1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/skbuff.h> 37 #include <linux/netdevice.h> 38 #include <linux/etherdevice.h> 39 #include <linux/if_vlan.h> 40 #include <linux/ip.h> 41 #include <net/ipv6.h> 42 #include <net/tcp.h> 43 #include <linux/dma-mapping.h> 44 #include <linux/prefetch.h> 45 46 #include "t4vf_common.h" 47 #include "t4vf_defs.h" 48 49 #include "../cxgb4/t4_regs.h" 50 #include "../cxgb4/t4_values.h" 51 #include "../cxgb4/t4fw_api.h" 52 #include "../cxgb4/t4_msg.h" 53 54 /* 55 * Constants ... 56 */ 57 enum { 58 /* 59 * Egress Queue sizes, producer and consumer indices are all in units 60 * of Egress Context Units bytes. Note that as far as the hardware is 61 * concerned, the free list is an Egress Queue (the host produces free 62 * buffers which the hardware consumes) and free list entries are 63 * 64-bit PCI DMA addresses. 64 */ 65 EQ_UNIT = SGE_EQ_IDXSIZE, 66 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 67 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 68 69 /* 70 * Max number of TX descriptors we clean up at a time. Should be 71 * modest as freeing skbs isn't cheap and it happens while holding 72 * locks. We just need to free packets faster than they arrive, we 73 * eventually catch up and keep the amortized cost reasonable. 74 */ 75 MAX_TX_RECLAIM = 16, 76 77 /* 78 * Max number of Rx buffers we replenish at a time. Again keep this 79 * modest, allocating buffers isn't cheap either. 80 */ 81 MAX_RX_REFILL = 16, 82 83 /* 84 * Period of the Rx queue check timer. This timer is infrequent as it 85 * has something to do only when the system experiences severe memory 86 * shortage. 87 */ 88 RX_QCHECK_PERIOD = (HZ / 2), 89 90 /* 91 * Period of the TX queue check timer and the maximum number of TX 92 * descriptors to be reclaimed by the TX timer. 93 */ 94 TX_QCHECK_PERIOD = (HZ / 2), 95 MAX_TIMER_TX_RECLAIM = 100, 96 97 /* 98 * Suspend an Ethernet TX queue with fewer available descriptors than 99 * this. We always want to have room for a maximum sized packet: 100 * inline immediate data + MAX_SKB_FRAGS. This is the same as 101 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS 102 * (see that function and its helpers for a description of the 103 * calculation). 104 */ 105 ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1, 106 ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 + 107 ((ETHTXQ_MAX_FRAGS-1) & 1) + 108 2), 109 ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) + 110 sizeof(struct cpl_tx_pkt_lso_core) + 111 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64), 112 ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR, 113 114 ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT), 115 116 /* 117 * Max TX descriptor space we allow for an Ethernet packet to be 118 * inlined into a WR. This is limited by the maximum value which 119 * we can specify for immediate data in the firmware Ethernet TX 120 * Work Request. 121 */ 122 MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_M, 123 124 /* 125 * Max size of a WR sent through a control TX queue. 126 */ 127 MAX_CTRL_WR_LEN = 256, 128 129 /* 130 * Maximum amount of data which we'll ever need to inline into a 131 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN). 132 */ 133 MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN 134 ? MAX_IMM_TX_PKT_LEN 135 : MAX_CTRL_WR_LEN), 136 137 /* 138 * For incoming packets less than RX_COPY_THRES, we copy the data into 139 * an skb rather than referencing the data. We allocate enough 140 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes 141 * of the data (header). 142 */ 143 RX_COPY_THRES = 256, 144 RX_PULL_LEN = 128, 145 146 /* 147 * Main body length for sk_buffs used for RX Ethernet packets with 148 * fragments. Should be >= RX_PULL_LEN but possibly bigger to give 149 * pskb_may_pull() some room. 150 */ 151 RX_SKB_LEN = 512, 152 }; 153 154 /* 155 * Software state per TX descriptor. 156 */ 157 struct tx_sw_desc { 158 struct sk_buff *skb; /* socket buffer of TX data source */ 159 struct ulptx_sgl *sgl; /* scatter/gather list in TX Queue */ 160 }; 161 162 /* 163 * Software state per RX Free List descriptor. We keep track of the allocated 164 * FL page, its size, and its PCI DMA address (if the page is mapped). The FL 165 * page size and its PCI DMA mapped state are stored in the low bits of the 166 * PCI DMA address as per below. 167 */ 168 struct rx_sw_desc { 169 struct page *page; /* Free List page buffer */ 170 dma_addr_t dma_addr; /* PCI DMA address (if mapped) */ 171 /* and flags (see below) */ 172 }; 173 174 /* 175 * The low bits of rx_sw_desc.dma_addr have special meaning. Note that the 176 * SGE also uses the low 4 bits to determine the size of the buffer. It uses 177 * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array. 178 * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4 179 * bits can only contain a 0 or a 1 to indicate which size buffer we're giving 180 * to the SGE. Thus, our software state of "is the buffer mapped for DMA" is 181 * maintained in an inverse sense so the hardware never sees that bit high. 182 */ 183 enum { 184 RX_LARGE_BUF = 1 << 0, /* buffer is SGE_FL_BUFFER_SIZE[1] */ 185 RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */ 186 }; 187 188 /** 189 * get_buf_addr - return DMA buffer address of software descriptor 190 * @sdesc: pointer to the software buffer descriptor 191 * 192 * Return the DMA buffer address of a software descriptor (stripping out 193 * our low-order flag bits). 194 */ 195 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc) 196 { 197 return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF); 198 } 199 200 /** 201 * is_buf_mapped - is buffer mapped for DMA? 202 * @sdesc: pointer to the software buffer descriptor 203 * 204 * Determine whether the buffer associated with a software descriptor in 205 * mapped for DMA or not. 206 */ 207 static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc) 208 { 209 return !(sdesc->dma_addr & RX_UNMAPPED_BUF); 210 } 211 212 /** 213 * need_skb_unmap - does the platform need unmapping of sk_buffs? 214 * 215 * Returns true if the platform needs sk_buff unmapping. The compiler 216 * optimizes away unnecessary code if this returns true. 217 */ 218 static inline int need_skb_unmap(void) 219 { 220 #ifdef CONFIG_NEED_DMA_MAP_STATE 221 return 1; 222 #else 223 return 0; 224 #endif 225 } 226 227 /** 228 * txq_avail - return the number of available slots in a TX queue 229 * @tq: the TX queue 230 * 231 * Returns the number of available descriptors in a TX queue. 232 */ 233 static inline unsigned int txq_avail(const struct sge_txq *tq) 234 { 235 return tq->size - 1 - tq->in_use; 236 } 237 238 /** 239 * fl_cap - return the capacity of a Free List 240 * @fl: the Free List 241 * 242 * Returns the capacity of a Free List. The capacity is less than the 243 * size because an Egress Queue Index Unit worth of descriptors needs to 244 * be left unpopulated, otherwise the Producer and Consumer indices PIDX 245 * and CIDX will match and the hardware will think the FL is empty. 246 */ 247 static inline unsigned int fl_cap(const struct sge_fl *fl) 248 { 249 return fl->size - FL_PER_EQ_UNIT; 250 } 251 252 /** 253 * fl_starving - return whether a Free List is starving. 254 * @adapter: pointer to the adapter 255 * @fl: the Free List 256 * 257 * Tests specified Free List to see whether the number of buffers 258 * available to the hardware has falled below our "starvation" 259 * threshold. 260 */ 261 static inline bool fl_starving(const struct adapter *adapter, 262 const struct sge_fl *fl) 263 { 264 const struct sge *s = &adapter->sge; 265 266 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 267 } 268 269 /** 270 * map_skb - map an skb for DMA to the device 271 * @dev: the egress net device 272 * @skb: the packet to map 273 * @addr: a pointer to the base of the DMA mapping array 274 * 275 * Map an skb for DMA to the device and return an array of DMA addresses. 276 */ 277 static int map_skb(struct device *dev, const struct sk_buff *skb, 278 dma_addr_t *addr) 279 { 280 const skb_frag_t *fp, *end; 281 const struct skb_shared_info *si; 282 283 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 284 if (dma_mapping_error(dev, *addr)) 285 goto out_err; 286 287 si = skb_shinfo(skb); 288 end = &si->frags[si->nr_frags]; 289 for (fp = si->frags; fp < end; fp++) { 290 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 291 DMA_TO_DEVICE); 292 if (dma_mapping_error(dev, *addr)) 293 goto unwind; 294 } 295 return 0; 296 297 unwind: 298 while (fp-- > si->frags) 299 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 300 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 301 302 out_err: 303 return -ENOMEM; 304 } 305 306 static void unmap_sgl(struct device *dev, const struct sk_buff *skb, 307 const struct ulptx_sgl *sgl, const struct sge_txq *tq) 308 { 309 const struct ulptx_sge_pair *p; 310 unsigned int nfrags = skb_shinfo(skb)->nr_frags; 311 312 if (likely(skb_headlen(skb))) 313 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), 314 be32_to_cpu(sgl->len0), DMA_TO_DEVICE); 315 else { 316 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), 317 be32_to_cpu(sgl->len0), DMA_TO_DEVICE); 318 nfrags--; 319 } 320 321 /* 322 * the complexity below is because of the possibility of a wrap-around 323 * in the middle of an SGL 324 */ 325 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { 326 if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) { 327 unmap: 328 dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 329 be32_to_cpu(p->len[0]), DMA_TO_DEVICE); 330 dma_unmap_page(dev, be64_to_cpu(p->addr[1]), 331 be32_to_cpu(p->len[1]), DMA_TO_DEVICE); 332 p++; 333 } else if ((u8 *)p == (u8 *)tq->stat) { 334 p = (const struct ulptx_sge_pair *)tq->desc; 335 goto unmap; 336 } else if ((u8 *)p + 8 == (u8 *)tq->stat) { 337 const __be64 *addr = (const __be64 *)tq->desc; 338 339 dma_unmap_page(dev, be64_to_cpu(addr[0]), 340 be32_to_cpu(p->len[0]), DMA_TO_DEVICE); 341 dma_unmap_page(dev, be64_to_cpu(addr[1]), 342 be32_to_cpu(p->len[1]), DMA_TO_DEVICE); 343 p = (const struct ulptx_sge_pair *)&addr[2]; 344 } else { 345 const __be64 *addr = (const __be64 *)tq->desc; 346 347 dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 348 be32_to_cpu(p->len[0]), DMA_TO_DEVICE); 349 dma_unmap_page(dev, be64_to_cpu(addr[0]), 350 be32_to_cpu(p->len[1]), DMA_TO_DEVICE); 351 p = (const struct ulptx_sge_pair *)&addr[1]; 352 } 353 } 354 if (nfrags) { 355 __be64 addr; 356 357 if ((u8 *)p == (u8 *)tq->stat) 358 p = (const struct ulptx_sge_pair *)tq->desc; 359 addr = ((u8 *)p + 16 <= (u8 *)tq->stat 360 ? p->addr[0] 361 : *(const __be64 *)tq->desc); 362 dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]), 363 DMA_TO_DEVICE); 364 } 365 } 366 367 /** 368 * free_tx_desc - reclaims TX descriptors and their buffers 369 * @adapter: the adapter 370 * @tq: the TX queue to reclaim descriptors from 371 * @n: the number of descriptors to reclaim 372 * @unmap: whether the buffers should be unmapped for DMA 373 * 374 * Reclaims TX descriptors from an SGE TX queue and frees the associated 375 * TX buffers. Called with the TX queue lock held. 376 */ 377 static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq, 378 unsigned int n, bool unmap) 379 { 380 struct tx_sw_desc *sdesc; 381 unsigned int cidx = tq->cidx; 382 struct device *dev = adapter->pdev_dev; 383 384 const int need_unmap = need_skb_unmap() && unmap; 385 386 sdesc = &tq->sdesc[cidx]; 387 while (n--) { 388 /* 389 * If we kept a reference to the original TX skb, we need to 390 * unmap it from PCI DMA space (if required) and free it. 391 */ 392 if (sdesc->skb) { 393 if (need_unmap) 394 unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq); 395 dev_consume_skb_any(sdesc->skb); 396 sdesc->skb = NULL; 397 } 398 399 sdesc++; 400 if (++cidx == tq->size) { 401 cidx = 0; 402 sdesc = tq->sdesc; 403 } 404 } 405 tq->cidx = cidx; 406 } 407 408 /* 409 * Return the number of reclaimable descriptors in a TX queue. 