1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/skbuff.h> 37 #include <linux/netdevice.h> 38 #include <linux/etherdevice.h> 39 #include <linux/if_vlan.h> 40 #include <linux/ip.h> 41 #include <net/ipv6.h> 42 #include <net/tcp.h> 43 #include <linux/dma-mapping.h> 44 #include <linux/prefetch.h> 45 46 #include "t4vf_common.h" 47 #include "t4vf_defs.h" 48 49 #include "../cxgb4/t4_regs.h" 50 #include "../cxgb4/t4fw_api.h" 51 #include "../cxgb4/t4_msg.h" 52 53 /* 54 * Decoded Adapter Parameters. 55 */ 56 static u32 FL_PG_ORDER; /* large page allocation size */ 57 static u32 STAT_LEN; /* length of status page at ring end */ 58 static u32 PKTSHIFT; /* padding between CPL and packet data */ 59 static u32 FL_ALIGN; /* response queue message alignment */ 60 61 /* 62 * Constants ... 63 */ 64 enum { 65 /* 66 * Egress Queue sizes, producer and consumer indices are all in units 67 * of Egress Context Units bytes. Note that as far as the hardware is 68 * concerned, the free list is an Egress Queue (the host produces free 69 * buffers which the hardware consumes) and free list entries are 70 * 64-bit PCI DMA addresses. 71 */ 72 EQ_UNIT = SGE_EQ_IDXSIZE, 73 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 74 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 75 76 /* 77 * Max number of TX descriptors we clean up at a time. Should be 78 * modest as freeing skbs isn't cheap and it happens while holding 79 * locks. We just need to free packets faster than they arrive, we 80 * eventually catch up and keep the amortized cost reasonable. 81 */ 82 MAX_TX_RECLAIM = 16, 83 84 /* 85 * Max number of Rx buffers we replenish at a time. Again keep this 86 * modest, allocating buffers isn't cheap either. 87 */ 88 MAX_RX_REFILL = 16, 89 90 /* 91 * Period of the Rx queue check timer. This timer is infrequent as it 92 * has something to do only when the system experiences severe memory 93 * shortage. 94 */ 95 RX_QCHECK_PERIOD = (HZ / 2), 96 97 /* 98 * Period of the TX queue check timer and the maximum number of TX 99 * descriptors to be reclaimed by the TX timer. 100 */ 101 TX_QCHECK_PERIOD = (HZ / 2), 102 MAX_TIMER_TX_RECLAIM = 100, 103 104 /* 105 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic 106 * timer will attempt to refill it. 107 */ 108 FL_STARVE_THRES = 4, 109 110 /* 111 * Suspend an Ethernet TX queue with fewer available descriptors than 112 * this. We always want to have room for a maximum sized packet: 113 * inline immediate data + MAX_SKB_FRAGS. This is the same as 114 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS 115 * (see that function and its helpers for a description of the 116 * calculation). 117 */ 118 ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1, 119 ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 + 120 ((ETHTXQ_MAX_FRAGS-1) & 1) + 121 2), 122 ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) + 123 sizeof(struct cpl_tx_pkt_lso_core) + 124 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64), 125 ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR, 126 127 ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT), 128 129 /* 130 * Max TX descriptor space we allow for an Ethernet packet to be 131 * inlined into a WR. This is limited by the maximum value which 132 * we can specify for immediate data in the firmware Ethernet TX 133 * Work Request. 134 */ 135 MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_MASK, 136 137 /* 138 * Max size of a WR sent through a control TX queue. 139 */ 140 MAX_CTRL_WR_LEN = 256, 141 142 /* 143 * Maximum amount of data which we'll ever need to inline into a 144 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN). 145 */ 146 MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN 147 ? MAX_IMM_TX_PKT_LEN 148 : MAX_CTRL_WR_LEN), 149 150 /* 151 * For incoming packets less than RX_COPY_THRES, we copy the data into 152 * an skb rather than referencing the data. We allocate enough 153 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes 154 * of the data (header). 155 */ 156 RX_COPY_THRES = 256, 157 RX_PULL_LEN = 128, 158 159 /* 160 * Main body length for sk_buffs used for RX Ethernet packets with 161 * fragments. Should be >= RX_PULL_LEN but possibly bigger to give 162 * pskb_may_pull() some room. 163 */ 164 RX_SKB_LEN = 512, 165 }; 166 167 /* 168 * Software state per TX descriptor. 169 */ 170 struct tx_sw_desc { 171 struct sk_buff *skb; /* socket buffer of TX data source */ 172 struct ulptx_sgl *sgl; /* scatter/gather list in TX Queue */ 173 }; 174 175 /* 176 * Software state per RX Free List descriptor. We keep track of the allocated 177 * FL page, its size, and its PCI DMA address (if the page is mapped). The FL 178 * page size and its PCI DMA mapped state are stored in the low bits of the 179 * PCI DMA address as per below. 180 */ 181 struct rx_sw_desc { 182 struct page *page; /* Free List page buffer */ 183 dma_addr_t dma_addr; /* PCI DMA address (if mapped) */ 184 /* and flags (see below) */ 185 }; 186 187 /* 188 * The low bits of rx_sw_desc.dma_addr have special meaning. Note that the 189 * SGE also uses the low 4 bits to determine the size of the buffer. It uses 190 * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array. 191 * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4 192 * bits can only contain a 0 or a 1 to indicate which size buffer we're giving 193 * to the SGE. Thus, our software state of "is the buffer mapped for DMA" is 194 * maintained in an inverse sense so the hardware never sees that bit high. 195 */ 196 enum { 197 RX_LARGE_BUF = 1 << 0, /* buffer is SGE_FL_BUFFER_SIZE[1] */ 198 RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */ 199 }; 200 201 /** 202 * get_buf_addr - return DMA buffer address of software descriptor 203 * @sdesc: pointer to the software buffer descriptor 204 * 205 * Return the DMA buffer address of a software descriptor (stripping out 206 * our low-order flag bits). 207 */ 208 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc) 209 { 210 return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF); 211 } 212 213 /** 214 * is_buf_mapped - is buffer mapped for DMA? 215 * @sdesc: pointer to the software buffer descriptor 216 * 217 * Determine whether the buffer associated with a software descriptor in 218 * mapped for DMA or not. 219 */ 220 static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc) 221 { 222 return !(sdesc->dma_addr & RX_UNMAPPED_BUF); 223 } 224 225 /** 226 * need_skb_unmap - does the platform need unmapping of sk_buffs? 227 * 228 * Returns true if the platform needs sk_buff unmapping. The compiler 229 * optimizes away unnecessary code if this returns true. 230 */ 231 static inline int need_skb_unmap(void) 232 { 233 #ifdef CONFIG_NEED_DMA_MAP_STATE 234 return 1; 235 #else 236 return 0; 237 #endif 238 } 239 240 /** 241 * txq_avail - return the number of available slots in a TX queue 242 * @tq: the TX queue 243 * 244 * Returns the number of available descriptors in a TX queue. 245 */ 246 static inline unsigned int txq_avail(const struct sge_txq *tq) 247 { 248 return tq->size - 1 - tq->in_use; 249 } 250 251 /** 252 * fl_cap - return the capacity of a Free List 253 * @fl: the Free List 254 * 255 * Returns the capacity of a Free List. The capacity is less than the 256 * size because an Egress Queue Index Unit worth of descriptors needs to 257 * be left unpopulated, otherwise the Producer and Consumer indices PIDX 258 * and CIDX will match and the hardware will think the FL is empty. 259 */ 260 static inline unsigned int fl_cap(const struct sge_fl *fl) 261 { 262 return fl->size - FL_PER_EQ_UNIT; 263 } 264 265 /** 266 * fl_starving - return whether a Free List is starving. 267 * @fl: the Free List 268 * 269 * Tests specified Free List to see whether the number of buffers 270 * available to the hardware has falled below our "starvation" 271 * threshold. 272 */ 273 static inline bool fl_starving(const struct sge_fl *fl) 274 { 275 return fl->avail - fl->pend_cred <= FL_STARVE_THRES; 276 } 277 278 /** 279 * map_skb - map an skb for DMA to the device 280 * @dev: the egress net device 281 * @skb: the packet to map 282 * @addr: a pointer to the base of the DMA mapping array 283 * 284 * Map an skb for DMA to the device and return an array of DMA addresses. 285 */ 286 static int map_skb(struct device *dev, const struct sk_buff *skb, 287 dma_addr_t *addr) 288 { 289 const skb_frag_t *fp, *end; 290 const struct skb_shared_info *si; 291 292 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 293 if (dma_mapping_error(dev, *addr)) 294 goto out_err; 295 296 si = skb_shinfo(skb); 297 end = &si->frags[si->nr_frags]; 298 for (fp = si->frags; fp < end; fp++) { 299 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 300 DMA_TO_DEVICE); 301 if (dma_mapping_error(dev, *addr)) 302 goto unwind; 303 } 304 return 0; 305 306 unwind: 307 while (fp-- > si->frags) 308 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 309 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 310 311 out_err: 312 return -ENOMEM; 313 } 314 315 static void unmap_sgl(struct device *dev, const struct sk_buff *skb, 316 const struct ulptx_sgl *sgl, const struct sge_txq *tq) 317 { 318 const struct ulptx_sge_pair *p; 319 unsigned int nfrags = skb_shinfo(skb)->nr_frags; 320 321 if (likely(skb_headlen(skb))) 322 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), 323 be32_to_cpu(sgl->len0), DMA_TO_DEVICE); 324 else { 325 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), 326 be32_to_cpu(sgl->len0), DMA_TO_DEVICE); 327 nfrags--; 328 } 329 330 /* 331 * the complexity below is because of the possibility of a wrap-around 332 * in the middle of an SGL 333 */ 334 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { 335 if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) { 336 unmap: 337 dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 