1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/pci.h> 37 38 #include "t4vf_common.h" 39 #include "t4vf_defs.h" 40 41 #include "../cxgb4/t4_regs.h" 42 #include "../cxgb4/t4fw_api.h" 43 44 /* 45 * Wait for the device to become ready (signified by our "who am I" register 46 * returning a value other than all 1's). Return an error if it doesn't 47 * become ready ... 48 */ 49 int t4vf_wait_dev_ready(struct adapter *adapter) 50 { 51 const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI; 52 const u32 notready1 = 0xffffffff; 53 const u32 notready2 = 0xeeeeeeee; 54 u32 val; 55 56 val = t4_read_reg(adapter, whoami); 57 if (val != notready1 && val != notready2) 58 return 0; 59 msleep(500); 60 val = t4_read_reg(adapter, whoami); 61 if (val != notready1 && val != notready2) 62 return 0; 63 else 64 return -EIO; 65 } 66 67 /* 68 * Get the reply to a mailbox command and store it in @rpl in big-endian order 69 * (since the firmware data structures are specified in a big-endian layout). 70 */ 71 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size, 72 u32 mbox_data) 73 { 74 for ( ; size; size -= 8, mbox_data += 8) 75 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data)); 76 } 77 78 /* 79 * Dump contents of mailbox with a leading tag. 80 */ 81 static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data) 82 { 83 dev_err(adapter->pdev_dev, 84 "mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag, 85 (unsigned long long)t4_read_reg64(adapter, mbox_data + 0), 86 (unsigned long long)t4_read_reg64(adapter, mbox_data + 8), 87 (unsigned long long)t4_read_reg64(adapter, mbox_data + 16), 88 (unsigned long long)t4_read_reg64(adapter, mbox_data + 24), 89 (unsigned long long)t4_read_reg64(adapter, mbox_data + 32), 90 (unsigned long long)t4_read_reg64(adapter, mbox_data + 40), 91 (unsigned long long)t4_read_reg64(adapter, mbox_data + 48), 92 (unsigned long long)t4_read_reg64(adapter, mbox_data + 56)); 93 } 94 95 /** 96 * t4vf_wr_mbox_core - send a command to FW through the mailbox 97 * @adapter: the adapter 98 * @cmd: the command to write 99 * @size: command length in bytes 100 * @rpl: where to optionally store the reply 101 * @sleep_ok: if true we may sleep while awaiting command completion 102 * 103 * Sends the given command to FW through the mailbox and waits for the 104 * FW to execute the command. If @rpl is not %NULL it is used to store 105 * the FW's reply to the command. The command and its optional reply 106 * are of the same length. FW can take up to 500 ms to respond. 107 * @sleep_ok determines whether we may sleep while awaiting the response. 108 * If sleeping is allowed we use progressive backoff otherwise we spin. 109 * 110 * The return value is 0 on success or a negative errno on failure. A 111 * failure can happen either because we are not able to execute the 112 * command or FW executes it but signals an error. In the latter case 113 * the return value is the error code indicated by FW (negated). 114 */ 115 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size, 116 void *rpl, bool sleep_ok) 117 { 118 static const int delay[] = { 119 1, 1, 3, 5, 10, 10, 20, 50, 100 120 }; 121 122 u32 v; 123 int i, ms, delay_idx; 124 const __be64 *p; 125 u32 mbox_data = T4VF_MBDATA_BASE_ADDR; 126 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL; 127 128 /* 129 * Commands must be multiples of 16 bytes in length and may not be 130 * larger than the size of the Mailbox Data register array. 131 */ 132 if ((size % 16) != 0 || 133 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4) 134 return -EINVAL; 135 136 /* 137 * Loop trying to get ownership of the mailbox. Return an error 138 * if we can't gain ownership. 139 */ 140 v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl)); 141 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 142 v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl)); 143 if (v != MBOX_OWNER_DRV) 144 return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT; 145 146 /* 147 * Write the command array into the Mailbox Data register array and 148 * transfer ownership of the mailbox to the firmware. 149 * 150 * For the VFs, the Mailbox Data "registers" are actually backed by 151 * T4's "MA" interface rather than PL Registers (as is the case for 152 * the PFs). Because these are in different coherency domains, the 153 * write to the VF's PL-register-backed Mailbox Control can race in 154 * front of the writes to the MA-backed VF Mailbox Data "registers". 155 * So we need to do a read-back on at least one byte of the VF Mailbox 156 * Data registers before doing the write to the VF Mailbox Control 157 * register. 158 */ 159 for (i = 0, p = cmd; i < size; i += 8) 160 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++)); 161 t4_read_reg(adapter, mbox_data); /* flush write */ 162 163 t4_write_reg(adapter, mbox_ctl, 164 MBMSGVALID | MBOWNER(MBOX_OWNER_FW)); 165 t4_read_reg(adapter, mbox_ctl); /* flush write */ 166 167 /* 168 * Spin waiting for firmware to acknowledge processing our command. 169 */ 170 delay_idx = 0; 171 ms = delay[0]; 172 173 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) { 174 if (sleep_ok) { 175 ms = delay[delay_idx]; 176 if (delay_idx < ARRAY_SIZE(delay) - 1) 177 delay_idx++; 178 msleep(ms); 179 } else 180 mdelay(ms); 181 182 /* 183 * If we're the owner, see if this is the reply we wanted. 184 */ 185 v = t4_read_reg(adapter, mbox_ctl); 186 if (MBOWNER_GET(v) == MBOX_OWNER_DRV) { 187 /* 188 * If the Message Valid bit isn't on, revoke ownership 189 * of the mailbox and continue waiting for our reply. 