1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/module.h> 39 #include <linux/moduleparam.h> 40 #include <linux/init.h> 41 #include <linux/pci.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/netdevice.h> 44 #include <linux/etherdevice.h> 45 #include <linux/debugfs.h> 46 #include <linux/ethtool.h> 47 #include <linux/mdio.h> 48 49 #include "t4vf_common.h" 50 #include "t4vf_defs.h" 51 52 #include "../cxgb4/t4_regs.h" 53 #include "../cxgb4/t4_msg.h" 54 55 /* 56 * Generic information about the driver. 57 */ 58 #define DRV_VERSION "2.0.0-ko" 59 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver" 60 61 /* 62 * Module Parameters. 63 * ================== 64 */ 65 66 /* 67 * Default ethtool "message level" for adapters. 68 */ 69 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 70 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 71 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 72 73 /* 74 * The driver uses the best interrupt scheme available on a platform in the 75 * order MSI-X then MSI. This parameter determines which of these schemes the 76 * driver may consider as follows: 77 * 78 * msi = 2: choose from among MSI-X and MSI 79 * msi = 1: only consider MSI interrupts 80 * 81 * Note that unlike the Physical Function driver, this Virtual Function driver 82 * does _not_ support legacy INTx interrupts (this limitation is mandated by 83 * the PCI-E SR-IOV standard). 84 */ 85 #define MSI_MSIX 2 86 #define MSI_MSI 1 87 #define MSI_DEFAULT MSI_MSIX 88 89 static int msi = MSI_DEFAULT; 90 91 module_param(msi, int, 0644); 92 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI"); 93 94 /* 95 * Fundamental constants. 96 * ====================== 97 */ 98 99 enum { 100 MAX_TXQ_ENTRIES = 16384, 101 MAX_RSPQ_ENTRIES = 16384, 102 MAX_RX_BUFFERS = 16384, 103 104 MIN_TXQ_ENTRIES = 32, 105 MIN_RSPQ_ENTRIES = 128, 106 MIN_FL_ENTRIES = 16, 107 108 /* 109 * For purposes of manipulating the Free List size we need to 110 * recognize that Free Lists are actually Egress Queues (the host 111 * produces free buffers which the hardware consumes), Egress Queues 112 * indices are all in units of Egress Context Units bytes, and free 113 * list entries are 64-bit PCI DMA addresses. And since the state of 114 * the Producer Index == the Consumer Index implies an EMPTY list, we 115 * always have at least one Egress Unit's worth of Free List entries 116 * unused. See sge.c for more details ... 117 */ 118 EQ_UNIT = SGE_EQ_IDXSIZE, 119 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 120 MIN_FL_RESID = FL_PER_EQ_UNIT, 121 }; 122 123 /* 124 * Global driver state. 125 * ==================== 126 */ 127 128 static struct dentry *cxgb4vf_debugfs_root; 129 130 /* 131 * OS "Callback" functions. 132 * ======================== 133 */ 134 135 /* 136 * The link status has changed on the indicated "port" (Virtual Interface). 137 */ 138 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok) 139 { 140 struct net_device *dev = adapter->port[pidx]; 141 142 /* 143 * If the port is disabled or the current recorded "link up" 144 * status matches the new status, just return. 145 */ 146 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev)) 147 return; 148 149 /* 150 * Tell the OS that the link status has changed and print a short 151 * informative message on the console about the event. 152 */ 153 if (link_ok) { 154 const char *s; 155 const char *fc; 156 const struct port_info *pi = netdev_priv(dev); 157 158 netif_carrier_on(dev); 159 160 switch (pi->link_cfg.speed) { 161 case 100: 162 s = "100Mbps"; 163 break; 164 case 1000: 165 s = "1Gbps"; 166 break; 167 case 10000: 168 s = "10Gbps"; 169 break; 170 case 25000: 171 s = "25Gbps"; 172 break; 173 case 40000: 174 s = "40Gbps"; 175 break; 176 case 100000: 177 s = "100Gbps"; 178 break; 179 180 default: 181 s = "unknown"; 182 break; 183 } 184 185 switch ((int)pi->link_cfg.fc) { 186 case PAUSE_RX: 187 fc = "RX"; 188 break; 189 190 case PAUSE_TX: 191 fc = "TX"; 192 break; 193 194 case PAUSE_RX | PAUSE_TX: 195 fc = "RX/TX"; 196 break; 197 198 default: 199 fc = "no"; 200 break; 201 } 202 203 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc); 204 } else { 205 netif_carrier_off(dev); 206 netdev_info(dev, "link down\n"); 207 } 208 } 209 210 /* 211 * THe port module type has changed on the indicated "port" (Virtual 212 * Interface). 213 */ 214 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx) 215 { 216 static const char * const mod_str[] = { 217 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 218 }; 219 const struct net_device *dev = adapter->port[pidx]; 220 const struct port_info *pi = netdev_priv(dev); 221 222 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 223 dev_info(adapter->pdev_dev, "%s: port module unplugged\n", 224 dev->name); 225 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 226 dev_info(adapter->pdev_dev, "%s: %s port module inserted\n", 227 dev->name, mod_str[pi->mod_type]); 228 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 229 dev_info(adapter->pdev_dev, "%s: unsupported optical port " 230 "module inserted\n", dev->name); 231 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 232 dev_info(adapter->pdev_dev, "%s: unknown port module inserted," 233 "forcing TWINAX\n", dev->name); 234 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 235 dev_info(adapter->pdev_dev, "%s: transceiver module error\n", 236 dev->name); 237 else 238 dev_info(adapter->pdev_dev, "%s: unknown module type %d " 239 "inserted\n", dev->name, pi->mod_type); 240 } 241 242 static int cxgb4vf_set_addr_hash(struct port_info *pi) 243 { 244 struct adapter *adapter = pi->adapter; 245 u64 vec = 0; 246 bool ucast = false; 247 struct hash_mac_addr *entry; 248 249 /* Calculate the hash vector for the updated list and program it */ 250 list_for_each_entry(entry, &adapter->mac_hlist, list) { 251 ucast |= is_unicast_ether_addr(entry->addr); 252 vec |= (1ULL << hash_mac_addr(entry->addr)); 253 } 254 return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false); 255 } 256 257 /** 258 * cxgb4vf_change_mac - Update match filter for a MAC address. 259 * @pi: the port_info 260 * @viid: the VI id 261 * @tcam_idx: TCAM index of existing filter for old value of MAC address, 262 * or -1 263 * @addr: the new MAC address value 264 * @persist: whether a new MAC allocation should be persistent 265 * @add_smt: if true also add the address to the HW SMT 266 * 267 * Modifies an MPS filter and sets it to the new MAC address if 268 * @tcam_idx >= 0, or adds the MAC address to a new filter if 269 * @tcam_idx < 0. In the latter case the address is added persistently 270 * if @persist is %true. 271 * Addresses are programmed to hash region, if tcam runs out of entries. 