1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/skbuff.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/ip.h>
41 #include <net/ipv6.h>
42 #include <net/tcp.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/prefetch.h>
45 
46 #include "t4vf_common.h"
47 #include "t4vf_defs.h"
48 
49 #include "../cxgb4/t4_regs.h"
50 #include "../cxgb4/t4fw_api.h"
51 #include "../cxgb4/t4_msg.h"
52 
53 /*
54  * Decoded Adapter Parameters.
55  */
56 static u32 FL_PG_ORDER;		/* large page allocation size */
57 static u32 STAT_LEN;		/* length of status page at ring end */
58 static u32 PKTSHIFT;		/* padding between CPL and packet data */
59 static u32 FL_ALIGN;		/* response queue message alignment */
60 
61 /*
62  * Constants ...
63  */
64 enum {
65 	/*
66 	 * Egress Queue sizes, producer and consumer indices are all in units
67 	 * of Egress Context Units bytes.  Note that as far as the hardware is
68 	 * concerned, the free list is an Egress Queue (the host produces free
69 	 * buffers which the hardware consumes) and free list entries are
70 	 * 64-bit PCI DMA addresses.
71 	 */
72 	EQ_UNIT = SGE_EQ_IDXSIZE,
73 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
74 	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
75 
76 	/*
77 	 * Max number of TX descriptors we clean up at a time.  Should be
78 	 * modest as freeing skbs isn't cheap and it happens while holding
79 	 * locks.  We just need to free packets faster than they arrive, we
80 	 * eventually catch up and keep the amortized cost reasonable.
81 	 */
82 	MAX_TX_RECLAIM = 16,
83 
84 	/*
85 	 * Max number of Rx buffers we replenish at a time.  Again keep this
86 	 * modest, allocating buffers isn't cheap either.
87 	 */
88 	MAX_RX_REFILL = 16,
89 
90 	/*
91 	 * Period of the Rx queue check timer.  This timer is infrequent as it
92 	 * has something to do only when the system experiences severe memory
93 	 * shortage.
94 	 */
95 	RX_QCHECK_PERIOD = (HZ / 2),
96 
97 	/*
98 	 * Period of the TX queue check timer and the maximum number of TX
99 	 * descriptors to be reclaimed by the TX timer.
100 	 */
101 	TX_QCHECK_PERIOD = (HZ / 2),
102 	MAX_TIMER_TX_RECLAIM = 100,
103 
104 	/*
105 	 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic
106 	 * timer will attempt to refill it.
107 	 */
108 	FL_STARVE_THRES = 4,
109 
110 	/*
111 	 * Suspend an Ethernet TX queue with fewer available descriptors than
112 	 * this.  We always want to have room for a maximum sized packet:
113 	 * inline immediate data + MAX_SKB_FRAGS. This is the same as
114 	 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
115 	 * (see that function and its helpers for a description of the
116 	 * calculation).
117 	 */
118 	ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
119 	ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
120 				   ((ETHTXQ_MAX_FRAGS-1) & 1) +
121 				   2),
122 	ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
123 			  sizeof(struct cpl_tx_pkt_lso_core) +
124 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
125 	ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
126 
127 	ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
128 
129 	/*
130 	 * Max TX descriptor space we allow for an Ethernet packet to be
131 	 * inlined into a WR.  This is limited by the maximum value which
132 	 * we can specify for immediate data in the firmware Ethernet TX
133 	 * Work Request.
134 	 */
135 	MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_MASK,
136 
137 	/*
138 	 * Max size of a WR sent through a control TX queue.
139 	 */
140 	MAX_CTRL_WR_LEN = 256,
141 
142 	/*
143 	 * Maximum amount of data which we'll ever need to inline into a
144 	 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
145 	 */
146 	MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
147 			  ? MAX_IMM_TX_PKT_LEN
148 			  : MAX_CTRL_WR_LEN),
149 
150 	/*
151 	 * For incoming packets less than RX_COPY_THRES, we copy the data into
152 	 * an skb rather than referencing the data.  We allocate enough
153 	 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
154 	 * of the data (header).
155 	 */
156 	RX_COPY_THRES = 256,
157 	RX_PULL_LEN = 128,
158 
159 	/*
160 	 * Main body length for sk_buffs used for RX Ethernet packets with
161 	 * fragments.  Should be >= RX_PULL_LEN but possibly bigger to give
162 	 * pskb_may_pull() some room.
163 	 */
164 	RX_SKB_LEN = 512,
165 };
166 
167 /*
168  * Software state per TX descriptor.
169  */
170 struct tx_sw_desc {
171 	struct sk_buff *skb;		/* socket buffer of TX data source */
172 	struct ulptx_sgl *sgl;		/* scatter/gather list in TX Queue */
173 };
174 
175 /*
176  * Software state per RX Free List descriptor.  We keep track of the allocated
177  * FL page, its size, and its PCI DMA address (if the page is mapped).  The FL
178  * page size and its PCI DMA mapped state are stored in the low bits of the
179  * PCI DMA address as per below.
180  */
181 struct rx_sw_desc {
182 	struct page *page;		/* Free List page buffer */
183 	dma_addr_t dma_addr;		/* PCI DMA address (if mapped) */
184 					/*   and flags (see below) */
185 };
186 
187 /*
188  * The low bits of rx_sw_desc.dma_addr have special meaning.  Note that the
189  * SGE also uses the low 4 bits to determine the size of the buffer.  It uses
190  * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
191  * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
192  * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
193  * to the SGE.  Thus, our software state of "is the buffer mapped for DMA" is
194  * maintained in an inverse sense so the hardware never sees that bit high.
195  */
196 enum {
197 	RX_LARGE_BUF    = 1 << 0,	/* buffer is SGE_FL_BUFFER_SIZE[1] */
198 	RX_UNMAPPED_BUF = 1 << 1,	/* buffer is not mapped */
199 };
200 
201 /**
202  *	get_buf_addr - return DMA buffer address of software descriptor
203  *	@sdesc: pointer to the software buffer descriptor
204  *
205  *	Return the DMA buffer address of a software descriptor (stripping out
206  *	our low-order flag bits).
207  */
208 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
209 {
210 	return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
211 }
212 
213 /**
214  *	is_buf_mapped - is buffer mapped for DMA?
215  *	@sdesc: pointer to the software buffer descriptor
216  *
217  *	Determine whether the buffer associated with a software descriptor in
218  *	mapped for DMA or not.
219  */
220 static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
221 {
222 	return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
223 }
224 
225 /**
226  *	need_skb_unmap - does the platform need unmapping of sk_buffs?
227  *
228  *	Returns true if the platform needs sk_buff unmapping.  The compiler
229  *	optimizes away unnecessary code if this returns true.
230  */
231 static inline int need_skb_unmap(void)
232 {
233 #ifdef CONFIG_NEED_DMA_MAP_STATE
234 	return 1;
235 #else
236 	return 0;
237 #endif
238 }
239 
240 /**
241  *	txq_avail - return the number of available slots in a TX queue
242  *	@tq: the TX queue
243  *
244  *	Returns the number of available descriptors in a TX queue.
245  */
246 static inline unsigned int txq_avail(const struct sge_txq *tq)
247 {
248 	return tq->size - 1 - tq->in_use;
249 }
250 
251 /**
252  *	fl_cap - return the capacity of a Free List
253  *	@fl: the Free List
254  *
255  *	Returns the capacity of a Free List.  The capacity is less than the
256  *	size because an Egress Queue Index Unit worth of descriptors needs to
257  *	be left unpopulated, otherwise the Producer and Consumer indices PIDX
258  *	and CIDX will match and the hardware will think the FL is empty.
259  */
260 static inline unsigned int fl_cap(const struct sge_fl *fl)
261 {
262 	return fl->size - FL_PER_EQ_UNIT;
263 }
264 
265 /**
266  *	fl_starving - return whether a Free List is starving.
267  *	@fl: the Free List
268  *
269  *	Tests specified Free List to see whether the number of buffers
270  *	available to the hardware has falled below our "starvation"
271  *	threshold.
272  */
273 static inline bool fl_starving(const struct sge_fl *fl)
274 {
275 	return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
276 }
277 
278 /**
279  *	map_skb -  map an skb for DMA to the device
280  *	@dev: the egress net device
281  *	@skb: the packet to map
282  *	@addr: a pointer to the base of the DMA mapping array
283  *
284  *	Map an skb for DMA to the device and return an array of DMA addresses.
285  */
286 static int map_skb(struct device *dev, const struct sk_buff *skb,
287 		   dma_addr_t *addr)
288 {
289 	const skb_frag_t *fp, *end;
290 	const struct skb_shared_info *si;
291 
292 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
293 	if (dma_mapping_error(dev, *addr))
294 		goto out_err;
295 
296 	si = skb_shinfo(skb);
297 	end = &si->frags[si->nr_frags];
298 	for (fp = si->frags; fp < end; fp++) {
299 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
300 					   DMA_TO_DEVICE);
301 		if (dma_mapping_error(dev, *addr))
302 			goto unwind;
303 	}
304 	return 0;
305 
306 unwind:
307 	while (fp-- > si->frags)
308 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
309 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
310 
311 out_err:
312 	return -ENOMEM;
313 }
314 
315 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
316 		      const struct ulptx_sgl *sgl, const struct sge_txq *tq)
317 {
318 	const struct ulptx_sge_pair *p;
319 	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
320 
321 	if (likely(skb_headlen(skb)))
322 		dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
323 				 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
324 	else {
325 		dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
326 			       be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
327 		nfrags--;
328 	}
329 
330 	/*
331 	 * the complexity below is because of the possibility of a wrap-around
332 	 * in the middle of an SGL
333 	 */
334 	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
335 		if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
336 unmap:
337 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
338 				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
339 			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
340 				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
341 			p++;
342 		} else if ((u8 *)p == (u8 *)tq->stat) {
343 			p = (const struct ulptx_sge_pair *)tq->desc;
344 			goto unmap;
345 		} else if ((u8 *)p + 8 == (u8 *)tq->stat) {
346 			const __be64 *addr = (const __be64 *)tq->desc;
347 
348 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
349 				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
350 			dma_unmap_page(dev, be64_to_cpu(addr[1]),
351 				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
352 			p = (const struct ulptx_sge_pair *)&addr[2];
353 		} else {
354 			const __be64 *addr = (const __be64 *)tq->desc;
355 
356 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
357 				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
358 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
359 				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
360 			p = (const struct ulptx_sge_pair *)&addr[1];
361 		}
362 	}
363 	if (nfrags) {
364 		__be64 addr;
365 
366 		if ((u8 *)p == (u8 *)tq->stat)
367 			p = (const struct ulptx_sge_pair *)tq->desc;
368 		addr = ((u8 *)p + 16 <= (u8 *)tq->stat
369 			? p->addr[0]
370 			: *(const __be64 *)tq->desc);
371 		dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
372 			       DMA_TO_DEVICE);
373 	}
374 }
375 
376 /**
377  *	free_tx_desc - reclaims TX descriptors and their buffers
378  *	@adapter: the adapter
379  *	@tq: the TX queue to reclaim descriptors from
380  *	@n: the number of descriptors to reclaim
381  *	@unmap: whether the buffers should be unmapped for DMA
382  *
383  *	Reclaims TX descriptors from an SGE TX queue and frees the associated
384  *	TX buffers.  Called with the TX queue lock held.
