1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/skbuff.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/ip.h>
41 #include <net/ipv6.h>
42 #include <net/tcp.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/prefetch.h>
45 
46 #include "t4vf_common.h"
47 #include "t4vf_defs.h"
48 
49 #include "../cxgb4/t4_regs.h"
50 #include "../cxgb4/t4fw_api.h"
51 #include "../cxgb4/t4_msg.h"
52 
53 /*
54  * Decoded Adapter Parameters.
55  */
56 static u32 FL_PG_ORDER;		/* large page allocation size */
57 static u32 STAT_LEN;		/* length of status page at ring end */
58 static u32 PKTSHIFT;		/* padding between CPL and packet data */
59 static u32 FL_ALIGN;		/* response queue message alignment */
60 
61 /*
62  * Constants ...
63  */
64 enum {
65 	/*
66 	 * Egress Queue sizes, producer and consumer indices are all in units
67 	 * of Egress Context Units bytes.  Note that as far as the hardware is
68 	 * concerned, the free list is an Egress Queue (the host produces free
69 	 * buffers which the hardware consumes) and free list entries are
70 	 * 64-bit PCI DMA addresses.
71 	 */
72 	EQ_UNIT = SGE_EQ_IDXSIZE,
73 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
74 	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
75 
76 	/*
77 	 * Max number of TX descriptors we clean up at a time.  Should be
78 	 * modest as freeing skbs isn't cheap and it happens while holding
79 	 * locks.  We just need to free packets faster than they arrive, we
80 	 * eventually catch up and keep the amortized cost reasonable.
81 	 */
82 	MAX_TX_RECLAIM = 16,
83 
84 	/*
85 	 * Max number of Rx buffers we replenish at a time.  Again keep this
86 	 * modest, allocating buffers isn't cheap either.
87 	 */
88 	MAX_RX_REFILL = 16,
89 
90 	/*
91 	 * Period of the Rx queue check timer.  This timer is infrequent as it
92 	 * has something to do only when the system experiences severe memory
93 	 * shortage.
94 	 */
95 	RX_QCHECK_PERIOD = (HZ / 2),
96 
97 	/*
98 	 * Period of the TX queue check timer and the maximum number of TX
99 	 * descriptors to be reclaimed by the TX timer.
100 	 */
101 	TX_QCHECK_PERIOD = (HZ / 2),
102 	MAX_TIMER_TX_RECLAIM = 100,
103 
104 	/*
105 	 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic
106 	 * timer will attempt to refill it.
107 	 */
108 	FL_STARVE_THRES = 4,
109 
110 	/*
111 	 * Suspend an Ethernet TX queue with fewer available descriptors than
112 	 * this.  We always want to have room for a maximum sized packet:
113 	 * inline immediate data + MAX_SKB_FRAGS. This is the same as
114 	 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
115 	 * (see that function and its helpers for a description of the
116 	 * calculation).
117 	 */
118 	ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
119 	ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
120 				   ((ETHTXQ_MAX_FRAGS-1) & 1) +
121 				   2),
122 	ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
123 			  sizeof(struct cpl_tx_pkt_lso_core) +
124 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
125 	ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
126 
127 	ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
128 
129 	/*
130 	 * Max TX descriptor space we allow for an Ethernet packet to be
131 	 * inlined into a WR.  This is limited by the maximum value which
132 	 * we can specify for immediate data in the firmware Ethernet TX
133 	 * Work Request.
134 	 */
135 	MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_MASK,
136 
137 	/*
138 	 * Max size of a WR sent through a control TX queue.
139 	 */
140 	MAX_CTRL_WR_LEN = 256,
141 
142 	/*
143 	 * Maximum amount of data which we'll ever need to inline into a
144 	 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
145 	 */
146 	MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
147 			  ? MAX_IMM_TX_PKT_LEN
148 			  : MAX_CTRL_WR_LEN),
149 
150 	/*
151 	 * For incoming packets less than RX_COPY_THRES, we copy the data into
152 	 * an skb rather than referencing the data.  We allocate enough
153 	 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
154 	 * of the data (header).
155 	 */
156 	RX_COPY_THRES = 256,
157 	RX_PULL_LEN = 128,
158 
159 	/*
160 	 * Main body length for sk_buffs used for RX Ethernet packets with
161 	 * fragments.  Should be >= RX_PULL_LEN but possibly bigger to give
162 	 * pskb_may_pull() some room.
163 	 */
164 	RX_SKB_LEN = 512,
165 };
166 
167 /*
168  * Software state per TX descriptor.
169  */
170 struct tx_sw_desc {
171 	struct sk_buff *skb;		/* socket buffer of TX data source */
172 	struct ulptx_sgl *sgl;		/* scatter/gather list in TX Queue */
173 };
174 
175 /*
176  * Software state per RX Free List descriptor.  We keep track of the allocated
177  * FL page, its size, and its PCI DMA address (if the page is mapped).  The FL
178  * page size and its PCI DMA mapped state are stored in the low bits of the
179  * PCI DMA address as per below.
180  */
181 struct rx_sw_desc {
182 	struct page *page;		/* Free List page buffer */
183 	dma_addr_t dma_addr;		/* PCI DMA address (if mapped) */
184 					/*   and flags (see below) */
185 };
186 
187 /*
188  * The low bits of rx_sw_desc.dma_addr have special meaning.  Note that the
189  * SGE also uses the low 4 bits to determine the size of the buffer.  It uses
190  * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
191  * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
192  * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
193  * to the SGE.  Thus, our software state of "is the buffer mapped for DMA" is
194  * maintained in an inverse sense so the hardware never sees that bit high.
195  */
196 enum {
197 	RX_LARGE_BUF    = 1 << 0,	/* buffer is SGE_FL_BUFFER_SIZE[1] */
198 	RX_UNMAPPED_BUF = 1 << 1,	/* buffer is not mapped */
199 };
200 
201 /**
202  *	get_buf_addr - return DMA buffer address of software descriptor
203  *	@sdesc: pointer to the software buffer descriptor
204  *
205  *	Return the DMA buffer address of a software descriptor (stripping out
206  *	our low-order flag bits).
207  */
208 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
209 {
210 	return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
211 }
212 
213 /**
214  *	is_buf_mapped - is buffer mapped for DMA?
215  *	@sdesc: pointer to the software buffer descriptor
216  *
217  *	Determine whether the buffer associated with a software descriptor in
218  *	mapped for DMA or not.
219  */
220 static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
221 {
222 	return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
223 }
224 
225 /**
226  *	need_skb_unmap - does the platform need unmapping of sk_buffs?
227  *
228  *	Returns true if the platform needs sk_buff unmapping.  The compiler
229  *	optimizes away unnecessary code if this returns true.
230  */
231 static inline int need_skb_unmap(void)
232 {
233 #ifdef CONFIG_NEED_DMA_MAP_STATE
234 	return 1;
235 #else
236 	return 0;
237 #endif
238 }
239 
240 /**
241  *	txq_avail - return the number of available slots in a TX queue
242  *	@tq: the TX queue
243  *
244  *	Returns the number of available descriptors in a TX queue.
245  */
246 static inline unsigned int txq_avail(const struct sge_txq *tq)
247 {
248 	return tq->size - 1 - tq->in_use;
249 }
250 
251 /**
252  *	fl_cap - return the capacity of a Free List
253  *	@fl: the Free List
254  *
255  *	Returns the capacity of a Free List.  The capacity is less than the
256  *	size because an Egress Queue Index Unit worth of descriptors needs to
257  *	be left unpopulated, otherwise the Producer and Consumer indices PIDX
258  *	and CIDX will match and the hardware will think the FL is empty.
259  */
260 static inline unsigned int fl_cap(const struct sge_fl *fl)
261 {
262 	return fl->size - FL_PER_EQ_UNIT;
263 }
264 
265 /**
266  *	fl_starving - return whether a Free List is starving.
267  *	@fl: the Free List
268  *
269  *	Tests specified Free List to see whether the number of buffers
270  *	available to the hardware has falled below our "starvation"
271  *	threshold.
272  */
273 static inline bool fl_starving(const struct sge_fl *fl)
274 {
275 	return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
276 }
277 
278 /**
279  *	map_skb -  map an skb for DMA to the device
280  *	@dev: the egress net device
281  *	@skb: the packet to map
282  *	@addr: a pointer to the base of the DMA mapping array
283  *
284  *	Map an skb for DMA to the device and return an array of DMA addresses.
285  */
286 static int map_skb(struct device *dev, const struct sk_buff *skb,
287 		   dma_addr_t *addr)
288 {
289 	const skb_frag_t *fp, *end;
290 	const struct skb_shared_info *si;
291 
292 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
293 	if (dma_mapping_error(dev, *addr))
294 		goto out_err;
295 
296 	si = skb_shinfo(skb);
297 	end = &si->frags[si->nr_frags];
298 	for (fp = si->frags; fp < end; fp++) {
299 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
300 					   DMA_TO_DEVICE);
301 		if (dma_mapping_error(dev, *addr))
302 			goto unwind;
303 	}
304 	return 0;
305 
306 unwind:
307 	while (fp-- > si->frags)
308 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
309 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
310 
311 out_err:
312 	return -ENOMEM;
313 }
314 
315 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
316 		      const struct ulptx_sgl *sgl, const struct sge_txq *tq)
317 {
318 	const struct ulptx_sge_pair *p;
319 	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
320 
321 	if (likely(skb_headlen(skb)))
322 		dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
323 				 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
324 	else {
325 		dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
326 			       be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
327 		nfrags--;
328 	}
329 
330 	/*
331 	 * the complexity below is because of the possibility of a wrap-around
332 	 * in the middle of an SGL
333 	 */
334 	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
335 		if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
336 unmap:
337 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
338 				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
339 			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
340 				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
341 			p++;
342 		} else if ((u8 *)p == (u8 *)tq->stat) {
343 			p = (const struct ulptx_sge_pair *)tq->desc;
344 			goto unmap;
345 		} else if ((u8 *)p + 8 == (u8 *)tq->stat) {
346 			const __be64 *addr = (const __be64 *)tq->desc;
347 
348 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
349 				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
350 			dma_unmap_page(dev, be64_to_cpu(addr[1]),
351 				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
352 			p = (const struct ulptx_sge_pair *)&addr[2];
353 		} else {
354 			const __be64 *addr = (const __be64 *)tq->desc;
355 
356 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
357 				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
358 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
359 				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
360 			p = (const struct ulptx_sge_pair *)&addr[1];
361 		}
362 	}
363 	if (nfrags) {
364 		__be64 addr;
365 
366 		if ((u8 *)p == (u8 *)tq->stat)
367 			p = (const struct ulptx_sge_pair *)tq->desc;
368 		addr = ((u8 *)p + 16 <= (u8 *)tq->stat
369 			? p->addr[0]
370 			: *(const __be64 *)tq->desc);
371 		dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
372 			       DMA_TO_DEVICE);
373 	}
374 }
375 
376 /**
377  *	free_tx_desc - reclaims TX descriptors and their buffers
378  *	@adapter: the adapter
379  *	@tq: the TX queue to reclaim descriptors from
380  *	@n: the number of descriptors to reclaim
381  *	@unmap: whether the buffers should be unmapped for DMA
382  *
383  *	Reclaims TX descriptors from an SGE TX queue and frees the associated
384  *	TX buffers.  Called with the TX queue lock held.
