1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/skbuff.h> 37 #include <linux/netdevice.h> 38 #include <linux/etherdevice.h> 39 #include <linux/if_vlan.h> 40 #include <linux/ip.h> 41 #include <net/ipv6.h> 42 #include <net/tcp.h> 43 #include <linux/dma-mapping.h> 44 #include <linux/prefetch.h> 45 46 #include "t4vf_common.h" 47 #include "t4vf_defs.h" 48 49 #include "../cxgb4/t4_regs.h" 50 #include "../cxgb4/t4_values.h" 51 #include "../cxgb4/t4fw_api.h" 52 #include "../cxgb4/t4_msg.h" 53 54 /* 55 * Constants ... 56 */ 57 enum { 58 /* 59 * Egress Queue sizes, producer and consumer indices are all in units 60 * of Egress Context Units bytes. Note that as far as the hardware is 61 * concerned, the free list is an Egress Queue (the host produces free 62 * buffers which the hardware consumes) and free list entries are 63 * 64-bit PCI DMA addresses. 64 */ 65 EQ_UNIT = SGE_EQ_IDXSIZE, 66 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 67 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 68 69 /* 70 * Max number of TX descriptors we clean up at a time. Should be 71 * modest as freeing skbs isn't cheap and it happens while holding 72 * locks. We just need to free packets faster than they arrive, we 73 * eventually catch up and keep the amortized cost reasonable. 74 */ 75 MAX_TX_RECLAIM = 16, 76 77 /* 78 * Max number of Rx buffers we replenish at a time. Again keep this 79 * modest, allocating buffers isn't cheap either. 80 */ 81 MAX_RX_REFILL = 16, 82 83 /* 84 * Period of the Rx queue check timer. This timer is infrequent as it 85 * has something to do only when the system experiences severe memory 86 * shortage. 87 */ 88 RX_QCHECK_PERIOD = (HZ / 2), 89 90 /* 91 * Period of the TX queue check timer and the maximum number of TX 92 * descriptors to be reclaimed by the TX timer. 93 */ 94 TX_QCHECK_PERIOD = (HZ / 2), 95 MAX_TIMER_TX_RECLAIM = 100, 96 97 /* 98 * Suspend an Ethernet TX queue with fewer available descriptors than 99 * this. We always want to have room for a maximum sized packet: 100 * inline immediate data + MAX_SKB_FRAGS. This is the same as 101 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS 102 * (see that function and its helpers for a description of the 103 * calculation). 104 */ 105 ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1, 106 ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 + 107 ((ETHTXQ_MAX_FRAGS-1) & 1) + 108 2), 109 ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) + 110 sizeof(struct cpl_tx_pkt_lso_core) + 111 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64), 112 ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR, 113 114 ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT), 115 116 /* 117 * Max TX descriptor space we allow for an Ethernet packet to be 118 * inlined into a WR. This is limited by the maximum value which 119 * we can specify for immediate data in the firmware Ethernet TX 120 * Work Request. 121 */ 122 MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_M, 123 124 /* 125 * Max size of a WR sent through a control TX queue. 126 */ 127 MAX_CTRL_WR_LEN = 256, 128 129 /* 130 * Maximum amount of data which we'll ever need to inline into a 131 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN). 132 */ 133 MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN 134 ? MAX_IMM_TX_PKT_LEN 135 : MAX_CTRL_WR_LEN), 136 137 /* 138 * For incoming packets less than RX_COPY_THRES, we copy the data into 139 * an skb rather than referencing the data. We allocate enough 140 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes 141 * of the data (header). 142 */ 143 RX_COPY_THRES = 256, 144 RX_PULL_LEN = 128, 145 146 /* 147 * Main body length for sk_buffs used for RX Ethernet packets with 148 * fragments. Should be >= RX_PULL_LEN but possibly bigger to give 149 * pskb_may_pull() some room. 150 */ 151 RX_SKB_LEN = 512, 152 }; 153 154 /* 155 * Software state per TX descriptor. 156 */ 157 struct tx_sw_desc { 158 struct sk_buff *skb; /* socket buffer of TX data source */ 159 struct ulptx_sgl *sgl; /* scatter/gather list in TX Queue */ 160 }; 161 162 /* 163 * Software state per RX Free List descriptor. We keep track of the allocated 164 * FL page, its size, and its PCI DMA address (if the page is mapped). The FL 165 * page size and its PCI DMA mapped state are stored in the low bits of the 166 * PCI DMA address as per below. 167 */ 168 struct rx_sw_desc { 169 struct page *page; /* Free List page buffer */ 170 dma_addr_t dma_addr; /* PCI DMA address (if mapped) */ 171 /* and flags (see below) */ 172 }; 173 174 /* 175 * The low bits of rx_sw_desc.dma_addr have special meaning. Note that the 176 * SGE also uses the low 4 bits to determine the size of the buffer. It uses 177 * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array. 178 * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4 179 * bits can only contain a 0 or a 1 to indicate which size buffer we're giving 180 * to the SGE. Thus, our software state of "is the buffer mapped for DMA" is 181 * maintained in an inverse sense so the hardware never sees that bit high. 182 */ 183 enum { 184 RX_LARGE_BUF = 1 << 0, /* buffer is SGE_FL_BUFFER_SIZE[1] */ 185 RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */ 186 }; 187 188 /** 189 * get_buf_addr - return DMA buffer address of software descriptor 190 * @sdesc: pointer to the software buffer descriptor 191 * 192 * Return the DMA buffer address of a software descriptor (stripping out 193 * our low-order flag bits). 194 */ 195 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc) 196 { 197 return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF); 198 } 199 200 /** 201 * is_buf_mapped - is buffer mapped for DMA? 202 * @sdesc: pointer to the software buffer descriptor 203 * 204 * Determine whether the buffer associated with a software descriptor in 205 * mapped for DMA or not. 206 */ 207 static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc) 208 { 209 return !(sdesc->dma_addr & RX_UNMAPPED_BUF); 210 } 211 212 /** 213 * need_skb_unmap - does the platform need unmapping of sk_buffs? 214 * 215 * Returns true if the platform needs sk_buff unmapping. The compiler 216 * optimizes away unnecessary code if this returns true. 217 */ 218 static inline int need_skb_unmap(void) 219 { 220 #ifdef CONFIG_NEED_DMA_MAP_STATE 221 return 1; 222 #else 223 return 0; 224 #endif 225 } 226 227 /** 228 * txq_avail - return the number of available slots in a TX queue 229 * @tq: the TX queue 230 * 231 * Returns the number of available descriptors in a TX queue. 232 */ 233 static inline unsigned int txq_avail(const struct sge_txq *tq) 234 { 235 return tq->size - 1 - tq->in_use; 236 } 237 238 /** 239 * fl_cap - return the capacity of a Free List 240 * @fl: the Free List 241 * 242 * Returns the capacity of a Free List. The capacity is less than the 243 * size because an Egress Queue Index Unit worth of descriptors needs to 244 * be left unpopulated, otherwise the Producer and Consumer indices PIDX 245 * and CIDX will match and the hardware will think the FL is empty. 246 */ 247 static inline unsigned int fl_cap(const struct sge_fl *fl) 248 { 249 return fl->size - FL_PER_EQ_UNIT; 250 } 251 252 /** 253 * fl_starving - return whether a Free List is starving. 254 * @adapter: pointer to the adapter 255 * @fl: the Free List 256 * 257 * Tests specified Free List to see whether the number of buffers 258 * available to the hardware has falled below our "starvation" 259 * threshold. 260 */ 261 static inline bool fl_starving(const struct adapter *adapter, 262 const struct sge_fl *fl) 263 { 264 const struct sge *s = &adapter->sge; 265 266 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 267 } 268 269 /** 270 * map_skb - map an skb for DMA to the device 271 * @dev: the egress net device 272 * @skb: the packet to map 273 * @addr: a pointer to the base of the DMA mapping array 274 * 275 * Map an skb for DMA to the device and return an array of DMA addresses. 276 */ 277 static int map_skb(struct device *dev, const struct sk_buff *skb, 278 dma_addr_t *addr) 279 { 280 const skb_frag_t *fp, *end; 281 const struct skb_shared_info *si; 282 283 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 284 if (dma_mapping_error(dev, *addr)) 285 goto out_err; 286 287 si = skb_shinfo(skb); 288 end = &si->frags[si->nr_frags]; 289 for (fp = si->frags; fp < end; fp++) { 290 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 291 DMA_TO_DEVICE); 292 if (dma_mapping_error(dev, *addr)) 293 goto unwind; 294 } 295 return 0; 296 297 unwind: 298 while (fp-- > si->frags) 299 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 300 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 301 302 out_err: 303 return -ENOMEM; 304 } 305 306 static void unmap_sgl(struct device *dev, const struct sk_buff *skb, 307 const struct ulptx_sgl *sgl, const struct sge_txq *tq) 308 { 309 const struct ulptx_sge_pair *p; 310 unsigned int nfrags = skb_shinfo(skb)->nr_frags; 311 312 if (likely(skb_headlen(skb))) 313 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), 314 be32_to_cpu(sgl->len0), DMA_TO_DEVICE); 315 else { 316 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), 317 be32_to_cpu(sgl->len0), DMA_TO_DEVICE); 318 nfrags--; 319 } 320 321 /* 322 * the complexity below is because of the possibility of a wrap-around 323 * in the middle of an SGL 324 */ 325 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { 326 if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) { 327 unmap: 328 dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 329 be32_to_cpu(p->len[0]), DMA_TO_DEVICE); 330 dma_unmap_page(dev, be64_to_cpu(p->addr[1]), 331 be32_to_cpu(p->len[1]), DMA_TO_DEVICE); 332 p++; 333 } else if ((u8 *)p == (u8 *)tq->stat) { 334 p = (const struct ulptx_sge_pair *)tq->desc; 335 goto unmap; 336 } else if ((u8 *)p + 8 == (u8 *)tq->stat) { 337 const __be64 *addr = (const __be64 *)tq->desc; 338 339 dma_unmap_page(dev, be64_to_cpu(addr[0]), 340 be32_to_cpu(p->len[0]), DMA_TO_DEVICE); 341 dma_unmap_page(dev, be64_to_cpu(addr[1]), 342 be32_to_cpu(p->len[1]), DMA_TO_DEVICE); 343 p = (const struct ulptx_sge_pair *)&addr[2]; 344 } else { 345 const __be64 *addr = (const __be64 *)tq->desc; 346 347 dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 348 be32_to_cpu(p->len[0]), DMA_TO_DEVICE); 349 dma_unmap_page(dev, be64_to_cpu(addr[0]), 350 be32_to_cpu(p->len[1]), DMA_TO_DEVICE); 351 p = (const struct ulptx_sge_pair *)&addr[1]; 352 } 353 } 354 if (nfrags) { 355 __be64 addr; 356 357 if ((u8 *)p == (u8 *)tq->stat) 358 p = (const struct ulptx_sge_pair *)tq->desc; 359 addr = ((u8 *)p + 16 <= (u8 *)tq->stat 360 ? p->addr[0] 361 : *(const __be64 *)tq->desc); 362 dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]), 363 DMA_TO_DEVICE); 364 } 365 } 366 367 /** 368 * free_tx_desc - reclaims TX descriptors and their buffers 369 * @adapter: the adapter 370 * @tq: the TX queue to reclaim descriptors from 371 * @n: the number of descriptors to reclaim 372 * @unmap: whether the buffers should be unmapped for DMA 373 * 374 * Reclaims TX descriptors from an SGE TX queue and frees the associated 375 * TX buffers. Called with the TX queue lock held. 376 */ 377 static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq, 378 unsigned int n, bool unmap) 379 { 380 struct tx_sw_desc *sdesc; 381 unsigned int cidx = tq->cidx; 382 struct device *dev = adapter->pdev_dev; 383 384 const int need_unmap = need_skb_unmap() && unmap; 385 386 sdesc = &tq->sdesc[cidx]; 387 while (n--) { 388 /* 389 * If we kept a reference to the original TX skb, we need to 390 * unmap it from PCI DMA space (if required) and free it. 391 */ 392 if (sdesc->skb) { 393 if (need_unmap) 394 unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq); 395 dev_consume_skb_any(sdesc->skb); 396 sdesc->skb = NULL; 397 } 398 399 sdesc++; 400 if (++cidx == tq->size) { 401 cidx = 0; 402 sdesc = tq->sdesc; 403 } 404 } 405 tq->cidx = cidx; 406 } 407 408 /* 409 * Return the number of reclaimable descriptors in a TX queue. 