1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/module.h> 39 #include <linux/moduleparam.h> 40 #include <linux/init.h> 41 #include <linux/pci.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/netdevice.h> 44 #include <linux/etherdevice.h> 45 #include <linux/debugfs.h> 46 #include <linux/ethtool.h> 47 #include <linux/mdio.h> 48 49 #include "t4vf_common.h" 50 #include "t4vf_defs.h" 51 52 #include "../cxgb4/t4_regs.h" 53 #include "../cxgb4/t4_msg.h" 54 55 /* 56 * Generic information about the driver. 57 */ 58 #define DRV_VERSION "2.0.0-ko" 59 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver" 60 61 /* 62 * Module Parameters. 63 * ================== 64 */ 65 66 /* 67 * Default ethtool "message level" for adapters. 68 */ 69 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 70 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 71 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 72 73 /* 74 * The driver uses the best interrupt scheme available on a platform in the 75 * order MSI-X then MSI. This parameter determines which of these schemes the 76 * driver may consider as follows: 77 * 78 * msi = 2: choose from among MSI-X and MSI 79 * msi = 1: only consider MSI interrupts 80 * 81 * Note that unlike the Physical Function driver, this Virtual Function driver 82 * does _not_ support legacy INTx interrupts (this limitation is mandated by 83 * the PCI-E SR-IOV standard). 84 */ 85 #define MSI_MSIX 2 86 #define MSI_MSI 1 87 #define MSI_DEFAULT MSI_MSIX 88 89 static int msi = MSI_DEFAULT; 90 91 module_param(msi, int, 0644); 92 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI"); 93 94 /* 95 * Fundamental constants. 96 * ====================== 97 */ 98 99 enum { 100 MAX_TXQ_ENTRIES = 16384, 101 MAX_RSPQ_ENTRIES = 16384, 102 MAX_RX_BUFFERS = 16384, 103 104 MIN_TXQ_ENTRIES = 32, 105 MIN_RSPQ_ENTRIES = 128, 106 MIN_FL_ENTRIES = 16, 107 108 /* 109 * For purposes of manipulating the Free List size we need to 110 * recognize that Free Lists are actually Egress Queues (the host 111 * produces free buffers which the hardware consumes), Egress Queues 112 * indices are all in units of Egress Context Units bytes, and free 113 * list entries are 64-bit PCI DMA addresses. And since the state of 114 * the Producer Index == the Consumer Index implies an EMPTY list, we 115 * always have at least one Egress Unit's worth of Free List entries 116 * unused. See sge.c for more details ... 117 */ 118 EQ_UNIT = SGE_EQ_IDXSIZE, 119 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 120 MIN_FL_RESID = FL_PER_EQ_UNIT, 121 }; 122 123 /* 124 * Global driver state. 125 * ==================== 126 */ 127 128 static struct dentry *cxgb4vf_debugfs_root; 129 130 /* 131 * OS "Callback" functions. 132 * ======================== 133 */ 134 135 /* 136 * The link status has changed on the indicated "port" (Virtual Interface). 137 */ 138 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok) 139 { 140 struct net_device *dev = adapter->port[pidx]; 141 142 /* 143 * If the port is disabled or the current recorded "link up" 144 * status matches the new status, just return. 145 */ 146 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev)) 147 return; 148 149 /* 150 * Tell the OS that the link status has changed and print a short 151 * informative message on the console about the event. 152 */ 153 if (link_ok) { 154 const char *s; 155 const char *fc; 156 const struct port_info *pi = netdev_priv(dev); 157 158 netif_carrier_on(dev); 159 160 switch (pi->link_cfg.speed) { 161 case 100: 162 s = "100Mbps"; 163 break; 164 case 1000: 165 s = "1Gbps"; 166 break; 167 case 10000: 168 s = "10Gbps"; 169 break; 170 case 25000: 171 s = "25Gbps"; 172 break; 173 case 40000: 174 s = "40Gbps"; 175 break; 176 case 100000: 177 s = "100Gbps"; 178 break; 179 180 default: 181 s = "unknown"; 182 break; 183 } 184 185 switch ((int)pi->link_cfg.fc) { 186 case PAUSE_RX: 187 fc = "RX"; 188 break; 189 190 case PAUSE_TX: 191 fc = "TX"; 192 break; 193 194 case PAUSE_RX | PAUSE_TX: 195 fc = "RX/TX"; 196 break; 197 198 default: 199 fc = "no"; 200 break; 201 } 202 203 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc); 204 } else { 205 netif_carrier_off(dev); 206 netdev_info(dev, "link down\n"); 207 } 208 } 209 210 /* 211 * THe port module type has changed on the indicated "port" (Virtual 212 * Interface). 213 */ 214 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx) 215 { 216 static const char * const mod_str[] = { 217 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 218 }; 219 const struct net_device *dev = adapter->port[pidx]; 220 const struct port_info *pi = netdev_priv(dev); 221 222 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 223 dev_info(adapter->pdev_dev, "%s: port module unplugged\n", 224 dev->name); 225 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 226 dev_info(adapter->pdev_dev, "%s: %s port module inserted\n", 227 dev->name, mod_str[pi->mod_type]); 228 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 229 dev_info(adapter->pdev_dev, "%s: unsupported optical port " 230 "module inserted\n", dev->name); 231 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 232 dev_info(adapter->pdev_dev, "%s: unknown port module inserted," 233 "forcing TWINAX\n", dev->name); 234 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 235 dev_info(adapter->pdev_dev, "%s: transceiver module error\n", 236 dev->name); 237 else 238 dev_info(adapter->pdev_dev, "%s: unknown module type %d " 239 "inserted\n", dev->name, pi->mod_type); 240 } 241 242 /* 243 * Net device operations. 244 * ====================== 245 */ 246 247 248 249 250 /* 251 * Perform the MAC and PHY actions needed to enable a "port" (Virtual 252 * Interface). 253 */ 254 static int link_start(struct net_device *dev) 255 { 256 int ret; 257 struct port_info *pi = netdev_priv(dev); 258 259 /* 260 * We do not set address filters and promiscuity here, the stack does 261 * that step explicitly. Enable vlan accel. 262 */ 263 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1, 264 true); 265 if (ret == 0) { 266 ret = t4vf_change_mac(pi->adapter, pi->viid, 267 pi->xact_addr_filt, dev->dev_addr, true); 268 if (ret >= 0) { 269 pi->xact_addr_filt = ret; 270 ret = 0; 271 } 272 } 273 274 /* 275 * We don't need to actually "start the link" itself since the 276 * firmware will do that for us when the first Virtual Interface 277 * is enabled on a port. 278 */ 279 if (ret == 0) 280 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true); 281 return ret; 282 } 283 284 /* 285 * Name the MSI-X interrupts. 286 */ 287 static void name_msix_vecs(struct adapter *adapter) 288 { 289 int namelen = sizeof(adapter->msix_info[0].desc) - 1; 290 int pidx; 291 292 /* 293 * Firmware events. 294 */ 295 snprintf(adapter->msix_info[MSIX_FW].desc, namelen, 296 "%s-FWeventq", adapter->name); 297 adapter->msix_info[MSIX_FW].desc[namelen] = 0; 298 299 /* 300 * Ethernet queues. 301 */ 302 for_each_port(adapter, pidx) { 303 struct net_device *dev = adapter->port[pidx]; 304 const struct port_info *pi = netdev_priv(dev); 305 int qs, msi; 306 307 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) { 308 snprintf(adapter->msix_info[msi].desc, namelen, 309 "%s-%d", dev->name, qs); 310 adapter->msix_info[msi].desc[namelen] = 0; 311 } 312 } 313 } 314 315 /* 316 * Request all of our MSI-X resources. 317 */ 318 static int request_msix_queue_irqs(struct adapter *adapter) 319 { 320 struct sge *s = &adapter->sge; 321 int rxq, msi, err; 322 323 /* 324 * Firmware events. 325 */ 326 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix, 327 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq); 328 if (err) 329 return err; 330 331 /* 332 * Ethernet queues. 333 */ 334 msi = MSIX_IQFLINT; 335 for_each_ethrxq(s, rxq) { 336 err = request_irq(adapter->msix_info[msi].vec, 337 t4vf_sge_intr_msix, 0, 338 adapter->msix_info[msi].desc, 339 &s->ethrxq[rxq].rspq); 340 if (err) 341 goto err_free_irqs; 342 msi++; 343 } 344 return 0; 345 346 err_free_irqs: 347 while (--rxq >= 0) 348 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq); 349 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 350 return err; 351 } 352 353 /* 354 * Free our MSI-X resources. 355 */ 356 static void free_msix_queue_irqs(struct adapter *adapter) 357 { 358 struct sge *s = &adapter->sge; 359 int rxq, msi; 360 361 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 362 msi = MSIX_IQFLINT; 363 for_each_ethrxq(s, rxq) 364 free_irq(adapter->msix_info[msi++].vec, 365 &s->ethrxq[rxq].rspq); 366 } 367 368 /* 369 * Turn on NAPI and start up interrupts on a response queue. 370 */ 371 static void qenable(struct sge_rspq *rspq) 372 { 373 napi_enable(&rspq->napi); 374 375 /* 376 * 0-increment the Going To Sleep register to start the timer and 377 * enable interrupts. 378 */ 379 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 380 CIDXINC_V(0) | 381 SEINTARM_V(rspq->intr_params) | 382 INGRESSQID_V(rspq->cntxt_id)); 383 } 384 385 /* 386 * Enable NAPI scheduling and interrupt generation for all Receive Queues. 387 */ 388 static void enable_rx(struct adapter *adapter) 389 { 390 int rxq; 391 struct sge *s = &adapter->sge; 392 393 for_each_ethrxq(s, rxq) 394 qenable(&s->ethrxq[rxq].rspq); 395 qenable(&s->fw_evtq); 396 397 /* 398 * The interrupt queue doesn't use NAPI so we do the 0-increment of 399 * its Going To Sleep register here to get it started. 400 */ 401 if (adapter->flags & USING_MSI) 402 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 403 CIDXINC_V(0) | 404 SEINTARM_V(s->intrq.intr_params) | 405 INGRESSQID_V(s->intrq.cntxt_id)); 406 407 } 408 409 /* 410 * Wait until all NAPI handlers are descheduled. 411 */ 412 static void quiesce_rx(struct adapter *adapter) 413 { 414 struct sge *s = &adapter->sge; 415 int rxq; 416 417 for_each_ethrxq(s, rxq) 418 napi_disable(&s->ethrxq[rxq].rspq.napi); 419 napi_disable(&s->fw_evtq.napi); 420 } 421 422 /* 423 * Response queue handler for the firmware event queue. 424 */ 425 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp, 426 const struct pkt_gl *gl) 427 { 428 /* 429 * Extract response opcode and get pointer to CPL message body. 430 */ 431 struct adapter *adapter = rspq->adapter; 432 u8 opcode = ((const struct rss_header *)rsp)->opcode; 433 void *cpl = (void *)(rsp + 1); 434 435 switch (opcode) { 436 case CPL_FW6_MSG: { 437 /* 438 * We've received an asynchronous message from the firmware. 439 */ 440 const struct cpl_fw6_msg *fw_msg = cpl; 441 if (fw_msg->type == FW6_TYPE_CMD_RPL) 442 t4vf_handle_fw_rpl(adapter, fw_msg->data); 443 break; 444 } 445 446 case CPL_FW4_MSG: { 447 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 448 */ 449 const struct cpl_sge_egr_update *p = (void *)(rsp + 3); 450 opcode = CPL_OPCODE_G(ntohl(p->opcode_qid)); 451 if (opcode != CPL_SGE_EGR_UPDATE) { 452 dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 453 , opcode); 454 break; 455 } 456 cpl = (void *)p; 457 /*FALLTHROUGH*/ 458 } 459 460 case CPL_SGE_EGR_UPDATE: { 461 /* 462 * We've received an Egress Queue Status Update message. We 463 * get these, if the SGE is configured to send these when the 464 * firmware passes certain points in processing our TX 465 * Ethernet Queue or if we make an explicit request for one. 466 * We use these updates to determine when we may need to 467 * restart a TX Ethernet Queue which was stopped for lack of 468 * free TX Queue Descriptors ... 469 */ 470 const struct cpl_sge_egr_update *p = cpl; 471 unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid)); 472 struct sge *s = &adapter->sge; 473 struct sge_txq *tq; 474 struct sge_eth_txq *txq; 475 unsigned int eq_idx; 476 477 /* 478 * Perform sanity checking on the Queue ID to make sure it 479 * really refers to one of our TX Ethernet Egress Queues which 480 * is active and matches the queue's ID. None of these error 481 * conditions should ever happen so we may want to either make 482 * them fatal and/or conditionalized under DEBUG. 483 */ 484 eq_idx = EQ_IDX(s, qid); 485 if (unlikely(eq_idx >= MAX_EGRQ)) { 486 dev_err(adapter->pdev_dev, 487 "Egress Update QID %d out of range\n", qid); 488 break; 489 } 490 tq = s->egr_map[eq_idx]; 491 if (unlikely(tq == NULL)) { 492 dev_err(adapter->pdev_dev, 493 "Egress Update QID %d TXQ=NULL\n", qid); 494 break; 495 } 496 txq = container_of(tq, struct sge_eth_txq, q); 497 if (unlikely(tq->abs_id != qid)) { 498 dev_err(adapter->pdev_dev, 499 "Egress Update QID %d refers to TXQ %d\n", 500 qid, tq->abs_id); 501 break; 502 } 503 504 /* 505 * Restart a stopped TX Queue which has less than half of its 506 * TX ring in use ... 