1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/pci.h> 37 38 #include "t4vf_common.h" 39 #include "t4vf_defs.h" 40 41 #include "../cxgb4/t4_regs.h" 42 #include "../cxgb4/t4fw_api.h" 43 44 /* 45 * Wait for the device to become ready (signified by our "who am I" register 46 * returning a value other than all 1's). Return an error if it doesn't 47 * become ready ... 48 */ 49 int t4vf_wait_dev_ready(struct adapter *adapter) 50 { 51 const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI; 52 const u32 notready1 = 0xffffffff; 53 const u32 notready2 = 0xeeeeeeee; 54 u32 val; 55 56 val = t4_read_reg(adapter, whoami); 57 if (val != notready1 && val != notready2) 58 return 0; 59 msleep(500); 60 val = t4_read_reg(adapter, whoami); 61 if (val != notready1 && val != notready2) 62 return 0; 63 else 64 return -EIO; 65 } 66 67 /* 68 * Get the reply to a mailbox command and store it in @rpl in big-endian order 69 * (since the firmware data structures are specified in a big-endian layout). 70 */ 71 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size, 72 u32 mbox_data) 73 { 74 for ( ; size; size -= 8, mbox_data += 8) 75 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data)); 76 } 77 78 /* 79 * Dump contents of mailbox with a leading tag. 80 */ 81 static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data) 82 { 83 dev_err(adapter->pdev_dev, 84 "mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag, 85 (unsigned long long)t4_read_reg64(adapter, mbox_data + 0), 86 (unsigned long long)t4_read_reg64(adapter, mbox_data + 8), 87 (unsigned long long)t4_read_reg64(adapter, mbox_data + 16), 88 (unsigned long long)t4_read_reg64(adapter, mbox_data + 24), 89 (unsigned long long)t4_read_reg64(adapter, mbox_data + 32), 90 (unsigned long long)t4_read_reg64(adapter, mbox_data + 40), 91 (unsigned long long)t4_read_reg64(adapter, mbox_data + 48), 92 (unsigned long long)t4_read_reg64(adapter, mbox_data + 56)); 93 } 94 95 /** 96 * t4vf_wr_mbox_core - send a command to FW through the mailbox 97 * @adapter: the adapter 98 * @cmd: the command to write 99 * @size: command length in bytes 100 * @rpl: where to optionally store the reply 101 * @sleep_ok: if true we may sleep while awaiting command completion 102 * 103 * Sends the given command to FW through the mailbox and waits for the 104 * FW to execute the command. If @rpl is not %NULL it is used to store 105 * the FW's reply to the command. The command and its optional reply 106 * are of the same length. FW can take up to 500 ms to respond. 107 * @sleep_ok determines whether we may sleep while awaiting the response. 108 * If sleeping is allowed we use progressive backoff otherwise we spin. 109 * 110 * The return value is 0 on success or a negative errno on failure. A 111 * failure can happen either because we are not able to execute the 112 * command or FW executes it but signals an error. In the latter case 113 * the return value is the error code indicated by FW (negated). 114 */ 115 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size, 116 void *rpl, bool sleep_ok) 117 { 118 static const int delay[] = { 119 1, 1, 3, 5, 10, 10, 20, 50, 100 120 }; 121 122 u32 v; 123 int i, ms, delay_idx; 124 const __be64 *p; 125 u32 mbox_data = T4VF_MBDATA_BASE_ADDR; 126 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL; 127 128 /* 129 * Commands must be multiples of 16 bytes in length and may not be 130 * larger than the size of the Mailbox Data register array. 131 */ 132 if ((size % 16) != 0 || 133 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4) 134 return -EINVAL; 135 136 /* 137 * Loop trying to get ownership of the mailbox. Return an error 138 * if we can't gain ownership. 139 */ 140 v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl)); 141 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 142 v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl)); 143 if (v != MBOX_OWNER_DRV) 144 return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT; 145 146 /* 147 * Write the command array into the Mailbox Data register array and 148 * transfer ownership of the mailbox to the firmware. 149 * 150 * For the VFs, the Mailbox Data "registers" are actually backed by 151 * T4's "MA" interface rather than PL Registers (as is the case for 152 * the PFs). Because these are in different coherency domains, the 153 * write to the VF's PL-register-backed Mailbox Control can race in 154 * front of the writes to the MA-backed VF Mailbox Data "registers". 155 * So we need to do a read-back on at least one byte of the VF Mailbox 156 * Data registers before doing the write to the VF Mailbox Control 157 * register. 158 */ 159 for (i = 0, p = cmd; i < size; i += 8) 160 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++)); 161 t4_read_reg(adapter, mbox_data); /* flush write */ 162 163 t4_write_reg(adapter, mbox_ctl, 164 MBMSGVALID | MBOWNER(MBOX_OWNER_FW)); 165 t4_read_reg(adapter, mbox_ctl); /* flush write */ 166 167 /* 168 * Spin waiting for firmware to acknowledge processing our command. 169 */ 170 delay_idx = 0; 171 ms = delay[0]; 172 173 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) { 174 if (sleep_ok) { 175 ms = delay[delay_idx]; 176 if (delay_idx < ARRAY_SIZE(delay) - 1) 177 delay_idx++; 178 msleep(ms); 179 } else 180 mdelay(ms); 181 182 /* 183 * If we're the owner, see if this is the reply we wanted. 184 */ 185 v = t4_read_reg(adapter, mbox_ctl); 186 if (MBOWNER_GET(v) == MBOX_OWNER_DRV) { 187 /* 188 * If the Message Valid bit isn't on, revoke ownership 189 * of the mailbox and continue waiting for our reply. 