385  */
386 static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
387 			 unsigned int n, bool unmap)
388 {
389 	struct tx_sw_desc *sdesc;
390 	unsigned int cidx = tq->cidx;
391 	struct device *dev = adapter->pdev_dev;
392 
393 	const int need_unmap = need_skb_unmap() && unmap;
394 
395 	sdesc = &tq->sdesc[cidx];
396 	while (n--) {
397 		/*
398 		 * If we kept a reference to the original TX skb, we need to
399 		 * unmap it from PCI DMA space (if required) and free it.
400 		 */
401 		if (sdesc->skb) {
402 			if (need_unmap)
403 				unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
404 			kfree_skb(sdesc->skb);
405 			sdesc->skb = NULL;
406 		}
407 
408 		sdesc++;
409 		if (++cidx == tq->size) {
410 			cidx = 0;
411 			sdesc = tq->sdesc;
412 		}
413 	}
414 	tq->cidx = cidx;
415 }
416 
417 /*
418  * Return the number of reclaimable descriptors in a TX queue.
419  */
420 static inline int reclaimable(const struct sge_txq *tq)
421 {
422 	int hw_cidx = be16_to_cpu(tq->stat->cidx);
423 	int reclaimable = hw_cidx - tq->cidx;
424 	if (reclaimable < 0)
425 		reclaimable += tq->size;
426 	return reclaimable;
427 }
428 
429 /**
430  *	reclaim_completed_tx - reclaims completed TX descriptors
431  *	@adapter: the adapter
432  *	@tq: the TX queue to reclaim completed descriptors from
433  *	@unmap: whether the buffers should be unmapped for DMA
434  *
435  *	Reclaims TX descriptors that the SGE has indicated it has processed,
436  *	and frees the associated buffers if possible.  Called with the TX
437  *	queue locked.
438  */
439 static inline void reclaim_completed_tx(struct adapter *adapter,
440 					struct sge_txq *tq,
441 					bool unmap)
442 {
443 	int avail = reclaimable(tq);
444 
445 	if (avail) {
446 		/*
447 		 * Limit the amount of clean up work we do at a time to keep
448 		 * the TX lock hold time O(1).
449 		 */
450 		if (avail > MAX_TX_RECLAIM)
451 			avail = MAX_TX_RECLAIM;
452 
453 		free_tx_desc(adapter, tq, avail, unmap);
454 		tq->in_use -= avail;
455 	}
456 }
457 
458 /**
459  *	get_buf_size - return the size of an RX Free List buffer.
460  *	@sdesc: pointer to the software buffer descriptor
461  */
462 static inline int get_buf_size(const struct rx_sw_desc *sdesc)
463 {
464 	return FL_PG_ORDER > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
465 		? (PAGE_SIZE << FL_PG_ORDER)
466 		: PAGE_SIZE;
467 }
468 
469 /**
470  *	free_rx_bufs - free RX buffers on an SGE Free List
471  *	@adapter: the adapter
472  *	@fl: the SGE Free List to free buffers from
473  *	@n: how many buffers to free
474  *
475  *	Release the next @n buffers on an SGE Free List RX queue.   The
476  *	buffers must be made inaccessible to hardware before calling this
477  *	function.
478  */
479 static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
480 {
481 	while (n--) {
482 		struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
483 
484 		if (is_buf_mapped(sdesc))
485 			dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
486 				       get_buf_size(sdesc), PCI_DMA_FROMDEVICE);
487 		put_page(sdesc->page);
488 		sdesc->page = NULL;
489 		if (++fl->cidx == fl->size)
490 			fl->cidx = 0;
491 		fl->avail--;
492 	}
493 }
494 
495 /**
496  *	unmap_rx_buf - unmap the current RX buffer on an SGE Free List
497  *	@adapter: the adapter
498  *	@fl: the SGE Free List
499  *
500  *	Unmap the current buffer on an SGE Free List RX queue.   The
501  *	buffer must be made inaccessible to HW before calling this function.
502  *
503  *	This is similar to @free_rx_bufs above but does not free the buffer.
504  *	Do note that the FL still loses any further access to the buffer.
505  *	This is used predominantly to "transfer ownership" of an FL buffer
506  *	to another entity (typically an skb's fragment list).
507  */
508 static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
509 {
510 	struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
511 
512 	if (is_buf_mapped(sdesc))
513 		dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
514 			       get_buf_size(sdesc), PCI_DMA_FROMDEVICE);
515 	sdesc->page = NULL;
516 	if (++fl->cidx == fl->size)
517 		fl->cidx = 0;
518 	fl->avail--;
519 }
520 
521 /**
522  *	ring_fl_db - righ doorbell on free list
523  *	@adapter: the adapter
524  *	@fl: the Free List whose doorbell should be rung ...
525  *
526  *	Tell the Scatter Gather Engine that there are new free list entries
527  *	available.
528  */
529 static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
530 {
531 	/*
532 	 * The SGE keeps track of its Producer and Consumer Indices in terms
533 	 * of Egress Queue Units so we can only tell it about integral numbers
534 	 * of multiples of Free List Entries per Egress Queue Units ...
535 	 */
536 	if (fl->pend_cred >= FL_PER_EQ_UNIT) {
537 		wmb();
538 		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
539 			     DBPRIO |
540 			     QID(fl->cntxt_id) |
541 			     PIDX(fl->pend_cred / FL_PER_EQ_UNIT));
542 		fl->pend_cred %= FL_PER_EQ_UNIT;
543 	}
544 }
545 
546 /**
547  *	set_rx_sw_desc - initialize software RX buffer descriptor
548  *	@sdesc: pointer to the softwore RX buffer descriptor
549  *	@page: pointer to the page data structure backing the RX buffer
550  *	@dma_addr: PCI DMA address (possibly with low-bit flags)
551  */
552 static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
553 				  dma_addr_t dma_addr)
554 {
555 	sdesc->page = page;
556 	sdesc->dma_addr = dma_addr;
557 }
558 
559 /*
560  * Support for poisoning RX buffers ...
561  */
562 #define POISON_BUF_VAL -1
563 
564 static inline void poison_buf(struct page *page, size_t sz)
565 {
566 #if POISON_BUF_VAL >= 0
567 	memset(page_address(page), POISON_BUF_VAL, sz);
568 #endif
569 }
570 
571 /**
572  *	refill_fl - refill an SGE RX buffer ring
573  *	@adapter: the adapter
574  *	@fl: the Free List ring to refill
575  *	@n: the number of new buffers to allocate
576  *	@gfp: the gfp flags for the allocations
577  *
578  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
579  *	allocated with the supplied gfp flags.  The caller must assure that
580  *	@n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
581  *	EGRESS QUEUE UNITS_ indicates an empty Free List!  Returns the number
582  *	of buffers allocated.  If afterwards the queue is found critically low,
583  *	mark it as starving in the bitmap of starving FLs.
584  */
585 static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
586 			      int n, gfp_t gfp)
587 {
588 	struct page *page;
589 	dma_addr_t dma_addr;
590 	unsigned int cred = fl->avail;
591 	__be64 *d = &fl->desc[fl->pidx];
592 	struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
593 
594 	/*
595 	 * Sanity: ensure that the result of adding n Free List buffers
596 	 * won't result in wrapping the SGE's Producer Index around to
597 	 * it's Consumer Index thereby indicating an empty Free List ...
598 	 */
599 	BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
600 
601 	/*
602 	 * If we support large pages, prefer large buffers and fail over to
603 	 * small pages if we can't allocate large pages to satisfy the refill.
604 	 * If we don't support large pages, drop directly into the small page
605 	 * allocation code.
606 	 */
607 	if (FL_PG_ORDER == 0)
608 		goto alloc_small_pages;
609 
610 	while (n) {
611 		page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
612 				   FL_PG_ORDER);
613 		if (unlikely(!page)) {
614 			/*
615 			 * We've failed inour attempt to allocate a "large
616 			 * page".  Fail over to the "small page" allocation
617 			 * below.
618 			 */
619 			fl->large_alloc_failed++;
620 			break;
621 		}
622 		poison_buf(page, PAGE_SIZE << FL_PG_ORDER);
623 
624 		dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
625 					PAGE_SIZE << FL_PG_ORDER,
626 					PCI_DMA_FROMDEVICE);
627 		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
628 			/*
629 			 * We've run out of DMA mapping space.  Free up the
630 			 * buffer and return with what we've managed to put
631 			 * into the free list.  We don't want to fail over to
632 			 * the small page allocation below in this case
633 			 * because DMA mapping resources are typically
634 			 * critical resources once they become scarse.
635 			 */
636 			__free_pages(page, FL_PG_ORDER);
637 			goto out;
638 		}
639 		dma_addr |= RX_LARGE_BUF;
640 		*d++ = cpu_to_be64(dma_addr);
641 
642 		set_rx_sw_desc(sdesc, page, dma_addr);
643 		sdesc++;
644 
645 		fl->avail++;
646 		if (++fl->pidx == fl->size) {
647 			fl->pidx = 0;
648 			sdesc = fl->sdesc;
649 			d = fl->desc;
650 		}
651 		n--;
652 	}
653 
654 alloc_small_pages:
655 	while (n--) {
656 		page = __skb_alloc_page(gfp | __GFP_NOWARN, NULL);
657 		if (unlikely(!page)) {
658 			fl->alloc_failed++;
659 			break;
660 		}
661 		poison_buf(page, PAGE_SIZE);
662 
663 		dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
664 				       PCI_DMA_FROMDEVICE);
665 		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
666 			put_page(page);
667 			break;
668 		}
669 		*d++ = cpu_to_be64(dma_addr);
670 
671 		set_rx_sw_desc(sdesc, page, dma_addr);
672 		sdesc++;
673 
674 		fl->avail++;
675 		if (++fl->pidx == fl->size) {
676 			fl->pidx = 0;
677 			sdesc = fl->sdesc;
678 			d = fl->desc;
679 		}
680 	}
681 
682 out:
683 	/*
684 	 * Update our accounting state to incorporate the new Free List
685 	 * buffers, tell the hardware about them and return the number of
686 	 * buffers which we were able to allocate.
687 	 */
688 	cred = fl->avail - cred;
689 	fl->pend_cred += cred;
690 	ring_fl_db(adapter, fl);
691 
692 	if (unlikely(fl_starving(fl))) {
693 		smp_wmb();
694 		set_bit(fl->cntxt_id, adapter->sge.starving_fl);
695 	}
696 
697 	return cred;
698 }
699 
700 /*
701  * Refill a Free List to its capacity or the Maximum Refill Increment,
702  * whichever is smaller ...
