAL_G(v))
216 				dump_mbox(adapter, "FW Error", mbox_data);
217 
218 			if (rpl) {
219 				/* request bit in high-order BE word */
220 				WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
221 					 & FW_CMD_REQUEST_F) == 0);
222 				get_mbox_rpl(adapter, rpl, size, mbox_data);
223 				WARN_ON((be32_to_cpu(*(__be32 *)rpl)
224 					 & FW_CMD_REQUEST_F) != 0);
225 			}
226 			t4_write_reg(adapter, mbox_ctl,
227 				     MBOWNER_V(MBOX_OWNER_NONE));
228 			return -FW_CMD_RETVAL_G(v);
229 		}
230 	}
231 
232 	/*
233 	 * We timed out.  Return the error ...
234 	 */
235 	dump_mbox(adapter, "FW Timeout", mbox_data);
236 	return -ETIMEDOUT;
237 }
238 
239 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
240 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
241 		     FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
242 
243 /**
244  *	init_link_config - initialize a link's SW state
245  *	@lc: structure holding the link state
246  *	@caps: link capabilities
247  *
248  *	Initializes the SW state maintained for each link, including the link's
249  *	capabilities and default speed/flow-control/autonegotiation settings.
250  */
251 static void init_link_config(struct link_config *lc, unsigned int caps)
252 {
253 	lc->supported = caps;
254 	lc->requested_speed = 0;
255 	lc->speed = 0;
256 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
257 	if (lc->supported & FW_PORT_CAP_ANEG) {
258 		lc->advertising = lc->supported & ADVERT_MASK;
259 		lc->autoneg = AUTONEG_ENABLE;
260 		lc->requested_fc |= PAUSE_AUTONEG;
261 	} else {
262 		lc->advertising = 0;
263 		lc->autoneg = AUTONEG_DISABLE;
264 	}
265 }
266 
267 /**
268  *	t4vf_port_init - initialize port hardware/software state
269  *	@adapter: the adapter
270  *	@pidx: the adapter port index
271  */
272 int t4vf_port_init(struct adapter *adapter, int pidx)
273 {
274 	struct port_info *pi = adap2pinfo(adapter, pidx);
275 	struct fw_vi_cmd vi_cmd, vi_rpl;
276 	struct fw_port_cmd port_cmd, port_rpl;
277 	int v;
278 
279 	/*
280 	 * Execute a VI Read command to get our Virtual Interface information
281 	 * like MAC address, etc.
282 	 */
283 	memset(&vi_cmd, 0, sizeof(vi_cmd));
284 	vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
285 				       FW_CMD_REQUEST_F |
286 				       FW_CMD_READ_F);
287 	vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
288 	vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
289 	v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
290 	if (v)
291 		return v;
292 
293 	BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
294 	pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
295 	t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
296 
297 	/*
298 	 * If we don't have read access to our port information, we're done
299 	 * now.  Otherwise, execute a PORT Read command to get it ...
300 	 */
301 	if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
302 		return 0;
303 
304 	memset(&port_cmd, 0, sizeof(port_cmd));
305 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
306 					    FW_CMD_REQUEST_F |
307 					    FW_CMD_READ_F |
308 					    FW_PORT_CMD_PORTID_V(pi->port_id));
309 	port_cmd.action_to_len16 =
310 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
311 			    FW_LEN16(port_cmd));
312 	v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
313 	if (v)
314 		return v;
315 
316 	v = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
317 	pi->mdio_addr = (v & FW_PORT_CMD_MDIOCAP_F) ?
318 			FW_PORT_CMD_MDIOADDR_G(v) : -1;
319 	pi->port_type = FW_PORT_CMD_PTYPE_G(v);
320 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
321 
322 	init_link_config(&pi->link_cfg, be16_to_cpu(port_rpl.u.info.pcap));
323 
324 	return 0;
325 }
326 
327 /**
328  *      t4vf_fw_reset - issue a reset to FW
329  *      @adapter: the adapter
330  *
331  *	Issues a reset command to FW.  For a Physical Function this would
332  *	result in the Firmware resetting all of its state.  For a Virtual
333  *	Function this just resets the state associated with the VF.
334  */
335 int t4vf_fw_reset(struct adapter *adapter)
336 {
337 	struct fw_reset_cmd cmd;
338 
339 	memset(&cmd, 0, sizeof(cmd));
340 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
341 				      FW_CMD_WRITE_F);
342 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
343 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
344 }
345 
346 /**
347  *	t4vf_query_params - query FW or device parameters
348  *	@adapter: the adapter
349  *	@nparams: the number of parameters
350  *	@params: the parameter names
351  *	@vals: the parameter values
352  *
353  *	Reads the values of firmware or device parameters.  Up to 7 parameters
354  *	can be queried at once.
355  */
356 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
357 			     const u32 *params, u32 *vals)
358 {
359 	int i, ret;
360 	struct fw_params_cmd cmd, rpl;
361 	struct fw_params_param *p;
362 	size_t len16;
363 
364 	if (nparams > 7)
365 		return -EINVAL;
366 
367 	memset(&cmd, 0, sizeof(cmd));
368 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
369 				    FW_CMD_REQUEST_F |
370 				    FW_CMD_READ_F);
371 	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
372 				      param[nparams].mnem), 16);
373 	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
374 	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
375 		p->mnem = htonl(*params++);
376 
377 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
378 	if (ret == 0)
379 		for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
380 			*vals++ = be32_to_cpu(p->val);
381 	return ret;
382 }
383 
384 /**
385  *	t4vf_set_params - sets FW or device parameters
386  *	@adapter: the adapter
387  *	@nparams: the number of parameters
388  *	@params: the parameter names
389  *	@vals: the parameter values
390  *
391  *	Sets the values of firmware or device parameters.  Up to 7 parameters
392  *	can be specified at once.