385  */
386 static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
387 			 unsigned int n, bool unmap)
388 {
389 	struct tx_sw_desc *sdesc;
390 	unsigned int cidx = tq->cidx;
391 	struct device *dev = adapter->pdev_dev;
392 
393 	const int need_unmap = need_skb_unmap() && unmap;
394 
395 	sdesc = &tq->sdesc[cidx];
396 	while (n--) {
397 		/*
398 		 * If we kept a reference to the original TX skb, we need to
399 		 * unmap it from PCI DMA space (if required) and free it.
400 		 */
401 		if (sdesc->skb) {
402 			if (need_unmap)
403 				unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
404 			dev_consume_skb_any(sdesc->skb);
405 			sdesc->skb = NULL;
406 		}
407 
408 		sdesc++;
409 		if (++cidx == tq->size) {
410 			cidx = 0;
411 			sdesc = tq->sdesc;
412 		}
413 	}
414 	tq->cidx = cidx;
415 }
416 
417 /*
418  * Return the number of reclaimable descriptors in a TX queue.
419  */
420 static inline int reclaimable(const struct sge_txq *tq)
421 {
422 	int hw_cidx = be16_to_cpu(tq->stat->cidx);
423 	int reclaimable = hw_cidx - tq->cidx;
424 	if (reclaimable < 0)
425 		reclaimable += tq->size;
426 	return reclaimable;
427 }
428 
429 /**
430  *	reclaim_completed_tx - reclaims completed TX descriptors
431  *	@adapter: the adapter
432  *	@tq: the TX queue to reclaim completed descriptors from
433  *	@unmap: whether the buffers should be unmapped for DMA
434  *
435  *	Reclaims TX descriptors that the SGE has indicated it has processed,
436  *	and frees the associated buffers if possible.  Called with the TX
437  *	queue locked.
438  */
439 static inline void reclaim_completed_tx(struct adapter *adapter,
440 					struct sge_txq *tq,
441 					bool unmap)
442 {
443 	int avail = reclaimable(tq);
444 
445 	if (avail) {
446 		/*
447 		 * Limit the amount of clean up work we do at a time to keep
448 		 * the TX lock hold time O(1).
449 		 */
450 		if (avail > MAX_TX_RECLAIM)
451 			avail = MAX_TX_RECLAIM;
452 
453 		free_tx_desc(adapter, tq, avail, unmap);
454 		tq->in_use -= avail;
455 	}
456 }
457 
458 /**
459  *	get_buf_size - return the size of an RX Free List buffer.
460  *	@sdesc: pointer to the software buffer descriptor
461  */
462 static inline int get_buf_size(const struct rx_sw_desc *sdesc)
463 {
464 	return FL_PG_ORDER > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
465 		? (PAGE_SIZE << FL_PG_ORDER)
466 		: PAGE_SIZE;
467 }
468 
469 /**
470  *	free_rx_bufs - free RX buffers on an SGE Free List
471  *	@adapter: the adapter
472  *	@fl: the SGE Free List to free buffers from
473  *	@n: how many buffers to free
474  *
475  *	Release the next @n buffers on an SGE Free List RX queue.   The
476  *	buffers must be made inaccessible to hardware before calling this
477  *	function.
478  */
479 static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
480 {
481 	while (n--) {
482 		struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
483 
484 		if (is_buf_mapped(sdesc))
485 			dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
486 				       get_buf_size(sdesc), PCI_DMA_FROMDEVICE);
487 		put_page(sdesc->page);
488 		sdesc->page = NULL;
489 		if (++fl->cidx == fl->size)
490 			fl->cidx = 0;
491 		fl->avail--;
492 	}
493 }
494 
495 /**
496  *	unmap_rx_buf - unmap the current RX buffer on an SGE Free List
497  *	@adapter: the adapter
498  *	@fl: the SGE Free List
499  *
500  *	Unmap the current buffer on an SGE Free List RX queue.   The
501  *	buffer must be made inaccessible to HW before calling this function.
502  *
503  *	This is similar to @free_rx_bufs above but does not free the buffer.
504  *	Do note that the FL still loses any further access to the buffer.
505  *	This is used predominantly to "transfer ownership" of an FL buffer
506  *	to another entity (typically an skb's fragment list).
507  */
508 static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
509 {
510 	struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
511 
512 	if (is_buf_mapped(sdesc))
513 		dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
514 			       get_buf_size(sdesc), PCI_DMA_FROMDEVICE);
515 	sdesc->page = NULL;
516 	if (++fl->cidx == fl->size)
517 		fl->cidx = 0;
518 	fl->avail--;
519 }
520 
521 /**
522  *	ring_fl_db - righ doorbell on free list
523  *	@adapter: the adapter
524  *	@fl: the Free List whose doorbell should be rung ...
525  *
526  *	Tell the Scatter Gather Engine that there are new free list entries
527  *	available.
528  */
529 static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
530 {
531 	u32 val;
532 
533 	/*
534 	 * The SGE keeps track of its Producer and Consumer Indices in terms
535 	 * of Egress Queue Units so we can only tell it about integral numbers
536 	 * of multiples of Free List Entries per Egress Queue Units ...
537 	 */
538 	if (fl->pend_cred >= FL_PER_EQ_UNIT) {
539 		val = PIDX(fl->pend_cred / FL_PER_EQ_UNIT);
540 		if (!is_t4(adapter->params.chip))
541 			val |= DBTYPE(1);
542 		wmb();
543 		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
544 			     DBPRIO(1) |
545 			     QID(fl->cntxt_id) | val);
546 		fl->pend_cred %= FL_PER_EQ_UNIT;
547 	}
548 }
549 
550 /**
551  *	set_rx_sw_desc - initialize software RX buffer descriptor
552  *	@sdesc: pointer to the softwore RX buffer descriptor
553  *	@page: pointer to the page data structure backing the RX buffer
554  *	@dma_addr: PCI DMA address (possibly with low-bit flags)
555  */
556 static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
557 				  dma_addr_t dma_addr)
558 {
559 	sdesc->page = page;
560 	sdesc->dma_addr = dma_addr;
561 }
562 
563 /*
564  * Support for poisoning RX buffers ...
565  */
566 #define POISON_BUF_VAL -1
567 
568 static inline void poison_buf(struct page *page, size_t sz)
569 {
570 #if POISON_BUF_VAL >= 0
571 	memset(page_address(page), POISON_BUF_VAL, sz);
572 #endif
573 }
574 
575 /**
576  *	refill_fl - refill an SGE RX buffer ring
577  *	@adapter: the adapter
578  *	@fl: the Free List ring to refill
579  *	@n: the number of new buffers to allocate
580  *	@gfp: the gfp flags for the allocations
581  *
582  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
583  *	allocated with the supplied gfp flags.  The caller must assure that
584  *	@n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
585  *	EGRESS QUEUE UNITS_ indicates an empty Free List!  Returns the number
586  *	of buffers allocated.  If afterwards the queue is found critically low,
587  *	mark it as starving in the bitmap of starving FLs.
588  */
589 static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
590 			      int n, gfp_t gfp)
591 {
592 	struct page *page;
593 	dma_addr_t dma_addr;
594 	unsigned int cred = fl->avail;
595 	__be64 *d = &fl->desc[fl->pidx];
596 	struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
597 
598 	/*
599 	 * Sanity: ensure that the result of adding n Free List buffers
600 	 * won't result in wrapping the SGE's Producer Index around to
601 	 * it's Consumer Index thereby indicating an empty Free List ...
602 	 */
603 	BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
604 
605 	/*
606 	 * If we support large pages, prefer large buffers and fail over to
607 	 * small pages if we can't allocate large pages to satisfy the refill.
608 	 * If we don't support large pages, drop directly into the small page
609 	 * allocation code.
610 	 */
611 	if (FL_PG_ORDER == 0)
612 		goto alloc_small_pages;
613 
614 	while (n) {
615 		page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
616 				   FL_PG_ORDER);
617 		if (unlikely(!page)) {
618 			/*
619 			 * We've failed inour attempt to allocate a "large
620 			 * page".  Fail over to the "small page" allocation
621 			 * below.
622 			 */
623 			fl->large_alloc_failed++;
624 			break;
625 		}
626 		poison_buf(page, PAGE_SIZE << FL_PG_ORDER);
627 
628 		dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
629 					PAGE_SIZE << FL_PG_ORDER,
630 					PCI_DMA_FROMDEVICE);
631 		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
632 			/*
633 			 * We've run out of DMA mapping space.  Free up the
634 			 * buffer and return with what we've managed to put
635 			 * into the free list.  We don't want to fail over to
636 			 * the small page allocation below in this case
637 			 * because DMA mapping resources are typically
638 			 * critical resources once they become scarse.
639 			 */
640 			__free_pages(page, FL_PG_ORDER);
641 			goto out;
642 		}
643 		dma_addr |= RX_LARGE_BUF;
644 		*d++ = cpu_to_be64(dma_addr);
645 
646 		set_rx_sw_desc(sdesc, page, dma_addr);
647 		sdesc++;
648 
649 		fl->avail++;
650 		if (++fl->pidx == fl->size) {
651 			fl->pidx = 0;
652 			sdesc = fl->sdesc;
653 			d = fl->desc;
654 		}
655 		n--;
656 	}
657 
658 alloc_small_pages:
659 	while (n--) {
660 		page = __skb_alloc_page(gfp | __GFP_NOWARN, NULL);
661 		if (unlikely(!page)) {
662 			fl->alloc_failed++;
663 			break;
664 		}
665 		poison_buf(page, PAGE_SIZE);
666 
667 		dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
668 				       PCI_DMA_FROMDEVICE);
669 		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
670 			put_page(page);
671 			break;
672 		}
673 		*d++ = cpu_to_be64(dma_addr);
674 
675 		set_rx_sw_desc(sdesc, page, dma_addr);
676 		sdesc++;
677 
678 		fl->avail++;
679 		if (++fl->pidx == fl->size) {
680 			fl->pidx = 0;
681 			sdesc = fl->sdesc;
682 			d = fl->desc;
683 		}
684 	}
685 
686 out:
687 	/*
688 	 * Update our accounting state to incorporate the new Free List
689 	 * buffers, tell the hardware about them and return the number of
690 	 * buffers which we were able to allocate.
691 	 */
692 	cred = fl->avail - cred;
693 	fl->pend_cred += cred;
694 	ring_fl_db(adapter, fl);
695 
696 	if (unlikely(fl_starving(fl))) {
697 		smp_wmb();
698 		set_bit(fl->cntxt_id, adapter->sge.starving_fl);
699 	}
700 
701 	return cred;
702 }
703 
704 /*
705  * Refill a Free List to its capacity or the Maximum Refill Increment,
706  * whichever is smaller ...