703  */
704 static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
705 {
706 	refill_fl(adapter, fl,
707 		  min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
708 		  GFP_ATOMIC);
709 }
710 
711 /**
712  *	alloc_ring - allocate resources for an SGE descriptor ring
713  *	@dev: the PCI device's core device
714  *	@nelem: the number of descriptors
715  *	@hwsize: the size of each hardware descriptor
716  *	@swsize: the size of each software descriptor
717  *	@busaddrp: the physical PCI bus address of the allocated ring
718  *	@swringp: return address pointer for software ring
719  *	@stat_size: extra space in hardware ring for status information
720  *
721  *	Allocates resources for an SGE descriptor ring, such as TX queues,
722  *	free buffer lists, response queues, etc.  Each SGE ring requires
723  *	space for its hardware descriptors plus, optionally, space for software
724  *	state associated with each hardware entry (the metadata).  The function
725  *	returns three values: the virtual address for the hardware ring (the
726  *	return value of the function), the PCI bus address of the hardware
727  *	ring (in *busaddrp), and the address of the software ring (in swringp).
728  *	Both the hardware and software rings are returned zeroed out.
729  */
730 static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
731 			size_t swsize, dma_addr_t *busaddrp, void *swringp,
732 			size_t stat_size)
733 {
734 	/*
735 	 * Allocate the hardware ring and PCI DMA bus address space for said.
736 	 */
737 	size_t hwlen = nelem * hwsize + stat_size;
738 	void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
739 
740 	if (!hwring)
741 		return NULL;
742 
743 	/*
744 	 * If the caller wants a software ring, allocate it and return a
745 	 * pointer to it in *swringp.
746 	 */
747 	BUG_ON((swsize != 0) != (swringp != NULL));
748 	if (swsize) {
749 		void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
750 
751 		if (!swring) {
752 			dma_free_coherent(dev, hwlen, hwring, *busaddrp);
753 			return NULL;
754 		}
755 		*(void **)swringp = swring;
756 	}
757 
758 	/*
759 	 * Zero out the hardware ring and return its address as our function
760 	 * value.
761 	 */
762 	memset(hwring, 0, hwlen);
763 	return hwring;
764 }
765 
766 /**
767  *	sgl_len - calculates the size of an SGL of the given capacity
768  *	@n: the number of SGL entries
769  *
770  *	Calculates the number of flits (8-byte units) needed for a Direct
771  *	Scatter/Gather List that can hold the given number of entries.
772  */
773 static inline unsigned int sgl_len(unsigned int n)
774 {
775 	/*
776 	 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
777 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
778 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
779 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
780 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
781 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
782 	 * Address[N+1] is omitted.
783 	 *
784 	 * The following calculation incorporates all of the above.  It's
785 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
786 	 * first two flits which include the DSGL header, Length0 and
787 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
788 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
789 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
790 	 * (n-1) is odd ...
791 	 */
792 	n--;
793 	return (3 * n) / 2 + (n & 1) + 2;
794 }
795 
796 /**
797  *	flits_to_desc - returns the num of TX descriptors for the given flits
798  *	@flits: the number of flits
799  *
800  *	Returns the number of TX descriptors needed for the supplied number
801  *	of flits.
802  */
803 static inline unsigned int flits_to_desc(unsigned int flits)
804 {
805 	BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
806 	return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
807 }
808 
809 /**
810  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
811  *	@skb: the packet
812  *
813  *	Returns whether an Ethernet packet is small enough to fit completely as
814  *	immediate data.
815  */
816 static inline int is_eth_imm(const struct sk_buff *skb)
817 {
818 	/*
819 	 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
820 	 * which does not accommodate immediate data.  We could dike out all
821 	 * of the support code for immediate data but that would tie our hands
822 	 * too much if we ever want to enhace the firmware.  It would also
823 	 * create more differences between the PF and VF Drivers.
824 	 */
825 	return false;
826 }
827 
828 /**
829  *	calc_tx_flits - calculate the number of flits for a packet TX WR
830  *	@skb: the packet
831  *
832  *	Returns the number of flits needed for a TX Work Request for the
833  *	given Ethernet packet, including the needed WR and CPL headers.
834  */
835 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
836 {
837 	unsigned int flits;
838 
839 	/*
840 	 * If the skb is small enough, we can pump it out as a work request
841 	 * with only immediate data.  In that case we just have to have the
842 	 * TX Packet header plus the skb data in the Work Request.
843 	 */
844 	if (is_eth_imm(skb))
845 		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
846 				    sizeof(__be64));
847 
848 	/*
849 	 * Otherwise, we're going to have to construct a Scatter gather list
850 	 * of the skb body and fragments.  We also include the flits necessary
851 	 * for the TX Packet Work Request and CPL.  We always have a firmware
852 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
853 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
854 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
855 	 * with an embeded TX Packet Write CPL message.
856 	 */
857 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
858 	if (skb_shinfo(skb)->gso_size)
859 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
860 			  sizeof(struct cpl_tx_pkt_lso_core) +
861 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
862 	else
863 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
864 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
865 	return flits;
866 }
867 
868 /**
869  *	write_sgl - populate a Scatter/Gather List for a packet
870  *	@skb: the packet
871  *	@tq: the TX queue we are writing into
872  *	@sgl: starting location for writing the SGL
873  *	@end: points right after the end of the SGL
874  *	@start: start offset into skb main-body data to include in the SGL
875  *	@addr: the list of DMA bus addresses for the SGL elements
876  *
877  *	Generates a Scatter/Gather List for the buffers that make up a packet.
878  *	The caller must provide adequate space for the SGL that will be written.
879  *	The SGL includes all of the packet's page fragments and the data in its
880  *	main body except for the first @start bytes.  @pos must be 16-byte
881  *	aligned and within a TX descriptor with available space.  @end points
882  *	write after the end of the SGL but does not account for any potential
883  *	wrap around, i.e., @end > @tq->stat.
884  */
885 static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
886 		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
887 		      const dma_addr_t *addr)
888 {
889 	unsigned int i, len;
890 	struct ulptx_sge_pair *to;
891 	const struct skb_shared_info *si = skb_shinfo(skb);
892 	unsigned int nfrags = si->nr_frags;
893 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
894 
895 	len = skb_headlen(skb) - start;
896 	if (likely(len)) {
897 		sgl->len0 = htonl(len);
898 		sgl->addr0 = cpu_to_be64(addr[0] + start);
899 		nfrags++;
900 	} else {
901 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
902 		sgl->addr0 = cpu_to_be64(addr[1]);
903 	}
904 
905 	sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) |
906 			      ULPTX_NSGE(nfrags));
907 	if (likely(--nfrags == 0))
908 		return;
909 	/*
910 	 * Most of the complexity below deals with the possibility we hit the
911 	 * end of the queue in the middle of writing the SGL.  For this case
912 	 * only we create the SGL in a temporary buffer and then copy it.
913 	 */
914 	to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
915 
916 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
917 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
918 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
919 		to->addr[0] = cpu_to_be64(addr[i]);
920 		to->addr[1] = cpu_to_be64(addr[++i]);
921 	}
922 	if (nfrags) {
923 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
924 		to->len[1] = cpu_to_be32(0);
925 		to->addr[0] = cpu_to_be64(addr[i + 1]);
926 	}
927 	if (unlikely((u8 *)end > (u8 *)tq->stat)) {
928 		unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
929 
930 		if (likely(part0))
931 			memcpy(sgl->sge, buf, part0);
932 		part1 = (u8 *)end - (u8 *)tq->stat;
933 		memcpy(tq->desc, (u8 *)buf + part0, part1);
934 		end = (void *)tq->desc + part1;
935 	}
936 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
937 		*end = 0;
938 }
939 
940 /**
941  *	check_ring_tx_db - check and potentially ring a TX queue's doorbell
942  *	@adapter: the adapter
943  *	@tq: the TX queue
944  *	@n: number of new descriptors to give to HW
945  *
946  *	Ring the doorbel for a TX queue.
947  */
948 static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
949 			      int n)
950 {
951 	/*
952 	 * Warn if we write doorbells with the wrong priority and write
953 	 * descriptors before telling HW.
954 	 */
955 	WARN_ON((QID(tq->cntxt_id) | PIDX(n)) & DBPRIO);
956 	wmb();
957 	t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
958 		     QID(tq->cntxt_id) | PIDX(n));
959 }
960 
961 /**
962  *	inline_tx_skb - inline a packet's data into TX descriptors
963  *	@skb: the packet
964  *	@tq: the TX queue where the packet will be inlined
965  *	@pos: starting position in the TX queue to inline the packet
966  *
967  *	Inline a packet's contents directly into TX descriptors, starting at
968  *	the given position within the TX DMA ring.
969  *	Most of the complexity of this operation is dealing with wrap arounds
970  *	in the middle of the packet we want to inline.
971  */
972 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
973 			  void *pos)
974 {
975 	u64 *p;
976 	int left = (void *)tq->stat - pos;
977 
978 	if (likely(skb->len <= left)) {
979 		if (likely(!skb->data_len))
980 			skb_copy_from_linear_data(skb, pos, skb->len);
981 		else
982 			skb_copy_bits(skb, 0, pos, skb->len);
983 		pos += skb->len;
984 	} else {
985 		skb_copy_bits(skb, 0, pos, left);
986 		skb_copy_bits(skb, left, tq->desc, skb->len - left);
987 		pos = (void *)tq->desc + (skb->len - left);
988 	}
989 
990 	/* 0-pad to multiple of 16 */
991 	p = PTR_ALIGN(pos, 8);
992 	if ((uintptr_t)p & 8)
993 		*p = 0;
994 }
995 
996 /*
997  * Figure out what HW csum a packet wants and return the appropriate control
998  * bits.
999  */
1000 static u64 hwcsum(const struct sk_buff *skb)
1001 {
1002 	int csum_type;
1003 	const struct iphdr *iph = ip_hdr(skb);
1004 
1005 	if (iph->version == 4) {
1006 		if (iph->protocol == IPPROTO_TCP)
1007 			csum_type = TX_CSUM_TCPIP;
1008 		else if (iph->protocol == IPPROTO_UDP)
1009 			csum_type = TX_CSUM_UDPIP;
1010 		else {
1011 nocsum:
1012 			/*
1013 			 * unknown protocol, disable HW csum
1014 			 * and hope a bad packet is detected
1015 			 */
1016 			return TXPKT_L4CSUM_DIS;
1017 		}
1018 	} else {
1019 		/*
1020 		 * this doesn't work with extension headers
1021 		 */
1022 		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1023 
1024 		if (ip6h->nexthdr == IPPROTO_TCP)
1025 			csum_type = TX_CSUM_TCPIP6;
1026 		else if (ip6h->nexthdr == IPPROTO_UDP)
1027 			csum_type = TX_CSUM_UDPIP6;
1028 		else
1029 			goto nocsum;
1030 	}
1031 
1032 	if (likely(csum_type >= TX_CSUM_TCPIP))
1033 		return TXPKT_CSUM_TYPE(csum_type) |
1034 			TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
1035 			TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
1036 	else {
1037 		int start = skb_transport_offset(skb);
1038 
1039 		return TXPKT_CSUM_TYPE(csum_type) |
1040 			TXPKT_CSUM_START(start) |
1041 			TXPKT_CSUM_LOC(start + skb->csum_offset);
1042 	}
1043 }
1044 
1045 /*
1046  * Stop an Ethernet TX queue and record that state change.