190 */ 191 if ((v & MBMSGVALID) == 0) { 192 t4_write_reg(adapter, mbox_ctl, 193 MBOWNER(MBOX_OWNER_NONE)); 194 continue; 195 } 196 197 /* 198 * We now have our reply. Extract the command return 199 * value, copy the reply back to our caller's buffer 200 * (if specified) and revoke ownership of the mailbox. 201 * We return the (negated) firmware command return 202 * code (this depends on FW_SUCCESS == 0). 203 */ 204 205 /* return value in low-order little-endian word */ 206 v = t4_read_reg(adapter, mbox_data); 207 if (FW_CMD_RETVAL_GET(v)) 208 dump_mbox(adapter, "FW Error", mbox_data); 209 210 if (rpl) { 211 /* request bit in high-order BE word */ 212 WARN_ON((be32_to_cpu(*(const u32 *)cmd) 213 & FW_CMD_REQUEST) == 0); 214 get_mbox_rpl(adapter, rpl, size, mbox_data); 215 WARN_ON((be32_to_cpu(*(u32 *)rpl) 216 & FW_CMD_REQUEST) != 0); 217 } 218 t4_write_reg(adapter, mbox_ctl, 219 MBOWNER(MBOX_OWNER_NONE)); 220 return -FW_CMD_RETVAL_GET(v); 221 } 222 } 223 224 /* 225 * We timed out. Return the error ... 226 */ 227 dump_mbox(adapter, "FW Timeout", mbox_data); 228 return -ETIMEDOUT; 229 } 230 231 /** 232 * hash_mac_addr - return the hash value of a MAC address 233 * @addr: the 48-bit Ethernet MAC address 234 * 235 * Hashes a MAC address according to the hash function used by hardware 236 * inexact (hash) address matching. 237 */ 238 static int hash_mac_addr(const u8 *addr) 239 { 240 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; 241 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; 242 a ^= b; 243 a ^= (a >> 12); 244 a ^= (a >> 6); 245 return a & 0x3f; 246 } 247 248 /** 249 * init_link_config - initialize a link's SW state 250 * @lc: structure holding the link state 251 * @caps: link capabilities 252 * 253 * Initializes the SW state maintained for each link, including the link's 254 * capabilities and default speed/flow-control/autonegotiation settings. 255 */ 256 static void init_link_config(struct link_config *lc, unsigned int caps) 257 { 258 lc->supported = caps; 259 lc->requested_speed = 0; 260 lc->speed = 0; 261 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 262 if (lc->supported & SUPPORTED_Autoneg) { 263 lc->advertising = lc->supported; 264 lc->autoneg = AUTONEG_ENABLE; 265 lc->requested_fc |= PAUSE_AUTONEG; 266 } else { 267 lc->advertising = 0; 268 lc->autoneg = AUTONEG_DISABLE; 269 } 270 } 271 272 /** 273 * t4vf_port_init - initialize port hardware/software state 274 * @adapter: the adapter 275 * @pidx: the adapter port index 276 */ 277 int t4vf_port_init(struct adapter *adapter, int pidx) 278 { 279 struct port_info *pi = adap2pinfo(adapter, pidx); 280 struct fw_vi_cmd vi_cmd, vi_rpl; 281 struct fw_port_cmd port_cmd, port_rpl; 282 int v; 283 u32 word; 284 285 /* 286 * Execute a VI Read command to get our Virtual Interface information 287 * like MAC address, etc. 288 */ 289 memset(&vi_cmd, 0, sizeof(vi_cmd)); 290 vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) | 291 FW_CMD_REQUEST | 292 FW_CMD_READ); 293 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd)); 294 vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(pi->viid)); 295 v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl); 296 if (v) 297 return v; 298 299 BUG_ON(pi->port_id != FW_VI_CMD_PORTID_GET(vi_rpl.portid_pkd)); 300 pi->rss_size = FW_VI_CMD_RSSSIZE_GET(be16_to_cpu(vi_rpl.rsssize_pkd)); 301 t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac); 302 303 /* 304 * If we don't have read access to our port information, we're done 305 * now. Otherwise, execute a PORT Read command to get it ... 306 */ 307 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT)) 308 return 0; 309 310 memset(&port_cmd, 0, sizeof(port_cmd)); 311 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP(FW_PORT_CMD) | 312 FW_CMD_REQUEST | 313 FW_CMD_READ | 314 FW_PORT_CMD_PORTID(pi->port_id)); 315 port_cmd.action_to_len16 = 316 cpu_to_be32(FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) | 317 FW_LEN16(port_cmd)); 318 v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl); 319 if (v) 320 return v; 321 322 v = 0; 323 word = be16_to_cpu(port_rpl.u.info.pcap); 324 if (word & FW_PORT_CAP_SPEED_100M) 325 v |= SUPPORTED_100baseT_Full; 326 if (word & FW_PORT_CAP_SPEED_1G) 327 v |= SUPPORTED_1000baseT_Full; 328 if (word & FW_PORT_CAP_SPEED_10G) 329 v |= SUPPORTED_10000baseT_Full; 330 if (word & FW_PORT_CAP_SPEED_40G) 331 v |= SUPPORTED_40000baseSR4_Full; 332 if (word & FW_PORT_CAP_ANEG) 333 v |= SUPPORTED_Autoneg; 334 init_link_config(&pi->link_cfg, v); 335 336 return 0; 337 } 338 339 /** 340 * t4vf_fw_reset - issue a reset to FW 341 * @adapter: the adapter 342 * 343 * Issues a reset command to FW. For a Physical Function this would 344 * result in the Firmware reseting all of its state. For a Virtual 345 * Function this just resets the state associated with the VF. 346 */ 347 int t4vf_fw_reset(struct adapter *adapter) 348 { 349 struct fw_reset_cmd cmd; 350 351 memset(&cmd, 0, sizeof(cmd)); 352 cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RESET_CMD) | 353 FW_CMD_WRITE); 354 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 355 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 356 } 357 358 /** 359 * t4vf_query_params - query FW or device parameters 360 * @adapter: the adapter 361 * @nparams: the number of parameters 362 * @params: the parameter names 363 * @vals: the parameter values 364 * 365 * Reads the values of firmware or device parameters. Up to 7 parameters 366 * can be queried at once. 367 */ 368 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams, 369 const u32 *params, u32 *vals) 370 { 371 int i, ret; 372 struct fw_params_cmd cmd, rpl; 373 struct fw_params_param *p; 374 size_t len16; 375 376 if (nparams > 7) 377 return -EINVAL; 