272 * 273 */ 274 static int cxgb4vf_change_mac(struct port_info *pi, unsigned int viid, 275 int *tcam_idx, const u8 *addr, bool persistent) 276 { 277 struct hash_mac_addr *new_entry, *entry; 278 struct adapter *adapter = pi->adapter; 279 int ret; 280 281 ret = t4vf_change_mac(adapter, viid, *tcam_idx, addr, persistent); 282 /* We ran out of TCAM entries. try programming hash region. */ 283 if (ret == -ENOMEM) { 284 /* If the MAC address to be updated is in the hash addr 285 * list, update it from the list 286 */ 287 list_for_each_entry(entry, &adapter->mac_hlist, list) { 288 if (entry->iface_mac) { 289 ether_addr_copy(entry->addr, addr); 290 goto set_hash; 291 } 292 } 293 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL); 294 if (!new_entry) 295 return -ENOMEM; 296 ether_addr_copy(new_entry->addr, addr); 297 new_entry->iface_mac = true; 298 list_add_tail(&new_entry->list, &adapter->mac_hlist); 299 set_hash: 300 ret = cxgb4vf_set_addr_hash(pi); 301 } else if (ret >= 0) { 302 *tcam_idx = ret; 303 ret = 0; 304 } 305 306 return ret; 307 } 308 309 /* 310 * Net device operations. 311 * ====================== 312 */ 313 314 315 316 317 /* 318 * Perform the MAC and PHY actions needed to enable a "port" (Virtual 319 * Interface). 320 */ 321 static int link_start(struct net_device *dev) 322 { 323 int ret; 324 struct port_info *pi = netdev_priv(dev); 325 326 /* 327 * We do not set address filters and promiscuity here, the stack does 328 * that step explicitly. Enable vlan accel. 329 */ 330 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1, 331 true); 332 if (ret == 0) 333 ret = cxgb4vf_change_mac(pi, pi->viid, 334 &pi->xact_addr_filt, 335 dev->dev_addr, true); 336 337 /* 338 * We don't need to actually "start the link" itself since the 339 * firmware will do that for us when the first Virtual Interface 340 * is enabled on a port. 341 */ 342 if (ret == 0) 343 ret = t4vf_enable_pi(pi->adapter, pi, true, true); 344 345 return ret; 346 } 347 348 /* 349 * Name the MSI-X interrupts. 350 */ 351 static void name_msix_vecs(struct adapter *adapter) 352 { 353 int namelen = sizeof(adapter->msix_info[0].desc) - 1; 354 int pidx; 355 356 /* 357 * Firmware events. 358 */ 359 snprintf(adapter->msix_info[MSIX_FW].desc, namelen, 360 "%s-FWeventq", adapter->name); 361 adapter->msix_info[MSIX_FW].desc[namelen] = 0; 362 363 /* 364 * Ethernet queues. 365 */ 366 for_each_port(adapter, pidx) { 367 struct net_device *dev = adapter->port[pidx]; 368 const struct port_info *pi = netdev_priv(dev); 369 int qs, msi; 370 371 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) { 372 snprintf(adapter->msix_info[msi].desc, namelen, 373 "%s-%d", dev->name, qs); 374 adapter->msix_info[msi].desc[namelen] = 0; 375 } 376 } 377 } 378 379 /* 380 * Request all of our MSI-X resources. 381 */ 382 static int request_msix_queue_irqs(struct adapter *adapter) 383 { 384 struct sge *s = &adapter->sge; 385 int rxq, msi, err; 386 387 /* 388 * Firmware events. 389 */ 390 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix, 391 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq); 392 if (err) 393 return err; 394 395 /* 396 * Ethernet queues. 397 */ 398 msi = MSIX_IQFLINT; 399 for_each_ethrxq(s, rxq) { 400 err = request_irq(adapter->msix_info[msi].vec, 401 t4vf_sge_intr_msix, 0, 402 adapter->msix_info[msi].desc, 403 &s->ethrxq[rxq].rspq); 404 if (err) 405 goto err_free_irqs; 406 msi++; 407 } 408 return 0; 409 410 err_free_irqs: 411 while (--rxq >= 0) 412 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq); 413 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 414 return err; 415 } 416 417 /* 418 * Free our MSI-X resources. 419 */ 420 static void free_msix_queue_irqs(struct adapter *adapter) 421 { 422 struct sge *s = &adapter->sge; 423 int rxq, msi; 424 425 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 426 msi = MSIX_IQFLINT; 427 for_each_ethrxq(s, rxq) 428 free_irq(adapter->msix_info[msi++].vec, 429 &s->ethrxq[rxq].rspq); 430 } 431 432 /* 433 * Turn on NAPI and start up interrupts on a response queue. 434 */ 435 static void qenable(struct sge_rspq *rspq) 436 { 437 napi_enable(&rspq->napi); 438 439 /* 440 * 0-increment the Going To Sleep register to start the timer and 441 * enable interrupts. 442 */ 443 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 444 CIDXINC_V(0) | 445 SEINTARM_V(rspq->intr_params) | 446 INGRESSQID_V(rspq->cntxt_id)); 447 } 448 449 /* 450 * Enable NAPI scheduling and interrupt generation for all Receive Queues. 451 */ 452 static void enable_rx(struct adapter *adapter) 453 { 454 int rxq; 455 struct sge *s = &adapter->sge; 456 457 for_each_ethrxq(s, rxq) 458 qenable(&s->ethrxq[rxq].rspq); 459 qenable(&s->fw_evtq); 460 461 /* 462 * The interrupt queue doesn't use NAPI so we do the 0-increment of 463 * its Going To Sleep register here to get it started. 464 */ 465 if (adapter->flags & CXGB4VF_USING_MSI) 466 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 467 CIDXINC_V(0) | 468 SEINTARM_V(s->intrq.intr_params) | 469 INGRESSQID_V(s->intrq.cntxt_id)); 470 471 } 472 473 /* 474 * Wait until all NAPI handlers are descheduled. 475 */ 476 static void quiesce_rx(struct adapter *adapter) 477 { 478 struct sge *s = &adapter->sge; 479 int rxq; 480 481 for_each_ethrxq(s, rxq) 482 napi_disable(&s->ethrxq[rxq].rspq.napi); 483 napi_disable(&s->fw_evtq.napi); 484 } 485 486 /* 487 * Response queue handler for the firmware event queue. 488 */ 489 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp, 490 const struct pkt_gl *gl) 491 { 492 /* 493 * Extract response opcode and get pointer to CPL message body. 494 */ 495 struct adapter *adapter = rspq->adapter; 496 u8 opcode = ((const struct rss_header *)rsp)->opcode; 497 void *cpl = (void *)(rsp + 1); 498 499 switch (opcode) { 500 case CPL_FW6_MSG: { 501 /* 502 * We've received an asynchronous message from the firmware. 503 */ 504 const struct cpl_fw6_msg *fw_msg = cpl; 505 if (fw_msg->type == FW6_TYPE_CMD_RPL) 506 t4vf_handle_fw_rpl(adapter, fw_msg->data); 507 break; 508 } 509 510 case CPL_FW4_MSG: { 511 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 512 */ 513 const struct cpl_sge_egr_update *p = (void *)(rsp + 3); 514 opcode = CPL_OPCODE_G(ntohl(p->opcode_qid)); 515 if (opcode != CPL_SGE_EGR_UPDATE) { 516 dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 517 , opcode); 518 break; 519 } 520 cpl = (void *)p; 521 } 522 /* Fall through */ 523 524 case CPL_SGE_EGR_UPDATE: { 525 /* 526 * We've received an Egress Queue Status Update message. We 527 * get these, if the SGE is configured to send these when the 528 * firmware passes certain points in processing our TX 529 * Ethernet Queue or if we make an explicit request for one. 530 * We use these updates to determine when we may need to 531 * restart a TX Ethernet Queue which was stopped for lack of 532 * free TX Queue Descriptors ... 