338 be32_to_cpu(p->len[0]), DMA_TO_DEVICE); 339 dma_unmap_page(dev, be64_to_cpu(p->addr[1]), 340 be32_to_cpu(p->len[1]), DMA_TO_DEVICE); 341 p++; 342 } else if ((u8 *)p == (u8 *)tq->stat) { 343 p = (const struct ulptx_sge_pair *)tq->desc; 344 goto unmap; 345 } else if ((u8 *)p + 8 == (u8 *)tq->stat) { 346 const __be64 *addr = (const __be64 *)tq->desc; 347 348 dma_unmap_page(dev, be64_to_cpu(addr[0]), 349 be32_to_cpu(p->len[0]), DMA_TO_DEVICE); 350 dma_unmap_page(dev, be64_to_cpu(addr[1]), 351 be32_to_cpu(p->len[1]), DMA_TO_DEVICE); 352 p = (const struct ulptx_sge_pair *)&addr[2]; 353 } else { 354 const __be64 *addr = (const __be64 *)tq->desc; 355 356 dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 357 be32_to_cpu(p->len[0]), DMA_TO_DEVICE); 358 dma_unmap_page(dev, be64_to_cpu(addr[0]), 359 be32_to_cpu(p->len[1]), DMA_TO_DEVICE); 360 p = (const struct ulptx_sge_pair *)&addr[1]; 361 } 362 } 363 if (nfrags) { 364 __be64 addr; 365 366 if ((u8 *)p == (u8 *)tq->stat) 367 p = (const struct ulptx_sge_pair *)tq->desc; 368 addr = ((u8 *)p + 16 <= (u8 *)tq->stat 369 ? p->addr[0] 370 : *(const __be64 *)tq->desc); 371 dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]), 372 DMA_TO_DEVICE); 373 } 374 } 375 376 /** 377 * free_tx_desc - reclaims TX descriptors and their buffers 378 * @adapter: the adapter 379 * @tq: the TX queue to reclaim descriptors from 380 * @n: the number of descriptors to reclaim 381 * @unmap: whether the buffers should be unmapped for DMA 382 * 383 * Reclaims TX descriptors from an SGE TX queue and frees the associated 384 * TX buffers. Called with the TX queue lock held. 385 */ 386 static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq, 387 unsigned int n, bool unmap) 388 { 389 struct tx_sw_desc *sdesc; 390 unsigned int cidx = tq->cidx; 391 struct device *dev = adapter->pdev_dev; 392 393 const int need_unmap = need_skb_unmap() && unmap; 394 395 sdesc = &tq->sdesc[cidx]; 396 while (n--) { 397 /* 398 * If we kept a reference to the original TX skb, we need to 399 * unmap it from PCI DMA space (if required) and free it. 400 */ 401 if (sdesc->skb) { 402 if (need_unmap) 403 unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq); 404 dev_consume_skb_any(sdesc->skb); 405 sdesc->skb = NULL; 406 } 407 408 sdesc++; 409 if (++cidx == tq->size) { 410 cidx = 0; 411 sdesc = tq->sdesc; 412 } 413 } 414 tq->cidx = cidx; 415 } 416 417 /* 418 * Return the number of reclaimable descriptors in a TX queue. 419 */ 420 static inline int reclaimable(const struct sge_txq *tq) 421 { 422 int hw_cidx = be16_to_cpu(tq->stat->cidx); 423 int reclaimable = hw_cidx - tq->cidx; 424 if (reclaimable < 0) 425 reclaimable += tq->size; 426 return reclaimable; 427 } 428 429 /** 430 * reclaim_completed_tx - reclaims completed TX descriptors 431 * @adapter: the adapter 432 * @tq: the TX queue to reclaim completed descriptors from 433 * @unmap: whether the buffers should be unmapped for DMA 434 * 435 * Reclaims TX descriptors that the SGE has indicated it has processed, 436 * and frees the associated buffers if possible. Called with the TX 437 * queue locked. 438 */ 439 static inline void reclaim_completed_tx(struct adapter *adapter, 440 struct sge_txq *tq, 441 bool unmap) 442 { 443 int avail = reclaimable(tq); 444 445 if (avail) { 446 /* 447 * Limit the amount of clean up work we do at a time to keep 448 * the TX lock hold time O(1). 449 */ 450 if (avail > MAX_TX_RECLAIM) 451 avail = MAX_TX_RECLAIM; 452 453 free_tx_desc(adapter, tq, avail, unmap); 454 tq->in_use -= avail; 455 } 456 } 457 458 /** 459 * get_buf_size - return the size of an RX Free List buffer. 460 * @sdesc: pointer to the software buffer descriptor 461 */ 462 static inline int get_buf_size(const struct rx_sw_desc *sdesc) 463 { 464 return FL_PG_ORDER > 0 && (sdesc->dma_addr & RX_LARGE_BUF) 465 ? (PAGE_SIZE << FL_PG_ORDER) 466 : PAGE_SIZE; 467 } 468 469 /** 470 * free_rx_bufs - free RX buffers on an SGE Free List 471 * @adapter: the adapter 472 * @fl: the SGE Free List to free buffers from 473 * @n: how many buffers to free 474 * 475 * Release the next @n buffers on an SGE Free List RX queue. The 476 * buffers must be made inaccessible to hardware before calling this 477 * function. 478 */ 479 static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n) 480 { 481 while (n--) { 482 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx]; 483 484 if (is_buf_mapped(sdesc)) 485 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc), 486 get_buf_size(sdesc), PCI_DMA_FROMDEVICE); 487 put_page(sdesc->page); 488 sdesc->page = NULL; 489 if (++fl->cidx == fl->size) 490 fl->cidx = 0; 491 fl->avail--; 492 } 493 } 494 495 /** 496 * unmap_rx_buf - unmap the current RX buffer on an SGE Free List 497 * @adapter: the adapter 498 * @fl: the SGE Free List 499 * 500 * Unmap the current buffer on an SGE Free List RX queue. The 501 * buffer must be made inaccessible to HW before calling this function. 502 * 503 * This is similar to @free_rx_bufs above but does not free the buffer. 504 * Do note that the FL still loses any further access to the buffer. 505 * This is used predominantly to "transfer ownership" of an FL buffer 506 * to another entity (typically an skb's fragment list). 507 */ 508 static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl) 509 { 510 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx]; 511 512 if (is_buf_mapped(sdesc)) 513 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc), 514 get_buf_size(sdesc), PCI_DMA_FROMDEVICE); 515 sdesc->page = NULL; 516 if (++fl->cidx == fl->size) 517 fl->cidx = 0; 518 fl->avail--; 519 } 520 521 /** 522 * ring_fl_db - righ doorbell on free list 523 * @adapter: the adapter 524 * @fl: the Free List whose doorbell should be rung ... 525 * 526 * Tell the Scatter Gather Engine that there are new free list entries 527 * available. 528 */ 529 static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl) 530 { 531 u32 val; 532 533 /* 534 * The SGE keeps track of its Producer and Consumer Indices in terms 535 * of Egress Queue Units so we can only tell it about integral numbers 536 * of multiples of Free List Entries per Egress Queue Units ... 537 */ 538 if (fl->pend_cred >= FL_PER_EQ_UNIT) { 539 val = PIDX(fl->pend_cred / FL_PER_EQ_UNIT); 540 if (!is_t4(adapter->params.chip)) 541 val |= DBTYPE(1); 542 wmb(); 543 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL, 544 DBPRIO(1) | 545 QID(fl->cntxt_id) | val); 546 fl->pend_cred %= FL_PER_EQ_UNIT; 547 } 548 } 549 550 /** 551 * set_rx_sw_desc - initialize software RX buffer descriptor 552 * @sdesc: pointer to the softwore RX buffer descriptor 553 * @page: pointer to the page data structure backing the RX buffer 554 * @dma_addr: PCI DMA address (possibly with low-bit flags) 555 */ 556 static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page, 557 dma_addr_t dma_addr) 558 { 559 sdesc->page = page; 560 sdesc->dma_addr = dma_addr; 561 } 562 563 /* 564 * Support for poisoning RX buffers ... 565 */ 566 #define POISON_BUF_VAL -1 567 568 static inline void poison_buf(struct page *page, size_t sz) 569 { 570 #if POISON_BUF_VAL >= 0 571 memset(page_address(page), POISON_BUF_VAL, sz); 572 #endif 573 } 574 575 /** 576 * refill_fl - refill an SGE RX buffer ring 577 * @adapter: the adapter 578 * @fl: the Free List ring to refill 579 * @n: the number of new buffers to allocate 580 * @gfp: the gfp flags for the allocations 581 * 582 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 583 * allocated with the supplied gfp flags. The caller must assure that 584 * @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN 585 * EGRESS QUEUE UNITS_ indicates an empty Free List! Returns the number 586 * of buffers allocated. If afterwards the queue is found critically low, 587 * mark it as starving in the bitmap of starving FLs. 588 */ 589 static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl, 590 int n, gfp_t gfp) 591 { 592 struct page *page; 593 dma_addr_t dma_addr; 594 unsigned int cred = fl->avail; 595 __be64 *d = &fl->desc[fl->pidx]; 596 struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx]; 597 598 /* 599 * Sanity: ensure that the result of adding n Free List buffers 600 * won't result in wrapping the SGE's Producer Index around to 601 * it's Consumer Index thereby indicating an empty Free List ... 602 */ 603 BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT); 604 605 /* 606 * If we support large pages, prefer large buffers and fail over to 607 * small pages if we can't allocate large pages to satisfy the refill. 608 * If we don't support large pages, drop directly into the small page 609 * allocation code. 610 */ 611 if (FL_PG_ORDER == 0) 612 goto alloc_small_pages; 613 614 while (n) { 615 page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, 616 FL_PG_ORDER); 617 if (unlikely(!page)) { 618 /* 619 * We've failed inour attempt to allocate a "large 620 * page". Fail over to the "small page" allocation 621 * below. 622 */ 623 fl->large_alloc_failed++; 624 break; 625 } 626 poison_buf(page, PAGE_SIZE << FL_PG_ORDER); 627 628 dma_addr = dma_map_page(adapter->pdev_dev, page, 0, 629 PAGE_SIZE << FL_PG_ORDER, 630 PCI_DMA_FROMDEVICE); 631 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) { 632 /* 633 * We've run out of DMA mapping space. Free up the 634 * buffer and return with what we've managed to put 635 * into the free list. We don't want to fail over to 636 * the small page allocation below in this case 637 * because DMA mapping resources are typically 638 * critical resources once they become scarse. 