507 */ 508 txq->q.restarts++; 509 netif_tx_wake_queue(txq->txq); 510 break; 511 } 512 513 default: 514 dev_err(adapter->pdev_dev, 515 "unexpected CPL %#x on FW event queue\n", opcode); 516 } 517 518 return 0; 519 } 520 521 /* 522 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues 523 * to use and initializes them. We support multiple "Queue Sets" per port if 524 * we have MSI-X, otherwise just one queue set per port. 525 */ 526 static int setup_sge_queues(struct adapter *adapter) 527 { 528 struct sge *s = &adapter->sge; 529 int err, pidx, msix; 530 531 /* 532 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error 533 * state. 534 */ 535 bitmap_zero(s->starving_fl, MAX_EGRQ); 536 537 /* 538 * If we're using MSI interrupt mode we need to set up a "forwarded 539 * interrupt" queue which we'll set up with our MSI vector. The rest 540 * of the ingress queues will be set up to forward their interrupts to 541 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses 542 * the intrq's queue ID as the interrupt forwarding queue for the 543 * subsequent calls ... 544 */ 545 if (adapter->flags & USING_MSI) { 546 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false, 547 adapter->port[0], 0, NULL, NULL); 548 if (err) 549 goto err_free_queues; 550 } 551 552 /* 553 * Allocate our ingress queue for asynchronous firmware messages. 554 */ 555 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0], 556 MSIX_FW, NULL, fwevtq_handler); 557 if (err) 558 goto err_free_queues; 559 560 /* 561 * Allocate each "port"'s initial Queue Sets. These can be changed 562 * later on ... up to the point where any interface on the adapter is 563 * brought up at which point lots of things get nailed down 564 * permanently ... 565 */ 566 msix = MSIX_IQFLINT; 567 for_each_port(adapter, pidx) { 568 struct net_device *dev = adapter->port[pidx]; 569 struct port_info *pi = netdev_priv(dev); 570 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 571 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 572 int qs; 573 574 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 575 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false, 576 dev, msix++, 577 &rxq->fl, t4vf_ethrx_handler); 578 if (err) 579 goto err_free_queues; 580 581 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev, 582 netdev_get_tx_queue(dev, qs), 583 s->fw_evtq.cntxt_id); 584 if (err) 585 goto err_free_queues; 586 587 rxq->rspq.idx = qs; 588 memset(&rxq->stats, 0, sizeof(rxq->stats)); 589 } 590 } 591 592 /* 593 * Create the reverse mappings for the queues. 594 */ 595 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id; 596 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id; 597 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq; 598 for_each_port(adapter, pidx) { 599 struct net_device *dev = adapter->port[pidx]; 600 struct port_info *pi = netdev_priv(dev); 601 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 602 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 603 int qs; 604 605 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 606 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq; 607 EQ_MAP(s, txq->q.abs_id) = &txq->q; 608 609 /* 610 * The FW_IQ_CMD doesn't return the Absolute Queue IDs 611 * for Free Lists but since all of the Egress Queues 612 * (including Free Lists) have Relative Queue IDs 613 * which are computed as Absolute - Base Queue ID, we 614 * can synthesize the Absolute Queue IDs for the Free 615 * Lists. This is useful for debugging purposes when 616 * we want to dump Queue Contexts via the PF Driver. 617 */ 618 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base; 619 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl; 620 } 621 } 622 return 0; 623 624 err_free_queues: 625 t4vf_free_sge_resources(adapter); 626 return err; 627 } 628 629 /* 630 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive 631 * queues. We configure the RSS CPU lookup table to distribute to the number 632 * of HW receive queues, and the response queue lookup table to narrow that 633 * down to the response queues actually configured for each "port" (Virtual 634 * Interface). We always configure the RSS mapping for all ports since the 635 * mapping table has plenty of entries. 636 */ 637 static int setup_rss(struct adapter *adapter) 638 { 639 int pidx; 640 641 for_each_port(adapter, pidx) { 642 struct port_info *pi = adap2pinfo(adapter, pidx); 643 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 644 u16 rss[MAX_PORT_QSETS]; 645 int qs, err; 646 647 for (qs = 0; qs < pi->nqsets; qs++) 648 rss[qs] = rxq[qs].rspq.abs_id; 649 650 err = t4vf_config_rss_range(adapter, pi->viid, 651 0, pi->rss_size, rss, pi->nqsets); 652 if (err) 653 return err; 654 655 /* 656 * Perform Global RSS Mode-specific initialization. 657 */ 658 switch (adapter->params.rss.mode) { 659 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: 660 /* 661 * If Tunnel All Lookup isn't specified in the global 662 * RSS Configuration, then we need to specify a 663 * default Ingress Queue for any ingress packets which 664 * aren't hashed. We'll use our first ingress queue 665 * ... 666 */ 667 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) { 668 union rss_vi_config config; 669 err = t4vf_read_rss_vi_config(adapter, 670 pi->viid, 671 &config); 672 if (err) 673 return err; 674 config.basicvirtual.defaultq = 675 rxq[0].rspq.abs_id; 676 err = t4vf_write_rss_vi_config(adapter, 677 pi->viid, 678 &config); 679 if (err) 680 return err; 681 } 682 break; 683 } 684 } 685 686 return 0; 687 } 688 689 /* 690 * Bring the adapter up. Called whenever we go from no "ports" open to having 691 * one open. This function performs the actions necessary to make an adapter 692 * operational, such as completing the initialization of HW modules, and 693 * enabling interrupts. Must be called with the rtnl lock held. (Note that 694 * this is called "cxgb_up" in the PF Driver.) 695 */ 696 static int adapter_up(struct adapter *adapter) 697 { 698 int err; 699 700 /* 701 * If this is the first time we've been called, perform basic 702 * adapter setup. Once we've done this, many of our adapter 703 * parameters can no longer be changed ... 704 */ 705 if ((adapter->flags & FULL_INIT_DONE) == 0) { 706 err = setup_sge_queues(adapter); 707 if (err) 708 return err; 709 err = setup_rss(adapter); 710 if (err) { 711 t4vf_free_sge_resources(adapter); 712 return err; 713 } 714 715 if (adapter->flags & USING_MSIX) 716 name_msix_vecs(adapter); 717 adapter->flags |= FULL_INIT_DONE; 718 } 719 720 /* 721 * Acquire our interrupt resources. We only support MSI-X and MSI. 722 */ 723 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 724 if (adapter->flags & USING_MSIX) 725 err = request_msix_queue_irqs(adapter); 726 else 727 err = request_irq(adapter->pdev->irq, 728 t4vf_intr_handler(adapter), 0, 729 adapter->name, adapter); 730 if (err) { 731 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n", 732 err); 733 return err; 734 } 735 736 /* 737 * Enable NAPI ingress processing and return success. 738 */ 739 enable_rx(adapter); 740 t4vf_sge_start(adapter); 741 742 /* Initialize hash mac addr list*/ 743 INIT_LIST_HEAD(&adapter->mac_hlist); 744 return 0; 745 } 746 747 /* 748 * Bring the adapter down. Called whenever the last "port" (Virtual 749 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF 750 * Driver.) 751 */ 752 static void adapter_down(struct adapter *adapter) 753 { 754 /* 755 * Free interrupt resources. 756 */ 757 if (adapter->flags & USING_MSIX) 758 free_msix_queue_irqs(adapter); 759 else 760 free_irq(adapter->pdev->irq, adapter); 761 762 /* 763 * Wait for NAPI handlers to finish. 764 */ 765 quiesce_rx(adapter); 766 } 767 768 /* 769 * Start up a net device. 770 */ 771 static int cxgb4vf_open(struct net_device *dev) 772 { 773 int err; 774 struct port_info *pi = netdev_priv(dev); 775 struct adapter *adapter = pi->adapter; 776 777 /* 778 * If this is the first interface that we're opening on the "adapter", 779 * bring the "adapter" up now. 780 */ 781 if (adapter->open_device_map == 0) { 782 err = adapter_up(adapter); 783 if (err) 784 return err; 785 } 786 787 /* 788 * Note that this interface is up and start everything up ... 789 */ 790 err = link_start(dev); 791 if (err) 792 goto err_unwind; 793 794 pi->vlan_id = t4vf_get_vf_vlan_acl(adapter); 795 796 netif_tx_start_all_queues(dev); 797 set_bit(pi->port_id, &adapter->open_device_map); 798 return 0; 799 800 err_unwind: 801 if (adapter->open_device_map == 0) 802 adapter_down(adapter); 803 return err; 804 } 805 806 /* 807 * Shut down a net device. This routine is called "cxgb_close" in the PF 808 * Driver ... 809 */ 810 static int cxgb4vf_stop(struct net_device *dev) 811 { 812 struct port_info *pi = netdev_priv(dev); 813 struct adapter *adapter = pi->adapter; 814 815 netif_tx_stop_all_queues(dev); 816 netif_carrier_off(dev); 817 t4vf_enable_vi(adapter, pi->viid, false, false); 818 pi->link_cfg.link_ok = 0; 819 820 clear_bit(pi->port_id, &adapter->open_device_map); 821 if (adapter->open_device_map == 0) 822 adapter_down(adapter); 823 return 0; 824 } 825 826 /* 827 * Translate our basic statistics into the standard "ifconfig" statistics. 828 */ 829 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev) 830 { 831 struct t4vf_port_stats stats; 832 struct port_info *pi = netdev2pinfo(dev); 833 struct adapter *adapter = pi->adapter; 834 struct net_device_stats *ns = &dev->stats; 835 int err; 836 837 spin_lock(&adapter->stats_lock); 838 err = t4vf_get_port_stats(adapter, pi->pidx, &stats); 839 spin_unlock(&adapter->stats_lock); 840 841 memset(ns, 0, sizeof(*ns)); 842 if (err) 843 return ns; 844 845 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes + 846 stats.tx_ucast_bytes + stats.tx_offload_bytes); 847 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames + 848 stats.tx_ucast_frames + stats.tx_offload_frames); 849 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes + 850 stats.rx_ucast_bytes); 851 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames + 852 stats.rx_ucast_frames); 853 ns->multicast = stats.rx_mcast_frames; 854 ns->tx_errors = stats.tx_drop_frames; 855 ns->rx_errors = stats.rx_err_frames; 856 857 return ns; 858 } 859 860 static inline int cxgb4vf_set_addr_hash(struct port_info *pi) 861 { 862 struct adapter *adapter = pi->adapter; 863 u64 vec = 0; 864 bool ucast = false; 865 struct hash_mac_addr *entry; 866 867 /* Calculate the hash vector for the updated list and program it */ 868 list_for_each_entry(entry, &adapter->mac_hlist, list) { 869 ucast |= is_unicast_ether_addr(entry->addr); 870 vec |= (1ULL << hash_mac_addr(entry->addr)); 871 } 872 return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false); 873 } 874 875 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr) 876 { 877 struct port_info *pi = netdev_priv(netdev); 878 struct adapter *adapter = pi->adapter; 879 int ret; 880 u64 mhash = 0; 881 u64 uhash = 0; 882 bool free = false; 883 bool ucast = is_unicast_ether_addr(mac_addr); 884 const u8 *maclist[1] = {mac_addr}; 885 struct hash_mac_addr *new_entry; 886 887 ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist, 888 NULL, ucast ? &uhash : &mhash, false); 889 if (ret < 0) 890 goto out; 891 /* if hash != 0, then add the addr to hash addr list 892 * so on the end we will calculate the hash for the 893 * list and program it 894 */ 895 if (uhash || mhash) { 896 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 897 if (!new_entry) 898 return -ENOMEM; 899 ether_addr_copy(new_entry->addr, mac_addr); 900 list_add_tail(&new_entry->list, &adapter->mac_hlist); 901 ret = cxgb4vf_set_addr_hash(pi); 902 } 903 out: 904 return ret < 0 ? ret : 0; 905 } 906 907 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 908 { 909 struct port_info *pi = netdev_priv(netdev); 910 struct adapter *adapter = pi->adapter; 911 int ret; 912 const u8 *maclist[1] = {mac_addr}; 913 struct hash_mac_addr *entry, *tmp; 914 915 /* If the MAC address to be removed is in the hash addr 916 * list, delete it from the list and update hash vector 917 */ 918 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) { 919 if (ether_addr_equal(entry->addr, mac_addr)) { 920 list_del(&entry->list); 921 kfree(entry); 922 return cxgb4vf_set_addr_hash(pi); 923 } 924 } 925 926 ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false); 927 return ret < 0 ? -EINVAL : 0; 928 } 929 930 /* 931 * Set RX properties of a port, such as promiscruity, address filters, and MTU. 932 * If @mtu is -1 it is left unchanged. 933 */ 934 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 935 { 936 struct port_info *pi = netdev_priv(dev); 937 938 __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 939 __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 940 return t4vf_set_rxmode(pi->adapter, pi->viid, -1, 941 (dev->flags & IFF_PROMISC) != 0, 942 (dev->flags & IFF_ALLMULTI) != 0, 943 1, -1, sleep_ok); 944 } 945 946 /* 947 * Set the current receive modes on the device. 