1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/skbuff.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/ip.h>
41 #include <net/ipv6.h>
42 #include <net/tcp.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/prefetch.h>
45 
46 #include "t4vf_common.h"
47 #include "t4vf_defs.h"
48 
49 #include "../cxgb4/t4_regs.h"
50 #include "../cxgb4/t4fw_api.h"
51 #include "../cxgb4/t4_msg.h"
52 
53 /*
54  * Constants ...
55  */
56 enum {
57 	/*
58 	 * Egress Queue sizes, producer and consumer indices are all in units
59 	 * of Egress Context Units bytes.  Note that as far as the hardware is
60 	 * concerned, the free list is an Egress Queue (the host produces free
61 	 * buffers which the hardware consumes) and free list entries are
62 	 * 64-bit PCI DMA addresses.
63 	 */
64 	EQ_UNIT = SGE_EQ_IDXSIZE,
65 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
66 	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
67 
68 	/*
69 	 * Max number of TX descriptors we clean up at a time.  Should be
70 	 * modest as freeing skbs isn't cheap and it happens while holding
71 	 * locks.  We just need to free packets faster than they arrive, we
72 	 * eventually catch up and keep the amortized cost reasonable.
73 	 */
74 	MAX_TX_RECLAIM = 16,
75 
76 	/*
77 	 * Max number of Rx buffers we replenish at a time.  Again keep this
78 	 * modest, allocating buffers isn't cheap either.
79 	 */
80 	MAX_RX_REFILL = 16,
81 
82 	/*
83 	 * Period of the Rx queue check timer.  This timer is infrequent as it
84 	 * has something to do only when the system experiences severe memory
85 	 * shortage.
86 	 */
87 	RX_QCHECK_PERIOD = (HZ / 2),
88 
89 	/*
90 	 * Period of the TX queue check timer and the maximum number of TX
91 	 * descriptors to be reclaimed by the TX timer.
92 	 */
93 	TX_QCHECK_PERIOD = (HZ / 2),
94 	MAX_TIMER_TX_RECLAIM = 100,
95 
96 	/*
97 	 * Suspend an Ethernet TX queue with fewer available descriptors than
98 	 * this.  We always want to have room for a maximum sized packet:
99 	 * inline immediate data + MAX_SKB_FRAGS. This is the same as
100 	 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
101 	 * (see that function and its helpers for a description of the
102 	 * calculation).
103 	 */
104 	ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
105 	ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
106 				   ((ETHTXQ_MAX_FRAGS-1) & 1) +
107 				   2),
108 	ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
109 			  sizeof(struct cpl_tx_pkt_lso_core) +
110 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
111 	ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
112 
113 	ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
114 
115 	/*
116 	 * Max TX descriptor space we allow for an Ethernet packet to be
117 	 * inlined into a WR.  This is limited by the maximum value which
118 	 * we can specify for immediate data in the firmware Ethernet TX
119 	 * Work Request.
120 	 */
121 	MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_M,
122 
123 	/*
124 	 * Max size of a WR sent through a control TX queue.
125 	 */
126 	MAX_CTRL_WR_LEN = 256,
127 
128 	/*
129 	 * Maximum amount of data which we'll ever need to inline into a
130 	 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
131 	 */
132 	MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
133 			  ? MAX_IMM_TX_PKT_LEN
134 			  : MAX_CTRL_WR_LEN),
135 
136 	/*
137 	 * For incoming packets less than RX_COPY_THRES, we copy the data into
138 	 * an skb rather than referencing the data.  We allocate enough
139 	 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
140 	 * of the data (header).
141 	 */
142 	RX_COPY_THRES = 256,
143 	RX_PULL_LEN = 128,
144 
145 	/*
146 	 * Main body length for sk_buffs used for RX Ethernet packets with
147 	 * fragments.  Should be >= RX_PULL_LEN but possibly bigger to give
148 	 * pskb_may_pull() some room.
149 	 */
150 	RX_SKB_LEN = 512,
151 };
152 
153 /*
154  * Software state per TX descriptor.
155  */
156 struct tx_sw_desc {
157 	struct sk_buff *skb;		/* socket buffer of TX data source */
158 	struct ulptx_sgl *sgl;		/* scatter/gather list in TX Queue */
159 };
160 
161 /*
162  * Software state per RX Free List descriptor.  We keep track of the allocated
163  * FL page, its size, and its PCI DMA address (if the page is mapped).  The FL
164  * page size and its PCI DMA mapped state are stored in the low bits of the
165  * PCI DMA address as per below.
166  */
167 struct rx_sw_desc {
168 	struct page *page;		/* Free List page buffer */
169 	dma_addr_t dma_addr;		/* PCI DMA address (if mapped) */
170 					/*   and flags (see below) */
171 };
172 
173 /*
174  * The low bits of rx_sw_desc.dma_addr have special meaning.  Note that the
175  * SGE also uses the low 4 bits to determine the size of the buffer.  It uses
176  * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
177  * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
178  * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
179  * to the SGE.  Thus, our software state of "is the buffer mapped for DMA" is
180  * maintained in an inverse sense so the hardware never sees that bit high.
181  */
182 enum {
183 	RX_LARGE_BUF    = 1 << 0,	/* buffer is SGE_FL_BUFFER_SIZE[1] */
184 	RX_UNMAPPED_BUF = 1 << 1,	/* buffer is not mapped */
185 };
186 
187 /**
188  *	get_buf_addr - return DMA buffer address of software descriptor
189  *	@sdesc: pointer to the software buffer descriptor
190  *
191  *	Return the DMA buffer address of a software descriptor (stripping out
192  *	our low-order flag bits).
193  */
194 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
195 {
196 	return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
197 }
198 
199 /**
200  *	is_buf_mapped - is buffer mapped for DMA?
201  *	@sdesc: pointer to the software buffer descriptor
202  *
203  *	Determine whether the buffer associated with a software descriptor in
204  *	mapped for DMA or not.
205  */
206 static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
207 {
208 	return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
209 }
210 
211 /**
212  *	need_skb_unmap - does the platform need unmapping of sk_buffs?
213  *
214  *	Returns true if the platform needs sk_buff unmapping.  The compiler
215  *	optimizes away unnecessary code if this returns true.
216  */
217 static inline int need_skb_unmap(void)
218 {
219 #ifdef CONFIG_NEED_DMA_MAP_STATE
220 	return 1;
221 #else
222 	return 0;
223 #endif
224 }
225 
226 /**
227  *	txq_avail - return the number of available slots in a TX queue
228  *	@tq: the TX queue
229  *
230  *	Returns the number of available descriptors in a TX queue.
231  */
232 static inline unsigned int txq_avail(const struct sge_txq *tq)
233 {
234 	return tq->size - 1 - tq->in_use;
235 }
236 
237 /**
238  *	fl_cap - return the capacity of a Free List
239  *	@fl: the Free List
240  *
241  *	Returns the capacity of a Free List.  The capacity is less than the
242  *	size because an Egress Queue Index Unit worth of descriptors needs to
243  *	be left unpopulated, otherwise the Producer and Consumer indices PIDX
244  *	and CIDX will match and the hardware will think the FL is empty.
245  */
246 static inline unsigned int fl_cap(const struct sge_fl *fl)
247 {
248 	return fl->size - FL_PER_EQ_UNIT;
249 }
250 
251 /**
252  *	fl_starving - return whether a Free List is starving.
253  *	@adapter: pointer to the adapter
254  *	@fl: the Free List
255  *
256  *	Tests specified Free List to see whether the number of buffers
257  *	available to the hardware has falled below our "starvation"
258  *	threshold.
259  */
260 static inline bool fl_starving(const struct adapter *adapter,
261 			       const struct sge_fl *fl)
262 {
263 	const struct sge *s = &adapter->sge;
264 
265 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
266 }
267 
268 /**
269  *	map_skb -  map an skb for DMA to the device
270  *	@dev: the egress net device
271  *	@skb: the packet to map
272  *	@addr: a pointer to the base of the DMA mapping array
273  *
274  *	Map an skb for DMA to the device and return an array of DMA addresses.
275  */
276 static int map_skb(struct device *dev, const struct sk_buff *skb,
277 		   dma_addr_t *addr)
278 {
279 	const skb_frag_t *fp, *end;
280 	const struct skb_shared_info *si;
281 
282 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
283 	if (dma_mapping_error(dev, *addr))
284 		goto out_err;
285 
286 	si = skb_shinfo(skb);
287 	end = &si->frags[si->nr_frags];
288 	for (fp = si->frags; fp < end; fp++) {
289 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
290 					   DMA_TO_DEVICE);
291 		if (dma_mapping_error(dev, *addr))
292 			goto unwind;
293 	}
294 	return 0;
295 
296 unwind:
297 	while (fp-- > si->frags)
298 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
299 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
300 
301 out_err:
302 	return -ENOMEM;
303 }
304 
305 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
306 		      const struct ulptx_sgl *sgl, const struct sge_txq *tq)
307 {
308 	const struct ulptx_sge_pair *p;
309 	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
310 
311 	if (likely(skb_headlen(skb)))
312 		dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
313 				 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
314 	else {
315 		dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
316 			       be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
317 		nfrags--;
318 	}
319 
320 	/*
321 	 * the complexity below is because of the possibility of a wrap-around
322 	 * in the middle of an SGL
323 	 */
324 	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
325 		if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
326 unmap:
327 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
328 				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
329 			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
330 				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
331 			p++;
332 		} else if ((u8 *)p == (u8 *)tq->stat) {
333 			p = (const struct ulptx_sge_pair *)tq->desc;
334 			goto unmap;
335 		} else if ((u8 *)p + 8 == (u8 *)tq->stat) {
336 			const __be64 *addr = (const __be64 *)tq->desc;
337 
338 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
339 				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
340 			dma_unmap_page(dev, be64_to_cpu(addr[1]),
341 				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
342 			p = (const struct ulptx_sge_pair *)&addr[2];
343 		} else {
344 			const __be64 *addr = (const __be64 *)tq->desc;
345 
346 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
347 				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
348 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
349 				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
350 			p = (const struct ulptx_sge_pair *)&addr[1];
351 		}
352 	}
353 	if (nfrags) {
354 		__be64 addr;
355 
356 		if ((u8 *)p == (u8 *)tq->stat)
357 			p = (const struct ulptx_sge_pair *)tq->desc;
358 		addr = ((u8 *)p + 16 <= (u8 *)tq->stat
359 			? p->addr[0]
360 			: *(const __be64 *)tq->desc);
361 		dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
362 			       DMA_TO_DEVICE);
363 	}
364 }
365 
366 /**
367  *	free_tx_desc - reclaims TX descriptors and their buffers
368  *	@adapter: the adapter
369  *	@tq: the TX queue to reclaim descriptors from
370  *	@n: the number of descriptors to reclaim
371  *	@unmap: whether the buffers should be unmapped for DMA
372  *
373  *	Reclaims TX descriptors from an SGE TX queue and frees the associated
374  *	TX buffers.  Called with the TX queue lock held.
375  */
376 static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
377 			 unsigned int n, bool unmap)
378 {
379 	struct tx_sw_desc *sdesc;
380 	unsigned int cidx = tq->cidx;
381 	struct device *dev = adapter->pdev_dev;
382 
383 	const int need_unmap = need_skb_unmap() && unmap;
384 
385 	sdesc = &tq->sdesc[cidx];
386 	while (n--) {
387 		/*
388 		 * If we kept a reference to the original TX skb, we need to
389 		 * unmap it from PCI DMA space (if required) and free it.
390 		 */
391 		if (sdesc->skb) {
392 			if (need_unmap)
393 				unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
394 			dev_consume_skb_any(sdesc->skb);
395 			sdesc->skb = NULL;
396 		}
397 
398 		sdesc++;
399 		if (++cidx == tq->size) {
400 			cidx = 0;
401 			sdesc = tq->sdesc;
402 		}
403 	}
404 	tq->cidx = cidx;
405 }
406 
407 /*
408  * Return the number of reclaimable descriptors in a TX queue.