410 */ 411 static inline int reclaimable(const struct sge_txq *tq) 412 { 413 int hw_cidx = be16_to_cpu(tq->stat->cidx); 414 int reclaimable = hw_cidx - tq->cidx; 415 if (reclaimable < 0) 416 reclaimable += tq->size; 417 return reclaimable; 418 } 419 420 /** 421 * reclaim_completed_tx - reclaims completed TX descriptors 422 * @adapter: the adapter 423 * @tq: the TX queue to reclaim completed descriptors from 424 * @unmap: whether the buffers should be unmapped for DMA 425 * 426 * Reclaims TX descriptors that the SGE has indicated it has processed, 427 * and frees the associated buffers if possible. Called with the TX 428 * queue locked. 429 */ 430 static inline void reclaim_completed_tx(struct adapter *adapter, 431 struct sge_txq *tq, 432 bool unmap) 433 { 434 int avail = reclaimable(tq); 435 436 if (avail) { 437 /* 438 * Limit the amount of clean up work we do at a time to keep 439 * the TX lock hold time O(1). 440 */ 441 if (avail > MAX_TX_RECLAIM) 442 avail = MAX_TX_RECLAIM; 443 444 free_tx_desc(adapter, tq, avail, unmap); 445 tq->in_use -= avail; 446 } 447 } 448 449 /** 450 * get_buf_size - return the size of an RX Free List buffer. 451 * @adapter: pointer to the associated adapter 452 * @sdesc: pointer to the software buffer descriptor 453 */ 454 static inline int get_buf_size(const struct adapter *adapter, 455 const struct rx_sw_desc *sdesc) 456 { 457 const struct sge *s = &adapter->sge; 458 459 return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF) 460 ? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE); 461 } 462 463 /** 464 * free_rx_bufs - free RX buffers on an SGE Free List 465 * @adapter: the adapter 466 * @fl: the SGE Free List to free buffers from 467 * @n: how many buffers to free 468 * 469 * Release the next @n buffers on an SGE Free List RX queue. The 470 * buffers must be made inaccessible to hardware before calling this 471 * function. 472 */ 473 static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n) 474 { 475 while (n--) { 476 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx]; 477 478 if (is_buf_mapped(sdesc)) 479 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc), 480 get_buf_size(adapter, sdesc), 481 PCI_DMA_FROMDEVICE); 482 put_page(sdesc->page); 483 sdesc->page = NULL; 484 if (++fl->cidx == fl->size) 485 fl->cidx = 0; 486 fl->avail--; 487 } 488 } 489 490 /** 491 * unmap_rx_buf - unmap the current RX buffer on an SGE Free List 492 * @adapter: the adapter 493 * @fl: the SGE Free List 494 * 495 * Unmap the current buffer on an SGE Free List RX queue. The 496 * buffer must be made inaccessible to HW before calling this function. 497 * 498 * This is similar to @free_rx_bufs above but does not free the buffer. 499 * Do note that the FL still loses any further access to the buffer. 500 * This is used predominantly to "transfer ownership" of an FL buffer 501 * to another entity (typically an skb's fragment list). 502 */ 503 static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl) 504 { 505 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx]; 506 507 if (is_buf_mapped(sdesc)) 508 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc), 509 get_buf_size(adapter, sdesc), 510 PCI_DMA_FROMDEVICE); 511 sdesc->page = NULL; 512 if (++fl->cidx == fl->size) 513 fl->cidx = 0; 514 fl->avail--; 515 } 516 517 /** 518 * ring_fl_db - righ doorbell on free list 519 * @adapter: the adapter 520 * @fl: the Free List whose doorbell should be rung ... 521 * 522 * Tell the Scatter Gather Engine that there are new free list entries 523 * available. 524 */ 525 static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl) 526 { 527 u32 val = adapter->params.arch.sge_fl_db; 528 529 /* The SGE keeps track of its Producer and Consumer Indices in terms 530 * of Egress Queue Units so we can only tell it about integral numbers 531 * of multiples of Free List Entries per Egress Queue Units ... 532 */ 533 if (fl->pend_cred >= FL_PER_EQ_UNIT) { 534 if (is_t4(adapter->params.chip)) 535 val |= PIDX_V(fl->pend_cred / FL_PER_EQ_UNIT); 536 else 537 val |= PIDX_T5_V(fl->pend_cred / FL_PER_EQ_UNIT); 538 539 /* Make sure all memory writes to the Free List queue are 540 * committed before we tell the hardware about them. 541 */ 542 wmb(); 543 544 /* If we don't have access to the new User Doorbell (T5+), use 545 * the old doorbell mechanism; otherwise use the new BAR2 546 * mechanism. 547 */ 548 if (unlikely(fl->bar2_addr == NULL)) { 549 t4_write_reg(adapter, 550 T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL, 551 QID_V(fl->cntxt_id) | val); 552 } else { 553 writel(val | QID_V(fl->bar2_qid), 554 fl->bar2_addr + SGE_UDB_KDOORBELL); 555 556 /* This Write memory Barrier will force the write to 557 * the User Doorbell area to be flushed. 558 */ 559 wmb(); 560 } 561 fl->pend_cred %= FL_PER_EQ_UNIT; 562 } 563 } 564 565 /** 566 * set_rx_sw_desc - initialize software RX buffer descriptor 567 * @sdesc: pointer to the softwore RX buffer descriptor 568 * @page: pointer to the page data structure backing the RX buffer 569 * @dma_addr: PCI DMA address (possibly with low-bit flags) 570 */ 571 static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page, 572 dma_addr_t dma_addr) 573 { 574 sdesc->page = page; 575 sdesc->dma_addr = dma_addr; 576 } 577 578 /* 579 * Support for poisoning RX buffers ... 580 */ 581 #define POISON_BUF_VAL -1 582 583 static inline void poison_buf(struct page *page, size_t sz) 584 { 585 #if POISON_BUF_VAL >= 0 586 memset(page_address(page), POISON_BUF_VAL, sz); 587 #endif 588 } 589 590 /** 591 * refill_fl - refill an SGE RX buffer ring 592 * @adapter: the adapter 593 * @fl: the Free List ring to refill 594 * @n: the number of new buffers to allocate 595 * @gfp: the gfp flags for the allocations 596 * 597 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 598 * allocated with the supplied gfp flags. The caller must assure that 599 * @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN 600 * EGRESS QUEUE UNITS_ indicates an empty Free List! Returns the number 601 * of buffers allocated. If afterwards the queue is found critically low, 602 * mark it as starving in the bitmap of starving FLs. 603 */ 604 static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl, 605 int n, gfp_t gfp) 606 { 607 struct sge *s = &adapter->sge; 608 struct page *page; 609 dma_addr_t dma_addr; 610 unsigned int cred = fl->avail; 611 __be64 *d = &fl->desc[fl->pidx]; 612 struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx]; 613 614 /* 615 * Sanity: ensure that the result of adding n Free List buffers 616 * won't result in wrapping the SGE's Producer Index around to 617 * it's Consumer Index thereby indicating an empty Free List ... 618 */ 619 BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT); 620 621 gfp |= __GFP_NOWARN; 622 623 /* 624 * If we support large pages, prefer large buffers and fail over to 625 * small pages if we can't allocate large pages to satisfy the refill. 626 * If we don't support large pages, drop directly into the small page 627 * allocation code. 628 */ 629 if (s->fl_pg_order == 0) 630 goto alloc_small_pages; 631 632 while (n) { 633 page = __dev_alloc_pages(gfp, s->fl_pg_order); 634 if (unlikely(!page)) { 635 /* 636 * We've failed inour attempt to allocate a "large 637 * page". Fail over to the "small page" allocation 638 * below. 639 */ 640 fl->large_alloc_failed++; 641 break; 642 } 643 poison_buf(page, PAGE_SIZE << s->fl_pg_order); 644 645 dma_addr = dma_map_page(adapter->pdev_dev, page, 0, 646 PAGE_SIZE << s->fl_pg_order, 647 PCI_DMA_FROMDEVICE); 648 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) { 649 /* 650 * We've run out of DMA mapping space. Free up the 651 * buffer and return with what we've managed to put 652 * into the free list. We don't want to fail over to 653 * the small page allocation below in this case 654 * because DMA mapping resources are typically 655 * critical resources once they become scarse. 656 */ 657 __free_pages(page, s->fl_pg_order); 658 goto out; 659 } 660 dma_addr |= RX_LARGE_BUF; 661 *d++ = cpu_to_be64(dma_addr); 662 663 set_rx_sw_desc(sdesc, page, dma_addr); 664 sdesc++; 665 666 fl->avail++; 667 if (++fl->pidx == fl->size) { 668 fl->pidx = 0; 669 sdesc = fl->sdesc; 670 d = fl->desc; 671 } 672 n--; 673 } 674 675 alloc_small_pages: 676 while (n--) { 677 page = __dev_alloc_page(gfp); 678 if (unlikely(!page)) { 679 fl->alloc_failed++; 680 break; 681 } 682 poison_buf(page, PAGE_SIZE); 683 684 dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE, 685 PCI_DMA_FROMDEVICE); 686 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) { 687 put_page(page); 688 break; 689 } 690 *d++ = cpu_to_be64(dma_addr); 691 692 set_rx_sw_desc(sdesc, page, dma_addr); 693 sdesc++; 694 695 fl->avail++; 696 if (++fl->pidx == fl->size) { 697 fl->pidx = 0; 698 sdesc = fl->sdesc; 699 d = fl->desc; 700 } 701 } 702 703 out: 704 /* 705 * Update our accounting state to incorporate the new Free List 706 * buffers, tell the hardware about them and return the number of 707 * buffers which we were able to allocate. 708 */ 709 cred = fl->avail - cred; 710 fl->pend_cred += cred; 711 ring_fl_db(adapter, fl); 712 713 if (unlikely(fl_starving(adapter, fl))) { 714 smp_wmb(); 715 set_bit(fl->cntxt_id, adapter->sge.starving_fl); 716 } 717 718 return cred; 719 } 720 721 /* 722 * Refill a Free List to its capacity or the Maximum Refill Increment, 723 * whichever is smaller ... 