707  */
708 static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
709 {
710 	refill_fl(adapter, fl,
711 		  min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
712 		  GFP_ATOMIC);
713 }
714 
715 /**
716  *	alloc_ring - allocate resources for an SGE descriptor ring
717  *	@dev: the PCI device's core device
718  *	@nelem: the number of descriptors
719  *	@hwsize: the size of each hardware descriptor
720  *	@swsize: the size of each software descriptor
721  *	@busaddrp: the physical PCI bus address of the allocated ring
722  *	@swringp: return address pointer for software ring
723  *	@stat_size: extra space in hardware ring for status information
724  *
725  *	Allocates resources for an SGE descriptor ring, such as TX queues,
726  *	free buffer lists, response queues, etc.  Each SGE ring requires
727  *	space for its hardware descriptors plus, optionally, space for software
728  *	state associated with each hardware entry (the metadata).  The function
729  *	returns three values: the virtual address for the hardware ring (the
730  *	return value of the function), the PCI bus address of the hardware
731  *	ring (in *busaddrp), and the address of the software ring (in swringp).
732  *	Both the hardware and software rings are returned zeroed out.
733  */
734 static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
735 			size_t swsize, dma_addr_t *busaddrp, void *swringp,
736 			size_t stat_size)
737 {
738 	/*
739 	 * Allocate the hardware ring and PCI DMA bus address space for said.
740 	 */
741 	size_t hwlen = nelem * hwsize + stat_size;
742 	void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
743 
744 	if (!hwring)
745 		return NULL;
746 
747 	/*
748 	 * If the caller wants a software ring, allocate it and return a
749 	 * pointer to it in *swringp.
750 	 */
751 	BUG_ON((swsize != 0) != (swringp != NULL));
752 	if (swsize) {
753 		void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
754 
755 		if (!swring) {
756 			dma_free_coherent(dev, hwlen, hwring, *busaddrp);
757 			return NULL;
758 		}
759 		*(void **)swringp = swring;
760 	}
761 
762 	/*
763 	 * Zero out the hardware ring and return its address as our function
764 	 * value.
765 	 */
766 	memset(hwring, 0, hwlen);
767 	return hwring;
768 }
769 
770 /**
771  *	sgl_len - calculates the size of an SGL of the given capacity
772  *	@n: the number of SGL entries
773  *
774  *	Calculates the number of flits (8-byte units) needed for a Direct
775  *	Scatter/Gather List that can hold the given number of entries.
776  */
777 static inline unsigned int sgl_len(unsigned int n)
778 {
779 	/*
780 	 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
781 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
782 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
783 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
784 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
785 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
786 	 * Address[N+1] is omitted.
787 	 *
788 	 * The following calculation incorporates all of the above.  It's
789 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
790 	 * first two flits which include the DSGL header, Length0 and
791 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
792 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
793 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
794 	 * (n-1) is odd ...
795 	 */
796 	n--;
797 	return (3 * n) / 2 + (n & 1) + 2;
798 }
799 
800 /**
801  *	flits_to_desc - returns the num of TX descriptors for the given flits
802  *	@flits: the number of flits
803  *
804  *	Returns the number of TX descriptors needed for the supplied number
805  *	of flits.
806  */
807 static inline unsigned int flits_to_desc(unsigned int flits)
808 {
809 	BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
810 	return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
811 }
812 
813 /**
814  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
815  *	@skb: the packet
816  *
817  *	Returns whether an Ethernet packet is small enough to fit completely as
818  *	immediate data.
819  */
820 static inline int is_eth_imm(const struct sk_buff *skb)
821 {
822 	/*
823 	 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
824 	 * which does not accommodate immediate data.  We could dike out all
825 	 * of the support code for immediate data but that would tie our hands
826 	 * too much if we ever want to enhace the firmware.  It would also
827 	 * create more differences between the PF and VF Drivers.
828 	 */
829 	return false;
830 }
831 
832 /**
833  *	calc_tx_flits - calculate the number of flits for a packet TX WR
834  *	@skb: the packet
835  *
836  *	Returns the number of flits needed for a TX Work Request for the
837  *	given Ethernet packet, including the needed WR and CPL headers.
838  */
839 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
840 {
841 	unsigned int flits;
842 
843 	/*
844 	 * If the skb is small enough, we can pump it out as a work request
845 	 * with only immediate data.  In that case we just have to have the
846 	 * TX Packet header plus the skb data in the Work Request.
847 	 */
848 	if (is_eth_imm(skb))
849 		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
850 				    sizeof(__be64));
851 
852 	/*
853 	 * Otherwise, we're going to have to construct a Scatter gather list
854 	 * of the skb body and fragments.  We also include the flits necessary
855 	 * for the TX Packet Work Request and CPL.  We always have a firmware
856 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
857 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
858 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
859 	 * with an embeded TX Packet Write CPL message.
860 	 */
861 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
862 	if (skb_shinfo(skb)->gso_size)
863 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
864 			  sizeof(struct cpl_tx_pkt_lso_core) +
865 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
866 	else
867 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
868 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
869 	return flits;
870 }
871 
872 /**
873  *	write_sgl - populate a Scatter/Gather List for a packet
874  *	@skb: the packet
875  *	@tq: the TX queue we are writing into
876  *	@sgl: starting location for writing the SGL
877  *	@end: points right after the end of the SGL
878  *	@start: start offset into skb main-body data to include in the SGL
879  *	@addr: the list of DMA bus addresses for the SGL elements
880  *
881  *	Generates a Scatter/Gather List for the buffers that make up a packet.
882  *	The caller must provide adequate space for the SGL that will be written.
883  *	The SGL includes all of the packet's page fragments and the data in its
884  *	main body except for the first @start bytes.  @pos must be 16-byte
885  *	aligned and within a TX descriptor with available space.  @end points
886  *	write after the end of the SGL but does not account for any potential
887  *	wrap around, i.e., @end > @tq->stat.
888  */
889 static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
890 		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
891 		      const dma_addr_t *addr)
892 {
893 	unsigned int i, len;
894 	struct ulptx_sge_pair *to;
895 	const struct skb_shared_info *si = skb_shinfo(skb);
896 	unsigned int nfrags = si->nr_frags;
897 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
898 
899 	len = skb_headlen(skb) - start;
900 	if (likely(len)) {
901 		sgl->len0 = htonl(len);
902 		sgl->addr0 = cpu_to_be64(addr[0] + start);
903 		nfrags++;
904 	} else {
905 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
906 		sgl->addr0 = cpu_to_be64(addr[1]);
907 	}
908 
909 	sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) |
910 			      ULPTX_NSGE(nfrags));
911 	if (likely(--nfrags == 0))
912 		return;
913 	/*
914 	 * Most of the complexity below deals with the possibility we hit the
915 	 * end of the queue in the middle of writing the SGL.  For this case
916 	 * only we create the SGL in a temporary buffer and then copy it.
917 	 */
918 	to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
919 
920 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
921 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
922 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
923 		to->addr[0] = cpu_to_be64(addr[i]);
924 		to->addr[1] = cpu_to_be64(addr[++i]);
925 	}
926 	if (nfrags) {
927 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
928 		to->len[1] = cpu_to_be32(0);
929 		to->addr[0] = cpu_to_be64(addr[i + 1]);
930 	}
931 	if (unlikely((u8 *)end > (u8 *)tq->stat)) {
932 		unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
933 
934 		if (likely(part0))
935 			memcpy(sgl->sge, buf, part0);
936 		part1 = (u8 *)end - (u8 *)tq->stat;
937 		memcpy(tq->desc, (u8 *)buf + part0, part1);
938 		end = (void *)tq->desc + part1;
939 	}
940 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
941 		*end = 0;
942 }
943 
944 /**
945  *	check_ring_tx_db - check and potentially ring a TX queue's doorbell
946  *	@adapter: the adapter
947  *	@tq: the TX queue
948  *	@n: number of new descriptors to give to HW
949  *
950  *	Ring the doorbel for a TX queue.
951  */
952 static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
953 			      int n)
954 {
955 	/*
956 	 * Warn if we write doorbells with the wrong priority and write
957 	 * descriptors before telling HW.
958 	 */
959 	WARN_ON((QID(tq->cntxt_id) | PIDX(n)) & DBPRIO(1));
960 	wmb();
961 	t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
962 		     QID(tq->cntxt_id) | PIDX(n));
963 }
964 
965 /**
966  *	inline_tx_skb - inline a packet's data into TX descriptors
967  *	@skb: the packet
968  *	@tq: the TX queue where the packet will be inlined
969  *	@pos: starting position in the TX queue to inline the packet
970  *
971  *	Inline a packet's contents directly into TX descriptors, starting at
972  *	the given position within the TX DMA ring.
973  *	Most of the complexity of this operation is dealing with wrap arounds
974  *	in the middle of the packet we want to inline.
975  */
976 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
977 			  void *pos)
978 {
979 	u64 *p;
980 	int left = (void *)tq->stat - pos;
981 
982 	if (likely(skb->len <= left)) {
983 		if (likely(!skb->data_len))
984 			skb_copy_from_linear_data(skb, pos, skb->len);
985 		else
986 			skb_copy_bits(skb, 0, pos, skb->len);
987 		pos += skb->len;
988 	} else {
989 		skb_copy_bits(skb, 0, pos, left);
990 		skb_copy_bits(skb, left, tq->desc, skb->len - left);
991 		pos = (void *)tq->desc + (skb->len - left);
992 	}
993 
994 	/* 0-pad to multiple of 16 */
995 	p = PTR_ALIGN(pos, 8);
996 	if ((uintptr_t)p & 8)
997 		*p = 0;
998 }
999 
1000 /*
1001  * Figure out what HW csum a packet wants and return the appropriate control
1002  * bits.
1003  */
1004 static u64 hwcsum(const struct sk_buff *skb)
1005 {
1006 	int csum_type;
1007 	const struct iphdr *iph = ip_hdr(skb);
1008 
1009 	if (iph->version == 4) {
1010 		if (iph->protocol == IPPROTO_TCP)
1011 			csum_type = TX_CSUM_TCPIP;
1012 		else if (iph->protocol == IPPROTO_UDP)
1013 			csum_type = TX_CSUM_UDPIP;
1014 		else {
1015 nocsum:
1016 			/*
1017 			 * unknown protocol, disable HW csum
1018 			 * and hope a bad packet is detected
1019 			 */
1020 			return TXPKT_L4CSUM_DIS;
1021 		}
1022 	} else {
1023 		/*
1024 		 * this doesn't work with extension headers
1025 		 */
1026 		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1027 
1028 		if (ip6h->nexthdr == IPPROTO_TCP)
1029 			csum_type = TX_CSUM_TCPIP6;
1030 		else if (ip6h->nexthdr == IPPROTO_UDP)
1031 			csum_type = TX_CSUM_UDPIP6;
1032 		else
1033 			goto nocsum;
1034 	}
1035 
1036 	if (likely(csum_type >= TX_CSUM_TCPIP))
1037 		return TXPKT_CSUM_TYPE(csum_type) |
1038 			TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
1039 			TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
1040 	else {
1041 		int start = skb_transport_offset(skb);
1042 
1043 		return TXPKT_CSUM_TYPE(csum_type) |
1044 			TXPKT_CSUM_START(start) |
1045 			TXPKT_CSUM_LOC(start + skb->csum_offset);
1046 	}
1047 }
1048 
1049 /*
1050  * Stop an Ethernet TX queue and record that state change.