948 */ 949 static void cxgb4vf_set_rxmode(struct net_device *dev) 950 { 951 /* unfortunately we can't return errors to the stack */ 952 set_rxmode(dev, -1, false); 953 } 954 955 /* 956 * Find the entry in the interrupt holdoff timer value array which comes 957 * closest to the specified interrupt holdoff value. 958 */ 959 static int closest_timer(const struct sge *s, int us) 960 { 961 int i, timer_idx = 0, min_delta = INT_MAX; 962 963 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 964 int delta = us - s->timer_val[i]; 965 if (delta < 0) 966 delta = -delta; 967 if (delta < min_delta) { 968 min_delta = delta; 969 timer_idx = i; 970 } 971 } 972 return timer_idx; 973 } 974 975 static int closest_thres(const struct sge *s, int thres) 976 { 977 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX; 978 979 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 980 delta = thres - s->counter_val[i]; 981 if (delta < 0) 982 delta = -delta; 983 if (delta < min_delta) { 984 min_delta = delta; 985 pktcnt_idx = i; 986 } 987 } 988 return pktcnt_idx; 989 } 990 991 /* 992 * Return a queue's interrupt hold-off time in us. 0 means no timer. 993 */ 994 static unsigned int qtimer_val(const struct adapter *adapter, 995 const struct sge_rspq *rspq) 996 { 997 unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params); 998 999 return timer_idx < SGE_NTIMERS 1000 ? adapter->sge.timer_val[timer_idx] 1001 : 0; 1002 } 1003 1004 /** 1005 * set_rxq_intr_params - set a queue's interrupt holdoff parameters 1006 * @adapter: the adapter 1007 * @rspq: the RX response queue 1008 * @us: the hold-off time in us, or 0 to disable timer 1009 * @cnt: the hold-off packet count, or 0 to disable counter 1010 * 1011 * Sets an RX response queue's interrupt hold-off time and packet count. 1012 * At least one of the two needs to be enabled for the queue to generate 1013 * interrupts. 1014 */ 1015 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq, 1016 unsigned int us, unsigned int cnt) 1017 { 1018 unsigned int timer_idx; 1019 1020 /* 1021 * If both the interrupt holdoff timer and count are specified as 1022 * zero, default to a holdoff count of 1 ... 1023 */ 1024 if ((us | cnt) == 0) 1025 cnt = 1; 1026 1027 /* 1028 * If an interrupt holdoff count has been specified, then find the 1029 * closest configured holdoff count and use that. If the response 1030 * queue has already been created, then update its queue context 1031 * parameters ... 1032 */ 1033 if (cnt) { 1034 int err; 1035 u32 v, pktcnt_idx; 1036 1037 pktcnt_idx = closest_thres(&adapter->sge, cnt); 1038 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) { 1039 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1040 FW_PARAMS_PARAM_X_V( 1041 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1042 FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id); 1043 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx); 1044 if (err) 1045 return err; 1046 } 1047 rspq->pktcnt_idx = pktcnt_idx; 1048 } 1049 1050 /* 1051 * Compute the closest holdoff timer index from the supplied holdoff 1052 * timer value. 1053 */ 1054 timer_idx = (us == 0 1055 ? SGE_TIMER_RSTRT_CNTR 1056 : closest_timer(&adapter->sge, us)); 1057 1058 /* 1059 * Update the response queue's interrupt coalescing parameters and 1060 * return success. 1061 */ 1062 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 1063 QINTR_CNT_EN_V(cnt > 0)); 1064 return 0; 1065 } 1066 1067 /* 1068 * Return a version number to identify the type of adapter. The scheme is: 1069 * - bits 0..9: chip version 1070 * - bits 10..15: chip revision 1071 */ 1072 static inline unsigned int mk_adap_vers(const struct adapter *adapter) 1073 { 1074 /* 1075 * Chip version 4, revision 0x3f (cxgb4vf). 1076 */ 1077 return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10); 1078 } 1079 1080 /* 1081 * Execute the specified ioctl command. 1082 */ 1083 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1084 { 1085 int ret = 0; 1086 1087 switch (cmd) { 1088 /* 1089 * The VF Driver doesn't have access to any of the other 1090 * common Ethernet device ioctl()'s (like reading/writing 1091 * PHY registers, etc. 1092 */ 1093 1094 default: 1095 ret = -EOPNOTSUPP; 1096 break; 1097 } 1098 return ret; 1099 } 1100 1101 /* 1102 * Change the device's MTU. 1103 */ 1104 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu) 1105 { 1106 int ret; 1107 struct port_info *pi = netdev_priv(dev); 1108 1109 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu, 1110 -1, -1, -1, -1, true); 1111 if (!ret) 1112 dev->mtu = new_mtu; 1113 return ret; 1114 } 1115 1116 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev, 1117 netdev_features_t features) 1118 { 1119 /* 1120 * Since there is no support for separate rx/tx vlan accel 1121 * enable/disable make sure tx flag is always in same state as rx. 1122 */ 1123 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1124 features |= NETIF_F_HW_VLAN_CTAG_TX; 1125 else 1126 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 1127 1128 return features; 1129 } 1130 1131 static int cxgb4vf_set_features(struct net_device *dev, 1132 netdev_features_t features) 1133 { 1134 struct port_info *pi = netdev_priv(dev); 1135 netdev_features_t changed = dev->features ^ features; 1136 1137 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 1138 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, 1139 features & NETIF_F_HW_VLAN_CTAG_TX, 0); 1140 1141 return 0; 1142 } 1143 1144 /* 1145 * Change the devices MAC address. 1146 */ 1147 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr) 1148 { 1149 int ret; 1150 struct sockaddr *addr = _addr; 1151 struct port_info *pi = netdev_priv(dev); 1152 1153 if (!is_valid_ether_addr(addr->sa_data)) 1154 return -EADDRNOTAVAIL; 1155 1156 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt, 1157 addr->sa_data, true); 1158 if (ret < 0) 1159 return ret; 1160 1161 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 1162 pi->xact_addr_filt = ret; 1163 return 0; 1164 } 1165 1166 #ifdef CONFIG_NET_POLL_CONTROLLER 1167 /* 1168 * Poll all of our receive queues. This is called outside of normal interrupt 1169 * context. 1170 */ 1171 static void cxgb4vf_poll_controller(struct net_device *dev) 1172 { 1173 struct port_info *pi = netdev_priv(dev); 1174 struct adapter *adapter = pi->adapter; 1175 1176 if (adapter->flags & USING_MSIX) { 1177 struct sge_eth_rxq *rxq; 1178 int nqsets; 1179 1180 rxq = &adapter->sge.ethrxq[pi->first_qset]; 1181 for (nqsets = pi->nqsets; nqsets; nqsets--) { 1182 t4vf_sge_intr_msix(0, &rxq->rspq); 1183 rxq++; 1184 } 1185 } else 1186 t4vf_intr_handler(adapter)(0, adapter); 1187 } 1188 #endif 1189 1190 /* 1191 * Ethtool operations. 1192 * =================== 1193 * 1194 * Note that we don't support any ethtool operations which change the physical 1195 * state of the port to which we're linked. 1196 */ 1197 1198 /** 1199 * from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool 1200 * @port_type: Firmware Port Type 1201 * @mod_type: Firmware Module Type 1202 * 1203 * Translate Firmware Port/Module type to Ethtool Port Type. 1204 */ 1205 static int from_fw_port_mod_type(enum fw_port_type port_type, 1206 enum fw_port_module_type mod_type) 1207 { 1208 if (port_type == FW_PORT_TYPE_BT_SGMII || 1209 port_type == FW_PORT_TYPE_BT_XFI || 1210 port_type == FW_PORT_TYPE_BT_XAUI) { 1211 return PORT_TP; 1212 } else if (port_type == FW_PORT_TYPE_FIBER_XFI || 1213 port_type == FW_PORT_TYPE_FIBER_XAUI) { 1214 return PORT_FIBRE; 1215 } else if (port_type == FW_PORT_TYPE_SFP || 1216 port_type == FW_PORT_TYPE_QSFP_10G || 1217 port_type == FW_PORT_TYPE_QSA || 1218 port_type == FW_PORT_TYPE_QSFP || 1219 port_type == FW_PORT_TYPE_CR4_QSFP || 1220 port_type == FW_PORT_TYPE_CR_QSFP || 1221 port_type == FW_PORT_TYPE_CR2_QSFP || 1222 port_type == FW_PORT_TYPE_SFP28) { 1223 if (mod_type == FW_PORT_MOD_TYPE_LR || 1224 mod_type == FW_PORT_MOD_TYPE_SR || 1225 mod_type == FW_PORT_MOD_TYPE_ER || 1226 mod_type == FW_PORT_MOD_TYPE_LRM) 1227 return PORT_FIBRE; 1228 else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE || 1229 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE) 1230 return PORT_DA; 1231 else 1232 return PORT_OTHER; 1233 } else if (port_type == FW_PORT_TYPE_KR4_100G || 1234 port_type == FW_PORT_TYPE_KR_SFP28 || 1235 port_type == FW_PORT_TYPE_KR_XLAUI) { 1236 return PORT_NONE; 1237 } 1238 1239 return PORT_OTHER; 1240 } 1241 1242 /** 1243 * fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask 1244 * @port_type: Firmware Port Type 1245 * @fw_caps: Firmware Port Capabilities 1246 * @link_mode_mask: ethtool Link Mode Mask 1247 * 1248 * Translate a Firmware Port Capabilities specification to an ethtool 1249 * Link Mode Mask. 1250 */ 1251 static void fw_caps_to_lmm(enum fw_port_type port_type, 1252 unsigned int fw_caps, 1253 unsigned long *link_mode_mask) 1254 { 1255 #define SET_LMM(__lmm_name) \ 1256 __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \ 1257 link_mode_mask) 1258 1259 #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \ 1260 do { \ 1261 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \ 1262 SET_LMM(__lmm_name); \ 1263 } while (0) 1264 1265 switch (port_type) { 1266 case FW_PORT_TYPE_BT_SGMII: 1267 case FW_PORT_TYPE_BT_XFI: 1268 case FW_PORT_TYPE_BT_XAUI: 1269 SET_LMM(TP); 1270 FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full); 1271 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1272 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1273 break; 1274 1275 case FW_PORT_TYPE_KX4: 1276 case FW_PORT_TYPE_KX: 1277 SET_LMM(Backplane); 1278 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1279 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1280 break; 1281 1282 case FW_PORT_TYPE_KR: 1283 SET_LMM(Backplane); 1284 SET_LMM(10000baseKR_Full); 1285 break; 1286 1287 case FW_PORT_TYPE_BP_AP: 1288 SET_LMM(Backplane); 1289 SET_LMM(10000baseR_FEC); 1290 SET_LMM(10000baseKR_Full); 1291 SET_LMM(1000baseKX_Full); 1292 break; 1293 1294 case FW_PORT_TYPE_BP4_AP: 1295 SET_LMM(Backplane); 1296 SET_LMM(10000baseR_FEC); 1297 SET_LMM(10000baseKR_Full); 1298 SET_LMM(1000baseKX_Full); 1299 SET_LMM(10000baseKX4_Full); 1300 break; 1301 1302 case FW_PORT_TYPE_FIBER_XFI: 1303 case FW_PORT_TYPE_FIBER_XAUI: 1304 case FW_PORT_TYPE_SFP: 1305 case FW_PORT_TYPE_QSFP_10G: 1306 case FW_PORT_TYPE_QSA: 1307 SET_LMM(FIBRE); 1308 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1309 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1310 break; 1311 1312 case FW_PORT_TYPE_BP40_BA: 1313 case FW_PORT_TYPE_QSFP: 1314 SET_LMM(FIBRE); 1315 SET_LMM(40000baseSR4_Full); 1316 break; 1317 1318 case FW_PORT_TYPE_CR_QSFP: 1319 case FW_PORT_TYPE_SFP28: 1320 SET_LMM(FIBRE); 1321 SET_LMM(25000baseCR_Full); 1322 break; 1323 1324 case FW_PORT_TYPE_KR_SFP28: 1325 SET_LMM(Backplane); 1326 SET_LMM(25000baseKR_Full); 1327 break; 1328 1329 case FW_PORT_TYPE_KR_XLAUI: 1330 SET_LMM(Backplane); 1331 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1332 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1333 FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full); 1334 break; 1335 1336 case FW_PORT_TYPE_CR2_QSFP: 1337 SET_LMM(FIBRE); 1338 SET_LMM(50000baseSR2_Full); 1339 break; 1340 1341 case FW_PORT_TYPE_KR4_100G: 1342 case FW_PORT_TYPE_CR4_QSFP: 1343 SET_LMM(FIBRE); 1344 SET_LMM(100000baseCR4_Full); 1345 break; 1346 1347 default: 1348 break; 1349 } 1350 1351 FW_CAPS_TO_LMM(ANEG, Autoneg); 1352 FW_CAPS_TO_LMM(802_3_PAUSE, Pause); 1353 FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause); 1354 1355 #undef FW_CAPS_TO_LMM 1356 #undef SET_LMM 1357 } 1358 1359 static int cxgb4vf_get_link_ksettings(struct net_device *dev, 1360 struct ethtool_link_ksettings *link_ksettings) 1361 { 1362 struct port_info *pi = netdev_priv(dev); 1363 struct ethtool_link_settings *base = &link_ksettings->base; 1364 1365 /* For the nonce, the Firmware doesn't send up Port State changes 1366 * when the Virtual Interface attached to the Port is down. So 1367 * if it's down, let's grab any changes. 