724 */ 725 static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl) 726 { 727 refill_fl(adapter, fl, 728 min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail), 729 GFP_ATOMIC); 730 } 731 732 /** 733 * alloc_ring - allocate resources for an SGE descriptor ring 734 * @dev: the PCI device's core device 735 * @nelem: the number of descriptors 736 * @hwsize: the size of each hardware descriptor 737 * @swsize: the size of each software descriptor 738 * @busaddrp: the physical PCI bus address of the allocated ring 739 * @swringp: return address pointer for software ring 740 * @stat_size: extra space in hardware ring for status information 741 * 742 * Allocates resources for an SGE descriptor ring, such as TX queues, 743 * free buffer lists, response queues, etc. Each SGE ring requires 744 * space for its hardware descriptors plus, optionally, space for software 745 * state associated with each hardware entry (the metadata). The function 746 * returns three values: the virtual address for the hardware ring (the 747 * return value of the function), the PCI bus address of the hardware 748 * ring (in *busaddrp), and the address of the software ring (in swringp). 749 * Both the hardware and software rings are returned zeroed out. 750 */ 751 static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize, 752 size_t swsize, dma_addr_t *busaddrp, void *swringp, 753 size_t stat_size) 754 { 755 /* 756 * Allocate the hardware ring and PCI DMA bus address space for said. 757 */ 758 size_t hwlen = nelem * hwsize + stat_size; 759 void *hwring = dma_zalloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL); 760 761 if (!hwring) 762 return NULL; 763 764 /* 765 * If the caller wants a software ring, allocate it and return a 766 * pointer to it in *swringp. 767 */ 768 BUG_ON((swsize != 0) != (swringp != NULL)); 769 if (swsize) { 770 void *swring = kcalloc(nelem, swsize, GFP_KERNEL); 771 772 if (!swring) { 773 dma_free_coherent(dev, hwlen, hwring, *busaddrp); 774 return NULL; 775 } 776 *(void **)swringp = swring; 777 } 778 779 return hwring; 780 } 781 782 /** 783 * sgl_len - calculates the size of an SGL of the given capacity 784 * @n: the number of SGL entries 785 * 786 * Calculates the number of flits (8-byte units) needed for a Direct 787 * Scatter/Gather List that can hold the given number of entries. 788 */ 789 static inline unsigned int sgl_len(unsigned int n) 790 { 791 /* 792 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 793 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 794 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 795 * repeated sequences of { Length[i], Length[i+1], Address[i], 796 * Address[i+1] } (this ensures that all addresses are on 64-bit 797 * boundaries). If N is even, then Length[N+1] should be set to 0 and 798 * Address[N+1] is omitted. 799 * 800 * The following calculation incorporates all of the above. It's 801 * somewhat hard to follow but, briefly: the "+2" accounts for the 802 * first two flits which include the DSGL header, Length0 and 803 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 804 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 805 * finally the "+((n-1)&1)" adds the one remaining flit needed if 806 * (n-1) is odd ... 807 */ 808 n--; 809 return (3 * n) / 2 + (n & 1) + 2; 810 } 811 812 /** 813 * flits_to_desc - returns the num of TX descriptors for the given flits 814 * @flits: the number of flits 815 * 816 * Returns the number of TX descriptors needed for the supplied number 817 * of flits. 818 */ 819 static inline unsigned int flits_to_desc(unsigned int flits) 820 { 821 BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64)); 822 return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT); 823 } 824 825 /** 826 * is_eth_imm - can an Ethernet packet be sent as immediate data? 827 * @skb: the packet 828 * 829 * Returns whether an Ethernet packet is small enough to fit completely as 830 * immediate data. 831 */ 832 static inline int is_eth_imm(const struct sk_buff *skb) 833 { 834 /* 835 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request 836 * which does not accommodate immediate data. We could dike out all 837 * of the support code for immediate data but that would tie our hands 838 * too much if we ever want to enhace the firmware. It would also 839 * create more differences between the PF and VF Drivers. 840 */ 841 return false; 842 } 843 844 /** 845 * calc_tx_flits - calculate the number of flits for a packet TX WR 846 * @skb: the packet 847 * 848 * Returns the number of flits needed for a TX Work Request for the 849 * given Ethernet packet, including the needed WR and CPL headers. 850 */ 851 static inline unsigned int calc_tx_flits(const struct sk_buff *skb) 852 { 853 unsigned int flits; 854 855 /* 856 * If the skb is small enough, we can pump it out as a work request 857 * with only immediate data. In that case we just have to have the 858 * TX Packet header plus the skb data in the Work Request. 859 */ 860 if (is_eth_imm(skb)) 861 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 862 sizeof(__be64)); 863 864 /* 865 * Otherwise, we're going to have to construct a Scatter gather list 866 * of the skb body and fragments. We also include the flits necessary 867 * for the TX Packet Work Request and CPL. We always have a firmware 868 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 869 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 870 * message or, if we're doing a Large Send Offload, an LSO CPL message 871 * with an embedded TX Packet Write CPL message. 872 */ 873 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 874 if (skb_shinfo(skb)->gso_size) 875 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 876 sizeof(struct cpl_tx_pkt_lso_core) + 877 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 878 else 879 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 880 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 881 return flits; 882 } 883 884 /** 885 * write_sgl - populate a Scatter/Gather List for a packet 886 * @skb: the packet 887 * @tq: the TX queue we are writing into 888 * @sgl: starting location for writing the SGL 889 * @end: points right after the end of the SGL 890 * @start: start offset into skb main-body data to include in the SGL 891 * @addr: the list of DMA bus addresses for the SGL elements 892 * 893 * Generates a Scatter/Gather List for the buffers that make up a packet. 894 * The caller must provide adequate space for the SGL that will be written. 895 * The SGL includes all of the packet's page fragments and the data in its 896 * main body except for the first @start bytes. @pos must be 16-byte 897 * aligned and within a TX descriptor with available space. @end points 898 * write after the end of the SGL but does not account for any potential 899 * wrap around, i.e., @end > @tq->stat. 900 */ 901 static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq, 902 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 903 const dma_addr_t *addr) 904 { 905 unsigned int i, len; 906 struct ulptx_sge_pair *to; 907 const struct skb_shared_info *si = skb_shinfo(skb); 908 unsigned int nfrags = si->nr_frags; 909 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 910 911 len = skb_headlen(skb) - start; 912 if (likely(len)) { 913 sgl->len0 = htonl(len); 914 sgl->addr0 = cpu_to_be64(addr[0] + start); 915 nfrags++; 916 } else { 917 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 918 sgl->addr0 = cpu_to_be64(addr[1]); 919 } 920 921 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 922 ULPTX_NSGE_V(nfrags)); 923 if (likely(--nfrags == 0)) 924 return; 925 /* 926 * Most of the complexity below deals with the possibility we hit the 927 * end of the queue in the middle of writing the SGL. For this case 928 * only we create the SGL in a temporary buffer and then copy it. 929 */ 930 to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge; 931 932 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 933 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 934 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 935 to->addr[0] = cpu_to_be64(addr[i]); 936 to->addr[1] = cpu_to_be64(addr[++i]); 937 } 938 if (nfrags) { 939 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 940 to->len[1] = cpu_to_be32(0); 941 to->addr[0] = cpu_to_be64(addr[i + 1]); 942 } 943 if (unlikely((u8 *)end > (u8 *)tq->stat)) { 944 unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1; 945 946 if (likely(part0)) 947 memcpy(sgl->sge, buf, part0); 948 part1 = (u8 *)end - (u8 *)tq->stat; 949 memcpy(tq->desc, (u8 *)buf + part0, part1); 950 end = (void *)tq->desc + part1; 951 } 952 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 953 *end = 0; 954 } 955 956 /** 957 * check_ring_tx_db - check and potentially ring a TX queue's doorbell 958 * @adapter: the adapter 959 * @tq: the TX queue 960 * @n: number of new descriptors to give to HW 961 * 962 * Ring the doorbel for a TX queue. 963 */ 964 static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq, 965 int n) 966 { 967 /* Make sure that all writes to the TX Descriptors are committed 968 * before we tell the hardware about them. 969 */ 970 wmb(); 971 972 /* If we don't have access to the new User Doorbell (T5+), use the old 973 * doorbell mechanism; otherwise use the new BAR2 mechanism. 974 */ 975 if (unlikely(tq->bar2_addr == NULL)) { 976 u32 val = PIDX_V(n); 977 978 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL, 979 QID_V(tq->cntxt_id) | val); 980 } else { 981 u32 val = PIDX_T5_V(n); 982 983 /* T4 and later chips share the same PIDX field offset within 984 * the doorbell, but T5 and later shrank the field in order to 985 * gain a bit for Doorbell Priority. The field was absurdly 986 * large in the first place (14 bits) so we just use the T5 987 * and later limits and warn if a Queue ID is too large. 988 */ 989 WARN_ON(val & DBPRIO_F); 990 991 /* If we're only writing a single Egress Unit and the BAR2 992 * Queue ID is 0, we can use the Write Combining Doorbell 993 * Gather Buffer; otherwise we use the simple doorbell. 994 */ 995 if (n == 1 && tq->bar2_qid == 0) { 996 unsigned int index = (tq->pidx 997 ? (tq->pidx - 1) 998 : (tq->size - 1)); 999 __be64 *src = (__be64 *)&tq->desc[index]; 1000 __be64 __iomem *dst = (__be64 __iomem *)(tq->bar2_addr + 1001 SGE_UDB_WCDOORBELL); 1002 unsigned int count = EQ_UNIT / sizeof(__be64); 1003 1004 /* Copy the TX Descriptor in a tight loop in order to 1005 * try to get it to the adapter in a single Write 1006 * Combined transfer on the PCI-E Bus. If the Write 1007 * Combine fails (say because of an interrupt, etc.) 1008 * the hardware will simply take the last write as a 1009 * simple doorbell write with a PIDX Increment of 1 1010 * and will fetch the TX Descriptor from memory via 1011 * DMA. 1012 */ 1013 while (count) { 1014 /* the (__force u64) is because the compiler 1015 * doesn't understand the endian swizzling 1016 * going on 1017 */ 1018 writeq((__force u64)*src, dst); 1019 src++; 1020 dst++; 1021 count--; 1022 } 1023 } else 1024 writel(val | QID_V(tq->bar2_qid), 1025 tq->bar2_addr + SGE_UDB_KDOORBELL); 1026 1027 /* This Write Memory Barrier will force the write to the User 1028 * Doorbell area to be flushed. This is needed to prevent 1029 * writes on different CPUs for the same queue from hitting 1030 * the adapter out of order. This is required when some Work 1031 * Requests take the Write Combine Gather Buffer path (user 1032 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 1033 * take the traditional path where we simply increment the 1034 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 1035 * hardware DMA read the actual Work Request. 