639 */ 640 __free_pages(page, FL_PG_ORDER); 641 goto out; 642 } 643 dma_addr |= RX_LARGE_BUF; 644 *d++ = cpu_to_be64(dma_addr); 645 646 set_rx_sw_desc(sdesc, page, dma_addr); 647 sdesc++; 648 649 fl->avail++; 650 if (++fl->pidx == fl->size) { 651 fl->pidx = 0; 652 sdesc = fl->sdesc; 653 d = fl->desc; 654 } 655 n--; 656 } 657 658 alloc_small_pages: 659 while (n--) { 660 page = __skb_alloc_page(gfp | __GFP_NOWARN, NULL); 661 if (unlikely(!page)) { 662 fl->alloc_failed++; 663 break; 664 } 665 poison_buf(page, PAGE_SIZE); 666 667 dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE, 668 PCI_DMA_FROMDEVICE); 669 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) { 670 put_page(page); 671 break; 672 } 673 *d++ = cpu_to_be64(dma_addr); 674 675 set_rx_sw_desc(sdesc, page, dma_addr); 676 sdesc++; 677 678 fl->avail++; 679 if (++fl->pidx == fl->size) { 680 fl->pidx = 0; 681 sdesc = fl->sdesc; 682 d = fl->desc; 683 } 684 } 685 686 out: 687 /* 688 * Update our accounting state to incorporate the new Free List 689 * buffers, tell the hardware about them and return the number of 690 * buffers which we were able to allocate. 691 */ 692 cred = fl->avail - cred; 693 fl->pend_cred += cred; 694 ring_fl_db(adapter, fl); 695 696 if (unlikely(fl_starving(fl))) { 697 smp_wmb(); 698 set_bit(fl->cntxt_id, adapter->sge.starving_fl); 699 } 700 701 return cred; 702 } 703 704 /* 705 * Refill a Free List to its capacity or the Maximum Refill Increment, 706 * whichever is smaller ... 707 */ 708 static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl) 709 { 710 refill_fl(adapter, fl, 711 min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail), 712 GFP_ATOMIC); 713 } 714 715 /** 716 * alloc_ring - allocate resources for an SGE descriptor ring 717 * @dev: the PCI device's core device 718 * @nelem: the number of descriptors 719 * @hwsize: the size of each hardware descriptor 720 * @swsize: the size of each software descriptor 721 * @busaddrp: the physical PCI bus address of the allocated ring 722 * @swringp: return address pointer for software ring 723 * @stat_size: extra space in hardware ring for status information 724 * 725 * Allocates resources for an SGE descriptor ring, such as TX queues, 726 * free buffer lists, response queues, etc. Each SGE ring requires 727 * space for its hardware descriptors plus, optionally, space for software 728 * state associated with each hardware entry (the metadata). The function 729 * returns three values: the virtual address for the hardware ring (the 730 * return value of the function), the PCI bus address of the hardware 731 * ring (in *busaddrp), and the address of the software ring (in swringp). 732 * Both the hardware and software rings are returned zeroed out. 733 */ 734 static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize, 735 size_t swsize, dma_addr_t *busaddrp, void *swringp, 736 size_t stat_size) 737 { 738 /* 739 * Allocate the hardware ring and PCI DMA bus address space for said. 740 */ 741 size_t hwlen = nelem * hwsize + stat_size; 742 void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL); 743 744 if (!hwring) 745 return NULL; 746 747 /* 748 * If the caller wants a software ring, allocate it and return a 749 * pointer to it in *swringp. 750 */ 751 BUG_ON((swsize != 0) != (swringp != NULL)); 752 if (swsize) { 753 void *swring = kcalloc(nelem, swsize, GFP_KERNEL); 754 755 if (!swring) { 756 dma_free_coherent(dev, hwlen, hwring, *busaddrp); 757 return NULL; 758 } 759 *(void **)swringp = swring; 760 } 761 762 /* 763 * Zero out the hardware ring and return its address as our function 764 * value. 765 */ 766 memset(hwring, 0, hwlen); 767 return hwring; 768 } 769 770 /** 771 * sgl_len - calculates the size of an SGL of the given capacity 772 * @n: the number of SGL entries 773 * 774 * Calculates the number of flits (8-byte units) needed for a Direct 775 * Scatter/Gather List that can hold the given number of entries. 776 */ 777 static inline unsigned int sgl_len(unsigned int n) 778 { 779 /* 780 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 781 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 782 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 783 * repeated sequences of { Length[i], Length[i+1], Address[i], 784 * Address[i+1] } (this ensures that all addresses are on 64-bit 785 * boundaries). If N is even, then Length[N+1] should be set to 0 and 786 * Address[N+1] is omitted. 787 * 788 * The following calculation incorporates all of the above. It's 789 * somewhat hard to follow but, briefly: the "+2" accounts for the 790 * first two flits which include the DSGL header, Length0 and 791 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 792 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 793 * finally the "+((n-1)&1)" adds the one remaining flit needed if 794 * (n-1) is odd ... 795 */ 796 n--; 797 return (3 * n) / 2 + (n & 1) + 2; 798 } 799 800 /** 801 * flits_to_desc - returns the num of TX descriptors for the given flits 802 * @flits: the number of flits 803 * 804 * Returns the number of TX descriptors needed for the supplied number 805 * of flits. 806 */ 807 static inline unsigned int flits_to_desc(unsigned int flits) 808 { 809 BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64)); 810 return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT); 811 } 812 813 /** 814 * is_eth_imm - can an Ethernet packet be sent as immediate data? 815 * @skb: the packet 816 * 817 * Returns whether an Ethernet packet is small enough to fit completely as 818 * immediate data. 819 */ 820 static inline int is_eth_imm(const struct sk_buff *skb) 821 { 822 /* 823 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request 824 * which does not accommodate immediate data. We could dike out all 825 * of the support code for immediate data but that would tie our hands 826 * too much if we ever want to enhace the firmware. It would also 827 * create more differences between the PF and VF Drivers. 828 */ 829 return false; 830 } 831 832 /** 833 * calc_tx_flits - calculate the number of flits for a packet TX WR 834 * @skb: the packet 835 * 836 * Returns the number of flits needed for a TX Work Request for the 837 * given Ethernet packet, including the needed WR and CPL headers. 838 */ 839 static inline unsigned int calc_tx_flits(const struct sk_buff *skb) 840 { 841 unsigned int flits; 842 843 /* 844 * If the skb is small enough, we can pump it out as a work request 845 * with only immediate data. In that case we just have to have the 846 * TX Packet header plus the skb data in the Work Request. 847 */ 848 if (is_eth_imm(skb)) 849 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 850 sizeof(__be64)); 851 852 /* 853 * Otherwise, we're going to have to construct a Scatter gather list 854 * of the skb body and fragments. We also include the flits necessary 855 * for the TX Packet Work Request and CPL. We always have a firmware 856 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 857 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 858 * message or, if we're doing a Large Send Offload, an LSO CPL message 859 * with an embeded TX Packet Write CPL message. 860 */ 861 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 862 if (skb_shinfo(skb)->gso_size) 863 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 864 sizeof(struct cpl_tx_pkt_lso_core) + 865 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 866 else 867 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 868 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 869 return flits; 870 } 871 872 /** 873 * write_sgl - populate a Scatter/Gather List for a packet 874 * @skb: the packet 875 * @tq: the TX queue we are writing into 876 * @sgl: starting location for writing the SGL 877 * @end: points right after the end of the SGL 878 * @start: start offset into skb main-body data to include in the SGL 879 * @addr: the list of DMA bus addresses for the SGL elements 880 * 881 * Generates a Scatter/Gather List for the buffers that make up a packet. 882 * The caller must provide adequate space for the SGL that will be written. 883 * The SGL includes all of the packet's page fragments and the data in its 884 * main body except for the first @start bytes. @pos must be 16-byte 885 * aligned and within a TX descriptor with available space. @end points 886 * write after the end of the SGL but does not account for any potential 887 * wrap around, i.e., @end > @tq->stat. 888 */ 889 static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq, 890 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 891 const dma_addr_t *addr) 892 { 893 unsigned int i, len; 894 struct ulptx_sge_pair *to; 895 const struct skb_shared_info *si = skb_shinfo(skb); 896 unsigned int nfrags = si->nr_frags; 897 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 898 899 len = skb_headlen(skb) - start; 900 if (likely(len)) { 901 sgl->len0 = htonl(len); 902 sgl->addr0 = cpu_to_be64(addr[0] + start); 903 nfrags++; 904 } else { 905 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 906 sgl->addr0 = cpu_to_be64(addr[1]); 907 } 908 909 sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | 910 ULPTX_NSGE(nfrags)); 911 if (likely(--nfrags == 0)) 912 return; 913 /* 914 * Most of the complexity below deals with the possibility we hit the 915 * end of the queue in the middle of writing the SGL. For this case 916 * only we create the SGL in a temporary buffer and then copy it. 917 */ 918 to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge; 919 920 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 921 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 922 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 923 to->addr[0] = cpu_to_be64(addr[i]); 924 to->addr[1] = cpu_to_be64(addr[++i]); 925 } 926 if (nfrags) { 927 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 928 to->len[1] = cpu_to_be32(0); 929 to->addr[0] = cpu_to_be64(addr[i + 1]); 930 } 931 if (unlikely((u8 *)end > (u8 *)tq->stat)) { 932 unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1; 933 934 if (likely(part0)) 935 memcpy(sgl->sge, buf, part0); 936 part1 = (u8 *)end - (u8 *)tq->stat; 937 memcpy(tq->desc, (u8 *)buf + part0, part1); 938 end = (void *)tq->desc + part1; 939 } 940 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 941 *end = 0; 942 } 943 944 /** 945 * check_ring_tx_db - check and potentially ring a TX queue's doorbell 946 * @adapter: the adapter 947 * @tq: the TX queue 948 * @n: number of new descriptors to give to HW 949 * 950 * Ring the doorbel for a TX queue. 