409  */
410 static inline int reclaimable(const struct sge_txq *tq)
411 {
412 	int hw_cidx = be16_to_cpu(tq->stat->cidx);
413 	int reclaimable = hw_cidx - tq->cidx;
414 	if (reclaimable < 0)
415 		reclaimable += tq->size;
416 	return reclaimable;
417 }
418 
419 /**
420  *	reclaim_completed_tx - reclaims completed TX descriptors
421  *	@adapter: the adapter
422  *	@tq: the TX queue to reclaim completed descriptors from
423  *	@unmap: whether the buffers should be unmapped for DMA
424  *
425  *	Reclaims TX descriptors that the SGE has indicated it has processed,
426  *	and frees the associated buffers if possible.  Called with the TX
427  *	queue locked.
428  */
429 static inline void reclaim_completed_tx(struct adapter *adapter,
430 					struct sge_txq *tq,
431 					bool unmap)
432 {
433 	int avail = reclaimable(tq);
434 
435 	if (avail) {
436 		/*
437 		 * Limit the amount of clean up work we do at a time to keep
438 		 * the TX lock hold time O(1).
439 		 */
440 		if (avail > MAX_TX_RECLAIM)
441 			avail = MAX_TX_RECLAIM;
442 
443 		free_tx_desc(adapter, tq, avail, unmap);
444 		tq->in_use -= avail;
445 	}
446 }
447 
448 /**
449  *	get_buf_size - return the size of an RX Free List buffer.
450  *	@adapter: pointer to the associated adapter
451  *	@sdesc: pointer to the software buffer descriptor
452  */
453 static inline int get_buf_size(const struct adapter *adapter,
454 			       const struct rx_sw_desc *sdesc)
455 {
456 	const struct sge *s = &adapter->sge;
457 
458 	return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
459 		? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE);
460 }
461 
462 /**
463  *	free_rx_bufs - free RX buffers on an SGE Free List
464  *	@adapter: the adapter
465  *	@fl: the SGE Free List to free buffers from
466  *	@n: how many buffers to free
467  *
468  *	Release the next @n buffers on an SGE Free List RX queue.   The
469  *	buffers must be made inaccessible to hardware before calling this
470  *	function.
471  */
472 static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
473 {
474 	while (n--) {
475 		struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
476 
477 		if (is_buf_mapped(sdesc))
478 			dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
479 				       get_buf_size(adapter, sdesc),
480 				       PCI_DMA_FROMDEVICE);
481 		put_page(sdesc->page);
482 		sdesc->page = NULL;
483 		if (++fl->cidx == fl->size)
484 			fl->cidx = 0;
485 		fl->avail--;
486 	}
487 }
488 
489 /**
490  *	unmap_rx_buf - unmap the current RX buffer on an SGE Free List
491  *	@adapter: the adapter
492  *	@fl: the SGE Free List
493  *
494  *	Unmap the current buffer on an SGE Free List RX queue.   The
495  *	buffer must be made inaccessible to HW before calling this function.
496  *
497  *	This is similar to @free_rx_bufs above but does not free the buffer.
498  *	Do note that the FL still loses any further access to the buffer.
499  *	This is used predominantly to "transfer ownership" of an FL buffer
500  *	to another entity (typically an skb's fragment list).
501  */
502 static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
503 {
504 	struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
505 
506 	if (is_buf_mapped(sdesc))
507 		dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
508 			       get_buf_size(adapter, sdesc),
509 			       PCI_DMA_FROMDEVICE);
510 	sdesc->page = NULL;
511 	if (++fl->cidx == fl->size)
512 		fl->cidx = 0;
513 	fl->avail--;
514 }
515 
516 /**
517  *	ring_fl_db - righ doorbell on free list
518  *	@adapter: the adapter
519  *	@fl: the Free List whose doorbell should be rung ...
520  *
521  *	Tell the Scatter Gather Engine that there are new free list entries
522  *	available.
523  */
524 static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
525 {
526 	u32 val;
527 
528 	/* The SGE keeps track of its Producer and Consumer Indices in terms
529 	 * of Egress Queue Units so we can only tell it about integral numbers
530 	 * of multiples of Free List Entries per Egress Queue Units ...
531 	 */
532 	if (fl->pend_cred >= FL_PER_EQ_UNIT) {
533 		if (is_t4(adapter->params.chip))
534 			val = PIDX(fl->pend_cred / FL_PER_EQ_UNIT);
535 		else
536 			val = PIDX_T5(fl->pend_cred / FL_PER_EQ_UNIT) |
537 			      DBTYPE(1);
538 		val |= DBPRIO(1);
539 
540 		/* Make sure all memory writes to the Free List queue are
541 		 * committed before we tell the hardware about them.
542 		 */
543 		wmb();
544 
545 		/* If we don't have access to the new User Doorbell (T5+), use
546 		 * the old doorbell mechanism; otherwise use the new BAR2
547 		 * mechanism.
548 		 */
549 		if (unlikely(fl->bar2_addr == NULL)) {
550 			t4_write_reg(adapter,
551 				     T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
552 				     QID(fl->cntxt_id) | val);
553 		} else {
554 			writel(val | QID(fl->bar2_qid),
555 			       fl->bar2_addr + SGE_UDB_KDOORBELL);
556 
557 			/* This Write memory Barrier will force the write to
558 			 * the User Doorbell area to be flushed.
559 			 */
560 			wmb();
561 		}
562 		fl->pend_cred %= FL_PER_EQ_UNIT;
563 	}
564 }
565 
566 /**
567  *	set_rx_sw_desc - initialize software RX buffer descriptor
568  *	@sdesc: pointer to the softwore RX buffer descriptor
569  *	@page: pointer to the page data structure backing the RX buffer
570  *	@dma_addr: PCI DMA address (possibly with low-bit flags)
571  */
572 static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
573 				  dma_addr_t dma_addr)
574 {
575 	sdesc->page = page;
576 	sdesc->dma_addr = dma_addr;
577 }
578 
579 /*
580  * Support for poisoning RX buffers ...
581  */
582 #define POISON_BUF_VAL -1
583 
584 static inline void poison_buf(struct page *page, size_t sz)
585 {
586 #if POISON_BUF_VAL >= 0
587 	memset(page_address(page), POISON_BUF_VAL, sz);
588 #endif
589 }
590 
591 /**
592  *	refill_fl - refill an SGE RX buffer ring
593  *	@adapter: the adapter
594  *	@fl: the Free List ring to refill
595  *	@n: the number of new buffers to allocate
596  *	@gfp: the gfp flags for the allocations
597  *
598  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
599  *	allocated with the supplied gfp flags.  The caller must assure that
600  *	@n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
601  *	EGRESS QUEUE UNITS_ indicates an empty Free List!  Returns the number
602  *	of buffers allocated.  If afterwards the queue is found critically low,
603  *	mark it as starving in the bitmap of starving FLs.
604  */
605 static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
606 			      int n, gfp_t gfp)
607 {
608 	struct sge *s = &adapter->sge;
609 	struct page *page;
610 	dma_addr_t dma_addr;
611 	unsigned int cred = fl->avail;
612 	__be64 *d = &fl->desc[fl->pidx];
613 	struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
614 
615 	/*
616 	 * Sanity: ensure that the result of adding n Free List buffers
617 	 * won't result in wrapping the SGE's Producer Index around to
618 	 * it's Consumer Index thereby indicating an empty Free List ...
619 	 */
620 	BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
621 
622 	gfp |= __GFP_NOWARN;
623 
624 	/*
625 	 * If we support large pages, prefer large buffers and fail over to
626 	 * small pages if we can't allocate large pages to satisfy the refill.
627 	 * If we don't support large pages, drop directly into the small page
628 	 * allocation code.
629 	 */
630 	if (s->fl_pg_order == 0)
631 		goto alloc_small_pages;
632 
633 	while (n) {
634 		page = __dev_alloc_pages(gfp, s->fl_pg_order);
635 		if (unlikely(!page)) {
636 			/*
637 			 * We've failed inour attempt to allocate a "large
638 			 * page".  Fail over to the "small page" allocation
639 			 * below.
640 			 */
641 			fl->large_alloc_failed++;
642 			break;
643 		}
644 		poison_buf(page, PAGE_SIZE << s->fl_pg_order);
645 
646 		dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
647 					PAGE_SIZE << s->fl_pg_order,
648 					PCI_DMA_FROMDEVICE);
649 		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
650 			/*
651 			 * We've run out of DMA mapping space.  Free up the
652 			 * buffer and return with what we've managed to put
653 			 * into the free list.  We don't want to fail over to
654 			 * the small page allocation below in this case
655 			 * because DMA mapping resources are typically
656 			 * critical resources once they become scarse.
657 			 */
658 			__free_pages(page, s->fl_pg_order);
659 			goto out;
660 		}
661 		dma_addr |= RX_LARGE_BUF;
662 		*d++ = cpu_to_be64(dma_addr);
663 
664 		set_rx_sw_desc(sdesc, page, dma_addr);
665 		sdesc++;
666 
667 		fl->avail++;
668 		if (++fl->pidx == fl->size) {
669 			fl->pidx = 0;
670 			sdesc = fl->sdesc;
671 			d = fl->desc;
672 		}
673 		n--;
674 	}
675 
676 alloc_small_pages:
677 	while (n--) {
678 		page = __dev_alloc_page(gfp);
679 		if (unlikely(!page)) {
680 			fl->alloc_failed++;
681 			break;
682 		}
683 		poison_buf(page, PAGE_SIZE);
684 
685 		dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
686 				       PCI_DMA_FROMDEVICE);
687 		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
688 			put_page(page);
689 			break;
690 		}
691 		*d++ = cpu_to_be64(dma_addr);
692 
693 		set_rx_sw_desc(sdesc, page, dma_addr);
694 		sdesc++;
695 
696 		fl->avail++;
697 		if (++fl->pidx == fl->size) {
698 			fl->pidx = 0;
699 			sdesc = fl->sdesc;
700 			d = fl->desc;
701 		}
702 	}
703 
704 out:
705 	/*
706 	 * Update our accounting state to incorporate the new Free List
707 	 * buffers, tell the hardware about them and return the number of
708 	 * buffers which we were able to allocate.
709 	 */
710 	cred = fl->avail - cred;
711 	fl->pend_cred += cred;
712 	ring_fl_db(adapter, fl);
713 
714 	if (unlikely(fl_starving(adapter, fl))) {
715 		smp_wmb();
716 		set_bit(fl->cntxt_id, adapter->sge.starving_fl);
717 	}
718 
719 	return cred;
720 }
721 
722 /*
723  * Refill a Free List to its capacity or the Maximum Refill Increment,
724  * whichever is smaller ...
725  */
726 static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
727 {
728 	refill_fl(adapter, fl,
729 		  min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
730 		  GFP_ATOMIC);
731 }
732 
733 /**
734  *	alloc_ring - allocate resources for an SGE descriptor ring
735  *	@dev: the PCI device's core device
736  *	@nelem: the number of descriptors
737  *	@hwsize: the size of each hardware descriptor
738  *	@swsize: the size of each software descriptor
739  *	@busaddrp: the physical PCI bus address of the allocated ring
740  *	@swringp: return address pointer for software ring
741  *	@stat_size: extra space in hardware ring for status information
742  *
743  *	Allocates resources for an SGE descriptor ring, such as TX queues,
744  *	free buffer lists, response queues, etc.  Each SGE ring requires
745  *	space for its hardware descriptors plus, optionally, space for software
746  *	state associated with each hardware entry (the metadata).  The function
747  *	returns three values: the virtual address for the hardware ring (the
748  *	return value of the function), the PCI bus address of the hardware
749  *	ring (in *busaddrp), and the address of the software ring (in swringp).
750  *	Both the hardware and software rings are returned zeroed out.