1051  */
1052 static void txq_stop(struct sge_eth_txq *txq)
1053 {
1054 	netif_tx_stop_queue(txq->txq);
1055 	txq->q.stops++;
1056 }
1057 
1058 /*
1059  * Advance our software state for a TX queue by adding n in use descriptors.
1060  */
1061 static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1062 {
1063 	tq->in_use += n;
1064 	tq->pidx += n;
1065 	if (tq->pidx >= tq->size)
1066 		tq->pidx -= tq->size;
1067 }
1068 
1069 /**
1070  *	t4vf_eth_xmit - add a packet to an Ethernet TX queue
1071  *	@skb: the packet
1072  *	@dev: the egress net device
1073  *
1074  *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1075  */
1076 int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1077 {
1078 	u32 wr_mid;
1079 	u64 cntrl, *end;
1080 	int qidx, credits;
1081 	unsigned int flits, ndesc;
1082 	struct adapter *adapter;
1083 	struct sge_eth_txq *txq;
1084 	const struct port_info *pi;
1085 	struct fw_eth_tx_pkt_vm_wr *wr;
1086 	struct cpl_tx_pkt_core *cpl;
1087 	const struct skb_shared_info *ssi;
1088 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1089 	const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
1090 					sizeof(wr->ethmacsrc) +
1091 					sizeof(wr->ethtype) +
1092 					sizeof(wr->vlantci));
1093 
1094 	/*
1095 	 * The chip minimum packet length is 10 octets but the firmware
1096 	 * command that we are using requires that we copy the Ethernet header
1097 	 * (including the VLAN tag) into the header so we reject anything
1098 	 * smaller than that ...
1099 	 */
1100 	if (unlikely(skb->len < fw_hdr_copy_len))
1101 		goto out_free;
1102 
1103 	/*
1104 	 * Figure out which TX Queue we're going to use.
1105 	 */
1106 	pi = netdev_priv(dev);
1107 	adapter = pi->adapter;
1108 	qidx = skb_get_queue_mapping(skb);
1109 	BUG_ON(qidx >= pi->nqsets);
1110 	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1111 
1112 	/*
1113 	 * Take this opportunity to reclaim any TX Descriptors whose DMA
1114 	 * transfers have completed.
1115 	 */
1116 	reclaim_completed_tx(adapter, &txq->q, true);
1117 
1118 	/*
1119 	 * Calculate the number of flits and TX Descriptors we're going to
1120 	 * need along with how many TX Descriptors will be left over after
1121 	 * we inject our Work Request.
1122 	 */
1123 	flits = calc_tx_flits(skb);
1124 	ndesc = flits_to_desc(flits);
1125 	credits = txq_avail(&txq->q) - ndesc;
1126 
1127 	if (unlikely(credits < 0)) {
1128 		/*
1129 		 * Not enough room for this packet's Work Request.  Stop the
1130 		 * TX Queue and return a "busy" condition.  The queue will get
1131 		 * started later on when the firmware informs us that space
1132 		 * has opened up.
1133 		 */
1134 		txq_stop(txq);
1135 		dev_err(adapter->pdev_dev,
1136 			"%s: TX ring %u full while queue awake!\n",
1137 			dev->name, qidx);
1138 		return NETDEV_TX_BUSY;
1139 	}
1140 
1141 	if (!is_eth_imm(skb) &&
1142 	    unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1143 		/*
1144 		 * We need to map the skb into PCI DMA space (because it can't
1145 		 * be in-lined directly into the Work Request) and the mapping
1146 		 * operation failed.  Record the error and drop the packet.
1147 		 */
1148 		txq->mapping_err++;
1149 		goto out_free;
1150 	}
1151 
1152 	wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
1153 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1154 		/*
1155 		 * After we're done injecting the Work Request for this
1156 		 * packet, we'll be below our "stop threshold" so stop the TX
1157 		 * Queue now and schedule a request for an SGE Egress Queue
1158 		 * Update message.  The queue will get started later on when
1159 		 * the firmware processes this Work Request and sends us an
1160 		 * Egress Queue Status Update message indicating that space
1161 		 * has opened up.
1162 		 */
1163 		txq_stop(txq);
1164 		wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
1165 	}
1166 
1167 	/*
1168 	 * Start filling in our Work Request.  Note that we do _not_ handle
1169 	 * the WR Header wrapping around the TX Descriptor Ring.  If our
1170 	 * maximum header size ever exceeds one TX Descriptor, we'll need to
1171 	 * do something else here.
1172 	 */
1173 	BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1174 	wr = (void *)&txq->q.desc[txq->q.pidx];
1175 	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1176 	wr->r3[0] = cpu_to_be64(0);
1177 	wr->r3[1] = cpu_to_be64(0);
1178 	skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1179 	end = (u64 *)wr + flits;
1180 
1181 	/*
1182 	 * If this is a Large Send Offload packet we'll put in an LSO CPL
1183 	 * message with an encapsulated TX Packet CPL message.  Otherwise we
1184 	 * just use a TX Packet CPL message.
1185 	 */
1186 	ssi = skb_shinfo(skb);
1187 	if (ssi->gso_size) {
1188 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1189 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1190 		int l3hdr_len = skb_network_header_len(skb);
1191 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1192 
1193 		wr->op_immdlen =
1194 			cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
1195 				    FW_WR_IMMDLEN(sizeof(*lso) +
1196 						  sizeof(*cpl)));
1197 		/*
1198 		 * Fill in the LSO CPL message.
1199 		 */
1200 		lso->lso_ctrl =
1201 			cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO) |
1202 				    LSO_FIRST_SLICE |
1203 				    LSO_LAST_SLICE |
1204 				    LSO_IPV6(v6) |
1205 				    LSO_ETHHDR_LEN(eth_xtra_len/4) |
1206 				    LSO_IPHDR_LEN(l3hdr_len/4) |
1207 				    LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1208 		lso->ipid_ofst = cpu_to_be16(0);
1209 		lso->mss = cpu_to_be16(ssi->gso_size);
1210 		lso->seqno_offset = cpu_to_be32(0);
1211 		if (is_t4(adapter->params.chip))
1212 			lso->len = cpu_to_be32(skb->len);
1213 		else
1214 			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE(skb->len));
1215 
1216 		/*
1217 		 * Set up TX Packet CPL pointer, control word and perform
1218 		 * accounting.
1219 		 */
1220 		cpl = (void *)(lso + 1);
1221 		cntrl = (TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1222 			 TXPKT_IPHDR_LEN(l3hdr_len) |
1223 			 TXPKT_ETHHDR_LEN(eth_xtra_len));
1224 		txq->tso++;
1225 		txq->tx_cso += ssi->gso_segs;
1226 	} else {
1227 		int len;
1228 
1229 		len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1230 		wr->op_immdlen =
1231 			cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
1232 				    FW_WR_IMMDLEN(len));
1233 
1234 		/*
1235 		 * Set up TX Packet CPL pointer, control word and perform
1236 		 * accounting.
1237 		 */
1238 		cpl = (void *)(wr + 1);
1239 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1240 			cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1241 			txq->tx_cso++;
1242 		} else
1243 			cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1244 	}
1245 
1246 	/*
1247 	 * If there's a VLAN tag present, add that to the list of things to
1248 	 * do in this Work Request.
1249 	 */
1250 	if (vlan_tx_tag_present(skb)) {
1251 		txq->vlan_ins++;
1252 		cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
1253 	}
1254 
1255 	/*
1256 	 * Fill in the TX Packet CPL message header.
1257 	 */
1258 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1259 				 TXPKT_INTF(pi->port_id) |
1260 				 TXPKT_PF(0));
1261 	cpl->pack = cpu_to_be16(0);
1262 	cpl->len = cpu_to_be16(skb->len);
1263 	cpl->ctrl1 = cpu_to_be64(cntrl);
1264 
1265 #ifdef T4_TRACE
1266 	T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1267 		  "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1268 		  ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1269 #endif
1270 
1271 	/*
1272 	 * Fill in the body of the TX Packet CPL message with either in-lined
1273 	 * data or a Scatter/Gather List.
1274 	 */
1275 	if (is_eth_imm(skb)) {
1276 		/*
1277 		 * In-line the packet's data and free the skb since we don't
1278 		 * need it any longer.
1279 		 */
1280 		inline_tx_skb(skb, &txq->q, cpl + 1);
1281 		dev_consume_skb_any(skb);
1282 	} else {
1283 		/*
1284 		 * Write the skb's Scatter/Gather list into the TX Packet CPL
1285 		 * message and retain a pointer to the skb so we can free it
1286 		 * later when its DMA completes.  (We store the skb pointer
1287 		 * in the Software Descriptor corresponding to the last TX
1288 		 * Descriptor used by the Work Request.)
1289 		 *
1290 		 * The retained skb will be freed when the corresponding TX
1291 		 * Descriptors are reclaimed after their DMAs complete.
1292 		 * However, this could take quite a while since, in general,
1293 		 * the hardware is set up to be lazy about sending DMA
1294 		 * completion notifications to us and we mostly perform TX
1295 		 * reclaims in the transmit routine.
1296 		 *
1297 		 * This is good for performamce but means that we rely on new
1298 		 * TX packets arriving to run the destructors of completed
1299 		 * packets, which open up space in their sockets' send queues.
1300 		 * Sometimes we do not get such new packets causing TX to
1301 		 * stall.  A single UDP transmitter is a good example of this
1302 		 * situation.  We have a clean up timer that periodically
1303 		 * reclaims completed packets but it doesn't run often enough
1304 		 * (nor do we want it to) to prevent lengthy stalls.  A
1305 		 * solution to this problem is to run the destructor early,
1306 		 * after the packet is queued but before it's DMAd.  A con is
1307 		 * that we lie to socket memory accounting, but the amount of
1308 		 * extra memory is reasonable (limited by the number of TX
1309 		 * descriptors), the packets do actually get freed quickly by
1310 		 * new packets almost always, and for protocols like TCP that
1311 		 * wait for acks to really free up the data the extra memory
1312 		 * is even less.  On the positive side we run the destructors
1313 		 * on the sending CPU rather than on a potentially different
1314 		 * completing CPU, usually a good thing.
1315 		 *
1316 		 * Run the destructor before telling the DMA engine about the
1317 		 * packet to make sure it doesn't complete and get freed
1318 		 * prematurely.