378 379 memset(&cmd, 0, sizeof(cmd)); 380 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) | 381 FW_CMD_REQUEST | 382 FW_CMD_READ); 383 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, 384 param[nparams].mnem), 16); 385 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16)); 386 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) 387 p->mnem = htonl(*params++); 388 389 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 390 if (ret == 0) 391 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++) 392 *vals++ = be32_to_cpu(p->val); 393 return ret; 394 } 395 396 /** 397 * t4vf_set_params - sets FW or device parameters 398 * @adapter: the adapter 399 * @nparams: the number of parameters 400 * @params: the parameter names 401 * @vals: the parameter values 402 * 403 * Sets the values of firmware or device parameters. Up to 7 parameters 404 * can be specified at once. 405 */ 406 int t4vf_set_params(struct adapter *adapter, unsigned int nparams, 407 const u32 *params, const u32 *vals) 408 { 409 int i; 410 struct fw_params_cmd cmd; 411 struct fw_params_param *p; 412 size_t len16; 413 414 if (nparams > 7) 415 return -EINVAL; 416 417 memset(&cmd, 0, sizeof(cmd)); 418 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) | 419 FW_CMD_REQUEST | 420 FW_CMD_WRITE); 421 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, 422 param[nparams]), 16); 423 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16)); 424 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) { 425 p->mnem = cpu_to_be32(*params++); 426 p->val = cpu_to_be32(*vals++); 427 } 428 429 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 430 } 431 432 /** 433 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters 434 * @adapter: the adapter 435 * 436 * Retrieves various core SGE parameters in the form of hardware SGE 437 * register values. The caller is responsible for decoding these as 438 * needed. The SGE parameters are stored in @adapter->params.sge. 439 */ 440 int t4vf_get_sge_params(struct adapter *adapter) 441 { 442 struct sge_params *sge_params = &adapter->params.sge; 443 u32 params[7], vals[7]; 444 int v; 445 446 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 447 FW_PARAMS_PARAM_XYZ(SGE_CONTROL)); 448 params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 449 FW_PARAMS_PARAM_XYZ(SGE_HOST_PAGE_SIZE)); 450 params[2] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 451 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE0)); 452 params[3] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 453 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE1)); 454 params[4] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 455 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_0_AND_1)); 456 params[5] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 457 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_2_AND_3)); 458 params[6] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 459 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_4_AND_5)); 460 v = t4vf_query_params(adapter, 7, params, vals); 461 if (v) 462 return v; 463 sge_params->sge_control = vals[0]; 464 sge_params->sge_host_page_size = vals[1]; 465 sge_params->sge_fl_buffer_size[0] = vals[2]; 466 sge_params->sge_fl_buffer_size[1] = vals[3]; 467 sge_params->sge_timer_value_0_and_1 = vals[4]; 468 sge_params->sge_timer_value_2_and_3 = vals[5]; 469 sge_params->sge_timer_value_4_and_5 = vals[6]; 470 471 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 472 FW_PARAMS_PARAM_XYZ(SGE_INGRESS_RX_THRESHOLD)); 473 v = t4vf_query_params(adapter, 1, params, vals); 474 if (v) 475 return v; 476 sge_params->sge_ingress_rx_threshold = vals[0]; 477 478 return 0; 479 } 480 481 /** 482 * t4vf_get_vpd_params - retrieve device VPD paremeters 483 * @adapter: the adapter 484 * 485 * Retrives various device Vital Product Data parameters. The parameters 486 * are stored in @adapter->params.vpd. 487 */ 488 int t4vf_get_vpd_params(struct adapter *adapter) 489 { 490 struct vpd_params *vpd_params = &adapter->params.vpd; 491 u32 params[7], vals[7]; 492 int v; 493 494 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 495 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK)); 496 v = t4vf_query_params(adapter, 1, params, vals); 497 if (v) 498 return v; 499 vpd_params->cclk = vals[0]; 500 501 return 0; 502 } 503 504 /** 505 * t4vf_get_dev_params - retrieve device paremeters 506 * @adapter: the adapter 507 * 508 * Retrives various device parameters. The parameters are stored in 509 * @adapter->params.dev. 510 */ 511 int t4vf_get_dev_params(struct adapter *adapter) 512 { 513 struct dev_params *dev_params = &adapter->params.dev; 514 u32 params[7], vals[7]; 515 int v; 516 517 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 518 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV)); 519 params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 520 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV)); 521 v = t4vf_query_params(adapter, 2, params, vals); 522 if (v) 523 return v; 524 dev_params->fwrev = vals[0]; 525 dev_params->tprev = vals[1]; 526 527 return 0; 528 } 529 530 /** 531 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration 532 * @adapter: the adapter 533 * 534 * Retrieves global RSS mode and parameters with which we have to live 535 * and stores them in the @adapter's RSS parameters. 536 */ 537 int t4vf_get_rss_glb_config(struct adapter *adapter) 538 { 539 struct rss_params *rss = &adapter->params.rss; 540 struct fw_rss_glb_config_cmd cmd, rpl; 541 int v; 542 543 /* 544 * Execute an RSS Global Configuration read command to retrieve 545 * our RSS configuration. 