393  */
394 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
395 		    const u32 *params, const u32 *vals)
396 {
397 	int i;
398 	struct fw_params_cmd cmd;
399 	struct fw_params_param *p;
400 	size_t len16;
401 
402 	if (nparams > 7)
403 		return -EINVAL;
404 
405 	memset(&cmd, 0, sizeof(cmd));
406 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
407 				    FW_CMD_REQUEST_F |
408 				    FW_CMD_WRITE_F);
409 	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
410 				      param[nparams]), 16);
411 	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
412 	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
413 		p->mnem = cpu_to_be32(*params++);
414 		p->val = cpu_to_be32(*vals++);
415 	}
416 
417 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
418 }
419 
420 /**
421  *	t4vf_fl_pkt_align - return the fl packet alignment
422  *	@adapter: the adapter
423  *
424  *	T4 has a single field to specify the packing and padding boundary.
425  *	T5 onwards has separate fields for this and hence the alignment for
426  *	next packet offset is maximum of these two.  And T6 changes the
427  *	Ingress Padding Boundary Shift, so it's all a mess and it's best
428  *	if we put this in low-level Common Code ...
429  *
430  */
431 int t4vf_fl_pkt_align(struct adapter *adapter)
432 {
433 	u32 sge_control, sge_control2;
434 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
435 
436 	sge_control = adapter->params.sge.sge_control;
437 
438 	/* T4 uses a single control field to specify both the PCIe Padding and
439 	 * Packing Boundary.  T5 introduced the ability to specify these
440 	 * separately.  The actual Ingress Packet Data alignment boundary
441 	 * within Packed Buffer Mode is the maximum of these two
442 	 * specifications.  (Note that it makes no real practical sense to
443 	 * have the Pading Boudary be larger than the Packing Boundary but you
444 	 * could set the chip up that way and, in fact, legacy T4 code would
445 	 * end doing this because it would initialize the Padding Boundary and
446 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
447 	 * Padding Boundary values in T6 starts from 8B,
448 	 * where as it is 32B for T4 and T5.
449 	 */
450 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
451 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
452 	else
453 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
454 
455 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
456 
457 	fl_align = ingpadboundary;
458 	if (!is_t4(adapter->params.chip)) {
459 		/* T5 has a different interpretation of one of the PCIe Packing
460 		 * Boundary values.
461 		 */
462 		sge_control2 = adapter->params.sge.sge_control2;
463 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
464 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
465 			ingpackboundary = 16;
466 		else
467 			ingpackboundary = 1 << (ingpackboundary +
468 						INGPACKBOUNDARY_SHIFT_X);
469 
470 		fl_align = max(ingpadboundary, ingpackboundary);
471 	}
472 	return fl_align;
473 }
474 
475 /**
476  *	t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
477  *	@adapter: the adapter
478  *	@qid: the Queue ID
479  *	@qtype: the Ingress or Egress type for @qid
480  *	@pbar2_qoffset: BAR2 Queue Offset
481  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
482  *
483  *	Returns the BAR2 SGE Queue Registers information associated with the
484  *	indicated Absolute Queue ID.  These are passed back in return value
485  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
486  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
487  *
488  *	This may return an error which indicates that BAR2 SGE Queue
489  *	registers aren't available.  If an error is not returned, then the
490  *	following values are returned:
491  *
492  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
493  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
494  *
495  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
496  *	require the "Inferred Queue ID" ability may be used.  E.g. the
497  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
498  *	then these "Inferred Queue ID" register may not be used.
499  */
500 int t4vf_bar2_sge_qregs(struct adapter *adapter,
501 			unsigned int qid,
502 			enum t4_bar2_qtype qtype,
503 			u64 *pbar2_qoffset,
504 			unsigned int *pbar2_qid)
505 {
506 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
507 	u64 bar2_page_offset, bar2_qoffset;
508 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
509 
510 	/* T4 doesn't support BAR2 SGE Queue registers.
511 	 */
512 	if (is_t4(adapter->params.chip))
513 		return -EINVAL;
514 
515 	/* Get our SGE Page Size parameters.
516 	 */
517 	page_shift = adapter->params.sge.sge_vf_hps + 10;
518 	page_size = 1 << page_shift;
519 
520 	/* Get the right Queues per Page parameters for our Queue.
521 	 */
522 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
523 		     ? adapter->params.sge.sge_vf_eq_qpp
524 		     : adapter->params.sge.sge_vf_iq_qpp);
525 	qpp_mask = (1 << qpp_shift) - 1;
526 
527 	/* Calculate the basics of the BAR2 SGE Queue register area:
528 	 *  o The BAR2 page the Queue registers will be in.
529 	 *  o The BAR2 Queue ID.
530 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
531 	 */
532 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
533 	bar2_qid = qid & qpp_mask;
534 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
535 
536 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
537 	 * hardware will infer the Absolute Queue ID simply from the writes to
538 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
539 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
540 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
541 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
542 	 * from the BAR2 Page and BAR2 Queue ID.
543 	 *
544 	 * One important censequence of this is that some BAR2 SGE registers
545 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
546 	 * there.  But other registers synthesize the SGE Queue ID purely
547 	 * from the writes to the registers -- the Write Combined Doorbell
548 	 * Buffer is a good example.  These BAR2 SGE Registers are only
549 	 * available for those BAR2 SGE Register areas where the SGE Absolute
550 	 * Queue ID can be inferred from simple writes.
551 	 */
552 	bar2_qoffset = bar2_page_offset;
553 	bar2_qinferred = (bar2_qid_offset < page_size);
554 	if (bar2_qinferred) {
555 		bar2_qoffset += bar2_qid_offset;
556 		bar2_qid = 0;
557 	}
558 
559 	*pbar2_qoffset = bar2_qoffset;
560 	*pbar2_qid = bar2_qid;
561 	return 0;
562 }
563 
564 /**
565  *	t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
566  *	@adapter: the adapter
567  *
568  *	Retrieves various core SGE parameters in the form of hardware SGE
569  *	register values.  The caller is responsible for decoding these as
570  *	needed.  The SGE parameters are stored in @adapter->params.sge.