951 */ 952 static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq, 953 int n) 954 { 955 /* 956 * Warn if we write doorbells with the wrong priority and write 957 * descriptors before telling HW. 958 */ 959 WARN_ON((QID(tq->cntxt_id) | PIDX(n)) & DBPRIO(1)); 960 wmb(); 961 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL, 962 QID(tq->cntxt_id) | PIDX(n)); 963 } 964 965 /** 966 * inline_tx_skb - inline a packet's data into TX descriptors 967 * @skb: the packet 968 * @tq: the TX queue where the packet will be inlined 969 * @pos: starting position in the TX queue to inline the packet 970 * 971 * Inline a packet's contents directly into TX descriptors, starting at 972 * the given position within the TX DMA ring. 973 * Most of the complexity of this operation is dealing with wrap arounds 974 * in the middle of the packet we want to inline. 975 */ 976 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq, 977 void *pos) 978 { 979 u64 *p; 980 int left = (void *)tq->stat - pos; 981 982 if (likely(skb->len <= left)) { 983 if (likely(!skb->data_len)) 984 skb_copy_from_linear_data(skb, pos, skb->len); 985 else 986 skb_copy_bits(skb, 0, pos, skb->len); 987 pos += skb->len; 988 } else { 989 skb_copy_bits(skb, 0, pos, left); 990 skb_copy_bits(skb, left, tq->desc, skb->len - left); 991 pos = (void *)tq->desc + (skb->len - left); 992 } 993 994 /* 0-pad to multiple of 16 */ 995 p = PTR_ALIGN(pos, 8); 996 if ((uintptr_t)p & 8) 997 *p = 0; 998 } 999 1000 /* 1001 * Figure out what HW csum a packet wants and return the appropriate control 1002 * bits. 1003 */ 1004 static u64 hwcsum(const struct sk_buff *skb) 1005 { 1006 int csum_type; 1007 const struct iphdr *iph = ip_hdr(skb); 1008 1009 if (iph->version == 4) { 1010 if (iph->protocol == IPPROTO_TCP) 1011 csum_type = TX_CSUM_TCPIP; 1012 else if (iph->protocol == IPPROTO_UDP) 1013 csum_type = TX_CSUM_UDPIP; 1014 else { 1015 nocsum: 1016 /* 1017 * unknown protocol, disable HW csum 1018 * and hope a bad packet is detected 1019 */ 1020 return TXPKT_L4CSUM_DIS; 1021 } 1022 } else { 1023 /* 1024 * this doesn't work with extension headers 1025 */ 1026 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; 1027 1028 if (ip6h->nexthdr == IPPROTO_TCP) 1029 csum_type = TX_CSUM_TCPIP6; 1030 else if (ip6h->nexthdr == IPPROTO_UDP) 1031 csum_type = TX_CSUM_UDPIP6; 1032 else 1033 goto nocsum; 1034 } 1035 1036 if (likely(csum_type >= TX_CSUM_TCPIP)) 1037 return TXPKT_CSUM_TYPE(csum_type) | 1038 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) | 1039 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN); 1040 else { 1041 int start = skb_transport_offset(skb); 1042 1043 return TXPKT_CSUM_TYPE(csum_type) | 1044 TXPKT_CSUM_START(start) | 1045 TXPKT_CSUM_LOC(start + skb->csum_offset); 1046 } 1047 } 1048 1049 /* 1050 * Stop an Ethernet TX queue and record that state change. 1051 */ 1052 static void txq_stop(struct sge_eth_txq *txq) 1053 { 1054 netif_tx_stop_queue(txq->txq); 1055 txq->q.stops++; 1056 } 1057 1058 /* 1059 * Advance our software state for a TX queue by adding n in use descriptors. 1060 */ 1061 static inline void txq_advance(struct sge_txq *tq, unsigned int n) 1062 { 1063 tq->in_use += n; 1064 tq->pidx += n; 1065 if (tq->pidx >= tq->size) 1066 tq->pidx -= tq->size; 1067 } 1068 1069 /** 1070 * t4vf_eth_xmit - add a packet to an Ethernet TX queue 1071 * @skb: the packet 1072 * @dev: the egress net device 1073 * 1074 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled. 1075 */ 1076 int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1077 { 1078 u32 wr_mid; 1079 u64 cntrl, *end; 1080 int qidx, credits; 1081 unsigned int flits, ndesc; 1082 struct adapter *adapter; 1083 struct sge_eth_txq *txq; 1084 const struct port_info *pi; 1085 struct fw_eth_tx_pkt_vm_wr *wr; 1086 struct cpl_tx_pkt_core *cpl; 1087 const struct skb_shared_info *ssi; 1088 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1089 const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) + 1090 sizeof(wr->ethmacsrc) + 1091 sizeof(wr->ethtype) + 1092 sizeof(wr->vlantci)); 1093 1094 /* 1095 * The chip minimum packet length is 10 octets but the firmware 1096 * command that we are using requires that we copy the Ethernet header 1097 * (including the VLAN tag) into the header so we reject anything 1098 * smaller than that ... 1099 */ 1100 if (unlikely(skb->len < fw_hdr_copy_len)) 1101 goto out_free; 1102 1103 /* 1104 * Figure out which TX Queue we're going to use. 1105 */ 1106 pi = netdev_priv(dev); 1107 adapter = pi->adapter; 1108 qidx = skb_get_queue_mapping(skb); 1109 BUG_ON(qidx >= pi->nqsets); 1110 txq = &adapter->sge.ethtxq[pi->first_qset + qidx]; 1111 1112 /* 1113 * Take this opportunity to reclaim any TX Descriptors whose DMA 1114 * transfers have completed. 1115 */ 1116 reclaim_completed_tx(adapter, &txq->q, true); 1117 1118 /* 1119 * Calculate the number of flits and TX Descriptors we're going to 1120 * need along with how many TX Descriptors will be left over after 1121 * we inject our Work Request. 1122 */ 1123 flits = calc_tx_flits(skb); 1124 ndesc = flits_to_desc(flits); 1125 credits = txq_avail(&txq->q) - ndesc; 1126 1127 if (unlikely(credits < 0)) { 1128 /* 1129 * Not enough room for this packet's Work Request. Stop the 1130 * TX Queue and return a "busy" condition. The queue will get 1131 * started later on when the firmware informs us that space 1132 * has opened up. 1133 */ 1134 txq_stop(txq); 1135 dev_err(adapter->pdev_dev, 1136 "%s: TX ring %u full while queue awake!\n", 1137 dev->name, qidx); 1138 return NETDEV_TX_BUSY; 1139 } 1140 1141 if (!is_eth_imm(skb) && 1142 unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) { 1143 /* 1144 * We need to map the skb into PCI DMA space (because it can't 1145 * be in-lined directly into the Work Request) and the mapping 1146 * operation failed. Record the error and drop the packet. 1147 */ 1148 txq->mapping_err++; 1149 goto out_free; 1150 } 1151 1152 wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2)); 1153 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1154 /* 1155 * After we're done injecting the Work Request for this 1156 * packet, we'll be below our "stop threshold" so stop the TX 1157 * Queue now and schedule a request for an SGE Egress Queue 1158 * Update message. The queue will get started later on when 1159 * the firmware processes this Work Request and sends us an 1160 * Egress Queue Status Update message indicating that space 1161 * has opened up. 1162 */ 1163 txq_stop(txq); 1164 wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ; 1165 } 1166 1167 /* 1168 * Start filling in our Work Request. Note that we do _not_ handle 1169 * the WR Header wrapping around the TX Descriptor Ring. If our 1170 * maximum header size ever exceeds one TX Descriptor, we'll need to 1171 * do something else here. 1172 */ 1173 BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1); 1174 wr = (void *)&txq->q.desc[txq->q.pidx]; 1175 wr->equiq_to_len16 = cpu_to_be32(wr_mid); 1176 wr->r3[0] = cpu_to_be64(0); 1177 wr->r3[1] = cpu_to_be64(0); 1178 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len); 1179 end = (u64 *)wr + flits; 1180 1181 /* 1182 * If this is a Large Send Offload packet we'll put in an LSO CPL 1183 * message with an encapsulated TX Packet CPL message. Otherwise we 1184 * just use a TX Packet CPL message. 1185 */ 1186 ssi = skb_shinfo(skb); 1187 if (ssi->gso_size) { 1188 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1189 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1190 int l3hdr_len = skb_network_header_len(skb); 1191 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1192 1193 wr->op_immdlen = 1194 cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) | 1195 FW_WR_IMMDLEN(sizeof(*lso) + 1196 sizeof(*cpl))); 1197 /* 1198 * Fill in the LSO CPL message. 1199 */ 1200 lso->lso_ctrl = 1201 cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO) | 1202 LSO_FIRST_SLICE | 1203 LSO_LAST_SLICE | 1204 LSO_IPV6(v6) | 1205 LSO_ETHHDR_LEN(eth_xtra_len/4) | 1206 LSO_IPHDR_LEN(l3hdr_len/4) | 1207 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff)); 1208 lso->ipid_ofst = cpu_to_be16(0); 1209 lso->mss = cpu_to_be16(ssi->gso_size); 1210 lso->seqno_offset = cpu_to_be32(0); 1211 lso->len = cpu_to_be32(skb->len); 1212 1213 /* 1214 * Set up TX Packet CPL pointer, control word and perform 1215 * accounting. 1216 */ 1217 cpl = (void *)(lso + 1); 1218 cntrl = (TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1219 TXPKT_IPHDR_LEN(l3hdr_len) | 1220 TXPKT_ETHHDR_LEN(eth_xtra_len)); 1221 txq->tso++; 1222 txq->tx_cso += ssi->gso_segs; 1223 } else { 1224 int len; 1225 1226 len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl); 1227 wr->op_immdlen = 1228 cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) | 1229 FW_WR_IMMDLEN(len)); 1230 1231 /* 1232 * Set up TX Packet CPL pointer, control word and perform 1233 * accounting. 1234 */ 1235 cpl = (void *)(wr + 1); 1236 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1237 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS; 1238 txq->tx_cso++; 1239 } else 1240 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS; 1241 } 1242 1243 /* 1244 * If there's a VLAN tag present, add that to the list of things to 1245 * do in this Work Request. 1246 */ 1247 if (vlan_tx_tag_present(skb)) { 1248 txq->vlan_ins++; 1249 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb)); 1250 } 1251 1252 /* 1253 * Fill in the TX Packet CPL message header. 