546 */ 547 memset(&cmd, 0, sizeof(cmd)); 548 cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) | 549 FW_CMD_REQUEST | 550 FW_CMD_READ); 551 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 552 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 553 if (v) 554 return v; 555 556 /* 557 * Transate the big-endian RSS Global Configuration into our 558 * cpu-endian format based on the RSS mode. We also do first level 559 * filtering at this point to weed out modes which don't support 560 * VF Drivers ... 561 */ 562 rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_GET( 563 be32_to_cpu(rpl.u.manual.mode_pkd)); 564 switch (rss->mode) { 565 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 566 u32 word = be32_to_cpu( 567 rpl.u.basicvirtual.synmapen_to_hashtoeplitz); 568 569 rss->u.basicvirtual.synmapen = 570 ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0); 571 rss->u.basicvirtual.syn4tupenipv6 = 572 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0); 573 rss->u.basicvirtual.syn2tupenipv6 = 574 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0); 575 rss->u.basicvirtual.syn4tupenipv4 = 576 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0); 577 rss->u.basicvirtual.syn2tupenipv4 = 578 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0); 579 580 rss->u.basicvirtual.ofdmapen = 581 ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0); 582 583 rss->u.basicvirtual.tnlmapen = 584 ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0); 585 rss->u.basicvirtual.tnlalllookup = 586 ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0); 587 588 rss->u.basicvirtual.hashtoeplitz = 589 ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0); 590 591 /* we need at least Tunnel Map Enable to be set */ 592 if (!rss->u.basicvirtual.tnlmapen) 593 return -EINVAL; 594 break; 595 } 596 597 default: 598 /* all unknown/unsupported RSS modes result in an error */ 599 return -EINVAL; 600 } 601 602 return 0; 603 } 604 605 /** 606 * t4vf_get_vfres - retrieve VF resource limits 607 * @adapter: the adapter 608 * 609 * Retrieves configured resource limits and capabilities for a virtual 610 * function. The results are stored in @adapter->vfres. 611 */ 612 int t4vf_get_vfres(struct adapter *adapter) 613 { 614 struct vf_resources *vfres = &adapter->params.vfres; 615 struct fw_pfvf_cmd cmd, rpl; 616 int v; 617 u32 word; 618 619 /* 620 * Execute PFVF Read command to get VF resource limits; bail out early 621 * with error on command failure. 622 */ 623 memset(&cmd, 0, sizeof(cmd)); 624 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PFVF_CMD) | 625 FW_CMD_REQUEST | 626 FW_CMD_READ); 627 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 628 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 629 if (v) 630 return v; 631 632 /* 633 * Extract VF resource limits and return success. 634 */ 635 word = be32_to_cpu(rpl.niqflint_niq); 636 vfres->niqflint = FW_PFVF_CMD_NIQFLINT_GET(word); 637 vfres->niq = FW_PFVF_CMD_NIQ_GET(word); 638 639 word = be32_to_cpu(rpl.type_to_neq); 640 vfres->neq = FW_PFVF_CMD_NEQ_GET(word); 641 vfres->pmask = FW_PFVF_CMD_PMASK_GET(word); 642 643 word = be32_to_cpu(rpl.tc_to_nexactf); 644 vfres->tc = FW_PFVF_CMD_TC_GET(word); 645 vfres->nvi = FW_PFVF_CMD_NVI_GET(word); 646 vfres->nexactf = FW_PFVF_CMD_NEXACTF_GET(word); 647 648 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 649 vfres->r_caps = FW_PFVF_CMD_R_CAPS_GET(word); 650 vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_GET(word); 651 vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_GET(word); 652 653 return 0; 654 } 655 656 /** 657 * t4vf_read_rss_vi_config - read a VI's RSS configuration 658 * @adapter: the adapter 659 * @viid: Virtual Interface ID 660 * @config: pointer to host-native VI RSS Configuration buffer 661 * 662 * Reads the Virtual Interface's RSS configuration information and 663 * translates it into CPU-native format. 664 */ 665 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid, 666 union rss_vi_config *config) 667 { 668 struct fw_rss_vi_config_cmd cmd, rpl; 669 int v; 670 671 memset(&cmd, 0, sizeof(cmd)); 672 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | 673 FW_CMD_REQUEST | 674 FW_CMD_READ | 675 FW_RSS_VI_CONFIG_CMD_VIID(viid)); 676 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 677 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 678 if (v) 679 return v; 680 681 switch (adapter->params.rss.mode) { 682 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 683 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen); 684 685 config->basicvirtual.ip6fourtupen = 686 ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) != 0); 687 config->basicvirtual.ip6twotupen = 688 ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) != 0); 689 config->basicvirtual.ip4fourtupen = 690 ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) != 0); 691 config->basicvirtual.ip4twotupen = 692 ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) != 0); 693 config->basicvirtual.udpen = 694 ((word & FW_RSS_VI_CONFIG_CMD_UDPEN) != 0); 695 config->basicvirtual.defaultq = 696 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_GET(word); 697 break; 698 } 699 700 default: 701 return -EINVAL; 702 } 703 704 return 0; 705 } 706 707 /** 708 * t4vf_write_rss_vi_config - write a VI's RSS configuration 709 * @adapter: the adapter 710 * @viid: Virtual Interface ID 711 * @config: pointer to host-native VI RSS Configuration buffer 712 * 713 * Write the Virtual Interface's RSS configuration information 714 * (translating it into firmware-native format before writing). 