410 */ 411 static inline int reclaimable(const struct sge_txq *tq) 412 { 413 int hw_cidx = be16_to_cpu(tq->stat->cidx); 414 int reclaimable = hw_cidx - tq->cidx; 415 if (reclaimable < 0) 416 reclaimable += tq->size; 417 return reclaimable; 418 } 419 420 /** 421 * reclaim_completed_tx - reclaims completed TX descriptors 422 * @adapter: the adapter 423 * @tq: the TX queue to reclaim completed descriptors from 424 * @unmap: whether the buffers should be unmapped for DMA 425 * 426 * Reclaims TX descriptors that the SGE has indicated it has processed, 427 * and frees the associated buffers if possible. Called with the TX 428 * queue locked. 429 */ 430 static inline void reclaim_completed_tx(struct adapter *adapter, 431 struct sge_txq *tq, 432 bool unmap) 433 { 434 int avail = reclaimable(tq); 435 436 if (avail) { 437 /* 438 * Limit the amount of clean up work we do at a time to keep 439 * the TX lock hold time O(1). 440 */ 441 if (avail > MAX_TX_RECLAIM) 442 avail = MAX_TX_RECLAIM; 443 444 free_tx_desc(adapter, tq, avail, unmap); 445 tq->in_use -= avail; 446 } 447 } 448 449 /** 450 * get_buf_size - return the size of an RX Free List buffer. 451 * @adapter: pointer to the associated adapter 452 * @sdesc: pointer to the software buffer descriptor 453 */ 454 static inline int get_buf_size(const struct adapter *adapter, 455 const struct rx_sw_desc *sdesc) 456 { 457 const struct sge *s = &adapter->sge; 458 459 return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF) 460 ? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE); 461 } 462 463 /** 464 * free_rx_bufs - free RX buffers on an SGE Free List 465 * @adapter: the adapter 466 * @fl: the SGE Free List to free buffers from 467 * @n: how many buffers to free 468 * 469 * Release the next @n buffers on an SGE Free List RX queue. The 470 * buffers must be made inaccessible to hardware before calling this 471 * function. 472 */ 473 static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n) 474 { 475 while (n--) { 476 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx]; 477 478 if (is_buf_mapped(sdesc)) 479 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc), 480 get_buf_size(adapter, sdesc), 481 PCI_DMA_FROMDEVICE); 482 put_page(sdesc->page); 483 sdesc->page = NULL; 484 if (++fl->cidx == fl->size) 485 fl->cidx = 0; 486 fl->avail--; 487 } 488 } 489 490 /** 491 * unmap_rx_buf - unmap the current RX buffer on an SGE Free List 492 * @adapter: the adapter 493 * @fl: the SGE Free List 494 * 495 * Unmap the current buffer on an SGE Free List RX queue. The 496 * buffer must be made inaccessible to HW before calling this function. 497 * 498 * This is similar to @free_rx_bufs above but does not free the buffer. 499 * Do note that the FL still loses any further access to the buffer. 500 * This is used predominantly to "transfer ownership" of an FL buffer 501 * to another entity (typically an skb's fragment list). 502 */ 503 static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl) 504 { 505 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx]; 506 507 if (is_buf_mapped(sdesc)) 508 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc), 509 get_buf_size(adapter, sdesc), 510 PCI_DMA_FROMDEVICE); 511 sdesc->page = NULL; 512 if (++fl->cidx == fl->size) 513 fl->cidx = 0; 514 fl->avail--; 515 } 516 517 /** 518 * ring_fl_db - righ doorbell on free list 519 * @adapter: the adapter 520 * @fl: the Free List whose doorbell should be rung ... 521 * 522 * Tell the Scatter Gather Engine that there are new free list entries 523 * available. 524 */ 525 static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl) 526 { 527 u32 val; 528 529 /* The SGE keeps track of its Producer and Consumer Indices in terms 530 * of Egress Queue Units so we can only tell it about integral numbers 531 * of multiples of Free List Entries per Egress Queue Units ... 532 */ 533 if (fl->pend_cred >= FL_PER_EQ_UNIT) { 534 if (is_t4(adapter->params.chip)) 535 val = PIDX_V(fl->pend_cred / FL_PER_EQ_UNIT); 536 else 537 val = PIDX_T5_V(fl->pend_cred / FL_PER_EQ_UNIT) | 538 DBTYPE_F; 539 val |= DBPRIO_F; 540 541 /* Make sure all memory writes to the Free List queue are 542 * committed before we tell the hardware about them. 543 */ 544 wmb(); 545 546 /* If we don't have access to the new User Doorbell (T5+), use 547 * the old doorbell mechanism; otherwise use the new BAR2 548 * mechanism. 549 */ 550 if (unlikely(fl->bar2_addr == NULL)) { 551 t4_write_reg(adapter, 552 T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL, 553 QID_V(fl->cntxt_id) | val); 554 } else { 555 writel(val | QID_V(fl->bar2_qid), 556 fl->bar2_addr + SGE_UDB_KDOORBELL); 557 558 /* This Write memory Barrier will force the write to 559 * the User Doorbell area to be flushed. 560 */ 561 wmb(); 562 } 563 fl->pend_cred %= FL_PER_EQ_UNIT; 564 } 565 } 566 567 /** 568 * set_rx_sw_desc - initialize software RX buffer descriptor 569 * @sdesc: pointer to the softwore RX buffer descriptor 570 * @page: pointer to the page data structure backing the RX buffer 571 * @dma_addr: PCI DMA address (possibly with low-bit flags) 572 */ 573 static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page, 574 dma_addr_t dma_addr) 575 { 576 sdesc->page = page; 577 sdesc->dma_addr = dma_addr; 578 } 579 580 /* 581 * Support for poisoning RX buffers ... 582 */ 583 #define POISON_BUF_VAL -1 584 585 static inline void poison_buf(struct page *page, size_t sz) 586 { 587 #if POISON_BUF_VAL >= 0 588 memset(page_address(page), POISON_BUF_VAL, sz); 589 #endif 590 } 591 592 /** 593 * refill_fl - refill an SGE RX buffer ring 594 * @adapter: the adapter 595 * @fl: the Free List ring to refill 596 * @n: the number of new buffers to allocate 597 * @gfp: the gfp flags for the allocations 598 * 599 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 600 * allocated with the supplied gfp flags. The caller must assure that 601 * @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN 602 * EGRESS QUEUE UNITS_ indicates an empty Free List! Returns the number 603 * of buffers allocated. If afterwards the queue is found critically low, 604 * mark it as starving in the bitmap of starving FLs. 605 */ 606 static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl, 607 int n, gfp_t gfp) 608 { 609 struct sge *s = &adapter->sge; 610 struct page *page; 611 dma_addr_t dma_addr; 612 unsigned int cred = fl->avail; 613 __be64 *d = &fl->desc[fl->pidx]; 614 struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx]; 615 616 /* 617 * Sanity: ensure that the result of adding n Free List buffers 618 * won't result in wrapping the SGE's Producer Index around to 619 * it's Consumer Index thereby indicating an empty Free List ... 620 */ 621 BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT); 622 623 gfp |= __GFP_NOWARN; 624 625 /* 626 * If we support large pages, prefer large buffers and fail over to 627 * small pages if we can't allocate large pages to satisfy the refill. 628 * If we don't support large pages, drop directly into the small page 629 * allocation code. 630 */ 631 if (s->fl_pg_order == 0) 632 goto alloc_small_pages; 633 634 while (n) { 635 page = __dev_alloc_pages(gfp, s->fl_pg_order); 636 if (unlikely(!page)) { 637 /* 638 * We've failed inour attempt to allocate a "large 639 * page". Fail over to the "small page" allocation 640 * below. 641 */ 642 fl->large_alloc_failed++; 643 break; 644 } 645 poison_buf(page, PAGE_SIZE << s->fl_pg_order); 646 647 dma_addr = dma_map_page(adapter->pdev_dev, page, 0, 648 PAGE_SIZE << s->fl_pg_order, 649 PCI_DMA_FROMDEVICE); 650 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) { 651 /* 652 * We've run out of DMA mapping space. Free up the 653 * buffer and return with what we've managed to put 654 * into the free list. We don't want to fail over to 655 * the small page allocation below in this case 656 * because DMA mapping resources are typically 657 * critical resources once they become scarse. 658 */ 659 __free_pages(page, s->fl_pg_order); 660 goto out; 661 } 662 dma_addr |= RX_LARGE_BUF; 663 *d++ = cpu_to_be64(dma_addr); 664 665 set_rx_sw_desc(sdesc, page, dma_addr); 666 sdesc++; 667 668 fl->avail++; 669 if (++fl->pidx == fl->size) { 670 fl->pidx = 0; 671 sdesc = fl->sdesc; 672 d = fl->desc; 673 } 674 n--; 675 } 676 677 alloc_small_pages: 678 while (n--) { 679 page = __dev_alloc_page(gfp); 680 if (unlikely(!page)) { 681 fl->alloc_failed++; 682 break; 683 } 684 poison_buf(page, PAGE_SIZE); 685 686 dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE, 687 PCI_DMA_FROMDEVICE); 688 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) { 689 put_page(page); 690 break; 691 } 692 *d++ = cpu_to_be64(dma_addr); 693 694 set_rx_sw_desc(sdesc, page, dma_addr); 695 sdesc++; 696 697 fl->avail++; 698 if (++fl->pidx == fl->size) { 699 fl->pidx = 0; 700 sdesc = fl->sdesc; 701 d = fl->desc; 702 } 703 } 704 705 out: 706 /* 707 * Update our accounting state to incorporate the new Free List 708 * buffers, tell the hardware about them and return the number of 709 * buffers which we were able to allocate. 710 */ 711 cred = fl->avail - cred; 712 fl->pend_cred += cred; 713 ring_fl_db(adapter, fl); 714 715 if (unlikely(fl_starving(adapter, fl))) { 716 smp_wmb(); 717 set_bit(fl->cntxt_id, adapter->sge.starving_fl); 718 } 719 720 return cred; 721 } 722 723 /* 724 * Refill a Free List to its capacity or the Maximum Refill Increment, 725 * whichever is smaller ... 