571  */
572 int t4vf_get_sge_params(struct adapter *adapter)
573 {
574 	struct sge_params *sge_params = &adapter->params.sge;
575 	u32 params[7], vals[7];
576 	int v;
577 
578 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
579 		     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
580 	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
581 		     FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
582 	params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
583 		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
584 	params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
585 		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
586 	params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
587 		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
588 	params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
589 		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
590 	params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
591 		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
592 	v = t4vf_query_params(adapter, 7, params, vals);
593 	if (v)
594 		return v;
595 	sge_params->sge_control = vals[0];
596 	sge_params->sge_host_page_size = vals[1];
597 	sge_params->sge_fl_buffer_size[0] = vals[2];
598 	sge_params->sge_fl_buffer_size[1] = vals[3];
599 	sge_params->sge_timer_value_0_and_1 = vals[4];
600 	sge_params->sge_timer_value_2_and_3 = vals[5];
601 	sge_params->sge_timer_value_4_and_5 = vals[6];
602 
603 	/* T4 uses a single control field to specify both the PCIe Padding and
604 	 * Packing Boundary.  T5 introduced the ability to specify these
605 	 * separately with the Padding Boundary in SGE_CONTROL and and Packing
606 	 * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
607 	 * SGE_CONTROL in order to determine how ingress packet data will be
608 	 * laid out in Packed Buffer Mode.  Unfortunately, older versions of
609 	 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
610 	 * failure grabbing it we throw an error since we can't figure out the
611 	 * right value.
612 	 */
613 	if (!is_t4(adapter->params.chip)) {
614 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
615 			     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
616 		v = t4vf_query_params(adapter, 1, params, vals);
617 		if (v != FW_SUCCESS) {
618 			dev_err(adapter->pdev_dev,
619 				"Unable to get SGE Control2; "
620 				"probably old firmware.\n");
621 			return v;
622 		}
623 		sge_params->sge_control2 = vals[0];
624 	}
625 
626 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
627 		     FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
628 	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
629 		     FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
630 	v = t4vf_query_params(adapter, 2, params, vals);
631 	if (v)
632 		return v;
633 	sge_params->sge_ingress_rx_threshold = vals[0];
634 	sge_params->sge_congestion_control = vals[1];
635 
636 	/* For T5 and later we want to use the new BAR2 Doorbells.
637 	 * Unfortunately, older firmware didn't allow the this register to be
638 	 * read.
639 	 */
640 	if (!is_t4(adapter->params.chip)) {
641 		u32 whoami;
642 		unsigned int pf, s_hps, s_qpp;
643 
644 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
645 			     FW_PARAMS_PARAM_XYZ_V(
646 				     SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
647 		params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
648 			     FW_PARAMS_PARAM_XYZ_V(
649 				     SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
650 		v = t4vf_query_params(adapter, 2, params, vals);
651 		if (v != FW_SUCCESS) {
652 			dev_warn(adapter->pdev_dev,
653 				 "Unable to get VF SGE Queues/Page; "
654 				 "probably old firmware.\n");
655 			return v;
656 		}
657 		sge_params->sge_egress_queues_per_page = vals[0];
658 		sge_params->sge_ingress_queues_per_page = vals[1];
659 
660 		/* We need the Queues/Page for our VF.  This is based on the
661 		 * PF from which we're instantiated and is indexed in the
662 		 * register we just read. Do it once here so other code in
663 		 * the driver can just use it.
664 		 */
665 		whoami = t4_read_reg(adapter,
666 				     T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
667 		pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
668 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
669 
670 		s_hps = (HOSTPAGESIZEPF0_S +
671 			 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
672 		sge_params->sge_vf_hps =
673 			((sge_params->sge_host_page_size >> s_hps)
674 			 & HOSTPAGESIZEPF0_M);
675 
676 		s_qpp = (QUEUESPERPAGEPF0_S +
677 			 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
678 		sge_params->sge_vf_eq_qpp =
679 			((sge_params->sge_egress_queues_per_page >> s_qpp)
680 			 & QUEUESPERPAGEPF0_M);
681 		sge_params->sge_vf_iq_qpp =
682 			((sge_params->sge_ingress_queues_per_page >> s_qpp)
683 			 & QUEUESPERPAGEPF0_M);
684 	}
685 
686 	return 0;
687 }
688 
689 /**
690  *	t4vf_get_vpd_params - retrieve device VPD paremeters
691  *	@adapter: the adapter
692  *
693  *	Retrives various device Vital Product Data parameters.  The parameters
694  *	are stored in @adapter->params.vpd.
695  */
696 int t4vf_get_vpd_params(struct adapter *adapter)
697 {
698 	struct vpd_params *vpd_params = &adapter->params.vpd;
699 	u32 params[7], vals[7];
700 	int v;
701 
702 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
703 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
704 	v = t4vf_query_params(adapter, 1, params, vals);
705 	if (v)
706 		return v;
707 	vpd_params->cclk = vals[0];
708 
709 	return 0;
710 }
711 
712 /**
713  *	t4vf_get_dev_params - retrieve device paremeters
714  *	@adapter: the adapter
715  *
716  *	Retrives various device parameters.  The parameters are stored in
717  *	@adapter->params.dev.
718  */
719 int t4vf_get_dev_params(struct adapter *adapter)
720 {
721 	struct dev_params *dev_params = &adapter->params.dev;
722 	u32 params[7], vals[7];
723 	int v;
724 
725 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
726 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
727 	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
728 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
729 	v = t4vf_query_params(adapter, 2, params, vals);
730 	if (v)
731 		return v;
732 	dev_params->fwrev = vals[0];
733 	dev_params->tprev = vals[1];
734 
735 	return 0;
736 }
737 
738 /**
739  *	t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
740  *	@adapter: the adapter
741  *
742  *	Retrieves global RSS mode and parameters with which we have to live
743  *	and stores them in the @adapter's RSS parameters.
744  */
745 int t4vf_get_rss_glb_config(struct adapter *adapter)
746 {
747 	struct rss_params *rss = &adapter->params.rss;
748 	struct fw_rss_glb_config_cmd cmd, rpl;
749 	int v;
750 
751 	/*
752 	 * Execute an RSS Global Configuration read command to retrieve
753 	 * our RSS configuration.
754 	 */
755 	memset(&cmd, 0, sizeof(cmd));
756 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
757 				      FW_CMD_REQUEST_F |
758 				      FW_CMD_READ_F);
759 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
760 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
761 	if (v)
762 		return v;
763 
764 	/*
765 	 * Transate the big-endian RSS Global Configuration into our
766 	 * cpu-endian format based on the RSS mode.  We also do first level
767 	 * filtering at this point to weed out modes which don't support
768 	 * VF Drivers ...