715 */ 716 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid, 717 union rss_vi_config *config) 718 { 719 struct fw_rss_vi_config_cmd cmd, rpl; 720 721 memset(&cmd, 0, sizeof(cmd)); 722 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | 723 FW_CMD_REQUEST | 724 FW_CMD_WRITE | 725 FW_RSS_VI_CONFIG_CMD_VIID(viid)); 726 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 727 switch (adapter->params.rss.mode) { 728 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 729 u32 word = 0; 730 731 if (config->basicvirtual.ip6fourtupen) 732 word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 733 if (config->basicvirtual.ip6twotupen) 734 word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 735 if (config->basicvirtual.ip4fourtupen) 736 word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 737 if (config->basicvirtual.ip4twotupen) 738 word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 739 if (config->basicvirtual.udpen) 740 word |= FW_RSS_VI_CONFIG_CMD_UDPEN; 741 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ( 742 config->basicvirtual.defaultq); 743 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word); 744 break; 745 } 746 747 default: 748 return -EINVAL; 749 } 750 751 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 752 } 753 754 /** 755 * t4vf_config_rss_range - configure a portion of the RSS mapping table 756 * @adapter: the adapter 757 * @viid: Virtual Interface of RSS Table Slice 758 * @start: starting entry in the table to write 759 * @n: how many table entries to write 760 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table 761 * @nrspq: number of values in @rspq 762 * 763 * Programs the selected part of the VI's RSS mapping table with the 764 * provided values. If @nrspq < @n the supplied values are used repeatedly 765 * until the full table range is populated. 766 * 767 * The caller must ensure the values in @rspq are in the range 0..1023. 768 */ 769 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid, 770 int start, int n, const u16 *rspq, int nrspq) 771 { 772 const u16 *rsp = rspq; 773 const u16 *rsp_end = rspq+nrspq; 774 struct fw_rss_ind_tbl_cmd cmd; 775 776 /* 777 * Initialize firmware command template to write the RSS table. 778 */ 779 memset(&cmd, 0, sizeof(cmd)); 780 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_IND_TBL_CMD) | 781 FW_CMD_REQUEST | 782 FW_CMD_WRITE | 783 FW_RSS_IND_TBL_CMD_VIID(viid)); 784 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 785 786 /* 787 * Each firmware RSS command can accommodate up to 32 RSS Ingress 788 * Queue Identifiers. These Ingress Queue IDs are packed three to 789 * a 32-bit word as 10-bit values with the upper remaining 2 bits 790 * reserved. 791 */ 792 while (n > 0) { 793 __be32 *qp = &cmd.iq0_to_iq2; 794 int nq = min(n, 32); 795 int ret; 796 797 /* 798 * Set up the firmware RSS command header to send the next 799 * "nq" Ingress Queue IDs to the firmware. 800 */ 801 cmd.niqid = cpu_to_be16(nq); 802 cmd.startidx = cpu_to_be16(start); 803 804 /* 805 * "nq" more done for the start of the next loop. 806 */ 807 start += nq; 808 n -= nq; 809 810 /* 811 * While there are still Ingress Queue IDs to stuff into the 812 * current firmware RSS command, retrieve them from the 813 * Ingress Queue ID array and insert them into the command. 814 */ 815 while (nq > 0) { 816 /* 817 * Grab up to the next 3 Ingress Queue IDs (wrapping 818 * around the Ingress Queue ID array if necessary) and 819 * insert them into the firmware RSS command at the 820 * current 3-tuple position within the commad. 821 */ 822 u16 qbuf[3]; 823 u16 *qbp = qbuf; 824 int nqbuf = min(3, nq); 825 826 nq -= nqbuf; 827 qbuf[0] = qbuf[1] = qbuf[2] = 0; 828 while (nqbuf) { 829 nqbuf--; 830 *qbp++ = *rsp++; 831 if (rsp >= rsp_end) 832 rsp = rspq; 833 } 834 *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) | 835 FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) | 836 FW_RSS_IND_TBL_CMD_IQ2(qbuf[2])); 837 } 838 839 /* 840 * Send this portion of the RRS table update to the firmware; 841 * bail out on any errors. 842 */ 843 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 844 if (ret) 845 return ret; 846 } 847 return 0; 848 } 849 850 /** 851 * t4vf_alloc_vi - allocate a virtual interface on a port 852 * @adapter: the adapter 853 * @port_id: physical port associated with the VI 854 * 855 * Allocate a new Virtual Interface and bind it to the indicated 856 * physical port. Return the new Virtual Interface Identifier on 857 * success, or a [negative] error number on failure. 858 */ 859 int t4vf_alloc_vi(struct adapter *adapter, int port_id) 860 { 861 struct fw_vi_cmd cmd, rpl; 862 int v; 863 864 /* 865 * Execute a VI command to allocate Virtual Interface and return its 866 * VIID. 867 */ 868 memset(&cmd, 0, sizeof(cmd)); 869 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) | 870 FW_CMD_REQUEST | 871 FW_CMD_WRITE | 872 FW_CMD_EXEC); 873 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | 874 FW_VI_CMD_ALLOC); 875 cmd.portid_pkd = FW_VI_CMD_PORTID(port_id); 876 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 877 if (v) 878 return v; 879 880 return FW_VI_CMD_VIID_GET(be16_to_cpu(rpl.type_viid)); 881 } 882 883 /** 884 * t4vf_free_vi -- free a virtual interface 885 * @adapter: the adapter 886 * @viid: the virtual interface identifier 887 * 888 * Free a previously allocated Virtual Interface. Return an error on 889 * failure. 890 */ 891 int t4vf_free_vi(struct adapter *adapter, int viid) 892 { 893 struct fw_vi_cmd cmd; 894 895 /* 896 * Execute a VI command to free the Virtual Interface. 