726 */ 727 static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl) 728 { 729 refill_fl(adapter, fl, 730 min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail), 731 GFP_ATOMIC); 732 } 733 734 /** 735 * alloc_ring - allocate resources for an SGE descriptor ring 736 * @dev: the PCI device's core device 737 * @nelem: the number of descriptors 738 * @hwsize: the size of each hardware descriptor 739 * @swsize: the size of each software descriptor 740 * @busaddrp: the physical PCI bus address of the allocated ring 741 * @swringp: return address pointer for software ring 742 * @stat_size: extra space in hardware ring for status information 743 * 744 * Allocates resources for an SGE descriptor ring, such as TX queues, 745 * free buffer lists, response queues, etc. Each SGE ring requires 746 * space for its hardware descriptors plus, optionally, space for software 747 * state associated with each hardware entry (the metadata). The function 748 * returns three values: the virtual address for the hardware ring (the 749 * return value of the function), the PCI bus address of the hardware 750 * ring (in *busaddrp), and the address of the software ring (in swringp). 751 * Both the hardware and software rings are returned zeroed out. 752 */ 753 static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize, 754 size_t swsize, dma_addr_t *busaddrp, void *swringp, 755 size_t stat_size) 756 { 757 /* 758 * Allocate the hardware ring and PCI DMA bus address space for said. 759 */ 760 size_t hwlen = nelem * hwsize + stat_size; 761 void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL); 762 763 if (!hwring) 764 return NULL; 765 766 /* 767 * If the caller wants a software ring, allocate it and return a 768 * pointer to it in *swringp. 769 */ 770 BUG_ON((swsize != 0) != (swringp != NULL)); 771 if (swsize) { 772 void *swring = kcalloc(nelem, swsize, GFP_KERNEL); 773 774 if (!swring) { 775 dma_free_coherent(dev, hwlen, hwring, *busaddrp); 776 return NULL; 777 } 778 *(void **)swringp = swring; 779 } 780 781 /* 782 * Zero out the hardware ring and return its address as our function 783 * value. 784 */ 785 memset(hwring, 0, hwlen); 786 return hwring; 787 } 788 789 /** 790 * sgl_len - calculates the size of an SGL of the given capacity 791 * @n: the number of SGL entries 792 * 793 * Calculates the number of flits (8-byte units) needed for a Direct 794 * Scatter/Gather List that can hold the given number of entries. 795 */ 796 static inline unsigned int sgl_len(unsigned int n) 797 { 798 /* 799 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 800 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 801 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 802 * repeated sequences of { Length[i], Length[i+1], Address[i], 803 * Address[i+1] } (this ensures that all addresses are on 64-bit 804 * boundaries). If N is even, then Length[N+1] should be set to 0 and 805 * Address[N+1] is omitted. 806 * 807 * The following calculation incorporates all of the above. It's 808 * somewhat hard to follow but, briefly: the "+2" accounts for the 809 * first two flits which include the DSGL header, Length0 and 810 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 811 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 812 * finally the "+((n-1)&1)" adds the one remaining flit needed if 813 * (n-1) is odd ... 814 */ 815 n--; 816 return (3 * n) / 2 + (n & 1) + 2; 817 } 818 819 /** 820 * flits_to_desc - returns the num of TX descriptors for the given flits 821 * @flits: the number of flits 822 * 823 * Returns the number of TX descriptors needed for the supplied number 824 * of flits. 825 */ 826 static inline unsigned int flits_to_desc(unsigned int flits) 827 { 828 BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64)); 829 return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT); 830 } 831 832 /** 833 * is_eth_imm - can an Ethernet packet be sent as immediate data? 834 * @skb: the packet 835 * 836 * Returns whether an Ethernet packet is small enough to fit completely as 837 * immediate data. 838 */ 839 static inline int is_eth_imm(const struct sk_buff *skb) 840 { 841 /* 842 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request 843 * which does not accommodate immediate data. We could dike out all 844 * of the support code for immediate data but that would tie our hands 845 * too much if we ever want to enhace the firmware. It would also 846 * create more differences between the PF and VF Drivers. 847 */ 848 return false; 849 } 850 851 /** 852 * calc_tx_flits - calculate the number of flits for a packet TX WR 853 * @skb: the packet 854 * 855 * Returns the number of flits needed for a TX Work Request for the 856 * given Ethernet packet, including the needed WR and CPL headers. 857 */ 858 static inline unsigned int calc_tx_flits(const struct sk_buff *skb) 859 { 860 unsigned int flits; 861 862 /* 863 * If the skb is small enough, we can pump it out as a work request 864 * with only immediate data. In that case we just have to have the 865 * TX Packet header plus the skb data in the Work Request. 866 */ 867 if (is_eth_imm(skb)) 868 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 869 sizeof(__be64)); 870 871 /* 872 * Otherwise, we're going to have to construct a Scatter gather list 873 * of the skb body and fragments. We also include the flits necessary 874 * for the TX Packet Work Request and CPL. We always have a firmware 875 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 876 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 877 * message or, if we're doing a Large Send Offload, an LSO CPL message 878 * with an embeded TX Packet Write CPL message. 879 */ 880 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 881 if (skb_shinfo(skb)->gso_size) 882 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 883 sizeof(struct cpl_tx_pkt_lso_core) + 884 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 885 else 886 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 887 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 888 return flits; 889 } 890 891 /** 892 * write_sgl - populate a Scatter/Gather List for a packet 893 * @skb: the packet 894 * @tq: the TX queue we are writing into 895 * @sgl: starting location for writing the SGL 896 * @end: points right after the end of the SGL 897 * @start: start offset into skb main-body data to include in the SGL 898 * @addr: the list of DMA bus addresses for the SGL elements 899 * 900 * Generates a Scatter/Gather List for the buffers that make up a packet. 901 * The caller must provide adequate space for the SGL that will be written. 902 * The SGL includes all of the packet's page fragments and the data in its 903 * main body except for the first @start bytes. @pos must be 16-byte 904 * aligned and within a TX descriptor with available space. @end points 905 * write after the end of the SGL but does not account for any potential 906 * wrap around, i.e., @end > @tq->stat. 907 */ 908 static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq, 909 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 910 const dma_addr_t *addr) 911 { 912 unsigned int i, len; 913 struct ulptx_sge_pair *to; 914 const struct skb_shared_info *si = skb_shinfo(skb); 915 unsigned int nfrags = si->nr_frags; 916 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 917 918 len = skb_headlen(skb) - start; 919 if (likely(len)) { 920 sgl->len0 = htonl(len); 921 sgl->addr0 = cpu_to_be64(addr[0] + start); 922 nfrags++; 923 } else { 924 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 925 sgl->addr0 = cpu_to_be64(addr[1]); 926 } 927 928 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 929 ULPTX_NSGE_V(nfrags)); 930 if (likely(--nfrags == 0)) 931 return; 932 /* 933 * Most of the complexity below deals with the possibility we hit the 934 * end of the queue in the middle of writing the SGL. For this case 935 * only we create the SGL in a temporary buffer and then copy it. 936 */ 937 to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge; 938 939 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 940 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 941 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 942 to->addr[0] = cpu_to_be64(addr[i]); 943 to->addr[1] = cpu_to_be64(addr[++i]); 944 } 945 if (nfrags) { 946 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 947 to->len[1] = cpu_to_be32(0); 948 to->addr[0] = cpu_to_be64(addr[i + 1]); 949 } 950 if (unlikely((u8 *)end > (u8 *)tq->stat)) { 951 unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1; 952 953 if (likely(part0)) 954 memcpy(sgl->sge, buf, part0); 955 part1 = (u8 *)end - (u8 *)tq->stat; 956 memcpy(tq->desc, (u8 *)buf + part0, part1); 957 end = (void *)tq->desc + part1; 958 } 959 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 960 *end = 0; 961 } 962 963 /** 964 * check_ring_tx_db - check and potentially ring a TX queue's doorbell 965 * @adapter: the adapter 966 * @tq: the TX queue 967 * @n: number of new descriptors to give to HW 968 * 969 * Ring the doorbel for a TX queue. 970 */ 971 static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq, 972 int n) 973 { 974 /* Make sure that all writes to the TX Descriptors are committed 975 * before we tell the hardware about them. 976 */ 977 wmb(); 978 979 /* If we don't have access to the new User Doorbell (T5+), use the old 980 * doorbell mechanism; otherwise use the new BAR2 mechanism. 981 */ 982 if (unlikely(tq->bar2_addr == NULL)) { 983 u32 val = PIDX_V(n); 984 985 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL, 986 QID_V(tq->cntxt_id) | val); 987 } else { 988 u32 val = PIDX_T5_V(n); 989 990 /* T4 and later chips share the same PIDX field offset within 991 * the doorbell, but T5 and later shrank the field in order to 992 * gain a bit for Doorbell Priority. The field was absurdly 993 * large in the first place (14 bits) so we just use the T5 994 * and later limits and warn if a Queue ID is too large. 995 */ 996 WARN_ON(val & DBPRIO_F); 997 998 /* If we're only writing a single Egress Unit and the BAR2 999 * Queue ID is 0, we can use the Write Combining Doorbell 1000 * Gather Buffer; otherwise we use the simple doorbell. 