751  */
752 static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
753 			size_t swsize, dma_addr_t *busaddrp, void *swringp,
754 			size_t stat_size)
755 {
756 	/*
757 	 * Allocate the hardware ring and PCI DMA bus address space for said.
758 	 */
759 	size_t hwlen = nelem * hwsize + stat_size;
760 	void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
761 
762 	if (!hwring)
763 		return NULL;
764 
765 	/*
766 	 * If the caller wants a software ring, allocate it and return a
767 	 * pointer to it in *swringp.
768 	 */
769 	BUG_ON((swsize != 0) != (swringp != NULL));
770 	if (swsize) {
771 		void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
772 
773 		if (!swring) {
774 			dma_free_coherent(dev, hwlen, hwring, *busaddrp);
775 			return NULL;
776 		}
777 		*(void **)swringp = swring;
778 	}
779 
780 	/*
781 	 * Zero out the hardware ring and return its address as our function
782 	 * value.
783 	 */
784 	memset(hwring, 0, hwlen);
785 	return hwring;
786 }
787 
788 /**
789  *	sgl_len - calculates the size of an SGL of the given capacity
790  *	@n: the number of SGL entries
791  *
792  *	Calculates the number of flits (8-byte units) needed for a Direct
793  *	Scatter/Gather List that can hold the given number of entries.
794  */
795 static inline unsigned int sgl_len(unsigned int n)
796 {
797 	/*
798 	 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
799 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
800 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
801 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
802 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
803 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
804 	 * Address[N+1] is omitted.
805 	 *
806 	 * The following calculation incorporates all of the above.  It's
807 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
808 	 * first two flits which include the DSGL header, Length0 and
809 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
810 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
811 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
812 	 * (n-1) is odd ...
813 	 */
814 	n--;
815 	return (3 * n) / 2 + (n & 1) + 2;
816 }
817 
818 /**
819  *	flits_to_desc - returns the num of TX descriptors for the given flits
820  *	@flits: the number of flits
821  *
822  *	Returns the number of TX descriptors needed for the supplied number
823  *	of flits.
824  */
825 static inline unsigned int flits_to_desc(unsigned int flits)
826 {
827 	BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
828 	return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
829 }
830 
831 /**
832  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
833  *	@skb: the packet
834  *
835  *	Returns whether an Ethernet packet is small enough to fit completely as
836  *	immediate data.
837  */
838 static inline int is_eth_imm(const struct sk_buff *skb)
839 {
840 	/*
841 	 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
842 	 * which does not accommodate immediate data.  We could dike out all
843 	 * of the support code for immediate data but that would tie our hands
844 	 * too much if we ever want to enhace the firmware.  It would also
845 	 * create more differences between the PF and VF Drivers.
846 	 */
847 	return false;
848 }
849 
850 /**
851  *	calc_tx_flits - calculate the number of flits for a packet TX WR
852  *	@skb: the packet
853  *
854  *	Returns the number of flits needed for a TX Work Request for the
855  *	given Ethernet packet, including the needed WR and CPL headers.
856  */
857 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
858 {
859 	unsigned int flits;
860 
861 	/*
862 	 * If the skb is small enough, we can pump it out as a work request
863 	 * with only immediate data.  In that case we just have to have the
864 	 * TX Packet header plus the skb data in the Work Request.
865 	 */
866 	if (is_eth_imm(skb))
867 		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
868 				    sizeof(__be64));
869 
870 	/*
871 	 * Otherwise, we're going to have to construct a Scatter gather list
872 	 * of the skb body and fragments.  We also include the flits necessary
873 	 * for the TX Packet Work Request and CPL.  We always have a firmware
874 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
875 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
876 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
877 	 * with an embeded TX Packet Write CPL message.
878 	 */
879 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
880 	if (skb_shinfo(skb)->gso_size)
881 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
882 			  sizeof(struct cpl_tx_pkt_lso_core) +
883 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
884 	else
885 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
886 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
887 	return flits;
888 }
889 
890 /**
891  *	write_sgl - populate a Scatter/Gather List for a packet
892  *	@skb: the packet
893  *	@tq: the TX queue we are writing into
894  *	@sgl: starting location for writing the SGL
895  *	@end: points right after the end of the SGL
896  *	@start: start offset into skb main-body data to include in the SGL
897  *	@addr: the list of DMA bus addresses for the SGL elements
898  *
899  *	Generates a Scatter/Gather List for the buffers that make up a packet.
900  *	The caller must provide adequate space for the SGL that will be written.
901  *	The SGL includes all of the packet's page fragments and the data in its
902  *	main body except for the first @start bytes.  @pos must be 16-byte
903  *	aligned and within a TX descriptor with available space.  @end points
904  *	write after the end of the SGL but does not account for any potential
905  *	wrap around, i.e., @end > @tq->stat.
906  */
907 static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
908 		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
909 		      const dma_addr_t *addr)
910 {
911 	unsigned int i, len;
912 	struct ulptx_sge_pair *to;
913 	const struct skb_shared_info *si = skb_shinfo(skb);
914 	unsigned int nfrags = si->nr_frags;
915 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
916 
917 	len = skb_headlen(skb) - start;
918 	if (likely(len)) {
919 		sgl->len0 = htonl(len);
920 		sgl->addr0 = cpu_to_be64(addr[0] + start);
921 		nfrags++;
922 	} else {
923 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
924 		sgl->addr0 = cpu_to_be64(addr[1]);
925 	}
926 
927 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
928 			      ULPTX_NSGE(nfrags));
929 	if (likely(--nfrags == 0))
930 		return;
931 	/*
932 	 * Most of the complexity below deals with the possibility we hit the
933 	 * end of the queue in the middle of writing the SGL.  For this case
934 	 * only we create the SGL in a temporary buffer and then copy it.
935 	 */
936 	to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
937 
938 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
939 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
940 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
941 		to->addr[0] = cpu_to_be64(addr[i]);
942 		to->addr[1] = cpu_to_be64(addr[++i]);
943 	}
944 	if (nfrags) {
945 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
946 		to->len[1] = cpu_to_be32(0);
947 		to->addr[0] = cpu_to_be64(addr[i + 1]);
948 	}
949 	if (unlikely((u8 *)end > (u8 *)tq->stat)) {
950 		unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
951 
952 		if (likely(part0))
953 			memcpy(sgl->sge, buf, part0);
954 		part1 = (u8 *)end - (u8 *)tq->stat;
955 		memcpy(tq->desc, (u8 *)buf + part0, part1);
956 		end = (void *)tq->desc + part1;
957 	}
958 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
959 		*end = 0;
960 }
961 
962 /**
963  *	check_ring_tx_db - check and potentially ring a TX queue's doorbell
964  *	@adapter: the adapter
965  *	@tq: the TX queue
966  *	@n: number of new descriptors to give to HW
967  *
968  *	Ring the doorbel for a TX queue.
969  */
970 static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
971 			      int n)
972 {
973 	/* Make sure that all writes to the TX Descriptors are committed
974 	 * before we tell the hardware about them.
975 	 */
976 	wmb();
977 
978 	/* If we don't have access to the new User Doorbell (T5+), use the old
979 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
980 	 */
981 	if (unlikely(tq->bar2_addr == NULL)) {
982 		u32 val = PIDX(n);
983 
984 		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
985 			     QID(tq->cntxt_id) | val);
986 	} else {
987 		u32 val = PIDX_T5(n);
988 
989 		/* T4 and later chips share the same PIDX field offset within
990 		 * the doorbell, but T5 and later shrank the field in order to
991 		 * gain a bit for Doorbell Priority.  The field was absurdly
992 		 * large in the first place (14 bits) so we just use the T5
993 		 * and later limits and warn if a Queue ID is too large.
994 		 */
995 		WARN_ON(val & DBPRIO(1));
996 
997 		/* If we're only writing a single Egress Unit and the BAR2
998 		 * Queue ID is 0, we can use the Write Combining Doorbell
999 		 * Gather Buffer; otherwise we use the simple doorbell.
1000 		 */
1001 		if (n == 1 && tq->bar2_qid == 0) {
1002 			unsigned int index = (tq->pidx
1003 					      ? (tq->pidx - 1)
1004 					      : (tq->size - 1));
1005 			__be64 *src = (__be64 *)&tq->desc[index];
1006 			__be64 __iomem *dst = (__be64 *)(tq->bar2_addr +
1007 							 SGE_UDB_WCDOORBELL);
1008 			unsigned int count = EQ_UNIT / sizeof(__be64);
1009 
1010 			/* Copy the TX Descriptor in a tight loop in order to
1011 			 * try to get it to the adapter in a single Write
1012 			 * Combined transfer on the PCI-E Bus.  If the Write
1013 			 * Combine fails (say because of an interrupt, etc.)
1014 			 * the hardware will simply take the last write as a
1015 			 * simple doorbell write with a PIDX Increment of 1
1016 			 * and will fetch the TX Descriptor from memory via
1017 			 * DMA.
1018 			 */
1019 			while (count) {
1020 				writeq(*src, dst);
1021 				src++;
1022 				dst++;
1023 				count--;
1024 			}
1025 		} else
1026 			writel(val | QID(tq->bar2_qid),
1027 			       tq->bar2_addr + SGE_UDB_KDOORBELL);
1028 
1029 		/* This Write Memory Barrier will force the write to the User
1030 		 * Doorbell area to be flushed.  This is needed to prevent
1031 		 * writes on different CPUs for the same queue from hitting
1032 		 * the adapter out of order.  This is required when some Work
1033 		 * Requests take the Write Combine Gather Buffer path (user
1034 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1035 		 * take the traditional path where we simply increment the
1036 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1037 		 * hardware DMA read the actual Work Request.
1038 		 */
1039 		wmb();
1040 	}
1041 }
1042 
1043 /**
1044  *	inline_tx_skb - inline a packet's data into TX descriptors
1045  *	@skb: the packet
1046  *	@tq: the TX queue where the packet will be inlined
1047  *	@pos: starting position in the TX queue to inline the packet
1048  *
1049  *	Inline a packet's contents directly into TX descriptors, starting at
1050  *	the given position within the TX DMA ring.
1051  *	Most of the complexity of this operation is dealing with wrap arounds
1052  *	in the middle of the packet we want to inline.
1053  */
1054 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
1055 			  void *pos)
1056 {
1057 	u64 *p;
1058 	int left = (void *)tq->stat - pos;
1059 
1060 	if (likely(skb->len <= left)) {
1061 		if (likely(!skb->data_len))
1062 			skb_copy_from_linear_data(skb, pos, skb->len);
1063 		else
1064 			skb_copy_bits(skb, 0, pos, skb->len);
1065 		pos += skb->len;
1066 	} else {
1067 		skb_copy_bits(skb, 0, pos, left);
1068 		skb_copy_bits(skb, left, tq->desc, skb->len - left);
1069 		pos = (void *)tq->desc + (skb->len - left);
1070 	}
1071 
1072 	/* 0-pad to multiple of 16 */
1073 	p = PTR_ALIGN(pos, 8);
1074 	if ((uintptr_t)p & 8)
1075 		*p = 0;
1076 }
1077 
1078 /*
1079  * Figure out what HW csum a packet wants and return the appropriate control
1080  * bits.