1254 */ 1255 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT) | 1256 TXPKT_INTF(pi->port_id) | 1257 TXPKT_PF(0)); 1258 cpl->pack = cpu_to_be16(0); 1259 cpl->len = cpu_to_be16(skb->len); 1260 cpl->ctrl1 = cpu_to_be64(cntrl); 1261 1262 #ifdef T4_TRACE 1263 T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7], 1264 "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u", 1265 ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags); 1266 #endif 1267 1268 /* 1269 * Fill in the body of the TX Packet CPL message with either in-lined 1270 * data or a Scatter/Gather List. 1271 */ 1272 if (is_eth_imm(skb)) { 1273 /* 1274 * In-line the packet's data and free the skb since we don't 1275 * need it any longer. 1276 */ 1277 inline_tx_skb(skb, &txq->q, cpl + 1); 1278 dev_consume_skb_any(skb); 1279 } else { 1280 /* 1281 * Write the skb's Scatter/Gather list into the TX Packet CPL 1282 * message and retain a pointer to the skb so we can free it 1283 * later when its DMA completes. (We store the skb pointer 1284 * in the Software Descriptor corresponding to the last TX 1285 * Descriptor used by the Work Request.) 1286 * 1287 * The retained skb will be freed when the corresponding TX 1288 * Descriptors are reclaimed after their DMAs complete. 1289 * However, this could take quite a while since, in general, 1290 * the hardware is set up to be lazy about sending DMA 1291 * completion notifications to us and we mostly perform TX 1292 * reclaims in the transmit routine. 1293 * 1294 * This is good for performamce but means that we rely on new 1295 * TX packets arriving to run the destructors of completed 1296 * packets, which open up space in their sockets' send queues. 1297 * Sometimes we do not get such new packets causing TX to 1298 * stall. A single UDP transmitter is a good example of this 1299 * situation. We have a clean up timer that periodically 1300 * reclaims completed packets but it doesn't run often enough 1301 * (nor do we want it to) to prevent lengthy stalls. A 1302 * solution to this problem is to run the destructor early, 1303 * after the packet is queued but before it's DMAd. A con is 1304 * that we lie to socket memory accounting, but the amount of 1305 * extra memory is reasonable (limited by the number of TX 1306 * descriptors), the packets do actually get freed quickly by 1307 * new packets almost always, and for protocols like TCP that 1308 * wait for acks to really free up the data the extra memory 1309 * is even less. On the positive side we run the destructors 1310 * on the sending CPU rather than on a potentially different 1311 * completing CPU, usually a good thing. 1312 * 1313 * Run the destructor before telling the DMA engine about the 1314 * packet to make sure it doesn't complete and get freed 1315 * prematurely. 1316 */ 1317 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1); 1318 struct sge_txq *tq = &txq->q; 1319 int last_desc; 1320 1321 /* 1322 * If the Work Request header was an exact multiple of our TX 1323 * Descriptor length, then it's possible that the starting SGL 1324 * pointer lines up exactly with the end of our TX Descriptor 1325 * ring. If that's the case, wrap around to the beginning 1326 * here ... 1327 */ 1328 if (unlikely((void *)sgl == (void *)tq->stat)) { 1329 sgl = (void *)tq->desc; 1330 end = ((void *)tq->desc + ((void *)end - (void *)tq->stat)); 1331 } 1332 1333 write_sgl(skb, tq, sgl, end, 0, addr); 1334 skb_orphan(skb); 1335 1336 last_desc = tq->pidx + ndesc - 1; 1337 if (last_desc >= tq->size) 1338 last_desc -= tq->size; 1339 tq->sdesc[last_desc].skb = skb; 1340 tq->sdesc[last_desc].sgl = sgl; 1341 } 1342 1343 /* 1344 * Advance our internal TX Queue state, tell the hardware about 1345 * the new TX descriptors and return success. 1346 */ 1347 txq_advance(&txq->q, ndesc); 1348 dev->trans_start = jiffies; 1349 ring_tx_db(adapter, &txq->q, ndesc); 1350 return NETDEV_TX_OK; 1351 1352 out_free: 1353 /* 1354 * An error of some sort happened. Free the TX skb and tell the 1355 * OS that we've "dealt" with the packet ... 1356 */ 1357 dev_kfree_skb_any(skb); 1358 return NETDEV_TX_OK; 1359 } 1360 1361 /** 1362 * copy_frags - copy fragments from gather list into skb_shared_info 1363 * @skb: destination skb 1364 * @gl: source internal packet gather list 1365 * @offset: packet start offset in first page 1366 * 1367 * Copy an internal packet gather list into a Linux skb_shared_info 1368 * structure. 1369 */ 1370 static inline void copy_frags(struct sk_buff *skb, 1371 const struct pkt_gl *gl, 1372 unsigned int offset) 1373 { 1374 int i; 1375 1376 /* usually there's just one frag */ 1377 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 1378 gl->frags[0].offset + offset, 1379 gl->frags[0].size - offset); 1380 skb_shinfo(skb)->nr_frags = gl->nfrags; 1381 for (i = 1; i < gl->nfrags; i++) 1382 __skb_fill_page_desc(skb, i, gl->frags[i].page, 1383 gl->frags[i].offset, 1384 gl->frags[i].size); 1385 1386 /* get a reference to the last page, we don't own it */ 1387 get_page(gl->frags[gl->nfrags - 1].page); 1388 } 1389 1390 /** 1391 * t4vf_pktgl_to_skb - build an sk_buff from a packet gather list 1392 * @gl: the gather list 1393 * @skb_len: size of sk_buff main body if it carries fragments 1394 * @pull_len: amount of data to move to the sk_buff's main body 1395 * 1396 * Builds an sk_buff from the given packet gather list. Returns the 1397 * sk_buff or %NULL if sk_buff allocation failed. 1398 */ 1399 static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl, 1400 unsigned int skb_len, 1401 unsigned int pull_len) 1402 { 1403 struct sk_buff *skb; 1404 1405 /* 1406 * If the ingress packet is small enough, allocate an skb large enough 1407 * for all of the data and copy it inline. Otherwise, allocate an skb 1408 * with enough room to pull in the header and reference the rest of 1409 * the data via the skb fragment list. 1410 * 1411 * Below we rely on RX_COPY_THRES being less than the smallest Rx 1412 * buff! size, which is expected since buffers are at least 1413 * PAGE_SIZEd. In this case packets up to RX_COPY_THRES have only one 1414 * fragment. 1415 */ 1416 if (gl->tot_len <= RX_COPY_THRES) { 1417 /* small packets have only one fragment */ 1418 skb = alloc_skb(gl->tot_len, GFP_ATOMIC); 1419 if (unlikely(!skb)) 1420 goto out; 1421 __skb_put(skb, gl->tot_len); 1422 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 1423 } else { 1424 skb = alloc_skb(skb_len, GFP_ATOMIC); 1425 if (unlikely(!skb)) 1426 goto out; 1427 __skb_put(skb, pull_len); 1428 skb_copy_to_linear_data(skb, gl->va, pull_len); 1429 1430 copy_frags(skb, gl, pull_len); 1431 skb->len = gl->tot_len; 1432 skb->data_len = skb->len - pull_len; 1433 skb->truesize += skb->data_len; 1434 } 1435 1436 out: 1437 return skb; 1438 } 1439 1440 /** 1441 * t4vf_pktgl_free - free a packet gather list 1442 * @gl: the gather list 1443 * 1444 * Releases the pages of a packet gather list. We do not own the last 1445 * page on the list and do not free it. 1446 */ 1447 static void t4vf_pktgl_free(const struct pkt_gl *gl) 1448 { 1449 int frag; 1450 1451 frag = gl->nfrags - 1; 1452 while (frag--) 1453 put_page(gl->frags[frag].page); 1454 } 1455 1456 /** 1457 * do_gro - perform Generic Receive Offload ingress packet processing 1458 * @rxq: ingress RX Ethernet Queue 1459 * @gl: gather list for ingress packet 1460 * @pkt: CPL header for last packet fragment 1461 * 1462 * Perform Generic Receive Offload (GRO) ingress packet processing. 1463 * We use the standard Linux GRO interfaces for this. 1464 */ 1465 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 1466 const struct cpl_rx_pkt *pkt) 1467 { 1468 int ret; 1469 struct sk_buff *skb; 1470 1471 skb = napi_get_frags(&rxq->rspq.napi); 1472 if (unlikely(!skb)) { 1473 t4vf_pktgl_free(gl); 1474 rxq->stats.rx_drops++; 1475 return; 1476 } 1477 1478 copy_frags(skb, gl, PKTSHIFT); 1479 skb->len = gl->tot_len - PKTSHIFT; 1480 skb->data_len = skb->len; 1481 skb->truesize += skb->data_len; 1482 skb->ip_summed = CHECKSUM_UNNECESSARY; 1483 skb_record_rx_queue(skb, rxq->rspq.idx); 1484 1485 if (pkt->vlan_ex) { 1486 __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q), 1487 be16_to_cpu(pkt->vlan)); 1488 rxq->stats.vlan_ex++; 1489 } 1490 ret = napi_gro_frags(&rxq->rspq.napi); 1491 1492 if (ret == GRO_HELD) 1493 rxq->stats.lro_pkts++; 1494 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 1495 rxq->stats.lro_merged++; 1496 rxq->stats.pkts++; 1497 rxq->stats.rx_cso++; 1498 } 1499 1500 /** 1501 * t4vf_ethrx_handler - process an ingress ethernet packet 1502 * @rspq: the response queue that received the packet 1503 * @rsp: the response queue descriptor holding the RX_PKT message 1504 * @gl: the gather list of packet fragments 1505 * 1506 * Process an ingress ethernet packet and deliver it to the stack. 1507 */ 1508 int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp, 1509 const struct pkt_gl *gl) 1510 { 1511 struct sk_buff *skb; 1512 const struct cpl_rx_pkt *pkt = (void *)rsp; 1513 bool csum_ok = pkt->csum_calc && !pkt->err_vec; 1514 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq); 1515 1516 /* 1517 * If this is a good TCP packet and we have Generic Receive Offload 1518 * enabled, handle the packet in the GRO path. 1519 */ 1520 if ((pkt->l2info & cpu_to_be32(RXF_TCP)) && 1521 (rspq->netdev->features & NETIF_F_GRO) && csum_ok && 1522 !pkt->ip_frag) { 1523 do_gro(rxq, gl, pkt); 1524 return 0; 1525 } 1526 1527 /* 1528 * Convert the Packet Gather List into an skb. 1529 */ 1530 skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN); 1531 if (unlikely(!skb)) { 1532 t4vf_pktgl_free(gl); 1533 rxq->stats.rx_drops++; 1534 return 0; 1535 } 1536 __skb_pull(skb, PKTSHIFT); 1537 skb->protocol = eth_type_trans(skb, rspq->netdev); 1538 skb_record_rx_queue(skb, rspq->idx); 1539 rxq->stats.pkts++; 1540 1541 if (csum_ok && (rspq->netdev->features & NETIF_F_RXCSUM) && 1542 !pkt->err_vec && (be32_to_cpu(pkt->l2info) & (RXF_UDP|RXF_TCP))) { 1543 if (!pkt->ip_frag) 1544 skb->ip_summed = CHECKSUM_UNNECESSARY; 1545 else { 1546 __sum16 c = (__force __sum16)pkt->csum; 1547 skb->csum = csum_unfold(c); 1548 skb->ip_summed = CHECKSUM_COMPLETE; 1549 } 1550 rxq->stats.rx_cso++; 1551 } else 1552 skb_checksum_none_assert(skb); 1553 1554 if (pkt->vlan_ex) { 1555 rxq->stats.vlan_ex++; 1556 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(pkt->vlan)); 1557 } 1558 1559 netif_receive_skb(skb); 1560 1561 return 0; 1562 } 1563 1564 /** 1565 * is_new_response - check if a response is newly written 1566 * @rc: the response control descriptor 1567 * @rspq: the response queue 1568 * 1569 * Returns true if a response descriptor contains a yet unprocessed 1570 * response. 