1319 		 */
1320 		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1321 		struct sge_txq *tq = &txq->q;
1322 		int last_desc;
1323 
1324 		/*
1325 		 * If the Work Request header was an exact multiple of our TX
1326 		 * Descriptor length, then it's possible that the starting SGL
1327 		 * pointer lines up exactly with the end of our TX Descriptor
1328 		 * ring.  If that's the case, wrap around to the beginning
1329 		 * here ...
1330 		 */
1331 		if (unlikely((void *)sgl == (void *)tq->stat)) {
1332 			sgl = (void *)tq->desc;
1333 			end = ((void *)tq->desc + ((void *)end - (void *)tq->stat));
1334 		}
1335 
1336 		write_sgl(skb, tq, sgl, end, 0, addr);
1337 		skb_orphan(skb);
1338 
1339 		last_desc = tq->pidx + ndesc - 1;
1340 		if (last_desc >= tq->size)
1341 			last_desc -= tq->size;
1342 		tq->sdesc[last_desc].skb = skb;
1343 		tq->sdesc[last_desc].sgl = sgl;
1344 	}
1345 
1346 	/*
1347 	 * Advance our internal TX Queue state, tell the hardware about
1348 	 * the new TX descriptors and return success.
1349 	 */
1350 	txq_advance(&txq->q, ndesc);
1351 	dev->trans_start = jiffies;
1352 	ring_tx_db(adapter, &txq->q, ndesc);
1353 	return NETDEV_TX_OK;
1354 
1355 out_free:
1356 	/*
1357 	 * An error of some sort happened.  Free the TX skb and tell the
1358 	 * OS that we've "dealt" with the packet ...
1359 	 */
1360 	dev_kfree_skb_any(skb);
1361 	return NETDEV_TX_OK;
1362 }
1363 
1364 /**
1365  *	copy_frags - copy fragments from gather list into skb_shared_info
1366  *	@skb: destination skb
1367  *	@gl: source internal packet gather list
1368  *	@offset: packet start offset in first page
1369  *
1370  *	Copy an internal packet gather list into a Linux skb_shared_info
1371  *	structure.
1372  */
1373 static inline void copy_frags(struct sk_buff *skb,
1374 			      const struct pkt_gl *gl,
1375 			      unsigned int offset)
1376 {
1377 	int i;
1378 
1379 	/* usually there's just one frag */
1380 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
1381 			     gl->frags[0].offset + offset,
1382 			     gl->frags[0].size - offset);
1383 	skb_shinfo(skb)->nr_frags = gl->nfrags;
1384 	for (i = 1; i < gl->nfrags; i++)
1385 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
1386 				     gl->frags[i].offset,
1387 				     gl->frags[i].size);
1388 
1389 	/* get a reference to the last page, we don't own it */
1390 	get_page(gl->frags[gl->nfrags - 1].page);
1391 }
1392 
1393 /**
1394  *	t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1395  *	@gl: the gather list
1396  *	@skb_len: size of sk_buff main body if it carries fragments
1397  *	@pull_len: amount of data to move to the sk_buff's main body
1398  *
1399  *	Builds an sk_buff from the given packet gather list.  Returns the
1400  *	sk_buff or %NULL if sk_buff allocation failed.
1401  */
1402 static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
1403 					 unsigned int skb_len,
1404 					 unsigned int pull_len)
1405 {
1406 	struct sk_buff *skb;
1407 
1408 	/*
1409 	 * If the ingress packet is small enough, allocate an skb large enough
1410 	 * for all of the data and copy it inline.  Otherwise, allocate an skb
1411 	 * with enough room to pull in the header and reference the rest of
1412 	 * the data via the skb fragment list.
1413 	 *
1414 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx
1415 	 * buff!  size, which is expected since buffers are at least
1416 	 * PAGE_SIZEd.  In this case packets up to RX_COPY_THRES have only one
1417 	 * fragment.
1418 	 */
1419 	if (gl->tot_len <= RX_COPY_THRES) {
1420 		/* small packets have only one fragment */
1421 		skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
1422 		if (unlikely(!skb))
1423 			goto out;
1424 		__skb_put(skb, gl->tot_len);
1425 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1426 	} else {
1427 		skb = alloc_skb(skb_len, GFP_ATOMIC);
1428 		if (unlikely(!skb))
1429 			goto out;
1430 		__skb_put(skb, pull_len);
1431 		skb_copy_to_linear_data(skb, gl->va, pull_len);
1432 
1433 		copy_frags(skb, gl, pull_len);
1434 		skb->len = gl->tot_len;
1435 		skb->data_len = skb->len - pull_len;
1436 		skb->truesize += skb->data_len;
1437 	}
1438 
1439 out:
1440 	return skb;
1441 }
1442 
1443 /**
1444  *	t4vf_pktgl_free - free a packet gather list
1445  *	@gl: the gather list
1446  *
1447  *	Releases the pages of a packet gather list.  We do not own the last
1448  *	page on the list and do not free it.
1449  */
1450 static void t4vf_pktgl_free(const struct pkt_gl *gl)
1451 {
1452 	int frag;
1453 
1454 	frag = gl->nfrags - 1;
1455 	while (frag--)
1456 		put_page(gl->frags[frag].page);
1457 }
1458 
1459 /**
1460  *	do_gro - perform Generic Receive Offload ingress packet processing
1461  *	@rxq: ingress RX Ethernet Queue
1462  *	@gl: gather list for ingress packet
1463  *	@pkt: CPL header for last packet fragment
1464  *
1465  *	Perform Generic Receive Offload (GRO) ingress packet processing.
1466  *	We use the standard Linux GRO interfaces for this.
1467  */
1468 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1469 		   const struct cpl_rx_pkt *pkt)
1470 {
1471 	int ret;
1472 	struct sk_buff *skb;
1473 
1474 	skb = napi_get_frags(&rxq->rspq.napi);
1475 	if (unlikely(!skb)) {
1476 		t4vf_pktgl_free(gl);
1477 		rxq->stats.rx_drops++;
1478 		return;
1479 	}
1480 
1481 	copy_frags(skb, gl, PKTSHIFT);
1482 	skb->len = gl->tot_len - PKTSHIFT;
1483 	skb->data_len = skb->len;
1484 	skb->truesize += skb->data_len;
1485 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1486 	skb_record_rx_queue(skb, rxq->rspq.idx);
1487 
1488 	if (pkt->vlan_ex) {
1489 		__vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1490 					be16_to_cpu(pkt->vlan));
1491 		rxq->stats.vlan_ex++;
1492 	}
1493 	ret = napi_gro_frags(&rxq->rspq.napi);
1494 
1495 	if (ret == GRO_HELD)
1496 		rxq->stats.lro_pkts++;
1497 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1498 		rxq->stats.lro_merged++;
1499 	rxq->stats.pkts++;
1500 	rxq->stats.rx_cso++;
1501 }
1502 
1503 /**
1504  *	t4vf_ethrx_handler - process an ingress ethernet packet
1505  *	@rspq: the response queue that received the packet
1506  *	@rsp: the response queue descriptor holding the RX_PKT message
1507  *	@gl: the gather list of packet fragments
1508  *
1509  *	Process an ingress ethernet packet and deliver it to the stack.
1510  */
1511 int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1512 		       const struct pkt_gl *gl)
1513 {
1514 	struct sk_buff *skb;
1515 	const struct cpl_rx_pkt *pkt = (void *)rsp;
1516 	bool csum_ok = pkt->csum_calc && !pkt->err_vec &&
1517 		       (rspq->netdev->features & NETIF_F_RXCSUM);
1518 	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1519 
1520 	/*
1521 	 * If this is a good TCP packet and we have Generic Receive Offload
1522 	 * enabled, handle the packet in the GRO path.
1523 	 */
1524 	if ((pkt->l2info & cpu_to_be32(RXF_TCP)) &&
1525 	    (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1526 	    !pkt->ip_frag) {
1527 		do_gro(rxq, gl, pkt);
1528 		return 0;
1529 	}
1530 
1531 	/*
1532 	 * Convert the Packet Gather List into an skb.
1533 	 */
1534 	skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
1535 	if (unlikely(!skb)) {
1536 		t4vf_pktgl_free(gl);
1537 		rxq->stats.rx_drops++;
1538 		return 0;
1539 	}
1540 	__skb_pull(skb, PKTSHIFT);
1541 	skb->protocol = eth_type_trans(skb, rspq->netdev);
1542 	skb_record_rx_queue(skb, rspq->idx);
1543 	rxq->stats.pkts++;
1544 
1545 	if (csum_ok && !pkt->err_vec &&
1546 	    (be32_to_cpu(pkt->l2info) & (RXF_UDP|RXF_TCP))) {
1547 		if (!pkt->ip_frag)
1548 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1549 		else {
1550 			__sum16 c = (__force __sum16)pkt->csum;
1551 			skb->csum = csum_unfold(c);
1552 			skb->ip_summed = CHECKSUM_COMPLETE;
1553 		}
1554 		rxq->stats.rx_cso++;
1555 	} else
1556 		skb_checksum_none_assert(skb);
1557 
1558 	if (pkt->vlan_ex) {
1559 		rxq->stats.vlan_ex++;
1560 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(pkt->vlan));
1561 	}
1562 
1563 	netif_receive_skb(skb);
1564 
1565 	return 0;
1566 }
1567 
1568 /**
1569  *	is_new_response - check if a response is newly written
1570  *	@rc: the response control descriptor
1571  *	@rspq: the response queue
1572  *
1573  *	Returns true if a response descriptor contains a yet unprocessed
1574  *	response.
1575  */
1576 static inline bool is_new_response(const struct rsp_ctrl *rc,
1577 				   const struct sge_rspq *rspq)
1578 {
1579 	return RSPD_GEN(rc->type_gen) == rspq->gen;
1580 }
1581 
1582 /**
1583  *	restore_rx_bufs - put back a packet's RX buffers
1584  *	@gl: the packet gather list
1585  *	@fl: the SGE Free List
1586  *	@nfrags: how many fragments in @si
1587  *
1588  *	Called when we find out that the current packet, @si, can't be
1589  *	processed right away for some reason.  This is a very rare event and
1590  *	there's no effort to make this suspension/resumption process
1591  *	particularly efficient.
1592  *
1593  *	We implement the suspension by putting all of the RX buffers associated
1594  *	with the current packet back on the original Free List.  The buffers
1595  *	have already been unmapped and are left unmapped, we mark them as
1596  *	unmapped in order to prevent further unmapping attempts.  (Effectively
1597  *	this function undoes the series of @unmap_rx_buf calls which were done
1598  *	to create the current packet's gather list.)  This leaves us ready to
1599  *	restart processing of the packet the next time we start processing the
1600  *	RX Queue ...