190 */ 191 if ((v & MBMSGVALID) == 0) { 192 t4_write_reg(adapter, mbox_ctl, 193 MBOWNER(MBOX_OWNER_NONE)); 194 continue; 195 } 196 197 /* 198 * We now have our reply. Extract the command return 199 * value, copy the reply back to our caller's buffer 200 * (if specified) and revoke ownership of the mailbox. 201 * We return the (negated) firmware command return 202 * code (this depends on FW_SUCCESS == 0). 203 */ 204 205 /* return value in low-order little-endian word */ 206 v = t4_read_reg(adapter, mbox_data); 207 if (FW_CMD_RETVAL_GET(v)) 208 dump_mbox(adapter, "FW Error", mbox_data); 209 210 if (rpl) { 211 /* request bit in high-order BE word */ 212 WARN_ON((be32_to_cpu(*(const u32 *)cmd) 213 & FW_CMD_REQUEST) == 0); 214 get_mbox_rpl(adapter, rpl, size, mbox_data); 215 WARN_ON((be32_to_cpu(*(u32 *)rpl) 216 & FW_CMD_REQUEST) != 0); 217 } 218 t4_write_reg(adapter, mbox_ctl, 219 MBOWNER(MBOX_OWNER_NONE)); 220 return -FW_CMD_RETVAL_GET(v); 221 } 222 } 223 224 /* 225 * We timed out. Return the error ... 226 */ 227 dump_mbox(adapter, "FW Timeout", mbox_data); 228 return -ETIMEDOUT; 229 } 230 231 /** 232 * hash_mac_addr - return the hash value of a MAC address 233 * @addr: the 48-bit Ethernet MAC address 234 * 235 * Hashes a MAC address according to the hash function used by hardware 236 * inexact (hash) address matching. 237 */ 238 static int hash_mac_addr(const u8 *addr) 239 { 240 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; 241 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; 242 a ^= b; 243 a ^= (a >> 12); 244 a ^= (a >> 6); 245 return a & 0x3f; 246 } 247 248 /** 249 * init_link_config - initialize a link's SW state 250 * @lc: structure holding the link state 251 * @caps: link capabilities 252 * 253 * Initializes the SW state maintained for each link, including the link's 254 * capabilities and default speed/flow-control/autonegotiation settings. 255 */ 256 static void init_link_config(struct link_config *lc, unsigned int caps) 257 { 258 lc->supported = caps; 259 lc->requested_speed = 0; 260 lc->speed = 0; 261 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 262 if (lc->supported & SUPPORTED_Autoneg) { 263 lc->advertising = lc->supported; 264 lc->autoneg = AUTONEG_ENABLE; 265 lc->requested_fc |= PAUSE_AUTONEG; 266 } else { 267 lc->advertising = 0; 268 lc->autoneg = AUTONEG_DISABLE; 269 } 270 } 271 272 /** 273 * t4vf_port_init - initialize port hardware/software state 274 * @adapter: the adapter 275 * @pidx: the adapter port index 276 */ 277 int t4vf_port_init(struct adapter *adapter, int pidx) 278 { 279 struct port_info *pi = adap2pinfo(adapter, pidx); 280 struct fw_vi_cmd vi_cmd, vi_rpl; 281 struct fw_port_cmd port_cmd, port_rpl; 282 int v; 283 u32 word; 284 285 /* 286 * Execute a VI Read command to get our Virtual Interface information 287 * like MAC address, etc. 288 */ 289 memset(&vi_cmd, 0, sizeof(vi_cmd)); 290 vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) | 291 FW_CMD_REQUEST | 292 FW_CMD_READ); 293 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd)); 294 vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(pi->viid)); 295 v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl); 296 if (v) 297 return v; 298 299 BUG_ON(pi->port_id != FW_VI_CMD_PORTID_GET(vi_rpl.portid_pkd)); 300 pi->rss_size = FW_VI_CMD_RSSSIZE_GET(be16_to_cpu(vi_rpl.rsssize_pkd)); 301 t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac); 302 303 /* 304 * If we don't have read access to our port information, we're done 305 * now. Otherwise, execute a PORT Read command to get it ... 306 */ 307 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT)) 308 return 0; 309 310 memset(&port_cmd, 0, sizeof(port_cmd)); 311 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP(FW_PORT_CMD) | 312 FW_CMD_REQUEST | 313 FW_CMD_READ | 314 FW_PORT_CMD_PORTID(pi->port_id)); 315 port_cmd.action_to_len16 = 316 cpu_to_be32(FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) | 317 FW_LEN16(port_cmd)); 318 v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl); 319 if (v) 320 return v; 321 322 v = 0; 323 word = be16_to_cpu(port_rpl.u.info.pcap); 324 if (word & FW_PORT_CAP_SPEED_100M) 325 v |= SUPPORTED_100baseT_Full; 326 if (word & FW_PORT_CAP_SPEED_1G) 327 v |= SUPPORTED_1000baseT_Full; 328 if (word & FW_PORT_CAP_SPEED_10G) 329 v |= SUPPORTED_10000baseT_Full; 330 if (word & FW_PORT_CAP_ANEG) 331 v |= SUPPORTED_Autoneg; 332 init_link_config(&pi->link_cfg, v); 333 334 return 0; 335 } 336 337 /** 338 * t4vf_fw_reset - issue a reset to FW 339 * @adapter: the adapter 340 * 341 * Issues a reset command to FW. For a Physical Function this would 342 * result in the Firmware reseting all of its state. For a Virtual 343 * Function this just resets the state associated with the VF. 344 */ 345 int t4vf_fw_reset(struct adapter *adapter) 346 { 347 struct fw_reset_cmd cmd; 348 349 memset(&cmd, 0, sizeof(cmd)); 350 cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RESET_CMD) | 351 FW_CMD_WRITE); 352 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 353 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 354 } 355 356 /** 357 * t4vf_query_params - query FW or device parameters 358 * @adapter: the adapter 359 * @nparams: the number of parameters 360 * @params: the parameter names 361 * @vals: the parameter values 362 * 363 * Reads the values of firmware or device parameters. Up to 7 parameters 364 * can be queried at once. 365 */ 366 int t4vf_query_params(struct adapter *adapter, unsigned int nparams, 367 const u32 *params, u32 *vals) 368 { 369 int i, ret; 370 struct fw_params_cmd cmd, rpl; 371 struct fw_params_param *p; 372 size_t len16; 373 374 if (nparams > 7) 375 return -EINVAL; 376 377 memset(&cmd, 