1571 */ 1572 static inline bool is_new_response(const struct rsp_ctrl *rc, 1573 const struct sge_rspq *rspq) 1574 { 1575 return RSPD_GEN(rc->type_gen) == rspq->gen; 1576 } 1577 1578 /** 1579 * restore_rx_bufs - put back a packet's RX buffers 1580 * @gl: the packet gather list 1581 * @fl: the SGE Free List 1582 * @nfrags: how many fragments in @si 1583 * 1584 * Called when we find out that the current packet, @si, can't be 1585 * processed right away for some reason. This is a very rare event and 1586 * there's no effort to make this suspension/resumption process 1587 * particularly efficient. 1588 * 1589 * We implement the suspension by putting all of the RX buffers associated 1590 * with the current packet back on the original Free List. The buffers 1591 * have already been unmapped and are left unmapped, we mark them as 1592 * unmapped in order to prevent further unmapping attempts. (Effectively 1593 * this function undoes the series of @unmap_rx_buf calls which were done 1594 * to create the current packet's gather list.) This leaves us ready to 1595 * restart processing of the packet the next time we start processing the 1596 * RX Queue ... 1597 */ 1598 static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl, 1599 int frags) 1600 { 1601 struct rx_sw_desc *sdesc; 1602 1603 while (frags--) { 1604 if (fl->cidx == 0) 1605 fl->cidx = fl->size - 1; 1606 else 1607 fl->cidx--; 1608 sdesc = &fl->sdesc[fl->cidx]; 1609 sdesc->page = gl->frags[frags].page; 1610 sdesc->dma_addr |= RX_UNMAPPED_BUF; 1611 fl->avail++; 1612 } 1613 } 1614 1615 /** 1616 * rspq_next - advance to the next entry in a response queue 1617 * @rspq: the queue 1618 * 1619 * Updates the state of a response queue to advance it to the next entry. 1620 */ 1621 static inline void rspq_next(struct sge_rspq *rspq) 1622 { 1623 rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len; 1624 if (unlikely(++rspq->cidx == rspq->size)) { 1625 rspq->cidx = 0; 1626 rspq->gen ^= 1; 1627 rspq->cur_desc = rspq->desc; 1628 } 1629 } 1630 1631 /** 1632 * process_responses - process responses from an SGE response queue 1633 * @rspq: the ingress response queue to process 1634 * @budget: how many responses can be processed in this round 1635 * 1636 * Process responses from a Scatter Gather Engine response queue up to 1637 * the supplied budget. Responses include received packets as well as 1638 * control messages from firmware or hardware. 1639 * 1640 * Additionally choose the interrupt holdoff time for the next interrupt 1641 * on this queue. If the system is under memory shortage use a fairly 1642 * long delay to help recovery. 1643 */ 1644 static int process_responses(struct sge_rspq *rspq, int budget) 1645 { 1646 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq); 1647 int budget_left = budget; 1648 1649 while (likely(budget_left)) { 1650 int ret, rsp_type; 1651 const struct rsp_ctrl *rc; 1652 1653 rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc)); 1654 if (!is_new_response(rc, rspq)) 1655 break; 1656 1657 /* 1658 * Figure out what kind of response we've received from the 1659 * SGE. 1660 */ 1661 rmb(); 1662 rsp_type = RSPD_TYPE(rc->type_gen); 1663 if (likely(rsp_type == RSP_TYPE_FLBUF)) { 1664 struct page_frag *fp; 1665 struct pkt_gl gl; 1666 const struct rx_sw_desc *sdesc; 1667 u32 bufsz, frag; 1668 u32 len = be32_to_cpu(rc->pldbuflen_qid); 1669 1670 /* 1671 * If we get a "new buffer" message from the SGE we 1672 * need to move on to the next Free List buffer. 1673 */ 1674 if (len & RSPD_NEWBUF) { 1675 /* 1676 * We get one "new buffer" message when we 1677 * first start up a queue so we need to ignore 1678 * it when our offset into the buffer is 0. 1679 */ 1680 if (likely(rspq->offset > 0)) { 1681 free_rx_bufs(rspq->adapter, &rxq->fl, 1682 1); 1683 rspq->offset = 0; 1684 } 1685 len = RSPD_LEN(len); 1686 } 1687 gl.tot_len = len; 1688 1689 /* 1690 * Gather packet fragments. 1691 */ 1692 for (frag = 0, fp = gl.frags; /**/; frag++, fp++) { 1693 BUG_ON(frag >= MAX_SKB_FRAGS); 1694 BUG_ON(rxq->fl.avail == 0); 1695 sdesc = &rxq->fl.sdesc[rxq->fl.cidx]; 1696 bufsz = get_buf_size(sdesc); 1697 fp->page = sdesc->page; 1698 fp->offset = rspq->offset; 1699 fp->size = min(bufsz, len); 1700 len -= fp->size; 1701 if (!len) 1702 break; 1703 unmap_rx_buf(rspq->adapter, &rxq->fl); 1704 } 1705 gl.nfrags = frag+1; 1706 1707 /* 1708 * Last buffer remains mapped so explicitly make it 1709 * coherent for CPU access and start preloading first 1710 * cache line ... 1711 */ 1712 dma_sync_single_for_cpu(rspq->adapter->pdev_dev, 1713 get_buf_addr(sdesc), 1714 fp->size, DMA_FROM_DEVICE); 1715 gl.va = (page_address(gl.frags[0].page) + 1716 gl.frags[0].offset); 1717 prefetch(gl.va); 1718 1719 /* 1720 * Hand the new ingress packet to the handler for 1721 * this Response Queue. 1722 */ 1723 ret = rspq->handler(rspq, rspq->cur_desc, &gl); 1724 if (likely(ret == 0)) 1725 rspq->offset += ALIGN(fp->size, FL_ALIGN); 1726 else 1727 restore_rx_bufs(&gl, &rxq->fl, frag); 1728 } else if (likely(rsp_type == RSP_TYPE_CPL)) { 1729 ret = rspq->handler(rspq, rspq->cur_desc, NULL); 1730 } else { 1731 WARN_ON(rsp_type > RSP_TYPE_CPL); 1732 ret = 0; 1733 } 1734 1735 if (unlikely(ret)) { 1736 /* 1737 * Couldn't process descriptor, back off for recovery. 1738 * We use the SGE's last timer which has the longest 1739 * interrupt coalescing value ... 1740 */ 1741 const int NOMEM_TIMER_IDX = SGE_NTIMERS-1; 1742 rspq->next_intr_params = 1743 QINTR_TIMER_IDX(NOMEM_TIMER_IDX); 1744 break; 1745 } 1746 1747 rspq_next(rspq); 1748 budget_left--; 1749 } 1750 1751 /* 1752 * If this is a Response Queue with an associated Free List and 1753 * at least two Egress Queue units available in the Free List 1754 * for new buffer pointers, refill the Free List. 1755 */ 1756 if (rspq->offset >= 0 && 1757 rxq->fl.size - rxq->fl.avail >= 2*FL_PER_EQ_UNIT) 1758 __refill_fl(rspq->adapter, &rxq->fl); 1759 return budget - budget_left; 1760 } 1761 1762 /** 1763 * napi_rx_handler - the NAPI handler for RX processing 1764 * @napi: the napi instance 1765 * @budget: how many packets we can process in this round 1766 * 1767 * Handler for new data events when using NAPI. This does not need any 1768 * locking or protection from interrupts as data interrupts are off at 1769 * this point and other adapter interrupts do not interfere (the latter 1770 * in not a concern at all with MSI-X as non-data interrupts then have 1771 * a separate handler). 1772 */ 1773 static int napi_rx_handler(struct napi_struct *napi, int budget) 1774 { 1775 unsigned int intr_params; 1776 struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi); 1777 int work_done = process_responses(rspq, budget); 1778 1779 if (likely(work_done < budget)) { 1780 napi_complete(napi); 1781 intr_params = rspq->next_intr_params; 1782 rspq->next_intr_params = rspq->intr_params; 1783 } else 1784 intr_params = QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX); 1785 1786 if (unlikely(work_done == 0)) 1787 rspq->unhandled_irqs++; 1788 1789 t4_write_reg(rspq->adapter, 1790 T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 1791 CIDXINC(work_done) | 1792 INGRESSQID((u32)rspq->cntxt_id) | 1793 SEINTARM(intr_params)); 1794 return work_done; 1795 } 1796 1797 /* 1798 * The MSI-X interrupt handler for an SGE response queue for the NAPI case 1799 * (i.e., response queue serviced by NAPI polling). 1800 */ 1801 irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie) 1802 { 1803 struct sge_rspq *rspq = cookie; 1804 1805 napi_schedule(&rspq->napi); 1806 return IRQ_HANDLED; 1807 } 1808 1809 /* 1810 * Process the indirect interrupt entries in the interrupt queue and kick off 1811 * NAPI for each queue that has generated an entry. 1812 */ 1813 static unsigned int process_intrq(struct adapter *adapter) 1814 { 1815 struct sge *s = &adapter->sge; 1816 struct sge_rspq *intrq = &s->intrq; 1817 unsigned int work_done; 1818 1819 spin_lock(&adapter->sge.intrq_lock); 1820 for (work_done = 0; ; work_done++) { 1821 const struct rsp_ctrl *rc; 1822 unsigned int qid, iq_idx; 1823 struct sge_rspq *rspq; 1824 1825 /* 1826 * Grab the next response from the interrupt queue and bail 1827 * out if it's not a new response. 1828 */ 1829 rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc)); 1830 if (!is_new_response(rc, intrq)) 1831 break; 1832 1833 /* 1834 * If the response isn't a forwarded interrupt message issue a 1835 * error and go on to the next response message. This should 1836 * never happen ... 1837 */ 1838 rmb(); 1839 if (unlikely(RSPD_TYPE(rc->type_gen) != RSP_TYPE_INTR)) { 1840 dev_err(adapter->pdev_dev, 1841 "Unexpected INTRQ response type %d\n", 1842 RSPD_TYPE(rc->type_gen)); 1843 continue; 1844 } 1845 1846 /* 1847 * Extract the Queue ID from the interrupt message and perform 1848 * sanity checking to make sure it really refers to one of our 1849 * Ingress Queues which is active and matches the queue's ID. 1850 * None of these error conditions should ever happen so we may 1851 * want to either make them fatal and/or conditionalized under 1852 * DEBUG. 