897 */ 898 memset(&cmd, 0, sizeof(cmd)); 899 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) | 900 FW_CMD_REQUEST | 901 FW_CMD_EXEC); 902 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | 903 FW_VI_CMD_FREE); 904 cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(viid)); 905 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 906 } 907 908 /** 909 * t4vf_enable_vi - enable/disable a virtual interface 910 * @adapter: the adapter 911 * @viid: the Virtual Interface ID 912 * @rx_en: 1=enable Rx, 0=disable Rx 913 * @tx_en: 1=enable Tx, 0=disable Tx 914 * 915 * Enables/disables a virtual interface. 916 */ 917 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid, 918 bool rx_en, bool tx_en) 919 { 920 struct fw_vi_enable_cmd cmd; 921 922 memset(&cmd, 0, sizeof(cmd)); 923 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) | 924 FW_CMD_REQUEST | 925 FW_CMD_EXEC | 926 FW_VI_ENABLE_CMD_VIID(viid)); 927 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN(rx_en) | 928 FW_VI_ENABLE_CMD_EEN(tx_en) | 929 FW_LEN16(cmd)); 930 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 931 } 932 933 /** 934 * t4vf_identify_port - identify a VI's port by blinking its LED 935 * @adapter: the adapter 936 * @viid: the Virtual Interface ID 937 * @nblinks: how many times to blink LED at 2.5 Hz 938 * 939 * Identifies a VI's port by blinking its LED. 940 */ 941 int t4vf_identify_port(struct adapter *adapter, unsigned int viid, 942 unsigned int nblinks) 943 { 944 struct fw_vi_enable_cmd cmd; 945 946 memset(&cmd, 0, sizeof(cmd)); 947 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) | 948 FW_CMD_REQUEST | 949 FW_CMD_EXEC | 950 FW_VI_ENABLE_CMD_VIID(viid)); 951 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED | 952 FW_LEN16(cmd)); 953 cmd.blinkdur = cpu_to_be16(nblinks); 954 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 955 } 956 957 /** 958 * t4vf_set_rxmode - set Rx properties of a virtual interface 959 * @adapter: the adapter 960 * @viid: the VI id 961 * @mtu: the new MTU or -1 for no change 962 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 963 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 964 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 965 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it, 966 * -1 no change 967 * 968 * Sets Rx properties of a virtual interface. 969 */ 970 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid, 971 int mtu, int promisc, int all_multi, int bcast, int vlanex, 972 bool sleep_ok) 973 { 974 struct fw_vi_rxmode_cmd cmd; 975 976 /* convert to FW values */ 977 if (mtu < 0) 978 mtu = FW_VI_RXMODE_CMD_MTU_MASK; 979 if (promisc < 0) 980 promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK; 981 if (all_multi < 0) 982 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK; 983 if (bcast < 0) 984 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK; 985 if (vlanex < 0) 986 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK; 987 988 memset(&cmd, 0, sizeof(cmd)); 989 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_RXMODE_CMD) | 990 FW_CMD_REQUEST | 991 FW_CMD_WRITE | 992 FW_VI_RXMODE_CMD_VIID(viid)); 993 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 994 cmd.mtu_to_vlanexen = 995 cpu_to_be32(FW_VI_RXMODE_CMD_MTU(mtu) | 996 FW_VI_RXMODE_CMD_PROMISCEN(promisc) | 997 FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) | 998 FW_VI_RXMODE_CMD_BROADCASTEN(bcast) | 999 FW_VI_RXMODE_CMD_VLANEXEN(vlanex)); 1000 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); 1001 } 1002 1003 /** 1004 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses 1005 * @adapter: the adapter 1006 * @viid: the Virtual Interface Identifier 1007 * @free: if true any existing filters for this VI id are first removed 1008 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 1009 * @addr: the MAC address(es) 1010 * @idx: where to store the index of each allocated filter 1011 * @hash: pointer to hash address filter bitmap 1012 * @sleep_ok: call is allowed to sleep 1013 * 1014 * Allocates an exact-match filter for each of the supplied addresses and 1015 * sets it to the corresponding address. If @idx is not %NULL it should 1016 * have at least @naddr entries, each of which will be set to the index of 1017 * the filter allocated for the corresponding MAC address. If a filter 1018 * could not be allocated for an address its index is set to 0xffff. 1019 * If @hash is not %NULL addresses that fail to allocate an exact filter 1020 * are hashed and update the hash filter bitmap pointed at by @hash. 1021 * 1022 * Returns a negative error number or the number of filters allocated. 1023 */ 1024 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free, 1025 unsigned int naddr, const u8 **addr, u16 *idx, 1026 u64 *hash, bool sleep_ok) 1027 { 1028 int offset, ret = 0; 1029 unsigned nfilters = 0; 1030 unsigned int rem = naddr; 1031 struct fw_vi_mac_cmd cmd, rpl; 1032 unsigned int max_naddr = is_t4(adapter->params.chip) ? 1033 NUM_MPS_CLS_SRAM_L_INSTANCES : 1034 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 1035 1036 if (naddr > max_naddr) 1037 return -EINVAL; 1038 1039 for (offset = 0; offset < naddr; /**/) { 1040 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) 1041 ? rem 1042 : ARRAY_SIZE(cmd.u.exact)); 1043 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1044 u.exact[fw_naddr]), 16); 1045 struct fw_vi_mac_exact *p; 1046 int i; 1047 1048 memset(&cmd, 0, sizeof(cmd)); 1049 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) | 1050 FW_CMD_REQUEST | 1051 FW_CMD_WRITE | 1052 (free ? FW_CMD_EXEC : 0) | 1053 FW_VI_MAC_CMD_VIID(viid)); 1054 cmd.freemacs_to_len16 = 1055 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS(free) | 1056 FW_CMD_LEN16(len16)); 1057 1058 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) { 1059 p->valid_to_idx = cpu_to_be16( 1060 FW_VI_MAC_CMD_VALID | 1061 FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC)); 1062 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 1063 } 1064 1065 1066 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl, 1067 sleep_ok); 1068 if (ret && ret != -ENOMEM) 1069 break; 1070 1071 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) { 1072 u16 index = FW_VI_MAC_CMD_IDX_GET( 1073 be16_to_cpu(p->valid_to_idx)); 1074 1075 if (idx) 1076 idx[offset+i] = 1077 (index >= max_naddr 1078 ? 