533 */ 534 const struct cpl_sge_egr_update *p = cpl; 535 unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid)); 536 struct sge *s = &adapter->sge; 537 struct sge_txq *tq; 538 struct sge_eth_txq *txq; 539 unsigned int eq_idx; 540 541 /* 542 * Perform sanity checking on the Queue ID to make sure it 543 * really refers to one of our TX Ethernet Egress Queues which 544 * is active and matches the queue's ID. None of these error 545 * conditions should ever happen so we may want to either make 546 * them fatal and/or conditionalized under DEBUG. 547 */ 548 eq_idx = EQ_IDX(s, qid); 549 if (unlikely(eq_idx >= MAX_EGRQ)) { 550 dev_err(adapter->pdev_dev, 551 "Egress Update QID %d out of range\n", qid); 552 break; 553 } 554 tq = s->egr_map[eq_idx]; 555 if (unlikely(tq == NULL)) { 556 dev_err(adapter->pdev_dev, 557 "Egress Update QID %d TXQ=NULL\n", qid); 558 break; 559 } 560 txq = container_of(tq, struct sge_eth_txq, q); 561 if (unlikely(tq->abs_id != qid)) { 562 dev_err(adapter->pdev_dev, 563 "Egress Update QID %d refers to TXQ %d\n", 564 qid, tq->abs_id); 565 break; 566 } 567 568 /* 569 * Restart a stopped TX Queue which has less than half of its 570 * TX ring in use ... 571 */ 572 txq->q.restarts++; 573 netif_tx_wake_queue(txq->txq); 574 break; 575 } 576 577 default: 578 dev_err(adapter->pdev_dev, 579 "unexpected CPL %#x on FW event queue\n", opcode); 580 } 581 582 return 0; 583 } 584 585 /* 586 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues 587 * to use and initializes them. We support multiple "Queue Sets" per port if 588 * we have MSI-X, otherwise just one queue set per port. 589 */ 590 static int setup_sge_queues(struct adapter *adapter) 591 { 592 struct sge *s = &adapter->sge; 593 int err, pidx, msix; 594 595 /* 596 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error 597 * state. 598 */ 599 bitmap_zero(s->starving_fl, MAX_EGRQ); 600 601 /* 602 * If we're using MSI interrupt mode we need to set up a "forwarded 603 * interrupt" queue which we'll set up with our MSI vector. The rest 604 * of the ingress queues will be set up to forward their interrupts to 605 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses 606 * the intrq's queue ID as the interrupt forwarding queue for the 607 * subsequent calls ... 608 */ 609 if (adapter->flags & CXGB4VF_USING_MSI) { 610 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false, 611 adapter->port[0], 0, NULL, NULL); 612 if (err) 613 goto err_free_queues; 614 } 615 616 /* 617 * Allocate our ingress queue for asynchronous firmware messages. 618 */ 619 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0], 620 MSIX_FW, NULL, fwevtq_handler); 621 if (err) 622 goto err_free_queues; 623 624 /* 625 * Allocate each "port"'s initial Queue Sets. These can be changed 626 * later on ... up to the point where any interface on the adapter is 627 * brought up at which point lots of things get nailed down 628 * permanently ... 629 */ 630 msix = MSIX_IQFLINT; 631 for_each_port(adapter, pidx) { 632 struct net_device *dev = adapter->port[pidx]; 633 struct port_info *pi = netdev_priv(dev); 634 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 635 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 636 int qs; 637 638 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 639 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false, 640 dev, msix++, 641 &rxq->fl, t4vf_ethrx_handler); 642 if (err) 643 goto err_free_queues; 644 645 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev, 646 netdev_get_tx_queue(dev, qs), 647 s->fw_evtq.cntxt_id); 648 if (err) 649 goto err_free_queues; 650 651 rxq->rspq.idx = qs; 652 memset(&rxq->stats, 0, sizeof(rxq->stats)); 653 } 654 } 655 656 /* 657 * Create the reverse mappings for the queues. 658 */ 659 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id; 660 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id; 661 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq; 662 for_each_port(adapter, pidx) { 663 struct net_device *dev = adapter->port[pidx]; 664 struct port_info *pi = netdev_priv(dev); 665 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 666 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 667 int qs; 668 669 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 670 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq; 671 EQ_MAP(s, txq->q.abs_id) = &txq->q; 672 673 /* 674 * The FW_IQ_CMD doesn't return the Absolute Queue IDs 675 * for Free Lists but since all of the Egress Queues 676 * (including Free Lists) have Relative Queue IDs 677 * which are computed as Absolute - Base Queue ID, we 678 * can synthesize the Absolute Queue IDs for the Free 679 * Lists. This is useful for debugging purposes when 680 * we want to dump Queue Contexts via the PF Driver. 681 */ 682 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base; 683 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl; 684 } 685 } 686 return 0; 687 688 err_free_queues: 689 t4vf_free_sge_resources(adapter); 690 return err; 691 } 692 693 /* 694 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive 695 * queues. We configure the RSS CPU lookup table to distribute to the number 696 * of HW receive queues, and the response queue lookup table to narrow that 697 * down to the response queues actually configured for each "port" (Virtual 698 * Interface). We always configure the RSS mapping for all ports since the 699 * mapping table has plenty of entries. 700 */ 701 static int setup_rss(struct adapter *adapter) 702 { 703 int pidx; 704 705 for_each_port(adapter, pidx) { 706 struct port_info *pi = adap2pinfo(adapter, pidx); 707 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 708 u16 rss[MAX_PORT_QSETS]; 709 int qs, err; 710 711 for (qs = 0; qs < pi->nqsets; qs++) 712 rss[qs] = rxq[qs].rspq.abs_id; 713 714 err = t4vf_config_rss_range(adapter, pi->viid, 715 0, pi->rss_size, rss, pi->nqsets); 716 if (err) 717 return err; 718 719 /* 720 * Perform Global RSS Mode-specific initialization. 721 */ 722 switch (adapter->params.rss.mode) { 723 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: 724 /* 725 * If Tunnel All Lookup isn't specified in the global 726 * RSS Configuration, then we need to specify a 727 * default Ingress Queue for any ingress packets which 728 * aren't hashed. We'll use our first ingress queue 729 * ... 730 */ 731 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) { 732 union rss_vi_config config; 733 err = t4vf_read_rss_vi_config(adapter, 734 pi->viid, 735 &config); 736 if (err) 737 return err; 738 config.basicvirtual.defaultq = 739 rxq[0].rspq.abs_id; 740 err = t4vf_write_rss_vi_config(adapter, 741 pi->viid, 742 &config); 743 if (err) 744 return err; 745 } 746 break; 747 } 748 } 749 750 return 0; 751 } 752 753 /* 754 * Bring the adapter up. Called whenever we go from no "ports" open to having 755 * one open. This function performs the actions necessary to make an adapter 756 * operational, such as completing the initialization of HW modules, and 757 * enabling interrupts. Must be called with the rtnl lock held. (Note that 758 * this is called "cxgb_up" in the PF Driver.) 