1001 */ 1002 if (n == 1 && tq->bar2_qid == 0) { 1003 unsigned int index = (tq->pidx 1004 ? (tq->pidx - 1) 1005 : (tq->size - 1)); 1006 __be64 *src = (__be64 *)&tq->desc[index]; 1007 __be64 __iomem *dst = (__be64 *)(tq->bar2_addr + 1008 SGE_UDB_WCDOORBELL); 1009 unsigned int count = EQ_UNIT / sizeof(__be64); 1010 1011 /* Copy the TX Descriptor in a tight loop in order to 1012 * try to get it to the adapter in a single Write 1013 * Combined transfer on the PCI-E Bus. If the Write 1014 * Combine fails (say because of an interrupt, etc.) 1015 * the hardware will simply take the last write as a 1016 * simple doorbell write with a PIDX Increment of 1 1017 * and will fetch the TX Descriptor from memory via 1018 * DMA. 1019 */ 1020 while (count) { 1021 writeq(*src, dst); 1022 src++; 1023 dst++; 1024 count--; 1025 } 1026 } else 1027 writel(val | QID_V(tq->bar2_qid), 1028 tq->bar2_addr + SGE_UDB_KDOORBELL); 1029 1030 /* This Write Memory Barrier will force the write to the User 1031 * Doorbell area to be flushed. This is needed to prevent 1032 * writes on different CPUs for the same queue from hitting 1033 * the adapter out of order. This is required when some Work 1034 * Requests take the Write Combine Gather Buffer path (user 1035 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 1036 * take the traditional path where we simply increment the 1037 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 1038 * hardware DMA read the actual Work Request. 1039 */ 1040 wmb(); 1041 } 1042 } 1043 1044 /** 1045 * inline_tx_skb - inline a packet's data into TX descriptors 1046 * @skb: the packet 1047 * @tq: the TX queue where the packet will be inlined 1048 * @pos: starting position in the TX queue to inline the packet 1049 * 1050 * Inline a packet's contents directly into TX descriptors, starting at 1051 * the given position within the TX DMA ring. 1052 * Most of the complexity of this operation is dealing with wrap arounds 1053 * in the middle of the packet we want to inline. 1054 */ 1055 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq, 1056 void *pos) 1057 { 1058 u64 *p; 1059 int left = (void *)tq->stat - pos; 1060 1061 if (likely(skb->len <= left)) { 1062 if (likely(!skb->data_len)) 1063 skb_copy_from_linear_data(skb, pos, skb->len); 1064 else 1065 skb_copy_bits(skb, 0, pos, skb->len); 1066 pos += skb->len; 1067 } else { 1068 skb_copy_bits(skb, 0, pos, left); 1069 skb_copy_bits(skb, left, tq->desc, skb->len - left); 1070 pos = (void *)tq->desc + (skb->len - left); 1071 } 1072 1073 /* 0-pad to multiple of 16 */ 1074 p = PTR_ALIGN(pos, 8); 1075 if ((uintptr_t)p & 8) 1076 *p = 0; 1077 } 1078 1079 /* 1080 * Figure out what HW csum a packet wants and return the appropriate control 1081 * bits. 1082 */ 1083 static u64 hwcsum(const struct sk_buff *skb) 1084 { 1085 int csum_type; 1086 const struct iphdr *iph = ip_hdr(skb); 1087 1088 if (iph->version == 4) { 1089 if (iph->protocol == IPPROTO_TCP) 1090 csum_type = TX_CSUM_TCPIP; 1091 else if (iph->protocol == IPPROTO_UDP) 1092 csum_type = TX_CSUM_UDPIP; 1093 else { 1094 nocsum: 1095 /* 1096 * unknown protocol, disable HW csum 1097 * and hope a bad packet is detected 1098 */ 1099 return TXPKT_L4CSUM_DIS; 1100 } 1101 } else { 1102 /* 1103 * this doesn't work with extension headers 1104 */ 1105 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; 1106 1107 if (ip6h->nexthdr == IPPROTO_TCP) 1108 csum_type = TX_CSUM_TCPIP6; 1109 else if (ip6h->nexthdr == IPPROTO_UDP) 1110 csum_type = TX_CSUM_UDPIP6; 1111 else 1112 goto nocsum; 1113 } 1114 1115 if (likely(csum_type >= TX_CSUM_TCPIP)) 1116 return TXPKT_CSUM_TYPE(csum_type) | 1117 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) | 1118 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN); 1119 else { 1120 int start = skb_transport_offset(skb); 1121 1122 return TXPKT_CSUM_TYPE(csum_type) | 1123 TXPKT_CSUM_START(start) | 1124 TXPKT_CSUM_LOC(start + skb->csum_offset); 1125 } 1126 } 1127 1128 /* 1129 * Stop an Ethernet TX queue and record that state change. 1130 */ 1131 static void txq_stop(struct sge_eth_txq *txq) 1132 { 1133 netif_tx_stop_queue(txq->txq); 1134 txq->q.stops++; 1135 } 1136 1137 /* 1138 * Advance our software state for a TX queue by adding n in use descriptors. 1139 */ 1140 static inline void txq_advance(struct sge_txq *tq, unsigned int n) 1141 { 1142 tq->in_use += n; 1143 tq->pidx += n; 1144 if (tq->pidx >= tq->size) 1145 tq->pidx -= tq->size; 1146 } 1147 1148 /** 1149 * t4vf_eth_xmit - add a packet to an Ethernet TX queue 1150 * @skb: the packet 1151 * @dev: the egress net device 1152 * 1153 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled. 1154 */ 1155 int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1156 { 1157 u32 wr_mid; 1158 u64 cntrl, *end; 1159 int qidx, credits; 1160 unsigned int flits, ndesc; 1161 struct adapter *adapter; 1162 struct sge_eth_txq *txq; 1163 const struct port_info *pi; 1164 struct fw_eth_tx_pkt_vm_wr *wr; 1165 struct cpl_tx_pkt_core *cpl; 1166 const struct skb_shared_info *ssi; 1167 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1168 const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) + 1169 sizeof(wr->ethmacsrc) + 1170 sizeof(wr->ethtype) + 1171 sizeof(wr->vlantci)); 1172 1173 /* 1174 * The chip minimum packet length is 10 octets but the firmware 1175 * command that we are using requires that we copy the Ethernet header 1176 * (including the VLAN tag) into the header so we reject anything 1177 * smaller than that ... 1178 */ 1179 if (unlikely(skb->len < fw_hdr_copy_len)) 1180 goto out_free; 1181 1182 /* 1183 * Figure out which TX Queue we're going to use. 1184 */ 1185 pi = netdev_priv(dev); 1186 adapter = pi->adapter; 1187 qidx = skb_get_queue_mapping(skb); 1188 BUG_ON(qidx >= pi->nqsets); 1189 txq = &adapter->sge.ethtxq[pi->first_qset + qidx]; 1190 1191 /* 1192 * Take this opportunity to reclaim any TX Descriptors whose DMA 1193 * transfers have completed. 1194 */ 1195 reclaim_completed_tx(adapter, &txq->q, true); 1196 1197 /* 1198 * Calculate the number of flits and TX Descriptors we're going to 1199 * need along with how many TX Descriptors will be left over after 1200 * we inject our Work Request. 1201 */ 1202 flits = calc_tx_flits(skb); 1203 ndesc = flits_to_desc(flits); 1204 credits = txq_avail(&txq->q) - ndesc; 1205 1206 if (unlikely(credits < 0)) { 1207 /* 1208 * Not enough room for this packet's Work Request. Stop the 1209 * TX Queue and return a "busy" condition. The queue will get 1210 * started later on when the firmware informs us that space 1211 * has opened up. 1212 */ 1213 txq_stop(txq); 1214 dev_err(adapter->pdev_dev, 1215 "%s: TX ring %u full while queue awake!\n", 1216 dev->name, qidx); 1217 return NETDEV_TX_BUSY; 1218 } 1219 1220 if (!is_eth_imm(skb) && 1221 unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) { 1222 /* 1223 * We need to map the skb into PCI DMA space (because it can't 1224 * be in-lined directly into the Work Request) and the mapping 1225 * operation failed. Record the error and drop the packet. 1226 */ 1227 txq->mapping_err++; 1228 goto out_free; 1229 } 1230 1231 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1232 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1233 /* 1234 * After we're done injecting the Work Request for this 1235 * packet, we'll be below our "stop threshold" so stop the TX 1236 * Queue now and schedule a request for an SGE Egress Queue 1237 * Update message. The queue will get started later on when 1238 * the firmware processes this Work Request and sends us an 1239 * Egress Queue Status Update message indicating that space 1240 * has opened up. 1241 */ 1242 txq_stop(txq); 1243 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1244 } 1245 1246 /* 1247 * Start filling in our Work Request. Note that we do _not_ handle 1248 * the WR Header wrapping around the TX Descriptor Ring. If our 1249 * maximum header size ever exceeds one TX Descriptor, we'll need to 1250 * do something else here. 1251 */ 1252 BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1); 1253 wr = (void *)&txq->q.desc[txq->q.pidx]; 1254 wr->equiq_to_len16 = cpu_to_be32(wr_mid); 1255 wr->r3[0] = cpu_to_be64(0); 1256 wr->r3[1] = cpu_to_be64(0); 1257 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len); 1258 end = (u64 *)wr + flits; 1259 1260 /* 1261 * If this is a Large Send Offload packet we'll put in an LSO CPL 1262 * message with an encapsulated TX Packet CPL message. Otherwise we 1263 * just use a TX Packet CPL message. 1264 */ 1265 ssi = skb_shinfo(skb); 1266 if (ssi->gso_size) { 1267 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1268 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1269 int l3hdr_len = skb_network_header_len(skb); 1270 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1271 1272 wr->op_immdlen = 1273 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1274 FW_WR_IMMDLEN_V(sizeof(*lso) + 1275 sizeof(*cpl))); 1276 /* 1277 * Fill in the LSO CPL message. 1278 */ 1279 lso->lso_ctrl = 1280 cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO) | 1281 LSO_FIRST_SLICE | 1282 LSO_LAST_SLICE | 1283 LSO_IPV6(v6) | 1284 LSO_ETHHDR_LEN(eth_xtra_len/4) | 1285 LSO_IPHDR_LEN(l3hdr_len/4) | 1286 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff)); 1287 lso->ipid_ofst = cpu_to_be16(0); 1288 lso->mss = cpu_to_be16(ssi->gso_size); 1289 lso->seqno_offset = cpu_to_be32(0); 1290 if (is_t4(adapter->params.chip)) 1291 lso->len = cpu_to_be32(skb->len); 1292 else 1293 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE(skb->len)); 1294 1295 /* 1296 * Set up TX Packet CPL pointer, control word and perform 1297 * accounting. 1298 */ 1299 cpl = (void *)(lso + 1); 1300 cntrl = (TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1301 TXPKT_IPHDR_LEN(l3hdr_len) | 1302 TXPKT_ETHHDR_LEN(eth_xtra_len)); 1303 txq->tso++; 1304 txq->tx_cso += ssi->gso_segs; 1305 } else { 1306 int len; 1307 1308 len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl); 1309 wr->op_immdlen = 1310 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1311 FW_WR_IMMDLEN_V(len)); 1312 1313 /* 1314 * Set up TX Packet CPL pointer, control word and perform 1315 * accounting. 1316 */ 1317 cpl = (void *)(wr + 1); 1318 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1319 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS; 1320 txq->tx_cso++; 1321 } else 1322 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS; 1323 } 1324 1325 /* 1326 * If there's a VLAN tag present, add that to the list of things to 1327 * do in this Work Request. 1328 */ 1329 if (skb_vlan_tag_present(skb)) { 1330 txq->vlan_ins++; 1331 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(skb_vlan_tag_get(skb)); 1332 } 1333 1334 /* 1335 * Fill in the TX Packet CPL message header. 1336 */ 1337 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT) | 1338 TXPKT_INTF(pi->port_id) | 1339 TXPKT_PF(0)); 1340 cpl->pack = cpu_to_be16(0); 1341 cpl->len = cpu_to_be16(skb->len); 1342 cpl->ctrl1 = cpu_to_be64(cntrl); 1343 1344 #ifdef T4_TRACE 1345 T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7], 1346 "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u", 1347 ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags); 1348 #endif 1349 1350 /* 1351 * Fill in the body of the TX Packet CPL message with either in-lined 1352 * data or a Scatter/Gather List. 1353 */ 1354 if (is_eth_imm(skb)) { 1355 /* 1356 * In-line the packet's data and free the skb since we don't 1357 * need it any longer. 