769 	 */
770 	rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
771 			be32_to_cpu(rpl.u.manual.mode_pkd));
772 	switch (rss->mode) {
773 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
774 		u32 word = be32_to_cpu(
775 				rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
776 
777 		rss->u.basicvirtual.synmapen =
778 			((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
779 		rss->u.basicvirtual.syn4tupenipv6 =
780 			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
781 		rss->u.basicvirtual.syn2tupenipv6 =
782 			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
783 		rss->u.basicvirtual.syn4tupenipv4 =
784 			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
785 		rss->u.basicvirtual.syn2tupenipv4 =
786 			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
787 
788 		rss->u.basicvirtual.ofdmapen =
789 			((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
790 
791 		rss->u.basicvirtual.tnlmapen =
792 			((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
793 		rss->u.basicvirtual.tnlalllookup =
794 			((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
795 
796 		rss->u.basicvirtual.hashtoeplitz =
797 			((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
798 
799 		/* we need at least Tunnel Map Enable to be set */
800 		if (!rss->u.basicvirtual.tnlmapen)
801 			return -EINVAL;
802 		break;
803 	}
804 
805 	default:
806 		/* all unknown/unsupported RSS modes result in an error */
807 		return -EINVAL;
808 	}
809 
810 	return 0;
811 }
812 
813 /**
814  *	t4vf_get_vfres - retrieve VF resource limits
815  *	@adapter: the adapter
816  *
817  *	Retrieves configured resource limits and capabilities for a virtual
818  *	function.  The results are stored in @adapter->vfres.
819  */
820 int t4vf_get_vfres(struct adapter *adapter)
821 {
822 	struct vf_resources *vfres = &adapter->params.vfres;
823 	struct fw_pfvf_cmd cmd, rpl;
824 	int v;
825 	u32 word;
826 
827 	/*
828 	 * Execute PFVF Read command to get VF resource limits; bail out early
829 	 * with error on command failure.
830 	 */
831 	memset(&cmd, 0, sizeof(cmd));
832 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
833 				    FW_CMD_REQUEST_F |
834 				    FW_CMD_READ_F);
835 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
836 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
837 	if (v)
838 		return v;
839 
840 	/*
841 	 * Extract VF resource limits and return success.
842 	 */
843 	word = be32_to_cpu(rpl.niqflint_niq);
844 	vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
845 	vfres->niq = FW_PFVF_CMD_NIQ_G(word);
846 
847 	word = be32_to_cpu(rpl.type_to_neq);
848 	vfres->neq = FW_PFVF_CMD_NEQ_G(word);
849 	vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
850 
851 	word = be32_to_cpu(rpl.tc_to_nexactf);
852 	vfres->tc = FW_PFVF_CMD_TC_G(word);
853 	vfres->nvi = FW_PFVF_CMD_NVI_G(word);
854 	vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
855 
856 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
857 	vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
858 	vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
859 	vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
860 
861 	return 0;
862 }
863 
864 /**
865  *	t4vf_read_rss_vi_config - read a VI's RSS configuration
866  *	@adapter: the adapter
867  *	@viid: Virtual Interface ID
868  *	@config: pointer to host-native VI RSS Configuration buffer
869  *
870  *	Reads the Virtual Interface's RSS configuration information and
871  *	translates it into CPU-native format.
872  */
873 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
874 			    union rss_vi_config *config)
875 {
876 	struct fw_rss_vi_config_cmd cmd, rpl;
877 	int v;
878 
879 	memset(&cmd, 0, sizeof(cmd));
880 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
881 				     FW_CMD_REQUEST_F |
882 				     FW_CMD_READ_F |
883 				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
884 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
885 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
886 	if (v)
887 		return v;
888 
889 	switch (adapter->params.rss.mode) {
890 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
891 		u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
892 
893 		config->basicvirtual.ip6fourtupen =
894 			((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
895 		config->basicvirtual.ip6twotupen =
896 			((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
897 		config->basicvirtual.ip4fourtupen =
898 			((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
899 		config->basicvirtual.ip4twotupen =
900 			((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
901 		config->basicvirtual.udpen =
902 			((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
903 		config->basicvirtual.defaultq =
904 			FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
905 		break;
906 	}
907 
908 	default:
909 		return -EINVAL;
910 	}
911 
912 	return 0;
913 }
914 
915 /**
916  *	t4vf_write_rss_vi_config - write a VI's RSS configuration
917  *	@adapter: the adapter
918  *	@viid: Virtual Interface ID
919  *	@config: pointer to host-native VI RSS Configuration buffer
920  *
921  *	Write the Virtual Interface's RSS configuration information
922  *	(translating it into firmware-native format before writing).
923  */
924 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
925 			     union rss_vi_config *config)
926 {
927 	struct fw_rss_vi_config_cmd cmd, rpl;
928 
929 	memset(&cmd, 0, sizeof(cmd));
930 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
931 				     FW_CMD_REQUEST_F |
932 				     FW_CMD_WRITE_F |
933 				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
934 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
935 	switch (adapter->params.rss.mode) {
936 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
937 		u32 word = 0;
938 
939 		if (config->basicvirtual.ip6fourtupen)
940 			word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
941 		if (config->basicvirtual.ip6twotupen)
942 			word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
943 		if (config->basicvirtual.ip4fourtupen)
944 			word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
945 		if (config->basicvirtual.ip4twotupen)
946 			word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
947 		if (config->basicvirtual.udpen)
948 			word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
949 		word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
950 				config->basicvirtual.defaultq);
951 		cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
952 		break;
953 	}
954 
955 	default:
956 		return -EINVAL;
957 	}
958 
959 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
960 }
961 
962 /**
963  *	t4vf_config_rss_range - configure a portion of the RSS mapping table
964  *	@adapter: the adapter
965  *	@viid: Virtual Interface of RSS Table Slice
966  *	@start: starting entry in the table to write
967  *	@n: how many table entries to write
968  *	@rspq: values for the "Response Queue" (Ingress Queue) lookup table
969  *	@nrspq: number of values in @rspq
970  *
971  *	Programs the selected part of the VI's RSS mapping table with the
972  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
973  *	until the full table range is populated.