1036 */ 1037 wmb(); 1038 } 1039 } 1040 1041 /** 1042 * inline_tx_skb - inline a packet's data into TX descriptors 1043 * @skb: the packet 1044 * @tq: the TX queue where the packet will be inlined 1045 * @pos: starting position in the TX queue to inline the packet 1046 * 1047 * Inline a packet's contents directly into TX descriptors, starting at 1048 * the given position within the TX DMA ring. 1049 * Most of the complexity of this operation is dealing with wrap arounds 1050 * in the middle of the packet we want to inline. 1051 */ 1052 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq, 1053 void *pos) 1054 { 1055 u64 *p; 1056 int left = (void *)tq->stat - pos; 1057 1058 if (likely(skb->len <= left)) { 1059 if (likely(!skb->data_len)) 1060 skb_copy_from_linear_data(skb, pos, skb->len); 1061 else 1062 skb_copy_bits(skb, 0, pos, skb->len); 1063 pos += skb->len; 1064 } else { 1065 skb_copy_bits(skb, 0, pos, left); 1066 skb_copy_bits(skb, left, tq->desc, skb->len - left); 1067 pos = (void *)tq->desc + (skb->len - left); 1068 } 1069 1070 /* 0-pad to multiple of 16 */ 1071 p = PTR_ALIGN(pos, 8); 1072 if ((uintptr_t)p & 8) 1073 *p = 0; 1074 } 1075 1076 /* 1077 * Figure out what HW csum a packet wants and return the appropriate control 1078 * bits. 1079 */ 1080 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) 1081 { 1082 int csum_type; 1083 const struct iphdr *iph = ip_hdr(skb); 1084 1085 if (iph->version == 4) { 1086 if (iph->protocol == IPPROTO_TCP) 1087 csum_type = TX_CSUM_TCPIP; 1088 else if (iph->protocol == IPPROTO_UDP) 1089 csum_type = TX_CSUM_UDPIP; 1090 else { 1091 nocsum: 1092 /* 1093 * unknown protocol, disable HW csum 1094 * and hope a bad packet is detected 1095 */ 1096 return TXPKT_L4CSUM_DIS_F; 1097 } 1098 } else { 1099 /* 1100 * this doesn't work with extension headers 1101 */ 1102 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; 1103 1104 if (ip6h->nexthdr == IPPROTO_TCP) 1105 csum_type = TX_CSUM_TCPIP6; 1106 else if (ip6h->nexthdr == IPPROTO_UDP) 1107 csum_type = TX_CSUM_UDPIP6; 1108 else 1109 goto nocsum; 1110 } 1111 1112 if (likely(csum_type >= TX_CSUM_TCPIP)) { 1113 u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb)); 1114 int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; 1115 1116 if (chip <= CHELSIO_T5) 1117 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1118 else 1119 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1120 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; 1121 } else { 1122 int start = skb_transport_offset(skb); 1123 1124 return TXPKT_CSUM_TYPE_V(csum_type) | 1125 TXPKT_CSUM_START_V(start) | 1126 TXPKT_CSUM_LOC_V(start + skb->csum_offset); 1127 } 1128 } 1129 1130 /* 1131 * Stop an Ethernet TX queue and record that state change. 1132 */ 1133 static void txq_stop(struct sge_eth_txq *txq) 1134 { 1135 netif_tx_stop_queue(txq->txq); 1136 txq->q.stops++; 1137 } 1138 1139 /* 1140 * Advance our software state for a TX queue by adding n in use descriptors. 1141 */ 1142 static inline void txq_advance(struct sge_txq *tq, unsigned int n) 1143 { 1144 tq->in_use += n; 1145 tq->pidx += n; 1146 if (tq->pidx >= tq->size) 1147 tq->pidx -= tq->size; 1148 } 1149 1150 /** 1151 * t4vf_eth_xmit - add a packet to an Ethernet TX queue 1152 * @skb: the packet 1153 * @dev: the egress net device 1154 * 1155 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled. 1156 */ 1157 int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1158 { 1159 u32 wr_mid; 1160 u64 cntrl, *end; 1161 int qidx, credits, max_pkt_len; 1162 unsigned int flits, ndesc; 1163 struct adapter *adapter; 1164 struct sge_eth_txq *txq; 1165 const struct port_info *pi; 1166 struct fw_eth_tx_pkt_vm_wr *wr; 1167 struct cpl_tx_pkt_core *cpl; 1168 const struct skb_shared_info *ssi; 1169 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1170 const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) + 1171 sizeof(wr->ethmacsrc) + 1172 sizeof(wr->ethtype) + 1173 sizeof(wr->vlantci)); 1174 1175 /* 1176 * The chip minimum packet length is 10 octets but the firmware 1177 * command that we are using requires that we copy the Ethernet header 1178 * (including the VLAN tag) into the header so we reject anything 1179 * smaller than that ... 1180 */ 1181 if (unlikely(skb->len < fw_hdr_copy_len)) 1182 goto out_free; 1183 1184 /* Discard the packet if the length is greater than mtu */ 1185 max_pkt_len = ETH_HLEN + dev->mtu; 1186 if (skb_vlan_tagged(skb)) 1187 max_pkt_len += VLAN_HLEN; 1188 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) 1189 goto out_free; 1190 1191 /* 1192 * Figure out which TX Queue we're going to use. 1193 */ 1194 pi = netdev_priv(dev); 1195 adapter = pi->adapter; 1196 qidx = skb_get_queue_mapping(skb); 1197 BUG_ON(qidx >= pi->nqsets); 1198 txq = &adapter->sge.ethtxq[pi->first_qset + qidx]; 1199 1200 if (pi->vlan_id && !skb_vlan_tag_present(skb)) 1201 __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q), 1202 pi->vlan_id); 1203 1204 /* 1205 * Take this opportunity to reclaim any TX Descriptors whose DMA 1206 * transfers have completed. 1207 */ 1208 reclaim_completed_tx(adapter, &txq->q, true); 1209 1210 /* 1211 * Calculate the number of flits and TX Descriptors we're going to 1212 * need along with how many TX Descriptors will be left over after 1213 * we inject our Work Request. 1214 */ 1215 flits = calc_tx_flits(skb); 1216 ndesc = flits_to_desc(flits); 1217 credits = txq_avail(&txq->q) - ndesc; 1218 1219 if (unlikely(credits < 0)) { 1220 /* 1221 * Not enough room for this packet's Work Request. Stop the 1222 * TX Queue and return a "busy" condition. The queue will get 1223 * started later on when the firmware informs us that space 1224 * has opened up. 1225 */ 1226 txq_stop(txq); 1227 dev_err(adapter->pdev_dev, 1228 "%s: TX ring %u full while queue awake!\n", 1229 dev->name, qidx); 1230 return NETDEV_TX_BUSY; 1231 } 1232 1233 if (!is_eth_imm(skb) && 1234 unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) { 1235 /* 1236 * We need to map the skb into PCI DMA space (because it can't 1237 * be in-lined directly into the Work Request) and the mapping 1238 * operation failed. Record the error and drop the packet. 1239 */ 1240 txq->mapping_err++; 1241 goto out_free; 1242 } 1243 1244 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1245 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1246 /* 1247 * After we're done injecting the Work Request for this 1248 * packet, we'll be below our "stop threshold" so stop the TX 1249 * Queue now and schedule a request for an SGE Egress Queue 1250 * Update message. The queue will get started later on when 1251 * the firmware processes this Work Request and sends us an 1252 * Egress Queue Status Update message indicating that space 1253 * has opened up. 1254 */ 1255 txq_stop(txq); 1256 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1257 } 1258 1259 /* 1260 * Start filling in our Work Request. Note that we do _not_ handle 1261 * the WR Header wrapping around the TX Descriptor Ring. If our 1262 * maximum header size ever exceeds one TX Descriptor, we'll need to 1263 * do something else here. 1264 */ 1265 BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1); 1266 wr = (void *)&txq->q.desc[txq->q.pidx]; 1267 wr->equiq_to_len16 = cpu_to_be32(wr_mid); 1268 wr->r3[0] = cpu_to_be32(0); 1269 wr->r3[1] = cpu_to_be32(0); 1270 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len); 1271 end = (u64 *)wr + flits; 1272 1273 /* 1274 * If this is a Large Send Offload packet we'll put in an LSO CPL 1275 * message with an encapsulated TX Packet CPL message. Otherwise we 1276 * just use a TX Packet CPL message. 1277 */ 1278 ssi = skb_shinfo(skb); 1279 if (ssi->gso_size) { 1280 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1281 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1282 int l3hdr_len = skb_network_header_len(skb); 1283 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1284 1285 wr->op_immdlen = 1286 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1287 FW_WR_IMMDLEN_V(sizeof(*lso) + 1288 sizeof(*cpl))); 1289 /* 1290 * Fill in the LSO CPL message. 1291 */ 1292 lso->lso_ctrl = 1293 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1294 LSO_FIRST_SLICE_F | 1295 LSO_LAST_SLICE_F | 1296 LSO_IPV6_V(v6) | 1297 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1298 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1299 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1300 lso->ipid_ofst = cpu_to_be16(0); 1301 lso->mss = cpu_to_be16(ssi->gso_size); 1302 lso->seqno_offset = cpu_to_be32(0); 1303 if (is_t4(adapter->params.chip)) 1304 lso->len = cpu_to_be32(skb->len); 1305 else 1306 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len)); 1307 1308 /* 1309 * Set up TX Packet CPL pointer, control word and perform 1310 * accounting. 1311 */ 1312 cpl = (void *)(lso + 1); 1313 1314 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 1315 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1316 else 1317 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1318 1319 cntrl |= TXPKT_CSUM_TYPE_V(v6 ? 1320 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1321 TXPKT_IPHDR_LEN_V(l3hdr_len); 1322 txq->tso++; 1323 txq->tx_cso += ssi->gso_segs; 1324 } else { 1325 int len; 1326 1327 len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl); 1328 wr->op_immdlen = 1329 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1330 FW_WR_IMMDLEN_V(len)); 1331 1332 /* 1333 * Set up TX Packet CPL pointer, control word and perform 1334 * accounting. 1335 */ 1336 cpl = (void *)(wr + 1); 1337 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1338 cntrl = hwcsum(adapter->params.chip, skb) | 1339 TXPKT_IPCSUM_DIS_F; 1340 txq->tx_cso++; 1341 } else 1342 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1343 } 1344 1345 /* 1346 * If there's a VLAN tag present, add that to the list of things to 1347 * do in this Work Request. 1348 */ 1349 if (skb_vlan_tag_present(skb)) { 1350 txq->vlan_ins++; 1351 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1352 } 1353 1354 /* 1355 * Fill in the TX Packet CPL message header. 1356 */ 1357 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 1358 TXPKT_INTF_V(pi->port_id) | 1359 TXPKT_PF_V(0)); 1360 cpl->pack = cpu_to_be16(0); 1361 cpl->len = cpu_to_be16(skb->len); 1362 cpl->ctrl1 = cpu_to_be64(cntrl); 1363 1364 #ifdef T4_TRACE 1365 T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7], 1366 "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u", 1367 ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags); 1368 #endif 1369 1370 /* 1371 * Fill in the body of the TX Packet CPL message with either in-lined 1372 * data or a Scatter/Gather List. 1373 */ 1374 if (is_eth_imm(skb)) { 1375 /* 1376 * In-line the packet's data and free the skb since we don't 1377 * need it any longer. 