0, sizeof(cmd)); 378 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) | 379 FW_CMD_REQUEST | 380 FW_CMD_READ); 381 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, 382 param[nparams].mnem), 16); 383 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16)); 384 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) 385 p->mnem = htonl(*params++); 386 387 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 388 if (ret == 0) 389 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++) 390 *vals++ = be32_to_cpu(p->val); 391 return ret; 392 } 393 394 /** 395 * t4vf_set_params - sets FW or device parameters 396 * @adapter: the adapter 397 * @nparams: the number of parameters 398 * @params: the parameter names 399 * @vals: the parameter values 400 * 401 * Sets the values of firmware or device parameters. Up to 7 parameters 402 * can be specified at once. 403 */ 404 int t4vf_set_params(struct adapter *adapter, unsigned int nparams, 405 const u32 *params, const u32 *vals) 406 { 407 int i; 408 struct fw_params_cmd cmd; 409 struct fw_params_param *p; 410 size_t len16; 411 412 if (nparams > 7) 413 return -EINVAL; 414 415 memset(&cmd, 0, sizeof(cmd)); 416 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) | 417 FW_CMD_REQUEST | 418 FW_CMD_WRITE); 419 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, 420 param[nparams]), 16); 421 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16)); 422 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) { 423 p->mnem = cpu_to_be32(*params++); 424 p->val = cpu_to_be32(*vals++); 425 } 426 427 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 428 } 429 430 /** 431 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters 432 * @adapter: the adapter 433 * 434 * Retrieves various core SGE parameters in the form of hardware SGE 435 * register values. The caller is responsible for decoding these as 436 * needed. The SGE parameters are stored in @adapter->params.sge. 437 */ 438 int t4vf_get_sge_params(struct adapter *adapter) 439 { 440 struct sge_params *sge_params = &adapter->params.sge; 441 u32 params[7], vals[7]; 442 int v; 443 444 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 445 FW_PARAMS_PARAM_XYZ(SGE_CONTROL)); 446 params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 447 FW_PARAMS_PARAM_XYZ(SGE_HOST_PAGE_SIZE)); 448 params[2] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 449 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE0)); 450 params[3] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 451 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE1)); 452 params[4] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 453 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_0_AND_1)); 454 params[5] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 455 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_2_AND_3)); 456 params[6] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 457 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_4_AND_5)); 458 v = t4vf_query_params(adapter, 7, params, vals); 459 if (v) 460 return v; 461 sge_params->sge_control = vals[0]; 462 sge_params->sge_host_page_size = vals[1]; 463 sge_params->sge_fl_buffer_size[0] = vals[2]; 464 sge_params->sge_fl_buffer_size[1] = vals[3]; 465 sge_params->sge_timer_value_0_and_1 = vals[4]; 466 sge_params->sge_timer_value_2_and_3 = vals[5]; 467 sge_params->sge_timer_value_4_and_5 = vals[6]; 468 469 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | 470 FW_PARAMS_PARAM_XYZ(SGE_INGRESS_RX_THRESHOLD)); 471 v = t4vf_query_params(adapter, 1, params, vals); 472 if (v) 473 return v; 474 sge_params->sge_ingress_rx_threshold = vals[0]; 475 476 return 0; 477 } 478 479 /** 480 * t4vf_get_vpd_params - retrieve device VPD paremeters 481 * @adapter: the adapter 482 * 483 * Retrives various device Vital Product Data parameters. The parameters 484 * are stored in @adapter->params.vpd. 485 */ 486 int t4vf_get_vpd_params(struct adapter *adapter) 487 { 488 struct vpd_params *vpd_params = &adapter->params.vpd; 489 u32 params[7], vals[7]; 490 int v; 491 492 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 493 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK)); 494 v = t4vf_query_params(adapter, 1, params, vals); 495 if (v) 496 return v; 497 vpd_params->cclk = vals[0]; 498 499 return 0; 500 } 501 502 /** 503 * t4vf_get_dev_params - retrieve device paremeters 504 * @adapter: the adapter 505 * 506 * Retrives various device parameters. The parameters are stored in 507 * @adapter->params.dev. 508 */ 509 int t4vf_get_dev_params(struct adapter *adapter) 510 { 511 struct dev_params *dev_params = &adapter->params.dev; 512 u32 params[7], vals[7]; 513 int v; 514 515 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 516 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV)); 517 params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 518 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV)); 519 v = t4vf_query_params(adapter, 2, params, vals); 520 if (v) 521 return v; 522 dev_params->fwrev = vals[0]; 523 dev_params->tprev = vals[1]; 524 525 return 0; 526 } 527 528 /** 529 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration 530 * @adapter: the adapter 531 * 532 * Retrieves global RSS mode and parameters with which we have to live 533 * and stores them in the @adapter's RSS parameters. 534 */ 535 int t4vf_get_rss_glb_config(struct adapter *adapter) 536 { 537 struct rss_params *rss = &adapter->params.rss; 538 struct fw_rss_glb_config_cmd cmd, rpl; 539 int v; 540 541 /* 542 * Execute an RSS Global Configuration read command to retrieve 543 * our RSS configuration. 