974  *
975  *	The caller must ensure the values in @rspq are in the range 0..1023.
976  */
977 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
978 			  int start, int n, const u16 *rspq, int nrspq)
979 {
980 	const u16 *rsp = rspq;
981 	const u16 *rsp_end = rspq+nrspq;
982 	struct fw_rss_ind_tbl_cmd cmd;
983 
984 	/*
985 	 * Initialize firmware command template to write the RSS table.
986 	 */
987 	memset(&cmd, 0, sizeof(cmd));
988 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
989 				     FW_CMD_REQUEST_F |
990 				     FW_CMD_WRITE_F |
991 				     FW_RSS_IND_TBL_CMD_VIID_V(viid));
992 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
993 
994 	/*
995 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
996 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
997 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
998 	 * reserved.
999 	 */
1000 	while (n > 0) {
1001 		__be32 *qp = &cmd.iq0_to_iq2;
1002 		int nq = min(n, 32);
1003 		int ret;
1004 
1005 		/*
1006 		 * Set up the firmware RSS command header to send the next
1007 		 * "nq" Ingress Queue IDs to the firmware.
1008 		 */
1009 		cmd.niqid = cpu_to_be16(nq);
1010 		cmd.startidx = cpu_to_be16(start);
1011 
1012 		/*
1013 		 * "nq" more done for the start of the next loop.
1014 		 */
1015 		start += nq;
1016 		n -= nq;
1017 
1018 		/*
1019 		 * While there are still Ingress Queue IDs to stuff into the
1020 		 * current firmware RSS command, retrieve them from the
1021 		 * Ingress Queue ID array and insert them into the command.
1022 		 */
1023 		while (nq > 0) {
1024 			/*
1025 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
1026 			 * around the Ingress Queue ID array if necessary) and
1027 			 * insert them into the firmware RSS command at the
1028 			 * current 3-tuple position within the commad.
1029 			 */
1030 			u16 qbuf[3];
1031 			u16 *qbp = qbuf;
1032 			int nqbuf = min(3, nq);
1033 
1034 			nq -= nqbuf;
1035 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
1036 			while (nqbuf) {
1037 				nqbuf--;
1038 				*qbp++ = *rsp++;
1039 				if (rsp >= rsp_end)
1040 					rsp = rspq;
1041 			}
1042 			*qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1043 					    FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1044 					    FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1045 		}
1046 
1047 		/*
1048 		 * Send this portion of the RRS table update to the firmware;
1049 		 * bail out on any errors.
1050 		 */
1051 		ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1052 		if (ret)
1053 			return ret;
1054 	}
1055 	return 0;
1056 }
1057 
1058 /**
1059  *	t4vf_alloc_vi - allocate a virtual interface on a port
1060  *	@adapter: the adapter
1061  *	@port_id: physical port associated with the VI
1062  *
1063  *	Allocate a new Virtual Interface and bind it to the indicated
1064  *	physical port.  Return the new Virtual Interface Identifier on
1065  *	success, or a [negative] error number on failure.
1066  */
1067 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1068 {
1069 	struct fw_vi_cmd cmd, rpl;
1070 	int v;
1071 
1072 	/*
1073 	 * Execute a VI command to allocate Virtual Interface and return its
1074 	 * VIID.
1075 	 */
1076 	memset(&cmd, 0, sizeof(cmd));
1077 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1078 				    FW_CMD_REQUEST_F |
1079 				    FW_CMD_WRITE_F |
1080 				    FW_CMD_EXEC_F);
1081 	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1082 					 FW_VI_CMD_ALLOC_F);
1083 	cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1084 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1085 	if (v)
1086 		return v;
1087 
1088 	return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1089 }
1090 
1091 /**
1092  *	t4vf_free_vi -- free a virtual interface
1093  *	@adapter: the adapter
1094  *	@viid: the virtual interface identifier
1095  *
1096  *	Free a previously allocated Virtual Interface.  Return an error on
1097  *	failure.
1098  */
1099 int t4vf_free_vi(struct adapter *adapter, int viid)
1100 {
1101 	struct fw_vi_cmd cmd;
1102 
1103 	/*
1104 	 * Execute a VI command to free the Virtual Interface.
1105 	 */
1106 	memset(&cmd, 0, sizeof(cmd));
1107 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1108 				    FW_CMD_REQUEST_F |
1109 				    FW_CMD_EXEC_F);
1110 	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1111 					 FW_VI_CMD_FREE_F);
1112 	cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1113 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1114 }
1115 
1116 /**
1117  *	t4vf_enable_vi - enable/disable a virtual interface
1118  *	@adapter: the adapter
1119  *	@viid: the Virtual Interface ID
1120  *	@rx_en: 1=enable Rx, 0=disable Rx
1121  *	@tx_en: 1=enable Tx, 0=disable Tx
1122  *
1123  *	Enables/disables a virtual interface.
1124  */
1125 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1126 		   bool rx_en, bool tx_en)
1127 {
1128 	struct fw_vi_enable_cmd cmd;
1129 
1130 	memset(&cmd, 0, sizeof(cmd));
1131 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1132 				     FW_CMD_REQUEST_F |
1133 				     FW_CMD_EXEC_F |
1134 				     FW_VI_ENABLE_CMD_VIID_V(viid));
1135 	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1136 				       FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1137 				       FW_LEN16(cmd));
1138 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1139 }
1140 
1141 /**
1142  *	t4vf_identify_port - identify a VI's port by blinking its LED
1143  *	@adapter: the adapter
1144  *	@viid: the Virtual Interface ID
1145  *	@nblinks: how many times to blink LED at 2.5 Hz
1146  *
1147  *	Identifies a VI's port by blinking its LED.
1148  */
1149 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1150 		       unsigned int nblinks)
1151 {
1152 	struct fw_vi_enable_cmd cmd;
1153 
1154 	memset(&cmd, 0, sizeof(cmd));
1155 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1156 				     FW_CMD_REQUEST_F |
1157 				     FW_CMD_EXEC_F |
1158 				     FW_VI_ENABLE_CMD_VIID_V(viid));
1159 	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1160 				       FW_LEN16(cmd));
1161 	cmd.blinkdur = cpu_to_be16(nblinks);
1162 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1163 }
1164 
1165 /**
1166  *	t4vf_set_rxmode - set Rx properties of a virtual interface
1167  *	@adapter: the adapter
1168  *	@viid: the VI id
1169  *	@mtu: the new MTU or -1 for no change
1170  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1171  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1172  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1173  *	@vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1174  *		-1 no change
1175  *
1176  *	Sets Rx properties of a virtual interface.