1378 */ 1379 inline_tx_skb(skb, &txq->q, cpl + 1); 1380 dev_consume_skb_any(skb); 1381 } else { 1382 /* 1383 * Write the skb's Scatter/Gather list into the TX Packet CPL 1384 * message and retain a pointer to the skb so we can free it 1385 * later when its DMA completes. (We store the skb pointer 1386 * in the Software Descriptor corresponding to the last TX 1387 * Descriptor used by the Work Request.) 1388 * 1389 * The retained skb will be freed when the corresponding TX 1390 * Descriptors are reclaimed after their DMAs complete. 1391 * However, this could take quite a while since, in general, 1392 * the hardware is set up to be lazy about sending DMA 1393 * completion notifications to us and we mostly perform TX 1394 * reclaims in the transmit routine. 1395 * 1396 * This is good for performamce but means that we rely on new 1397 * TX packets arriving to run the destructors of completed 1398 * packets, which open up space in their sockets' send queues. 1399 * Sometimes we do not get such new packets causing TX to 1400 * stall. A single UDP transmitter is a good example of this 1401 * situation. We have a clean up timer that periodically 1402 * reclaims completed packets but it doesn't run often enough 1403 * (nor do we want it to) to prevent lengthy stalls. A 1404 * solution to this problem is to run the destructor early, 1405 * after the packet is queued but before it's DMAd. A con is 1406 * that we lie to socket memory accounting, but the amount of 1407 * extra memory is reasonable (limited by the number of TX 1408 * descriptors), the packets do actually get freed quickly by 1409 * new packets almost always, and for protocols like TCP that 1410 * wait for acks to really free up the data the extra memory 1411 * is even less. On the positive side we run the destructors 1412 * on the sending CPU rather than on a potentially different 1413 * completing CPU, usually a good thing. 1414 * 1415 * Run the destructor before telling the DMA engine about the 1416 * packet to make sure it doesn't complete and get freed 1417 * prematurely. 1418 */ 1419 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1); 1420 struct sge_txq *tq = &txq->q; 1421 int last_desc; 1422 1423 /* 1424 * If the Work Request header was an exact multiple of our TX 1425 * Descriptor length, then it's possible that the starting SGL 1426 * pointer lines up exactly with the end of our TX Descriptor 1427 * ring. If that's the case, wrap around to the beginning 1428 * here ... 1429 */ 1430 if (unlikely((void *)sgl == (void *)tq->stat)) { 1431 sgl = (void *)tq->desc; 1432 end = ((void *)tq->desc + ((void *)end - (void *)tq->stat)); 1433 } 1434 1435 write_sgl(skb, tq, sgl, end, 0, addr); 1436 skb_orphan(skb); 1437 1438 last_desc = tq->pidx + ndesc - 1; 1439 if (last_desc >= tq->size) 1440 last_desc -= tq->size; 1441 tq->sdesc[last_desc].skb = skb; 1442 tq->sdesc[last_desc].sgl = sgl; 1443 } 1444 1445 /* 1446 * Advance our internal TX Queue state, tell the hardware about 1447 * the new TX descriptors and return success. 1448 */ 1449 txq_advance(&txq->q, ndesc); 1450 netif_trans_update(dev); 1451 ring_tx_db(adapter, &txq->q, ndesc); 1452 return NETDEV_TX_OK; 1453 1454 out_free: 1455 /* 1456 * An error of some sort happened. Free the TX skb and tell the 1457 * OS that we've "dealt" with the packet ... 1458 */ 1459 dev_kfree_skb_any(skb); 1460 return NETDEV_TX_OK; 1461 } 1462 1463 /** 1464 * copy_frags - copy fragments from gather list into skb_shared_info 1465 * @skb: destination skb 1466 * @gl: source internal packet gather list 1467 * @offset: packet start offset in first page 1468 * 1469 * Copy an internal packet gather list into a Linux skb_shared_info 1470 * structure. 1471 */ 1472 static inline void copy_frags(struct sk_buff *skb, 1473 const struct pkt_gl *gl, 1474 unsigned int offset) 1475 { 1476 int i; 1477 1478 /* usually there's just one frag */ 1479 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 1480 gl->frags[0].offset + offset, 1481 gl->frags[0].size - offset); 1482 skb_shinfo(skb)->nr_frags = gl->nfrags; 1483 for (i = 1; i < gl->nfrags; i++) 1484 __skb_fill_page_desc(skb, i, gl->frags[i].page, 1485 gl->frags[i].offset, 1486 gl->frags[i].size); 1487 1488 /* get a reference to the last page, we don't own it */ 1489 get_page(gl->frags[gl->nfrags - 1].page); 1490 } 1491 1492 /** 1493 * t4vf_pktgl_to_skb - build an sk_buff from a packet gather list 1494 * @gl: the gather list 1495 * @skb_len: size of sk_buff main body if it carries fragments 1496 * @pull_len: amount of data to move to the sk_buff's main body 1497 * 1498 * Builds an sk_buff from the given packet gather list. Returns the 1499 * sk_buff or %NULL if sk_buff allocation failed. 1500 */ 1501 static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl, 1502 unsigned int skb_len, 1503 unsigned int pull_len) 1504 { 1505 struct sk_buff *skb; 1506 1507 /* 1508 * If the ingress packet is small enough, allocate an skb large enough 1509 * for all of the data and copy it inline. Otherwise, allocate an skb 1510 * with enough room to pull in the header and reference the rest of 1511 * the data via the skb fragment list. 1512 * 1513 * Below we rely on RX_COPY_THRES being less than the smallest Rx 1514 * buff! size, which is expected since buffers are at least 1515 * PAGE_SIZEd. In this case packets up to RX_COPY_THRES have only one 1516 * fragment. 1517 */ 1518 if (gl->tot_len <= RX_COPY_THRES) { 1519 /* small packets have only one fragment */ 1520 skb = alloc_skb(gl->tot_len, GFP_ATOMIC); 1521 if (unlikely(!skb)) 1522 goto out; 1523 __skb_put(skb, gl->tot_len); 1524 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 1525 } else { 1526 skb = alloc_skb(skb_len, GFP_ATOMIC); 1527 if (unlikely(!skb)) 1528 goto out; 1529 __skb_put(skb, pull_len); 1530 skb_copy_to_linear_data(skb, gl->va, pull_len); 1531 1532 copy_frags(skb, gl, pull_len); 1533 skb->len = gl->tot_len; 1534 skb->data_len = skb->len - pull_len; 1535 skb->truesize += skb->data_len; 1536 } 1537 1538 out: 1539 return skb; 1540 } 1541 1542 /** 1543 * t4vf_pktgl_free - free a packet gather list 1544 * @gl: the gather list 1545 * 1546 * Releases the pages of a packet gather list. We do not own the last 1547 * page on the list and do not free it. 1548 */ 1549 static void t4vf_pktgl_free(const struct pkt_gl *gl) 1550 { 1551 int frag; 1552 1553 frag = gl->nfrags - 1; 1554 while (frag--) 1555 put_page(gl->frags[frag].page); 1556 } 1557 1558 /** 1559 * do_gro - perform Generic Receive Offload ingress packet processing 1560 * @rxq: ingress RX Ethernet Queue 1561 * @gl: gather list for ingress packet 1562 * @pkt: CPL header for last packet fragment 1563 * 1564 * Perform Generic Receive Offload (GRO) ingress packet processing. 1565 * We use the standard Linux GRO interfaces for this. 1566 */ 1567 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 1568 const struct cpl_rx_pkt *pkt) 1569 { 1570 struct adapter *adapter = rxq->rspq.adapter; 1571 struct sge *s = &adapter->sge; 1572 struct port_info *pi; 1573 int ret; 1574 struct sk_buff *skb; 1575 1576 skb = napi_get_frags(&rxq->rspq.napi); 1577 if (unlikely(!skb)) { 1578 t4vf_pktgl_free(gl); 1579 rxq->stats.rx_drops++; 1580 return; 1581 } 1582 1583 copy_frags(skb, gl, s->pktshift); 1584 skb->len = gl->tot_len - s->pktshift; 1585 skb->data_len = skb->len; 1586 skb->truesize += skb->data_len; 1587 skb->ip_summed = CHECKSUM_UNNECESSARY; 1588 skb_record_rx_queue(skb, rxq->rspq.idx); 1589 pi = netdev_priv(skb->dev); 1590 1591 if (pkt->vlan_ex && !pi->vlan_id) { 1592 __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q), 1593 be16_to_cpu(pkt->vlan)); 1594 rxq->stats.vlan_ex++; 1595 } 1596 ret = napi_gro_frags(&rxq->rspq.napi); 1597 1598 if (ret == GRO_HELD) 1599 rxq->stats.lro_pkts++; 1600 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 1601 rxq->stats.lro_merged++; 1602 rxq->stats.pkts++; 1603 rxq->stats.rx_cso++; 1604 } 1605 1606 /** 1607 * t4vf_ethrx_handler - process an ingress ethernet packet 1608 * @rspq: the response queue that received the packet 1609 * @rsp: the response queue descriptor holding the RX_PKT message 1610 * @gl: the gather list of packet fragments 1611 * 1612 * Process an ingress ethernet packet and deliver it to the stack. 1613 */ 1614 int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp, 1615 const struct pkt_gl *gl) 1616 { 1617 struct sk_buff *skb; 1618 const struct cpl_rx_pkt *pkt = (void *)rsp; 1619 bool csum_ok = pkt->csum_calc && !pkt->err_vec && 1620 (rspq->netdev->features & NETIF_F_RXCSUM); 1621 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq); 1622 struct adapter *adapter = rspq->adapter; 1623 struct sge *s = &adapter->sge; 1624 struct port_info *pi; 1625 1626 /* 1627 * If this is a good TCP packet and we have Generic Receive Offload 1628 * enabled, handle the packet in the GRO path. 1629 */ 1630 if ((pkt->l2info & cpu_to_be32(RXF_TCP_F)) && 1631 (rspq->netdev->features & NETIF_F_GRO) && csum_ok && 1632 !pkt->ip_frag) { 1633 do_gro(rxq, gl, pkt); 1634 return 0; 1635 } 1636 1637 /* 1638 * Convert the Packet Gather List into an skb. 1639 */ 1640 skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN); 1641 if (unlikely(!skb)) { 1642 t4vf_pktgl_free(gl); 1643 rxq->stats.rx_drops++; 1644 return 0; 1645 } 1646 __skb_pull(skb, s->pktshift); 1647 skb->protocol = eth_type_trans(skb, rspq->netdev); 1648 skb_record_rx_queue(skb, rspq->idx); 1649 pi = netdev_priv(skb->dev); 1650 rxq->stats.pkts++; 1651 1652 if (csum_ok && !pkt->err_vec && 1653 (be32_to_cpu(pkt->l2info) & (RXF_UDP_F | RXF_TCP_F))) { 1654 if (!pkt->ip_frag) { 1655 skb->ip_summed = CHECKSUM_UNNECESSARY; 1656 rxq->stats.rx_cso++; 1657 } else if (pkt->l2info & htonl(RXF_IP_F)) { 1658 __sum16 c = (__force __sum16)pkt->csum; 1659 skb->csum = csum_unfold(c); 1660 skb->ip_summed = CHECKSUM_COMPLETE; 1661 rxq->stats.rx_cso++; 1662 } 1663 } else 1664 skb_checksum_none_assert(skb); 1665 1666 if (pkt->vlan_ex && !pi->vlan_id) { 1667 rxq->stats.vlan_ex++; 1668 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1669 be16_to_cpu(pkt->vlan)); 1670 } 1671 1672 netif_receive_skb(skb); 1673 1674 return 0; 1675 } 1676 1677 /** 1678 * is_new_response - check if a response is newly written 1679 * @rc: the response control descriptor 1680 * @rspq: the response queue 1681 * 1682 * Returns true if a response descriptor contains a yet unprocessed 1683 * response. 1684 */ 1685 static inline bool is_new_response(const struct rsp_ctrl *rc, 1686 const struct sge_rspq *rspq) 1687 { 1688 return ((rc->type_gen >> RSPD_GEN_S) & 0x1) == rspq->gen; 1689 } 1690 1691 /** 1692 * restore_rx_bufs - put back a packet's RX buffers 1693 * @gl: the packet gather list 1694 * @fl: the SGE Free List 1695 * @nfrags: how many fragments in @si 1696 * 1697 * Called when we find out that the current packet, @si, can't be 1698 * processed right away for some reason. This is a very rare event and 1699 * there's no effort to make this suspension/resumption process 1700 * particularly efficient. 