1853 */ 1854 qid = RSPD_QID(be32_to_cpu(rc->pldbuflen_qid)); 1855 iq_idx = IQ_IDX(s, qid); 1856 if (unlikely(iq_idx >= MAX_INGQ)) { 1857 dev_err(adapter->pdev_dev, 1858 "Ingress QID %d out of range\n", qid); 1859 continue; 1860 } 1861 rspq = s->ingr_map[iq_idx]; 1862 if (unlikely(rspq == NULL)) { 1863 dev_err(adapter->pdev_dev, 1864 "Ingress QID %d RSPQ=NULL\n", qid); 1865 continue; 1866 } 1867 if (unlikely(rspq->abs_id != qid)) { 1868 dev_err(adapter->pdev_dev, 1869 "Ingress QID %d refers to RSPQ %d\n", 1870 qid, rspq->abs_id); 1871 continue; 1872 } 1873 1874 /* 1875 * Schedule NAPI processing on the indicated Response Queue 1876 * and move on to the next entry in the Forwarded Interrupt 1877 * Queue. 1878 */ 1879 napi_schedule(&rspq->napi); 1880 rspq_next(intrq); 1881 } 1882 1883 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 1884 CIDXINC(work_done) | 1885 INGRESSQID(intrq->cntxt_id) | 1886 SEINTARM(intrq->intr_params)); 1887 1888 spin_unlock(&adapter->sge.intrq_lock); 1889 1890 return work_done; 1891 } 1892 1893 /* 1894 * The MSI interrupt handler handles data events from SGE response queues as 1895 * well as error and other async events as they all use the same MSI vector. 1896 */ 1897 static irqreturn_t t4vf_intr_msi(int irq, void *cookie) 1898 { 1899 struct adapter *adapter = cookie; 1900 1901 process_intrq(adapter); 1902 return IRQ_HANDLED; 1903 } 1904 1905 /** 1906 * t4vf_intr_handler - select the top-level interrupt handler 1907 * @adapter: the adapter 1908 * 1909 * Selects the top-level interrupt handler based on the type of interrupts 1910 * (MSI-X or MSI). 1911 */ 1912 irq_handler_t t4vf_intr_handler(struct adapter *adapter) 1913 { 1914 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 1915 if (adapter->flags & USING_MSIX) 1916 return t4vf_sge_intr_msix; 1917 else 1918 return t4vf_intr_msi; 1919 } 1920 1921 /** 1922 * sge_rx_timer_cb - perform periodic maintenance of SGE RX queues 1923 * @data: the adapter 1924 * 1925 * Runs periodically from a timer to perform maintenance of SGE RX queues. 1926 * 1927 * a) Replenishes RX queues that have run out due to memory shortage. 1928 * Normally new RX buffers are added when existing ones are consumed but 1929 * when out of memory a queue can become empty. We schedule NAPI to do 1930 * the actual refill. 1931 */ 1932 static void sge_rx_timer_cb(unsigned long data) 1933 { 1934 struct adapter *adapter = (struct adapter *)data; 1935 struct sge *s = &adapter->sge; 1936 unsigned int i; 1937 1938 /* 1939 * Scan the "Starving Free Lists" flag array looking for any Free 1940 * Lists in need of more free buffers. If we find one and it's not 1941 * being actively polled, then bump its "starving" counter and attempt 1942 * to refill it. If we're successful in adding enough buffers to push 1943 * the Free List over the starving threshold, then we can clear its 1944 * "starving" status. 1945 */ 1946 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) { 1947 unsigned long m; 1948 1949 for (m = s->starving_fl[i]; m; m &= m - 1) { 1950 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 1951 struct sge_fl *fl = s->egr_map[id]; 1952 1953 clear_bit(id, s->starving_fl); 1954 smp_mb__after_clear_bit(); 1955 1956 /* 1957 * Since we are accessing fl without a lock there's a 1958 * small probability of a false positive where we 1959 * schedule napi but the FL is no longer starving. 1960 * No biggie. 1961 */ 1962 if (fl_starving(fl)) { 1963 struct sge_eth_rxq *rxq; 1964 1965 rxq = container_of(fl, struct sge_eth_rxq, fl); 1966 if (napi_reschedule(&rxq->rspq.napi)) 1967 fl->starving++; 1968 else 1969 set_bit(id, s->starving_fl); 1970 } 1971 } 1972 } 1973 1974 /* 1975 * Reschedule the next scan for starving Free Lists ... 1976 */ 1977 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 1978 } 1979 1980 /** 1981 * sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues 1982 * @data: the adapter 1983 * 1984 * Runs periodically from a timer to perform maintenance of SGE TX queues. 1985 * 1986 * b) Reclaims completed Tx packets for the Ethernet queues. Normally 1987 * packets are cleaned up by new Tx packets, this timer cleans up packets 1988 * when no new packets are being submitted. This is essential for pktgen, 1989 * at least. 1990 */ 1991 static void sge_tx_timer_cb(unsigned long data) 1992 { 1993 struct adapter *adapter = (struct adapter *)data; 1994 struct sge *s = &adapter->sge; 1995 unsigned int i, budget; 1996 1997 budget = MAX_TIMER_TX_RECLAIM; 1998 i = s->ethtxq_rover; 1999 do { 2000 struct sge_eth_txq *txq = &s->ethtxq[i]; 2001 2002 if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) { 2003 int avail = reclaimable(&txq->q); 2004 2005 if (avail > budget) 2006 avail = budget; 2007 2008 free_tx_desc(adapter, &txq->q, avail, true); 2009 txq->q.in_use -= avail; 2010 __netif_tx_unlock(txq->txq); 2011 2012 budget -= avail; 2013 if (!budget) 2014 break; 2015 } 2016 2017 i++; 2018 if (i >= s->ethqsets) 2019 i = 0; 2020 } while (i != s->ethtxq_rover); 2021 s->ethtxq_rover = i; 2022 2023 /* 2024 * If we found too many reclaimable packets schedule a timer in the 2025 * near future to continue where we left off. Otherwise the next timer 2026 * will be at its normal interval. 2027 */ 2028 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); 2029 } 2030 2031 /** 2032 * t4vf_sge_alloc_rxq - allocate an SGE RX Queue 2033 * @adapter: the adapter 2034 * @rspq: pointer to to the new rxq's Response Queue to be filled in 2035 * @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue 2036 * @dev: the network device associated with the new rspq 2037 * @intr_dest: MSI-X vector index (overriden in MSI mode) 2038 * @fl: pointer to the new rxq's Free List to be filled in 2039 * @hnd: the interrupt handler to invoke for the rspq 2040 */ 2041 int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq, 2042 bool iqasynch, struct net_device *dev, 2043 int intr_dest, 2044 struct sge_fl *fl, rspq_handler_t hnd) 2045 { 2046 struct port_info *pi = netdev_priv(dev); 2047 struct fw_iq_cmd cmd, rpl; 2048 int ret, iqandst, flsz = 0; 2049 2050 /* 2051 * If we're using MSI interrupts and we're not initializing the 2052 * Forwarded Interrupt Queue itself, then set up this queue for 2053 * indirect interrupts to the Forwarded Interrupt Queue. Obviously 2054 * the Forwarded Interrupt Queue must be set up before any other 2055 * ingress queue ... 2056 */ 2057 if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) { 2058 iqandst = SGE_INTRDST_IQ; 2059 intr_dest = adapter->sge.intrq.abs_id; 2060 } else 2061 iqandst = SGE_INTRDST_PCI; 2062 2063 /* 2064 * Allocate the hardware ring for the Response Queue. The size needs 2065 * to be a multiple of 16 which includes the mandatory status entry 2066 * (regardless of whether the Status Page capabilities are enabled or 2067 * not). 2068 */ 2069 rspq->size = roundup(rspq->size, 16); 2070 rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len, 2071 0, &rspq->phys_addr, NULL, 0); 2072 if (!rspq->desc) 2073 return -ENOMEM; 2074 2075 /* 2076 * Fill in the Ingress Queue Command. Note: Ideally this code would 2077 * be in t4vf_hw.c but there are so many parameters and dependencies 2078 * on our Linux SGE state that we would end up having to pass tons of 2079 * parameters. We'll have to think about how this might be migrated 2080 * into OS-independent common code ... 2081 */ 2082 memset(&cmd, 0, sizeof(cmd)); 2083 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) | 2084 FW_CMD_REQUEST | 2085 FW_CMD_WRITE | 2086 FW_CMD_EXEC); 2087 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC | 2088 FW_IQ_CMD_IQSTART(1) | 2089 FW_LEN16(cmd)); 2090 cmd.type_to_iqandstindex = 2091 cpu_to_be32(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 2092 FW_IQ_CMD_IQASYNCH(iqasynch) | 2093 FW_IQ_CMD_VIID(pi->viid) | 2094 FW_IQ_CMD_IQANDST(iqandst) | 2095 FW_IQ_CMD_IQANUS(1) | 2096 FW_IQ_CMD_IQANUD(SGE_UPDATEDEL_INTR) | 2097 FW_IQ_CMD_IQANDSTINDEX(intr_dest)); 2098 cmd.iqdroprss_to_iqesize = 2099 cpu_to_be16(FW_IQ_CMD_IQPCIECH(pi->port_id) | 2100 FW_IQ_CMD_IQGTSMODE | 2101 FW_IQ_CMD_IQINTCNTTHRESH(rspq->pktcnt_idx) | 2102 FW_IQ_CMD_IQESIZE(ilog2(rspq->iqe_len) - 4)); 2103 cmd.iqsize = cpu_to_be16(rspq->size); 2104 cmd.iqaddr = cpu_to_be64(rspq->phys_addr); 2105 2106 if (fl) { 2107 /* 2108 * Allocate the ring for the hardware free list (with space 2109 * for its status page) along with the associated software 2110 * descriptor ring. The free list size needs to be a multiple 2111 * of the Egress Queue Unit. 2112 */ 2113 fl->size = roundup(fl->size, FL_PER_EQ_UNIT); 2114 fl->desc = alloc_ring(adapter->pdev_dev, fl->size, 2115 sizeof(__be64), sizeof(struct rx_sw_desc), 2116 &fl->addr, &fl->sdesc, STAT_LEN); 2117 if (!fl->desc) { 2118 ret = -ENOMEM; 2119 goto err; 2120 } 2121 2122 /* 2123 * Calculate the size of the hardware free list ring plus 2124 * Status Page (which the SGE will place after the end of the 2125 * free list ring) in Egress Queue Units. 2126 */ 2127 flsz = (fl->size / FL_PER_EQ_UNIT + 2128 STAT_LEN / EQ_UNIT); 2129 2130 /* 2131 * Fill in all the relevant firmware Ingress Queue Command 2132 * fields for the free list. 2133 */ 2134 cmd.iqns_to_fl0congen = 2135 cpu_to_be32( 2136 FW_IQ_CMD_FL0HOSTFCMODE(SGE_HOSTFCMODE_NONE) | 2137 FW_IQ_CMD_FL0PACKEN(1) | 2138 FW_IQ_CMD_FL0PADEN(1)); 2139 cmd.fl0dcaen_to_fl0cidxfthresh = 2140 cpu_to_be16( 2141 FW_IQ_CMD_FL0FBMIN(SGE_FETCHBURSTMIN_64B) | 2142 FW_IQ_CMD_FL0FBMAX(SGE_FETCHBURSTMAX_512B)); 2143 cmd.fl0size = cpu_to_be16(flsz); 2144 cmd.fl0addr = cpu_to_be64(fl->addr); 2145 } 2146 2147 /* 2148 * Issue the firmware Ingress Queue Command and extract the results if 2149 * it completes successfully. 