1358 */ 1359 inline_tx_skb(skb, &txq->q, cpl + 1); 1360 dev_consume_skb_any(skb); 1361 } else { 1362 /* 1363 * Write the skb's Scatter/Gather list into the TX Packet CPL 1364 * message and retain a pointer to the skb so we can free it 1365 * later when its DMA completes. (We store the skb pointer 1366 * in the Software Descriptor corresponding to the last TX 1367 * Descriptor used by the Work Request.) 1368 * 1369 * The retained skb will be freed when the corresponding TX 1370 * Descriptors are reclaimed after their DMAs complete. 1371 * However, this could take quite a while since, in general, 1372 * the hardware is set up to be lazy about sending DMA 1373 * completion notifications to us and we mostly perform TX 1374 * reclaims in the transmit routine. 1375 * 1376 * This is good for performamce but means that we rely on new 1377 * TX packets arriving to run the destructors of completed 1378 * packets, which open up space in their sockets' send queues. 1379 * Sometimes we do not get such new packets causing TX to 1380 * stall. A single UDP transmitter is a good example of this 1381 * situation. We have a clean up timer that periodically 1382 * reclaims completed packets but it doesn't run often enough 1383 * (nor do we want it to) to prevent lengthy stalls. A 1384 * solution to this problem is to run the destructor early, 1385 * after the packet is queued but before it's DMAd. A con is 1386 * that we lie to socket memory accounting, but the amount of 1387 * extra memory is reasonable (limited by the number of TX 1388 * descriptors), the packets do actually get freed quickly by 1389 * new packets almost always, and for protocols like TCP that 1390 * wait for acks to really free up the data the extra memory 1391 * is even less. On the positive side we run the destructors 1392 * on the sending CPU rather than on a potentially different 1393 * completing CPU, usually a good thing. 1394 * 1395 * Run the destructor before telling the DMA engine about the 1396 * packet to make sure it doesn't complete and get freed 1397 * prematurely. 1398 */ 1399 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1); 1400 struct sge_txq *tq = &txq->q; 1401 int last_desc; 1402 1403 /* 1404 * If the Work Request header was an exact multiple of our TX 1405 * Descriptor length, then it's possible that the starting SGL 1406 * pointer lines up exactly with the end of our TX Descriptor 1407 * ring. If that's the case, wrap around to the beginning 1408 * here ... 1409 */ 1410 if (unlikely((void *)sgl == (void *)tq->stat)) { 1411 sgl = (void *)tq->desc; 1412 end = ((void *)tq->desc + ((void *)end - (void *)tq->stat)); 1413 } 1414 1415 write_sgl(skb, tq, sgl, end, 0, addr); 1416 skb_orphan(skb); 1417 1418 last_desc = tq->pidx + ndesc - 1; 1419 if (last_desc >= tq->size) 1420 last_desc -= tq->size; 1421 tq->sdesc[last_desc].skb = skb; 1422 tq->sdesc[last_desc].sgl = sgl; 1423 } 1424 1425 /* 1426 * Advance our internal TX Queue state, tell the hardware about 1427 * the new TX descriptors and return success. 1428 */ 1429 txq_advance(&txq->q, ndesc); 1430 dev->trans_start = jiffies; 1431 ring_tx_db(adapter, &txq->q, ndesc); 1432 return NETDEV_TX_OK; 1433 1434 out_free: 1435 /* 1436 * An error of some sort happened. Free the TX skb and tell the 1437 * OS that we've "dealt" with the packet ... 1438 */ 1439 dev_kfree_skb_any(skb); 1440 return NETDEV_TX_OK; 1441 } 1442 1443 /** 1444 * copy_frags - copy fragments from gather list into skb_shared_info 1445 * @skb: destination skb 1446 * @gl: source internal packet gather list 1447 * @offset: packet start offset in first page 1448 * 1449 * Copy an internal packet gather list into a Linux skb_shared_info 1450 * structure. 1451 */ 1452 static inline void copy_frags(struct sk_buff *skb, 1453 const struct pkt_gl *gl, 1454 unsigned int offset) 1455 { 1456 int i; 1457 1458 /* usually there's just one frag */ 1459 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 1460 gl->frags[0].offset + offset, 1461 gl->frags[0].size - offset); 1462 skb_shinfo(skb)->nr_frags = gl->nfrags; 1463 for (i = 1; i < gl->nfrags; i++) 1464 __skb_fill_page_desc(skb, i, gl->frags[i].page, 1465 gl->frags[i].offset, 1466 gl->frags[i].size); 1467 1468 /* get a reference to the last page, we don't own it */ 1469 get_page(gl->frags[gl->nfrags - 1].page); 1470 } 1471 1472 /** 1473 * t4vf_pktgl_to_skb - build an sk_buff from a packet gather list 1474 * @gl: the gather list 1475 * @skb_len: size of sk_buff main body if it carries fragments 1476 * @pull_len: amount of data to move to the sk_buff's main body 1477 * 1478 * Builds an sk_buff from the given packet gather list. Returns the 1479 * sk_buff or %NULL if sk_buff allocation failed. 1480 */ 1481 static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl, 1482 unsigned int skb_len, 1483 unsigned int pull_len) 1484 { 1485 struct sk_buff *skb; 1486 1487 /* 1488 * If the ingress packet is small enough, allocate an skb large enough 1489 * for all of the data and copy it inline. Otherwise, allocate an skb 1490 * with enough room to pull in the header and reference the rest of 1491 * the data via the skb fragment list. 1492 * 1493 * Below we rely on RX_COPY_THRES being less than the smallest Rx 1494 * buff! size, which is expected since buffers are at least 1495 * PAGE_SIZEd. In this case packets up to RX_COPY_THRES have only one 1496 * fragment. 1497 */ 1498 if (gl->tot_len <= RX_COPY_THRES) { 1499 /* small packets have only one fragment */ 1500 skb = alloc_skb(gl->tot_len, GFP_ATOMIC); 1501 if (unlikely(!skb)) 1502 goto out; 1503 __skb_put(skb, gl->tot_len); 1504 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 1505 } else { 1506 skb = alloc_skb(skb_len, GFP_ATOMIC); 1507 if (unlikely(!skb)) 1508 goto out; 1509 __skb_put(skb, pull_len); 1510 skb_copy_to_linear_data(skb, gl->va, pull_len); 1511 1512 copy_frags(skb, gl, pull_len); 1513 skb->len = gl->tot_len; 1514 skb->data_len = skb->len - pull_len; 1515 skb->truesize += skb->data_len; 1516 } 1517 1518 out: 1519 return skb; 1520 } 1521 1522 /** 1523 * t4vf_pktgl_free - free a packet gather list 1524 * @gl: the gather list 1525 * 1526 * Releases the pages of a packet gather list. We do not own the last 1527 * page on the list and do not free it. 1528 */ 1529 static void t4vf_pktgl_free(const struct pkt_gl *gl) 1530 { 1531 int frag; 1532 1533 frag = gl->nfrags - 1; 1534 while (frag--) 1535 put_page(gl->frags[frag].page); 1536 } 1537 1538 /** 1539 * do_gro - perform Generic Receive Offload ingress packet processing 1540 * @rxq: ingress RX Ethernet Queue 1541 * @gl: gather list for ingress packet 1542 * @pkt: CPL header for last packet fragment 1543 * 1544 * Perform Generic Receive Offload (GRO) ingress packet processing. 1545 * We use the standard Linux GRO interfaces for this. 1546 */ 1547 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 1548 const struct cpl_rx_pkt *pkt) 1549 { 1550 struct adapter *adapter = rxq->rspq.adapter; 1551 struct sge *s = &adapter->sge; 1552 int ret; 1553 struct sk_buff *skb; 1554 1555 skb = napi_get_frags(&rxq->rspq.napi); 1556 if (unlikely(!skb)) { 1557 t4vf_pktgl_free(gl); 1558 rxq->stats.rx_drops++; 1559 return; 1560 } 1561 1562 copy_frags(skb, gl, s->pktshift); 1563 skb->len = gl->tot_len - s->pktshift; 1564 skb->data_len = skb->len; 1565 skb->truesize += skb->data_len; 1566 skb->ip_summed = CHECKSUM_UNNECESSARY; 1567 skb_record_rx_queue(skb, rxq->rspq.idx); 1568 1569 if (pkt->vlan_ex) { 1570 __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q), 1571 be16_to_cpu(pkt->vlan)); 1572 rxq->stats.vlan_ex++; 1573 } 1574 ret = napi_gro_frags(&rxq->rspq.napi); 1575 1576 if (ret == GRO_HELD) 1577 rxq->stats.lro_pkts++; 1578 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 1579 rxq->stats.lro_merged++; 1580 rxq->stats.pkts++; 1581 rxq->stats.rx_cso++; 1582 } 1583 1584 /** 1585 * t4vf_ethrx_handler - process an ingress ethernet packet 1586 * @rspq: the response queue that received the packet 1587 * @rsp: the response queue descriptor holding the RX_PKT message 1588 * @gl: the gather list of packet fragments 1589 * 1590 * Process an ingress ethernet packet and deliver it to the stack. 1591 */ 1592 int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp, 1593 const struct pkt_gl *gl) 1594 { 1595 struct sk_buff *skb; 1596 const struct cpl_rx_pkt *pkt = (void *)rsp; 1597 bool csum_ok = pkt->csum_calc && !pkt->err_vec && 1598 (rspq->netdev->features & NETIF_F_RXCSUM); 1599 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq); 1600 struct adapter *adapter = rspq->adapter; 1601 struct sge *s = &adapter->sge; 1602 1603 /* 1604 * If this is a good TCP packet and we have Generic Receive Offload 1605 * enabled, handle the packet in the GRO path. 1606 */ 1607 if ((pkt->l2info & cpu_to_be32(RXF_TCP_F)) && 1608 (rspq->netdev->features & NETIF_F_GRO) && csum_ok && 1609 !pkt->ip_frag) { 1610 do_gro(rxq, gl, pkt); 1611 return 0; 1612 } 1613 1614 /* 1615 * Convert the Packet Gather List into an skb. 1616 */ 1617 skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN); 1618 if (unlikely(!skb)) { 1619 t4vf_pktgl_free(gl); 1620 rxq->stats.rx_drops++; 1621 return 0; 1622 } 1623 __skb_pull(skb, s->pktshift); 1624 skb->protocol = eth_type_trans(skb, rspq->netdev); 1625 skb_record_rx_queue(skb, rspq->idx); 1626 rxq->stats.pkts++; 1627 1628 if (csum_ok && !pkt->err_vec && 1629 (be32_to_cpu(pkt->l2info) & (RXF_UDP_F | RXF_TCP_F))) { 1630 if (!pkt->ip_frag) 1631 skb->ip_summed = CHECKSUM_UNNECESSARY; 1632 else { 1633 __sum16 c = (__force __sum16)pkt->csum; 1634 skb->csum = csum_unfold(c); 1635 skb->ip_summed = CHECKSUM_COMPLETE; 1636 } 1637 rxq->stats.rx_cso++; 1638 } else 1639 skb_checksum_none_assert(skb); 1640 1641 if (pkt->vlan_ex) { 1642 rxq->stats.vlan_ex++; 1643 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(pkt->vlan)); 1644 } 1645 1646 netif_receive_skb(skb); 1647 1648 return 0; 1649 } 1650 1651 /** 1652 * is_new_response - check if a response is newly written 1653 * @rc: the response control descriptor 1654 * @rspq: the response queue 1655 * 1656 * Returns true if a response descriptor contains a yet unprocessed 1657 * response. 1658 */ 1659 static inline bool is_new_response(const struct rsp_ctrl *rc, 1660 const struct sge_rspq *rspq) 1661 { 1662 return RSPD_GEN(rc->type_gen) == rspq->gen; 1663 } 1664 1665 /** 1666 * restore_rx_bufs - put back a packet's RX buffers 1667 * @gl: the packet gather list 1668 * @fl: the SGE Free List 1669 * @nfrags: how many fragments in @si 1670 * 1671 * Called when we find out that the current packet, @si, can't be 1672 * processed right away for some reason. This is a very rare event and 1673 * there's no effort to make this suspension/resumption process 1674 * particularly efficient. 