1701 * 1702 * We implement the suspension by putting all of the RX buffers associated 1703 * with the current packet back on the original Free List. The buffers 1704 * have already been unmapped and are left unmapped, we mark them as 1705 * unmapped in order to prevent further unmapping attempts. (Effectively 1706 * this function undoes the series of @unmap_rx_buf calls which were done 1707 * to create the current packet's gather list.) This leaves us ready to 1708 * restart processing of the packet the next time we start processing the 1709 * RX Queue ... 1710 */ 1711 static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl, 1712 int frags) 1713 { 1714 struct rx_sw_desc *sdesc; 1715 1716 while (frags--) { 1717 if (fl->cidx == 0) 1718 fl->cidx = fl->size - 1; 1719 else 1720 fl->cidx--; 1721 sdesc = &fl->sdesc[fl->cidx]; 1722 sdesc->page = gl->frags[frags].page; 1723 sdesc->dma_addr |= RX_UNMAPPED_BUF; 1724 fl->avail++; 1725 } 1726 } 1727 1728 /** 1729 * rspq_next - advance to the next entry in a response queue 1730 * @rspq: the queue 1731 * 1732 * Updates the state of a response queue to advance it to the next entry. 1733 */ 1734 static inline void rspq_next(struct sge_rspq *rspq) 1735 { 1736 rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len; 1737 if (unlikely(++rspq->cidx == rspq->size)) { 1738 rspq->cidx = 0; 1739 rspq->gen ^= 1; 1740 rspq->cur_desc = rspq->desc; 1741 } 1742 } 1743 1744 /** 1745 * process_responses - process responses from an SGE response queue 1746 * @rspq: the ingress response queue to process 1747 * @budget: how many responses can be processed in this round 1748 * 1749 * Process responses from a Scatter Gather Engine response queue up to 1750 * the supplied budget. Responses include received packets as well as 1751 * control messages from firmware or hardware. 1752 * 1753 * Additionally choose the interrupt holdoff time for the next interrupt 1754 * on this queue. If the system is under memory shortage use a fairly 1755 * long delay to help recovery. 1756 */ 1757 static int process_responses(struct sge_rspq *rspq, int budget) 1758 { 1759 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq); 1760 struct adapter *adapter = rspq->adapter; 1761 struct sge *s = &adapter->sge; 1762 int budget_left = budget; 1763 1764 while (likely(budget_left)) { 1765 int ret, rsp_type; 1766 const struct rsp_ctrl *rc; 1767 1768 rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc)); 1769 if (!is_new_response(rc, rspq)) 1770 break; 1771 1772 /* 1773 * Figure out what kind of response we've received from the 1774 * SGE. 1775 */ 1776 dma_rmb(); 1777 rsp_type = RSPD_TYPE_G(rc->type_gen); 1778 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { 1779 struct page_frag *fp; 1780 struct pkt_gl gl; 1781 const struct rx_sw_desc *sdesc; 1782 u32 bufsz, frag; 1783 u32 len = be32_to_cpu(rc->pldbuflen_qid); 1784 1785 /* 1786 * If we get a "new buffer" message from the SGE we 1787 * need to move on to the next Free List buffer. 1788 */ 1789 if (len & RSPD_NEWBUF_F) { 1790 /* 1791 * We get one "new buffer" message when we 1792 * first start up a queue so we need to ignore 1793 * it when our offset into the buffer is 0. 1794 */ 1795 if (likely(rspq->offset > 0)) { 1796 free_rx_bufs(rspq->adapter, &rxq->fl, 1797 1); 1798 rspq->offset = 0; 1799 } 1800 len = RSPD_LEN_G(len); 1801 } 1802 gl.tot_len = len; 1803 1804 /* 1805 * Gather packet fragments. 1806 */ 1807 for (frag = 0, fp = gl.frags; /**/; frag++, fp++) { 1808 BUG_ON(frag >= MAX_SKB_FRAGS); 1809 BUG_ON(rxq->fl.avail == 0); 1810 sdesc = &rxq->fl.sdesc[rxq->fl.cidx]; 1811 bufsz = get_buf_size(adapter, sdesc); 1812 fp->page = sdesc->page; 1813 fp->offset = rspq->offset; 1814 fp->size = min(bufsz, len); 1815 len -= fp->size; 1816 if (!len) 1817 break; 1818 unmap_rx_buf(rspq->adapter, &rxq->fl); 1819 } 1820 gl.nfrags = frag+1; 1821 1822 /* 1823 * Last buffer remains mapped so explicitly make it 1824 * coherent for CPU access and start preloading first 1825 * cache line ... 1826 */ 1827 dma_sync_single_for_cpu(rspq->adapter->pdev_dev, 1828 get_buf_addr(sdesc), 1829 fp->size, DMA_FROM_DEVICE); 1830 gl.va = (page_address(gl.frags[0].page) + 1831 gl.frags[0].offset); 1832 prefetch(gl.va); 1833 1834 /* 1835 * Hand the new ingress packet to the handler for 1836 * this Response Queue. 1837 */ 1838 ret = rspq->handler(rspq, rspq->cur_desc, &gl); 1839 if (likely(ret == 0)) 1840 rspq->offset += ALIGN(fp->size, s->fl_align); 1841 else 1842 restore_rx_bufs(&gl, &rxq->fl, frag); 1843 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { 1844 ret = rspq->handler(rspq, rspq->cur_desc, NULL); 1845 } else { 1846 WARN_ON(rsp_type > RSPD_TYPE_CPL_X); 1847 ret = 0; 1848 } 1849 1850 if (unlikely(ret)) { 1851 /* 1852 * Couldn't process descriptor, back off for recovery. 1853 * We use the SGE's last timer which has the longest 1854 * interrupt coalescing value ... 1855 */ 1856 const int NOMEM_TIMER_IDX = SGE_NTIMERS-1; 1857 rspq->next_intr_params = 1858 QINTR_TIMER_IDX_V(NOMEM_TIMER_IDX); 1859 break; 1860 } 1861 1862 rspq_next(rspq); 1863 budget_left--; 1864 } 1865 1866 /* 1867 * If this is a Response Queue with an associated Free List and 1868 * at least two Egress Queue units available in the Free List 1869 * for new buffer pointers, refill the Free List. 1870 */ 1871 if (rspq->offset >= 0 && 1872 fl_cap(&rxq->fl) - rxq->fl.avail >= 2*FL_PER_EQ_UNIT) 1873 __refill_fl(rspq->adapter, &rxq->fl); 1874 return budget - budget_left; 1875 } 1876 1877 /** 1878 * napi_rx_handler - the NAPI handler for RX processing 1879 * @napi: the napi instance 1880 * @budget: how many packets we can process in this round 1881 * 1882 * Handler for new data events when using NAPI. This does not need any 1883 * locking or protection from interrupts as data interrupts are off at 1884 * this point and other adapter interrupts do not interfere (the latter 1885 * in not a concern at all with MSI-X as non-data interrupts then have 1886 * a separate handler). 1887 */ 1888 static int napi_rx_handler(struct napi_struct *napi, int budget) 1889 { 1890 unsigned int intr_params; 1891 struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi); 1892 int work_done = process_responses(rspq, budget); 1893 u32 val; 1894 1895 if (likely(work_done < budget)) { 1896 napi_complete_done(napi, work_done); 1897 intr_params = rspq->next_intr_params; 1898 rspq->next_intr_params = rspq->intr_params; 1899 } else 1900 intr_params = QINTR_TIMER_IDX_V(SGE_TIMER_UPD_CIDX); 1901 1902 if (unlikely(work_done == 0)) 1903 rspq->unhandled_irqs++; 1904 1905 val = CIDXINC_V(work_done) | SEINTARM_V(intr_params); 1906 /* If we don't have access to the new User GTS (T5+), use the old 1907 * doorbell mechanism; otherwise use the new BAR2 mechanism. 1908 */ 1909 if (unlikely(!rspq->bar2_addr)) { 1910 t4_write_reg(rspq->adapter, 1911 T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 1912 val | INGRESSQID_V((u32)rspq->cntxt_id)); 1913 } else { 1914 writel(val | INGRESSQID_V(rspq->bar2_qid), 1915 rspq->bar2_addr + SGE_UDB_GTS); 1916 wmb(); 1917 } 1918 return work_done; 1919 } 1920 1921 /* 1922 * The MSI-X interrupt handler for an SGE response queue for the NAPI case 1923 * (i.e., response queue serviced by NAPI polling). 1924 */ 1925 irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie) 1926 { 1927 struct sge_rspq *rspq = cookie; 1928 1929 napi_schedule(&rspq->napi); 1930 return IRQ_HANDLED; 1931 } 1932 1933 /* 1934 * Process the indirect interrupt entries in the interrupt queue and kick off 1935 * NAPI for each queue that has generated an entry. 1936 */ 1937 static unsigned int process_intrq(struct adapter *adapter) 1938 { 1939 struct sge *s = &adapter->sge; 1940 struct sge_rspq *intrq = &s->intrq; 1941 unsigned int work_done; 1942 u32 val; 1943 1944 spin_lock(&adapter->sge.intrq_lock); 1945 for (work_done = 0; ; work_done++) { 1946 const struct rsp_ctrl *rc; 1947 unsigned int qid, iq_idx; 1948 struct sge_rspq *rspq; 1949 1950 /* 1951 * Grab the next response from the interrupt queue and bail 1952 * out if it's not a new response. 1953 */ 1954 rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc)); 1955 if (!is_new_response(rc, intrq)) 1956 break; 1957 1958 /* 1959 * If the response isn't a forwarded interrupt message issue a 1960 * error and go on to the next response message. This should 1961 * never happen ... 1962 */ 1963 dma_rmb(); 1964 if (unlikely(RSPD_TYPE_G(rc->type_gen) != RSPD_TYPE_INTR_X)) { 1965 dev_err(adapter->pdev_dev, 1966 "Unexpected INTRQ response type %d\n", 1967 RSPD_TYPE_G(rc->type_gen)); 1968 continue; 1969 } 1970 1971 /* 1972 * Extract the Queue ID from the interrupt message and perform 1973 * sanity checking to make sure it really refers to one of our 1974 * Ingress Queues which is active and matches the queue's ID. 1975 * None of these error conditions should ever happen so we may 1976 * want to either make them fatal and/or conditionalized under 1977 * DEBUG. 1978 */ 1979 qid = RSPD_QID_G(be32_to_cpu(rc->pldbuflen_qid)); 1980 iq_idx = IQ_IDX(s, qid); 1981 if (unlikely(iq_idx >= MAX_INGQ)) { 1982 dev_err(adapter->pdev_dev, 1983 "Ingress QID %d out of range\n", qid); 1984 continue; 1985 } 1986 rspq = s->ingr_map[iq_idx]; 1987 if (unlikely(rspq == NULL)) { 1988 dev_err(adapter->pdev_dev, 1989 "Ingress QID %d RSPQ=NULL\n", qid); 1990 continue; 1991 } 1992 if (unlikely(rspq->abs_id != qid)) { 1993 dev_err(adapter->pdev_dev, 1994 "Ingress QID %d refers to RSPQ %d\n", 1995 qid, rspq->abs_id); 1996 continue; 1997 } 1998 1999 /* 2000 * Schedule NAPI processing on the indicated Response Queue 2001 * and move on to the next entry in the Forwarded Interrupt 2002 * Queue. 2003 */ 2004 napi_schedule(&rspq->napi); 2005 rspq_next(intrq); 2006 } 2007 2008 val = CIDXINC_V(work_done) | SEINTARM_V(intrq->intr_params); 2009 /* If we don't have access to the new User GTS (T5+), use the old 2010 * doorbell mechanism; otherwise use the new BAR2 mechanism. 2011 */ 2012 if (unlikely(!intrq->bar2_addr)) { 2013 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 2014 val | INGRESSQID_V(intrq->cntxt_id)); 2015 } else { 2016 writel(val | INGRESSQID_V(intrq->bar2_qid), 2017 intrq->bar2_addr + SGE_UDB_GTS); 2018 wmb(); 2019 } 2020 2021 spin_unlock(&adapter->sge.intrq_lock); 2022 2023 return work_done; 2024 } 2025 2026 /* 2027 * The MSI interrupt handler handles data events from SGE response queues as 2028 * well as error and other async events as they all use the same MSI vector. 2029 */ 2030 static irqreturn_t t4vf_intr_msi(int irq, void *cookie) 2031 { 2032 struct adapter *adapter = cookie; 2033 2034 process_intrq(adapter); 2035 return IRQ_HANDLED; 2036 } 2037 2038 /** 2039 * t4vf_intr_handler - select the top-level interrupt handler 2040 * @adapter: the adapter 2041 * 2042 * Selects the top-level interrupt handler based on the type of interrupts 2043 * (MSI-X or MSI). 