0xffff 1079 : index); 1080 if (index < max_naddr) 1081 nfilters++; 1082 else if (hash) 1083 *hash |= (1ULL << hash_mac_addr(addr[offset+i])); 1084 } 1085 1086 free = false; 1087 offset += fw_naddr; 1088 rem -= fw_naddr; 1089 } 1090 1091 /* 1092 * If there were no errors or we merely ran out of room in our MAC 1093 * address arena, return the number of filters actually written. 1094 */ 1095 if (ret == 0 || ret == -ENOMEM) 1096 ret = nfilters; 1097 return ret; 1098 } 1099 1100 /** 1101 * t4vf_change_mac - modifies the exact-match filter for a MAC address 1102 * @adapter: the adapter 1103 * @viid: the Virtual Interface ID 1104 * @idx: index of existing filter for old value of MAC address, or -1 1105 * @addr: the new MAC address value 1106 * @persist: if idx < 0, the new MAC allocation should be persistent 1107 * 1108 * Modifies an exact-match filter and sets it to the new MAC address. 1109 * Note that in general it is not possible to modify the value of a given 1110 * filter so the generic way to modify an address filter is to free the 1111 * one being used by the old address value and allocate a new filter for 1112 * the new address value. @idx can be -1 if the address is a new 1113 * addition. 1114 * 1115 * Returns a negative error number or the index of the filter with the new 1116 * MAC value. 1117 */ 1118 int t4vf_change_mac(struct adapter *adapter, unsigned int viid, 1119 int idx, const u8 *addr, bool persist) 1120 { 1121 int ret; 1122 struct fw_vi_mac_cmd cmd, rpl; 1123 struct fw_vi_mac_exact *p = &cmd.u.exact[0]; 1124 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1125 u.exact[1]), 16); 1126 unsigned int max_naddr = is_t4(adapter->params.chip) ? 1127 NUM_MPS_CLS_SRAM_L_INSTANCES : 1128 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 1129 1130 /* 1131 * If this is a new allocation, determine whether it should be 1132 * persistent (across a "freemacs" operation) or not. 1133 */ 1134 if (idx < 0) 1135 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 1136 1137 memset(&cmd, 0, sizeof(cmd)); 1138 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) | 1139 FW_CMD_REQUEST | 1140 FW_CMD_WRITE | 1141 FW_VI_MAC_CMD_VIID(viid)); 1142 cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16(len16)); 1143 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID | 1144 FW_VI_MAC_CMD_IDX(idx)); 1145 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 1146 1147 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 1148 if (ret == 0) { 1149 p = &rpl.u.exact[0]; 1150 ret = FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p->valid_to_idx)); 1151 if (ret >= max_naddr) 1152 ret = -ENOMEM; 1153 } 1154 return ret; 1155 } 1156 1157 /** 1158 * t4vf_set_addr_hash - program the MAC inexact-match hash filter 1159 * @adapter: the adapter 1160 * @viid: the Virtual Interface Identifier 1161 * @ucast: whether the hash filter should also match unicast addresses 1162 * @vec: the value to be written to the hash filter 1163 * @sleep_ok: call is allowed to sleep 1164 * 1165 * Sets the 64-bit inexact-match hash filter for a virtual interface. 1166 */ 1167 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid, 1168 bool ucast, u64 vec, bool sleep_ok) 1169 { 1170 struct fw_vi_mac_cmd cmd; 1171 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1172 u.exact[0]), 16); 1173 1174 memset(&cmd, 0, sizeof(cmd)); 1175 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) | 1176 FW_CMD_REQUEST | 1177 FW_CMD_WRITE | 1178 FW_VI_ENABLE_CMD_VIID(viid)); 1179 cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN | 1180 FW_VI_MAC_CMD_HASHUNIEN(ucast) | 1181 FW_CMD_LEN16(len16)); 1182 cmd.u.hash.hashvec = cpu_to_be64(vec); 1183 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); 1184 } 1185 1186 /** 1187 * t4vf_get_port_stats - collect "port" statistics 1188 * @adapter: the adapter 1189 * @pidx: the port index 1190 * @s: the stats structure to fill 1191 * 1192 * Collect statistics for the "port"'s Virtual Interface. 1193 */ 1194 int t4vf_get_port_stats(struct adapter *adapter, int pidx, 1195 struct t4vf_port_stats *s) 1196 { 1197 struct port_info *pi = adap2pinfo(adapter, pidx); 1198 struct fw_vi_stats_vf fwstats; 1199 unsigned int rem = VI_VF_NUM_STATS; 1200 __be64 *fwsp = (__be64 *)&fwstats; 1201 1202 /* 1203 * Grab the Virtual Interface statistics a chunk at a time via mailbox 1204 * commands. We could use a Work Request and get all of them at once 1205 * but that's an asynchronous interface which is awkward to use. 1206 */ 1207 while (rem) { 1208 unsigned int ix = VI_VF_NUM_STATS - rem; 1209 unsigned int nstats = min(6U, rem); 1210 struct fw_vi_stats_cmd cmd, rpl; 1211 size_t len = (offsetof(struct fw_vi_stats_cmd, u) + 1212 sizeof(struct fw_vi_stats_ctl)); 1213 size_t len16 = DIV_ROUND_UP(len, 16); 1214 int ret; 1215 1216 memset(&cmd, 0, sizeof(cmd)); 1217 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_STATS_CMD) | 1218 FW_VI_STATS_CMD_VIID(pi->viid) | 1219 FW_CMD_REQUEST | 1220 FW_CMD_READ); 1221 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16)); 1222 cmd.u.ctl.nstats_ix = 1223 cpu_to_be16(FW_VI_STATS_CMD_IX(ix) | 1224 FW_VI_STATS_CMD_NSTATS(nstats)); 1225 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl); 1226 if (ret) 1227 return ret; 1228 1229 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats); 1230 1231 rem -= nstats; 1232 fwsp += nstats; 1233 } 1234 1235 /* 1236 * Translate firmware statistics into host native statistics. 