1368 */ 1369 if (!netif_running(dev)) 1370 (void)t4vf_update_port_info(pi); 1371 1372 ethtool_link_ksettings_zero_link_mode(link_ksettings, supported); 1373 ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising); 1374 ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising); 1375 1376 base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type); 1377 1378 if (pi->mdio_addr >= 0) { 1379 base->phy_address = pi->mdio_addr; 1380 base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII 1381 ? ETH_MDIO_SUPPORTS_C22 1382 : ETH_MDIO_SUPPORTS_C45); 1383 } else { 1384 base->phy_address = 255; 1385 base->mdio_support = 0; 1386 } 1387 1388 fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps, 1389 link_ksettings->link_modes.supported); 1390 fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps, 1391 link_ksettings->link_modes.advertising); 1392 fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps, 1393 link_ksettings->link_modes.lp_advertising); 1394 1395 if (netif_carrier_ok(dev)) { 1396 base->speed = pi->link_cfg.speed; 1397 base->duplex = DUPLEX_FULL; 1398 } else { 1399 base->speed = SPEED_UNKNOWN; 1400 base->duplex = DUPLEX_UNKNOWN; 1401 } 1402 1403 base->autoneg = pi->link_cfg.autoneg; 1404 if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG) 1405 ethtool_link_ksettings_add_link_mode(link_ksettings, 1406 supported, Autoneg); 1407 if (pi->link_cfg.autoneg) 1408 ethtool_link_ksettings_add_link_mode(link_ksettings, 1409 advertising, Autoneg); 1410 1411 return 0; 1412 } 1413 1414 /* Translate the Firmware FEC value into the ethtool value. */ 1415 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec) 1416 { 1417 unsigned int eth_fec = 0; 1418 1419 if (fw_fec & FW_PORT_CAP32_FEC_RS) 1420 eth_fec |= ETHTOOL_FEC_RS; 1421 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 1422 eth_fec |= ETHTOOL_FEC_BASER; 1423 1424 /* if nothing is set, then FEC is off */ 1425 if (!eth_fec) 1426 eth_fec = ETHTOOL_FEC_OFF; 1427 1428 return eth_fec; 1429 } 1430 1431 /* Translate Common Code FEC value into ethtool value. */ 1432 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec) 1433 { 1434 unsigned int eth_fec = 0; 1435 1436 if (cc_fec & FEC_AUTO) 1437 eth_fec |= ETHTOOL_FEC_AUTO; 1438 if (cc_fec & FEC_RS) 1439 eth_fec |= ETHTOOL_FEC_RS; 1440 if (cc_fec & FEC_BASER_RS) 1441 eth_fec |= ETHTOOL_FEC_BASER; 1442 1443 /* if nothing is set, then FEC is off */ 1444 if (!eth_fec) 1445 eth_fec = ETHTOOL_FEC_OFF; 1446 1447 return eth_fec; 1448 } 1449 1450 static int cxgb4vf_get_fecparam(struct net_device *dev, 1451 struct ethtool_fecparam *fec) 1452 { 1453 const struct port_info *pi = netdev_priv(dev); 1454 const struct link_config *lc = &pi->link_cfg; 1455 1456 /* Translate the Firmware FEC Support into the ethtool value. We 1457 * always support IEEE 802.3 "automatic" selection of Link FEC type if 1458 * any FEC is supported. 1459 */ 1460 fec->fec = fwcap_to_eth_fec(lc->pcaps); 1461 if (fec->fec != ETHTOOL_FEC_OFF) 1462 fec->fec |= ETHTOOL_FEC_AUTO; 1463 1464 /* Translate the current internal FEC parameters into the 1465 * ethtool values. 1466 */ 1467 fec->active_fec = cc_to_eth_fec(lc->fec); 1468 return 0; 1469 } 1470 1471 /* 1472 * Return our driver information. 1473 */ 1474 static void cxgb4vf_get_drvinfo(struct net_device *dev, 1475 struct ethtool_drvinfo *drvinfo) 1476 { 1477 struct adapter *adapter = netdev2adap(dev); 1478 1479 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver)); 1480 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version)); 1481 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)), 1482 sizeof(drvinfo->bus_info)); 1483 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 1484 "%u.%u.%u.%u, TP %u.%u.%u.%u", 1485 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev), 1486 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev), 1487 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev), 1488 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev), 1489 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev), 1490 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev), 1491 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev), 1492 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev)); 1493 } 1494 1495 /* 1496 * Return current adapter message level. 1497 */ 1498 static u32 cxgb4vf_get_msglevel(struct net_device *dev) 1499 { 1500 return netdev2adap(dev)->msg_enable; 1501 } 1502 1503 /* 1504 * Set current adapter message level. 1505 */ 1506 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel) 1507 { 1508 netdev2adap(dev)->msg_enable = msglevel; 1509 } 1510 1511 /* 1512 * Return the device's current Queue Set ring size parameters along with the 1513 * allowed maximum values. Since ethtool doesn't understand the concept of 1514 * multi-queue devices, we just return the current values associated with the 1515 * first Queue Set. 1516 */ 1517 static void cxgb4vf_get_ringparam(struct net_device *dev, 1518 struct ethtool_ringparam *rp) 1519 { 1520 const struct port_info *pi = netdev_priv(dev); 1521 const struct sge *s = &pi->adapter->sge; 1522 1523 rp->rx_max_pending = MAX_RX_BUFFERS; 1524 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES; 1525 rp->rx_jumbo_max_pending = 0; 1526 rp->tx_max_pending = MAX_TXQ_ENTRIES; 1527 1528 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID; 1529 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; 1530 rp->rx_jumbo_pending = 0; 1531 rp->tx_pending = s->ethtxq[pi->first_qset].q.size; 1532 } 1533 1534 /* 1535 * Set the Queue Set ring size parameters for the device. Again, since 1536 * ethtool doesn't allow for the concept of multiple queues per device, we'll 1537 * apply these new values across all of the Queue Sets associated with the 1538 * device -- after vetting them of course! 1539 */ 1540 static int cxgb4vf_set_ringparam(struct net_device *dev, 1541 struct ethtool_ringparam *rp) 1542 { 1543 const struct port_info *pi = netdev_priv(dev); 1544 struct adapter *adapter = pi->adapter; 1545 struct sge *s = &adapter->sge; 1546 int qs; 1547 1548 if (rp->rx_pending > MAX_RX_BUFFERS || 1549 rp->rx_jumbo_pending || 1550 rp->tx_pending > MAX_TXQ_ENTRIES || 1551 rp->rx_mini_pending > MAX_RSPQ_ENTRIES || 1552 rp->rx_mini_pending < MIN_RSPQ_ENTRIES || 1553 rp->rx_pending < MIN_FL_ENTRIES || 1554 rp->tx_pending < MIN_TXQ_ENTRIES) 1555 return -EINVAL; 1556 1557 if (adapter->flags & FULL_INIT_DONE) 1558 return -EBUSY; 1559 1560 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) { 1561 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID; 1562 s->ethrxq[qs].rspq.size = rp->rx_mini_pending; 1563 s->ethtxq[qs].q.size = rp->tx_pending; 1564 } 1565 return 0; 1566 } 1567 1568 /* 1569 * Return the interrupt holdoff timer and count for the first Queue Set on the 1570 * device. Our extension ioctl() (the cxgbtool interface) allows the 1571 * interrupt holdoff timer to be read on all of the device's Queue Sets. 1572 */ 1573 static int cxgb4vf_get_coalesce(struct net_device *dev, 1574 struct ethtool_coalesce *coalesce) 1575 { 1576 const struct port_info *pi = netdev_priv(dev); 1577 const struct adapter *adapter = pi->adapter; 1578 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq; 1579 1580 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq); 1581 coalesce->rx_max_coalesced_frames = 1582 ((rspq->intr_params & QINTR_CNT_EN_F) 1583 ? adapter->sge.counter_val[rspq->pktcnt_idx] 1584 : 0); 1585 return 0; 1586 } 1587 1588 /* 1589 * Set the RX interrupt holdoff timer and count for the first Queue Set on the 1590 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set 1591 * the interrupt holdoff timer on any of the device's Queue Sets. 1592 */ 1593 static int cxgb4vf_set_coalesce(struct net_device *dev, 1594 struct ethtool_coalesce *coalesce) 1595 { 1596 const struct port_info *pi = netdev_priv(dev); 1597 struct adapter *adapter = pi->adapter; 1598 1599 return set_rxq_intr_params(adapter, 1600 &adapter->sge.ethrxq[pi->first_qset].rspq, 1601 coalesce->rx_coalesce_usecs, 1602 coalesce->rx_max_coalesced_frames); 1603 } 1604 1605 /* 1606 * Report current port link pause parameter settings. 1607 */ 1608 static void cxgb4vf_get_pauseparam(struct net_device *dev, 1609 struct ethtool_pauseparam *pauseparam) 1610 { 1611 struct port_info *pi = netdev_priv(dev); 1612 1613 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; 1614 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0; 1615 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0; 1616 } 1617 1618 /* 1619 * Identify the port by blinking the port's LED. 1620 */ 1621 static int cxgb4vf_phys_id(struct net_device *dev, 1622 enum ethtool_phys_id_state state) 1623 { 1624 unsigned int val; 1625 struct port_info *pi = netdev_priv(dev); 1626 1627 if (state == ETHTOOL_ID_ACTIVE) 1628 val = 0xffff; 1629 else if (state == ETHTOOL_ID_INACTIVE) 1630 val = 0; 1631 else 1632 return -EINVAL; 1633 1634 return t4vf_identify_port(pi->adapter, pi->viid, val); 1635 } 1636 1637 /* 1638 * Port stats maintained per queue of the port. 1639 */ 1640 struct queue_port_stats { 1641 u64 tso; 1642 u64 tx_csum; 1643 u64 rx_csum; 1644 u64 vlan_ex; 1645 u64 vlan_ins; 1646 u64 lro_pkts; 1647 u64 lro_merged; 1648 }; 1649 1650 /* 1651 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that 1652 * these need to match the order of statistics returned by 1653 * t4vf_get_port_stats(). 1654 */ 1655 static const char stats_strings[][ETH_GSTRING_LEN] = { 1656 /* 1657 * These must match the layout of the t4vf_port_stats structure. 1658 */ 1659 "TxBroadcastBytes ", 1660 "TxBroadcastFrames ", 1661 "TxMulticastBytes ", 1662 "TxMulticastFrames ", 1663 "TxUnicastBytes ", 1664 "TxUnicastFrames ", 1665 "TxDroppedFrames ", 1666 "TxOffloadBytes ", 1667 "TxOffloadFrames ", 1668 "RxBroadcastBytes ", 1669 "RxBroadcastFrames ", 1670 "RxMulticastBytes ", 1671 "RxMulticastFrames ", 1672 "RxUnicastBytes ", 1673 "RxUnicastFrames ", 1674 "RxErrorFrames ", 1675 1676 /* 1677 * These are accumulated per-queue statistics and must match the 1678 * order of the fields in the queue_port_stats structure. 1679 */ 1680 "TSO ", 1681 "TxCsumOffload ", 1682 "RxCsumGood ", 1683 "VLANextractions ", 1684 "VLANinsertions ", 1685 "GROPackets ", 1686 "GROMerged ", 1687 }; 1688 1689 /* 1690 * Return the number of statistics in the specified statistics set. 1691 */ 1692 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset) 1693 { 1694 switch (sset) { 1695 case ETH_SS_STATS: 1696 return ARRAY_SIZE(stats_strings); 1697 default: 1698 return -EOPNOTSUPP; 1699 } 1700 /*NOTREACHED*/ 1701 } 1702 1703 /* 1704 * Return the strings for the specified statistics set. 1705 */ 1706 static void cxgb4vf_get_strings(struct net_device *dev, 1707 u32 sset, 1708 u8 *data) 1709 { 1710 switch (sset) { 1711 case ETH_SS_STATS: 1712 memcpy(data, stats_strings, sizeof(stats_strings)); 1713 break; 1714 } 1715 } 1716 1717 /* 1718 * Small utility routine to accumulate queue statistics across the queues of 1719 * a "port". 1720 */ 1721 static void collect_sge_port_stats(const struct adapter *adapter, 1722 const struct port_info *pi, 1723 struct queue_port_stats *stats) 1724 { 1725 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset]; 1726 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 1727 int qs; 1728 1729 memset(stats, 0, sizeof(*stats)); 1730 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 1731 stats->tso += txq->tso; 1732 stats->tx_csum += txq->tx_cso; 1733 stats->rx_csum += rxq->stats.rx_cso; 1734 stats->vlan_ex += rxq->stats.vlan_ex; 1735 stats->vlan_ins += txq->vlan_ins; 1736 stats->lro_pkts += rxq->stats.lro_pkts; 1737 stats->lro_merged += rxq->stats.lro_merged; 1738 } 1739 } 1740 1741 /* 1742 * Return the ETH_SS_STATS statistics set. 1743 */ 1744 static void cxgb4vf_get_ethtool_stats(struct net_device *dev, 1745 struct ethtool_stats *stats, 1746 u64 *data) 1747 { 1748 struct port_info *pi = netdev2pinfo(dev); 1749 struct adapter *adapter = pi->adapter; 1750 int err = t4vf_get_port_stats(adapter, pi->pidx, 1751 (struct t4vf_port_stats *)data); 1752 if (err) 1753 memset(data, 0, sizeof(struct t4vf_port_stats)); 1754 1755 data += sizeof(struct t4vf_port_stats) / sizeof(u64); 1756 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); 1757 } 1758 1759 /* 1760 * Return the size of our register map. 1761 */ 1762 static int cxgb4vf_get_regs_len(struct net_device *dev) 1763 { 1764 return T4VF_REGMAP_SIZE; 1765 } 1766 1767 /* 1768 * Dump a block of registers, start to end inclusive, into a buffer. 1769 */ 1770 static void reg_block_dump(struct adapter *adapter, void *regbuf, 1771 unsigned int start, unsigned int end) 1772 { 1773 u32 *bp = regbuf + start - T4VF_REGMAP_START; 1774 1775 for ( ; start <= end; start += sizeof(u32)) { 1776 /* 1777 * Avoid reading the Mailbox Control register since that 1778 * can trigger a Mailbox Ownership Arbitration cycle and 1779 * interfere with communication with the firmware. 1780 */ 1781 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL) 1782 *bp++ = 0xffff; 1783 else 1784 *bp++ = t4_read_reg(adapter, start); 1785 } 1786 } 1787 1788 /* 1789 * Copy our entire register map into the provided buffer. 