544 */ 545 memset(&cmd, 0, sizeof(cmd)); 546 cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) | 547 FW_CMD_REQUEST | 548 FW_CMD_READ); 549 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 550 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 551 if (v) 552 return v; 553 554 /* 555 * Transate the big-endian RSS Global Configuration into our 556 * cpu-endian format based on the RSS mode. We also do first level 557 * filtering at this point to weed out modes which don't support 558 * VF Drivers ... 559 */ 560 rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_GET( 561 be32_to_cpu(rpl.u.manual.mode_pkd)); 562 switch (rss->mode) { 563 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 564 u32 word = be32_to_cpu( 565 rpl.u.basicvirtual.synmapen_to_hashtoeplitz); 566 567 rss->u.basicvirtual.synmapen = 568 ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0); 569 rss->u.basicvirtual.syn4tupenipv6 = 570 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0); 571 rss->u.basicvirtual.syn2tupenipv6 = 572 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0); 573 rss->u.basicvirtual.syn4tupenipv4 = 574 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0); 575 rss->u.basicvirtual.syn2tupenipv4 = 576 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0); 577 578 rss->u.basicvirtual.ofdmapen = 579 ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0); 580 581 rss->u.basicvirtual.tnlmapen = 582 ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0); 583 rss->u.basicvirtual.tnlalllookup = 584 ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0); 585 586 rss->u.basicvirtual.hashtoeplitz = 587 ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0); 588 589 /* we need at least Tunnel Map Enable to be set */ 590 if (!rss->u.basicvirtual.tnlmapen) 591 return -EINVAL; 592 break; 593 } 594 595 default: 596 /* all unknown/unsupported RSS modes result in an error */ 597 return -EINVAL; 598 } 599 600 return 0; 601 } 602 603 /** 604 * t4vf_get_vfres - retrieve VF resource limits 605 * @adapter: the adapter 606 * 607 * Retrieves configured resource limits and capabilities for a virtual 608 * function. The results are stored in @adapter->vfres. 609 */ 610 int t4vf_get_vfres(struct adapter *adapter) 611 { 612 struct vf_resources *vfres = &adapter->params.vfres; 613 struct fw_pfvf_cmd cmd, rpl; 614 int v; 615 u32 word; 616 617 /* 618 * Execute PFVF Read command to get VF resource limits; bail out early 619 * with error on command failure. 620 */ 621 memset(&cmd, 0, sizeof(cmd)); 622 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PFVF_CMD) | 623 FW_CMD_REQUEST | 624 FW_CMD_READ); 625 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 626 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 627 if (v) 628 return v; 629 630 /* 631 * Extract VF resource limits and return success. 632 */ 633 word = be32_to_cpu(rpl.niqflint_niq); 634 vfres->niqflint = FW_PFVF_CMD_NIQFLINT_GET(word); 635 vfres->niq = FW_PFVF_CMD_NIQ_GET(word); 636 637 word = be32_to_cpu(rpl.type_to_neq); 638 vfres->neq = FW_PFVF_CMD_NEQ_GET(word); 639 vfres->pmask = FW_PFVF_CMD_PMASK_GET(word); 640 641 word = be32_to_cpu(rpl.tc_to_nexactf); 642 vfres->tc = FW_PFVF_CMD_TC_GET(word); 643 vfres->nvi = FW_PFVF_CMD_NVI_GET(word); 644 vfres->nexactf = FW_PFVF_CMD_NEXACTF_GET(word); 645 646 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 647 vfres->r_caps = FW_PFVF_CMD_R_CAPS_GET(word); 648 vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_GET(word); 649 vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_GET(word); 650 651 return 0; 652 } 653 654 /** 655 * t4vf_read_rss_vi_config - read a VI's RSS configuration 656 * @adapter: the adapter 657 * @viid: Virtual Interface ID 658 * @config: pointer to host-native VI RSS Configuration buffer 659 * 660 * Reads the Virtual Interface's RSS configuration information and 661 * translates it into CPU-native format. 662 */ 663 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid, 664 union rss_vi_config *config) 665 { 666 struct fw_rss_vi_config_cmd cmd, rpl; 667 int v; 668 669 memset(&cmd, 0, sizeof(cmd)); 670 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | 671 FW_CMD_REQUEST | 672 FW_CMD_READ | 673 FW_RSS_VI_CONFIG_CMD_VIID(viid)); 674 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 675 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 676 if (v) 677 return v; 678 679 switch (adapter->params.rss.mode) { 680 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 681 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen); 682 683 config->basicvirtual.ip6fourtupen = 684 ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) != 0); 685 config->basicvirtual.ip6twotupen = 686 ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) != 0); 687 config->basicvirtual.ip4fourtupen = 688 ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) != 0); 689 config->basicvirtual.ip4twotupen = 690 ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) != 0); 691 config->basicvirtual.udpen = 692 ((word & FW_RSS_VI_CONFIG_CMD_UDPEN) != 0); 693 config->basicvirtual.defaultq = 694 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_GET(word); 695 break; 696 } 697 698 default: 699 return -EINVAL; 700 } 701 702 return 0; 703 } 704 705 /** 706 * t4vf_write_rss_vi_config - write a VI's RSS configuration 707 * @adapter: the adapter 708 * @viid: Virtual Interface ID 709 * @config: pointer to host-native VI RSS Configuration buffer 710 * 711 * Write the Virtual Interface's RSS configuration information 712 * (translating it into firmware-native format before writing). 