1047  */
1048 static void txq_stop(struct sge_eth_txq *txq)
1049 {
1050 	netif_tx_stop_queue(txq->txq);
1051 	txq->q.stops++;
1052 }
1053 
1054 /*
1055  * Advance our software state for a TX queue by adding n in use descriptors.
1056  */
1057 static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1058 {
1059 	tq->in_use += n;
1060 	tq->pidx += n;
1061 	if (tq->pidx >= tq->size)
1062 		tq->pidx -= tq->size;
1063 }
1064 
1065 /**
1066  *	t4vf_eth_xmit - add a packet to an Ethernet TX queue
1067  *	@skb: the packet
1068  *	@dev: the egress net device
1069  *
1070  *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1071  */
1072 int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1073 {
1074 	u32 wr_mid;
1075 	u64 cntrl, *end;
1076 	int qidx, credits;
1077 	unsigned int flits, ndesc;
1078 	struct adapter *adapter;
1079 	struct sge_eth_txq *txq;
1080 	const struct port_info *pi;
1081 	struct fw_eth_tx_pkt_vm_wr *wr;
1082 	struct cpl_tx_pkt_core *cpl;
1083 	const struct skb_shared_info *ssi;
1084 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1085 	const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
1086 					sizeof(wr->ethmacsrc) +
1087 					sizeof(wr->ethtype) +
1088 					sizeof(wr->vlantci));
1089 
1090 	/*
1091 	 * The chip minimum packet length is 10 octets but the firmware
1092 	 * command that we are using requires that we copy the Ethernet header
1093 	 * (including the VLAN tag) into the header so we reject anything
1094 	 * smaller than that ...
1095 	 */
1096 	if (unlikely(skb->len < fw_hdr_copy_len))
1097 		goto out_free;
1098 
1099 	/*
1100 	 * Figure out which TX Queue we're going to use.
1101 	 */
1102 	pi = netdev_priv(dev);
1103 	adapter = pi->adapter;
1104 	qidx = skb_get_queue_mapping(skb);
1105 	BUG_ON(qidx >= pi->nqsets);
1106 	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1107 
1108 	/*
1109 	 * Take this opportunity to reclaim any TX Descriptors whose DMA
1110 	 * transfers have completed.
1111 	 */
1112 	reclaim_completed_tx(adapter, &txq->q, true);
1113 
1114 	/*
1115 	 * Calculate the number of flits and TX Descriptors we're going to
1116 	 * need along with how many TX Descriptors will be left over after
1117 	 * we inject our Work Request.
1118 	 */
1119 	flits = calc_tx_flits(skb);
1120 	ndesc = flits_to_desc(flits);
1121 	credits = txq_avail(&txq->q) - ndesc;
1122 
1123 	if (unlikely(credits < 0)) {
1124 		/*
1125 		 * Not enough room for this packet's Work Request.  Stop the
1126 		 * TX Queue and return a "busy" condition.  The queue will get
1127 		 * started later on when the firmware informs us that space
1128 		 * has opened up.
1129 		 */
1130 		txq_stop(txq);
1131 		dev_err(adapter->pdev_dev,
1132 			"%s: TX ring %u full while queue awake!\n",
1133 			dev->name, qidx);
1134 		return NETDEV_TX_BUSY;
1135 	}
1136 
1137 	if (!is_eth_imm(skb) &&
1138 	    unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1139 		/*
1140 		 * We need to map the skb into PCI DMA space (because it can't
1141 		 * be in-lined directly into the Work Request) and the mapping
1142 		 * operation failed.  Record the error and drop the packet.
1143 		 */
1144 		txq->mapping_err++;
1145 		goto out_free;
1146 	}
1147 
1148 	wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
1149 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1150 		/*
1151 		 * After we're done injecting the Work Request for this
1152 		 * packet, we'll be below our "stop threshold" so stop the TX
1153 		 * Queue now and schedule a request for an SGE Egress Queue
1154 		 * Update message.  The queue will get started later on when
1155 		 * the firmware processes this Work Request and sends us an
1156 		 * Egress Queue Status Update message indicating that space
1157 		 * has opened up.
1158 		 */
1159 		txq_stop(txq);
1160 		wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
1161 	}
1162 
1163 	/*
1164 	 * Start filling in our Work Request.  Note that we do _not_ handle
1165 	 * the WR Header wrapping around the TX Descriptor Ring.  If our
1166 	 * maximum header size ever exceeds one TX Descriptor, we'll need to
1167 	 * do something else here.
1168 	 */
1169 	BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1170 	wr = (void *)&txq->q.desc[txq->q.pidx];
1171 	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1172 	wr->r3[0] = cpu_to_be64(0);
1173 	wr->r3[1] = cpu_to_be64(0);
1174 	skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1175 	end = (u64 *)wr + flits;
1176 
1177 	/*
1178 	 * If this is a Large Send Offload packet we'll put in an LSO CPL
1179 	 * message with an encapsulated TX Packet CPL message.  Otherwise we
1180 	 * just use a TX Packet CPL message.
1181 	 */
1182 	ssi = skb_shinfo(skb);
1183 	if (ssi->gso_size) {
1184 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1185 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1186 		int l3hdr_len = skb_network_header_len(skb);
1187 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1188 
1189 		wr->op_immdlen =
1190 			cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
1191 				    FW_WR_IMMDLEN(sizeof(*lso) +
1192 						  sizeof(*cpl)));
1193 		/*
1194 		 * Fill in the LSO CPL message.
1195 		 */
1196 		lso->lso_ctrl =
1197 			cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO) |
1198 				    LSO_FIRST_SLICE |
1199 				    LSO_LAST_SLICE |
1200 				    LSO_IPV6(v6) |
1201 				    LSO_ETHHDR_LEN(eth_xtra_len/4) |
1202 				    LSO_IPHDR_LEN(l3hdr_len/4) |
1203 				    LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1204 		lso->ipid_ofst = cpu_to_be16(0);
1205 		lso->mss = cpu_to_be16(ssi->gso_size);
1206 		lso->seqno_offset = cpu_to_be32(0);
1207 		lso->len = cpu_to_be32(skb->len);
1208 
1209 		/*
1210 		 * Set up TX Packet CPL pointer, control word and perform
1211 		 * accounting.
1212 		 */
1213 		cpl = (void *)(lso + 1);
1214 		cntrl = (TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1215 			 TXPKT_IPHDR_LEN(l3hdr_len) |
1216 			 TXPKT_ETHHDR_LEN(eth_xtra_len));
1217 		txq->tso++;
1218 		txq->tx_cso += ssi->gso_segs;
1219 	} else {
1220 		int len;
1221 
1222 		len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1223 		wr->op_immdlen =
1224 			cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
1225 				    FW_WR_IMMDLEN(len));
1226 
1227 		/*
1228 		 * Set up TX Packet CPL pointer, control word and perform
1229 		 * accounting.
1230 		 */
1231 		cpl = (void *)(wr + 1);
1232 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1233 			cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1234 			txq->tx_cso++;
1235 		} else
1236 			cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1237 	}
1238 
1239 	/*
1240 	 * If there's a VLAN tag present, add that to the list of things to
1241 	 * do in this Work Request.
1242 	 */
1243 	if (vlan_tx_tag_present(skb)) {
1244 		txq->vlan_ins++;
1245 		cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
1246 	}
1247 
1248 	/*
1249 	 * Fill in the TX Packet CPL message header.
1250 	 */
1251 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1252 				 TXPKT_INTF(pi->port_id) |
1253 				 TXPKT_PF(0));
1254 	cpl->pack = cpu_to_be16(0);
1255 	cpl->len = cpu_to_be16(skb->len);
1256 	cpl->ctrl1 = cpu_to_be64(cntrl);
1257 
1258 #ifdef T4_TRACE
1259 	T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1260 		  "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1261 		  ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1262 #endif
1263 
1264 	/*
1265 	 * Fill in the body of the TX Packet CPL message with either in-lined
1266 	 * data or a Scatter/Gather List.
1267 	 */
1268 	if (is_eth_imm(skb)) {
1269 		/*
1270 		 * In-line the packet's data and free the skb since we don't
1271 		 * need it any longer.
1272 		 */
1273 		inline_tx_skb(skb, &txq->q, cpl + 1);
1274 		dev_kfree_skb(skb);
1275 	} else {
1276 		/*
1277 		 * Write the skb's Scatter/Gather list into the TX Packet CPL
1278 		 * message and retain a pointer to the skb so we can free it
1279 		 * later when its DMA completes.  (We store the skb pointer
1280 		 * in the Software Descriptor corresponding to the last TX
1281 		 * Descriptor used by the Work Request.)
1282 		 *
1283 		 * The retained skb will be freed when the corresponding TX
1284 		 * Descriptors are reclaimed after their DMAs complete.
1285 		 * However, this could take quite a while since, in general,
1286 		 * the hardware is set up to be lazy about sending DMA
1287 		 * completion notifications to us and we mostly perform TX
1288 		 * reclaims in the transmit routine.
1289 		 *
1290 		 * This is good for performamce but means that we rely on new
1291 		 * TX packets arriving to run the destructors of completed
1292 		 * packets, which open up space in their sockets' send queues.
1293 		 * Sometimes we do not get such new packets causing TX to
1294 		 * stall.  A single UDP transmitter is a good example of this
1295 		 * situation.  We have a clean up timer that periodically
1296 		 * reclaims completed packets but it doesn't run often enough
1297 		 * (nor do we want it to) to prevent lengthy stalls.  A
1298 		 * solution to this problem is to run the destructor early,
1299 		 * after the packet is queued but before it's DMAd.  A con is
1300 		 * that we lie to socket memory accounting, but the amount of
1301 		 * extra memory is reasonable (limited by the number of TX
1302 		 * descriptors), the packets do actually get freed quickly by
1303 		 * new packets almost always, and for protocols like TCP that
1304 		 * wait for acks to really free up the data the extra memory
1305 		 * is even less.  On the positive side we run the destructors
1306 		 * on the sending CPU rather than on a potentially different
1307 		 * completing CPU, usually a good thing.
1308 		 *
1309 		 * Run the destructor before telling the DMA engine about the
1310 		 * packet to make sure it doesn't complete and get freed
1311 		 * prematurely.