1790 */ 1791 static void cxgb4vf_get_regs(struct net_device *dev, 1792 struct ethtool_regs *regs, 1793 void *regbuf) 1794 { 1795 struct adapter *adapter = netdev2adap(dev); 1796 1797 regs->version = mk_adap_vers(adapter); 1798 1799 /* 1800 * Fill in register buffer with our register map. 1801 */ 1802 memset(regbuf, 0, T4VF_REGMAP_SIZE); 1803 1804 reg_block_dump(adapter, regbuf, 1805 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST, 1806 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST); 1807 reg_block_dump(adapter, regbuf, 1808 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST, 1809 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST); 1810 1811 /* T5 adds new registers in the PL Register map. 1812 */ 1813 reg_block_dump(adapter, regbuf, 1814 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST, 1815 T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip) 1816 ? PL_VF_WHOAMI_A : PL_VF_REVISION_A)); 1817 reg_block_dump(adapter, regbuf, 1818 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST, 1819 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST); 1820 1821 reg_block_dump(adapter, regbuf, 1822 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST, 1823 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST); 1824 } 1825 1826 /* 1827 * Report current Wake On LAN settings. 1828 */ 1829 static void cxgb4vf_get_wol(struct net_device *dev, 1830 struct ethtool_wolinfo *wol) 1831 { 1832 wol->supported = 0; 1833 wol->wolopts = 0; 1834 memset(&wol->sopass, 0, sizeof(wol->sopass)); 1835 } 1836 1837 /* 1838 * TCP Segmentation Offload flags which we support. 1839 */ 1840 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1841 1842 static const struct ethtool_ops cxgb4vf_ethtool_ops = { 1843 .get_link_ksettings = cxgb4vf_get_link_ksettings, 1844 .get_fecparam = cxgb4vf_get_fecparam, 1845 .get_drvinfo = cxgb4vf_get_drvinfo, 1846 .get_msglevel = cxgb4vf_get_msglevel, 1847 .set_msglevel = cxgb4vf_set_msglevel, 1848 .get_ringparam = cxgb4vf_get_ringparam, 1849 .set_ringparam = cxgb4vf_set_ringparam, 1850 .get_coalesce = cxgb4vf_get_coalesce, 1851 .set_coalesce = cxgb4vf_set_coalesce, 1852 .get_pauseparam = cxgb4vf_get_pauseparam, 1853 .get_link = ethtool_op_get_link, 1854 .get_strings = cxgb4vf_get_strings, 1855 .set_phys_id = cxgb4vf_phys_id, 1856 .get_sset_count = cxgb4vf_get_sset_count, 1857 .get_ethtool_stats = cxgb4vf_get_ethtool_stats, 1858 .get_regs_len = cxgb4vf_get_regs_len, 1859 .get_regs = cxgb4vf_get_regs, 1860 .get_wol = cxgb4vf_get_wol, 1861 }; 1862 1863 /* 1864 * /sys/kernel/debug/cxgb4vf support code and data. 1865 * ================================================ 1866 */ 1867 1868 /* 1869 * Show Firmware Mailbox Command/Reply Log 1870 * 1871 * Note that we don't do any locking when dumping the Firmware Mailbox Log so 1872 * it's possible that we can catch things during a log update and therefore 1873 * see partially corrupted log entries. But i9t's probably Good Enough(tm). 1874 * If we ever decide that we want to make sure that we're dumping a coherent 1875 * log, we'd need to perform locking in the mailbox logging and in 1876 * mboxlog_open() where we'd need to grab the entire mailbox log in one go 1877 * like we do for the Firmware Device Log. But as stated above, meh ... 1878 */ 1879 static int mboxlog_show(struct seq_file *seq, void *v) 1880 { 1881 struct adapter *adapter = seq->private; 1882 struct mbox_cmd_log *log = adapter->mbox_log; 1883 struct mbox_cmd *entry; 1884 int entry_idx, i; 1885 1886 if (v == SEQ_START_TOKEN) { 1887 seq_printf(seq, 1888 "%10s %15s %5s %5s %s\n", 1889 "Seq#", "Tstamp", "Atime", "Etime", 1890 "Command/Reply"); 1891 return 0; 1892 } 1893 1894 entry_idx = log->cursor + ((uintptr_t)v - 2); 1895 if (entry_idx >= log->size) 1896 entry_idx -= log->size; 1897 entry = mbox_cmd_log_entry(log, entry_idx); 1898 1899 /* skip over unused entries */ 1900 if (entry->timestamp == 0) 1901 return 0; 1902 1903 seq_printf(seq, "%10u %15llu %5d %5d", 1904 entry->seqno, entry->timestamp, 1905 entry->access, entry->execute); 1906 for (i = 0; i < MBOX_LEN / 8; i++) { 1907 u64 flit = entry->cmd[i]; 1908 u32 hi = (u32)(flit >> 32); 1909 u32 lo = (u32)flit; 1910 1911 seq_printf(seq, " %08x %08x", hi, lo); 1912 } 1913 seq_puts(seq, "\n"); 1914 return 0; 1915 } 1916 1917 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos) 1918 { 1919 struct adapter *adapter = seq->private; 1920 struct mbox_cmd_log *log = adapter->mbox_log; 1921 1922 return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL); 1923 } 1924 1925 static void *mboxlog_start(struct seq_file *seq, loff_t *pos) 1926 { 1927 return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN; 1928 } 1929 1930 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos) 1931 { 1932 ++*pos; 1933 return mboxlog_get_idx(seq, *pos); 1934 } 1935 1936 static void mboxlog_stop(struct seq_file *seq, void *v) 1937 { 1938 } 1939 1940 static const struct seq_operations mboxlog_seq_ops = { 1941 .start = mboxlog_start, 1942 .next = mboxlog_next, 1943 .stop = mboxlog_stop, 1944 .show = mboxlog_show 1945 }; 1946 1947 static int mboxlog_open(struct inode *inode, struct file *file) 1948 { 1949 int res = seq_open(file, &mboxlog_seq_ops); 1950 1951 if (!res) { 1952 struct seq_file *seq = file->private_data; 1953 1954 seq->private = inode->i_private; 1955 } 1956 return res; 1957 } 1958 1959 static const struct file_operations mboxlog_fops = { 1960 .owner = THIS_MODULE, 1961 .open = mboxlog_open, 1962 .read = seq_read, 1963 .llseek = seq_lseek, 1964 .release = seq_release, 1965 }; 1966 1967 /* 1968 * Show SGE Queue Set information. We display QPL Queues Sets per line. 1969 */ 1970 #define QPL 4 1971 1972 static int sge_qinfo_show(struct seq_file *seq, void *v) 1973 { 1974 struct adapter *adapter = seq->private; 1975 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 1976 int qs, r = (uintptr_t)v - 1; 1977 1978 if (r) 1979 seq_putc(seq, '\n'); 1980 1981 #define S3(fmt_spec, s, v) \ 1982 do {\ 1983 seq_printf(seq, "%-12s", s); \ 1984 for (qs = 0; qs < n; ++qs) \ 1985 seq_printf(seq, " %16" fmt_spec, v); \ 1986 seq_putc(seq, '\n'); \ 1987 } while (0) 1988 #define S(s, v) S3("s", s, v) 1989 #define T(s, v) S3("u", s, txq[qs].v) 1990 #define R(s, v) S3("u", s, rxq[qs].v) 1991 1992 if (r < eth_entries) { 1993 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 1994 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 1995 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 1996 1997 S("QType:", "Ethernet"); 1998 S("Interface:", 1999 (rxq[qs].rspq.netdev 2000 ? rxq[qs].rspq.netdev->name 2001 : "N/A")); 2002 S3("d", "Port:", 2003 (rxq[qs].rspq.netdev 2004 ? ((struct port_info *) 2005 netdev_priv(rxq[qs].rspq.netdev))->port_id 2006 : -1)); 2007 T("TxQ ID:", q.abs_id); 2008 T("TxQ size:", q.size); 2009 T("TxQ inuse:", q.in_use); 2010 T("TxQ PIdx:", q.pidx); 2011 T("TxQ CIdx:", q.cidx); 2012 R("RspQ ID:", rspq.abs_id); 2013 R("RspQ size:", rspq.size); 2014 R("RspQE size:", rspq.iqe_len); 2015 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq)); 2016 S3("u", "Intr pktcnt:", 2017 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]); 2018 R("RspQ CIdx:", rspq.cidx); 2019 R("RspQ Gen:", rspq.gen); 2020 R("FL ID:", fl.abs_id); 2021 R("FL size:", fl.size - MIN_FL_RESID); 2022 R("FL avail:", fl.avail); 2023 R("FL PIdx:", fl.pidx); 2024 R("FL CIdx:", fl.cidx); 2025 return 0; 2026 } 2027 2028 r -= eth_entries; 2029 if (r == 0) { 2030 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2031 2032 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue"); 2033 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id); 2034 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2035 qtimer_val(adapter, evtq)); 2036 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2037 adapter->sge.counter_val[evtq->pktcnt_idx]); 2038 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx); 2039 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen); 2040 } else if (r == 1) { 2041 const struct sge_rspq *intrq = &adapter->sge.intrq; 2042 2043 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue"); 2044 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id); 2045 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2046 qtimer_val(adapter, intrq)); 2047 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2048 adapter->sge.counter_val[intrq->pktcnt_idx]); 2049 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx); 2050 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen); 2051 } 2052 2053 #undef R 2054 #undef T 2055 #undef S 2056 #undef S3 2057 2058 return 0; 2059 } 2060 2061 /* 2062 * Return the number of "entries" in our "file". We group the multi-Queue 2063 * sections with QPL Queue Sets per "entry". The sections of the output are: 2064 * 2065 * Ethernet RX/TX Queue Sets 2066 * Firmware Event Queue 2067 * Forwarded Interrupt Queue (if in MSI mode) 2068 */ 2069 static int sge_queue_entries(const struct adapter *adapter) 2070 { 2071 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2072 ((adapter->flags & USING_MSI) != 0); 2073 } 2074 2075 static void *sge_queue_start(struct seq_file *seq, loff_t *pos) 2076 { 2077 int entries = sge_queue_entries(seq->private); 2078 2079 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2080 } 2081 2082 static void sge_queue_stop(struct seq_file *seq, void *v) 2083 { 2084 } 2085 2086 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos) 2087 { 2088 int entries = sge_queue_entries(seq->private); 2089 2090 ++*pos; 2091 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2092 } 2093 2094 static const struct seq_operations sge_qinfo_seq_ops = { 2095 .start = sge_queue_start, 2096 .next = sge_queue_next, 2097 .stop = sge_queue_stop, 2098 .show = sge_qinfo_show 2099 }; 2100 2101 static int sge_qinfo_open(struct inode *inode, struct file *file) 2102 { 2103 int res = seq_open(file, &sge_qinfo_seq_ops); 2104 2105 if (!res) { 2106 struct seq_file *seq = file->private_data; 2107 seq->private = inode->i_private; 2108 } 2109 return res; 2110 } 2111 2112 static const struct file_operations sge_qinfo_debugfs_fops = { 2113 .owner = THIS_MODULE, 2114 .open = sge_qinfo_open, 2115 .read = seq_read, 2116 .llseek = seq_lseek, 2117 .release = seq_release, 2118 }; 2119 2120 /* 2121 * Show SGE Queue Set statistics. We display QPL Queues Sets per line. 2122 */ 2123 #define QPL 4 2124 2125 static int sge_qstats_show(struct seq_file *seq, void *v) 2126 { 2127 struct adapter *adapter = seq->private; 2128 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2129 int qs, r = (uintptr_t)v - 1; 2130 2131 if (r) 2132 seq_putc(seq, '\n'); 2133 2134 #define S3(fmt, s, v) \ 2135 do { \ 2136 seq_printf(seq, "%-16s", s); \ 2137 for (qs = 0; qs < n; ++qs) \ 2138 seq_printf(seq, " %8" fmt, v); \ 2139 seq_putc(seq, '\n'); \ 2140 } while (0) 2141 #define S(s, v) S3("s", s, v) 2142 2143 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v) 2144 #define T(s, v) T3("lu", s, v) 2145 2146 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v) 2147 #define R(s, v) R3("lu", s, v) 2148 2149 if (r < eth_entries) { 2150 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2151 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2152 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2153 2154 S("QType:", "Ethernet"); 2155 S("Interface:", 2156 (rxq[qs].rspq.netdev 2157 ? rxq[qs].rspq.netdev->name 2158 : "N/A")); 2159 R3("u", "RspQNullInts:", rspq.unhandled_irqs); 2160 R("RxPackets:", stats.pkts); 2161 R("RxCSO:", stats.rx_cso); 2162 R("VLANxtract:", stats.vlan_ex); 2163 R("LROmerged:", stats.lro_merged); 2164 R("LROpackets:", stats.lro_pkts); 2165 R("RxDrops:", stats.rx_drops); 2166 T("TSO:", tso); 2167 T("TxCSO:", tx_cso); 2168 T("VLANins:", vlan_ins); 2169 T("TxQFull:", q.stops); 2170 T("TxQRestarts:", q.restarts); 2171 T("TxMapErr:", mapping_err); 2172 R("FLAllocErr:", fl.alloc_failed); 2173 R("FLLrgAlcErr:", fl.large_alloc_failed); 2174 R("FLStarving:", fl.starving); 2175 return 0; 2176 } 2177 2178 r -= eth_entries; 2179 if (r == 0) { 2180 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2181 2182 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue"); 2183 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2184 evtq->unhandled_irqs); 2185 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx); 2186 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen); 2187 } else if (r == 1) { 2188 const struct sge_rspq *intrq = &adapter->sge.intrq; 2189 2190 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue"); 2191 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2192 intrq->unhandled_irqs); 2193 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx); 2194 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen); 2195 } 2196 2197 #undef R 2198 #undef T 2199 #undef S 2200 #undef R3 2201 #undef T3 2202 #undef S3 2203 2204 return 0; 2205 } 2206 2207 /* 2208 * Return the number of "entries" in our "file". We group the multi-Queue 2209 * sections with QPL Queue Sets per "entry". The sections of the output are: 2210 * 2211 * Ethernet RX/TX Queue Sets 2212 * Firmware Event Queue 2213 * Forwarded Interrupt Queue (if in MSI mode) 2214 */ 2215 static int sge_qstats_entries(const struct adapter *adapter) 2216 { 2217 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2218 ((adapter->flags & USING_MSI) != 0); 2219 } 2220 2221 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos) 2222 { 2223 int entries = sge_qstats_entries(seq->private); 2224 2225 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2226 } 2227 2228 static void sge_qstats_stop(struct seq_file *seq, void *v) 2229 { 2230 } 2231 2232 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos) 2233 { 2234 int entries = sge_qstats_entries(seq->private); 2235 2236 (*pos)++; 2237 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2238 } 2239 2240 static const struct seq_operations sge_qstats_seq_ops = { 2241 .start = sge_qstats_start, 2242 .next = sge_qstats_next, 2243 .stop = sge_qstats_stop, 2244 .show = sge_qstats_show 2245 }; 2246 2247 static int sge_qstats_open(struct inode *inode, struct file *file) 2248 { 2249 int res = seq_open(file, &sge_qstats_seq_ops); 2250 2251 if (res == 0) { 2252 struct seq_file *seq = file->private_data; 2253 seq->private = inode->i_private; 2254 } 2255 return res; 2256 } 2257 2258 static const struct file_operations sge_qstats_proc_fops = { 2259 .owner = THIS_MODULE, 2260 .open = sge_qstats_open, 2261 .read = seq_read, 2262 .llseek = seq_lseek, 2263 .release = seq_release, 2264 }; 2265 2266 /* 2267 * Show PCI-E SR-IOV Virtual Function Resource Limits. 