759 */ 760 static int adapter_up(struct adapter *adapter) 761 { 762 int err; 763 764 /* 765 * If this is the first time we've been called, perform basic 766 * adapter setup. Once we've done this, many of our adapter 767 * parameters can no longer be changed ... 768 */ 769 if ((adapter->flags & CXGB4VF_FULL_INIT_DONE) == 0) { 770 err = setup_sge_queues(adapter); 771 if (err) 772 return err; 773 err = setup_rss(adapter); 774 if (err) { 775 t4vf_free_sge_resources(adapter); 776 return err; 777 } 778 779 if (adapter->flags & CXGB4VF_USING_MSIX) 780 name_msix_vecs(adapter); 781 782 adapter->flags |= CXGB4VF_FULL_INIT_DONE; 783 } 784 785 /* 786 * Acquire our interrupt resources. We only support MSI-X and MSI. 787 */ 788 BUG_ON((adapter->flags & 789 (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0); 790 if (adapter->flags & CXGB4VF_USING_MSIX) 791 err = request_msix_queue_irqs(adapter); 792 else 793 err = request_irq(adapter->pdev->irq, 794 t4vf_intr_handler(adapter), 0, 795 adapter->name, adapter); 796 if (err) { 797 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n", 798 err); 799 return err; 800 } 801 802 /* 803 * Enable NAPI ingress processing and return success. 804 */ 805 enable_rx(adapter); 806 t4vf_sge_start(adapter); 807 808 return 0; 809 } 810 811 /* 812 * Bring the adapter down. Called whenever the last "port" (Virtual 813 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF 814 * Driver.) 815 */ 816 static void adapter_down(struct adapter *adapter) 817 { 818 /* 819 * Free interrupt resources. 820 */ 821 if (adapter->flags & CXGB4VF_USING_MSIX) 822 free_msix_queue_irqs(adapter); 823 else 824 free_irq(adapter->pdev->irq, adapter); 825 826 /* 827 * Wait for NAPI handlers to finish. 828 */ 829 quiesce_rx(adapter); 830 } 831 832 /* 833 * Start up a net device. 834 */ 835 static int cxgb4vf_open(struct net_device *dev) 836 { 837 int err; 838 struct port_info *pi = netdev_priv(dev); 839 struct adapter *adapter = pi->adapter; 840 841 /* 842 * If we don't have a connection to the firmware there's nothing we 843 * can do. 844 */ 845 if (!(adapter->flags & CXGB4VF_FW_OK)) 846 return -ENXIO; 847 848 /* 849 * If this is the first interface that we're opening on the "adapter", 850 * bring the "adapter" up now. 851 */ 852 if (adapter->open_device_map == 0) { 853 err = adapter_up(adapter); 854 if (err) 855 return err; 856 } 857 858 /* It's possible that the basic port information could have 859 * changed since we first read it. 860 */ 861 err = t4vf_update_port_info(pi); 862 if (err < 0) 863 return err; 864 865 /* 866 * Note that this interface is up and start everything up ... 867 */ 868 err = link_start(dev); 869 if (err) 870 goto err_unwind; 871 872 pi->vlan_id = t4vf_get_vf_vlan_acl(adapter); 873 874 netif_tx_start_all_queues(dev); 875 set_bit(pi->port_id, &adapter->open_device_map); 876 return 0; 877 878 err_unwind: 879 if (adapter->open_device_map == 0) 880 adapter_down(adapter); 881 return err; 882 } 883 884 /* 885 * Shut down a net device. This routine is called "cxgb_close" in the PF 886 * Driver ... 887 */ 888 static int cxgb4vf_stop(struct net_device *dev) 889 { 890 struct port_info *pi = netdev_priv(dev); 891 struct adapter *adapter = pi->adapter; 892 893 netif_tx_stop_all_queues(dev); 894 netif_carrier_off(dev); 895 t4vf_enable_pi(adapter, pi, false, false); 896 897 clear_bit(pi->port_id, &adapter->open_device_map); 898 if (adapter->open_device_map == 0) 899 adapter_down(adapter); 900 return 0; 901 } 902 903 /* 904 * Translate our basic statistics into the standard "ifconfig" statistics. 905 */ 906 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev) 907 { 908 struct t4vf_port_stats stats; 909 struct port_info *pi = netdev2pinfo(dev); 910 struct adapter *adapter = pi->adapter; 911 struct net_device_stats *ns = &dev->stats; 912 int err; 913 914 spin_lock(&adapter->stats_lock); 915 err = t4vf_get_port_stats(adapter, pi->pidx, &stats); 916 spin_unlock(&adapter->stats_lock); 917 918 memset(ns, 0, sizeof(*ns)); 919 if (err) 920 return ns; 921 922 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes + 923 stats.tx_ucast_bytes + stats.tx_offload_bytes); 924 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames + 925 stats.tx_ucast_frames + stats.tx_offload_frames); 926 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes + 927 stats.rx_ucast_bytes); 928 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames + 929 stats.rx_ucast_frames); 930 ns->multicast = stats.rx_mcast_frames; 931 ns->tx_errors = stats.tx_drop_frames; 932 ns->rx_errors = stats.rx_err_frames; 933 934 return ns; 935 } 936 937 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr) 938 { 939 struct port_info *pi = netdev_priv(netdev); 940 struct adapter *adapter = pi->adapter; 941 int ret; 942 u64 mhash = 0; 943 u64 uhash = 0; 944 bool free = false; 945 bool ucast = is_unicast_ether_addr(mac_addr); 946 const u8 *maclist[1] = {mac_addr}; 947 struct hash_mac_addr *new_entry; 948 949 ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist, 950 NULL, ucast ? &uhash : &mhash, false); 951 if (ret < 0) 952 goto out; 953 /* if hash != 0, then add the addr to hash addr list 954 * so on the end we will calculate the hash for the 955 * list and program it 956 */ 957 if (uhash || mhash) { 958 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 959 if (!new_entry) 960 return -ENOMEM; 961 ether_addr_copy(new_entry->addr, mac_addr); 962 list_add_tail(&new_entry->list, &adapter->mac_hlist); 963 ret = cxgb4vf_set_addr_hash(pi); 964 } 965 out: 966 return ret < 0 ? ret : 0; 967 } 968 969 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 970 { 971 struct port_info *pi = netdev_priv(netdev); 972 struct adapter *adapter = pi->adapter; 973 int ret; 974 const u8 *maclist[1] = {mac_addr}; 975 struct hash_mac_addr *entry, *tmp; 976 977 /* If the MAC address to be removed is in the hash addr 978 * list, delete it from the list and update hash vector 979 */ 980 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) { 981 if (ether_addr_equal(entry->addr, mac_addr)) { 982 list_del(&entry->list); 983 kfree(entry); 984 return cxgb4vf_set_addr_hash(pi); 985 } 986 } 987 988 ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false); 989 return ret < 0 ? -EINVAL : 0; 990 } 991 992 /* 993 * Set RX properties of a port, such as promiscruity, address filters, and MTU. 994 * If @mtu is -1 it is left unchanged. 995 */ 996 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 997 { 998 struct port_info *pi = netdev_priv(dev); 999 1000 __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 1001 __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 1002 return t4vf_set_rxmode(pi->adapter, pi->viid, -1, 1003 (dev->flags & IFF_PROMISC) != 0, 1004 (dev->flags & IFF_ALLMULTI) != 0, 1005 1, -1, sleep_ok); 1006 } 1007 1008 /* 1009 * Set the current receive modes on the device. 