1675 * 1676 * We implement the suspension by putting all of the RX buffers associated 1677 * with the current packet back on the original Free List. The buffers 1678 * have already been unmapped and are left unmapped, we mark them as 1679 * unmapped in order to prevent further unmapping attempts. (Effectively 1680 * this function undoes the series of @unmap_rx_buf calls which were done 1681 * to create the current packet's gather list.) This leaves us ready to 1682 * restart processing of the packet the next time we start processing the 1683 * RX Queue ... 1684 */ 1685 static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl, 1686 int frags) 1687 { 1688 struct rx_sw_desc *sdesc; 1689 1690 while (frags--) { 1691 if (fl->cidx == 0) 1692 fl->cidx = fl->size - 1; 1693 else 1694 fl->cidx--; 1695 sdesc = &fl->sdesc[fl->cidx]; 1696 sdesc->page = gl->frags[frags].page; 1697 sdesc->dma_addr |= RX_UNMAPPED_BUF; 1698 fl->avail++; 1699 } 1700 } 1701 1702 /** 1703 * rspq_next - advance to the next entry in a response queue 1704 * @rspq: the queue 1705 * 1706 * Updates the state of a response queue to advance it to the next entry. 1707 */ 1708 static inline void rspq_next(struct sge_rspq *rspq) 1709 { 1710 rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len; 1711 if (unlikely(++rspq->cidx == rspq->size)) { 1712 rspq->cidx = 0; 1713 rspq->gen ^= 1; 1714 rspq->cur_desc = rspq->desc; 1715 } 1716 } 1717 1718 /** 1719 * process_responses - process responses from an SGE response queue 1720 * @rspq: the ingress response queue to process 1721 * @budget: how many responses can be processed in this round 1722 * 1723 * Process responses from a Scatter Gather Engine response queue up to 1724 * the supplied budget. Responses include received packets as well as 1725 * control messages from firmware or hardware. 1726 * 1727 * Additionally choose the interrupt holdoff time for the next interrupt 1728 * on this queue. If the system is under memory shortage use a fairly 1729 * long delay to help recovery. 1730 */ 1731 static int process_responses(struct sge_rspq *rspq, int budget) 1732 { 1733 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq); 1734 struct adapter *adapter = rspq->adapter; 1735 struct sge *s = &adapter->sge; 1736 int budget_left = budget; 1737 1738 while (likely(budget_left)) { 1739 int ret, rsp_type; 1740 const struct rsp_ctrl *rc; 1741 1742 rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc)); 1743 if (!is_new_response(rc, rspq)) 1744 break; 1745 1746 /* 1747 * Figure out what kind of response we've received from the 1748 * SGE. 1749 */ 1750 rmb(); 1751 rsp_type = RSPD_TYPE(rc->type_gen); 1752 if (likely(rsp_type == RSP_TYPE_FLBUF)) { 1753 struct page_frag *fp; 1754 struct pkt_gl gl; 1755 const struct rx_sw_desc *sdesc; 1756 u32 bufsz, frag; 1757 u32 len = be32_to_cpu(rc->pldbuflen_qid); 1758 1759 /* 1760 * If we get a "new buffer" message from the SGE we 1761 * need to move on to the next Free List buffer. 1762 */ 1763 if (len & RSPD_NEWBUF) { 1764 /* 1765 * We get one "new buffer" message when we 1766 * first start up a queue so we need to ignore 1767 * it when our offset into the buffer is 0. 1768 */ 1769 if (likely(rspq->offset > 0)) { 1770 free_rx_bufs(rspq->adapter, &rxq->fl, 1771 1); 1772 rspq->offset = 0; 1773 } 1774 len = RSPD_LEN(len); 1775 } 1776 gl.tot_len = len; 1777 1778 /* 1779 * Gather packet fragments. 1780 */ 1781 for (frag = 0, fp = gl.frags; /**/; frag++, fp++) { 1782 BUG_ON(frag >= MAX_SKB_FRAGS); 1783 BUG_ON(rxq->fl.avail == 0); 1784 sdesc = &rxq->fl.sdesc[rxq->fl.cidx]; 1785 bufsz = get_buf_size(adapter, sdesc); 1786 fp->page = sdesc->page; 1787 fp->offset = rspq->offset; 1788 fp->size = min(bufsz, len); 1789 len -= fp->size; 1790 if (!len) 1791 break; 1792 unmap_rx_buf(rspq->adapter, &rxq->fl); 1793 } 1794 gl.nfrags = frag+1; 1795 1796 /* 1797 * Last buffer remains mapped so explicitly make it 1798 * coherent for CPU access and start preloading first 1799 * cache line ... 1800 */ 1801 dma_sync_single_for_cpu(rspq->adapter->pdev_dev, 1802 get_buf_addr(sdesc), 1803 fp->size, DMA_FROM_DEVICE); 1804 gl.va = (page_address(gl.frags[0].page) + 1805 gl.frags[0].offset); 1806 prefetch(gl.va); 1807 1808 /* 1809 * Hand the new ingress packet to the handler for 1810 * this Response Queue. 1811 */ 1812 ret = rspq->handler(rspq, rspq->cur_desc, &gl); 1813 if (likely(ret == 0)) 1814 rspq->offset += ALIGN(fp->size, s->fl_align); 1815 else 1816 restore_rx_bufs(&gl, &rxq->fl, frag); 1817 } else if (likely(rsp_type == RSP_TYPE_CPL)) { 1818 ret = rspq->handler(rspq, rspq->cur_desc, NULL); 1819 } else { 1820 WARN_ON(rsp_type > RSP_TYPE_CPL); 1821 ret = 0; 1822 } 1823 1824 if (unlikely(ret)) { 1825 /* 1826 * Couldn't process descriptor, back off for recovery. 1827 * We use the SGE's last timer which has the longest 1828 * interrupt coalescing value ... 1829 */ 1830 const int NOMEM_TIMER_IDX = SGE_NTIMERS-1; 1831 rspq->next_intr_params = 1832 QINTR_TIMER_IDX(NOMEM_TIMER_IDX); 1833 break; 1834 } 1835 1836 rspq_next(rspq); 1837 budget_left--; 1838 } 1839 1840 /* 1841 * If this is a Response Queue with an associated Free List and 1842 * at least two Egress Queue units available in the Free List 1843 * for new buffer pointers, refill the Free List. 1844 */ 1845 if (rspq->offset >= 0 && 1846 rxq->fl.size - rxq->fl.avail >= 2*FL_PER_EQ_UNIT) 1847 __refill_fl(rspq->adapter, &rxq->fl); 1848 return budget - budget_left; 1849 } 1850 1851 /** 1852 * napi_rx_handler - the NAPI handler for RX processing 1853 * @napi: the napi instance 1854 * @budget: how many packets we can process in this round 1855 * 1856 * Handler for new data events when using NAPI. This does not need any 1857 * locking or protection from interrupts as data interrupts are off at 1858 * this point and other adapter interrupts do not interfere (the latter 1859 * in not a concern at all with MSI-X as non-data interrupts then have 1860 * a separate handler). 1861 */ 1862 static int napi_rx_handler(struct napi_struct *napi, int budget) 1863 { 1864 unsigned int intr_params; 1865 struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi); 1866 int work_done = process_responses(rspq, budget); 1867 u32 val; 1868 1869 if (likely(work_done < budget)) { 1870 napi_complete(napi); 1871 intr_params = rspq->next_intr_params; 1872 rspq->next_intr_params = rspq->intr_params; 1873 } else 1874 intr_params = QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX); 1875 1876 if (unlikely(work_done == 0)) 1877 rspq->unhandled_irqs++; 1878 1879 val = CIDXINC_V(work_done) | SEINTARM_V(intr_params); 1880 if (is_t4(rspq->adapter->params.chip)) { 1881 t4_write_reg(rspq->adapter, 1882 T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 1883 val | INGRESSQID_V((u32)rspq->cntxt_id)); 1884 } else { 1885 writel(val | INGRESSQID_V(rspq->bar2_qid), 1886 rspq->bar2_addr + SGE_UDB_GTS); 1887 wmb(); 1888 } 1889 return work_done; 1890 } 1891 1892 /* 1893 * The MSI-X interrupt handler for an SGE response queue for the NAPI case 1894 * (i.e., response queue serviced by NAPI polling). 1895 */ 1896 irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie) 1897 { 1898 struct sge_rspq *rspq = cookie; 1899 1900 napi_schedule(&rspq->napi); 1901 return IRQ_HANDLED; 1902 } 1903 1904 /* 1905 * Process the indirect interrupt entries in the interrupt queue and kick off 1906 * NAPI for each queue that has generated an entry. 1907 */ 1908 static unsigned int process_intrq(struct adapter *adapter) 1909 { 1910 struct sge *s = &adapter->sge; 1911 struct sge_rspq *intrq = &s->intrq; 1912 unsigned int work_done; 1913 u32 val; 1914 1915 spin_lock(&adapter->sge.intrq_lock); 1916 for (work_done = 0; ; work_done++) { 1917 const struct rsp_ctrl *rc; 1918 unsigned int qid, iq_idx; 1919 struct sge_rspq *rspq; 1920 1921 /* 1922 * Grab the next response from the interrupt queue and bail 1923 * out if it's not a new response. 1924 */ 1925 rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc)); 1926 if (!is_new_response(rc, intrq)) 1927 break; 1928 1929 /* 1930 * If the response isn't a forwarded interrupt message issue a 1931 * error and go on to the next response message. This should 1932 * never happen ... 1933 */ 1934 rmb(); 1935 if (unlikely(RSPD_TYPE(rc->type_gen) != RSP_TYPE_INTR)) { 1936 dev_err(adapter->pdev_dev, 1937 "Unexpected INTRQ response type %d\n", 1938 RSPD_TYPE(rc->type_gen)); 1939 continue; 1940 } 1941 1942 /* 1943 * Extract the Queue ID from the interrupt message and perform 1944 * sanity checking to make sure it really refers to one of our 1945 * Ingress Queues which is active and matches the queue's ID. 1946 * None of these error conditions should ever happen so we may 1947 * want to either make them fatal and/or conditionalized under 1948 * DEBUG. 1949 */ 1950 qid = RSPD_QID(be32_to_cpu(rc->pldbuflen_qid)); 1951 iq_idx = IQ_IDX(s, qid); 1952 if (unlikely(iq_idx >= MAX_INGQ)) { 1953 dev_err(adapter->pdev_dev, 1954 "Ingress QID %d out of range\n", qid); 1955 continue; 1956 } 1957 rspq = s->ingr_map[iq_idx]; 1958 if (unlikely(rspq == NULL)) { 1959 dev_err(adapter->pdev_dev, 1960 "Ingress QID %d RSPQ=NULL\n", qid); 1961 continue; 1962 } 1963 if (unlikely(rspq->abs_id != qid)) { 1964 dev_err(adapter->pdev_dev, 1965 "Ingress QID %d refers to RSPQ %d\n", 1966 qid, rspq->abs_id); 1967 continue; 1968 } 1969 1970 /* 1971 * Schedule NAPI processing on the indicated Response Queue 1972 * and move on to the next entry in the Forwarded Interrupt 1973 * Queue. 1974 */ 1975 napi_schedule(&rspq->napi); 1976 rspq_next(intrq); 1977 } 1978 1979 val = CIDXINC_V(work_done) | SEINTARM_V(intrq->intr_params); 1980 if (is_t4(adapter->params.chip)) 1981 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 1982 val | INGRESSQID_V(intrq->cntxt_id)); 1983 else { 1984 writel(val | INGRESSQID_V(intrq->bar2_qid), 1985 intrq->bar2_addr + SGE_UDB_GTS); 1986 wmb(); 1987 } 1988 1989 spin_unlock(&adapter->sge.intrq_lock); 1990 1991 return work_done; 1992 } 1993 1994 /* 1995 * The MSI interrupt handler handles data events from SGE response queues as 1996 * well as error and other async events as they all use the same MSI vector. 1997 */ 1998 static irqreturn_t t4vf_intr_msi(int irq, void *cookie) 1999 { 2000 struct adapter *adapter = cookie; 2001 2002 process_intrq(adapter); 2003 return IRQ_HANDLED; 2004 } 2005 2006 /** 2007 * t4vf_intr_handler - select the top-level interrupt handler 2008 * @adapter: the adapter 2009 * 2010 * Selects the top-level interrupt handler based on the type of interrupts 2011 * (MSI-X or MSI). 