713 */ 714 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid, 715 union rss_vi_config *config) 716 { 717 struct fw_rss_vi_config_cmd cmd, rpl; 718 719 memset(&cmd, 0, sizeof(cmd)); 720 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | 721 FW_CMD_REQUEST | 722 FW_CMD_WRITE | 723 FW_RSS_VI_CONFIG_CMD_VIID(viid)); 724 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 725 switch (adapter->params.rss.mode) { 726 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 727 u32 word = 0; 728 729 if (config->basicvirtual.ip6fourtupen) 730 word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 731 if (config->basicvirtual.ip6twotupen) 732 word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 733 if (config->basicvirtual.ip4fourtupen) 734 word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 735 if (config->basicvirtual.ip4twotupen) 736 word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 737 if (config->basicvirtual.udpen) 738 word |= FW_RSS_VI_CONFIG_CMD_UDPEN; 739 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ( 740 config->basicvirtual.defaultq); 741 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word); 742 break; 743 } 744 745 default: 746 return -EINVAL; 747 } 748 749 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 750 } 751 752 /** 753 * t4vf_config_rss_range - configure a portion of the RSS mapping table 754 * @adapter: the adapter 755 * @viid: Virtual Interface of RSS Table Slice 756 * @start: starting entry in the table to write 757 * @n: how many table entries to write 758 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table 759 * @nrspq: number of values in @rspq 760 * 761 * Programs the selected part of the VI's RSS mapping table with the 762 * provided values. If @nrspq < @n the supplied values are used repeatedly 763 * until the full table range is populated. 764 * 765 * The caller must ensure the values in @rspq are in the range 0..1023. 766 */ 767 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid, 768 int start, int n, const u16 *rspq, int nrspq) 769 { 770 const u16 *rsp = rspq; 771 const u16 *rsp_end = rspq+nrspq; 772 struct fw_rss_ind_tbl_cmd cmd; 773 774 /* 775 * Initialize firmware command template to write the RSS table. 776 */ 777 memset(&cmd, 0, sizeof(cmd)); 778 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_IND_TBL_CMD) | 779 FW_CMD_REQUEST | 780 FW_CMD_WRITE | 781 FW_RSS_IND_TBL_CMD_VIID(viid)); 782 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 783 784 /* 785 * Each firmware RSS command can accommodate up to 32 RSS Ingress 786 * Queue Identifiers. These Ingress Queue IDs are packed three to 787 * a 32-bit word as 10-bit values with the upper remaining 2 bits 788 * reserved. 789 */ 790 while (n > 0) { 791 __be32 *qp = &cmd.iq0_to_iq2; 792 int nq = min(n, 32); 793 int ret; 794 795 /* 796 * Set up the firmware RSS command header to send the next 797 * "nq" Ingress Queue IDs to the firmware. 798 */ 799 cmd.niqid = cpu_to_be16(nq); 800 cmd.startidx = cpu_to_be16(start); 801 802 /* 803 * "nq" more done for the start of the next loop. 804 */ 805 start += nq; 806 n -= nq; 807 808 /* 809 * While there are still Ingress Queue IDs to stuff into the 810 * current firmware RSS command, retrieve them from the 811 * Ingress Queue ID array and insert them into the command. 812 */ 813 while (nq > 0) { 814 /* 815 * Grab up to the next 3 Ingress Queue IDs (wrapping 816 * around the Ingress Queue ID array if necessary) and 817 * insert them into the firmware RSS command at the 818 * current 3-tuple position within the commad. 819 */ 820 u16 qbuf[3]; 821 u16 *qbp = qbuf; 822 int nqbuf = min(3, nq); 823 824 nq -= nqbuf; 825 qbuf[0] = qbuf[1] = qbuf[2] = 0; 826 while (nqbuf) { 827 nqbuf--; 828 *qbp++ = *rsp++; 829 if (rsp >= rsp_end) 830 rsp = rspq; 831 } 832 *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) | 833 FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) | 834 FW_RSS_IND_TBL_CMD_IQ2(qbuf[2])); 835 } 836 837 /* 838 * Send this portion of the RRS table update to the firmware; 839 * bail out on any errors. 840 */ 841 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 842 if (ret) 843 return ret; 844 } 845 return 0; 846 } 847 848 /** 849 * t4vf_alloc_vi - allocate a virtual interface on a port 850 * @adapter: the adapter 851 * @port_id: physical port associated with the VI 852 * 853 * Allocate a new Virtual Interface and bind it to the indicated 854 * physical port. Return the new Virtual Interface Identifier on 855 * success, or a [negative] error number on failure. 856 */ 857 int t4vf_alloc_vi(struct adapter *adapter, int port_id) 858 { 859 struct fw_vi_cmd cmd, rpl; 860 int v; 861 862 /* 863 * Execute a VI command to allocate Virtual Interface and return its 864 * VIID. 865 */ 866 memset(&cmd, 0, sizeof(cmd)); 867 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) | 868 FW_CMD_REQUEST | 869 FW_CMD_WRITE | 870 FW_CMD_EXEC); 871 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | 872 FW_VI_CMD_ALLOC); 873 cmd.portid_pkd = FW_VI_CMD_PORTID(port_id); 874 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 875 if (v) 876 return v; 877 878 return FW_VI_CMD_VIID_GET(be16_to_cpu(rpl.type_viid)); 879 } 880 881 /** 882 * t4vf_free_vi -- free a virtual interface 883 * @adapter: the adapter 884 * @viid: the virtual interface identifier 885 * 886 * Free a previously allocated Virtual Interface. Return an error on 887 * failure. 888 */ 889 int t4vf_free_vi(struct adapter *adapter, int viid) 890 { 891 struct fw_vi_cmd cmd; 892 893 /* 894 * Execute a VI command to free the Virtual Interface. 