1601  */
1602 static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1603 			    int frags)
1604 {
1605 	struct rx_sw_desc *sdesc;
1606 
1607 	while (frags--) {
1608 		if (fl->cidx == 0)
1609 			fl->cidx = fl->size - 1;
1610 		else
1611 			fl->cidx--;
1612 		sdesc = &fl->sdesc[fl->cidx];
1613 		sdesc->page = gl->frags[frags].page;
1614 		sdesc->dma_addr |= RX_UNMAPPED_BUF;
1615 		fl->avail++;
1616 	}
1617 }
1618 
1619 /**
1620  *	rspq_next - advance to the next entry in a response queue
1621  *	@rspq: the queue
1622  *
1623  *	Updates the state of a response queue to advance it to the next entry.
1624  */
1625 static inline void rspq_next(struct sge_rspq *rspq)
1626 {
1627 	rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1628 	if (unlikely(++rspq->cidx == rspq->size)) {
1629 		rspq->cidx = 0;
1630 		rspq->gen ^= 1;
1631 		rspq->cur_desc = rspq->desc;
1632 	}
1633 }
1634 
1635 /**
1636  *	process_responses - process responses from an SGE response queue
1637  *	@rspq: the ingress response queue to process
1638  *	@budget: how many responses can be processed in this round
1639  *
1640  *	Process responses from a Scatter Gather Engine response queue up to
1641  *	the supplied budget.  Responses include received packets as well as
1642  *	control messages from firmware or hardware.
1643  *
1644  *	Additionally choose the interrupt holdoff time for the next interrupt
1645  *	on this queue.  If the system is under memory shortage use a fairly
1646  *	long delay to help recovery.
1647  */
1648 static int process_responses(struct sge_rspq *rspq, int budget)
1649 {
1650 	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1651 	int budget_left = budget;
1652 
1653 	while (likely(budget_left)) {
1654 		int ret, rsp_type;
1655 		const struct rsp_ctrl *rc;
1656 
1657 		rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1658 		if (!is_new_response(rc, rspq))
1659 			break;
1660 
1661 		/*
1662 		 * Figure out what kind of response we've received from the
1663 		 * SGE.
1664 		 */
1665 		rmb();
1666 		rsp_type = RSPD_TYPE(rc->type_gen);
1667 		if (likely(rsp_type == RSP_TYPE_FLBUF)) {
1668 			struct page_frag *fp;
1669 			struct pkt_gl gl;
1670 			const struct rx_sw_desc *sdesc;
1671 			u32 bufsz, frag;
1672 			u32 len = be32_to_cpu(rc->pldbuflen_qid);
1673 
1674 			/*
1675 			 * If we get a "new buffer" message from the SGE we
1676 			 * need to move on to the next Free List buffer.
1677 			 */
1678 			if (len & RSPD_NEWBUF) {
1679 				/*
1680 				 * We get one "new buffer" message when we
1681 				 * first start up a queue so we need to ignore
1682 				 * it when our offset into the buffer is 0.
1683 				 */
1684 				if (likely(rspq->offset > 0)) {
1685 					free_rx_bufs(rspq->adapter, &rxq->fl,
1686 						     1);
1687 					rspq->offset = 0;
1688 				}
1689 				len = RSPD_LEN(len);
1690 			}
1691 			gl.tot_len = len;
1692 
1693 			/*
1694 			 * Gather packet fragments.
1695 			 */
1696 			for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1697 				BUG_ON(frag >= MAX_SKB_FRAGS);
1698 				BUG_ON(rxq->fl.avail == 0);
1699 				sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
1700 				bufsz = get_buf_size(sdesc);
1701 				fp->page = sdesc->page;
1702 				fp->offset = rspq->offset;
1703 				fp->size = min(bufsz, len);
1704 				len -= fp->size;
1705 				if (!len)
1706 					break;
1707 				unmap_rx_buf(rspq->adapter, &rxq->fl);
1708 			}
1709 			gl.nfrags = frag+1;
1710 
1711 			/*
1712 			 * Last buffer remains mapped so explicitly make it
1713 			 * coherent for CPU access and start preloading first
1714 			 * cache line ...
1715 			 */
1716 			dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1717 						get_buf_addr(sdesc),
1718 						fp->size, DMA_FROM_DEVICE);
1719 			gl.va = (page_address(gl.frags[0].page) +
1720 				 gl.frags[0].offset);
1721 			prefetch(gl.va);
1722 
1723 			/*
1724 			 * Hand the new ingress packet to the handler for
1725 			 * this Response Queue.
1726 			 */
1727 			ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1728 			if (likely(ret == 0))
1729 				rspq->offset += ALIGN(fp->size, FL_ALIGN);
1730 			else
1731 				restore_rx_bufs(&gl, &rxq->fl, frag);
1732 		} else if (likely(rsp_type == RSP_TYPE_CPL)) {
1733 			ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1734 		} else {
1735 			WARN_ON(rsp_type > RSP_TYPE_CPL);
1736 			ret = 0;
1737 		}
1738 
1739 		if (unlikely(ret)) {
1740 			/*
1741 			 * Couldn't process descriptor, back off for recovery.
1742 			 * We use the SGE's last timer which has the longest
1743 			 * interrupt coalescing value ...
1744 			 */
1745 			const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1746 			rspq->next_intr_params =
1747 				QINTR_TIMER_IDX(NOMEM_TIMER_IDX);
1748 			break;
1749 		}
1750 
1751 		rspq_next(rspq);
1752 		budget_left--;
1753 	}
1754 
1755 	/*
1756 	 * If this is a Response Queue with an associated Free List and
1757 	 * at least two Egress Queue units available in the Free List
1758 	 * for new buffer pointers, refill the Free List.
1759 	 */
1760 	if (rspq->offset >= 0 &&
1761 	    rxq->fl.size - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1762 		__refill_fl(rspq->adapter, &rxq->fl);
1763 	return budget - budget_left;
1764 }
1765 
1766 /**
1767  *	napi_rx_handler - the NAPI handler for RX processing
1768  *	@napi: the napi instance
1769  *	@budget: how many packets we can process in this round
1770  *
1771  *	Handler for new data events when using NAPI.  This does not need any
1772  *	locking or protection from interrupts as data interrupts are off at
1773  *	this point and other adapter interrupts do not interfere (the latter
1774  *	in not a concern at all with MSI-X as non-data interrupts then have
1775  *	a separate handler).
1776  */
1777 static int napi_rx_handler(struct napi_struct *napi, int budget)
1778 {
1779 	unsigned int intr_params;
1780 	struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1781 	int work_done = process_responses(rspq, budget);
1782 
1783 	if (likely(work_done < budget)) {
1784 		napi_complete(napi);
1785 		intr_params = rspq->next_intr_params;
1786 		rspq->next_intr_params = rspq->intr_params;
1787 	} else
1788 		intr_params = QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX);
1789 
1790 	if (unlikely(work_done == 0))
1791 		rspq->unhandled_irqs++;
1792 
1793 	t4_write_reg(rspq->adapter,
1794 		     T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1795 		     CIDXINC(work_done) |
1796 		     INGRESSQID((u32)rspq->cntxt_id) |
1797 		     SEINTARM(intr_params));
1798 	return work_done;
1799 }
1800 
1801 /*
1802  * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1803  * (i.e., response queue serviced by NAPI polling).
1804  */
1805 irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1806 {
1807 	struct sge_rspq *rspq = cookie;
1808 
1809 	napi_schedule(&rspq->napi);
1810 	return IRQ_HANDLED;
1811 }
1812 
1813 /*
1814  * Process the indirect interrupt entries in the interrupt queue and kick off
1815  * NAPI for each queue that has generated an entry.
1816  */
1817 static unsigned int process_intrq(struct adapter *adapter)
1818 {
1819 	struct sge *s = &adapter->sge;
1820 	struct sge_rspq *intrq = &s->intrq;
1821 	unsigned int work_done;
1822 
1823 	spin_lock(&adapter->sge.intrq_lock);
1824 	for (work_done = 0; ; work_done++) {
1825 		const struct rsp_ctrl *rc;
1826 		unsigned int qid, iq_idx;
1827 		struct sge_rspq *rspq;
1828 
1829 		/*
1830 		 * Grab the next response from the interrupt queue and bail
1831 		 * out if it's not a new response.
1832 		 */
1833 		rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1834 		if (!is_new_response(rc, intrq))
1835 			break;
1836 
1837 		/*
1838 		 * If the response isn't a forwarded interrupt message issue a
1839 		 * error and go on to the next response message.  This should
1840 		 * never happen ...
1841 		 */
1842 		rmb();
1843 		if (unlikely(RSPD_TYPE(rc->type_gen) != RSP_TYPE_INTR)) {
1844 			dev_err(adapter->pdev_dev,
1845 				"Unexpected INTRQ response type %d\n",
1846 				RSPD_TYPE(rc->type_gen));
1847 			continue;
1848 		}
1849 
1850 		/*
1851 		 * Extract the Queue ID from the interrupt message and perform
1852 		 * sanity checking to make sure it really refers to one of our
1853 		 * Ingress Queues which is active and matches the queue's ID.
1854 		 * None of these error conditions should ever happen so we may
1855 		 * want to either make them fatal and/or conditionalized under
1856 		 * DEBUG.
1857 		 */
1858 		qid = RSPD_QID(be32_to_cpu(rc->pldbuflen_qid));
1859 		iq_idx = IQ_IDX(s, qid);
1860 		if (unlikely(iq_idx >= MAX_INGQ)) {
1861 			dev_err(adapter->pdev_dev,
1862 				"Ingress QID %d out of range\n", qid);
1863 			continue;
1864 		}
1865 		rspq = s->ingr_map[iq_idx];
1866 		if (unlikely(rspq == NULL)) {
1867 			dev_err(adapter->pdev_dev,
1868 				"Ingress QID %d RSPQ=NULL\n", qid);
1869 			continue;
1870 		}
1871 		if (unlikely(rspq->abs_id != qid)) {
1872 			dev_err(adapter->pdev_dev,
1873 				"Ingress QID %d refers to RSPQ %d\n",
1874 				qid, rspq->abs_id);
1875 			continue;
1876 		}
1877 
1878 		/*
1879 		 * Schedule NAPI processing on the indicated Response Queue
1880 		 * and move on to the next entry in the Forwarded Interrupt
1881 		 * Queue.
1882 		 */
1883 		napi_schedule(&rspq->napi);
1884 		rspq_next(intrq);
1885 	}
1886 
1887 	t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1888 		     CIDXINC(work_done) |
1889 		     INGRESSQID(intrq->cntxt_id) |
1890 		     SEINTARM(intrq->intr_params));
1891 
1892 	spin_unlock(&adapter->sge.intrq_lock);
1893 
1894 	return work_done;
1895 }
1896 
1897 /*
1898  * The MSI interrupt handler handles data events from SGE response queues as
1899  * well as error and other async events as they all use the same MSI vector.
1900  */
1901 static irqreturn_t t4vf_intr_msi(int irq, void *cookie)
1902 {
1903 	struct adapter *adapter = cookie;
1904 
1905 	process_intrq(adapter);
1906 	return IRQ_HANDLED;
1907 }
1908 
1909 /**
1910  *	t4vf_intr_handler - select the top-level interrupt handler
1911  *	@adapter: the adapter
1912  *
1913  *	Selects the top-level interrupt handler based on the type of interrupts
1914  *	(MSI-X or MSI).