2268 */ 2269 static int resources_show(struct seq_file *seq, void *v) 2270 { 2271 struct adapter *adapter = seq->private; 2272 struct vf_resources *vfres = &adapter->params.vfres; 2273 2274 #define S(desc, fmt, var) \ 2275 seq_printf(seq, "%-60s " fmt "\n", \ 2276 desc " (" #var "):", vfres->var) 2277 2278 S("Virtual Interfaces", "%d", nvi); 2279 S("Egress Queues", "%d", neq); 2280 S("Ethernet Control", "%d", nethctrl); 2281 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint); 2282 S("Ingress Queues", "%d", niq); 2283 S("Traffic Class", "%d", tc); 2284 S("Port Access Rights Mask", "%#x", pmask); 2285 S("MAC Address Filters", "%d", nexactf); 2286 S("Firmware Command Read Capabilities", "%#x", r_caps); 2287 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps); 2288 2289 #undef S 2290 2291 return 0; 2292 } 2293 2294 static int resources_open(struct inode *inode, struct file *file) 2295 { 2296 return single_open(file, resources_show, inode->i_private); 2297 } 2298 2299 static const struct file_operations resources_proc_fops = { 2300 .owner = THIS_MODULE, 2301 .open = resources_open, 2302 .read = seq_read, 2303 .llseek = seq_lseek, 2304 .release = single_release, 2305 }; 2306 2307 /* 2308 * Show Virtual Interfaces. 2309 */ 2310 static int interfaces_show(struct seq_file *seq, void *v) 2311 { 2312 if (v == SEQ_START_TOKEN) { 2313 seq_puts(seq, "Interface Port VIID\n"); 2314 } else { 2315 struct adapter *adapter = seq->private; 2316 int pidx = (uintptr_t)v - 2; 2317 struct net_device *dev = adapter->port[pidx]; 2318 struct port_info *pi = netdev_priv(dev); 2319 2320 seq_printf(seq, "%9s %4d %#5x\n", 2321 dev->name, pi->port_id, pi->viid); 2322 } 2323 return 0; 2324 } 2325 2326 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos) 2327 { 2328 return pos <= adapter->params.nports 2329 ? (void *)(uintptr_t)(pos + 1) 2330 : NULL; 2331 } 2332 2333 static void *interfaces_start(struct seq_file *seq, loff_t *pos) 2334 { 2335 return *pos 2336 ? interfaces_get_idx(seq->private, *pos) 2337 : SEQ_START_TOKEN; 2338 } 2339 2340 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos) 2341 { 2342 (*pos)++; 2343 return interfaces_get_idx(seq->private, *pos); 2344 } 2345 2346 static void interfaces_stop(struct seq_file *seq, void *v) 2347 { 2348 } 2349 2350 static const struct seq_operations interfaces_seq_ops = { 2351 .start = interfaces_start, 2352 .next = interfaces_next, 2353 .stop = interfaces_stop, 2354 .show = interfaces_show 2355 }; 2356 2357 static int interfaces_open(struct inode *inode, struct file *file) 2358 { 2359 int res = seq_open(file, &interfaces_seq_ops); 2360 2361 if (res == 0) { 2362 struct seq_file *seq = file->private_data; 2363 seq->private = inode->i_private; 2364 } 2365 return res; 2366 } 2367 2368 static const struct file_operations interfaces_proc_fops = { 2369 .owner = THIS_MODULE, 2370 .open = interfaces_open, 2371 .read = seq_read, 2372 .llseek = seq_lseek, 2373 .release = seq_release, 2374 }; 2375 2376 /* 2377 * /sys/kernel/debugfs/cxgb4vf/ files list. 2378 */ 2379 struct cxgb4vf_debugfs_entry { 2380 const char *name; /* name of debugfs node */ 2381 umode_t mode; /* file system mode */ 2382 const struct file_operations *fops; 2383 }; 2384 2385 static struct cxgb4vf_debugfs_entry debugfs_files[] = { 2386 { "mboxlog", S_IRUGO, &mboxlog_fops }, 2387 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops }, 2388 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops }, 2389 { "resources", S_IRUGO, &resources_proc_fops }, 2390 { "interfaces", S_IRUGO, &interfaces_proc_fops }, 2391 }; 2392 2393 /* 2394 * Module and device initialization and cleanup code. 2395 * ================================================== 2396 */ 2397 2398 /* 2399 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the 2400 * directory (debugfs_root) has already been set up. 2401 */ 2402 static int setup_debugfs(struct adapter *adapter) 2403 { 2404 int i; 2405 2406 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2407 2408 /* 2409 * Debugfs support is best effort. 2410 */ 2411 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) 2412 (void)debugfs_create_file(debugfs_files[i].name, 2413 debugfs_files[i].mode, 2414 adapter->debugfs_root, 2415 (void *)adapter, 2416 debugfs_files[i].fops); 2417 2418 return 0; 2419 } 2420 2421 /* 2422 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave 2423 * it to our caller to tear down the directory (debugfs_root). 2424 */ 2425 static void cleanup_debugfs(struct adapter *adapter) 2426 { 2427 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2428 2429 /* 2430 * Unlike our sister routine cleanup_proc(), we don't need to remove 2431 * individual entries because a call will be made to 2432 * debugfs_remove_recursive(). We just need to clean up any ancillary 2433 * persistent state. 2434 */ 2435 /* nothing to do */ 2436 } 2437 2438 /* Figure out how many Ports and Queue Sets we can support. This depends on 2439 * knowing our Virtual Function Resources and may be called a second time if 2440 * we fall back from MSI-X to MSI Interrupt Mode. 2441 */ 2442 static void size_nports_qsets(struct adapter *adapter) 2443 { 2444 struct vf_resources *vfres = &adapter->params.vfres; 2445 unsigned int ethqsets, pmask_nports; 2446 2447 /* The number of "ports" which we support is equal to the number of 2448 * Virtual Interfaces with which we've been provisioned. 2449 */ 2450 adapter->params.nports = vfres->nvi; 2451 if (adapter->params.nports > MAX_NPORTS) { 2452 dev_warn(adapter->pdev_dev, "only using %d of %d maximum" 2453 " allowed virtual interfaces\n", MAX_NPORTS, 2454 adapter->params.nports); 2455 adapter->params.nports = MAX_NPORTS; 2456 } 2457 2458 /* We may have been provisioned with more VIs than the number of 2459 * ports we're allowed to access (our Port Access Rights Mask). 2460 * This is obviously a configuration conflict but we don't want to 2461 * crash the kernel or anything silly just because of that. 2462 */ 2463 pmask_nports = hweight32(adapter->params.vfres.pmask); 2464 if (pmask_nports < adapter->params.nports) { 2465 dev_warn(adapter->pdev_dev, "only using %d of %d provisioned" 2466 " virtual interfaces; limited by Port Access Rights" 2467 " mask %#x\n", pmask_nports, adapter->params.nports, 2468 adapter->params.vfres.pmask); 2469 adapter->params.nports = pmask_nports; 2470 } 2471 2472 /* We need to reserve an Ingress Queue for the Asynchronous Firmware 2473 * Event Queue. And if we're using MSI Interrupts, we'll also need to 2474 * reserve an Ingress Queue for a Forwarded Interrupts. 2475 * 2476 * The rest of the FL/Intr-capable ingress queues will be matched up 2477 * one-for-one with Ethernet/Control egress queues in order to form 2478 * "Queue Sets" which will be aportioned between the "ports". For 2479 * each Queue Set, we'll need the ability to allocate two Egress 2480 * Contexts -- one for the Ingress Queue Free List and one for the TX 2481 * Ethernet Queue. 2482 * 2483 * Note that even if we're currently configured to use MSI-X 2484 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded 2485 * to MSI Interrupts if we can't get enough MSI-X Interrupts. If that 2486 * happens we'll need to adjust things later. 2487 */ 2488 ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI); 2489 if (vfres->nethctrl != ethqsets) 2490 ethqsets = min(vfres->nethctrl, ethqsets); 2491 if (vfres->neq < ethqsets*2) 2492 ethqsets = vfres->neq/2; 2493 if (ethqsets > MAX_ETH_QSETS) 2494 ethqsets = MAX_ETH_QSETS; 2495 adapter->sge.max_ethqsets = ethqsets; 2496 2497 if (adapter->sge.max_ethqsets < adapter->params.nports) { 2498 dev_warn(adapter->pdev_dev, "only using %d of %d available" 2499 " virtual interfaces (too few Queue Sets)\n", 2500 adapter->sge.max_ethqsets, adapter->params.nports); 2501 adapter->params.nports = adapter->sge.max_ethqsets; 2502 } 2503 } 2504 2505 /* 2506 * Perform early "adapter" initialization. This is where we discover what 2507 * adapter parameters we're going to be using and initialize basic adapter 2508 * hardware support. 2509 */ 2510 static int adap_init0(struct adapter *adapter) 2511 { 2512 struct sge_params *sge_params = &adapter->params.sge; 2513 struct sge *s = &adapter->sge; 2514 int err; 2515 u32 param, val = 0; 2516 2517 /* 2518 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux 2519 * 2.6.31 and later we can't call pci_reset_function() in order to 2520 * issue an FLR because of a self- deadlock on the device semaphore. 2521 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the 2522 * cases where they're needed -- for instance, some versions of KVM 2523 * fail to reset "Assigned Devices" when the VM reboots. Therefore we 2524 * use the firmware based reset in order to reset any per function 2525 * state. 2526 */ 2527 err = t4vf_fw_reset(adapter); 2528 if (err < 0) { 2529 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err); 2530 return err; 2531 } 2532 2533 /* 2534 * Grab basic operational parameters. These will predominantly have 2535 * been set up by the Physical Function Driver or will be hard coded 2536 * into the adapter. We just have to live with them ... Note that 2537 * we _must_ get our VPD parameters before our SGE parameters because 2538 * we need to know the adapter's core clock from the VPD in order to 2539 * properly decode the SGE Timer Values. 2540 */ 2541 err = t4vf_get_dev_params(adapter); 2542 if (err) { 2543 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2544 " device parameters: err=%d\n", err); 2545 return err; 2546 } 2547 err = t4vf_get_vpd_params(adapter); 2548 if (err) { 2549 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2550 " VPD parameters: err=%d\n", err); 2551 return err; 2552 } 2553 err = t4vf_get_sge_params(adapter); 2554 if (err) { 2555 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2556 " SGE parameters: err=%d\n", err); 2557 return err; 2558 } 2559 err = t4vf_get_rss_glb_config(adapter); 2560 if (err) { 2561 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2562 " RSS parameters: err=%d\n", err); 2563 return err; 2564 } 2565 if (adapter->params.rss.mode != 2566 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 2567 dev_err(adapter->pdev_dev, "unable to operate with global RSS" 2568 " mode %d\n", adapter->params.rss.mode); 2569 return -EINVAL; 2570 } 2571 err = t4vf_sge_init(adapter); 2572 if (err) { 2573 dev_err(adapter->pdev_dev, "unable to use adapter parameters:" 2574 " err=%d\n", err); 2575 return err; 2576 } 2577 2578 /* If we're running on newer firmware, let it know that we're 2579 * prepared to deal with encapsulated CPL messages. Older 2580 * firmware won't understand this and we'll just get 2581 * unencapsulated messages ... 2582 */ 2583 param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2584 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP); 2585 val = 1; 2586 (void) t4vf_set_params(adapter, 1, ¶m, &val); 2587 2588 /* 2589 * Retrieve our RX interrupt holdoff timer values and counter 2590 * threshold values from the SGE parameters. 