1312 		 */
1313 		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1314 		struct sge_txq *tq = &txq->q;
1315 		int last_desc;
1316 
1317 		/*
1318 		 * If the Work Request header was an exact multiple of our TX
1319 		 * Descriptor length, then it's possible that the starting SGL
1320 		 * pointer lines up exactly with the end of our TX Descriptor
1321 		 * ring.  If that's the case, wrap around to the beginning
1322 		 * here ...
1323 		 */
1324 		if (unlikely((void *)sgl == (void *)tq->stat)) {
1325 			sgl = (void *)tq->desc;
1326 			end = ((void *)tq->desc + ((void *)end - (void *)tq->stat));
1327 		}
1328 
1329 		write_sgl(skb, tq, sgl, end, 0, addr);
1330 		skb_orphan(skb);
1331 
1332 		last_desc = tq->pidx + ndesc - 1;
1333 		if (last_desc >= tq->size)
1334 			last_desc -= tq->size;
1335 		tq->sdesc[last_desc].skb = skb;
1336 		tq->sdesc[last_desc].sgl = sgl;
1337 	}
1338 
1339 	/*
1340 	 * Advance our internal TX Queue state, tell the hardware about
1341 	 * the new TX descriptors and return success.
1342 	 */
1343 	txq_advance(&txq->q, ndesc);
1344 	dev->trans_start = jiffies;
1345 	ring_tx_db(adapter, &txq->q, ndesc);
1346 	return NETDEV_TX_OK;
1347 
1348 out_free:
1349 	/*
1350 	 * An error of some sort happened.  Free the TX skb and tell the
1351 	 * OS that we've "dealt" with the packet ...
1352 	 */
1353 	dev_kfree_skb(skb);
1354 	return NETDEV_TX_OK;
1355 }
1356 
1357 /**
1358  *	copy_frags - copy fragments from gather list into skb_shared_info
1359  *	@skb: destination skb
1360  *	@gl: source internal packet gather list
1361  *	@offset: packet start offset in first page
1362  *
1363  *	Copy an internal packet gather list into a Linux skb_shared_info
1364  *	structure.
1365  */
1366 static inline void copy_frags(struct sk_buff *skb,
1367 			      const struct pkt_gl *gl,
1368 			      unsigned int offset)
1369 {
1370 	int i;
1371 
1372 	/* usually there's just one frag */
1373 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
1374 			     gl->frags[0].offset + offset,
1375 			     gl->frags[0].size - offset);
1376 	skb_shinfo(skb)->nr_frags = gl->nfrags;
1377 	for (i = 1; i < gl->nfrags; i++)
1378 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
1379 				     gl->frags[i].offset,
1380 				     gl->frags[i].size);
1381 
1382 	/* get a reference to the last page, we don't own it */
1383 	get_page(gl->frags[gl->nfrags - 1].page);
1384 }
1385 
1386 /**
1387  *	t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1388  *	@gl: the gather list
1389  *	@skb_len: size of sk_buff main body if it carries fragments
1390  *	@pull_len: amount of data to move to the sk_buff's main body
1391  *
1392  *	Builds an sk_buff from the given packet gather list.  Returns the
1393  *	sk_buff or %NULL if sk_buff allocation failed.
1394  */
1395 struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
1396 				  unsigned int skb_len, unsigned int pull_len)
1397 {
1398 	struct sk_buff *skb;
1399 
1400 	/*
1401 	 * If the ingress packet is small enough, allocate an skb large enough
1402 	 * for all of the data and copy it inline.  Otherwise, allocate an skb
1403 	 * with enough room to pull in the header and reference the rest of
1404 	 * the data via the skb fragment list.
1405 	 *
1406 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx
1407 	 * buff!  size, which is expected since buffers are at least
1408 	 * PAGE_SIZEd.  In this case packets up to RX_COPY_THRES have only one
1409 	 * fragment.
1410 	 */
1411 	if (gl->tot_len <= RX_COPY_THRES) {
1412 		/* small packets have only one fragment */
1413 		skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
1414 		if (unlikely(!skb))
1415 			goto out;
1416 		__skb_put(skb, gl->tot_len);
1417 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1418 	} else {
1419 		skb = alloc_skb(skb_len, GFP_ATOMIC);
1420 		if (unlikely(!skb))
1421 			goto out;
1422 		__skb_put(skb, pull_len);
1423 		skb_copy_to_linear_data(skb, gl->va, pull_len);
1424 
1425 		copy_frags(skb, gl, pull_len);
1426 		skb->len = gl->tot_len;
1427 		skb->data_len = skb->len - pull_len;
1428 		skb->truesize += skb->data_len;
1429 	}
1430 
1431 out:
1432 	return skb;
1433 }
1434 
1435 /**
1436  *	t4vf_pktgl_free - free a packet gather list
1437  *	@gl: the gather list
1438  *
1439  *	Releases the pages of a packet gather list.  We do not own the last
1440  *	page on the list and do not free it.
1441  */
1442 void t4vf_pktgl_free(const struct pkt_gl *gl)
1443 {
1444 	int frag;
1445 
1446 	frag = gl->nfrags - 1;
1447 	while (frag--)
1448 		put_page(gl->frags[frag].page);
1449 }
1450 
1451 /**
1452  *	do_gro - perform Generic Receive Offload ingress packet processing
1453  *	@rxq: ingress RX Ethernet Queue
1454  *	@gl: gather list for ingress packet
1455  *	@pkt: CPL header for last packet fragment
1456  *
1457  *	Perform Generic Receive Offload (GRO) ingress packet processing.
1458  *	We use the standard Linux GRO interfaces for this.
1459  */
1460 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1461 		   const struct cpl_rx_pkt *pkt)
1462 {
1463 	int ret;
1464 	struct sk_buff *skb;
1465 
1466 	skb = napi_get_frags(&rxq->rspq.napi);
1467 	if (unlikely(!skb)) {
1468 		t4vf_pktgl_free(gl);
1469 		rxq->stats.rx_drops++;
1470 		return;
1471 	}
1472 
1473 	copy_frags(skb, gl, PKTSHIFT);
1474 	skb->len = gl->tot_len - PKTSHIFT;
1475 	skb->data_len = skb->len;
1476 	skb->truesize += skb->data_len;
1477 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1478 	skb_record_rx_queue(skb, rxq->rspq.idx);
1479 
1480 	if (pkt->vlan_ex)
1481 		__vlan_hwaccel_put_tag(skb, be16_to_cpu(pkt->vlan));
1482 	ret = napi_gro_frags(&rxq->rspq.napi);
1483 
1484 	if (ret == GRO_HELD)
1485 		rxq->stats.lro_pkts++;
1486 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1487 		rxq->stats.lro_merged++;
1488 	rxq->stats.pkts++;
1489 	rxq->stats.rx_cso++;
1490 }
1491 
1492 /**
1493  *	t4vf_ethrx_handler - process an ingress ethernet packet
1494  *	@rspq: the response queue that received the packet
1495  *	@rsp: the response queue descriptor holding the RX_PKT message
1496  *	@gl: the gather list of packet fragments
1497  *
1498  *	Process an ingress ethernet packet and deliver it to the stack.
1499  */
1500 int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1501 		       const struct pkt_gl *gl)
1502 {
1503 	struct sk_buff *skb;
1504 	const struct cpl_rx_pkt *pkt = (void *)&rsp[1];
1505 	bool csum_ok = pkt->csum_calc && !pkt->err_vec;
1506 	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1507 
1508 	/*
1509 	 * If this is a good TCP packet and we have Generic Receive Offload
1510 	 * enabled, handle the packet in the GRO path.
1511 	 */
1512 	if ((pkt->l2info & cpu_to_be32(RXF_TCP)) &&
1513 	    (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1514 	    !pkt->ip_frag) {
1515 		do_gro(rxq, gl, pkt);
1516 		return 0;
1517 	}
1518 
1519 	/*
1520 	 * Convert the Packet Gather List into an skb.
1521 	 */
1522 	skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
1523 	if (unlikely(!skb)) {
1524 		t4vf_pktgl_free(gl);
1525 		rxq->stats.rx_drops++;
1526 		return 0;
1527 	}
1528 	__skb_pull(skb, PKTSHIFT);
1529 	skb->protocol = eth_type_trans(skb, rspq->netdev);
1530 	skb_record_rx_queue(skb, rspq->idx);
1531 	rxq->stats.pkts++;
1532 
1533 	if (csum_ok && (rspq->netdev->features & NETIF_F_RXCSUM) &&
1534 	    !pkt->err_vec && (be32_to_cpu(pkt->l2info) & (RXF_UDP|RXF_TCP))) {
1535 		if (!pkt->ip_frag)
1536 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1537 		else {
1538 			__sum16 c = (__force __sum16)pkt->csum;
1539 			skb->csum = csum_unfold(c);
1540 			skb->ip_summed = CHECKSUM_COMPLETE;
1541 		}
1542 		rxq->stats.rx_cso++;
1543 	} else
1544 		skb_checksum_none_assert(skb);
1545 
1546 	if (pkt->vlan_ex) {
1547 		rxq->stats.vlan_ex++;
1548 		__vlan_hwaccel_put_tag(skb, be16_to_cpu(pkt->vlan));
1549 	}
1550 
1551 	netif_receive_skb(skb);
1552 
1553 	return 0;
1554 }
1555 
1556 /**
1557  *	is_new_response - check if a response is newly written
1558  *	@rc: the response control descriptor
1559  *	@rspq: the response queue
1560  *
1561  *	Returns true if a response descriptor contains a yet unprocessed
1562  *	response.
1563  */
1564 static inline bool is_new_response(const struct rsp_ctrl *rc,
1565 				   const struct sge_rspq *rspq)
1566 {
1567 	return RSPD_GEN(rc->type_gen) == rspq->gen;
1568 }
1569 
1570 /**
1571  *	restore_rx_bufs - put back a packet's RX buffers
1572  *	@gl: the packet gather list
1573  *	@fl: the SGE Free List
1574  *	@nfrags: how many fragments in @si
1575  *
1576  *	Called when we find out that the current packet, @si, can't be
1577  *	processed right away for some reason.  This is a very rare event and
1578  *	there's no effort to make this suspension/resumption process
1579  *	particularly efficient.
1580  *
1581  *	We implement the suspension by putting all of the RX buffers associated
1582  *	with the current packet back on the original Free List.  The buffers
1583  *	have already been unmapped and are left unmapped, we mark them as
1584  *	unmapped in order to prevent further unmapping attempts.  (Effectively
1585  *	this function undoes the series of @unmap_rx_buf calls which were done
1586  *	to create the current packet's gather list.)  This leaves us ready to
1587  *	restart processing of the packet the next time we start processing the
1588  *	RX Queue ...