2012 */ 2013 irq_handler_t t4vf_intr_handler(struct adapter *adapter) 2014 { 2015 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 2016 if (adapter->flags & USING_MSIX) 2017 return t4vf_sge_intr_msix; 2018 else 2019 return t4vf_intr_msi; 2020 } 2021 2022 /** 2023 * sge_rx_timer_cb - perform periodic maintenance of SGE RX queues 2024 * @data: the adapter 2025 * 2026 * Runs periodically from a timer to perform maintenance of SGE RX queues. 2027 * 2028 * a) Replenishes RX queues that have run out due to memory shortage. 2029 * Normally new RX buffers are added when existing ones are consumed but 2030 * when out of memory a queue can become empty. We schedule NAPI to do 2031 * the actual refill. 2032 */ 2033 static void sge_rx_timer_cb(unsigned long data) 2034 { 2035 struct adapter *adapter = (struct adapter *)data; 2036 struct sge *s = &adapter->sge; 2037 unsigned int i; 2038 2039 /* 2040 * Scan the "Starving Free Lists" flag array looking for any Free 2041 * Lists in need of more free buffers. If we find one and it's not 2042 * being actively polled, then bump its "starving" counter and attempt 2043 * to refill it. If we're successful in adding enough buffers to push 2044 * the Free List over the starving threshold, then we can clear its 2045 * "starving" status. 2046 */ 2047 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) { 2048 unsigned long m; 2049 2050 for (m = s->starving_fl[i]; m; m &= m - 1) { 2051 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 2052 struct sge_fl *fl = s->egr_map[id]; 2053 2054 clear_bit(id, s->starving_fl); 2055 smp_mb__after_atomic(); 2056 2057 /* 2058 * Since we are accessing fl without a lock there's a 2059 * small probability of a false positive where we 2060 * schedule napi but the FL is no longer starving. 2061 * No biggie. 2062 */ 2063 if (fl_starving(adapter, fl)) { 2064 struct sge_eth_rxq *rxq; 2065 2066 rxq = container_of(fl, struct sge_eth_rxq, fl); 2067 if (napi_reschedule(&rxq->rspq.napi)) 2068 fl->starving++; 2069 else 2070 set_bit(id, s->starving_fl); 2071 } 2072 } 2073 } 2074 2075 /* 2076 * Reschedule the next scan for starving Free Lists ... 2077 */ 2078 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 2079 } 2080 2081 /** 2082 * sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues 2083 * @data: the adapter 2084 * 2085 * Runs periodically from a timer to perform maintenance of SGE TX queues. 2086 * 2087 * b) Reclaims completed Tx packets for the Ethernet queues. Normally 2088 * packets are cleaned up by new Tx packets, this timer cleans up packets 2089 * when no new packets are being submitted. This is essential for pktgen, 2090 * at least. 2091 */ 2092 static void sge_tx_timer_cb(unsigned long data) 2093 { 2094 struct adapter *adapter = (struct adapter *)data; 2095 struct sge *s = &adapter->sge; 2096 unsigned int i, budget; 2097 2098 budget = MAX_TIMER_TX_RECLAIM; 2099 i = s->ethtxq_rover; 2100 do { 2101 struct sge_eth_txq *txq = &s->ethtxq[i]; 2102 2103 if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) { 2104 int avail = reclaimable(&txq->q); 2105 2106 if (avail > budget) 2107 avail = budget; 2108 2109 free_tx_desc(adapter, &txq->q, avail, true); 2110 txq->q.in_use -= avail; 2111 __netif_tx_unlock(txq->txq); 2112 2113 budget -= avail; 2114 if (!budget) 2115 break; 2116 } 2117 2118 i++; 2119 if (i >= s->ethqsets) 2120 i = 0; 2121 } while (i != s->ethtxq_rover); 2122 s->ethtxq_rover = i; 2123 2124 /* 2125 * If we found too many reclaimable packets schedule a timer in the 2126 * near future to continue where we left off. Otherwise the next timer 2127 * will be at its normal interval. 2128 */ 2129 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); 2130 } 2131 2132 /** 2133 * bar2_address - return the BAR2 address for an SGE Queue's Registers 2134 * @adapter: the adapter 2135 * @qid: the SGE Queue ID 2136 * @qtype: the SGE Queue Type (Egress or Ingress) 2137 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 2138 * 2139 * Returns the BAR2 address for the SGE Queue Registers associated with 2140 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 2141 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 2142 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 2143 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 2144 */ 2145 static void __iomem *bar2_address(struct adapter *adapter, 2146 unsigned int qid, 2147 enum t4_bar2_qtype qtype, 2148 unsigned int *pbar2_qid) 2149 { 2150 u64 bar2_qoffset; 2151 int ret; 2152 2153 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 2154 &bar2_qoffset, pbar2_qid); 2155 if (ret) 2156 return NULL; 2157 2158 return adapter->bar2 + bar2_qoffset; 2159 } 2160 2161 /** 2162 * t4vf_sge_alloc_rxq - allocate an SGE RX Queue 2163 * @adapter: the adapter 2164 * @rspq: pointer to to the new rxq's Response Queue to be filled in 2165 * @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue 2166 * @dev: the network device associated with the new rspq 2167 * @intr_dest: MSI-X vector index (overriden in MSI mode) 2168 * @fl: pointer to the new rxq's Free List to be filled in 2169 * @hnd: the interrupt handler to invoke for the rspq 2170 */ 2171 int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq, 2172 bool iqasynch, struct net_device *dev, 2173 int intr_dest, 2174 struct sge_fl *fl, rspq_handler_t hnd) 2175 { 2176 struct sge *s = &adapter->sge; 2177 struct port_info *pi = netdev_priv(dev); 2178 struct fw_iq_cmd cmd, rpl; 2179 int ret, iqandst, flsz = 0; 2180 2181 /* 2182 * If we're using MSI interrupts and we're not initializing the 2183 * Forwarded Interrupt Queue itself, then set up this queue for 2184 * indirect interrupts to the Forwarded Interrupt Queue. Obviously 2185 * the Forwarded Interrupt Queue must be set up before any other 2186 * ingress queue ... 2187 */ 2188 if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) { 2189 iqandst = SGE_INTRDST_IQ; 2190 intr_dest = adapter->sge.intrq.abs_id; 2191 } else 2192 iqandst = SGE_INTRDST_PCI; 2193 2194 /* 2195 * Allocate the hardware ring for the Response Queue. The size needs 2196 * to be a multiple of 16 which includes the mandatory status entry 2197 * (regardless of whether the Status Page capabilities are enabled or 2198 * not). 2199 */ 2200 rspq->size = roundup(rspq->size, 16); 2201 rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len, 2202 0, &rspq->phys_addr, NULL, 0); 2203 if (!rspq->desc) 2204 return -ENOMEM; 2205 2206 /* 2207 * Fill in the Ingress Queue Command. Note: Ideally this code would 2208 * be in t4vf_hw.c but there are so many parameters and dependencies 2209 * on our Linux SGE state that we would end up having to pass tons of 2210 * parameters. We'll have to think about how this might be migrated 2211 * into OS-independent common code ... 2212 */ 2213 memset(&cmd, 0, sizeof(cmd)); 2214 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | 2215 FW_CMD_REQUEST_F | 2216 FW_CMD_WRITE_F | 2217 FW_CMD_EXEC_F); 2218 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC_F | 2219 FW_IQ_CMD_IQSTART_F | 2220 FW_LEN16(cmd)); 2221 cmd.type_to_iqandstindex = 2222 cpu_to_be32(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 2223 FW_IQ_CMD_IQASYNCH_V(iqasynch) | 2224 FW_IQ_CMD_VIID_V(pi->viid) | 2225 FW_IQ_CMD_IQANDST_V(iqandst) | 2226 FW_IQ_CMD_IQANUS_V(1) | 2227 FW_IQ_CMD_IQANUD_V(SGE_UPDATEDEL_INTR) | 2228 FW_IQ_CMD_IQANDSTINDEX_V(intr_dest)); 2229 cmd.iqdroprss_to_iqesize = 2230 cpu_to_be16(FW_IQ_CMD_IQPCIECH_V(pi->port_id) | 2231 FW_IQ_CMD_IQGTSMODE_F | 2232 FW_IQ_CMD_IQINTCNTTHRESH_V(rspq->pktcnt_idx) | 2233 FW_IQ_CMD_IQESIZE_V(ilog2(rspq->iqe_len) - 4)); 2234 cmd.iqsize = cpu_to_be16(rspq->size); 2235 cmd.iqaddr = cpu_to_be64(rspq->phys_addr); 2236 2237 if (fl) { 2238 /* 2239 * Allocate the ring for the hardware free list (with space 2240 * for its status page) along with the associated software 2241 * descriptor ring. The free list size needs to be a multiple 2242 * of the Egress Queue Unit. 2243 */ 2244 fl->size = roundup(fl->size, FL_PER_EQ_UNIT); 2245 fl->desc = alloc_ring(adapter->pdev_dev, fl->size, 2246 sizeof(__be64), sizeof(struct rx_sw_desc), 2247 &fl->addr, &fl->sdesc, s->stat_len); 2248 if (!fl->desc) { 2249 ret = -ENOMEM; 2250 goto err; 2251 } 2252 2253 /* 2254 * Calculate the size of the hardware free list ring plus 2255 * Status Page (which the SGE will place after the end of the 2256 * free list ring) in Egress Queue Units. 2257 */ 2258 flsz = (fl->size / FL_PER_EQ_UNIT + 2259 s->stat_len / EQ_UNIT); 2260 2261 /* 2262 * Fill in all the relevant firmware Ingress Queue Command 2263 * fields for the free list. 2264 */ 2265 cmd.iqns_to_fl0congen = 2266 cpu_to_be32( 2267 FW_IQ_CMD_FL0HOSTFCMODE_V(SGE_HOSTFCMODE_NONE) | 2268 FW_IQ_CMD_FL0PACKEN_F | 2269 FW_IQ_CMD_FL0PADEN_F); 2270 cmd.fl0dcaen_to_fl0cidxfthresh = 2271 cpu_to_be16( 2272 FW_IQ_CMD_FL0FBMIN_V(SGE_FETCHBURSTMIN_64B) | 2273 FW_IQ_CMD_FL0FBMAX_V(SGE_FETCHBURSTMAX_512B)); 2274 cmd.fl0size = cpu_to_be16(flsz); 2275 cmd.fl0addr = cpu_to_be64(fl->addr); 2276 } 2277 2278 /* 2279 * Issue the firmware Ingress Queue Command and extract the results if 2280 * it completes successfully. 2281 */ 2282 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 2283 if (ret) 2284 goto err; 2285 2286 netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64); 2287 rspq->cur_desc = rspq->desc; 2288 rspq->cidx = 0; 2289 rspq->gen = 1; 2290 rspq->next_intr_params = rspq->intr_params; 2291 rspq->cntxt_id = be16_to_cpu(rpl.iqid); 2292 rspq->bar2_addr = bar2_address(adapter, 2293 rspq->cntxt_id, 2294 T4_BAR2_QTYPE_INGRESS, 2295 &rspq->bar2_qid); 2296 rspq->abs_id = be16_to_cpu(rpl.physiqid); 2297 rspq->size--; /* subtract status entry */ 2298 rspq->adapter = adapter; 2299 rspq->netdev = dev; 2300 rspq->handler = hnd; 2301 2302 /* set offset to -1 to distinguish ingress queues without FL */ 2303 rspq->offset = fl ? 0 : -1; 2304 2305 if (fl) { 2306 fl->cntxt_id = be16_to_cpu(rpl.fl0id); 2307 fl->avail = 0; 2308 fl->pend_cred = 0; 2309 fl->pidx = 0; 2310 fl->cidx = 0; 2311 fl->alloc_failed = 0; 2312 fl->large_alloc_failed = 0; 2313 fl->starving = 0; 2314 2315 /* Note, we must initialize the BAR2 Free List User Doorbell 2316 * information before refilling the Free List! 2317 */ 2318 fl->bar2_addr = bar2_address(adapter, 2319 fl->cntxt_id, 2320 T4_BAR2_QTYPE_EGRESS, 2321 &fl->bar2_qid); 2322 2323 refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL); 2324 } 2325 2326 return 0; 2327 2328 err: 2329 /* 2330 * An error occurred. Clean up our partial allocation state and 2331 * return the error. 