2150 */ 2151 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 2152 if (ret) 2153 goto err; 2154 2155 netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64); 2156 rspq->cur_desc = rspq->desc; 2157 rspq->cidx = 0; 2158 rspq->gen = 1; 2159 rspq->next_intr_params = rspq->intr_params; 2160 rspq->cntxt_id = be16_to_cpu(rpl.iqid); 2161 rspq->abs_id = be16_to_cpu(rpl.physiqid); 2162 rspq->size--; /* subtract status entry */ 2163 rspq->adapter = adapter; 2164 rspq->netdev = dev; 2165 rspq->handler = hnd; 2166 2167 /* set offset to -1 to distinguish ingress queues without FL */ 2168 rspq->offset = fl ? 0 : -1; 2169 2170 if (fl) { 2171 fl->cntxt_id = be16_to_cpu(rpl.fl0id); 2172 fl->avail = 0; 2173 fl->pend_cred = 0; 2174 fl->pidx = 0; 2175 fl->cidx = 0; 2176 fl->alloc_failed = 0; 2177 fl->large_alloc_failed = 0; 2178 fl->starving = 0; 2179 refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL); 2180 } 2181 2182 return 0; 2183 2184 err: 2185 /* 2186 * An error occurred. Clean up our partial allocation state and 2187 * return the error. 2188 */ 2189 if (rspq->desc) { 2190 dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len, 2191 rspq->desc, rspq->phys_addr); 2192 rspq->desc = NULL; 2193 } 2194 if (fl && fl->desc) { 2195 kfree(fl->sdesc); 2196 fl->sdesc = NULL; 2197 dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT, 2198 fl->desc, fl->addr); 2199 fl->desc = NULL; 2200 } 2201 return ret; 2202 } 2203 2204 /** 2205 * t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue 2206 * @adapter: the adapter 2207 * @txq: pointer to the new txq to be filled in 2208 * @devq: the network TX queue associated with the new txq 2209 * @iqid: the relative ingress queue ID to which events relating to 2210 * the new txq should be directed 2211 */ 2212 int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq, 2213 struct net_device *dev, struct netdev_queue *devq, 2214 unsigned int iqid) 2215 { 2216 int ret, nentries; 2217 struct fw_eq_eth_cmd cmd, rpl; 2218 struct port_info *pi = netdev_priv(dev); 2219 2220 /* 2221 * Calculate the size of the hardware TX Queue (including the Status 2222 * Page on the end of the TX Queue) in units of TX Descriptors. 2223 */ 2224 nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc); 2225 2226 /* 2227 * Allocate the hardware ring for the TX ring (with space for its 2228 * status page) along with the associated software descriptor ring. 2229 */ 2230 txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size, 2231 sizeof(struct tx_desc), 2232 sizeof(struct tx_sw_desc), 2233 &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN); 2234 if (!txq->q.desc) 2235 return -ENOMEM; 2236 2237 /* 2238 * Fill in the Egress Queue Command. Note: As with the direct use of 2239 * the firmware Ingress Queue COmmand above in our RXQ allocation 2240 * routine, ideally, this code would be in t4vf_hw.c. Again, we'll 2241 * have to see if there's some reasonable way to parameterize it 2242 * into the common code ... 2243 */ 2244 memset(&cmd, 0, sizeof(cmd)); 2245 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) | 2246 FW_CMD_REQUEST | 2247 FW_CMD_WRITE | 2248 FW_CMD_EXEC); 2249 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC | 2250 FW_EQ_ETH_CMD_EQSTART | 2251 FW_LEN16(cmd)); 2252 cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_VIID(pi->viid)); 2253 cmd.fetchszm_to_iqid = 2254 cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE(SGE_HOSTFCMODE_STPG) | 2255 FW_EQ_ETH_CMD_PCIECHN(pi->port_id) | 2256 FW_EQ_ETH_CMD_IQID(iqid)); 2257 cmd.dcaen_to_eqsize = 2258 cpu_to_be32(FW_EQ_ETH_CMD_FBMIN(SGE_FETCHBURSTMIN_64B) | 2259 FW_EQ_ETH_CMD_FBMAX(SGE_FETCHBURSTMAX_512B) | 2260 FW_EQ_ETH_CMD_CIDXFTHRESH(SGE_CIDXFLUSHTHRESH_32) | 2261 FW_EQ_ETH_CMD_EQSIZE(nentries)); 2262 cmd.eqaddr = cpu_to_be64(txq->q.phys_addr); 2263 2264 /* 2265 * Issue the firmware Egress Queue Command and extract the results if 2266 * it completes successfully. 2267 */ 2268 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 2269 if (ret) { 2270 /* 2271 * The girmware Ingress Queue Command failed for some reason. 2272 * Free up our partial allocation state and return the error. 2273 */ 2274 kfree(txq->q.sdesc); 2275 txq->q.sdesc = NULL; 2276 dma_free_coherent(adapter->pdev_dev, 2277 nentries * sizeof(struct tx_desc), 2278 txq->q.desc, txq->q.phys_addr); 2279 txq->q.desc = NULL; 2280 return ret; 2281 } 2282 2283 txq->q.in_use = 0; 2284 txq->q.cidx = 0; 2285 txq->q.pidx = 0; 2286 txq->q.stat = (void *)&txq->q.desc[txq->q.size]; 2287 txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_GET(be32_to_cpu(rpl.eqid_pkd)); 2288 txq->q.abs_id = 2289 FW_EQ_ETH_CMD_PHYSEQID_GET(be32_to_cpu(rpl.physeqid_pkd)); 2290 txq->txq = devq; 2291 txq->tso = 0; 2292 txq->tx_cso = 0; 2293 txq->vlan_ins = 0; 2294 txq->q.stops = 0; 2295 txq->q.restarts = 0; 2296 txq->mapping_err = 0; 2297 return 0; 2298 } 2299 2300 /* 2301 * Free the DMA map resources associated with a TX queue. 2302 */ 2303 static void free_txq(struct adapter *adapter, struct sge_txq *tq) 2304 { 2305 dma_free_coherent(adapter->pdev_dev, 2306 tq->size * sizeof(*tq->desc) + STAT_LEN, 2307 tq->desc, tq->phys_addr); 2308 tq->cntxt_id = 0; 2309 tq->sdesc = NULL; 2310 tq->desc = NULL; 2311 } 2312 2313 /* 2314 * Free the resources associated with a response queue (possibly including a 2315 * free list). 2316 */ 2317 static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq, 2318 struct sge_fl *fl) 2319 { 2320 unsigned int flid = fl ? fl->cntxt_id : 0xffff; 2321 2322 t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP, 2323 rspq->cntxt_id, flid, 0xffff); 2324 dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len, 2325 rspq->desc, rspq->phys_addr); 2326 netif_napi_del(&rspq->napi); 2327 rspq->netdev = NULL; 2328 rspq->cntxt_id = 0; 2329 rspq->abs_id = 0; 2330 rspq->desc = NULL; 2331 2332 if (fl) { 2333 free_rx_bufs(adapter, fl, fl->avail); 2334 dma_free_coherent(adapter->pdev_dev, 2335 fl->size * sizeof(*fl->desc) + STAT_LEN, 2336 fl->desc, fl->addr); 2337 kfree(fl->sdesc); 2338 fl->sdesc = NULL; 2339 fl->cntxt_id = 0; 2340 fl->desc = NULL; 2341 } 2342 } 2343 2344 /** 2345 * t4vf_free_sge_resources - free SGE resources 2346 * @adapter: the adapter 2347 * 2348 * Frees resources used by the SGE queue sets. 2349 */ 2350 void t4vf_free_sge_resources(struct adapter *adapter) 2351 { 2352 struct sge *s = &adapter->sge; 2353 struct sge_eth_rxq *rxq = s->ethrxq; 2354 struct sge_eth_txq *txq = s->ethtxq; 2355 struct sge_rspq *evtq = &s->fw_evtq; 2356 struct sge_rspq *intrq = &s->intrq; 2357 int qs; 2358 2359 for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) { 2360 if (rxq->rspq.desc) 2361 free_rspq_fl(adapter, &rxq->rspq, &rxq->fl); 2362 if (txq->q.desc) { 2363 t4vf_eth_eq_free(adapter, txq->q.cntxt_id); 2364 free_tx_desc(adapter, &txq->q, txq->q.in_use, true); 2365 kfree(txq->q.sdesc); 2366 free_txq(adapter, &txq->q); 2367 } 2368 } 2369 if (evtq->desc) 2370 free_rspq_fl(adapter, evtq, NULL); 2371 if (intrq->desc) 2372 free_rspq_fl(adapter, intrq, NULL); 2373 } 2374 2375 /** 2376 * t4vf_sge_start - enable SGE operation 2377 * @adapter: the adapter 2378 * 2379 * Start tasklets and timers associated with the DMA engine. 2380 */ 2381 void t4vf_sge_start(struct adapter *adapter) 2382 { 2383 adapter->sge.ethtxq_rover = 0; 2384 mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 2385 mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 2386 } 2387 2388 /** 2389 * t4vf_sge_stop - disable SGE operation 2390 * @adapter: the adapter 2391 * 2392 * Stop tasklets and timers associated with the DMA engine. Note that 2393 * this is effective only if measures have been taken to disable any HW 2394 * events that may restart them. 2395 */ 2396 void t4vf_sge_stop(struct adapter *adapter) 2397 { 2398 struct sge *s = &adapter->sge; 2399 2400 if (s->rx_timer.function) 2401 del_timer_sync(&s->rx_timer); 2402 if (s->tx_timer.function) 2403 del_timer_sync(&s->tx_timer); 2404 } 2405 2406 /** 2407 * t4vf_sge_init - initialize SGE 2408 * @adapter: the adapter 2409 * 2410 * Performs SGE initialization needed every time after a chip reset. 2411 * We do not initialize any of the queue sets here, instead the driver 2412 * top-level must request those individually. We also do not enable DMA 2413 * here, that should be done after the queues have been set up. 2414 */ 2415 int t4vf_sge_init(struct adapter *adapter) 2416 { 2417 struct sge_params *sge_params = &adapter->params.sge; 2418 u32 fl0 = sge_params->sge_fl_buffer_size[0]; 2419 u32 fl1 = sge_params->sge_fl_buffer_size[1]; 2420 struct sge *s = &adapter->sge; 2421 2422 /* 2423 * Start by vetting the basic SGE parameters which have been set up by 2424 * the Physical Function Driver. Ideally we should be able to deal 2425 * with _any_ configuration. Practice is different ... 2426 */ 2427 if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) { 2428 dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n", 2429 fl0, fl1); 2430 return -EINVAL; 2431 } 2432 if ((sge_params->sge_control & RXPKTCPLMODE_MASK) == 0) { 2433 dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n"); 2434 return -EINVAL; 2435 } 2436 2437 /* 2438 * Now translate the adapter parameters into our internal forms. 2439 */ 2440 if (fl1) 2441 FL_PG_ORDER = ilog2(fl1) - PAGE_SHIFT; 2442 STAT_LEN = ((sge_params->sge_control & EGRSTATUSPAGESIZE_MASK) 2443 ? 128 : 64); 2444 PKTSHIFT = PKTSHIFT_GET(sge_params->sge_control); 2445 FL_ALIGN = 1 << (INGPADBOUNDARY_GET(sge_params->sge_control) + 2446 SGE_INGPADBOUNDARY_SHIFT); 2447 2448 /* 2449 * Set up tasklet timers. 2450 */ 2451 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter); 2452 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter); 2453 2454 /* 2455 * Initialize Forwarded Interrupt Queue lock. 2456 */ 2457 spin_lock_init(&s->intrq_lock); 2458 2459 return 0; 2460 } 2461