1589  */
1590 static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1591 			    int frags)
1592 {
1593 	struct rx_sw_desc *sdesc;
1594 
1595 	while (frags--) {
1596 		if (fl->cidx == 0)
1597 			fl->cidx = fl->size - 1;
1598 		else
1599 			fl->cidx--;
1600 		sdesc = &fl->sdesc[fl->cidx];
1601 		sdesc->page = gl->frags[frags].page;
1602 		sdesc->dma_addr |= RX_UNMAPPED_BUF;
1603 		fl->avail++;
1604 	}
1605 }
1606 
1607 /**
1608  *	rspq_next - advance to the next entry in a response queue
1609  *	@rspq: the queue
1610  *
1611  *	Updates the state of a response queue to advance it to the next entry.
1612  */
1613 static inline void rspq_next(struct sge_rspq *rspq)
1614 {
1615 	rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1616 	if (unlikely(++rspq->cidx == rspq->size)) {
1617 		rspq->cidx = 0;
1618 		rspq->gen ^= 1;
1619 		rspq->cur_desc = rspq->desc;
1620 	}
1621 }
1622 
1623 /**
1624  *	process_responses - process responses from an SGE response queue
1625  *	@rspq: the ingress response queue to process
1626  *	@budget: how many responses can be processed in this round
1627  *
1628  *	Process responses from a Scatter Gather Engine response queue up to
1629  *	the supplied budget.  Responses include received packets as well as
1630  *	control messages from firmware or hardware.
1631  *
1632  *	Additionally choose the interrupt holdoff time for the next interrupt
1633  *	on this queue.  If the system is under memory shortage use a fairly
1634  *	long delay to help recovery.
1635  */
1636 int process_responses(struct sge_rspq *rspq, int budget)
1637 {
1638 	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1639 	int budget_left = budget;
1640 
1641 	while (likely(budget_left)) {
1642 		int ret, rsp_type;
1643 		const struct rsp_ctrl *rc;
1644 
1645 		rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1646 		if (!is_new_response(rc, rspq))
1647 			break;
1648 
1649 		/*
1650 		 * Figure out what kind of response we've received from the
1651 		 * SGE.
1652 		 */
1653 		rmb();
1654 		rsp_type = RSPD_TYPE(rc->type_gen);
1655 		if (likely(rsp_type == RSP_TYPE_FLBUF)) {
1656 			struct page_frag *fp;
1657 			struct pkt_gl gl;
1658 			const struct rx_sw_desc *sdesc;
1659 			u32 bufsz, frag;
1660 			u32 len = be32_to_cpu(rc->pldbuflen_qid);
1661 
1662 			/*
1663 			 * If we get a "new buffer" message from the SGE we
1664 			 * need to move on to the next Free List buffer.
1665 			 */
1666 			if (len & RSPD_NEWBUF) {
1667 				/*
1668 				 * We get one "new buffer" message when we
1669 				 * first start up a queue so we need to ignore
1670 				 * it when our offset into the buffer is 0.
1671 				 */
1672 				if (likely(rspq->offset > 0)) {
1673 					free_rx_bufs(rspq->adapter, &rxq->fl,
1674 						     1);
1675 					rspq->offset = 0;
1676 				}
1677 				len = RSPD_LEN(len);
1678 			}
1679 			gl.tot_len = len;
1680 
1681 			/*
1682 			 * Gather packet fragments.
1683 			 */
1684 			for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1685 				BUG_ON(frag >= MAX_SKB_FRAGS);
1686 				BUG_ON(rxq->fl.avail == 0);
1687 				sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
1688 				bufsz = get_buf_size(sdesc);
1689 				fp->page = sdesc->page;
1690 				fp->offset = rspq->offset;
1691 				fp->size = min(bufsz, len);
1692 				len -= fp->size;
1693 				if (!len)
1694 					break;
1695 				unmap_rx_buf(rspq->adapter, &rxq->fl);
1696 			}
1697 			gl.nfrags = frag+1;
1698 
1699 			/*
1700 			 * Last buffer remains mapped so explicitly make it
1701 			 * coherent for CPU access and start preloading first
1702 			 * cache line ...
1703 			 */
1704 			dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1705 						get_buf_addr(sdesc),
1706 						fp->size, DMA_FROM_DEVICE);
1707 			gl.va = (page_address(gl.frags[0].page) +
1708 				 gl.frags[0].offset);
1709 			prefetch(gl.va);
1710 
1711 			/*
1712 			 * Hand the new ingress packet to the handler for
1713 			 * this Response Queue.
1714 			 */
1715 			ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1716 			if (likely(ret == 0))
1717 				rspq->offset += ALIGN(fp->size, FL_ALIGN);
1718 			else
1719 				restore_rx_bufs(&gl, &rxq->fl, frag);
1720 		} else if (likely(rsp_type == RSP_TYPE_CPL)) {
1721 			ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1722 		} else {
1723 			WARN_ON(rsp_type > RSP_TYPE_CPL);
1724 			ret = 0;
1725 		}
1726 
1727 		if (unlikely(ret)) {
1728 			/*
1729 			 * Couldn't process descriptor, back off for recovery.
1730 			 * We use the SGE's last timer which has the longest
1731 			 * interrupt coalescing value ...
1732 			 */
1733 			const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1734 			rspq->next_intr_params =
1735 				QINTR_TIMER_IDX(NOMEM_TIMER_IDX);
1736 			break;
1737 		}
1738 
1739 		rspq_next(rspq);
1740 		budget_left--;
1741 	}
1742 
1743 	/*
1744 	 * If this is a Response Queue with an associated Free List and
1745 	 * at least two Egress Queue units available in the Free List
1746 	 * for new buffer pointers, refill the Free List.
1747 	 */
1748 	if (rspq->offset >= 0 &&
1749 	    rxq->fl.size - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1750 		__refill_fl(rspq->adapter, &rxq->fl);
1751 	return budget - budget_left;
1752 }
1753 
1754 /**
1755  *	napi_rx_handler - the NAPI handler for RX processing
1756  *	@napi: the napi instance
1757  *	@budget: how many packets we can process in this round
1758  *
1759  *	Handler for new data events when using NAPI.  This does not need any
1760  *	locking or protection from interrupts as data interrupts are off at
1761  *	this point and other adapter interrupts do not interfere (the latter
1762  *	in not a concern at all with MSI-X as non-data interrupts then have
1763  *	a separate handler).
1764  */
1765 static int napi_rx_handler(struct napi_struct *napi, int budget)
1766 {
1767 	unsigned int intr_params;
1768 	struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1769 	int work_done = process_responses(rspq, budget);
1770 
1771 	if (likely(work_done < budget)) {
1772 		napi_complete(napi);
1773 		intr_params = rspq->next_intr_params;
1774 		rspq->next_intr_params = rspq->intr_params;
1775 	} else
1776 		intr_params = QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX);
1777 
1778 	if (unlikely(work_done == 0))
1779 		rspq->unhandled_irqs++;
1780 
1781 	t4_write_reg(rspq->adapter,
1782 		     T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1783 		     CIDXINC(work_done) |
1784 		     INGRESSQID((u32)rspq->cntxt_id) |
1785 		     SEINTARM(intr_params));
1786 	return work_done;
1787 }
1788 
1789 /*
1790  * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1791  * (i.e., response queue serviced by NAPI polling).
1792  */
1793 irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1794 {
1795 	struct sge_rspq *rspq = cookie;
1796 
1797 	napi_schedule(&rspq->napi);
1798 	return IRQ_HANDLED;
1799 }
1800 
1801 /*
1802  * Process the indirect interrupt entries in the interrupt queue and kick off
1803  * NAPI for each queue that has generated an entry.
1804  */
1805 static unsigned int process_intrq(struct adapter *adapter)
1806 {
1807 	struct sge *s = &adapter->sge;
1808 	struct sge_rspq *intrq = &s->intrq;
1809 	unsigned int work_done;
1810 
1811 	spin_lock(&adapter->sge.intrq_lock);
1812 	for (work_done = 0; ; work_done++) {
1813 		const struct rsp_ctrl *rc;
1814 		unsigned int qid, iq_idx;
1815 		struct sge_rspq *rspq;
1816 
1817 		/*
1818 		 * Grab the next response from the interrupt queue and bail
1819 		 * out if it's not a new response.
1820 		 */
1821 		rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1822 		if (!is_new_response(rc, intrq))
1823 			break;
1824 
1825 		/*
1826 		 * If the response isn't a forwarded interrupt message issue a
1827 		 * error and go on to the next response message.  This should
1828 		 * never happen ...
1829 		 */
1830 		rmb();
1831 		if (unlikely(RSPD_TYPE(rc->type_gen) != RSP_TYPE_INTR)) {
1832 			dev_err(adapter->pdev_dev,
1833 				"Unexpected INTRQ response type %d\n",
1834 				RSPD_TYPE(rc->type_gen));
1835 			continue;
1836 		}
1837 
1838 		/*
1839 		 * Extract the Queue ID from the interrupt message and perform
1840 		 * sanity checking to make sure it really refers to one of our
1841 		 * Ingress Queues which is active and matches the queue's ID.
1842 		 * None of these error conditions should ever happen so we may
1843 		 * want to either make them fatal and/or conditionalized under
1844 		 * DEBUG.
1845 		 */
1846 		qid = RSPD_QID(be32_to_cpu(rc->pldbuflen_qid));
1847 		iq_idx = IQ_IDX(s, qid);
1848 		if (unlikely(iq_idx >= MAX_INGQ)) {
1849 			dev_err(adapter->pdev_dev,
1850 				"Ingress QID %d out of range\n", qid);
1851 			continue;
1852 		}
1853 		rspq = s->ingr_map[iq_idx];
1854 		if (unlikely(rspq == NULL)) {
1855 			dev_err(adapter->pdev_dev,
1856 				"Ingress QID %d RSPQ=NULL\n", qid);
1857 			continue;
1858 		}
1859 		if (unlikely(rspq->abs_id != qid)) {
1860 			dev_err(adapter->pdev_dev,
1861 				"Ingress QID %d refers to RSPQ %d\n",
1862 				qid, rspq->abs_id);
1863 			continue;
1864 		}
1865 
1866 		/*
1867 		 * Schedule NAPI processing on the indicated Response Queue
1868 		 * and move on to the next entry in the Forwarded Interrupt
1869 		 * Queue.
1870 		 */
1871 		napi_schedule(&rspq->napi);
1872 		rspq_next(intrq);
1873 	}
1874 
1875 	t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1876 		     CIDXINC(work_done) |
1877 		     INGRESSQID(intrq->cntxt_id) |
1878 		     SEINTARM(intrq->intr_params));
1879 
1880 	spin_unlock(&adapter->sge.intrq_lock);
1881 
1882 	return work_done;
1883 }
1884 
1885 /*
1886  * The MSI interrupt handler handles data events from SGE response queues as
1887  * well as error and other async events as they all use the same MSI vector.
1888  */
1889 irqreturn_t t4vf_intr_msi(int irq, void *cookie)
1890 {
1891 	struct adapter *adapter = cookie;
1892 
1893 	process_intrq(adapter);
1894 	return IRQ_HANDLED;
1895 }
1896 
1897 /**
1898  *	t4vf_intr_handler - select the top-level interrupt handler
1899  *	@adapter: the adapter
1900  *
1901  *	Selects the top-level interrupt handler based on the type of interrupts
1902  *	(MSI-X or MSI).