1081  */
1082 static u64 hwcsum(const struct sk_buff *skb)
1083 {
1084 	int csum_type;
1085 	const struct iphdr *iph = ip_hdr(skb);
1086 
1087 	if (iph->version == 4) {
1088 		if (iph->protocol == IPPROTO_TCP)
1089 			csum_type = TX_CSUM_TCPIP;
1090 		else if (iph->protocol == IPPROTO_UDP)
1091 			csum_type = TX_CSUM_UDPIP;
1092 		else {
1093 nocsum:
1094 			/*
1095 			 * unknown protocol, disable HW csum
1096 			 * and hope a bad packet is detected
1097 			 */
1098 			return TXPKT_L4CSUM_DIS;
1099 		}
1100 	} else {
1101 		/*
1102 		 * this doesn't work with extension headers
1103 		 */
1104 		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1105 
1106 		if (ip6h->nexthdr == IPPROTO_TCP)
1107 			csum_type = TX_CSUM_TCPIP6;
1108 		else if (ip6h->nexthdr == IPPROTO_UDP)
1109 			csum_type = TX_CSUM_UDPIP6;
1110 		else
1111 			goto nocsum;
1112 	}
1113 
1114 	if (likely(csum_type >= TX_CSUM_TCPIP))
1115 		return TXPKT_CSUM_TYPE(csum_type) |
1116 			TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
1117 			TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
1118 	else {
1119 		int start = skb_transport_offset(skb);
1120 
1121 		return TXPKT_CSUM_TYPE(csum_type) |
1122 			TXPKT_CSUM_START(start) |
1123 			TXPKT_CSUM_LOC(start + skb->csum_offset);
1124 	}
1125 }
1126 
1127 /*
1128  * Stop an Ethernet TX queue and record that state change.
1129  */
1130 static void txq_stop(struct sge_eth_txq *txq)
1131 {
1132 	netif_tx_stop_queue(txq->txq);
1133 	txq->q.stops++;
1134 }
1135 
1136 /*
1137  * Advance our software state for a TX queue by adding n in use descriptors.
1138  */
1139 static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1140 {
1141 	tq->in_use += n;
1142 	tq->pidx += n;
1143 	if (tq->pidx >= tq->size)
1144 		tq->pidx -= tq->size;
1145 }
1146 
1147 /**
1148  *	t4vf_eth_xmit - add a packet to an Ethernet TX queue
1149  *	@skb: the packet
1150  *	@dev: the egress net device
1151  *
1152  *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1153  */
1154 int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1155 {
1156 	u32 wr_mid;
1157 	u64 cntrl, *end;
1158 	int qidx, credits;
1159 	unsigned int flits, ndesc;
1160 	struct adapter *adapter;
1161 	struct sge_eth_txq *txq;
1162 	const struct port_info *pi;
1163 	struct fw_eth_tx_pkt_vm_wr *wr;
1164 	struct cpl_tx_pkt_core *cpl;
1165 	const struct skb_shared_info *ssi;
1166 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1167 	const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
1168 					sizeof(wr->ethmacsrc) +
1169 					sizeof(wr->ethtype) +
1170 					sizeof(wr->vlantci));
1171 
1172 	/*
1173 	 * The chip minimum packet length is 10 octets but the firmware
1174 	 * command that we are using requires that we copy the Ethernet header
1175 	 * (including the VLAN tag) into the header so we reject anything
1176 	 * smaller than that ...
1177 	 */
1178 	if (unlikely(skb->len < fw_hdr_copy_len))
1179 		goto out_free;
1180 
1181 	/*
1182 	 * Figure out which TX Queue we're going to use.
1183 	 */
1184 	pi = netdev_priv(dev);
1185 	adapter = pi->adapter;
1186 	qidx = skb_get_queue_mapping(skb);
1187 	BUG_ON(qidx >= pi->nqsets);
1188 	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1189 
1190 	/*
1191 	 * Take this opportunity to reclaim any TX Descriptors whose DMA
1192 	 * transfers have completed.
1193 	 */
1194 	reclaim_completed_tx(adapter, &txq->q, true);
1195 
1196 	/*
1197 	 * Calculate the number of flits and TX Descriptors we're going to
1198 	 * need along with how many TX Descriptors will be left over after
1199 	 * we inject our Work Request.
1200 	 */
1201 	flits = calc_tx_flits(skb);
1202 	ndesc = flits_to_desc(flits);
1203 	credits = txq_avail(&txq->q) - ndesc;
1204 
1205 	if (unlikely(credits < 0)) {
1206 		/*
1207 		 * Not enough room for this packet's Work Request.  Stop the
1208 		 * TX Queue and return a "busy" condition.  The queue will get
1209 		 * started later on when the firmware informs us that space
1210 		 * has opened up.
1211 		 */
1212 		txq_stop(txq);
1213 		dev_err(adapter->pdev_dev,
1214 			"%s: TX ring %u full while queue awake!\n",
1215 			dev->name, qidx);
1216 		return NETDEV_TX_BUSY;
1217 	}
1218 
1219 	if (!is_eth_imm(skb) &&
1220 	    unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1221 		/*
1222 		 * We need to map the skb into PCI DMA space (because it can't
1223 		 * be in-lined directly into the Work Request) and the mapping
1224 		 * operation failed.  Record the error and drop the packet.
1225 		 */
1226 		txq->mapping_err++;
1227 		goto out_free;
1228 	}
1229 
1230 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1231 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1232 		/*
1233 		 * After we're done injecting the Work Request for this
1234 		 * packet, we'll be below our "stop threshold" so stop the TX
1235 		 * Queue now and schedule a request for an SGE Egress Queue
1236 		 * Update message.  The queue will get started later on when
1237 		 * the firmware processes this Work Request and sends us an
1238 		 * Egress Queue Status Update message indicating that space
1239 		 * has opened up.
1240 		 */
1241 		txq_stop(txq);
1242 		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1243 	}
1244 
1245 	/*
1246 	 * Start filling in our Work Request.  Note that we do _not_ handle
1247 	 * the WR Header wrapping around the TX Descriptor Ring.  If our
1248 	 * maximum header size ever exceeds one TX Descriptor, we'll need to
1249 	 * do something else here.
1250 	 */
1251 	BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1252 	wr = (void *)&txq->q.desc[txq->q.pidx];
1253 	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1254 	wr->r3[0] = cpu_to_be64(0);
1255 	wr->r3[1] = cpu_to_be64(0);
1256 	skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1257 	end = (u64 *)wr + flits;
1258 
1259 	/*
1260 	 * If this is a Large Send Offload packet we'll put in an LSO CPL
1261 	 * message with an encapsulated TX Packet CPL message.  Otherwise we
1262 	 * just use a TX Packet CPL message.
1263 	 */
1264 	ssi = skb_shinfo(skb);
1265 	if (ssi->gso_size) {
1266 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1267 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1268 		int l3hdr_len = skb_network_header_len(skb);
1269 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1270 
1271 		wr->op_immdlen =
1272 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1273 				    FW_WR_IMMDLEN_V(sizeof(*lso) +
1274 						    sizeof(*cpl)));
1275 		/*
1276 		 * Fill in the LSO CPL message.
1277 		 */
1278 		lso->lso_ctrl =
1279 			cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO) |
1280 				    LSO_FIRST_SLICE |
1281 				    LSO_LAST_SLICE |
1282 				    LSO_IPV6(v6) |
1283 				    LSO_ETHHDR_LEN(eth_xtra_len/4) |
1284 				    LSO_IPHDR_LEN(l3hdr_len/4) |
1285 				    LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1286 		lso->ipid_ofst = cpu_to_be16(0);
1287 		lso->mss = cpu_to_be16(ssi->gso_size);
1288 		lso->seqno_offset = cpu_to_be32(0);
1289 		if (is_t4(adapter->params.chip))
1290 			lso->len = cpu_to_be32(skb->len);
1291 		else
1292 			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE(skb->len));
1293 
1294 		/*
1295 		 * Set up TX Packet CPL pointer, control word and perform
1296 		 * accounting.
1297 		 */
1298 		cpl = (void *)(lso + 1);
1299 		cntrl = (TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1300 			 TXPKT_IPHDR_LEN(l3hdr_len) |
1301 			 TXPKT_ETHHDR_LEN(eth_xtra_len));
1302 		txq->tso++;
1303 		txq->tx_cso += ssi->gso_segs;
1304 	} else {
1305 		int len;
1306 
1307 		len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1308 		wr->op_immdlen =
1309 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1310 				    FW_WR_IMMDLEN_V(len));
1311 
1312 		/*
1313 		 * Set up TX Packet CPL pointer, control word and perform
1314 		 * accounting.
1315 		 */
1316 		cpl = (void *)(wr + 1);
1317 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1318 			cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1319 			txq->tx_cso++;
1320 		} else
1321 			cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1322 	}
1323 
1324 	/*
1325 	 * If there's a VLAN tag present, add that to the list of things to
1326 	 * do in this Work Request.
1327 	 */
1328 	if (vlan_tx_tag_present(skb)) {
1329 		txq->vlan_ins++;
1330 		cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
1331 	}
1332 
1333 	/*
1334 	 * Fill in the TX Packet CPL message header.
1335 	 */
1336 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1337 				 TXPKT_INTF(pi->port_id) |
1338 				 TXPKT_PF(0));
1339 	cpl->pack = cpu_to_be16(0);
1340 	cpl->len = cpu_to_be16(skb->len);
1341 	cpl->ctrl1 = cpu_to_be64(cntrl);
1342 
1343 #ifdef T4_TRACE
1344 	T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1345 		  "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1346 		  ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1347 #endif
1348 
1349 	/*
1350 	 * Fill in the body of the TX Packet CPL message with either in-lined
1351 	 * data or a Scatter/Gather List.
1352 	 */
1353 	if (is_eth_imm(skb)) {
1354 		/*
1355 		 * In-line the packet's data and free the skb since we don't
1356 		 * need it any longer.
1357 		 */
1358 		inline_tx_skb(skb, &txq->q, cpl + 1);
1359 		dev_consume_skb_any(skb);
1360 	} else {
1361 		/*
1362 		 * Write the skb's Scatter/Gather list into the TX Packet CPL
1363 		 * message and retain a pointer to the skb so we can free it
1364 		 * later when its DMA completes.  (We store the skb pointer
1365 		 * in the Software Descriptor corresponding to the last TX
1366 		 * Descriptor used by the Work Request.)
1367 		 *
1368 		 * The retained skb will be freed when the corresponding TX
1369 		 * Descriptors are reclaimed after their DMAs complete.
1370 		 * However, this could take quite a while since, in general,
1371 		 * the hardware is set up to be lazy about sending DMA
1372 		 * completion notifications to us and we mostly perform TX
1373 		 * reclaims in the transmit routine.
1374 		 *
1375 		 * This is good for performamce but means that we rely on new
1376 		 * TX packets arriving to run the destructors of completed
1377 		 * packets, which open up space in their sockets' send queues.
1378 		 * Sometimes we do not get such new packets causing TX to
1379 		 * stall.  A single UDP transmitter is a good example of this
1380 		 * situation.  We have a clean up timer that periodically
1381 		 * reclaims completed packets but it doesn't run often enough
1382 		 * (nor do we want it to) to prevent lengthy stalls.  A
1383 		 * solution to this problem is to run the destructor early,
1384 		 * after the packet is queued but before it's DMAd.  A con is
1385 		 * that we lie to socket memory accounting, but the amount of
1386 		 * extra memory is reasonable (limited by the number of TX
1387 		 * descriptors), the packets do actually get freed quickly by
1388 		 * new packets almost always, and for protocols like TCP that
1389 		 * wait for acks to really free up the data the extra memory
1390 		 * is even less.  On the positive side we run the destructors
1391 		 * on the sending CPU rather than on a potentially different
1392 		 * completing CPU, usually a good thing.
1393 		 *
1394 		 * Run the destructor before telling the DMA engine about the
1395 		 * packet to make sure it doesn't complete and get freed
1396 		 * prematurely.
1397 		 */
1398 		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1399 		struct sge_txq *tq = &txq->q;
1400 		int last_desc;
1401 
1402 		/*
1403 		 * If the Work Request header was an exact multiple of our TX
1404 		 * Descriptor length, then it's possible that the starting SGL
1405 		 * pointer lines up exactly with the end of our TX Descriptor
1406 		 * ring.  If that's the case, wrap around to the beginning
1407 		 * here ...