1177  */
1178 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1179 		    int mtu, int promisc, int all_multi, int bcast, int vlanex,
1180 		    bool sleep_ok)
1181 {
1182 	struct fw_vi_rxmode_cmd cmd;
1183 
1184 	/* convert to FW values */
1185 	if (mtu < 0)
1186 		mtu = FW_VI_RXMODE_CMD_MTU_M;
1187 	if (promisc < 0)
1188 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1189 	if (all_multi < 0)
1190 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1191 	if (bcast < 0)
1192 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1193 	if (vlanex < 0)
1194 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1195 
1196 	memset(&cmd, 0, sizeof(cmd));
1197 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1198 				     FW_CMD_REQUEST_F |
1199 				     FW_CMD_WRITE_F |
1200 				     FW_VI_RXMODE_CMD_VIID_V(viid));
1201 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1202 	cmd.mtu_to_vlanexen =
1203 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1204 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1205 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1206 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1207 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1208 	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1209 }
1210 
1211 /**
1212  *	t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1213  *	@adapter: the adapter
1214  *	@viid: the Virtual Interface Identifier
1215  *	@free: if true any existing filters for this VI id are first removed
1216  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
1217  *	@addr: the MAC address(es)
1218  *	@idx: where to store the index of each allocated filter
1219  *	@hash: pointer to hash address filter bitmap
1220  *	@sleep_ok: call is allowed to sleep
1221  *
1222  *	Allocates an exact-match filter for each of the supplied addresses and
1223  *	sets it to the corresponding address.  If @idx is not %NULL it should
1224  *	have at least @naddr entries, each of which will be set to the index of
1225  *	the filter allocated for the corresponding MAC address.  If a filter
1226  *	could not be allocated for an address its index is set to 0xffff.
1227  *	If @hash is not %NULL addresses that fail to allocate an exact filter
1228  *	are hashed and update the hash filter bitmap pointed at by @hash.
1229  *
1230  *	Returns a negative error number or the number of filters allocated.
1231  */
1232 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1233 			unsigned int naddr, const u8 **addr, u16 *idx,
1234 			u64 *hash, bool sleep_ok)
1235 {
1236 	int offset, ret = 0;
1237 	unsigned nfilters = 0;
1238 	unsigned int rem = naddr;
1239 	struct fw_vi_mac_cmd cmd, rpl;
1240 	unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1241 
1242 	if (naddr > max_naddr)
1243 		return -EINVAL;
1244 
1245 	for (offset = 0; offset < naddr; /**/) {
1246 		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1247 					 ? rem
1248 					 : ARRAY_SIZE(cmd.u.exact));
1249 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1250 						     u.exact[fw_naddr]), 16);
1251 		struct fw_vi_mac_exact *p;
1252 		int i;
1253 
1254 		memset(&cmd, 0, sizeof(cmd));
1255 		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1256 					     FW_CMD_REQUEST_F |
1257 					     FW_CMD_WRITE_F |
1258 					     (free ? FW_CMD_EXEC_F : 0) |
1259 					     FW_VI_MAC_CMD_VIID_V(viid));
1260 		cmd.freemacs_to_len16 =
1261 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1262 				    FW_CMD_LEN16_V(len16));
1263 
1264 		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1265 			p->valid_to_idx = cpu_to_be16(
1266 				FW_VI_MAC_CMD_VALID_F |
1267 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1268 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1269 		}
1270 
1271 
1272 		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1273 					sleep_ok);
1274 		if (ret && ret != -ENOMEM)
1275 			break;
1276 
1277 		for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1278 			u16 index = FW_VI_MAC_CMD_IDX_G(
1279 				be16_to_cpu(p->valid_to_idx));
1280 
1281 			if (idx)
1282 				idx[offset+i] =
1283 					(index >= max_naddr
1284 					 ? 0xffff
1285 					 : index);
1286 			if (index < max_naddr)
1287 				nfilters++;
1288 			else if (hash)
1289 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1290 		}
1291 
1292 		free = false;
1293 		offset += fw_naddr;
1294 		rem -= fw_naddr;
1295 	}
1296 
1297 	/*
1298 	 * If there were no errors or we merely ran out of room in our MAC
1299 	 * address arena, return the number of filters actually written.
1300 	 */
1301 	if (ret == 0 || ret == -ENOMEM)
1302 		ret = nfilters;
1303 	return ret;
1304 }
1305 
1306 /**
1307  *	t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1308  *	@adapter: the adapter
1309  *	@viid: the VI id
1310  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
1311  *	@addr: the MAC address(es)
1312  *	@sleep_ok: call is allowed to sleep
1313  *
1314  *	Frees the exact-match filter for each of the supplied addresses
1315  *
1316  *	Returns a negative error number or the number of filters freed.