1903  */
1904 irq_handler_t t4vf_intr_handler(struct adapter *adapter)
1905 {
1906 	BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
1907 	if (adapter->flags & USING_MSIX)
1908 		return t4vf_sge_intr_msix;
1909 	else
1910 		return t4vf_intr_msi;
1911 }
1912 
1913 /**
1914  *	sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
1915  *	@data: the adapter
1916  *
1917  *	Runs periodically from a timer to perform maintenance of SGE RX queues.
1918  *
1919  *	a) Replenishes RX queues that have run out due to memory shortage.
1920  *	Normally new RX buffers are added when existing ones are consumed but
1921  *	when out of memory a queue can become empty.  We schedule NAPI to do
1922  *	the actual refill.
1923  */
1924 static void sge_rx_timer_cb(unsigned long data)
1925 {
1926 	struct adapter *adapter = (struct adapter *)data;
1927 	struct sge *s = &adapter->sge;
1928 	unsigned int i;
1929 
1930 	/*
1931 	 * Scan the "Starving Free Lists" flag array looking for any Free
1932 	 * Lists in need of more free buffers.  If we find one and it's not
1933 	 * being actively polled, then bump its "starving" counter and attempt
1934 	 * to refill it.  If we're successful in adding enough buffers to push
1935 	 * the Free List over the starving threshold, then we can clear its
1936 	 * "starving" status.
1937 	 */
1938 	for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
1939 		unsigned long m;
1940 
1941 		for (m = s->starving_fl[i]; m; m &= m - 1) {
1942 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
1943 			struct sge_fl *fl = s->egr_map[id];
1944 
1945 			clear_bit(id, s->starving_fl);
1946 			smp_mb__after_clear_bit();
1947 
1948 			/*
1949 			 * Since we are accessing fl without a lock there's a
1950 			 * small probability of a false positive where we
1951 			 * schedule napi but the FL is no longer starving.
1952 			 * No biggie.
1953 			 */
1954 			if (fl_starving(fl)) {
1955 				struct sge_eth_rxq *rxq;
1956 
1957 				rxq = container_of(fl, struct sge_eth_rxq, fl);
1958 				if (napi_reschedule(&rxq->rspq.napi))
1959 					fl->starving++;
1960 				else
1961 					set_bit(id, s->starving_fl);
1962 			}
1963 		}
1964 	}
1965 
1966 	/*
1967 	 * Reschedule the next scan for starving Free Lists ...
1968 	 */
1969 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
1970 }
1971 
1972 /**
1973  *	sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
1974  *	@data: the adapter
1975  *
1976  *	Runs periodically from a timer to perform maintenance of SGE TX queues.
1977  *
1978  *	b) Reclaims completed Tx packets for the Ethernet queues.  Normally
1979  *	packets are cleaned up by new Tx packets, this timer cleans up packets
1980  *	when no new packets are being submitted.  This is essential for pktgen,
1981  *	at least.
1982  */
1983 static void sge_tx_timer_cb(unsigned long data)
1984 {
1985 	struct adapter *adapter = (struct adapter *)data;
1986 	struct sge *s = &adapter->sge;
1987 	unsigned int i, budget;
1988 
1989 	budget = MAX_TIMER_TX_RECLAIM;
1990 	i = s->ethtxq_rover;
1991 	do {
1992 		struct sge_eth_txq *txq = &s->ethtxq[i];
1993 
1994 		if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
1995 			int avail = reclaimable(&txq->q);
1996 
1997 			if (avail > budget)
1998 				avail = budget;
1999 
2000 			free_tx_desc(adapter, &txq->q, avail, true);
2001 			txq->q.in_use -= avail;
2002 			__netif_tx_unlock(txq->txq);
2003 
2004 			budget -= avail;
2005 			if (!budget)
2006 				break;
2007 		}
2008 
2009 		i++;
2010 		if (i >= s->ethqsets)
2011 			i = 0;
2012 	} while (i != s->ethtxq_rover);
2013 	s->ethtxq_rover = i;
2014 
2015 	/*
2016 	 * If we found too many reclaimable packets schedule a timer in the
2017 	 * near future to continue where we left off.  Otherwise the next timer
2018 	 * will be at its normal interval.
2019 	 */
2020 	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2021 }
2022 
2023 /**
2024  *	t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2025  *	@adapter: the adapter
2026  *	@rspq: pointer to to the new rxq's Response Queue to be filled in
2027  *	@iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2028  *	@dev: the network device associated with the new rspq
2029  *	@intr_dest: MSI-X vector index (overriden in MSI mode)
2030  *	@fl: pointer to the new rxq's Free List to be filled in
2031  *	@hnd: the interrupt handler to invoke for the rspq
2032  */
2033 int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2034 		       bool iqasynch, struct net_device *dev,
2035 		       int intr_dest,
2036 		       struct sge_fl *fl, rspq_handler_t hnd)
2037 {
2038 	struct port_info *pi = netdev_priv(dev);
2039 	struct fw_iq_cmd cmd, rpl;
2040 	int ret, iqandst, flsz = 0;
2041 
2042 	/*
2043 	 * If we're using MSI interrupts and we're not initializing the
2044 	 * Forwarded Interrupt Queue itself, then set up this queue for
2045 	 * indirect interrupts to the Forwarded Interrupt Queue.  Obviously
2046 	 * the Forwarded Interrupt Queue must be set up before any other
2047 	 * ingress queue ...
2048 	 */
2049 	if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) {
2050 		iqandst = SGE_INTRDST_IQ;
2051 		intr_dest = adapter->sge.intrq.abs_id;
2052 	} else
2053 		iqandst = SGE_INTRDST_PCI;
2054 
2055 	/*
2056 	 * Allocate the hardware ring for the Response Queue.  The size needs
2057 	 * to be a multiple of 16 which includes the mandatory status entry
2058 	 * (regardless of whether the Status Page capabilities are enabled or
2059 	 * not).
2060 	 */
2061 	rspq->size = roundup(rspq->size, 16);
2062 	rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2063 				0, &rspq->phys_addr, NULL, 0);
2064 	if (!rspq->desc)
2065 		return -ENOMEM;
2066 
2067 	/*
2068 	 * Fill in the Ingress Queue Command.  Note: Ideally this code would
2069 	 * be in t4vf_hw.c but there are so many parameters and dependencies
2070 	 * on our Linux SGE state that we would end up having to pass tons of
2071 	 * parameters.  We'll have to think about how this might be migrated
2072 	 * into OS-independent common code ...
2073 	 */
2074 	memset(&cmd, 0, sizeof(cmd));
2075 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
2076 				    FW_CMD_REQUEST |
2077 				    FW_CMD_WRITE |
2078 				    FW_CMD_EXEC);
2079 	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC |
2080 					 FW_IQ_CMD_IQSTART(1) |
2081 					 FW_LEN16(cmd));
2082 	cmd.type_to_iqandstindex =
2083 		cpu_to_be32(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2084 			    FW_IQ_CMD_IQASYNCH(iqasynch) |
2085 			    FW_IQ_CMD_VIID(pi->viid) |
2086 			    FW_IQ_CMD_IQANDST(iqandst) |
2087 			    FW_IQ_CMD_IQANUS(1) |
2088 			    FW_IQ_CMD_IQANUD(SGE_UPDATEDEL_INTR) |
2089 			    FW_IQ_CMD_IQANDSTINDEX(intr_dest));
2090 	cmd.iqdroprss_to_iqesize =
2091 		cpu_to_be16(FW_IQ_CMD_IQPCIECH(pi->port_id) |
2092 			    FW_IQ_CMD_IQGTSMODE |
2093 			    FW_IQ_CMD_IQINTCNTTHRESH(rspq->pktcnt_idx) |
2094 			    FW_IQ_CMD_IQESIZE(ilog2(rspq->iqe_len) - 4));
2095 	cmd.iqsize = cpu_to_be16(rspq->size);
2096 	cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2097 
2098 	if (fl) {
2099 		/*
2100 		 * Allocate the ring for the hardware free list (with space
2101 		 * for its status page) along with the associated software
2102 		 * descriptor ring.  The free list size needs to be a multiple
2103 		 * of the Egress Queue Unit.
2104 		 */
2105 		fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2106 		fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2107 				      sizeof(__be64), sizeof(struct rx_sw_desc),
2108 				      &fl->addr, &fl->sdesc, STAT_LEN);
2109 		if (!fl->desc) {
2110 			ret = -ENOMEM;
2111 			goto err;
2112 		}
2113 
2114 		/*
2115 		 * Calculate the size of the hardware free list ring plus
2116 		 * Status Page (which the SGE will place after the end of the
2117 		 * free list ring) in Egress Queue Units.
2118 		 */
2119 		flsz = (fl->size / FL_PER_EQ_UNIT +
2120 			STAT_LEN / EQ_UNIT);
2121 
2122 		/*
2123 		 * Fill in all the relevant firmware Ingress Queue Command
2124 		 * fields for the free list.
2125 		 */
2126 		cmd.iqns_to_fl0congen =
2127 			cpu_to_be32(
2128 				FW_IQ_CMD_FL0HOSTFCMODE(SGE_HOSTFCMODE_NONE) |
2129 				FW_IQ_CMD_FL0PACKEN |
2130 				FW_IQ_CMD_FL0PADEN);
2131 		cmd.fl0dcaen_to_fl0cidxfthresh =
2132 			cpu_to_be16(
2133 				FW_IQ_CMD_FL0FBMIN(SGE_FETCHBURSTMIN_64B) |
2134 				FW_IQ_CMD_FL0FBMAX(SGE_FETCHBURSTMAX_512B));
2135 		cmd.fl0size = cpu_to_be16(flsz);
2136 		cmd.fl0addr = cpu_to_be64(fl->addr);
2137 	}
2138 
2139 	/*
2140 	 * Issue the firmware Ingress Queue Command and extract the results if
2141 	 * it completes successfully.
2142 	 */
2143 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2144 	if (ret)
2145 		goto err;
2146 
2147 	netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
2148 	rspq->cur_desc = rspq->desc;
2149 	rspq->cidx = 0;
2150 	rspq->gen = 1;
2151 	rspq->next_intr_params = rspq->intr_params;
2152 	rspq->cntxt_id = be16_to_cpu(rpl.iqid);
2153 	rspq->abs_id = be16_to_cpu(rpl.physiqid);
2154 	rspq->size--;			/* subtract status entry */
2155 	rspq->adapter = adapter;
2156 	rspq->netdev = dev;
2157 	rspq->handler = hnd;
2158 
2159 	/* set offset to -1 to distinguish ingress queues without FL */
2160 	rspq->offset = fl ? 0 : -1;
2161 
2162 	if (fl) {
2163 		fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2164 		fl->avail = 0;
2165 		fl->pend_cred = 0;
2166 		fl->pidx = 0;
2167 		fl->cidx = 0;
2168 		fl->alloc_failed = 0;
2169 		fl->large_alloc_failed = 0;
2170 		fl->starving = 0;
2171 		refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2172 	}
2173 
2174 	return 0;
2175 
2176 err:
2177 	/*
2178 	 * An error occurred.  Clean up our partial allocation state and
2179 	 * return the error.