1408 		 */
1409 		if (unlikely((void *)sgl == (void *)tq->stat)) {
1410 			sgl = (void *)tq->desc;
1411 			end = ((void *)tq->desc + ((void *)end - (void *)tq->stat));
1412 		}
1413 
1414 		write_sgl(skb, tq, sgl, end, 0, addr);
1415 		skb_orphan(skb);
1416 
1417 		last_desc = tq->pidx + ndesc - 1;
1418 		if (last_desc >= tq->size)
1419 			last_desc -= tq->size;
1420 		tq->sdesc[last_desc].skb = skb;
1421 		tq->sdesc[last_desc].sgl = sgl;
1422 	}
1423 
1424 	/*
1425 	 * Advance our internal TX Queue state, tell the hardware about
1426 	 * the new TX descriptors and return success.
1427 	 */
1428 	txq_advance(&txq->q, ndesc);
1429 	dev->trans_start = jiffies;
1430 	ring_tx_db(adapter, &txq->q, ndesc);
1431 	return NETDEV_TX_OK;
1432 
1433 out_free:
1434 	/*
1435 	 * An error of some sort happened.  Free the TX skb and tell the
1436 	 * OS that we've "dealt" with the packet ...
1437 	 */
1438 	dev_kfree_skb_any(skb);
1439 	return NETDEV_TX_OK;
1440 }
1441 
1442 /**
1443  *	copy_frags - copy fragments from gather list into skb_shared_info
1444  *	@skb: destination skb
1445  *	@gl: source internal packet gather list
1446  *	@offset: packet start offset in first page
1447  *
1448  *	Copy an internal packet gather list into a Linux skb_shared_info
1449  *	structure.
1450  */
1451 static inline void copy_frags(struct sk_buff *skb,
1452 			      const struct pkt_gl *gl,
1453 			      unsigned int offset)
1454 {
1455 	int i;
1456 
1457 	/* usually there's just one frag */
1458 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
1459 			     gl->frags[0].offset + offset,
1460 			     gl->frags[0].size - offset);
1461 	skb_shinfo(skb)->nr_frags = gl->nfrags;
1462 	for (i = 1; i < gl->nfrags; i++)
1463 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
1464 				     gl->frags[i].offset,
1465 				     gl->frags[i].size);
1466 
1467 	/* get a reference to the last page, we don't own it */
1468 	get_page(gl->frags[gl->nfrags - 1].page);
1469 }
1470 
1471 /**
1472  *	t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1473  *	@gl: the gather list
1474  *	@skb_len: size of sk_buff main body if it carries fragments
1475  *	@pull_len: amount of data to move to the sk_buff's main body
1476  *
1477  *	Builds an sk_buff from the given packet gather list.  Returns the
1478  *	sk_buff or %NULL if sk_buff allocation failed.
1479  */
1480 static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
1481 					 unsigned int skb_len,
1482 					 unsigned int pull_len)
1483 {
1484 	struct sk_buff *skb;
1485 
1486 	/*
1487 	 * If the ingress packet is small enough, allocate an skb large enough
1488 	 * for all of the data and copy it inline.  Otherwise, allocate an skb
1489 	 * with enough room to pull in the header and reference the rest of
1490 	 * the data via the skb fragment list.
1491 	 *
1492 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx
1493 	 * buff!  size, which is expected since buffers are at least
1494 	 * PAGE_SIZEd.  In this case packets up to RX_COPY_THRES have only one
1495 	 * fragment.
1496 	 */
1497 	if (gl->tot_len <= RX_COPY_THRES) {
1498 		/* small packets have only one fragment */
1499 		skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
1500 		if (unlikely(!skb))
1501 			goto out;
1502 		__skb_put(skb, gl->tot_len);
1503 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1504 	} else {
1505 		skb = alloc_skb(skb_len, GFP_ATOMIC);
1506 		if (unlikely(!skb))
1507 			goto out;
1508 		__skb_put(skb, pull_len);
1509 		skb_copy_to_linear_data(skb, gl->va, pull_len);
1510 
1511 		copy_frags(skb, gl, pull_len);
1512 		skb->len = gl->tot_len;
1513 		skb->data_len = skb->len - pull_len;
1514 		skb->truesize += skb->data_len;
1515 	}
1516 
1517 out:
1518 	return skb;
1519 }
1520 
1521 /**
1522  *	t4vf_pktgl_free - free a packet gather list
1523  *	@gl: the gather list
1524  *
1525  *	Releases the pages of a packet gather list.  We do not own the last
1526  *	page on the list and do not free it.
1527  */
1528 static void t4vf_pktgl_free(const struct pkt_gl *gl)
1529 {
1530 	int frag;
1531 
1532 	frag = gl->nfrags - 1;
1533 	while (frag--)
1534 		put_page(gl->frags[frag].page);
1535 }
1536 
1537 /**
1538  *	do_gro - perform Generic Receive Offload ingress packet processing
1539  *	@rxq: ingress RX Ethernet Queue
1540  *	@gl: gather list for ingress packet
1541  *	@pkt: CPL header for last packet fragment
1542  *
1543  *	Perform Generic Receive Offload (GRO) ingress packet processing.
1544  *	We use the standard Linux GRO interfaces for this.
1545  */
1546 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1547 		   const struct cpl_rx_pkt *pkt)
1548 {
1549 	struct adapter *adapter = rxq->rspq.adapter;
1550 	struct sge *s = &adapter->sge;
1551 	int ret;
1552 	struct sk_buff *skb;
1553 
1554 	skb = napi_get_frags(&rxq->rspq.napi);
1555 	if (unlikely(!skb)) {
1556 		t4vf_pktgl_free(gl);
1557 		rxq->stats.rx_drops++;
1558 		return;
1559 	}
1560 
1561 	copy_frags(skb, gl, s->pktshift);
1562 	skb->len = gl->tot_len - s->pktshift;
1563 	skb->data_len = skb->len;
1564 	skb->truesize += skb->data_len;
1565 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1566 	skb_record_rx_queue(skb, rxq->rspq.idx);
1567 
1568 	if (pkt->vlan_ex) {
1569 		__vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1570 					be16_to_cpu(pkt->vlan));
1571 		rxq->stats.vlan_ex++;
1572 	}
1573 	ret = napi_gro_frags(&rxq->rspq.napi);
1574 
1575 	if (ret == GRO_HELD)
1576 		rxq->stats.lro_pkts++;
1577 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1578 		rxq->stats.lro_merged++;
1579 	rxq->stats.pkts++;
1580 	rxq->stats.rx_cso++;
1581 }
1582 
1583 /**
1584  *	t4vf_ethrx_handler - process an ingress ethernet packet
1585  *	@rspq: the response queue that received the packet
1586  *	@rsp: the response queue descriptor holding the RX_PKT message
1587  *	@gl: the gather list of packet fragments
1588  *
1589  *	Process an ingress ethernet packet and deliver it to the stack.
1590  */
1591 int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1592 		       const struct pkt_gl *gl)
1593 {
1594 	struct sk_buff *skb;
1595 	const struct cpl_rx_pkt *pkt = (void *)rsp;
1596 	bool csum_ok = pkt->csum_calc && !pkt->err_vec &&
1597 		       (rspq->netdev->features & NETIF_F_RXCSUM);
1598 	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1599 	struct adapter *adapter = rspq->adapter;
1600 	struct sge *s = &adapter->sge;
1601 
1602 	/*
1603 	 * If this is a good TCP packet and we have Generic Receive Offload
1604 	 * enabled, handle the packet in the GRO path.
1605 	 */
1606 	if ((pkt->l2info & cpu_to_be32(RXF_TCP)) &&
1607 	    (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1608 	    !pkt->ip_frag) {
1609 		do_gro(rxq, gl, pkt);
1610 		return 0;
1611 	}
1612 
1613 	/*
1614 	 * Convert the Packet Gather List into an skb.
1615 	 */
1616 	skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
1617 	if (unlikely(!skb)) {
1618 		t4vf_pktgl_free(gl);
1619 		rxq->stats.rx_drops++;
1620 		return 0;
1621 	}
1622 	__skb_pull(skb, s->pktshift);
1623 	skb->protocol = eth_type_trans(skb, rspq->netdev);
1624 	skb_record_rx_queue(skb, rspq->idx);
1625 	rxq->stats.pkts++;
1626 
1627 	if (csum_ok && !pkt->err_vec &&
1628 	    (be32_to_cpu(pkt->l2info) & (RXF_UDP|RXF_TCP))) {
1629 		if (!pkt->ip_frag)
1630 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1631 		else {
1632 			__sum16 c = (__force __sum16)pkt->csum;
1633 			skb->csum = csum_unfold(c);
1634 			skb->ip_summed = CHECKSUM_COMPLETE;
1635 		}
1636 		rxq->stats.rx_cso++;
1637 	} else
1638 		skb_checksum_none_assert(skb);
1639 
1640 	if (pkt->vlan_ex) {
1641 		rxq->stats.vlan_ex++;
1642 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(pkt->vlan));
1643 	}
1644 
1645 	netif_receive_skb(skb);
1646 
1647 	return 0;
1648 }
1649 
1650 /**
1651  *	is_new_response - check if a response is newly written
1652  *	@rc: the response control descriptor
1653  *	@rspq: the response queue
1654  *
1655  *	Returns true if a response descriptor contains a yet unprocessed
1656  *	response.
1657  */
1658 static inline bool is_new_response(const struct rsp_ctrl *rc,
1659 				   const struct sge_rspq *rspq)
1660 {
1661 	return RSPD_GEN(rc->type_gen) == rspq->gen;
1662 }
1663 
1664 /**
1665  *	restore_rx_bufs - put back a packet's RX buffers
1666  *	@gl: the packet gather list
1667  *	@fl: the SGE Free List
1668  *	@nfrags: how many fragments in @si
1669  *
1670  *	Called when we find out that the current packet, @si, can't be
1671  *	processed right away for some reason.  This is a very rare event and
1672  *	there's no effort to make this suspension/resumption process
1673  *	particularly efficient.
1674  *
1675  *	We implement the suspension by putting all of the RX buffers associated
1676  *	with the current packet back on the original Free List.  The buffers
1677  *	have already been unmapped and are left unmapped, we mark them as
1678  *	unmapped in order to prevent further unmapping attempts.  (Effectively
1679  *	this function undoes the series of @unmap_rx_buf calls which were done
1680  *	to create the current packet's gather list.)  This leaves us ready to
1681  *	restart processing of the packet the next time we start processing the
1682  *	RX Queue ...
1683  */
1684 static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1685 			    int frags)
1686 {
1687 	struct rx_sw_desc *sdesc;
1688 
1689 	while (frags--) {
1690 		if (fl->cidx == 0)
1691 			fl->cidx = fl->size - 1;
1692 		else
1693 			fl->cidx--;
1694 		sdesc = &fl->sdesc[fl->cidx];
1695 		sdesc->page = gl->frags[frags].page;
1696 		sdesc->dma_addr |= RX_UNMAPPED_BUF;
1697 		fl->avail++;
1698 	}
1699 }
1700 
1701 /**
1702  *	rspq_next - advance to the next entry in a response queue
1703  *	@rspq: the queue
1704  *
1705  *	Updates the state of a response queue to advance it to the next entry.
1706  */
1707 static inline void rspq_next(struct sge_rspq *rspq)
1708 {
1709 	rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1710 	if (unlikely(++rspq->cidx == rspq->size)) {
1711 		rspq->cidx = 0;
1712 		rspq->gen ^= 1;
1713 		rspq->cur_desc = rspq->desc;
1714 	}
1715 }
1716 
1717 /**
1718  *	process_responses - process responses from an SGE response queue
1719  *	@rspq: the ingress response queue to process
1720  *	@budget: how many responses can be processed in this round
1721  *
1722  *	Process responses from a Scatter Gather Engine response queue up to
1723  *	the supplied budget.  Responses include received packets as well as
1724  *	control messages from firmware or hardware.
1725  *
1726  *	Additionally choose the interrupt holdoff time for the next interrupt
1727  *	on this queue.  If the system is under memory shortage use a fairly
1728  *	long delay to help recovery.