2591 */ 2592 s->timer_val[0] = core_ticks_to_us(adapter, 2593 TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1)); 2594 s->timer_val[1] = core_ticks_to_us(adapter, 2595 TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1)); 2596 s->timer_val[2] = core_ticks_to_us(adapter, 2597 TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3)); 2598 s->timer_val[3] = core_ticks_to_us(adapter, 2599 TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3)); 2600 s->timer_val[4] = core_ticks_to_us(adapter, 2601 TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5)); 2602 s->timer_val[5] = core_ticks_to_us(adapter, 2603 TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5)); 2604 2605 s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold); 2606 s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold); 2607 s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold); 2608 s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold); 2609 2610 /* 2611 * Grab our Virtual Interface resource allocation, extract the 2612 * features that we're interested in and do a bit of sanity testing on 2613 * what we discover. 2614 */ 2615 err = t4vf_get_vfres(adapter); 2616 if (err) { 2617 dev_err(adapter->pdev_dev, "unable to get virtual interface" 2618 " resources: err=%d\n", err); 2619 return err; 2620 } 2621 2622 /* Check for various parameter sanity issues */ 2623 if (adapter->params.vfres.pmask == 0) { 2624 dev_err(adapter->pdev_dev, "no port access configured\n" 2625 "usable!\n"); 2626 return -EINVAL; 2627 } 2628 if (adapter->params.vfres.nvi == 0) { 2629 dev_err(adapter->pdev_dev, "no virtual interfaces configured/" 2630 "usable!\n"); 2631 return -EINVAL; 2632 } 2633 2634 /* Initialize nports and max_ethqsets now that we have our Virtual 2635 * Function Resources. 2636 */ 2637 size_nports_qsets(adapter); 2638 2639 return 0; 2640 } 2641 2642 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx, 2643 u8 pkt_cnt_idx, unsigned int size, 2644 unsigned int iqe_size) 2645 { 2646 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 2647 (pkt_cnt_idx < SGE_NCOUNTERS ? 2648 QINTR_CNT_EN_F : 0)); 2649 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS 2650 ? pkt_cnt_idx 2651 : 0); 2652 rspq->iqe_len = iqe_size; 2653 rspq->size = size; 2654 } 2655 2656 /* 2657 * Perform default configuration of DMA queues depending on the number and 2658 * type of ports we found and the number of available CPUs. Most settings can 2659 * be modified by the admin via ethtool and cxgbtool prior to the adapter 2660 * being brought up for the first time. 2661 */ 2662 static void cfg_queues(struct adapter *adapter) 2663 { 2664 struct sge *s = &adapter->sge; 2665 int q10g, n10g, qidx, pidx, qs; 2666 size_t iqe_size; 2667 2668 /* 2669 * We should not be called till we know how many Queue Sets we can 2670 * support. In particular, this means that we need to know what kind 2671 * of interrupts we'll be using ... 2672 */ 2673 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 2674 2675 /* 2676 * Count the number of 10GbE Virtual Interfaces that we have. 2677 */ 2678 n10g = 0; 2679 for_each_port(adapter, pidx) 2680 n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg); 2681 2682 /* 2683 * We default to 1 queue per non-10G port and up to # of cores queues 2684 * per 10G port. 2685 */ 2686 if (n10g == 0) 2687 q10g = 0; 2688 else { 2689 int n1g = (adapter->params.nports - n10g); 2690 q10g = (adapter->sge.max_ethqsets - n1g) / n10g; 2691 if (q10g > num_online_cpus()) 2692 q10g = num_online_cpus(); 2693 } 2694 2695 /* 2696 * Allocate the "Queue Sets" to the various Virtual Interfaces. 2697 * The layout will be established in setup_sge_queues() when the 2698 * adapter is brough up for the first time. 2699 */ 2700 qidx = 0; 2701 for_each_port(adapter, pidx) { 2702 struct port_info *pi = adap2pinfo(adapter, pidx); 2703 2704 pi->first_qset = qidx; 2705 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 2706 qidx += pi->nqsets; 2707 } 2708 s->ethqsets = qidx; 2709 2710 /* 2711 * The Ingress Queue Entry Size for our various Response Queues needs 2712 * to be big enough to accommodate the largest message we can receive 2713 * from the chip/firmware; which is 64 bytes ... 2714 */ 2715 iqe_size = 64; 2716 2717 /* 2718 * Set up default Queue Set parameters ... Start off with the 2719 * shortest interrupt holdoff timer. 2720 */ 2721 for (qs = 0; qs < s->max_ethqsets; qs++) { 2722 struct sge_eth_rxq *rxq = &s->ethrxq[qs]; 2723 struct sge_eth_txq *txq = &s->ethtxq[qs]; 2724 2725 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size); 2726 rxq->fl.size = 72; 2727 txq->q.size = 1024; 2728 } 2729 2730 /* 2731 * The firmware event queue is used for link state changes and 2732 * notifications of TX DMA completions. 2733 */ 2734 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size); 2735 2736 /* 2737 * The forwarded interrupt queue is used when we're in MSI interrupt 2738 * mode. In this mode all interrupts associated with RX queues will 2739 * be forwarded to a single queue which we'll associate with our MSI 2740 * interrupt vector. The messages dropped in the forwarded interrupt 2741 * queue will indicate which ingress queue needs servicing ... This 2742 * queue needs to be large enough to accommodate all of the ingress 2743 * queues which are forwarding their interrupt (+1 to prevent the PIDX 2744 * from equalling the CIDX if every ingress queue has an outstanding 2745 * interrupt). The queue doesn't need to be any larger because no 2746 * ingress queue will ever have more than one outstanding interrupt at 2747 * any time ... 2748 */ 2749 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1, 2750 iqe_size); 2751 } 2752 2753 /* 2754 * Reduce the number of Ethernet queues across all ports to at most n. 2755 * n provides at least one queue per port. 2756 */ 2757 static void reduce_ethqs(struct adapter *adapter, int n) 2758 { 2759 int i; 2760 struct port_info *pi; 2761 2762 /* 2763 * While we have too many active Ether Queue Sets, interate across the 2764 * "ports" and reduce their individual Queue Set allocations. 2765 */ 2766 BUG_ON(n < adapter->params.nports); 2767 while (n < adapter->sge.ethqsets) 2768 for_each_port(adapter, i) { 2769 pi = adap2pinfo(adapter, i); 2770 if (pi->nqsets > 1) { 2771 pi->nqsets--; 2772 adapter->sge.ethqsets--; 2773 if (adapter->sge.ethqsets <= n) 2774 break; 2775 } 2776 } 2777 2778 /* 2779 * Reassign the starting Queue Sets for each of the "ports" ... 2780 */ 2781 n = 0; 2782 for_each_port(adapter, i) { 2783 pi = adap2pinfo(adapter, i); 2784 pi->first_qset = n; 2785 n += pi->nqsets; 2786 } 2787 } 2788 2789 /* 2790 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally 2791 * we get a separate MSI-X vector for every "Queue Set" plus any extras we 2792 * need. Minimally we need one for every Virtual Interface plus those needed 2793 * for our "extras". Note that this process may lower the maximum number of 2794 * allowed Queue Sets ... 2795 */ 2796 static int enable_msix(struct adapter *adapter) 2797 { 2798 int i, want, need, nqsets; 2799 struct msix_entry entries[MSIX_ENTRIES]; 2800 struct sge *s = &adapter->sge; 2801 2802 for (i = 0; i < MSIX_ENTRIES; ++i) 2803 entries[i].entry = i; 2804 2805 /* 2806 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets" 2807 * plus those needed for our "extras" (for example, the firmware 2808 * message queue). We _need_ at least one "Queue Set" per Virtual 2809 * Interface plus those needed for our "extras". So now we get to see 2810 * if the song is right ... 2811 */ 2812 want = s->max_ethqsets + MSIX_EXTRAS; 2813 need = adapter->params.nports + MSIX_EXTRAS; 2814 2815 want = pci_enable_msix_range(adapter->pdev, entries, need, want); 2816 if (want < 0) 2817 return want; 2818 2819 nqsets = want - MSIX_EXTRAS; 2820 if (nqsets < s->max_ethqsets) { 2821 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors" 2822 " for %d Queue Sets\n", nqsets); 2823 s->max_ethqsets = nqsets; 2824 if (nqsets < s->ethqsets) 2825 reduce_ethqs(adapter, nqsets); 2826 } 2827 for (i = 0; i < want; ++i) 2828 adapter->msix_info[i].vec = entries[i].vector; 2829 2830 return 0; 2831 } 2832 2833 static const struct net_device_ops cxgb4vf_netdev_ops = { 2834 .ndo_open = cxgb4vf_open, 2835 .ndo_stop = cxgb4vf_stop, 2836 .ndo_start_xmit = t4vf_eth_xmit, 2837 .ndo_get_stats = cxgb4vf_get_stats, 2838 .ndo_set_rx_mode = cxgb4vf_set_rxmode, 2839 .ndo_set_mac_address = cxgb4vf_set_mac_addr, 2840 .ndo_validate_addr = eth_validate_addr, 2841 .ndo_do_ioctl = cxgb4vf_do_ioctl, 2842 .ndo_change_mtu = cxgb4vf_change_mtu, 2843 .ndo_fix_features = cxgb4vf_fix_features, 2844 .ndo_set_features = cxgb4vf_set_features, 2845 #ifdef CONFIG_NET_POLL_CONTROLLER 2846 .ndo_poll_controller = cxgb4vf_poll_controller, 2847 #endif 2848 }; 2849 2850 /* 2851 * "Probe" a device: initialize a device and construct all kernel and driver 2852 * state needed to manage the device. This routine is called "init_one" in 2853 * the PF Driver ... 2854 */ 2855 static int cxgb4vf_pci_probe(struct pci_dev *pdev, 2856 const struct pci_device_id *ent) 2857 { 2858 int pci_using_dac; 2859 int err, pidx; 2860 unsigned int pmask; 2861 struct adapter *adapter; 2862 struct port_info *pi; 2863 struct net_device *netdev; 2864 unsigned int pf; 2865 2866 /* 2867 * Print our driver banner the first time we're called to initialize a 2868 * device. 2869 */ 2870 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION); 2871 2872 /* 2873 * Initialize generic PCI device state. 2874 */ 2875 err = pci_enable_device(pdev); 2876 if (err) { 2877 dev_err(&pdev->dev, "cannot enable PCI device\n"); 2878 return err; 2879 } 2880 2881 /* 2882 * Reserve PCI resources for the device. If we can't get them some 2883 * other driver may have already claimed the device ... 2884 */ 2885 err = pci_request_regions(pdev, KBUILD_MODNAME); 2886 if (err) { 2887 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 2888 goto err_disable_device; 2889 } 2890 2891 /* 2892 * Set up our DMA mask: try for 64-bit address masking first and 2893 * fall back to 32-bit if we can't get 64 bits ... 2894 */ 2895 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 2896 if (err == 0) { 2897 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 2898 if (err) { 2899 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for" 2900 " coherent allocations\n"); 2901 goto err_release_regions; 2902 } 2903 pci_using_dac = 1; 2904 } else { 2905 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2906 if (err != 0) { 2907 dev_err(&pdev->dev, "no usable DMA configuration\n"); 2908 goto err_release_regions; 2909 } 2910 pci_using_dac = 0; 2911 } 2912 2913 /* 2914 * Enable bus mastering for the device ... 2915 */ 2916 pci_set_master(pdev); 2917 2918 /* 2919 * Allocate our adapter data structure and attach it to the device. 2920 */ 2921 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 2922 if (!adapter) { 2923 err = -ENOMEM; 2924 goto err_release_regions; 2925 } 2926 pci_set_drvdata(pdev, adapter); 2927 adapter->pdev = pdev; 2928 adapter->pdev_dev = &pdev->dev; 2929 2930 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 2931 (sizeof(struct mbox_cmd) * 2932 T4VF_OS_LOG_MBOX_CMDS), 2933 GFP_KERNEL); 2934 if (!adapter->mbox_log) { 2935 err = -ENOMEM; 2936 goto err_free_adapter; 2937 } 2938 adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS; 2939 2940 /* 2941 * Initialize SMP data synchronization resources. 2942 */ 2943 spin_lock_init(&adapter->stats_lock); 2944 spin_lock_init(&adapter->mbox_lock); 2945 INIT_LIST_HEAD(&adapter->mlist.list); 2946 2947 /* 2948 * Map our I/O registers in BAR0. 2949 */ 2950 adapter->regs = pci_ioremap_bar(pdev, 0); 2951 if (!adapter->regs) { 2952 dev_err(&pdev->dev, "cannot map device registers\n"); 2953 err = -ENOMEM; 2954 goto err_free_adapter; 2955 } 2956 2957 /* Wait for the device to become ready before proceeding ... 2958 */ 2959 err = t4vf_prep_adapter(adapter); 2960 if (err) { 2961 dev_err(adapter->pdev_dev, "device didn't become ready:" 2962 " err=%d\n", err); 2963 goto err_unmap_bar0; 2964 } 2965 2966 /* For T5 and later we want to use the new BAR-based User Doorbells, 2967 * so we need to map BAR2 here ... 2968 */ 2969 if (!is_t4(adapter->params.chip)) { 2970 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 2971 pci_resource_len(pdev, 2)); 2972 if (!adapter->bar2) { 2973 dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n"); 2974 err = -ENOMEM; 2975 goto err_unmap_bar0; 2976 } 2977 } 2978 /* 2979 * Initialize adapter level features. 2980 */ 2981 adapter->name = pci_name(pdev); 2982 adapter->msg_enable = DFLT_MSG_ENABLE; 2983 2984 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 2985 * Ingress Packet Data to Free List Buffers in order to allow for 2986 * chipset performance optimizations between the Root Complex and 2987 * Memory Controllers. (Messages to the associated Ingress Queue 2988 * notifying new Packet Placement in the Free Lists Buffers will be 2989 * send without the Relaxed Ordering Attribute thus guaranteeing that 2990 * all preceding PCIe Transaction Layer Packets will be processed 2991 * first.) But some Root Complexes have various issues with Upstream 2992 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 2993 * The PCIe devices which under the Root Complexes will be cleared the 2994 * Relaxed Ordering bit in the configuration space, So we check our 2995 * PCIe configuration space to see if it's flagged with advice against 2996 * using Relaxed Ordering. 