2180 	 */
2181 	if (rspq->desc) {
2182 		dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2183 				  rspq->desc, rspq->phys_addr);
2184 		rspq->desc = NULL;
2185 	}
2186 	if (fl && fl->desc) {
2187 		kfree(fl->sdesc);
2188 		fl->sdesc = NULL;
2189 		dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2190 				  fl->desc, fl->addr);
2191 		fl->desc = NULL;
2192 	}
2193 	return ret;
2194 }
2195 
2196 /**
2197  *	t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2198  *	@adapter: the adapter
2199  *	@txq: pointer to the new txq to be filled in
2200  *	@devq: the network TX queue associated with the new txq
2201  *	@iqid: the relative ingress queue ID to which events relating to
2202  *		the new txq should be directed
2203  */
2204 int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2205 			   struct net_device *dev, struct netdev_queue *devq,
2206 			   unsigned int iqid)
2207 {
2208 	int ret, nentries;
2209 	struct fw_eq_eth_cmd cmd, rpl;
2210 	struct port_info *pi = netdev_priv(dev);
2211 
2212 	/*
2213 	 * Calculate the size of the hardware TX Queue (including the Status
2214 	 * Page on the end of the TX Queue) in units of TX Descriptors.
2215 	 */
2216 	nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
2217 
2218 	/*
2219 	 * Allocate the hardware ring for the TX ring (with space for its
2220 	 * status page) along with the associated software descriptor ring.
2221 	 */
2222 	txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2223 				 sizeof(struct tx_desc),
2224 				 sizeof(struct tx_sw_desc),
2225 				 &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN);
2226 	if (!txq->q.desc)
2227 		return -ENOMEM;
2228 
2229 	/*
2230 	 * Fill in the Egress Queue Command.  Note: As with the direct use of
2231 	 * the firmware Ingress Queue COmmand above in our RXQ allocation
2232 	 * routine, ideally, this code would be in t4vf_hw.c.  Again, we'll
2233 	 * have to see if there's some reasonable way to parameterize it
2234 	 * into the common code ...
2235 	 */
2236 	memset(&cmd, 0, sizeof(cmd));
2237 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
2238 				    FW_CMD_REQUEST |
2239 				    FW_CMD_WRITE |
2240 				    FW_CMD_EXEC);
2241 	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC |
2242 					 FW_EQ_ETH_CMD_EQSTART |
2243 					 FW_LEN16(cmd));
2244 	cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_VIID(pi->viid));
2245 	cmd.fetchszm_to_iqid =
2246 		cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE(SGE_HOSTFCMODE_STPG) |
2247 			    FW_EQ_ETH_CMD_PCIECHN(pi->port_id) |
2248 			    FW_EQ_ETH_CMD_IQID(iqid));
2249 	cmd.dcaen_to_eqsize =
2250 		cpu_to_be32(FW_EQ_ETH_CMD_FBMIN(SGE_FETCHBURSTMIN_64B) |
2251 			    FW_EQ_ETH_CMD_FBMAX(SGE_FETCHBURSTMAX_512B) |
2252 			    FW_EQ_ETH_CMD_CIDXFTHRESH(SGE_CIDXFLUSHTHRESH_32) |
2253 			    FW_EQ_ETH_CMD_EQSIZE(nentries));
2254 	cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2255 
2256 	/*
2257 	 * Issue the firmware Egress Queue Command and extract the results if
2258 	 * it completes successfully.
2259 	 */
2260 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2261 	if (ret) {
2262 		/*
2263 		 * The girmware Ingress Queue Command failed for some reason.
2264 		 * Free up our partial allocation state and return the error.
2265 		 */
2266 		kfree(txq->q.sdesc);
2267 		txq->q.sdesc = NULL;
2268 		dma_free_coherent(adapter->pdev_dev,
2269 				  nentries * sizeof(struct tx_desc),
2270 				  txq->q.desc, txq->q.phys_addr);
2271 		txq->q.desc = NULL;
2272 		return ret;
2273 	}
2274 
2275 	txq->q.in_use = 0;
2276 	txq->q.cidx = 0;
2277 	txq->q.pidx = 0;
2278 	txq->q.stat = (void *)&txq->q.desc[txq->q.size];
2279 	txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_GET(be32_to_cpu(rpl.eqid_pkd));
2280 	txq->q.abs_id =
2281 		FW_EQ_ETH_CMD_PHYSEQID_GET(be32_to_cpu(rpl.physeqid_pkd));
2282 	txq->txq = devq;
2283 	txq->tso = 0;
2284 	txq->tx_cso = 0;
2285 	txq->vlan_ins = 0;
2286 	txq->q.stops = 0;
2287 	txq->q.restarts = 0;
2288 	txq->mapping_err = 0;
2289 	return 0;
2290 }
2291 
2292 /*
2293  * Free the DMA map resources associated with a TX queue.
2294  */
2295 static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2296 {
2297 	dma_free_coherent(adapter->pdev_dev,
2298 			  tq->size * sizeof(*tq->desc) + STAT_LEN,
2299 			  tq->desc, tq->phys_addr);
2300 	tq->cntxt_id = 0;
2301 	tq->sdesc = NULL;
2302 	tq->desc = NULL;
2303 }
2304 
2305 /*
2306  * Free the resources associated with a response queue (possibly including a
2307  * free list).
2308  */
2309 static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2310 			 struct sge_fl *fl)
2311 {
2312 	unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2313 
2314 	t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2315 		     rspq->cntxt_id, flid, 0xffff);
2316 	dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2317 			  rspq->desc, rspq->phys_addr);
2318 	netif_napi_del(&rspq->napi);
2319 	rspq->netdev = NULL;
2320 	rspq->cntxt_id = 0;
2321 	rspq->abs_id = 0;
2322 	rspq->desc = NULL;
2323 
2324 	if (fl) {
2325 		free_rx_bufs(adapter, fl, fl->avail);
2326 		dma_free_coherent(adapter->pdev_dev,
2327 				  fl->size * sizeof(*fl->desc) + STAT_LEN,
2328 				  fl->desc, fl->addr);
2329 		kfree(fl->sdesc);
2330 		fl->sdesc = NULL;
2331 		fl->cntxt_id = 0;
2332 		fl->desc = NULL;
2333 	}
2334 }
2335 
2336 /**
2337  *	t4vf_free_sge_resources - free SGE resources
2338  *	@adapter: the adapter
2339  *
2340  *	Frees resources used by the SGE queue sets.
2341  */
2342 void t4vf_free_sge_resources(struct adapter *adapter)
2343 {
2344 	struct sge *s = &adapter->sge;
2345 	struct sge_eth_rxq *rxq = s->ethrxq;
2346 	struct sge_eth_txq *txq = s->ethtxq;
2347 	struct sge_rspq *evtq = &s->fw_evtq;
2348 	struct sge_rspq *intrq = &s->intrq;
2349 	int qs;
2350 
2351 	for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
2352 		if (rxq->rspq.desc)
2353 			free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2354 		if (txq->q.desc) {
2355 			t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2356 			free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2357 			kfree(txq->q.sdesc);
2358 			free_txq(adapter, &txq->q);
2359 		}
2360 	}
2361 	if (evtq->desc)
2362 		free_rspq_fl(adapter, evtq, NULL);
2363 	if (intrq->desc)
2364 		free_rspq_fl(adapter, intrq, NULL);
2365 }
2366 
2367 /**
2368  *	t4vf_sge_start - enable SGE operation
2369  *	@adapter: the adapter
2370  *
2371  *	Start tasklets and timers associated with the DMA engine.
2372  */
2373 void t4vf_sge_start(struct adapter *adapter)
2374 {
2375 	adapter->sge.ethtxq_rover = 0;
2376 	mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2377 	mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2378 }
2379 
2380 /**
2381  *	t4vf_sge_stop - disable SGE operation
2382  *	@adapter: the adapter
2383  *
2384  *	Stop tasklets and timers associated with the DMA engine.  Note that
2385  *	this is effective only if measures have been taken to disable any HW
2386  *	events that may restart them.
2387  */
2388 void t4vf_sge_stop(struct adapter *adapter)
2389 {
2390 	struct sge *s = &adapter->sge;
2391 
2392 	if (s->rx_timer.function)
2393 		del_timer_sync(&s->rx_timer);
2394 	if (s->tx_timer.function)
2395 		del_timer_sync(&s->tx_timer);
2396 }
2397 
2398 /**
2399  *	t4vf_sge_init - initialize SGE
2400  *	@adapter: the adapter
2401  *
2402  *	Performs SGE initialization needed every time after a chip reset.
2403  *	We do not initialize any of the queue sets here, instead the driver
2404  *	top-level must request those individually.  We also do not enable DMA
2405  *	here, that should be done after the queues have been set up.
2406  */
2407 int t4vf_sge_init(struct adapter *adapter)
2408 {
2409 	struct sge_params *sge_params = &adapter->params.sge;
2410 	u32 fl0 = sge_params->sge_fl_buffer_size[0];
2411 	u32 fl1 = sge_params->sge_fl_buffer_size[1];
2412 	struct sge *s = &adapter->sge;
2413 
2414 	/*
2415 	 * Start by vetting the basic SGE parameters which have been set up by
2416 	 * the Physical Function Driver.  Ideally we should be able to deal
2417 	 * with _any_ configuration.  Practice is different ...
2418 	 */
2419 	if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) {
2420 		dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2421 			fl0, fl1);
2422 		return -EINVAL;
2423 	}
2424 	if ((sge_params->sge_control & RXPKTCPLMODE_MASK) == 0) {
2425 		dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2426 		return -EINVAL;
2427 	}
2428 
2429 	/*
2430 	 * Now translate the adapter parameters into our internal forms.
2431 	 */
2432 	if (fl1)
2433 		FL_PG_ORDER = ilog2(fl1) - PAGE_SHIFT;
2434 	STAT_LEN = ((sge_params->sge_control & EGRSTATUSPAGESIZE_MASK)
2435 		    ? 128 : 64);
2436 	PKTSHIFT = PKTSHIFT_GET(sge_params->sge_control);
2437 	FL_ALIGN = 1 << (INGPADBOUNDARY_GET(sge_params->sge_control) +
2438 			 SGE_INGPADBOUNDARY_SHIFT);
2439 
2440 	/*
2441 	 * Set up tasklet timers.
2442 	 */
2443 	setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter);
2444 	setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter);
2445 
2446 	/*
2447 	 * Initialize Forwarded Interrupt Queue lock.
2448 	 */
2449 	spin_lock_init(&s->intrq_lock);
2450 
2451 	return 0;
2452 }
2453