1317  */
1318 int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1319 		       unsigned int naddr, const u8 **addr, bool sleep_ok)
1320 {
1321 	int offset, ret = 0;
1322 	struct fw_vi_mac_cmd cmd;
1323 	unsigned int nfilters = 0;
1324 	unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1325 	unsigned int rem = naddr;
1326 
1327 	if (naddr > max_naddr)
1328 		return -EINVAL;
1329 
1330 	for (offset = 0; offset < (int)naddr ; /**/) {
1331 		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1332 					 rem : ARRAY_SIZE(cmd.u.exact));
1333 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1334 						     u.exact[fw_naddr]), 16);
1335 		struct fw_vi_mac_exact *p;
1336 		int i;
1337 
1338 		memset(&cmd, 0, sizeof(cmd));
1339 		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1340 				     FW_CMD_REQUEST_F |
1341 				     FW_CMD_WRITE_F |
1342 				     FW_CMD_EXEC_V(0) |
1343 				     FW_VI_MAC_CMD_VIID_V(viid));
1344 		cmd.freemacs_to_len16 =
1345 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1346 					    FW_CMD_LEN16_V(len16));
1347 
1348 		for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1349 			p->valid_to_idx = cpu_to_be16(
1350 				FW_VI_MAC_CMD_VALID_F |
1351 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1352 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1353 		}
1354 
1355 		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1356 					sleep_ok);
1357 		if (ret)
1358 			break;
1359 
1360 		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1361 			u16 index = FW_VI_MAC_CMD_IDX_G(
1362 						be16_to_cpu(p->valid_to_idx));
1363 
1364 			if (index < max_naddr)
1365 				nfilters++;
1366 		}
1367 
1368 		offset += fw_naddr;
1369 		rem -= fw_naddr;
1370 	}
1371 
1372 	if (ret == 0)
1373 		ret = nfilters;
1374 	return ret;
1375 }
1376 
1377 /**
1378  *	t4vf_change_mac - modifies the exact-match filter for a MAC address
1379  *	@adapter: the adapter
1380  *	@viid: the Virtual Interface ID
1381  *	@idx: index of existing filter for old value of MAC address, or -1
1382  *	@addr: the new MAC address value
1383  *	@persist: if idx < 0, the new MAC allocation should be persistent
1384  *
1385  *	Modifies an exact-match filter and sets it to the new MAC address.
1386  *	Note that in general it is not possible to modify the value of a given
1387  *	filter so the generic way to modify an address filter is to free the
1388  *	one being used by the old address value and allocate a new filter for
1389  *	the new address value.  @idx can be -1 if the address is a new
1390  *	addition.
1391  *
1392  *	Returns a negative error number or the index of the filter with the new
1393  *	MAC value.
1394  */
1395 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1396 		    int idx, const u8 *addr, bool persist)
1397 {
1398 	int ret;
1399 	struct fw_vi_mac_cmd cmd, rpl;
1400 	struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1401 	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1402 					     u.exact[1]), 16);
1403 	unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1404 
1405 	/*
1406 	 * If this is a new allocation, determine whether it should be
1407 	 * persistent (across a "freemacs" operation) or not.
1408 	 */
1409 	if (idx < 0)
1410 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1411 
1412 	memset(&cmd, 0, sizeof(cmd));
1413 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1414 				     FW_CMD_REQUEST_F |
1415 				     FW_CMD_WRITE_F |
1416 				     FW_VI_MAC_CMD_VIID_V(viid));
1417 	cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1418 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1419 				      FW_VI_MAC_CMD_IDX_V(idx));
1420 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
1421 
1422 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1423 	if (ret == 0) {
1424 		p = &rpl.u.exact[0];
1425 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1426 		if (ret >= max_mac_addr)
1427 			ret = -ENOMEM;
1428 	}
1429 	return ret;
1430 }
1431 
1432 /**
1433  *	t4vf_set_addr_hash - program the MAC inexact-match hash filter
1434  *	@adapter: the adapter
1435  *	@viid: the Virtual Interface Identifier
1436  *	@ucast: whether the hash filter should also match unicast addresses
1437  *	@vec: the value to be written to the hash filter
1438  *	@sleep_ok: call is allowed to sleep
1439  *
1440  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
1441  */
1442 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1443 		       bool ucast, u64 vec, bool sleep_ok)
1444 {
1445 	struct fw_vi_mac_cmd cmd;
1446 	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1447 					     u.exact[0]), 16);
1448 
1449 	memset(&cmd, 0, sizeof(cmd));
1450 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1451 				     FW_CMD_REQUEST_F |
1452 				     FW_CMD_WRITE_F |
1453 				     FW_VI_ENABLE_CMD_VIID_V(viid));
1454 	cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1455 					    FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1456 					    FW_CMD_LEN16_V(len16));
1457 	cmd.u.hash.hashvec = cpu_to_be64(vec);
1458 	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1459 }
1460 
1461 /**
1462  *	t4vf_get_port_stats - collect "port" statistics
1463  *	@adapter: the adapter
1464  *	@pidx: the port index
1465  *	@s: the stats structure to fill
1466  *
1467  *	Collect statistics for the "port"'s Virtual Interface.
1468  */
1469 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1470 			struct t4vf_port_stats *s)
1471 {
1472 	struct port_info *pi = adap2pinfo(adapter, pidx);
1473 	struct fw_vi_stats_vf fwstats;
1474 	unsigned int rem = VI_VF_NUM_STATS;
1475 	__be64 *fwsp = (__be64 *)&fwstats;
1476 
1477 	/*
1478 	 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1479 	 * commands.  We could use a Work Request and get all of them at once
1480 	 * but that's an asynchronous interface which is awkward to use.
1481 	 */
1482 	while (rem) {
1483 		unsigned int ix = VI_VF_NUM_STATS - rem;
1484 		unsigned int nstats = min(6U, rem);
1485 		struct fw_vi_stats_cmd cmd, rpl;
1486 		size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1487 			      sizeof(struct fw_vi_stats_ctl));
1488 		size_t len16 = DIV_ROUND_UP(len, 16);
1489 		int ret;
1490 
1491 		memset(&cmd, 0, sizeof(cmd));
1492 		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1493 					     FW_VI_STATS_CMD_VIID_V(pi->viid) |
1494 					     FW_CMD_REQUEST_F |
1495 					     FW_CMD_READ_F);
1496 		cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1497 		cmd.u.ctl.nstats_ix =
1498 			cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1499 				    FW_VI_STATS_CMD_NSTATS_V(nstats));
1500 		ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1501 		if (ret)
1502 			return ret;
1503 
1504 		memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1505 
1506 		rem -= nstats;
1507 		fwsp += nstats;
1508 	}
1509 
1510 	/*
1511 	 * Translate firmware statistics into host native statistics.
1512 	 */
1513 	s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1514 	s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1515 	s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1516 	s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1517 	s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1518 	s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1519 	s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1520 	s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1521 	s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1522 
1523 	s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1524 	s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1525 	s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1526 	s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1527 	s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1528 	s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1529 
1530 	s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1531 
1532 	return 0;
1533 }
1534 
1535 /**
1536  *	t4vf_iq_free - free an ingress queue and its free lists
1537  *	@adapter: the adapter
1538  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1539  *	@iqid: ingress queue ID
1540  *	@fl0id: FL0 queue ID or 0xffff if no attached FL0
1541  *	@fl1id: FL1 queue ID or 0xffff if no attached FL1
1542  *
1543  *	Frees an ingress queue and its associated free lists, if any.