895 */ 896 memset(&cmd, 0, sizeof(cmd)); 897 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) | 898 FW_CMD_REQUEST | 899 FW_CMD_EXEC); 900 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | 901 FW_VI_CMD_FREE); 902 cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(viid)); 903 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 904 } 905 906 /** 907 * t4vf_enable_vi - enable/disable a virtual interface 908 * @adapter: the adapter 909 * @viid: the Virtual Interface ID 910 * @rx_en: 1=enable Rx, 0=disable Rx 911 * @tx_en: 1=enable Tx, 0=disable Tx 912 * 913 * Enables/disables a virtual interface. 914 */ 915 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid, 916 bool rx_en, bool tx_en) 917 { 918 struct fw_vi_enable_cmd cmd; 919 920 memset(&cmd, 0, sizeof(cmd)); 921 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) | 922 FW_CMD_REQUEST | 923 FW_CMD_EXEC | 924 FW_VI_ENABLE_CMD_VIID(viid)); 925 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN(rx_en) | 926 FW_VI_ENABLE_CMD_EEN(tx_en) | 927 FW_LEN16(cmd)); 928 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 929 } 930 931 /** 932 * t4vf_identify_port - identify a VI's port by blinking its LED 933 * @adapter: the adapter 934 * @viid: the Virtual Interface ID 935 * @nblinks: how many times to blink LED at 2.5 Hz 936 * 937 * Identifies a VI's port by blinking its LED. 938 */ 939 int t4vf_identify_port(struct adapter *adapter, unsigned int viid, 940 unsigned int nblinks) 941 { 942 struct fw_vi_enable_cmd cmd; 943 944 memset(&cmd, 0, sizeof(cmd)); 945 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) | 946 FW_CMD_REQUEST | 947 FW_CMD_EXEC | 948 FW_VI_ENABLE_CMD_VIID(viid)); 949 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED | 950 FW_LEN16(cmd)); 951 cmd.blinkdur = cpu_to_be16(nblinks); 952 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 953 } 954 955 /** 956 * t4vf_set_rxmode - set Rx properties of a virtual interface 957 * @adapter: the adapter 958 * @viid: the VI id 959 * @mtu: the new MTU or -1 for no change 960 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 961 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 962 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 963 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it, 964 * -1 no change 965 * 966 * Sets Rx properties of a virtual interface. 967 */ 968 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid, 969 int mtu, int promisc, int all_multi, int bcast, int vlanex, 970 bool sleep_ok) 971 { 972 struct fw_vi_rxmode_cmd cmd; 973 974 /* convert to FW values */ 975 if (mtu < 0) 976 mtu = FW_VI_RXMODE_CMD_MTU_MASK; 977 if (promisc < 0) 978 promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK; 979 if (all_multi < 0) 980 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK; 981 if (bcast < 0) 982 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK; 983 if (vlanex < 0) 984 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK; 985 986 memset(&cmd, 0, sizeof(cmd)); 987 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_RXMODE_CMD) | 988 FW_CMD_REQUEST | 989 FW_CMD_WRITE | 990 FW_VI_RXMODE_CMD_VIID(viid)); 991 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 992 cmd.mtu_to_vlanexen = 993 cpu_to_be32(FW_VI_RXMODE_CMD_MTU(mtu) | 994 FW_VI_RXMODE_CMD_PROMISCEN(promisc) | 995 FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) | 996 FW_VI_RXMODE_CMD_BROADCASTEN(bcast) | 997 FW_VI_RXMODE_CMD_VLANEXEN(vlanex)); 998 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); 999 } 1000 1001 /** 1002 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses 1003 * @adapter: the adapter 1004 * @viid: the Virtual Interface Identifier 1005 * @free: if true any existing filters for this VI id are first removed 1006 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 1007 * @addr: the MAC address(es) 1008 * @idx: where to store the index of each allocated filter 1009 * @hash: pointer to hash address filter bitmap 1010 * @sleep_ok: call is allowed to sleep 1011 * 1012 * Allocates an exact-match filter for each of the supplied addresses and 1013 * sets it to the corresponding address. If @idx is not %NULL it should 1014 * have at least @naddr entries, each of which will be set to the index of 1015 * the filter allocated for the corresponding MAC address. If a filter 1016 * could not be allocated for an address its index is set to 0xffff. 1017 * If @hash is not %NULL addresses that fail to allocate an exact filter 1018 * are hashed and update the hash filter bitmap pointed at by @hash. 1019 * 1020 * Returns a negative error number or the number of filters allocated. 1021 */ 1022 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free, 1023 unsigned int naddr, const u8 **addr, u16 *idx, 1024 u64 *hash, bool sleep_ok) 1025 { 1026 int offset, ret = 0; 1027 unsigned nfilters = 0; 1028 unsigned int rem = naddr; 1029 struct fw_vi_mac_cmd cmd, rpl; 1030 unsigned int max_naddr = is_t4(adapter->params.chip) ? 1031 NUM_MPS_CLS_SRAM_L_INSTANCES : 1032 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 1033 1034 if (naddr > max_naddr) 1035 return -EINVAL; 1036 1037 for (offset = 0; offset < naddr; /**/) { 1038 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) 1039 ? rem 1040 : ARRAY_SIZE(cmd.u.exact)); 1041 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1042 u.exact[fw_naddr]), 16); 1043 struct fw_vi_mac_exact *p; 1044 int i; 1045 1046 memset(&cmd, 0, sizeof(cmd)); 1047 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) | 1048 FW_CMD_REQUEST | 1049 FW_CMD_WRITE | 1050 (free ? FW_CMD_EXEC : 0) | 1051 FW_VI_MAC_CMD_VIID(viid)); 1052 cmd.freemacs_to_len16 = 1053 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS(free) | 1054 FW_CMD_LEN16(len16)); 1055 1056 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) { 1057 p->valid_to_idx = cpu_to_be16( 1058 FW_VI_MAC_CMD_VALID | 1059 FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC)); 1060 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 1061 } 1062 1063 1064 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl, 1065 sleep_ok); 1066 if (ret && ret != -ENOMEM) 1067 break; 1068 1069 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) { 1070 u16 index = FW_VI_MAC_CMD_IDX_GET( 1071 be16_to_cpu(p->valid_to_idx)); 1072 1073 if (idx) 1074 idx[offset+i] = 1075 (index >= max_naddr 1076 ? 