1010 */ 1011 static void cxgb4vf_set_rxmode(struct net_device *dev) 1012 { 1013 /* unfortunately we can't return errors to the stack */ 1014 set_rxmode(dev, -1, false); 1015 } 1016 1017 /* 1018 * Find the entry in the interrupt holdoff timer value array which comes 1019 * closest to the specified interrupt holdoff value. 1020 */ 1021 static int closest_timer(const struct sge *s, int us) 1022 { 1023 int i, timer_idx = 0, min_delta = INT_MAX; 1024 1025 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1026 int delta = us - s->timer_val[i]; 1027 if (delta < 0) 1028 delta = -delta; 1029 if (delta < min_delta) { 1030 min_delta = delta; 1031 timer_idx = i; 1032 } 1033 } 1034 return timer_idx; 1035 } 1036 1037 static int closest_thres(const struct sge *s, int thres) 1038 { 1039 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX; 1040 1041 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1042 delta = thres - s->counter_val[i]; 1043 if (delta < 0) 1044 delta = -delta; 1045 if (delta < min_delta) { 1046 min_delta = delta; 1047 pktcnt_idx = i; 1048 } 1049 } 1050 return pktcnt_idx; 1051 } 1052 1053 /* 1054 * Return a queue's interrupt hold-off time in us. 0 means no timer. 1055 */ 1056 static unsigned int qtimer_val(const struct adapter *adapter, 1057 const struct sge_rspq *rspq) 1058 { 1059 unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params); 1060 1061 return timer_idx < SGE_NTIMERS 1062 ? adapter->sge.timer_val[timer_idx] 1063 : 0; 1064 } 1065 1066 /** 1067 * set_rxq_intr_params - set a queue's interrupt holdoff parameters 1068 * @adapter: the adapter 1069 * @rspq: the RX response queue 1070 * @us: the hold-off time in us, or 0 to disable timer 1071 * @cnt: the hold-off packet count, or 0 to disable counter 1072 * 1073 * Sets an RX response queue's interrupt hold-off time and packet count. 1074 * At least one of the two needs to be enabled for the queue to generate 1075 * interrupts. 1076 */ 1077 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq, 1078 unsigned int us, unsigned int cnt) 1079 { 1080 unsigned int timer_idx; 1081 1082 /* 1083 * If both the interrupt holdoff timer and count are specified as 1084 * zero, default to a holdoff count of 1 ... 1085 */ 1086 if ((us | cnt) == 0) 1087 cnt = 1; 1088 1089 /* 1090 * If an interrupt holdoff count has been specified, then find the 1091 * closest configured holdoff count and use that. If the response 1092 * queue has already been created, then update its queue context 1093 * parameters ... 1094 */ 1095 if (cnt) { 1096 int err; 1097 u32 v, pktcnt_idx; 1098 1099 pktcnt_idx = closest_thres(&adapter->sge, cnt); 1100 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) { 1101 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1102 FW_PARAMS_PARAM_X_V( 1103 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1104 FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id); 1105 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx); 1106 if (err) 1107 return err; 1108 } 1109 rspq->pktcnt_idx = pktcnt_idx; 1110 } 1111 1112 /* 1113 * Compute the closest holdoff timer index from the supplied holdoff 1114 * timer value. 1115 */ 1116 timer_idx = (us == 0 1117 ? SGE_TIMER_RSTRT_CNTR 1118 : closest_timer(&adapter->sge, us)); 1119 1120 /* 1121 * Update the response queue's interrupt coalescing parameters and 1122 * return success. 1123 */ 1124 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 1125 QINTR_CNT_EN_V(cnt > 0)); 1126 return 0; 1127 } 1128 1129 /* 1130 * Return a version number to identify the type of adapter. The scheme is: 1131 * - bits 0..9: chip version 1132 * - bits 10..15: chip revision 1133 */ 1134 static inline unsigned int mk_adap_vers(const struct adapter *adapter) 1135 { 1136 /* 1137 * Chip version 4, revision 0x3f (cxgb4vf). 1138 */ 1139 return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10); 1140 } 1141 1142 /* 1143 * Execute the specified ioctl command. 1144 */ 1145 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1146 { 1147 int ret = 0; 1148 1149 switch (cmd) { 1150 /* 1151 * The VF Driver doesn't have access to any of the other 1152 * common Ethernet device ioctl()'s (like reading/writing 1153 * PHY registers, etc. 1154 */ 1155 1156 default: 1157 ret = -EOPNOTSUPP; 1158 break; 1159 } 1160 return ret; 1161 } 1162 1163 /* 1164 * Change the device's MTU. 1165 */ 1166 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu) 1167 { 1168 int ret; 1169 struct port_info *pi = netdev_priv(dev); 1170 1171 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu, 1172 -1, -1, -1, -1, true); 1173 if (!ret) 1174 dev->mtu = new_mtu; 1175 return ret; 1176 } 1177 1178 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev, 1179 netdev_features_t features) 1180 { 1181 /* 1182 * Since there is no support for separate rx/tx vlan accel 1183 * enable/disable make sure tx flag is always in same state as rx. 1184 */ 1185 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1186 features |= NETIF_F_HW_VLAN_CTAG_TX; 1187 else 1188 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 1189 1190 return features; 1191 } 1192 1193 static int cxgb4vf_set_features(struct net_device *dev, 1194 netdev_features_t features) 1195 { 1196 struct port_info *pi = netdev_priv(dev); 1197 netdev_features_t changed = dev->features ^ features; 1198 1199 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 1200 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, 1201 features & NETIF_F_HW_VLAN_CTAG_TX, 0); 1202 1203 return 0; 1204 } 1205 1206 /* 1207 * Change the devices MAC address. 1208 */ 1209 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr) 1210 { 1211 int ret; 1212 struct sockaddr *addr = _addr; 1213 struct port_info *pi = netdev_priv(dev); 1214 1215 if (!is_valid_ether_addr(addr->sa_data)) 1216 return -EADDRNOTAVAIL; 1217 1218 ret = cxgb4vf_change_mac(pi, pi->viid, &pi->xact_addr_filt, 1219 addr->sa_data, true); 1220 if (ret < 0) 1221 return ret; 1222 1223 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 1224 return 0; 1225 } 1226 1227 #ifdef CONFIG_NET_POLL_CONTROLLER 1228 /* 1229 * Poll all of our receive queues. This is called outside of normal interrupt 1230 * context. 1231 */ 1232 static void cxgb4vf_poll_controller(struct net_device *dev) 1233 { 1234 struct port_info *pi = netdev_priv(dev); 1235 struct adapter *adapter = pi->adapter; 1236 1237 if (adapter->flags & CXGB4VF_USING_MSIX) { 1238 struct sge_eth_rxq *rxq; 1239 int nqsets; 1240 1241 rxq = &adapter->sge.ethrxq[pi->first_qset]; 1242 for (nqsets = pi->nqsets; nqsets; nqsets--) { 1243 t4vf_sge_intr_msix(0, &rxq->rspq); 1244 rxq++; 1245 } 1246 } else 1247 t4vf_intr_handler(adapter)(0, adapter); 1248 } 1249 #endif 1250 1251 /* 1252 * Ethtool operations. 