1544  */
1545 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1546 		 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1547 {
1548 	struct fw_iq_cmd cmd;
1549 
1550 	memset(&cmd, 0, sizeof(cmd));
1551 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1552 				    FW_CMD_REQUEST_F |
1553 				    FW_CMD_EXEC_F);
1554 	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1555 					 FW_LEN16(cmd));
1556 	cmd.type_to_iqandstindex =
1557 		cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1558 
1559 	cmd.iqid = cpu_to_be16(iqid);
1560 	cmd.fl0id = cpu_to_be16(fl0id);
1561 	cmd.fl1id = cpu_to_be16(fl1id);
1562 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1563 }
1564 
1565 /**
1566  *	t4vf_eth_eq_free - free an Ethernet egress queue
1567  *	@adapter: the adapter
1568  *	@eqid: egress queue ID
1569  *
1570  *	Frees an Ethernet egress queue.
1571  */
1572 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1573 {
1574 	struct fw_eq_eth_cmd cmd;
1575 
1576 	memset(&cmd, 0, sizeof(cmd));
1577 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1578 				    FW_CMD_REQUEST_F |
1579 				    FW_CMD_EXEC_F);
1580 	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1581 					 FW_LEN16(cmd));
1582 	cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1583 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1584 }
1585 
1586 /**
1587  *	t4vf_handle_fw_rpl - process a firmware reply message
1588  *	@adapter: the adapter
1589  *	@rpl: start of the firmware message
1590  *
1591  *	Processes a firmware message, such as link state change messages.
1592  */
1593 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1594 {
1595 	const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
1596 	u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
1597 
1598 	switch (opcode) {
1599 	case FW_PORT_CMD: {
1600 		/*
1601 		 * Link/module state change message.
1602 		 */
1603 		const struct fw_port_cmd *port_cmd =
1604 			(const struct fw_port_cmd *)rpl;
1605 		u32 stat, mod;
1606 		int action, port_id, link_ok, speed, fc, pidx;
1607 
1608 		/*
1609 		 * Extract various fields from port status change message.
1610 		 */
1611 		action = FW_PORT_CMD_ACTION_G(
1612 			be32_to_cpu(port_cmd->action_to_len16));
1613 		if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1614 			dev_err(adapter->pdev_dev,
1615 				"Unknown firmware PORT reply action %x\n",
1616 				action);
1617 			break;
1618 		}
1619 
1620 		port_id = FW_PORT_CMD_PORTID_G(
1621 			be32_to_cpu(port_cmd->op_to_portid));
1622 
1623 		stat = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1624 		link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
1625 		speed = 0;
1626 		fc = 0;
1627 		if (stat & FW_PORT_CMD_RXPAUSE_F)
1628 			fc |= PAUSE_RX;
1629 		if (stat & FW_PORT_CMD_TXPAUSE_F)
1630 			fc |= PAUSE_TX;
1631 		if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1632 			speed = 100;
1633 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1634 			speed = 1000;
1635 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1636 			speed = 10000;
1637 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1638 			speed = 40000;
1639 
1640 		/*
1641 		 * Scan all of our "ports" (Virtual Interfaces) looking for
1642 		 * those bound to the physical port which has changed.  If
1643 		 * our recorded state doesn't match the current state,
1644 		 * signal that change to the OS code.
1645 		 */
1646 		for_each_port(adapter, pidx) {
1647 			struct port_info *pi = adap2pinfo(adapter, pidx);
1648 			struct link_config *lc;
1649 
1650 			if (pi->port_id != port_id)
1651 				continue;
1652 
1653 			lc = &pi->link_cfg;
1654 
1655 			mod = FW_PORT_CMD_MODTYPE_G(stat);
1656 			if (mod != pi->mod_type) {
1657 				pi->mod_type = mod;
1658 				t4vf_os_portmod_changed(adapter, pidx);
1659 			}
1660 
1661 			if (link_ok != lc->link_ok || speed != lc->speed ||
1662 			    fc != lc->fc) {
1663 				/* something changed */
1664 				lc->link_ok = link_ok;
1665 				lc->speed = speed;
1666 				lc->fc = fc;
1667 				lc->supported =
1668 					be16_to_cpu(port_cmd->u.info.pcap);
1669 				t4vf_os_link_changed(adapter, pidx, link_ok);
1670 			}
1671 		}
1672 		break;
1673 	}
1674 
1675 	default:
1676 		dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1677 			opcode);
1678 	}
1679 	return 0;
1680 }
1681 
1682 /**
1683  */
1684 int t4vf_prep_adapter(struct adapter *adapter)
1685 {
1686 	int err;
1687 	unsigned int chipid;
1688 
1689 	/* Wait for the device to become ready before proceeding ...
1690 	 */
1691 	err = t4vf_wait_dev_ready(adapter);
1692 	if (err)
1693 		return err;
1694 
1695 	/* Default port and clock for debugging in case we can't reach
1696 	 * firmware.
1697 	 */
1698 	adapter->params.nports = 1;
1699 	adapter->params.vfres.pmask = 1;
1700 	adapter->params.vpd.cclk = 50000;
1701 
1702 	adapter->params.chip = 0;
1703 	switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
1704 	case CHELSIO_T4:
1705 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
1706 		adapter->params.arch.sge_fl_db = DBPRIO_F;
1707 		adapter->params.arch.mps_tcam_size =
1708 				NUM_MPS_CLS_SRAM_L_INSTANCES;
1709 		break;
1710 
1711 	case CHELSIO_T5:
1712 		chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1713 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
1714 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
1715 		adapter->params.arch.mps_tcam_size =
1716 				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1717 		break;
1718 
1719 	case CHELSIO_T6:
1720 		chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1721 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
1722 		adapter->params.arch.sge_fl_db = 0;
1723 		adapter->params.arch.mps_tcam_size =
1724 				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1725 		break;
1726 	}
1727 
1728 	return 0;
1729 }
1730