0xffff 1077 : index); 1078 if (index < max_naddr) 1079 nfilters++; 1080 else if (hash) 1081 *hash |= (1ULL << hash_mac_addr(addr[offset+i])); 1082 } 1083 1084 free = false; 1085 offset += fw_naddr; 1086 rem -= fw_naddr; 1087 } 1088 1089 /* 1090 * If there were no errors or we merely ran out of room in our MAC 1091 * address arena, return the number of filters actually written. 1092 */ 1093 if (ret == 0 || ret == -ENOMEM) 1094 ret = nfilters; 1095 return ret; 1096 } 1097 1098 /** 1099 * t4vf_change_mac - modifies the exact-match filter for a MAC address 1100 * @adapter: the adapter 1101 * @viid: the Virtual Interface ID 1102 * @idx: index of existing filter for old value of MAC address, or -1 1103 * @addr: the new MAC address value 1104 * @persist: if idx < 0, the new MAC allocation should be persistent 1105 * 1106 * Modifies an exact-match filter and sets it to the new MAC address. 1107 * Note that in general it is not possible to modify the value of a given 1108 * filter so the generic way to modify an address filter is to free the 1109 * one being used by the old address value and allocate a new filter for 1110 * the new address value. @idx can be -1 if the address is a new 1111 * addition. 1112 * 1113 * Returns a negative error number or the index of the filter with the new 1114 * MAC value. 1115 */ 1116 int t4vf_change_mac(struct adapter *adapter, unsigned int viid, 1117 int idx, const u8 *addr, bool persist) 1118 { 1119 int ret; 1120 struct fw_vi_mac_cmd cmd, rpl; 1121 struct fw_vi_mac_exact *p = &cmd.u.exact[0]; 1122 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1123 u.exact[1]), 16); 1124 unsigned int max_naddr = is_t4(adapter->params.chip) ? 1125 NUM_MPS_CLS_SRAM_L_INSTANCES : 1126 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 1127 1128 /* 1129 * If this is a new allocation, determine whether it should be 1130 * persistent (across a "freemacs" operation) or not. 1131 */ 1132 if (idx < 0) 1133 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 1134 1135 memset(&cmd, 0, sizeof(cmd)); 1136 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) | 1137 FW_CMD_REQUEST | 1138 FW_CMD_WRITE | 1139 FW_VI_MAC_CMD_VIID(viid)); 1140 cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16(len16)); 1141 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID | 1142 FW_VI_MAC_CMD_IDX(idx)); 1143 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 1144 1145 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 1146 if (ret == 0) { 1147 p = &rpl.u.exact[0]; 1148 ret = FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p->valid_to_idx)); 1149 if (ret >= max_naddr) 1150 ret = -ENOMEM; 1151 } 1152 return ret; 1153 } 1154 1155 /** 1156 * t4vf_set_addr_hash - program the MAC inexact-match hash filter 1157 * @adapter: the adapter 1158 * @viid: the Virtual Interface Identifier 1159 * @ucast: whether the hash filter should also match unicast addresses 1160 * @vec: the value to be written to the hash filter 1161 * @sleep_ok: call is allowed to sleep 1162 * 1163 * Sets the 64-bit inexact-match hash filter for a virtual interface. 1164 */ 1165 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid, 1166 bool ucast, u64 vec, bool sleep_ok) 1167 { 1168 struct fw_vi_mac_cmd cmd; 1169 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 1170 u.exact[0]), 16); 1171 1172 memset(&cmd, 0, sizeof(cmd)); 1173 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) | 1174 FW_CMD_REQUEST | 1175 FW_CMD_WRITE | 1176 FW_VI_ENABLE_CMD_VIID(viid)); 1177 cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN | 1178 FW_VI_MAC_CMD_HASHUNIEN(ucast) | 1179 FW_CMD_LEN16(len16)); 1180 cmd.u.hash.hashvec = cpu_to_be64(vec); 1181 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); 1182 } 1183 1184 /** 1185 * t4vf_get_port_stats - collect "port" statistics 1186 * @adapter: the adapter 1187 * @pidx: the port index 1188 * @s: the stats structure to fill 1189 * 1190 * Collect statistics for the "port"'s Virtual Interface. 1191 */ 1192 int t4vf_get_port_stats(struct adapter *adapter, int pidx, 1193 struct t4vf_port_stats *s) 1194 { 1195 struct port_info *pi = adap2pinfo(adapter, pidx); 1196 struct fw_vi_stats_vf fwstats; 1197 unsigned int rem = VI_VF_NUM_STATS; 1198 __be64 *fwsp = (__be64 *)&fwstats; 1199 1200 /* 1201 * Grab the Virtual Interface statistics a chunk at a time via mailbox 1202 * commands. We could use a Work Request and get all of them at once 1203 * but that's an asynchronous interface which is awkward to use. 1204 */ 1205 while (rem) { 1206 unsigned int ix = VI_VF_NUM_STATS - rem; 1207 unsigned int nstats = min(6U, rem); 1208 struct fw_vi_stats_cmd cmd, rpl; 1209 size_t len = (offsetof(struct fw_vi_stats_cmd, u) + 1210 sizeof(struct fw_vi_stats_ctl)); 1211 size_t len16 = DIV_ROUND_UP(len, 16); 1212 int ret; 1213 1214 memset(&cmd, 0, sizeof(cmd)); 1215 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_STATS_CMD) | 1216 FW_VI_STATS_CMD_VIID(pi->viid) | 1217 FW_CMD_REQUEST | 1218 FW_CMD_READ); 1219 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16)); 1220 cmd.u.ctl.nstats_ix = 1221 cpu_to_be16(FW_VI_STATS_CMD_IX(ix) | 1222 FW_VI_STATS_CMD_NSTATS(nstats)); 1223 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl); 1224 if (ret) 1225 return ret; 1226 1227 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats); 1228 1229 rem -= nstats; 1230 fwsp += nstats; 1231 } 1232 1233 /* 1234 * Translate firmware statistics into host native statistics. 