1729  */
1730 static int process_responses(struct sge_rspq *rspq, int budget)
1731 {
1732 	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1733 	struct adapter *adapter = rspq->adapter;
1734 	struct sge *s = &adapter->sge;
1735 	int budget_left = budget;
1736 
1737 	while (likely(budget_left)) {
1738 		int ret, rsp_type;
1739 		const struct rsp_ctrl *rc;
1740 
1741 		rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1742 		if (!is_new_response(rc, rspq))
1743 			break;
1744 
1745 		/*
1746 		 * Figure out what kind of response we've received from the
1747 		 * SGE.
1748 		 */
1749 		rmb();
1750 		rsp_type = RSPD_TYPE(rc->type_gen);
1751 		if (likely(rsp_type == RSP_TYPE_FLBUF)) {
1752 			struct page_frag *fp;
1753 			struct pkt_gl gl;
1754 			const struct rx_sw_desc *sdesc;
1755 			u32 bufsz, frag;
1756 			u32 len = be32_to_cpu(rc->pldbuflen_qid);
1757 
1758 			/*
1759 			 * If we get a "new buffer" message from the SGE we
1760 			 * need to move on to the next Free List buffer.
1761 			 */
1762 			if (len & RSPD_NEWBUF) {
1763 				/*
1764 				 * We get one "new buffer" message when we
1765 				 * first start up a queue so we need to ignore
1766 				 * it when our offset into the buffer is 0.
1767 				 */
1768 				if (likely(rspq->offset > 0)) {
1769 					free_rx_bufs(rspq->adapter, &rxq->fl,
1770 						     1);
1771 					rspq->offset = 0;
1772 				}
1773 				len = RSPD_LEN(len);
1774 			}
1775 			gl.tot_len = len;
1776 
1777 			/*
1778 			 * Gather packet fragments.
1779 			 */
1780 			for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1781 				BUG_ON(frag >= MAX_SKB_FRAGS);
1782 				BUG_ON(rxq->fl.avail == 0);
1783 				sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
1784 				bufsz = get_buf_size(adapter, sdesc);
1785 				fp->page = sdesc->page;
1786 				fp->offset = rspq->offset;
1787 				fp->size = min(bufsz, len);
1788 				len -= fp->size;
1789 				if (!len)
1790 					break;
1791 				unmap_rx_buf(rspq->adapter, &rxq->fl);
1792 			}
1793 			gl.nfrags = frag+1;
1794 
1795 			/*
1796 			 * Last buffer remains mapped so explicitly make it
1797 			 * coherent for CPU access and start preloading first
1798 			 * cache line ...
1799 			 */
1800 			dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1801 						get_buf_addr(sdesc),
1802 						fp->size, DMA_FROM_DEVICE);
1803 			gl.va = (page_address(gl.frags[0].page) +
1804 				 gl.frags[0].offset);
1805 			prefetch(gl.va);
1806 
1807 			/*
1808 			 * Hand the new ingress packet to the handler for
1809 			 * this Response Queue.
1810 			 */
1811 			ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1812 			if (likely(ret == 0))
1813 				rspq->offset += ALIGN(fp->size, s->fl_align);
1814 			else
1815 				restore_rx_bufs(&gl, &rxq->fl, frag);
1816 		} else if (likely(rsp_type == RSP_TYPE_CPL)) {
1817 			ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1818 		} else {
1819 			WARN_ON(rsp_type > RSP_TYPE_CPL);
1820 			ret = 0;
1821 		}
1822 
1823 		if (unlikely(ret)) {
1824 			/*
1825 			 * Couldn't process descriptor, back off for recovery.
1826 			 * We use the SGE's last timer which has the longest
1827 			 * interrupt coalescing value ...
1828 			 */
1829 			const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1830 			rspq->next_intr_params =
1831 				QINTR_TIMER_IDX(NOMEM_TIMER_IDX);
1832 			break;
1833 		}
1834 
1835 		rspq_next(rspq);
1836 		budget_left--;
1837 	}
1838 
1839 	/*
1840 	 * If this is a Response Queue with an associated Free List and
1841 	 * at least two Egress Queue units available in the Free List
1842 	 * for new buffer pointers, refill the Free List.
1843 	 */
1844 	if (rspq->offset >= 0 &&
1845 	    rxq->fl.size - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1846 		__refill_fl(rspq->adapter, &rxq->fl);
1847 	return budget - budget_left;
1848 }
1849 
1850 /**
1851  *	napi_rx_handler - the NAPI handler for RX processing
1852  *	@napi: the napi instance
1853  *	@budget: how many packets we can process in this round
1854  *
1855  *	Handler for new data events when using NAPI.  This does not need any
1856  *	locking or protection from interrupts as data interrupts are off at
1857  *	this point and other adapter interrupts do not interfere (the latter
1858  *	in not a concern at all with MSI-X as non-data interrupts then have
1859  *	a separate handler).
1860  */
1861 static int napi_rx_handler(struct napi_struct *napi, int budget)
1862 {
1863 	unsigned int intr_params;
1864 	struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1865 	int work_done = process_responses(rspq, budget);
1866 	u32 val;
1867 
1868 	if (likely(work_done < budget)) {
1869 		napi_complete(napi);
1870 		intr_params = rspq->next_intr_params;
1871 		rspq->next_intr_params = rspq->intr_params;
1872 	} else
1873 		intr_params = QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX);
1874 
1875 	if (unlikely(work_done == 0))
1876 		rspq->unhandled_irqs++;
1877 
1878 	val = CIDXINC(work_done) | SEINTARM(intr_params);
1879 	if (is_t4(rspq->adapter->params.chip)) {
1880 		t4_write_reg(rspq->adapter,
1881 			     T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1882 			     val | INGRESSQID((u32)rspq->cntxt_id));
1883 	} else {
1884 		writel(val | INGRESSQID(rspq->bar2_qid),
1885 		       rspq->bar2_addr + SGE_UDB_GTS);
1886 		wmb();
1887 	}
1888 	return work_done;
1889 }
1890 
1891 /*
1892  * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1893  * (i.e., response queue serviced by NAPI polling).
1894  */
1895 irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1896 {
1897 	struct sge_rspq *rspq = cookie;
1898 
1899 	napi_schedule(&rspq->napi);
1900 	return IRQ_HANDLED;
1901 }
1902 
1903 /*
1904  * Process the indirect interrupt entries in the interrupt queue and kick off
1905  * NAPI for each queue that has generated an entry.
1906  */
1907 static unsigned int process_intrq(struct adapter *adapter)
1908 {
1909 	struct sge *s = &adapter->sge;
1910 	struct sge_rspq *intrq = &s->intrq;
1911 	unsigned int work_done;
1912 	u32 val;
1913 
1914 	spin_lock(&adapter->sge.intrq_lock);
1915 	for (work_done = 0; ; work_done++) {
1916 		const struct rsp_ctrl *rc;
1917 		unsigned int qid, iq_idx;
1918 		struct sge_rspq *rspq;
1919 
1920 		/*
1921 		 * Grab the next response from the interrupt queue and bail
1922 		 * out if it's not a new response.
1923 		 */
1924 		rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1925 		if (!is_new_response(rc, intrq))
1926 			break;
1927 
1928 		/*
1929 		 * If the response isn't a forwarded interrupt message issue a
1930 		 * error and go on to the next response message.  This should
1931 		 * never happen ...
1932 		 */
1933 		rmb();
1934 		if (unlikely(RSPD_TYPE(rc->type_gen) != RSP_TYPE_INTR)) {
1935 			dev_err(adapter->pdev_dev,
1936 				"Unexpected INTRQ response type %d\n",
1937 				RSPD_TYPE(rc->type_gen));
1938 			continue;
1939 		}
1940 
1941 		/*
1942 		 * Extract the Queue ID from the interrupt message and perform
1943 		 * sanity checking to make sure it really refers to one of our
1944 		 * Ingress Queues which is active and matches the queue's ID.
1945 		 * None of these error conditions should ever happen so we may
1946 		 * want to either make them fatal and/or conditionalized under
1947 		 * DEBUG.
1948 		 */
1949 		qid = RSPD_QID(be32_to_cpu(rc->pldbuflen_qid));
1950 		iq_idx = IQ_IDX(s, qid);
1951 		if (unlikely(iq_idx >= MAX_INGQ)) {
1952 			dev_err(adapter->pdev_dev,
1953 				"Ingress QID %d out of range\n", qid);
1954 			continue;
1955 		}
1956 		rspq = s->ingr_map[iq_idx];
1957 		if (unlikely(rspq == NULL)) {
1958 			dev_err(adapter->pdev_dev,
1959 				"Ingress QID %d RSPQ=NULL\n", qid);
1960 			continue;
1961 		}
1962 		if (unlikely(rspq->abs_id != qid)) {
1963 			dev_err(adapter->pdev_dev,
1964 				"Ingress QID %d refers to RSPQ %d\n",
1965 				qid, rspq->abs_id);
1966 			continue;
1967 		}
1968 
1969 		/*
1970 		 * Schedule NAPI processing on the indicated Response Queue
1971 		 * and move on to the next entry in the Forwarded Interrupt
1972 		 * Queue.
1973 		 */
1974 		napi_schedule(&rspq->napi);
1975 		rspq_next(intrq);
1976 	}
1977 
1978 	val = CIDXINC(work_done) | SEINTARM(intrq->intr_params);
1979 	if (is_t4(adapter->params.chip))
1980 		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1981 			     val | INGRESSQID(intrq->cntxt_id));
1982 	else {
1983 		writel(val | INGRESSQID(intrq->bar2_qid),
1984 		       intrq->bar2_addr + SGE_UDB_GTS);
1985 		wmb();
1986 	}
1987 
1988 	spin_unlock(&adapter->sge.intrq_lock);
1989 
1990 	return work_done;
1991 }
1992 
1993 /*
1994  * The MSI interrupt handler handles data events from SGE response queues as
1995  * well as error and other async events as they all use the same MSI vector.
1996  */
1997 static irqreturn_t t4vf_intr_msi(int irq, void *cookie)
1998 {
1999 	struct adapter *adapter = cookie;
2000 
2001 	process_intrq(adapter);
2002 	return IRQ_HANDLED;
2003 }
2004 
2005 /**
2006  *	t4vf_intr_handler - select the top-level interrupt handler
2007  *	@adapter: the adapter
2008  *
2009  *	Selects the top-level interrupt handler based on the type of interrupts
2010  *	(MSI-X or MSI).
2011  */
2012 irq_handler_t t4vf_intr_handler(struct adapter *adapter)
2013 {
2014 	BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2015 	if (adapter->flags & USING_MSIX)
2016 		return t4vf_sge_intr_msix;
2017 	else
2018 		return t4vf_intr_msi;
2019 }
2020 
2021 /**
2022  *	sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
2023  *	@data: the adapter
2024  *
2025  *	Runs periodically from a timer to perform maintenance of SGE RX queues.
2026  *
2027  *	a) Replenishes RX queues that have run out due to memory shortage.
2028  *	Normally new RX buffers are added when existing ones are consumed but
2029  *	when out of memory a queue can become empty.  We schedule NAPI to do
2030  *	the actual refill.
2031  */
2032 static void sge_rx_timer_cb(unsigned long data)
2033 {
2034 	struct adapter *adapter = (struct adapter *)data;
2035 	struct sge *s = &adapter->sge;
2036 	unsigned int i;
2037 
2038 	/*
2039 	 * Scan the "Starving Free Lists" flag array looking for any Free
2040 	 * Lists in need of more free buffers.  If we find one and it's not
2041 	 * being actively polled, then bump its "starving" counter and attempt
2042 	 * to refill it.  If we're successful in adding enough buffers to push
2043 	 * the Free List over the starving threshold, then we can clear its
2044 	 * "starving" status.
2045 	 */
2046 	for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
2047 		unsigned long m;
2048 
2049 		for (m = s->starving_fl[i]; m; m &= m - 1) {
2050 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2051 			struct sge_fl *fl = s->egr_map[id];
2052 
2053 			clear_bit(id, s->starving_fl);
2054 			smp_mb__after_atomic();
2055 
2056 			/*
2057 			 * Since we are accessing fl without a lock there's a
2058 			 * small probability of a false positive where we
2059 			 * schedule napi but the FL is no longer starving.