1253 * =================== 1254 * 1255 * Note that we don't support any ethtool operations which change the physical 1256 * state of the port to which we're linked. 1257 */ 1258 1259 /** 1260 * from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool 1261 * @port_type: Firmware Port Type 1262 * @mod_type: Firmware Module Type 1263 * 1264 * Translate Firmware Port/Module type to Ethtool Port Type. 1265 */ 1266 static int from_fw_port_mod_type(enum fw_port_type port_type, 1267 enum fw_port_module_type mod_type) 1268 { 1269 if (port_type == FW_PORT_TYPE_BT_SGMII || 1270 port_type == FW_PORT_TYPE_BT_XFI || 1271 port_type == FW_PORT_TYPE_BT_XAUI) { 1272 return PORT_TP; 1273 } else if (port_type == FW_PORT_TYPE_FIBER_XFI || 1274 port_type == FW_PORT_TYPE_FIBER_XAUI) { 1275 return PORT_FIBRE; 1276 } else if (port_type == FW_PORT_TYPE_SFP || 1277 port_type == FW_PORT_TYPE_QSFP_10G || 1278 port_type == FW_PORT_TYPE_QSA || 1279 port_type == FW_PORT_TYPE_QSFP || 1280 port_type == FW_PORT_TYPE_CR4_QSFP || 1281 port_type == FW_PORT_TYPE_CR_QSFP || 1282 port_type == FW_PORT_TYPE_CR2_QSFP || 1283 port_type == FW_PORT_TYPE_SFP28) { 1284 if (mod_type == FW_PORT_MOD_TYPE_LR || 1285 mod_type == FW_PORT_MOD_TYPE_SR || 1286 mod_type == FW_PORT_MOD_TYPE_ER || 1287 mod_type == FW_PORT_MOD_TYPE_LRM) 1288 return PORT_FIBRE; 1289 else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE || 1290 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE) 1291 return PORT_DA; 1292 else 1293 return PORT_OTHER; 1294 } else if (port_type == FW_PORT_TYPE_KR4_100G || 1295 port_type == FW_PORT_TYPE_KR_SFP28 || 1296 port_type == FW_PORT_TYPE_KR_XLAUI) { 1297 return PORT_NONE; 1298 } 1299 1300 return PORT_OTHER; 1301 } 1302 1303 /** 1304 * fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask 1305 * @port_type: Firmware Port Type 1306 * @fw_caps: Firmware Port Capabilities 1307 * @link_mode_mask: ethtool Link Mode Mask 1308 * 1309 * Translate a Firmware Port Capabilities specification to an ethtool 1310 * Link Mode Mask. 1311 */ 1312 static void fw_caps_to_lmm(enum fw_port_type port_type, 1313 unsigned int fw_caps, 1314 unsigned long *link_mode_mask) 1315 { 1316 #define SET_LMM(__lmm_name) \ 1317 __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \ 1318 link_mode_mask) 1319 1320 #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \ 1321 do { \ 1322 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \ 1323 SET_LMM(__lmm_name); \ 1324 } while (0) 1325 1326 switch (port_type) { 1327 case FW_PORT_TYPE_BT_SGMII: 1328 case FW_PORT_TYPE_BT_XFI: 1329 case FW_PORT_TYPE_BT_XAUI: 1330 SET_LMM(TP); 1331 FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full); 1332 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1333 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1334 break; 1335 1336 case FW_PORT_TYPE_KX4: 1337 case FW_PORT_TYPE_KX: 1338 SET_LMM(Backplane); 1339 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1340 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1341 break; 1342 1343 case FW_PORT_TYPE_KR: 1344 SET_LMM(Backplane); 1345 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1346 break; 1347 1348 case FW_PORT_TYPE_BP_AP: 1349 SET_LMM(Backplane); 1350 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1351 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); 1352 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1353 break; 1354 1355 case FW_PORT_TYPE_BP4_AP: 1356 SET_LMM(Backplane); 1357 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1358 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); 1359 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1360 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1361 break; 1362 1363 case FW_PORT_TYPE_FIBER_XFI: 1364 case FW_PORT_TYPE_FIBER_XAUI: 1365 case FW_PORT_TYPE_SFP: 1366 case FW_PORT_TYPE_QSFP_10G: 1367 case FW_PORT_TYPE_QSA: 1368 SET_LMM(FIBRE); 1369 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1370 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1371 break; 1372 1373 case FW_PORT_TYPE_BP40_BA: 1374 case FW_PORT_TYPE_QSFP: 1375 SET_LMM(FIBRE); 1376 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1377 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1378 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); 1379 break; 1380 1381 case FW_PORT_TYPE_CR_QSFP: 1382 case FW_PORT_TYPE_SFP28: 1383 SET_LMM(FIBRE); 1384 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1385 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1386 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); 1387 break; 1388 1389 case FW_PORT_TYPE_KR_SFP28: 1390 SET_LMM(Backplane); 1391 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1392 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1393 FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full); 1394 break; 1395 1396 case FW_PORT_TYPE_KR_XLAUI: 1397 SET_LMM(Backplane); 1398 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1399 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1400 FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full); 1401 break; 1402 1403 case FW_PORT_TYPE_CR2_QSFP: 1404 SET_LMM(FIBRE); 1405 FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full); 1406 break; 1407 1408 case FW_PORT_TYPE_KR4_100G: 1409 case FW_PORT_TYPE_CR4_QSFP: 1410 SET_LMM(FIBRE); 1411 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1412 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1413 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); 1414 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); 1415 FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full); 1416 FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full); 1417 break; 1418 1419 default: 1420 break; 1421 } 1422 1423 if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) { 1424 FW_CAPS_TO_LMM(FEC_RS, FEC_RS); 1425 FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER); 1426 } else { 1427 SET_LMM(FEC_NONE); 1428 } 1429 1430 FW_CAPS_TO_LMM(ANEG, Autoneg); 1431 FW_CAPS_TO_LMM(802_3_PAUSE, Pause); 1432 FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause); 1433 1434 #undef FW_CAPS_TO_LMM 1435 #undef SET_LMM 1436 } 1437 1438 static int cxgb4vf_get_link_ksettings(struct net_device *dev, 1439 struct ethtool_link_ksettings *link_ksettings) 1440 { 1441 struct port_info *pi = netdev_priv(dev); 1442 struct ethtool_link_settings *base = &link_ksettings->base; 1443 1444 /* For the nonce, the Firmware doesn't send up Port State changes 1445 * when the Virtual Interface attached to the Port is down. So 1446 * if it's down, let's grab any changes. 