1915  */
1916 irq_handler_t t4vf_intr_handler(struct adapter *adapter)
1917 {
1918 	BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
1919 	if (adapter->flags & USING_MSIX)
1920 		return t4vf_sge_intr_msix;
1921 	else
1922 		return t4vf_intr_msi;
1923 }
1924 
1925 /**
1926  *	sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
1927  *	@data: the adapter
1928  *
1929  *	Runs periodically from a timer to perform maintenance of SGE RX queues.
1930  *
1931  *	a) Replenishes RX queues that have run out due to memory shortage.
1932  *	Normally new RX buffers are added when existing ones are consumed but
1933  *	when out of memory a queue can become empty.  We schedule NAPI to do
1934  *	the actual refill.
1935  */
1936 static void sge_rx_timer_cb(unsigned long data)
1937 {
1938 	struct adapter *adapter = (struct adapter *)data;
1939 	struct sge *s = &adapter->sge;
1940 	unsigned int i;
1941 
1942 	/*
1943 	 * Scan the "Starving Free Lists" flag array looking for any Free
1944 	 * Lists in need of more free buffers.  If we find one and it's not
1945 	 * being actively polled, then bump its "starving" counter and attempt
1946 	 * to refill it.  If we're successful in adding enough buffers to push
1947 	 * the Free List over the starving threshold, then we can clear its
1948 	 * "starving" status.
1949 	 */
1950 	for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
1951 		unsigned long m;
1952 
1953 		for (m = s->starving_fl[i]; m; m &= m - 1) {
1954 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
1955 			struct sge_fl *fl = s->egr_map[id];
1956 
1957 			clear_bit(id, s->starving_fl);
1958 			smp_mb__after_atomic();
1959 
1960 			/*
1961 			 * Since we are accessing fl without a lock there's a
1962 			 * small probability of a false positive where we
1963 			 * schedule napi but the FL is no longer starving.
1964 			 * No biggie.
1965 			 */
1966 			if (fl_starving(fl)) {
1967 				struct sge_eth_rxq *rxq;
1968 
1969 				rxq = container_of(fl, struct sge_eth_rxq, fl);
1970 				if (napi_reschedule(&rxq->rspq.napi))
1971 					fl->starving++;
1972 				else
1973 					set_bit(id, s->starving_fl);
1974 			}
1975 		}
1976 	}
1977 
1978 	/*
1979 	 * Reschedule the next scan for starving Free Lists ...
1980 	 */
1981 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
1982 }
1983 
1984 /**
1985  *	sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
1986  *	@data: the adapter
1987  *
1988  *	Runs periodically from a timer to perform maintenance of SGE TX queues.
1989  *
1990  *	b) Reclaims completed Tx packets for the Ethernet queues.  Normally
1991  *	packets are cleaned up by new Tx packets, this timer cleans up packets
1992  *	when no new packets are being submitted.  This is essential for pktgen,
1993  *	at least.
1994  */
1995 static void sge_tx_timer_cb(unsigned long data)
1996 {
1997 	struct adapter *adapter = (struct adapter *)data;
1998 	struct sge *s = &adapter->sge;
1999 	unsigned int i, budget;
2000 
2001 	budget = MAX_TIMER_TX_RECLAIM;
2002 	i = s->ethtxq_rover;
2003 	do {
2004 		struct sge_eth_txq *txq = &s->ethtxq[i];
2005 
2006 		if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
2007 			int avail = reclaimable(&txq->q);
2008 
2009 			if (avail > budget)
2010 				avail = budget;
2011 
2012 			free_tx_desc(adapter, &txq->q, avail, true);
2013 			txq->q.in_use -= avail;
2014 			__netif_tx_unlock(txq->txq);
2015 
2016 			budget -= avail;
2017 			if (!budget)
2018 				break;
2019 		}
2020 
2021 		i++;
2022 		if (i >= s->ethqsets)
2023 			i = 0;
2024 	} while (i != s->ethtxq_rover);
2025 	s->ethtxq_rover = i;
2026 
2027 	/*
2028 	 * If we found too many reclaimable packets schedule a timer in the
2029 	 * near future to continue where we left off.  Otherwise the next timer
2030 	 * will be at its normal interval.
2031 	 */
2032 	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2033 }
2034 
2035 /**
2036  *	t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2037  *	@adapter: the adapter
2038  *	@rspq: pointer to to the new rxq's Response Queue to be filled in
2039  *	@iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2040  *	@dev: the network device associated with the new rspq
2041  *	@intr_dest: MSI-X vector index (overriden in MSI mode)
2042  *	@fl: pointer to the new rxq's Free List to be filled in
2043  *	@hnd: the interrupt handler to invoke for the rspq
2044  */
2045 int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2046 		       bool iqasynch, struct net_device *dev,
2047 		       int intr_dest,
2048 		       struct sge_fl *fl, rspq_handler_t hnd)
2049 {
2050 	struct port_info *pi = netdev_priv(dev);
2051 	struct fw_iq_cmd cmd, rpl;
2052 	int ret, iqandst, flsz = 0;
2053 
2054 	/*
2055 	 * If we're using MSI interrupts and we're not initializing the
2056 	 * Forwarded Interrupt Queue itself, then set up this queue for
2057 	 * indirect interrupts to the Forwarded Interrupt Queue.  Obviously
2058 	 * the Forwarded Interrupt Queue must be set up before any other
2059 	 * ingress queue ...
2060 	 */
2061 	if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) {
2062 		iqandst = SGE_INTRDST_IQ;
2063 		intr_dest = adapter->sge.intrq.abs_id;
2064 	} else
2065 		iqandst = SGE_INTRDST_PCI;
2066 
2067 	/*
2068 	 * Allocate the hardware ring for the Response Queue.  The size needs
2069 	 * to be a multiple of 16 which includes the mandatory status entry
2070 	 * (regardless of whether the Status Page capabilities are enabled or
2071 	 * not).
2072 	 */
2073 	rspq->size = roundup(rspq->size, 16);
2074 	rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2075 				0, &rspq->phys_addr, NULL, 0);
2076 	if (!rspq->desc)
2077 		return -ENOMEM;
2078 
2079 	/*
2080 	 * Fill in the Ingress Queue Command.  Note: Ideally this code would
2081 	 * be in t4vf_hw.c but there are so many parameters and dependencies
2082 	 * on our Linux SGE state that we would end up having to pass tons of
2083 	 * parameters.  We'll have to think about how this might be migrated
2084 	 * into OS-independent common code ...
2085 	 */
2086 	memset(&cmd, 0, sizeof(cmd));
2087 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
2088 				    FW_CMD_REQUEST |
2089 				    FW_CMD_WRITE |
2090 				    FW_CMD_EXEC);
2091 	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC |
2092 					 FW_IQ_CMD_IQSTART(1) |
2093 					 FW_LEN16(cmd));
2094 	cmd.type_to_iqandstindex =
2095 		cpu_to_be32(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2096 			    FW_IQ_CMD_IQASYNCH(iqasynch) |
2097 			    FW_IQ_CMD_VIID(pi->viid) |
2098 			    FW_IQ_CMD_IQANDST(iqandst) |
2099 			    FW_IQ_CMD_IQANUS(1) |
2100 			    FW_IQ_CMD_IQANUD(SGE_UPDATEDEL_INTR) |
2101 			    FW_IQ_CMD_IQANDSTINDEX(intr_dest));
2102 	cmd.iqdroprss_to_iqesize =
2103 		cpu_to_be16(FW_IQ_CMD_IQPCIECH(pi->port_id) |
2104 			    FW_IQ_CMD_IQGTSMODE |
2105 			    FW_IQ_CMD_IQINTCNTTHRESH(rspq->pktcnt_idx) |
2106 			    FW_IQ_CMD_IQESIZE(ilog2(rspq->iqe_len) - 4));
2107 	cmd.iqsize = cpu_to_be16(rspq->size);
2108 	cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2109 
2110 	if (fl) {
2111 		/*
2112 		 * Allocate the ring for the hardware free list (with space
2113 		 * for its status page) along with the associated software
2114 		 * descriptor ring.  The free list size needs to be a multiple
2115 		 * of the Egress Queue Unit.
2116 		 */
2117 		fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2118 		fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2119 				      sizeof(__be64), sizeof(struct rx_sw_desc),
2120 				      &fl->addr, &fl->sdesc, STAT_LEN);
2121 		if (!fl->desc) {
2122 			ret = -ENOMEM;
2123 			goto err;
2124 		}
2125 
2126 		/*
2127 		 * Calculate the size of the hardware free list ring plus
2128 		 * Status Page (which the SGE will place after the end of the
2129 		 * free list ring) in Egress Queue Units.
2130 		 */
2131 		flsz = (fl->size / FL_PER_EQ_UNIT +
2132 			STAT_LEN / EQ_UNIT);
2133 
2134 		/*
2135 		 * Fill in all the relevant firmware Ingress Queue Command
2136 		 * fields for the free list.
2137 		 */
2138 		cmd.iqns_to_fl0congen =
2139 			cpu_to_be32(
2140 				FW_IQ_CMD_FL0HOSTFCMODE(SGE_HOSTFCMODE_NONE) |
2141 				FW_IQ_CMD_FL0PACKEN(1) |
2142 				FW_IQ_CMD_FL0PADEN(1));
2143 		cmd.fl0dcaen_to_fl0cidxfthresh =
2144 			cpu_to_be16(
2145 				FW_IQ_CMD_FL0FBMIN(SGE_FETCHBURSTMIN_64B) |
2146 				FW_IQ_CMD_FL0FBMAX(SGE_FETCHBURSTMAX_512B));
2147 		cmd.fl0size = cpu_to_be16(flsz);
2148 		cmd.fl0addr = cpu_to_be64(fl->addr);
2149 	}
2150 
2151 	/*
2152 	 * Issue the firmware Ingress Queue Command and extract the results if
2153 	 * it completes successfully.
2154 	 */
2155 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2156 	if (ret)
2157 		goto err;
2158 
2159 	netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
2160 	rspq->cur_desc = rspq->desc;
2161 	rspq->cidx = 0;
2162 	rspq->gen = 1;
2163 	rspq->next_intr_params = rspq->intr_params;
2164 	rspq->cntxt_id = be16_to_cpu(rpl.iqid);
2165 	rspq->abs_id = be16_to_cpu(rpl.physiqid);
2166 	rspq->size--;			/* subtract status entry */
2167 	rspq->adapter = adapter;
2168 	rspq->netdev = dev;
2169 	rspq->handler = hnd;
2170 
2171 	/* set offset to -1 to distinguish ingress queues without FL */
2172 	rspq->offset = fl ? 0 : -1;
2173 
2174 	if (fl) {
2175 		fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2176 		fl->avail = 0;
2177 		fl->pend_cred = 0;
2178 		fl->pidx = 0;
2179 		fl->cidx = 0;
2180 		fl->alloc_failed = 0;
2181 		fl->large_alloc_failed = 0;
2182 		fl->starving = 0;
2183 		refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2184 	}
2185 
2186 	return 0;
2187 
2188 err:
2189 	/*
2190 	 * An error occurred.  Clean up our partial allocation state and
2191 	 * return the error.