2060 			 * No biggie.
2061 			 */
2062 			if (fl_starving(adapter, fl)) {
2063 				struct sge_eth_rxq *rxq;
2064 
2065 				rxq = container_of(fl, struct sge_eth_rxq, fl);
2066 				if (napi_reschedule(&rxq->rspq.napi))
2067 					fl->starving++;
2068 				else
2069 					set_bit(id, s->starving_fl);
2070 			}
2071 		}
2072 	}
2073 
2074 	/*
2075 	 * Reschedule the next scan for starving Free Lists ...
2076 	 */
2077 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2078 }
2079 
2080 /**
2081  *	sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
2082  *	@data: the adapter
2083  *
2084  *	Runs periodically from a timer to perform maintenance of SGE TX queues.
2085  *
2086  *	b) Reclaims completed Tx packets for the Ethernet queues.  Normally
2087  *	packets are cleaned up by new Tx packets, this timer cleans up packets
2088  *	when no new packets are being submitted.  This is essential for pktgen,
2089  *	at least.
2090  */
2091 static void sge_tx_timer_cb(unsigned long data)
2092 {
2093 	struct adapter *adapter = (struct adapter *)data;
2094 	struct sge *s = &adapter->sge;
2095 	unsigned int i, budget;
2096 
2097 	budget = MAX_TIMER_TX_RECLAIM;
2098 	i = s->ethtxq_rover;
2099 	do {
2100 		struct sge_eth_txq *txq = &s->ethtxq[i];
2101 
2102 		if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
2103 			int avail = reclaimable(&txq->q);
2104 
2105 			if (avail > budget)
2106 				avail = budget;
2107 
2108 			free_tx_desc(adapter, &txq->q, avail, true);
2109 			txq->q.in_use -= avail;
2110 			__netif_tx_unlock(txq->txq);
2111 
2112 			budget -= avail;
2113 			if (!budget)
2114 				break;
2115 		}
2116 
2117 		i++;
2118 		if (i >= s->ethqsets)
2119 			i = 0;
2120 	} while (i != s->ethtxq_rover);
2121 	s->ethtxq_rover = i;
2122 
2123 	/*
2124 	 * If we found too many reclaimable packets schedule a timer in the
2125 	 * near future to continue where we left off.  Otherwise the next timer
2126 	 * will be at its normal interval.
2127 	 */
2128 	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2129 }
2130 
2131 /**
2132  *	bar2_address - return the BAR2 address for an SGE Queue's Registers
2133  *	@adapter: the adapter
2134  *	@qid: the SGE Queue ID
2135  *	@qtype: the SGE Queue Type (Egress or Ingress)
2136  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2137  *
2138  *	Returns the BAR2 address for the SGE Queue Registers associated with
2139  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
2140  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2141  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2142  *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
2143  */
2144 static void __iomem *bar2_address(struct adapter *adapter,
2145 				  unsigned int qid,
2146 				  enum t4_bar2_qtype qtype,
2147 				  unsigned int *pbar2_qid)
2148 {
2149 	u64 bar2_qoffset;
2150 	int ret;
2151 
2152 	ret = t4_bar2_sge_qregs(adapter, qid, qtype,
2153 				&bar2_qoffset, pbar2_qid);
2154 	if (ret)
2155 		return NULL;
2156 
2157 	return adapter->bar2 + bar2_qoffset;
2158 }
2159 
2160 /**
2161  *	t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2162  *	@adapter: the adapter
2163  *	@rspq: pointer to to the new rxq's Response Queue to be filled in
2164  *	@iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2165  *	@dev: the network device associated with the new rspq
2166  *	@intr_dest: MSI-X vector index (overriden in MSI mode)
2167  *	@fl: pointer to the new rxq's Free List to be filled in
2168  *	@hnd: the interrupt handler to invoke for the rspq
2169  */
2170 int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2171 		       bool iqasynch, struct net_device *dev,
2172 		       int intr_dest,
2173 		       struct sge_fl *fl, rspq_handler_t hnd)
2174 {
2175 	struct sge *s = &adapter->sge;
2176 	struct port_info *pi = netdev_priv(dev);
2177 	struct fw_iq_cmd cmd, rpl;
2178 	int ret, iqandst, flsz = 0;
2179 
2180 	/*
2181 	 * If we're using MSI interrupts and we're not initializing the
2182 	 * Forwarded Interrupt Queue itself, then set up this queue for
2183 	 * indirect interrupts to the Forwarded Interrupt Queue.  Obviously
2184 	 * the Forwarded Interrupt Queue must be set up before any other
2185 	 * ingress queue ...
2186 	 */
2187 	if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) {
2188 		iqandst = SGE_INTRDST_IQ;
2189 		intr_dest = adapter->sge.intrq.abs_id;
2190 	} else
2191 		iqandst = SGE_INTRDST_PCI;
2192 
2193 	/*
2194 	 * Allocate the hardware ring for the Response Queue.  The size needs
2195 	 * to be a multiple of 16 which includes the mandatory status entry
2196 	 * (regardless of whether the Status Page capabilities are enabled or
2197 	 * not).
2198 	 */
2199 	rspq->size = roundup(rspq->size, 16);
2200 	rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2201 				0, &rspq->phys_addr, NULL, 0);
2202 	if (!rspq->desc)
2203 		return -ENOMEM;
2204 
2205 	/*
2206 	 * Fill in the Ingress Queue Command.  Note: Ideally this code would
2207 	 * be in t4vf_hw.c but there are so many parameters and dependencies
2208 	 * on our Linux SGE state that we would end up having to pass tons of
2209 	 * parameters.  We'll have to think about how this might be migrated
2210 	 * into OS-independent common code ...
2211 	 */
2212 	memset(&cmd, 0, sizeof(cmd));
2213 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
2214 				    FW_CMD_REQUEST_F |
2215 				    FW_CMD_WRITE_F |
2216 				    FW_CMD_EXEC_F);
2217 	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC_F |
2218 					 FW_IQ_CMD_IQSTART_F |
2219 					 FW_LEN16(cmd));
2220 	cmd.type_to_iqandstindex =
2221 		cpu_to_be32(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2222 			    FW_IQ_CMD_IQASYNCH_V(iqasynch) |
2223 			    FW_IQ_CMD_VIID_V(pi->viid) |
2224 			    FW_IQ_CMD_IQANDST_V(iqandst) |
2225 			    FW_IQ_CMD_IQANUS_V(1) |
2226 			    FW_IQ_CMD_IQANUD_V(SGE_UPDATEDEL_INTR) |
2227 			    FW_IQ_CMD_IQANDSTINDEX_V(intr_dest));
2228 	cmd.iqdroprss_to_iqesize =
2229 		cpu_to_be16(FW_IQ_CMD_IQPCIECH_V(pi->port_id) |
2230 			    FW_IQ_CMD_IQGTSMODE_F |
2231 			    FW_IQ_CMD_IQINTCNTTHRESH_V(rspq->pktcnt_idx) |
2232 			    FW_IQ_CMD_IQESIZE_V(ilog2(rspq->iqe_len) - 4));
2233 	cmd.iqsize = cpu_to_be16(rspq->size);
2234 	cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2235 
2236 	if (fl) {
2237 		/*
2238 		 * Allocate the ring for the hardware free list (with space
2239 		 * for its status page) along with the associated software
2240 		 * descriptor ring.  The free list size needs to be a multiple
2241 		 * of the Egress Queue Unit.
2242 		 */
2243 		fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2244 		fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2245 				      sizeof(__be64), sizeof(struct rx_sw_desc),
2246 				      &fl->addr, &fl->sdesc, s->stat_len);
2247 		if (!fl->desc) {
2248 			ret = -ENOMEM;
2249 			goto err;
2250 		}
2251 
2252 		/*
2253 		 * Calculate the size of the hardware free list ring plus
2254 		 * Status Page (which the SGE will place after the end of the
2255 		 * free list ring) in Egress Queue Units.
2256 		 */
2257 		flsz = (fl->size / FL_PER_EQ_UNIT +
2258 			s->stat_len / EQ_UNIT);
2259 
2260 		/*
2261 		 * Fill in all the relevant firmware Ingress Queue Command
2262 		 * fields for the free list.
2263 		 */
2264 		cmd.iqns_to_fl0congen =
2265 			cpu_to_be32(
2266 				FW_IQ_CMD_FL0HOSTFCMODE_V(SGE_HOSTFCMODE_NONE) |
2267 				FW_IQ_CMD_FL0PACKEN_F |
2268 				FW_IQ_CMD_FL0PADEN_F);
2269 		cmd.fl0dcaen_to_fl0cidxfthresh =
2270 			cpu_to_be16(
2271 				FW_IQ_CMD_FL0FBMIN_V(SGE_FETCHBURSTMIN_64B) |
2272 				FW_IQ_CMD_FL0FBMAX_V(SGE_FETCHBURSTMAX_512B));
2273 		cmd.fl0size = cpu_to_be16(flsz);
2274 		cmd.fl0addr = cpu_to_be64(fl->addr);
2275 	}
2276 
2277 	/*
2278 	 * Issue the firmware Ingress Queue Command and extract the results if
2279 	 * it completes successfully.
2280 	 */
2281 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2282 	if (ret)
2283 		goto err;
2284 
2285 	netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
2286 	rspq->cur_desc = rspq->desc;
2287 	rspq->cidx = 0;
2288 	rspq->gen = 1;
2289 	rspq->next_intr_params = rspq->intr_params;
2290 	rspq->cntxt_id = be16_to_cpu(rpl.iqid);
2291 	rspq->bar2_addr = bar2_address(adapter,
2292 				       rspq->cntxt_id,
2293 				       T4_BAR2_QTYPE_INGRESS,
2294 				       &rspq->bar2_qid);
2295 	rspq->abs_id = be16_to_cpu(rpl.physiqid);
2296 	rspq->size--;			/* subtract status entry */
2297 	rspq->adapter = adapter;
2298 	rspq->netdev = dev;
2299 	rspq->handler = hnd;
2300 
2301 	/* set offset to -1 to distinguish ingress queues without FL */
2302 	rspq->offset = fl ? 0 : -1;
2303 
2304 	if (fl) {
2305 		fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2306 		fl->avail = 0;
2307 		fl->pend_cred = 0;
2308 		fl->pidx = 0;
2309 		fl->cidx = 0;
2310 		fl->alloc_failed = 0;
2311 		fl->large_alloc_failed = 0;
2312 		fl->starving = 0;
2313 
2314 		/* Note, we must initialize the BAR2 Free List User Doorbell
2315 		 * information before refilling the Free List!
2316 		 */
2317 		fl->bar2_addr = bar2_address(adapter,
2318 					     fl->cntxt_id,
2319 					     T4_BAR2_QTYPE_EGRESS,
2320 					     &fl->bar2_qid);
2321 
2322 		refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2323 	}
2324 
2325 	return 0;
2326 
2327 err:
2328 	/*
2329 	 * An error occurred.  Clean up our partial allocation state and
2330 	 * return the error.
2331 	 */
2332 	if (rspq->desc) {
2333 		dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2334 				  rspq->desc, rspq->phys_addr);
2335 		rspq->desc = NULL;
2336 	}
2337 	if (fl && fl->desc) {
2338 		kfree(fl->sdesc);
2339 		fl->sdesc = NULL;
2340 		dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2341 				  fl->desc, fl->addr);
2342 		fl->desc = NULL;
2343 	}
2344 	return ret;
2345 }
2346 
2347 /**
2348  *	t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2349  *	@adapter: the adapter
2350  *	@txq: pointer to the new txq to be filled in
2351  *	@devq: the network TX queue associated with the new txq
2352  *	@iqid: the relative ingress queue ID to which events relating to
2353  *		the new txq should be directed
2354  */
2355 int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2356 			   struct net_device *dev, struct netdev_queue *devq,
2357 			   unsigned int iqid)
2358 {
2359 	struct sge *s = &adapter->sge;
2360 	int ret, nentries;
2361 	struct fw_eq_eth_cmd cmd, rpl;
2362 	struct port_info *pi = netdev_priv(dev);
2363 
2364 	/*
2365 	 * Calculate the size of the hardware TX Queue (including the Status
2366 	 * Page on the end of the TX Queue) in units of TX Descriptors.