2997 */ 2998 if (!pcie_relaxed_ordering_enabled(pdev)) 2999 adapter->flags |= ROOT_NO_RELAXED_ORDERING; 3000 3001 err = adap_init0(adapter); 3002 if (err) 3003 goto err_unmap_bar; 3004 3005 /* 3006 * Allocate our "adapter ports" and stitch everything together. 3007 */ 3008 pmask = adapter->params.vfres.pmask; 3009 pf = t4vf_get_pf_from_vf(adapter); 3010 for_each_port(adapter, pidx) { 3011 int port_id, viid; 3012 u8 mac[ETH_ALEN]; 3013 unsigned int naddr = 1; 3014 3015 /* 3016 * We simplistically allocate our virtual interfaces 3017 * sequentially across the port numbers to which we have 3018 * access rights. This should be configurable in some manner 3019 * ... 3020 */ 3021 if (pmask == 0) 3022 break; 3023 port_id = ffs(pmask) - 1; 3024 pmask &= ~(1 << port_id); 3025 viid = t4vf_alloc_vi(adapter, port_id); 3026 if (viid < 0) { 3027 dev_err(&pdev->dev, "cannot allocate VI for port %d:" 3028 " err=%d\n", port_id, viid); 3029 err = viid; 3030 goto err_free_dev; 3031 } 3032 3033 /* 3034 * Allocate our network device and stitch things together. 3035 */ 3036 netdev = alloc_etherdev_mq(sizeof(struct port_info), 3037 MAX_PORT_QSETS); 3038 if (netdev == NULL) { 3039 t4vf_free_vi(adapter, viid); 3040 err = -ENOMEM; 3041 goto err_free_dev; 3042 } 3043 adapter->port[pidx] = netdev; 3044 SET_NETDEV_DEV(netdev, &pdev->dev); 3045 pi = netdev_priv(netdev); 3046 pi->adapter = adapter; 3047 pi->pidx = pidx; 3048 pi->port_id = port_id; 3049 pi->viid = viid; 3050 3051 /* 3052 * Initialize the starting state of our "port" and register 3053 * it. 3054 */ 3055 pi->xact_addr_filt = -1; 3056 netif_carrier_off(netdev); 3057 netdev->irq = pdev->irq; 3058 3059 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 3060 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3061 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM; 3062 netdev->vlan_features = NETIF_F_SG | TSO_FLAGS | 3063 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3064 NETIF_F_HIGHDMA; 3065 netdev->features = netdev->hw_features | 3066 NETIF_F_HW_VLAN_CTAG_TX; 3067 if (pci_using_dac) 3068 netdev->features |= NETIF_F_HIGHDMA; 3069 3070 netdev->priv_flags |= IFF_UNICAST_FLT; 3071 netdev->min_mtu = 81; 3072 netdev->max_mtu = ETH_MAX_MTU; 3073 3074 netdev->netdev_ops = &cxgb4vf_netdev_ops; 3075 netdev->ethtool_ops = &cxgb4vf_ethtool_ops; 3076 netdev->dev_port = pi->port_id; 3077 3078 /* 3079 * Initialize the hardware/software state for the port. 3080 */ 3081 err = t4vf_port_init(adapter, pidx); 3082 if (err) { 3083 dev_err(&pdev->dev, "cannot initialize port %d\n", 3084 pidx); 3085 goto err_free_dev; 3086 } 3087 3088 err = t4vf_get_vf_mac_acl(adapter, pf, &naddr, mac); 3089 if (err) { 3090 dev_err(&pdev->dev, 3091 "unable to determine MAC ACL address, " 3092 "continuing anyway.. (status %d)\n", err); 3093 } else if (naddr && adapter->params.vfres.nvi == 1) { 3094 struct sockaddr addr; 3095 3096 ether_addr_copy(addr.sa_data, mac); 3097 err = cxgb4vf_set_mac_addr(netdev, &addr); 3098 if (err) { 3099 dev_err(&pdev->dev, 3100 "unable to set MAC address %pM\n", 3101 mac); 3102 goto err_free_dev; 3103 } 3104 dev_info(&pdev->dev, 3105 "Using assigned MAC ACL: %pM\n", mac); 3106 } 3107 } 3108 3109 /* See what interrupts we'll be using. If we've been configured to 3110 * use MSI-X interrupts, try to enable them but fall back to using 3111 * MSI interrupts if we can't enable MSI-X interrupts. If we can't 3112 * get MSI interrupts we bail with the error. 3113 */ 3114 if (msi == MSI_MSIX && enable_msix(adapter) == 0) 3115 adapter->flags |= USING_MSIX; 3116 else { 3117 if (msi == MSI_MSIX) { 3118 dev_info(adapter->pdev_dev, 3119 "Unable to use MSI-X Interrupts; falling " 3120 "back to MSI Interrupts\n"); 3121 3122 /* We're going to need a Forwarded Interrupt Queue so 3123 * that may cut into how many Queue Sets we can 3124 * support. 3125 */ 3126 msi = MSI_MSI; 3127 size_nports_qsets(adapter); 3128 } 3129 err = pci_enable_msi(pdev); 3130 if (err) { 3131 dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;" 3132 " err=%d\n", err); 3133 goto err_free_dev; 3134 } 3135 adapter->flags |= USING_MSI; 3136 } 3137 3138 /* Now that we know how many "ports" we have and what interrupt 3139 * mechanism we're going to use, we can configure our queue resources. 3140 */ 3141 cfg_queues(adapter); 3142 3143 /* 3144 * The "card" is now ready to go. If any errors occur during device 3145 * registration we do not fail the whole "card" but rather proceed 3146 * only with the ports we manage to register successfully. However we 3147 * must register at least one net device. 3148 */ 3149 for_each_port(adapter, pidx) { 3150 struct port_info *pi = netdev_priv(adapter->port[pidx]); 3151 netdev = adapter->port[pidx]; 3152 if (netdev == NULL) 3153 continue; 3154 3155 netif_set_real_num_tx_queues(netdev, pi->nqsets); 3156 netif_set_real_num_rx_queues(netdev, pi->nqsets); 3157 3158 err = register_netdev(netdev); 3159 if (err) { 3160 dev_warn(&pdev->dev, "cannot register net device %s," 3161 " skipping\n", netdev->name); 3162 continue; 3163 } 3164 3165 set_bit(pidx, &adapter->registered_device_map); 3166 } 3167 if (adapter->registered_device_map == 0) { 3168 dev_err(&pdev->dev, "could not register any net devices\n"); 3169 goto err_disable_interrupts; 3170 } 3171 3172 /* 3173 * Set up our debugfs entries. 3174 */ 3175 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) { 3176 adapter->debugfs_root = 3177 debugfs_create_dir(pci_name(pdev), 3178 cxgb4vf_debugfs_root); 3179 if (IS_ERR_OR_NULL(adapter->debugfs_root)) 3180 dev_warn(&pdev->dev, "could not create debugfs" 3181 " directory"); 3182 else 3183 setup_debugfs(adapter); 3184 } 3185 3186 /* 3187 * Print a short notice on the existence and configuration of the new 3188 * VF network device ... 3189 */ 3190 for_each_port(adapter, pidx) { 3191 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n", 3192 adapter->port[pidx]->name, 3193 (adapter->flags & USING_MSIX) ? "MSI-X" : 3194 (adapter->flags & USING_MSI) ? "MSI" : ""); 3195 } 3196 3197 /* 3198 * Return success! 3199 */ 3200 return 0; 3201 3202 /* 3203 * Error recovery and exit code. Unwind state that's been created 3204 * so far and return the error. 3205 */ 3206 err_disable_interrupts: 3207 if (adapter->flags & USING_MSIX) { 3208 pci_disable_msix(adapter->pdev); 3209 adapter->flags &= ~USING_MSIX; 3210 } else if (adapter->flags & USING_MSI) { 3211 pci_disable_msi(adapter->pdev); 3212 adapter->flags &= ~USING_MSI; 3213 } 3214 3215 err_free_dev: 3216 for_each_port(adapter, pidx) { 3217 netdev = adapter->port[pidx]; 3218 if (netdev == NULL) 3219 continue; 3220 pi = netdev_priv(netdev); 3221 t4vf_free_vi(adapter, pi->viid); 3222 if (test_bit(pidx, &adapter->registered_device_map)) 3223 unregister_netdev(netdev); 3224 free_netdev(netdev); 3225 } 3226 3227 err_unmap_bar: 3228 if (!is_t4(adapter->params.chip)) 3229 iounmap(adapter->bar2); 3230 3231 err_unmap_bar0: 3232 iounmap(adapter->regs); 3233 3234 err_free_adapter: 3235 kfree(adapter->mbox_log); 3236 kfree(adapter); 3237 3238 err_release_regions: 3239 pci_release_regions(pdev); 3240 pci_clear_master(pdev); 3241 3242 err_disable_device: 3243 pci_disable_device(pdev); 3244 3245 return err; 3246 } 3247 3248 /* 3249 * "Remove" a device: tear down all kernel and driver state created in the 3250 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note 3251 * that this is called "remove_one" in the PF Driver.) 3252 */ 3253 static void cxgb4vf_pci_remove(struct pci_dev *pdev) 3254 { 3255 struct adapter *adapter = pci_get_drvdata(pdev); 3256 3257 /* 3258 * Tear down driver state associated with device. 3259 */ 3260 if (adapter) { 3261 int pidx; 3262 3263 /* 3264 * Stop all of our activity. Unregister network port, 3265 * disable interrupts, etc. 3266 */ 3267 for_each_port(adapter, pidx) 3268 if (test_bit(pidx, &adapter->registered_device_map)) 3269 unregister_netdev(adapter->port[pidx]); 3270 t4vf_sge_stop(adapter); 3271 if (adapter->flags & USING_MSIX) { 3272 pci_disable_msix(adapter->pdev); 3273 adapter->flags &= ~USING_MSIX; 3274 } else if (adapter->flags & USING_MSI) { 3275 pci_disable_msi(adapter->pdev); 3276 adapter->flags &= ~USING_MSI; 3277 } 3278 3279 /* 3280 * Tear down our debugfs entries. 3281 */ 3282 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) { 3283 cleanup_debugfs(adapter); 3284 debugfs_remove_recursive(adapter->debugfs_root); 3285 } 3286 3287 /* 3288 * Free all of the various resources which we've acquired ... 3289 */ 3290 t4vf_free_sge_resources(adapter); 3291 for_each_port(adapter, pidx) { 3292 struct net_device *netdev = adapter->port[pidx]; 3293 struct port_info *pi; 3294 3295 if (netdev == NULL) 3296 continue; 3297 3298 pi = netdev_priv(netdev); 3299 t4vf_free_vi(adapter, pi->viid); 3300 free_netdev(netdev); 3301 } 3302 iounmap(adapter->regs); 3303 if (!is_t4(adapter->params.chip)) 3304 iounmap(adapter->bar2); 3305 kfree(adapter->mbox_log); 3306 kfree(adapter); 3307 } 3308 3309 /* 3310 * Disable the device and release its PCI resources. 3311 */ 3312 pci_disable_device(pdev); 3313 pci_clear_master(pdev); 3314 pci_release_regions(pdev); 3315 } 3316 3317 /* 3318 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt 3319 * delivery. 3320 */ 3321 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev) 3322 { 3323 struct adapter *adapter; 3324 int pidx; 3325 3326 adapter = pci_get_drvdata(pdev); 3327 if (!adapter) 3328 return; 3329 3330 /* Disable all Virtual Interfaces. This will shut down the 3331 * delivery of all ingress packets into the chip for these 3332 * Virtual Interfaces. 3333 */ 3334 for_each_port(adapter, pidx) 3335 if (test_bit(pidx, &adapter->registered_device_map)) 3336 unregister_netdev(adapter->port[pidx]); 3337 3338 /* Free up all Queues which will prevent further DMA and 3339 * Interrupts allowing various internal pathways to drain. 3340 */ 3341 t4vf_sge_stop(adapter); 3342 if (adapter->flags & USING_MSIX) { 3343 pci_disable_msix(adapter->pdev); 3344 adapter->flags &= ~USING_MSIX; 3345 } else if (adapter->flags & USING_MSI) { 3346 pci_disable_msi(adapter->pdev); 3347 adapter->flags &= ~USING_MSI; 3348 } 3349 3350 /* 3351 * Free up all Queues which will prevent further DMA and 3352 * Interrupts allowing various internal pathways to drain. 3353 */ 3354 t4vf_free_sge_resources(adapter); 3355 pci_set_drvdata(pdev, NULL); 3356 } 3357 3358 /* Macros needed to support the PCI Device ID Table ... 3359 */ 3360 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 3361 static const struct pci_device_id cxgb4vf_pci_tbl[] = { 3362 #define CH_PCI_DEVICE_ID_FUNCTION 0x8 3363 3364 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 3365 { PCI_VDEVICE(CHELSIO, (devid)), 0 } 3366 3367 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } } 3368 3369 #include "../cxgb4/t4_pci_id_tbl.h" 3370 3371 MODULE_DESCRIPTION(DRV_DESC); 3372 MODULE_AUTHOR("Chelsio Communications"); 3373 MODULE_LICENSE("Dual BSD/GPL"); 3374 MODULE_VERSION(DRV_VERSION); 3375 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl); 3376 3377 static struct pci_driver cxgb4vf_driver = { 3378 .name = KBUILD_MODNAME, 3379 .id_table = cxgb4vf_pci_tbl, 3380 .probe = cxgb4vf_pci_probe, 3381 .remove = cxgb4vf_pci_remove, 3382 .shutdown = cxgb4vf_pci_shutdown, 3383 }; 3384 3385 /* 3386 * Initialize global driver state. 3387 */ 3388 static int __init cxgb4vf_module_init(void) 3389 { 3390 int ret; 3391 3392 /* 3393 * Vet our module parameters. 3394 */ 3395 if (msi != MSI_MSIX && msi != MSI_MSI) { 3396 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n", 3397 msi, MSI_MSIX, MSI_MSI); 3398 return -EINVAL; 3399 } 3400 3401 /* Debugfs support is optional, just warn if this fails */ 3402 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 3403 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) 3404 pr_warn("could not create debugfs entry, continuing\n"); 3405 3406 ret = pci_register_driver(&cxgb4vf_driver); 3407 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) 3408 debugfs_remove(cxgb4vf_debugfs_root); 3409 return ret; 3410 } 3411 3412 /* 3413 * Tear down global driver state. 3414 */ 3415 static void __exit cxgb4vf_module_exit(void) 3416 { 3417 pci_unregister_driver(&cxgb4vf_driver); 3418 debugfs_remove(cxgb4vf_debugfs_root); 3419 } 3420 3421 module_init(cxgb4vf_module_init); 3422 module_exit(cxgb4vf_module_exit); 3423