2192 	 */
2193 	if (rspq->desc) {
2194 		dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2195 				  rspq->desc, rspq->phys_addr);
2196 		rspq->desc = NULL;
2197 	}
2198 	if (fl && fl->desc) {
2199 		kfree(fl->sdesc);
2200 		fl->sdesc = NULL;
2201 		dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2202 				  fl->desc, fl->addr);
2203 		fl->desc = NULL;
2204 	}
2205 	return ret;
2206 }
2207 
2208 /**
2209  *	t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2210  *	@adapter: the adapter
2211  *	@txq: pointer to the new txq to be filled in
2212  *	@devq: the network TX queue associated with the new txq
2213  *	@iqid: the relative ingress queue ID to which events relating to
2214  *		the new txq should be directed
2215  */
2216 int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2217 			   struct net_device *dev, struct netdev_queue *devq,
2218 			   unsigned int iqid)
2219 {
2220 	int ret, nentries;
2221 	struct fw_eq_eth_cmd cmd, rpl;
2222 	struct port_info *pi = netdev_priv(dev);
2223 
2224 	/*
2225 	 * Calculate the size of the hardware TX Queue (including the Status
2226 	 * Page on the end of the TX Queue) in units of TX Descriptors.
2227 	 */
2228 	nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
2229 
2230 	/*
2231 	 * Allocate the hardware ring for the TX ring (with space for its
2232 	 * status page) along with the associated software descriptor ring.
2233 	 */
2234 	txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2235 				 sizeof(struct tx_desc),
2236 				 sizeof(struct tx_sw_desc),
2237 				 &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN);
2238 	if (!txq->q.desc)
2239 		return -ENOMEM;
2240 
2241 	/*
2242 	 * Fill in the Egress Queue Command.  Note: As with the direct use of
2243 	 * the firmware Ingress Queue COmmand above in our RXQ allocation
2244 	 * routine, ideally, this code would be in t4vf_hw.c.  Again, we'll
2245 	 * have to see if there's some reasonable way to parameterize it
2246 	 * into the common code ...
2247 	 */
2248 	memset(&cmd, 0, sizeof(cmd));
2249 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
2250 				    FW_CMD_REQUEST |
2251 				    FW_CMD_WRITE |
2252 				    FW_CMD_EXEC);
2253 	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC |
2254 					 FW_EQ_ETH_CMD_EQSTART |
2255 					 FW_LEN16(cmd));
2256 	cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE |
2257 				   FW_EQ_ETH_CMD_VIID(pi->viid));
2258 	cmd.fetchszm_to_iqid =
2259 		cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE(SGE_HOSTFCMODE_STPG) |
2260 			    FW_EQ_ETH_CMD_PCIECHN(pi->port_id) |
2261 			    FW_EQ_ETH_CMD_IQID(iqid));
2262 	cmd.dcaen_to_eqsize =
2263 		cpu_to_be32(FW_EQ_ETH_CMD_FBMIN(SGE_FETCHBURSTMIN_64B) |
2264 			    FW_EQ_ETH_CMD_FBMAX(SGE_FETCHBURSTMAX_512B) |
2265 			    FW_EQ_ETH_CMD_CIDXFTHRESH(SGE_CIDXFLUSHTHRESH_32) |
2266 			    FW_EQ_ETH_CMD_EQSIZE(nentries));
2267 	cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2268 
2269 	/*
2270 	 * Issue the firmware Egress Queue Command and extract the results if
2271 	 * it completes successfully.
2272 	 */
2273 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2274 	if (ret) {
2275 		/*
2276 		 * The girmware Ingress Queue Command failed for some reason.
2277 		 * Free up our partial allocation state and return the error.
2278 		 */
2279 		kfree(txq->q.sdesc);
2280 		txq->q.sdesc = NULL;
2281 		dma_free_coherent(adapter->pdev_dev,
2282 				  nentries * sizeof(struct tx_desc),
2283 				  txq->q.desc, txq->q.phys_addr);
2284 		txq->q.desc = NULL;
2285 		return ret;
2286 	}
2287 
2288 	txq->q.in_use = 0;
2289 	txq->q.cidx = 0;
2290 	txq->q.pidx = 0;
2291 	txq->q.stat = (void *)&txq->q.desc[txq->q.size];
2292 	txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_GET(be32_to_cpu(rpl.eqid_pkd));
2293 	txq->q.abs_id =
2294 		FW_EQ_ETH_CMD_PHYSEQID_GET(be32_to_cpu(rpl.physeqid_pkd));
2295 	txq->txq = devq;
2296 	txq->tso = 0;
2297 	txq->tx_cso = 0;
2298 	txq->vlan_ins = 0;
2299 	txq->q.stops = 0;
2300 	txq->q.restarts = 0;
2301 	txq->mapping_err = 0;
2302 	return 0;
2303 }
2304 
2305 /*
2306  * Free the DMA map resources associated with a TX queue.
2307  */
2308 static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2309 {
2310 	dma_free_coherent(adapter->pdev_dev,
2311 			  tq->size * sizeof(*tq->desc) + STAT_LEN,
2312 			  tq->desc, tq->phys_addr);
2313 	tq->cntxt_id = 0;
2314 	tq->sdesc = NULL;
2315 	tq->desc = NULL;
2316 }
2317 
2318 /*
2319  * Free the resources associated with a response queue (possibly including a
2320  * free list).
2321  */
2322 static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2323 			 struct sge_fl *fl)
2324 {
2325 	unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2326 
2327 	t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2328 		     rspq->cntxt_id, flid, 0xffff);
2329 	dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2330 			  rspq->desc, rspq->phys_addr);
2331 	netif_napi_del(&rspq->napi);
2332 	rspq->netdev = NULL;
2333 	rspq->cntxt_id = 0;
2334 	rspq->abs_id = 0;
2335 	rspq->desc = NULL;
2336 
2337 	if (fl) {
2338 		free_rx_bufs(adapter, fl, fl->avail);
2339 		dma_free_coherent(adapter->pdev_dev,
2340 				  fl->size * sizeof(*fl->desc) + STAT_LEN,
2341 				  fl->desc, fl->addr);
2342 		kfree(fl->sdesc);
2343 		fl->sdesc = NULL;
2344 		fl->cntxt_id = 0;
2345 		fl->desc = NULL;
2346 	}
2347 }
2348 
2349 /**
2350  *	t4vf_free_sge_resources - free SGE resources
2351  *	@adapter: the adapter
2352  *
2353  *	Frees resources used by the SGE queue sets.
2354  */
2355 void t4vf_free_sge_resources(struct adapter *adapter)
2356 {
2357 	struct sge *s = &adapter->sge;
2358 	struct sge_eth_rxq *rxq = s->ethrxq;
2359 	struct sge_eth_txq *txq = s->ethtxq;
2360 	struct sge_rspq *evtq = &s->fw_evtq;
2361 	struct sge_rspq *intrq = &s->intrq;
2362 	int qs;
2363 
2364 	for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
2365 		if (rxq->rspq.desc)
2366 			free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2367 		if (txq->q.desc) {
2368 			t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2369 			free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2370 			kfree(txq->q.sdesc);
2371 			free_txq(adapter, &txq->q);
2372 		}
2373 	}
2374 	if (evtq->desc)
2375 		free_rspq_fl(adapter, evtq, NULL);
2376 	if (intrq->desc)
2377 		free_rspq_fl(adapter, intrq, NULL);
2378 }
2379 
2380 /**
2381  *	t4vf_sge_start - enable SGE operation
2382  *	@adapter: the adapter
2383  *
2384  *	Start tasklets and timers associated with the DMA engine.
2385  */
2386 void t4vf_sge_start(struct adapter *adapter)
2387 {
2388 	adapter->sge.ethtxq_rover = 0;
2389 	mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2390 	mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2391 }
2392 
2393 /**
2394  *	t4vf_sge_stop - disable SGE operation
2395  *	@adapter: the adapter
2396  *
2397  *	Stop tasklets and timers associated with the DMA engine.  Note that
2398  *	this is effective only if measures have been taken to disable any HW
2399  *	events that may restart them.
2400  */
2401 void t4vf_sge_stop(struct adapter *adapter)
2402 {
2403 	struct sge *s = &adapter->sge;
2404 
2405 	if (s->rx_timer.function)
2406 		del_timer_sync(&s->rx_timer);
2407 	if (s->tx_timer.function)
2408 		del_timer_sync(&s->tx_timer);
2409 }
2410 
2411 /**
2412  *	t4vf_sge_init - initialize SGE
2413  *	@adapter: the adapter
2414  *
2415  *	Performs SGE initialization needed every time after a chip reset.
2416  *	We do not initialize any of the queue sets here, instead the driver
2417  *	top-level must request those individually.  We also do not enable DMA
2418  *	here, that should be done after the queues have been set up.
2419  */
2420 int t4vf_sge_init(struct adapter *adapter)
2421 {
2422 	struct sge_params *sge_params = &adapter->params.sge;
2423 	u32 fl0 = sge_params->sge_fl_buffer_size[0];
2424 	u32 fl1 = sge_params->sge_fl_buffer_size[1];
2425 	struct sge *s = &adapter->sge;
2426 
2427 	/*
2428 	 * Start by vetting the basic SGE parameters which have been set up by
2429 	 * the Physical Function Driver.  Ideally we should be able to deal
2430 	 * with _any_ configuration.  Practice is different ...
2431 	 */
2432 	if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) {
2433 		dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2434 			fl0, fl1);
2435 		return -EINVAL;
2436 	}
2437 	if ((sge_params->sge_control & RXPKTCPLMODE_MASK) == 0) {
2438 		dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2439 		return -EINVAL;
2440 	}
2441 
2442 	/*
2443 	 * Now translate the adapter parameters into our internal forms.
2444 	 */
2445 	if (fl1)
2446 		FL_PG_ORDER = ilog2(fl1) - PAGE_SHIFT;
2447 	STAT_LEN = ((sge_params->sge_control & EGRSTATUSPAGESIZE_MASK)
2448 		    ? 128 : 64);
2449 	PKTSHIFT = PKTSHIFT_GET(sge_params->sge_control);
2450 	FL_ALIGN = 1 << (INGPADBOUNDARY_GET(sge_params->sge_control) +
2451 			 SGE_INGPADBOUNDARY_SHIFT);
2452 
2453 	/*
2454 	 * Set up tasklet timers.
2455 	 */
2456 	setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter);
2457 	setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter);
2458 
2459 	/*
2460 	 * Initialize Forwarded Interrupt Queue lock.
2461 	 */
2462 	spin_lock_init(&s->intrq_lock);
2463 
2464 	return 0;
2465 }
2466