2367 	 */
2368 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2369 
2370 	/*
2371 	 * Allocate the hardware ring for the TX ring (with space for its
2372 	 * status page) along with the associated software descriptor ring.
2373 	 */
2374 	txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2375 				 sizeof(struct tx_desc),
2376 				 sizeof(struct tx_sw_desc),
2377 				 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len);
2378 	if (!txq->q.desc)
2379 		return -ENOMEM;
2380 
2381 	/*
2382 	 * Fill in the Egress Queue Command.  Note: As with the direct use of
2383 	 * the firmware Ingress Queue COmmand above in our RXQ allocation
2384 	 * routine, ideally, this code would be in t4vf_hw.c.  Again, we'll
2385 	 * have to see if there's some reasonable way to parameterize it
2386 	 * into the common code ...
2387 	 */
2388 	memset(&cmd, 0, sizeof(cmd));
2389 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
2390 				    FW_CMD_REQUEST_F |
2391 				    FW_CMD_WRITE_F |
2392 				    FW_CMD_EXEC_F);
2393 	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC_F |
2394 					 FW_EQ_ETH_CMD_EQSTART_F |
2395 					 FW_LEN16(cmd));
2396 	cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2397 				   FW_EQ_ETH_CMD_VIID_V(pi->viid));
2398 	cmd.fetchszm_to_iqid =
2399 		cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE_V(SGE_HOSTFCMODE_STPG) |
2400 			    FW_EQ_ETH_CMD_PCIECHN_V(pi->port_id) |
2401 			    FW_EQ_ETH_CMD_IQID_V(iqid));
2402 	cmd.dcaen_to_eqsize =
2403 		cpu_to_be32(FW_EQ_ETH_CMD_FBMIN_V(SGE_FETCHBURSTMIN_64B) |
2404 			    FW_EQ_ETH_CMD_FBMAX_V(SGE_FETCHBURSTMAX_512B) |
2405 			    FW_EQ_ETH_CMD_CIDXFTHRESH_V(
2406 						SGE_CIDXFLUSHTHRESH_32) |
2407 			    FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2408 	cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2409 
2410 	/*
2411 	 * Issue the firmware Egress Queue Command and extract the results if
2412 	 * it completes successfully.
2413 	 */
2414 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2415 	if (ret) {
2416 		/*
2417 		 * The girmware Ingress Queue Command failed for some reason.
2418 		 * Free up our partial allocation state and return the error.
2419 		 */
2420 		kfree(txq->q.sdesc);
2421 		txq->q.sdesc = NULL;
2422 		dma_free_coherent(adapter->pdev_dev,
2423 				  nentries * sizeof(struct tx_desc),
2424 				  txq->q.desc, txq->q.phys_addr);
2425 		txq->q.desc = NULL;
2426 		return ret;
2427 	}
2428 
2429 	txq->q.in_use = 0;
2430 	txq->q.cidx = 0;
2431 	txq->q.pidx = 0;
2432 	txq->q.stat = (void *)&txq->q.desc[txq->q.size];
2433 	txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_G(be32_to_cpu(rpl.eqid_pkd));
2434 	txq->q.bar2_addr = bar2_address(adapter,
2435 					txq->q.cntxt_id,
2436 					T4_BAR2_QTYPE_EGRESS,
2437 					&txq->q.bar2_qid);
2438 	txq->q.abs_id =
2439 		FW_EQ_ETH_CMD_PHYSEQID_G(be32_to_cpu(rpl.physeqid_pkd));
2440 	txq->txq = devq;
2441 	txq->tso = 0;
2442 	txq->tx_cso = 0;
2443 	txq->vlan_ins = 0;
2444 	txq->q.stops = 0;
2445 	txq->q.restarts = 0;
2446 	txq->mapping_err = 0;
2447 	return 0;
2448 }
2449 
2450 /*
2451  * Free the DMA map resources associated with a TX queue.
2452  */
2453 static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2454 {
2455 	struct sge *s = &adapter->sge;
2456 
2457 	dma_free_coherent(adapter->pdev_dev,
2458 			  tq->size * sizeof(*tq->desc) + s->stat_len,
2459 			  tq->desc, tq->phys_addr);
2460 	tq->cntxt_id = 0;
2461 	tq->sdesc = NULL;
2462 	tq->desc = NULL;
2463 }
2464 
2465 /*
2466  * Free the resources associated with a response queue (possibly including a
2467  * free list).
2468  */
2469 static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2470 			 struct sge_fl *fl)
2471 {
2472 	struct sge *s = &adapter->sge;
2473 	unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2474 
2475 	t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2476 		     rspq->cntxt_id, flid, 0xffff);
2477 	dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2478 			  rspq->desc, rspq->phys_addr);
2479 	netif_napi_del(&rspq->napi);
2480 	rspq->netdev = NULL;
2481 	rspq->cntxt_id = 0;
2482 	rspq->abs_id = 0;
2483 	rspq->desc = NULL;
2484 
2485 	if (fl) {
2486 		free_rx_bufs(adapter, fl, fl->avail);
2487 		dma_free_coherent(adapter->pdev_dev,
2488 				  fl->size * sizeof(*fl->desc) + s->stat_len,
2489 				  fl->desc, fl->addr);
2490 		kfree(fl->sdesc);
2491 		fl->sdesc = NULL;
2492 		fl->cntxt_id = 0;
2493 		fl->desc = NULL;
2494 	}
2495 }
2496 
2497 /**
2498  *	t4vf_free_sge_resources - free SGE resources
2499  *	@adapter: the adapter
2500  *
2501  *	Frees resources used by the SGE queue sets.
2502  */
2503 void t4vf_free_sge_resources(struct adapter *adapter)
2504 {
2505 	struct sge *s = &adapter->sge;
2506 	struct sge_eth_rxq *rxq = s->ethrxq;
2507 	struct sge_eth_txq *txq = s->ethtxq;
2508 	struct sge_rspq *evtq = &s->fw_evtq;
2509 	struct sge_rspq *intrq = &s->intrq;
2510 	int qs;
2511 
2512 	for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
2513 		if (rxq->rspq.desc)
2514 			free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2515 		if (txq->q.desc) {
2516 			t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2517 			free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2518 			kfree(txq->q.sdesc);
2519 			free_txq(adapter, &txq->q);
2520 		}
2521 	}
2522 	if (evtq->desc)
2523 		free_rspq_fl(adapter, evtq, NULL);
2524 	if (intrq->desc)
2525 		free_rspq_fl(adapter, intrq, NULL);
2526 }
2527 
2528 /**
2529  *	t4vf_sge_start - enable SGE operation
2530  *	@adapter: the adapter
2531  *
2532  *	Start tasklets and timers associated with the DMA engine.
2533  */
2534 void t4vf_sge_start(struct adapter *adapter)
2535 {
2536 	adapter->sge.ethtxq_rover = 0;
2537 	mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2538 	mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2539 }
2540 
2541 /**
2542  *	t4vf_sge_stop - disable SGE operation
2543  *	@adapter: the adapter
2544  *
2545  *	Stop tasklets and timers associated with the DMA engine.  Note that
2546  *	this is effective only if measures have been taken to disable any HW
2547  *	events that may restart them.
2548  */
2549 void t4vf_sge_stop(struct adapter *adapter)
2550 {
2551 	struct sge *s = &adapter->sge;
2552 
2553 	if (s->rx_timer.function)
2554 		del_timer_sync(&s->rx_timer);
2555 	if (s->tx_timer.function)
2556 		del_timer_sync(&s->tx_timer);
2557 }
2558 
2559 /**
2560  *	t4vf_sge_init - initialize SGE
2561  *	@adapter: the adapter
2562  *
2563  *	Performs SGE initialization needed every time after a chip reset.
2564  *	We do not initialize any of the queue sets here, instead the driver
2565  *	top-level must request those individually.  We also do not enable DMA
2566  *	here, that should be done after the queues have been set up.
2567  */
2568 int t4vf_sge_init(struct adapter *adapter)
2569 {
2570 	struct sge_params *sge_params = &adapter->params.sge;
2571 	u32 fl0 = sge_params->sge_fl_buffer_size[0];
2572 	u32 fl1 = sge_params->sge_fl_buffer_size[1];
2573 	struct sge *s = &adapter->sge;
2574 	unsigned int ingpadboundary, ingpackboundary;
2575 
2576 	/*
2577 	 * Start by vetting the basic SGE parameters which have been set up by
2578 	 * the Physical Function Driver.  Ideally we should be able to deal
2579 	 * with _any_ configuration.  Practice is different ...
2580 	 */
2581 	if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) {
2582 		dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2583 			fl0, fl1);
2584 		return -EINVAL;
2585 	}
2586 	if ((sge_params->sge_control & RXPKTCPLMODE_MASK) == 0) {
2587 		dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2588 		return -EINVAL;
2589 	}
2590 
2591 	/*
2592 	 * Now translate the adapter parameters into our internal forms.
2593 	 */
2594 	if (fl1)
2595 		s->fl_pg_order = ilog2(fl1) - PAGE_SHIFT;
2596 	s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_MASK)
2597 			? 128 : 64);
2598 	s->pktshift = PKTSHIFT_GET(sge_params->sge_control);
2599 
2600 	/* T4 uses a single control field to specify both the PCIe Padding and
2601 	 * Packing Boundary.  T5 introduced the ability to specify these
2602 	 * separately.  The actual Ingress Packet Data alignment boundary
2603 	 * within Packed Buffer Mode is the maximum of these two
2604 	 * specifications.  (Note that it makes no real practical sense to
2605 	 * have the Pading Boudary be larger than the Packing Boundary but you
2606 	 * could set the chip up that way and, in fact, legacy T4 code would
2607 	 * end doing this because it would initialize the Padding Boundary and
2608 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
2609 	 */
2610 	ingpadboundary = 1 << (INGPADBOUNDARY_GET(sge_params->sge_control) +
2611 			       X_INGPADBOUNDARY_SHIFT);
2612 	if (is_t4(adapter->params.chip)) {
2613 		s->fl_align = ingpadboundary;
2614 	} else {
2615 		/* T5 has a different interpretation of one of the PCIe Packing
2616 		 * Boundary values.
2617 		 */
2618 		ingpackboundary = INGPACKBOUNDARY_G(sge_params->sge_control2);
2619 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
2620 			ingpackboundary = 16;
2621 		else
2622 			ingpackboundary = 1 << (ingpackboundary +
2623 						INGPACKBOUNDARY_SHIFT_X);
2624 
2625 		s->fl_align = max(ingpadboundary, ingpackboundary);
2626 	}
2627 
2628 	/* A FL with <= fl_starve_thres buffers is starving and a periodic
2629 	 * timer will attempt to refill it.  This needs to be larger than the
2630 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
2631 	 * stuck waiting for new packets while the SGE is waiting for us to
2632 	 * give it more Free List entries.  (Note that the SGE's Egress
2633 	 * Congestion Threshold is in units of 2 Free List pointers.)
2634 	 */
2635 	s->fl_starve_thres
2636 		= EGRTHRESHOLD_GET(sge_params->sge_congestion_control)*2 + 1;
2637 
2638 	/*
2639 	 * Set up tasklet timers.
2640 	 */
2641 	setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter);
2642 	setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter);
2643 
2644 	/*
2645 	 * Initialize Forwarded Interrupt Queue lock.
2646 	 */
2647 	spin_lock_init(&s->intrq_lock);
2648 
2649 	return 0;
2650 }
2651