2044 */ 2045 irq_handler_t t4vf_intr_handler(struct adapter *adapter) 2046 { 2047 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 2048 if (adapter->flags & USING_MSIX) 2049 return t4vf_sge_intr_msix; 2050 else 2051 return t4vf_intr_msi; 2052 } 2053 2054 /** 2055 * sge_rx_timer_cb - perform periodic maintenance of SGE RX queues 2056 * @data: the adapter 2057 * 2058 * Runs periodically from a timer to perform maintenance of SGE RX queues. 2059 * 2060 * a) Replenishes RX queues that have run out due to memory shortage. 2061 * Normally new RX buffers are added when existing ones are consumed but 2062 * when out of memory a queue can become empty. We schedule NAPI to do 2063 * the actual refill. 2064 */ 2065 static void sge_rx_timer_cb(struct timer_list *t) 2066 { 2067 struct adapter *adapter = from_timer(adapter, t, sge.rx_timer); 2068 struct sge *s = &adapter->sge; 2069 unsigned int i; 2070 2071 /* 2072 * Scan the "Starving Free Lists" flag array looking for any Free 2073 * Lists in need of more free buffers. If we find one and it's not 2074 * being actively polled, then bump its "starving" counter and attempt 2075 * to refill it. If we're successful in adding enough buffers to push 2076 * the Free List over the starving threshold, then we can clear its 2077 * "starving" status. 2078 */ 2079 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) { 2080 unsigned long m; 2081 2082 for (m = s->starving_fl[i]; m; m &= m - 1) { 2083 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 2084 struct sge_fl *fl = s->egr_map[id]; 2085 2086 clear_bit(id, s->starving_fl); 2087 smp_mb__after_atomic(); 2088 2089 /* 2090 * Since we are accessing fl without a lock there's a 2091 * small probability of a false positive where we 2092 * schedule napi but the FL is no longer starving. 2093 * No biggie. 2094 */ 2095 if (fl_starving(adapter, fl)) { 2096 struct sge_eth_rxq *rxq; 2097 2098 rxq = container_of(fl, struct sge_eth_rxq, fl); 2099 if (napi_reschedule(&rxq->rspq.napi)) 2100 fl->starving++; 2101 else 2102 set_bit(id, s->starving_fl); 2103 } 2104 } 2105 } 2106 2107 /* 2108 * Reschedule the next scan for starving Free Lists ... 2109 */ 2110 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 2111 } 2112 2113 /** 2114 * sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues 2115 * @data: the adapter 2116 * 2117 * Runs periodically from a timer to perform maintenance of SGE TX queues. 2118 * 2119 * b) Reclaims completed Tx packets for the Ethernet queues. Normally 2120 * packets are cleaned up by new Tx packets, this timer cleans up packets 2121 * when no new packets are being submitted. This is essential for pktgen, 2122 * at least. 2123 */ 2124 static void sge_tx_timer_cb(struct timer_list *t) 2125 { 2126 struct adapter *adapter = from_timer(adapter, t, sge.tx_timer); 2127 struct sge *s = &adapter->sge; 2128 unsigned int i, budget; 2129 2130 budget = MAX_TIMER_TX_RECLAIM; 2131 i = s->ethtxq_rover; 2132 do { 2133 struct sge_eth_txq *txq = &s->ethtxq[i]; 2134 2135 if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) { 2136 int avail = reclaimable(&txq->q); 2137 2138 if (avail > budget) 2139 avail = budget; 2140 2141 free_tx_desc(adapter, &txq->q, avail, true); 2142 txq->q.in_use -= avail; 2143 __netif_tx_unlock(txq->txq); 2144 2145 budget -= avail; 2146 if (!budget) 2147 break; 2148 } 2149 2150 i++; 2151 if (i >= s->ethqsets) 2152 i = 0; 2153 } while (i != s->ethtxq_rover); 2154 s->ethtxq_rover = i; 2155 2156 /* 2157 * If we found too many reclaimable packets schedule a timer in the 2158 * near future to continue where we left off. Otherwise the next timer 2159 * will be at its normal interval. 2160 */ 2161 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); 2162 } 2163 2164 /** 2165 * bar2_address - return the BAR2 address for an SGE Queue's Registers 2166 * @adapter: the adapter 2167 * @qid: the SGE Queue ID 2168 * @qtype: the SGE Queue Type (Egress or Ingress) 2169 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 2170 * 2171 * Returns the BAR2 address for the SGE Queue Registers associated with 2172 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 2173 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 2174 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 2175 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 2176 */ 2177 static void __iomem *bar2_address(struct adapter *adapter, 2178 unsigned int qid, 2179 enum t4_bar2_qtype qtype, 2180 unsigned int *pbar2_qid) 2181 { 2182 u64 bar2_qoffset; 2183 int ret; 2184 2185 ret = t4vf_bar2_sge_qregs(adapter, qid, qtype, 2186 &bar2_qoffset, pbar2_qid); 2187 if (ret) 2188 return NULL; 2189 2190 return adapter->bar2 + bar2_qoffset; 2191 } 2192 2193 /** 2194 * t4vf_sge_alloc_rxq - allocate an SGE RX Queue 2195 * @adapter: the adapter 2196 * @rspq: pointer to to the new rxq's Response Queue to be filled in 2197 * @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue 2198 * @dev: the network device associated with the new rspq 2199 * @intr_dest: MSI-X vector index (overriden in MSI mode) 2200 * @fl: pointer to the new rxq's Free List to be filled in 2201 * @hnd: the interrupt handler to invoke for the rspq 2202 */ 2203 int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq, 2204 bool iqasynch, struct net_device *dev, 2205 int intr_dest, 2206 struct sge_fl *fl, rspq_handler_t hnd) 2207 { 2208 struct sge *s = &adapter->sge; 2209 struct port_info *pi = netdev_priv(dev); 2210 struct fw_iq_cmd cmd, rpl; 2211 int ret, iqandst, flsz = 0; 2212 int relaxed = !(adapter->flags & ROOT_NO_RELAXED_ORDERING); 2213 2214 /* 2215 * If we're using MSI interrupts and we're not initializing the 2216 * Forwarded Interrupt Queue itself, then set up this queue for 2217 * indirect interrupts to the Forwarded Interrupt Queue. Obviously 2218 * the Forwarded Interrupt Queue must be set up before any other 2219 * ingress queue ... 2220 */ 2221 if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) { 2222 iqandst = SGE_INTRDST_IQ; 2223 intr_dest = adapter->sge.intrq.abs_id; 2224 } else 2225 iqandst = SGE_INTRDST_PCI; 2226 2227 /* 2228 * Allocate the hardware ring for the Response Queue. The size needs 2229 * to be a multiple of 16 which includes the mandatory status entry 2230 * (regardless of whether the Status Page capabilities are enabled or 2231 * not). 2232 */ 2233 rspq->size = roundup(rspq->size, 16); 2234 rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len, 2235 0, &rspq->phys_addr, NULL, 0); 2236 if (!rspq->desc) 2237 return -ENOMEM; 2238 2239 /* 2240 * Fill in the Ingress Queue Command. Note: Ideally this code would 2241 * be in t4vf_hw.c but there are so many parameters and dependencies 2242 * on our Linux SGE state that we would end up having to pass tons of 2243 * parameters. We'll have to think about how this might be migrated 2244 * into OS-independent common code ... 2245 */ 2246 memset(&cmd, 0, sizeof(cmd)); 2247 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | 2248 FW_CMD_REQUEST_F | 2249 FW_CMD_WRITE_F | 2250 FW_CMD_EXEC_F); 2251 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC_F | 2252 FW_IQ_CMD_IQSTART_F | 2253 FW_LEN16(cmd)); 2254 cmd.type_to_iqandstindex = 2255 cpu_to_be32(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 2256 FW_IQ_CMD_IQASYNCH_V(iqasynch) | 2257 FW_IQ_CMD_VIID_V(pi->viid) | 2258 FW_IQ_CMD_IQANDST_V(iqandst) | 2259 FW_IQ_CMD_IQANUS_V(1) | 2260 FW_IQ_CMD_IQANUD_V(SGE_UPDATEDEL_INTR) | 2261 FW_IQ_CMD_IQANDSTINDEX_V(intr_dest)); 2262 cmd.iqdroprss_to_iqesize = 2263 cpu_to_be16(FW_IQ_CMD_IQPCIECH_V(pi->port_id) | 2264 FW_IQ_CMD_IQGTSMODE_F | 2265 FW_IQ_CMD_IQINTCNTTHRESH_V(rspq->pktcnt_idx) | 2266 FW_IQ_CMD_IQESIZE_V(ilog2(rspq->iqe_len) - 4)); 2267 cmd.iqsize = cpu_to_be16(rspq->size); 2268 cmd.iqaddr = cpu_to_be64(rspq->phys_addr); 2269 2270 if (fl) { 2271 enum chip_type chip = 2272 CHELSIO_CHIP_VERSION(adapter->params.chip); 2273 /* 2274 * Allocate the ring for the hardware free list (with space 2275 * for its status page) along with the associated software 2276 * descriptor ring. The free list size needs to be a multiple 2277 * of the Egress Queue Unit and at least 2 Egress Units larger 2278 * than the SGE's Egress Congrestion Threshold 2279 * (fl_starve_thres - 1). 2280 */ 2281 if (fl->size < s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT) 2282 fl->size = s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT; 2283 fl->size = roundup(fl->size, FL_PER_EQ_UNIT); 2284 fl->desc = alloc_ring(adapter->pdev_dev, fl->size, 2285 sizeof(__be64), sizeof(struct rx_sw_desc), 2286 &fl->addr, &fl->sdesc, s->stat_len); 2287 if (!fl->desc) { 2288 ret = -ENOMEM; 2289 goto err; 2290 } 2291 2292 /* 2293 * Calculate the size of the hardware free list ring plus 2294 * Status Page (which the SGE will place after the end of the 2295 * free list ring) in Egress Queue Units. 2296 */ 2297 flsz = (fl->size / FL_PER_EQ_UNIT + 2298 s->stat_len / EQ_UNIT); 2299 2300 /* 2301 * Fill in all the relevant firmware Ingress Queue Command 2302 * fields for the free list. 2303 */ 2304 cmd.iqns_to_fl0congen = 2305 cpu_to_be32( 2306 FW_IQ_CMD_FL0HOSTFCMODE_V(SGE_HOSTFCMODE_NONE) | 2307 FW_IQ_CMD_FL0PACKEN_F | 2308 FW_IQ_CMD_FL0FETCHRO_V(relaxed) | 2309 FW_IQ_CMD_FL0DATARO_V(relaxed) | 2310 FW_IQ_CMD_FL0PADEN_F); 2311 2312 /* In T6, for egress queue type FL there is internal overhead 2313 * of 16B for header going into FLM module. Hence the maximum 2314 * allowed burst size is 448 bytes. For T4/T5, the hardware 2315 * doesn't coalesce fetch requests if more than 64 bytes of 2316 * Free List pointers are provided, so we use a 128-byte Fetch 2317 * Burst Minimum there (T6 implements coalescing so we can use 2318 * the smaller 64-byte value there). 2319 */ 2320 cmd.fl0dcaen_to_fl0cidxfthresh = 2321 cpu_to_be16( 2322 FW_IQ_CMD_FL0FBMIN_V(chip <= CHELSIO_T5 ? 2323 FETCHBURSTMIN_128B_X : 2324 FETCHBURSTMIN_64B_X) | 2325 FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ? 2326 FETCHBURSTMAX_512B_X : 2327 FETCHBURSTMAX_256B_X)); 2328 cmd.fl0size = cpu_to_be16(flsz); 2329 cmd.fl0addr = cpu_to_be64(fl->addr); 2330 } 2331 2332 /* 2333 * Issue the firmware Ingress Queue Command and extract the results if 2334 * it completes successfully. 2335 */ 2336 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 2337 if (ret) 2338 goto err; 2339 2340 netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64); 2341 rspq->cur_desc = rspq->desc; 2342 rspq->cidx = 0; 2343 rspq->gen = 1; 2344 rspq->next_intr_params = rspq->intr_params; 2345 rspq->cntxt_id = be16_to_cpu(rpl.iqid); 2346 rspq->bar2_addr = bar2_address(adapter, 2347 rspq->cntxt_id, 2348 T4_BAR2_QTYPE_INGRESS, 2349 &rspq->bar2_qid); 2350 rspq->abs_id = be16_to_cpu(rpl.physiqid); 2351 rspq->size--; /* subtract status entry */ 2352 rspq->adapter = adapter; 2353 rspq->netdev = dev; 2354 rspq->handler = hnd; 2355 2356 /* set offset to -1 to distinguish ingress queues without FL */ 2357 rspq->offset = fl ? 