1447 */ 1448 if (!netif_running(dev)) 1449 (void)t4vf_update_port_info(pi); 1450 1451 ethtool_link_ksettings_zero_link_mode(link_ksettings, supported); 1452 ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising); 1453 ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising); 1454 1455 base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type); 1456 1457 if (pi->mdio_addr >= 0) { 1458 base->phy_address = pi->mdio_addr; 1459 base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII 1460 ? ETH_MDIO_SUPPORTS_C22 1461 : ETH_MDIO_SUPPORTS_C45); 1462 } else { 1463 base->phy_address = 255; 1464 base->mdio_support = 0; 1465 } 1466 1467 fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps, 1468 link_ksettings->link_modes.supported); 1469 fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps, 1470 link_ksettings->link_modes.advertising); 1471 fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps, 1472 link_ksettings->link_modes.lp_advertising); 1473 1474 if (netif_carrier_ok(dev)) { 1475 base->speed = pi->link_cfg.speed; 1476 base->duplex = DUPLEX_FULL; 1477 } else { 1478 base->speed = SPEED_UNKNOWN; 1479 base->duplex = DUPLEX_UNKNOWN; 1480 } 1481 1482 base->autoneg = pi->link_cfg.autoneg; 1483 if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG) 1484 ethtool_link_ksettings_add_link_mode(link_ksettings, 1485 supported, Autoneg); 1486 if (pi->link_cfg.autoneg) 1487 ethtool_link_ksettings_add_link_mode(link_ksettings, 1488 advertising, Autoneg); 1489 1490 return 0; 1491 } 1492 1493 /* Translate the Firmware FEC value into the ethtool value. */ 1494 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec) 1495 { 1496 unsigned int eth_fec = 0; 1497 1498 if (fw_fec & FW_PORT_CAP32_FEC_RS) 1499 eth_fec |= ETHTOOL_FEC_RS; 1500 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 1501 eth_fec |= ETHTOOL_FEC_BASER; 1502 1503 /* if nothing is set, then FEC is off */ 1504 if (!eth_fec) 1505 eth_fec = ETHTOOL_FEC_OFF; 1506 1507 return eth_fec; 1508 } 1509 1510 /* Translate Common Code FEC value into ethtool value. */ 1511 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec) 1512 { 1513 unsigned int eth_fec = 0; 1514 1515 if (cc_fec & FEC_AUTO) 1516 eth_fec |= ETHTOOL_FEC_AUTO; 1517 if (cc_fec & FEC_RS) 1518 eth_fec |= ETHTOOL_FEC_RS; 1519 if (cc_fec & FEC_BASER_RS) 1520 eth_fec |= ETHTOOL_FEC_BASER; 1521 1522 /* if nothing is set, then FEC is off */ 1523 if (!eth_fec) 1524 eth_fec = ETHTOOL_FEC_OFF; 1525 1526 return eth_fec; 1527 } 1528 1529 static int cxgb4vf_get_fecparam(struct net_device *dev, 1530 struct ethtool_fecparam *fec) 1531 { 1532 const struct port_info *pi = netdev_priv(dev); 1533 const struct link_config *lc = &pi->link_cfg; 1534 1535 /* Translate the Firmware FEC Support into the ethtool value. We 1536 * always support IEEE 802.3 "automatic" selection of Link FEC type if 1537 * any FEC is supported. 1538 */ 1539 fec->fec = fwcap_to_eth_fec(lc->pcaps); 1540 if (fec->fec != ETHTOOL_FEC_OFF) 1541 fec->fec |= ETHTOOL_FEC_AUTO; 1542 1543 /* Translate the current internal FEC parameters into the 1544 * ethtool values. 1545 */ 1546 fec->active_fec = cc_to_eth_fec(lc->fec); 1547 return 0; 1548 } 1549 1550 /* 1551 * Return our driver information. 1552 */ 1553 static void cxgb4vf_get_drvinfo(struct net_device *dev, 1554 struct ethtool_drvinfo *drvinfo) 1555 { 1556 struct adapter *adapter = netdev2adap(dev); 1557 1558 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver)); 1559 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version)); 1560 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)), 1561 sizeof(drvinfo->bus_info)); 1562 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 1563 "%u.%u.%u.%u, TP %u.%u.%u.%u", 1564 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev), 1565 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev), 1566 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev), 1567 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev), 1568 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev), 1569 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev), 1570 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev), 1571 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev)); 1572 } 1573 1574 /* 1575 * Return current adapter message level. 1576 */ 1577 static u32 cxgb4vf_get_msglevel(struct net_device *dev) 1578 { 1579 return netdev2adap(dev)->msg_enable; 1580 } 1581 1582 /* 1583 * Set current adapter message level. 1584 */ 1585 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel) 1586 { 1587 netdev2adap(dev)->msg_enable = msglevel; 1588 } 1589 1590 /* 1591 * Return the device's current Queue Set ring size parameters along with the 1592 * allowed maximum values. Since ethtool doesn't understand the concept of 1593 * multi-queue devices, we just return the current values associated with the 1594 * first Queue Set. 1595 */ 1596 static void cxgb4vf_get_ringparam(struct net_device *dev, 1597 struct ethtool_ringparam *rp) 1598 { 1599 const struct port_info *pi = netdev_priv(dev); 1600 const struct sge *s = &pi->adapter->sge; 1601 1602 rp->rx_max_pending = MAX_RX_BUFFERS; 1603 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES; 1604 rp->rx_jumbo_max_pending = 0; 1605 rp->tx_max_pending = MAX_TXQ_ENTRIES; 1606 1607 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID; 1608 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; 1609 rp->rx_jumbo_pending = 0; 1610 rp->tx_pending = s->ethtxq[pi->first_qset].q.size; 1611 } 1612 1613 /* 1614 * Set the Queue Set ring size parameters for the device. Again, since 1615 * ethtool doesn't allow for the concept of multiple queues per device, we'll 1616 * apply these new values across all of the Queue Sets associated with the 1617 * device -- after vetting them of course! 1618 */ 1619 static int cxgb4vf_set_ringparam(struct net_device *dev, 1620 struct ethtool_ringparam *rp) 1621 { 1622 const struct port_info *pi = netdev_priv(dev); 1623 struct adapter *adapter = pi->adapter; 1624 struct sge *s = &adapter->sge; 1625 int qs; 1626 1627 if (rp->rx_pending > MAX_RX_BUFFERS || 1628 rp->rx_jumbo_pending || 1629 rp->tx_pending > MAX_TXQ_ENTRIES || 1630 rp->rx_mini_pending > MAX_RSPQ_ENTRIES || 1631 rp->rx_mini_pending < MIN_RSPQ_ENTRIES || 1632 rp->rx_pending < MIN_FL_ENTRIES || 1633 rp->tx_pending < MIN_TXQ_ENTRIES) 1634 return -EINVAL; 1635 1636 if (adapter->flags & CXGB4VF_FULL_INIT_DONE) 1637 return -EBUSY; 1638 1639 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) { 1640 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID; 1641 s->ethrxq[qs].rspq.size = rp->rx_mini_pending; 1642 s->ethtxq[qs].q.size = rp->tx_pending; 1643 } 1644 return 0; 1645 } 1646 1647 /* 1648 * Return the interrupt holdoff timer and count for the first Queue Set on the 1649 * device. Our extension ioctl() (the cxgbtool interface) allows the 1650 * interrupt holdoff timer to be read on all of the device's Queue Sets. 1651 */ 1652 static int cxgb4vf_get_coalesce(struct net_device *dev, 1653 struct ethtool_coalesce *coalesce) 1654 { 1655 const struct port_info *pi = netdev_priv(dev); 1656 const struct adapter *adapter = pi->adapter; 1657 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq; 1658 1659 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq); 1660 coalesce->rx_max_coalesced_frames = 1661 ((rspq->intr_params & QINTR_CNT_EN_F) 1662 ? adapter->sge.counter_val[rspq->pktcnt_idx] 1663 : 0); 1664 return 0; 1665 } 1666 1667 /* 1668 * Set the RX interrupt holdoff timer and count for the first Queue Set on the 1669 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set 1670 * the interrupt holdoff timer on any of the device's Queue Sets. 1671 */ 1672 static int cxgb4vf_set_coalesce(struct net_device *dev, 1673 struct ethtool_coalesce *coalesce) 1674 { 1675 const struct port_info *pi = netdev_priv(dev); 1676 struct adapter *adapter = pi->adapter; 1677 1678 return set_rxq_intr_params(adapter, 1679 &adapter->sge.ethrxq[pi->first_qset].rspq, 1680 coalesce->rx_coalesce_usecs, 1681 coalesce->rx_max_coalesced_frames); 1682 } 1683 1684 /* 1685 * Report current port link pause parameter settings. 