2332 */ 2333 if (rspq->desc) { 2334 dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len, 2335 rspq->desc, rspq->phys_addr); 2336 rspq->desc = NULL; 2337 } 2338 if (fl && fl->desc) { 2339 kfree(fl->sdesc); 2340 fl->sdesc = NULL; 2341 dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT, 2342 fl->desc, fl->addr); 2343 fl->desc = NULL; 2344 } 2345 return ret; 2346 } 2347 2348 /** 2349 * t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue 2350 * @adapter: the adapter 2351 * @txq: pointer to the new txq to be filled in 2352 * @devq: the network TX queue associated with the new txq 2353 * @iqid: the relative ingress queue ID to which events relating to 2354 * the new txq should be directed 2355 */ 2356 int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq, 2357 struct net_device *dev, struct netdev_queue *devq, 2358 unsigned int iqid) 2359 { 2360 struct sge *s = &adapter->sge; 2361 int ret, nentries; 2362 struct fw_eq_eth_cmd cmd, rpl; 2363 struct port_info *pi = netdev_priv(dev); 2364 2365 /* 2366 * Calculate the size of the hardware TX Queue (including the Status 2367 * Page on the end of the TX Queue) in units of TX Descriptors. 2368 */ 2369 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 2370 2371 /* 2372 * Allocate the hardware ring for the TX ring (with space for its 2373 * status page) along with the associated software descriptor ring. 2374 */ 2375 txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size, 2376 sizeof(struct tx_desc), 2377 sizeof(struct tx_sw_desc), 2378 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len); 2379 if (!txq->q.desc) 2380 return -ENOMEM; 2381 2382 /* 2383 * Fill in the Egress Queue Command. Note: As with the direct use of 2384 * the firmware Ingress Queue COmmand above in our RXQ allocation 2385 * routine, ideally, this code would be in t4vf_hw.c. Again, we'll 2386 * have to see if there's some reasonable way to parameterize it 2387 * into the common code ... 2388 */ 2389 memset(&cmd, 0, sizeof(cmd)); 2390 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 2391 FW_CMD_REQUEST_F | 2392 FW_CMD_WRITE_F | 2393 FW_CMD_EXEC_F); 2394 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC_F | 2395 FW_EQ_ETH_CMD_EQSTART_F | 2396 FW_LEN16(cmd)); 2397 cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE_F | 2398 FW_EQ_ETH_CMD_VIID_V(pi->viid)); 2399 cmd.fetchszm_to_iqid = 2400 cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE_V(SGE_HOSTFCMODE_STPG) | 2401 FW_EQ_ETH_CMD_PCIECHN_V(pi->port_id) | 2402 FW_EQ_ETH_CMD_IQID_V(iqid)); 2403 cmd.dcaen_to_eqsize = 2404 cpu_to_be32(FW_EQ_ETH_CMD_FBMIN_V(SGE_FETCHBURSTMIN_64B) | 2405 FW_EQ_ETH_CMD_FBMAX_V(SGE_FETCHBURSTMAX_512B) | 2406 FW_EQ_ETH_CMD_CIDXFTHRESH_V( 2407 SGE_CIDXFLUSHTHRESH_32) | 2408 FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 2409 cmd.eqaddr = cpu_to_be64(txq->q.phys_addr); 2410 2411 /* 2412 * Issue the firmware Egress Queue Command and extract the results if 2413 * it completes successfully. 2414 */ 2415 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 2416 if (ret) { 2417 /* 2418 * The girmware Ingress Queue Command failed for some reason. 2419 * Free up our partial allocation state and return the error. 2420 */ 2421 kfree(txq->q.sdesc); 2422 txq->q.sdesc = NULL; 2423 dma_free_coherent(adapter->pdev_dev, 2424 nentries * sizeof(struct tx_desc), 2425 txq->q.desc, txq->q.phys_addr); 2426 txq->q.desc = NULL; 2427 return ret; 2428 } 2429 2430 txq->q.in_use = 0; 2431 txq->q.cidx = 0; 2432 txq->q.pidx = 0; 2433 txq->q.stat = (void *)&txq->q.desc[txq->q.size]; 2434 txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_G(be32_to_cpu(rpl.eqid_pkd)); 2435 txq->q.bar2_addr = bar2_address(adapter, 2436 txq->q.cntxt_id, 2437 T4_BAR2_QTYPE_EGRESS, 2438 &txq->q.bar2_qid); 2439 txq->q.abs_id = 2440 FW_EQ_ETH_CMD_PHYSEQID_G(be32_to_cpu(rpl.physeqid_pkd)); 2441 txq->txq = devq; 2442 txq->tso = 0; 2443 txq->tx_cso = 0; 2444 txq->vlan_ins = 0; 2445 txq->q.stops = 0; 2446 txq->q.restarts = 0; 2447 txq->mapping_err = 0; 2448 return 0; 2449 } 2450 2451 /* 2452 * Free the DMA map resources associated with a TX queue. 2453 */ 2454 static void free_txq(struct adapter *adapter, struct sge_txq *tq) 2455 { 2456 struct sge *s = &adapter->sge; 2457 2458 dma_free_coherent(adapter->pdev_dev, 2459 tq->size * sizeof(*tq->desc) + s->stat_len, 2460 tq->desc, tq->phys_addr); 2461 tq->cntxt_id = 0; 2462 tq->sdesc = NULL; 2463 tq->desc = NULL; 2464 } 2465 2466 /* 2467 * Free the resources associated with a response queue (possibly including a 2468 * free list). 2469 */ 2470 static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq, 2471 struct sge_fl *fl) 2472 { 2473 struct sge *s = &adapter->sge; 2474 unsigned int flid = fl ? fl->cntxt_id : 0xffff; 2475 2476 t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP, 2477 rspq->cntxt_id, flid, 0xffff); 2478 dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len, 2479 rspq->desc, rspq->phys_addr); 2480 netif_napi_del(&rspq->napi); 2481 rspq->netdev = NULL; 2482 rspq->cntxt_id = 0; 2483 rspq->abs_id = 0; 2484 rspq->desc = NULL; 2485 2486 if (fl) { 2487 free_rx_bufs(adapter, fl, fl->avail); 2488 dma_free_coherent(adapter->pdev_dev, 2489 fl->size * sizeof(*fl->desc) + s->stat_len, 2490 fl->desc, fl->addr); 2491 kfree(fl->sdesc); 2492 fl->sdesc = NULL; 2493 fl->cntxt_id = 0; 2494 fl->desc = NULL; 2495 } 2496 } 2497 2498 /** 2499 * t4vf_free_sge_resources - free SGE resources 2500 * @adapter: the adapter 2501 * 2502 * Frees resources used by the SGE queue sets. 2503 */ 2504 void t4vf_free_sge_resources(struct adapter *adapter) 2505 { 2506 struct sge *s = &adapter->sge; 2507 struct sge_eth_rxq *rxq = s->ethrxq; 2508 struct sge_eth_txq *txq = s->ethtxq; 2509 struct sge_rspq *evtq = &s->fw_evtq; 2510 struct sge_rspq *intrq = &s->intrq; 2511 int qs; 2512 2513 for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) { 2514 if (rxq->rspq.desc) 2515 free_rspq_fl(adapter, &rxq->rspq, &rxq->fl); 2516 if (txq->q.desc) { 2517 t4vf_eth_eq_free(adapter, txq->q.cntxt_id); 2518 free_tx_desc(adapter, &txq->q, txq->q.in_use, true); 2519 kfree(txq->q.sdesc); 2520 free_txq(adapter, &txq->q); 2521 } 2522 } 2523 if (evtq->desc) 2524 free_rspq_fl(adapter, evtq, NULL); 2525 if (intrq->desc) 2526 free_rspq_fl(adapter, intrq, NULL); 2527 } 2528 2529 /** 2530 * t4vf_sge_start - enable SGE operation 2531 * @adapter: the adapter 2532 * 2533 * Start tasklets and timers associated with the DMA engine. 2534 */ 2535 void t4vf_sge_start(struct adapter *adapter) 2536 { 2537 adapter->sge.ethtxq_rover = 0; 2538 mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 2539 mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 2540 } 2541 2542 /** 2543 * t4vf_sge_stop - disable SGE operation 2544 * @adapter: the adapter 2545 * 2546 * Stop tasklets and timers associated with the DMA engine. Note that 2547 * this is effective only if measures have been taken to disable any HW 2548 * events that may restart them. 2549 */ 2550 void t4vf_sge_stop(struct adapter *adapter) 2551 { 2552 struct sge *s = &adapter->sge; 2553 2554 if (s->rx_timer.function) 2555 del_timer_sync(&s->rx_timer); 2556 if (s->tx_timer.function) 2557 del_timer_sync(&s->tx_timer); 2558 } 2559 2560 /** 2561 * t4vf_sge_init - initialize SGE 2562 * @adapter: the adapter 2563 * 2564 * Performs SGE initialization needed every time after a chip reset. 2565 * We do not initialize any of the queue sets here, instead the driver 2566 * top-level must request those individually. We also do not enable DMA 2567 * here, that should be done after the queues have been set up. 2568 */ 2569 int t4vf_sge_init(struct adapter *adapter) 2570 { 2571 struct sge_params *sge_params = &adapter->params.sge; 2572 u32 fl0 = sge_params->sge_fl_buffer_size[0]; 2573 u32 fl1 = sge_params->sge_fl_buffer_size[1]; 2574 struct sge *s = &adapter->sge; 2575 unsigned int ingpadboundary, ingpackboundary; 2576 2577 /* 2578 * Start by vetting the basic SGE parameters which have been set up by 2579 * the Physical Function Driver. Ideally we should be able to deal 2580 * with _any_ configuration. Practice is different ... 2581 */ 2582 if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) { 2583 dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n", 2584 fl0, fl1); 2585 return -EINVAL; 2586 } 2587 if ((sge_params->sge_control & RXPKTCPLMODE_F) == 0) { 2588 dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n"); 2589 return -EINVAL; 2590 } 2591 2592 /* 2593 * Now translate the adapter parameters into our internal forms. 2594 */ 2595 if (fl1) 2596 s->fl_pg_order = ilog2(fl1) - PAGE_SHIFT; 2597 s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_F) 2598 ? 128 : 64); 2599 s->pktshift = PKTSHIFT_G(sge_params->sge_control); 2600 2601 /* T4 uses a single control field to specify both the PCIe Padding and 2602 * Packing Boundary. T5 introduced the ability to specify these 2603 * separately. The actual Ingress Packet Data alignment boundary 2604 * within Packed Buffer Mode is the maximum of these two 2605 * specifications. (Note that it makes no real practical sense to 2606 * have the Pading Boudary be larger than the Packing Boundary but you 2607 * could set the chip up that way and, in fact, legacy T4 code would 2608 * end doing this because it would initialize the Padding Boundary and 2609 * leave the Packing Boundary initialized to 0 (16 bytes).) 2610 */ 2611 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_params->sge_control) + 2612 INGPADBOUNDARY_SHIFT_X); 2613 if (is_t4(adapter->params.chip)) { 2614 s->fl_align = ingpadboundary; 2615 } else { 2616 /* T5 has a different interpretation of one of the PCIe Packing 2617 * Boundary values. 2618 */ 2619 ingpackboundary = INGPACKBOUNDARY_G(sge_params->sge_control2); 2620 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 2621 ingpackboundary = 16; 2622 else 2623 ingpackboundary = 1 << (ingpackboundary + 2624 INGPACKBOUNDARY_SHIFT_X); 2625 2626 s->fl_align = max(ingpadboundary, ingpackboundary); 2627 } 2628 2629 /* A FL with <= fl_starve_thres buffers is starving and a periodic 2630 * timer will attempt to refill it. This needs to be larger than the 2631 * SGE's Egress Congestion Threshold. If it isn't, then we can get 2632 * stuck waiting for new packets while the SGE is waiting for us to 2633 * give it more Free List entries. (Note that the SGE's Egress 2634 * Congestion Threshold is in units of 2 Free List pointers.) 2635 */ 2636 s->fl_starve_thres 2637 = EGRTHRESHOLD_G(sge_params->sge_congestion_control)*2 + 1; 2638 2639 /* 2640 * Set up tasklet timers. 2641 */ 2642 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter); 2643 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter); 2644 2645 /* 2646 * Initialize Forwarded Interrupt Queue lock. 2647 */ 2648 spin_lock_init(&s->intrq_lock); 2649 2650 return 0; 2651 } 2652