1235 */ 1236 s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes); 1237 s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames); 1238 s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes); 1239 s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames); 1240 s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes); 1241 s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames); 1242 s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames); 1243 s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes); 1244 s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames); 1245 1246 s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes); 1247 s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames); 1248 s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes); 1249 s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames); 1250 s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes); 1251 s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames); 1252 1253 s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames); 1254 1255 return 0; 1256 } 1257 1258 /** 1259 * t4vf_iq_free - free an ingress queue and its free lists 1260 * @adapter: the adapter 1261 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 1262 * @iqid: ingress queue ID 1263 * @fl0id: FL0 queue ID or 0xffff if no attached FL0 1264 * @fl1id: FL1 queue ID or 0xffff if no attached FL1 1265 * 1266 * Frees an ingress queue and its associated free lists, if any. 1267 */ 1268 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype, 1269 unsigned int iqid, unsigned int fl0id, unsigned int fl1id) 1270 { 1271 struct fw_iq_cmd cmd; 1272 1273 memset(&cmd, 0, sizeof(cmd)); 1274 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) | 1275 FW_CMD_REQUEST | 1276 FW_CMD_EXEC); 1277 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE | 1278 FW_LEN16(cmd)); 1279 cmd.type_to_iqandstindex = 1280 cpu_to_be32(FW_IQ_CMD_TYPE(iqtype)); 1281 1282 cmd.iqid = cpu_to_be16(iqid); 1283 cmd.fl0id = cpu_to_be16(fl0id); 1284 cmd.fl1id = cpu_to_be16(fl1id); 1285 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1286 } 1287 1288 /** 1289 * t4vf_eth_eq_free - free an Ethernet egress queue 1290 * @adapter: the adapter 1291 * @eqid: egress queue ID 1292 * 1293 * Frees an Ethernet egress queue. 1294 */ 1295 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid) 1296 { 1297 struct fw_eq_eth_cmd cmd; 1298 1299 memset(&cmd, 0, sizeof(cmd)); 1300 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) | 1301 FW_CMD_REQUEST | 1302 FW_CMD_EXEC); 1303 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE | 1304 FW_LEN16(cmd)); 1305 cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID(eqid)); 1306 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 1307 } 1308 1309 /** 1310 * t4vf_handle_fw_rpl - process a firmware reply message 1311 * @adapter: the adapter 1312 * @rpl: start of the firmware message 1313 * 1314 * Processes a firmware message, such as link state change messages. 1315 */ 1316 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl) 1317 { 1318 const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl; 1319 u8 opcode = FW_CMD_OP_GET(be32_to_cpu(cmd_hdr->hi)); 1320 1321 switch (opcode) { 1322 case FW_PORT_CMD: { 1323 /* 1324 * Link/module state change message. 1325 */ 1326 const struct fw_port_cmd *port_cmd = 1327 (const struct fw_port_cmd *)rpl; 1328 u32 word; 1329 int action, port_id, link_ok, speed, fc, pidx; 1330 1331 /* 1332 * Extract various fields from port status change message. 1333 */ 1334 action = FW_PORT_CMD_ACTION_GET( 1335 be32_to_cpu(port_cmd->action_to_len16)); 1336 if (action != FW_PORT_ACTION_GET_PORT_INFO) { 1337 dev_err(adapter->pdev_dev, 1338 "Unknown firmware PORT reply action %x\n", 1339 action); 1340 break; 1341 } 1342 1343 port_id = FW_PORT_CMD_PORTID_GET( 1344 be32_to_cpu(port_cmd->op_to_portid)); 1345 1346 word = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype); 1347 link_ok = (word & FW_PORT_CMD_LSTATUS) != 0; 1348 speed = 0; 1349 fc = 0; 1350 if (word & FW_PORT_CMD_RXPAUSE) 1351 fc |= PAUSE_RX; 1352 if (word & FW_PORT_CMD_TXPAUSE) 1353 fc |= PAUSE_TX; 1354 if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M)) 1355 speed = SPEED_100; 1356 else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G)) 1357 speed = SPEED_1000; 1358 else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G)) 1359 speed = SPEED_10000; 1360 1361 /* 1362 * Scan all of our "ports" (Virtual Interfaces) looking for 1363 * those bound to the physical port which has changed. If 1364 * our recorded state doesn't match the current state, 1365 * signal that change to the OS code. 1366 */ 1367 for_each_port(adapter, pidx) { 1368 struct port_info *pi = adap2pinfo(adapter, pidx); 1369 struct link_config *lc; 1370 1371 if (pi->port_id != port_id) 1372 continue; 1373 1374 lc = &pi->link_cfg; 1375 if (link_ok != lc->link_ok || speed != lc->speed || 1376 fc != lc->fc) { 1377 /* something changed */ 1378 lc->link_ok = link_ok; 1379 lc->speed = speed; 1380 lc->fc = fc; 1381 t4vf_os_link_changed(adapter, pidx, link_ok); 1382 } 1383 } 1384 break; 1385 } 1386 1387 default: 1388 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n", 1389 opcode); 1390 } 1391 return 0; 1392 } 1393