0 : -1; 2358 2359 if (fl) { 2360 fl->cntxt_id = be16_to_cpu(rpl.fl0id); 2361 fl->avail = 0; 2362 fl->pend_cred = 0; 2363 fl->pidx = 0; 2364 fl->cidx = 0; 2365 fl->alloc_failed = 0; 2366 fl->large_alloc_failed = 0; 2367 fl->starving = 0; 2368 2369 /* Note, we must initialize the BAR2 Free List User Doorbell 2370 * information before refilling the Free List! 2371 */ 2372 fl->bar2_addr = bar2_address(adapter, 2373 fl->cntxt_id, 2374 T4_BAR2_QTYPE_EGRESS, 2375 &fl->bar2_qid); 2376 2377 refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL); 2378 } 2379 2380 return 0; 2381 2382 err: 2383 /* 2384 * An error occurred. Clean up our partial allocation state and 2385 * return the error. 2386 */ 2387 if (rspq->desc) { 2388 dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len, 2389 rspq->desc, rspq->phys_addr); 2390 rspq->desc = NULL; 2391 } 2392 if (fl && fl->desc) { 2393 kfree(fl->sdesc); 2394 fl->sdesc = NULL; 2395 dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT, 2396 fl->desc, fl->addr); 2397 fl->desc = NULL; 2398 } 2399 return ret; 2400 } 2401 2402 /** 2403 * t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue 2404 * @adapter: the adapter 2405 * @txq: pointer to the new txq to be filled in 2406 * @devq: the network TX queue associated with the new txq 2407 * @iqid: the relative ingress queue ID to which events relating to 2408 * the new txq should be directed 2409 */ 2410 int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq, 2411 struct net_device *dev, struct netdev_queue *devq, 2412 unsigned int iqid) 2413 { 2414 struct sge *s = &adapter->sge; 2415 int ret, nentries; 2416 struct fw_eq_eth_cmd cmd, rpl; 2417 struct port_info *pi = netdev_priv(dev); 2418 2419 /* 2420 * Calculate the size of the hardware TX Queue (including the Status 2421 * Page on the end of the TX Queue) in units of TX Descriptors. 2422 */ 2423 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 2424 2425 /* 2426 * Allocate the hardware ring for the TX ring (with space for its 2427 * status page) along with the associated software descriptor ring. 2428 */ 2429 txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size, 2430 sizeof(struct tx_desc), 2431 sizeof(struct tx_sw_desc), 2432 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len); 2433 if (!txq->q.desc) 2434 return -ENOMEM; 2435 2436 /* 2437 * Fill in the Egress Queue Command. Note: As with the direct use of 2438 * the firmware Ingress Queue COmmand above in our RXQ allocation 2439 * routine, ideally, this code would be in t4vf_hw.c. Again, we'll 2440 * have to see if there's some reasonable way to parameterize it 2441 * into the common code ... 2442 */ 2443 memset(&cmd, 0, sizeof(cmd)); 2444 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 2445 FW_CMD_REQUEST_F | 2446 FW_CMD_WRITE_F | 2447 FW_CMD_EXEC_F); 2448 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC_F | 2449 FW_EQ_ETH_CMD_EQSTART_F | 2450 FW_LEN16(cmd)); 2451 cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE_F | 2452 FW_EQ_ETH_CMD_VIID_V(pi->viid)); 2453 cmd.fetchszm_to_iqid = 2454 cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE_V(SGE_HOSTFCMODE_STPG) | 2455 FW_EQ_ETH_CMD_PCIECHN_V(pi->port_id) | 2456 FW_EQ_ETH_CMD_IQID_V(iqid)); 2457 cmd.dcaen_to_eqsize = 2458 cpu_to_be32(FW_EQ_ETH_CMD_FBMIN_V(SGE_FETCHBURSTMIN_64B) | 2459 FW_EQ_ETH_CMD_FBMAX_V(SGE_FETCHBURSTMAX_512B) | 2460 FW_EQ_ETH_CMD_CIDXFTHRESH_V( 2461 SGE_CIDXFLUSHTHRESH_32) | 2462 FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 2463 cmd.eqaddr = cpu_to_be64(txq->q.phys_addr); 2464 2465 /* 2466 * Issue the firmware Egress Queue Command and extract the results if 2467 * it completes successfully. 2468 */ 2469 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 2470 if (ret) { 2471 /* 2472 * The girmware Ingress Queue Command failed for some reason. 2473 * Free up our partial allocation state and return the error. 2474 */ 2475 kfree(txq->q.sdesc); 2476 txq->q.sdesc = NULL; 2477 dma_free_coherent(adapter->pdev_dev, 2478 nentries * sizeof(struct tx_desc), 2479 txq->q.desc, txq->q.phys_addr); 2480 txq->q.desc = NULL; 2481 return ret; 2482 } 2483 2484 txq->q.in_use = 0; 2485 txq->q.cidx = 0; 2486 txq->q.pidx = 0; 2487 txq->q.stat = (void *)&txq->q.desc[txq->q.size]; 2488 txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_G(be32_to_cpu(rpl.eqid_pkd)); 2489 txq->q.bar2_addr = bar2_address(adapter, 2490 txq->q.cntxt_id, 2491 T4_BAR2_QTYPE_EGRESS, 2492 &txq->q.bar2_qid); 2493 txq->q.abs_id = 2494 FW_EQ_ETH_CMD_PHYSEQID_G(be32_to_cpu(rpl.physeqid_pkd)); 2495 txq->txq = devq; 2496 txq->tso = 0; 2497 txq->tx_cso = 0; 2498 txq->vlan_ins = 0; 2499 txq->q.stops = 0; 2500 txq->q.restarts = 0; 2501 txq->mapping_err = 0; 2502 return 0; 2503 } 2504 2505 /* 2506 * Free the DMA map resources associated with a TX queue. 2507 */ 2508 static void free_txq(struct adapter *adapter, struct sge_txq *tq) 2509 { 2510 struct sge *s = &adapter->sge; 2511 2512 dma_free_coherent(adapter->pdev_dev, 2513 tq->size * sizeof(*tq->desc) + s->stat_len, 2514 tq->desc, tq->phys_addr); 2515 tq->cntxt_id = 0; 2516 tq->sdesc = NULL; 2517 tq->desc = NULL; 2518 } 2519 2520 /* 2521 * Free the resources associated with a response queue (possibly including a 2522 * free list). 2523 */ 2524 static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq, 2525 struct sge_fl *fl) 2526 { 2527 struct sge *s = &adapter->sge; 2528 unsigned int flid = fl ? fl->cntxt_id : 0xffff; 2529 2530 t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP, 2531 rspq->cntxt_id, flid, 0xffff); 2532 dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len, 2533 rspq->desc, rspq->phys_addr); 2534 netif_napi_del(&rspq->napi); 2535 rspq->netdev = NULL; 2536 rspq->cntxt_id = 0; 2537 rspq->abs_id = 0; 2538 rspq->desc = NULL; 2539 2540 if (fl) { 2541 free_rx_bufs(adapter, fl, fl->avail); 2542 dma_free_coherent(adapter->pdev_dev, 2543 fl->size * sizeof(*fl->desc) + s->stat_len, 2544 fl->desc, fl->addr); 2545 kfree(fl->sdesc); 2546 fl->sdesc = NULL; 2547 fl->cntxt_id = 0; 2548 fl->desc = NULL; 2549 } 2550 } 2551 2552 /** 2553 * t4vf_free_sge_resources - free SGE resources 2554 * @adapter: the adapter 2555 * 2556 * Frees resources used by the SGE queue sets. 2557 */ 2558 void t4vf_free_sge_resources(struct adapter *adapter) 2559 { 2560 struct sge *s = &adapter->sge; 2561 struct sge_eth_rxq *rxq = s->ethrxq; 2562 struct sge_eth_txq *txq = s->ethtxq; 2563 struct sge_rspq *evtq = &s->fw_evtq; 2564 struct sge_rspq *intrq = &s->intrq; 2565 int qs; 2566 2567 for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) { 2568 if (rxq->rspq.desc) 2569 free_rspq_fl(adapter, &rxq->rspq, &rxq->fl); 2570 if (txq->q.desc) { 2571 t4vf_eth_eq_free(adapter, txq->q.cntxt_id); 2572 free_tx_desc(adapter, &txq->q, txq->q.in_use, true); 2573 kfree(txq->q.sdesc); 2574 free_txq(adapter, &txq->q); 2575 } 2576 } 2577 if (evtq->desc) 2578 free_rspq_fl(adapter, evtq, NULL); 2579 if (intrq->desc) 2580 free_rspq_fl(adapter, intrq, NULL); 2581 } 2582 2583 /** 2584 * t4vf_sge_start - enable SGE operation 2585 * @adapter: the adapter 2586 * 2587 * Start tasklets and timers associated with the DMA engine. 2588 */ 2589 void t4vf_sge_start(struct adapter *adapter) 2590 { 2591 adapter->sge.ethtxq_rover = 0; 2592 mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 2593 mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 2594 } 2595 2596 /** 2597 * t4vf_sge_stop - disable SGE operation 2598 * @adapter: the adapter 2599 * 2600 * Stop tasklets and timers associated with the DMA engine. Note that 2601 * this is effective only if measures have been taken to disable any HW 2602 * events that may restart them. 2603 */ 2604 void t4vf_sge_stop(struct adapter *adapter) 2605 { 2606 struct sge *s = &adapter->sge; 2607 2608 if (s->rx_timer.function) 2609 del_timer_sync(&s->rx_timer); 2610 if (s->tx_timer.function) 2611 del_timer_sync(&s->tx_timer); 2612 } 2613 2614 /** 2615 * t4vf_sge_init - initialize SGE 2616 * @adapter: the adapter 2617 * 2618 * Performs SGE initialization needed every time after a chip reset. 2619 * We do not initialize any of the queue sets here, instead the driver 2620 * top-level must request those individually. We also do not enable DMA 2621 * here, that should be done after the queues have been set up. 2622 */ 2623 int t4vf_sge_init(struct adapter *adapter) 2624 { 2625 struct sge_params *sge_params = &adapter->params.sge; 2626 u32 fl_small_pg = sge_params->sge_fl_buffer_size[0]; 2627 u32 fl_large_pg = sge_params->sge_fl_buffer_size[1]; 2628 struct sge *s = &adapter->sge; 2629 2630 /* 2631 * Start by vetting the basic SGE parameters which have been set up by 2632 * the Physical Function Driver. Ideally we should be able to deal 2633 * with _any_ configuration. Practice is different ... 2634 */ 2635 2636 /* We only bother using the Large Page logic if the Large Page Buffer 2637 * is larger than our Page Size Buffer. 2638 */ 2639 if (fl_large_pg <= fl_small_pg) 2640 fl_large_pg = 0; 2641 2642 /* The Page Size Buffer must be exactly equal to our Page Size and the 2643 * Large Page Size Buffer should be 0 (per above) or a power of 2. 2644 */ 2645 if (fl_small_pg != PAGE_SIZE || 2646 (fl_large_pg & (fl_large_pg - 1)) != 0) { 2647 dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n", 2648 fl_small_pg, fl_large_pg); 2649 return -EINVAL; 2650 } 2651 if ((sge_params->sge_control & RXPKTCPLMODE_F) != 2652 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { 2653 dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n"); 2654 return -EINVAL; 2655 } 2656 2657 /* 2658 * Now translate the adapter parameters into our internal forms. 2659 */ 2660 if (fl_large_pg) 2661 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 2662 s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_F) 2663 ? 128 : 64); 2664 s->pktshift = PKTSHIFT_G(sge_params->sge_control); 2665 s->fl_align = t4vf_fl_pkt_align(adapter); 2666 2667 /* A FL with <= fl_starve_thres buffers is starving and a periodic 2668 * timer will attempt to refill it. This needs to be larger than the 2669 * SGE's Egress Congestion Threshold. If it isn't, then we can get 2670 * stuck waiting for new packets while the SGE is waiting for us to 2671 * give it more Free List entries. (Note that the SGE's Egress 2672 * Congestion Threshold is in units of 2 Free List pointers.) 2673 */ 2674 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 2675 case CHELSIO_T4: 2676 s->fl_starve_thres = 2677 EGRTHRESHOLD_G(sge_params->sge_congestion_control); 2678 break; 2679 case CHELSIO_T5: 2680 s->fl_starve_thres = 2681 EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control); 2682 break; 2683 case CHELSIO_T6: 2684 default: 2685 s->fl_starve_thres = 2686 T6_EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control); 2687 break; 2688 } 2689 s->fl_starve_thres = s->fl_starve_thres * 2 + 1; 2690 2691 /* 2692 * Set up tasklet timers. 2693 */ 2694 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0); 2695 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0); 2696 2697 /* 2698 * Initialize Forwarded Interrupt Queue lock. 2699 */ 2700 spin_lock_init(&s->intrq_lock); 2701 2702 return 0; 2703 } 2704