1237 */ 1238 s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes); 1239 s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames); 1240 s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes); 1241 s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames); 1242 s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes); 1243 s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames); 1244 s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames); 1245 s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes); 1246 s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames); 1247 1248 s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes); 1249 s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames); 1250 s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes); 1251 s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames); 1252 s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes); 1253 s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames); 1254 1255 s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames); 1256 1257 return 0; 1258 } 1259 1260 /** 1261 * t4vf_iq_free - free an ingress queue and its free lists 1262 * @adapter: the adapter 1263 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 1264 * @iqid: ingress queue ID 1265 * @fl0id: FL0 queue ID or 0xffff if no attached FL0 1266 * @fl1id: FL1 queue ID or 0xffff if no attached FL1 1267 * 1268 * Frees an ingress queue and its associated free lists, if any. 1269 */ 1270 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype, 1271 unsigned int iqid, unsigned int fl0id, unsigned int fl1id) 1272 { 1273 struct fw_iq_cmd cmd; 1274 1275 memset(&cmd, 0, sizeof(cmd)); 1276 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) | 1277 FW_CMD_REQUEST | 1278 FW_CMD_EXEC); 1279 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE | 1280 FW_LEN16(cmd)); 1281 cmd.type_to_iqandstindex = 1282 cpu_to_be32(FW_IQ_CMD_TYPE(iqtype)); 1283 1284 cmd.iqid = cpu_to_be16(iqid); 1285 cmd.fl0id = cpu_to_be16(fl0id); 1286 cmd.fl1id = cpu_to_be16(fl1id); 1287 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1288 } 1289 1290 /** 1291 * t4vf_eth_eq_free - free an Ethernet egress queue 1292 * @adapter: the adapter 1293 * @eqid: egress queue ID 1294 * 1295 * Frees an Ethernet egress queue. 1296 */ 1297 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid) 1298 { 1299 struct fw_eq_eth_cmd cmd; 1300 1301 memset(&cmd, 0, sizeof(cmd)); 1302 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) | 1303 FW_CMD_REQUEST | 1304 FW_CMD_EXEC); 1305 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE | 1306 FW_LEN16(cmd)); 1307 cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID(eqid)); 1308 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1309 } 1310 1311 /** 1312 * t4vf_handle_fw_rpl - process a firmware reply message 1313 * @adapter: the adapter 1314 * @rpl: start of the firmware message 1315 * 1316 * Processes a firmware message, such as link state change messages. 1317 */ 1318 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl) 1319 { 1320 const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl; 1321 u8 opcode = FW_CMD_OP_GET(be32_to_cpu(cmd_hdr->hi)); 1322 1323 switch (opcode) { 1324 case FW_PORT_CMD: { 1325 /* 1326 * Link/module state change message. 1327 */ 1328 const struct fw_port_cmd *port_cmd = 1329 (const struct fw_port_cmd *)rpl; 1330 u32 word; 1331 int action, port_id, link_ok, speed, fc, pidx; 1332 1333 /* 1334 * Extract various fields from port status change message. 1335 */ 1336 action = FW_PORT_CMD_ACTION_GET( 1337 be32_to_cpu(port_cmd->action_to_len16)); 1338 if (action != FW_PORT_ACTION_GET_PORT_INFO) { 1339 dev_err(adapter->pdev_dev, 1340 "Unknown firmware PORT reply action %x\n", 1341 action); 1342 break; 1343 } 1344 1345 port_id = FW_PORT_CMD_PORTID_GET( 1346 be32_to_cpu(port_cmd->op_to_portid)); 1347 1348 word = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype); 1349 link_ok = (word & FW_PORT_CMD_LSTATUS) != 0; 1350 speed = 0; 1351 fc = 0; 1352 if (word & FW_PORT_CMD_RXPAUSE) 1353 fc |= PAUSE_RX; 1354 if (word & FW_PORT_CMD_TXPAUSE) 1355 fc |= PAUSE_TX; 1356 if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M)) 1357 speed = 100; 1358 else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G)) 1359 speed = 1000; 1360 else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G)) 1361 speed = 10000; 1362 else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G)) 1363 speed = 40000; 1364 1365 /* 1366 * Scan all of our "ports" (Virtual Interfaces) looking for 1367 * those bound to the physical port which has changed. If 1368 * our recorded state doesn't match the current state, 1369 * signal that change to the OS code. 1370 */ 1371 for_each_port(adapter, pidx) { 1372 struct port_info *pi = adap2pinfo(adapter, pidx); 1373 struct link_config *lc; 1374 1375 if (pi->port_id != port_id) 1376 continue; 1377 1378 lc = &pi->link_cfg; 1379 if (link_ok != lc->link_ok || speed != lc->speed || 1380 fc != lc->fc) { 1381 /* something changed */ 1382 lc->link_ok = link_ok; 1383 lc->speed = speed; 1384 lc->fc = fc; 1385 t4vf_os_link_changed(adapter, pidx, link_ok); 1386 } 1387 } 1388 break; 1389 } 1390 1391 default: 1392 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n", 1393 opcode); 1394 } 1395 return 0; 1396 } 1397