1686 */ 1687 static void cxgb4vf_get_pauseparam(struct net_device *dev, 1688 struct ethtool_pauseparam *pauseparam) 1689 { 1690 struct port_info *pi = netdev_priv(dev); 1691 1692 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; 1693 pauseparam->rx_pause = (pi->link_cfg.advertised_fc & PAUSE_RX) != 0; 1694 pauseparam->tx_pause = (pi->link_cfg.advertised_fc & PAUSE_TX) != 0; 1695 } 1696 1697 /* 1698 * Identify the port by blinking the port's LED. 1699 */ 1700 static int cxgb4vf_phys_id(struct net_device *dev, 1701 enum ethtool_phys_id_state state) 1702 { 1703 unsigned int val; 1704 struct port_info *pi = netdev_priv(dev); 1705 1706 if (state == ETHTOOL_ID_ACTIVE) 1707 val = 0xffff; 1708 else if (state == ETHTOOL_ID_INACTIVE) 1709 val = 0; 1710 else 1711 return -EINVAL; 1712 1713 return t4vf_identify_port(pi->adapter, pi->viid, val); 1714 } 1715 1716 /* 1717 * Port stats maintained per queue of the port. 1718 */ 1719 struct queue_port_stats { 1720 u64 tso; 1721 u64 tx_csum; 1722 u64 rx_csum; 1723 u64 vlan_ex; 1724 u64 vlan_ins; 1725 u64 lro_pkts; 1726 u64 lro_merged; 1727 }; 1728 1729 /* 1730 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that 1731 * these need to match the order of statistics returned by 1732 * t4vf_get_port_stats(). 1733 */ 1734 static const char stats_strings[][ETH_GSTRING_LEN] = { 1735 /* 1736 * These must match the layout of the t4vf_port_stats structure. 1737 */ 1738 "TxBroadcastBytes ", 1739 "TxBroadcastFrames ", 1740 "TxMulticastBytes ", 1741 "TxMulticastFrames ", 1742 "TxUnicastBytes ", 1743 "TxUnicastFrames ", 1744 "TxDroppedFrames ", 1745 "TxOffloadBytes ", 1746 "TxOffloadFrames ", 1747 "RxBroadcastBytes ", 1748 "RxBroadcastFrames ", 1749 "RxMulticastBytes ", 1750 "RxMulticastFrames ", 1751 "RxUnicastBytes ", 1752 "RxUnicastFrames ", 1753 "RxErrorFrames ", 1754 1755 /* 1756 * These are accumulated per-queue statistics and must match the 1757 * order of the fields in the queue_port_stats structure. 1758 */ 1759 "TSO ", 1760 "TxCsumOffload ", 1761 "RxCsumGood ", 1762 "VLANextractions ", 1763 "VLANinsertions ", 1764 "GROPackets ", 1765 "GROMerged ", 1766 }; 1767 1768 /* 1769 * Return the number of statistics in the specified statistics set. 1770 */ 1771 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset) 1772 { 1773 switch (sset) { 1774 case ETH_SS_STATS: 1775 return ARRAY_SIZE(stats_strings); 1776 default: 1777 return -EOPNOTSUPP; 1778 } 1779 /*NOTREACHED*/ 1780 } 1781 1782 /* 1783 * Return the strings for the specified statistics set. 1784 */ 1785 static void cxgb4vf_get_strings(struct net_device *dev, 1786 u32 sset, 1787 u8 *data) 1788 { 1789 switch (sset) { 1790 case ETH_SS_STATS: 1791 memcpy(data, stats_strings, sizeof(stats_strings)); 1792 break; 1793 } 1794 } 1795 1796 /* 1797 * Small utility routine to accumulate queue statistics across the queues of 1798 * a "port". 1799 */ 1800 static void collect_sge_port_stats(const struct adapter *adapter, 1801 const struct port_info *pi, 1802 struct queue_port_stats *stats) 1803 { 1804 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset]; 1805 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 1806 int qs; 1807 1808 memset(stats, 0, sizeof(*stats)); 1809 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 1810 stats->tso += txq->tso; 1811 stats->tx_csum += txq->tx_cso; 1812 stats->rx_csum += rxq->stats.rx_cso; 1813 stats->vlan_ex += rxq->stats.vlan_ex; 1814 stats->vlan_ins += txq->vlan_ins; 1815 stats->lro_pkts += rxq->stats.lro_pkts; 1816 stats->lro_merged += rxq->stats.lro_merged; 1817 } 1818 } 1819 1820 /* 1821 * Return the ETH_SS_STATS statistics set. 1822 */ 1823 static void cxgb4vf_get_ethtool_stats(struct net_device *dev, 1824 struct ethtool_stats *stats, 1825 u64 *data) 1826 { 1827 struct port_info *pi = netdev2pinfo(dev); 1828 struct adapter *adapter = pi->adapter; 1829 int err = t4vf_get_port_stats(adapter, pi->pidx, 1830 (struct t4vf_port_stats *)data); 1831 if (err) 1832 memset(data, 0, sizeof(struct t4vf_port_stats)); 1833 1834 data += sizeof(struct t4vf_port_stats) / sizeof(u64); 1835 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); 1836 } 1837 1838 /* 1839 * Return the size of our register map. 1840 */ 1841 static int cxgb4vf_get_regs_len(struct net_device *dev) 1842 { 1843 return T4VF_REGMAP_SIZE; 1844 } 1845 1846 /* 1847 * Dump a block of registers, start to end inclusive, into a buffer. 1848 */ 1849 static void reg_block_dump(struct adapter *adapter, void *regbuf, 1850 unsigned int start, unsigned int end) 1851 { 1852 u32 *bp = regbuf + start - T4VF_REGMAP_START; 1853 1854 for ( ; start <= end; start += sizeof(u32)) { 1855 /* 1856 * Avoid reading the Mailbox Control register since that 1857 * can trigger a Mailbox Ownership Arbitration cycle and 1858 * interfere with communication with the firmware. 1859 */ 1860 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL) 1861 *bp++ = 0xffff; 1862 else 1863 *bp++ = t4_read_reg(adapter, start); 1864 } 1865 } 1866 1867 /* 1868 * Copy our entire register map into the provided buffer. 1869 */ 1870 static void cxgb4vf_get_regs(struct net_device *dev, 1871 struct ethtool_regs *regs, 1872 void *regbuf) 1873 { 1874 struct adapter *adapter = netdev2adap(dev); 1875 1876 regs->version = mk_adap_vers(adapter); 1877 1878 /* 1879 * Fill in register buffer with our register map. 1880 */ 1881 memset(regbuf, 0, T4VF_REGMAP_SIZE); 1882 1883 reg_block_dump(adapter, regbuf, 1884 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST, 1885 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST); 1886 reg_block_dump(adapter, regbuf, 1887 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST, 1888 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST); 1889 1890 /* T5 adds new registers in the PL Register map. 1891 */ 1892 reg_block_dump(adapter, regbuf, 1893 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST, 1894 T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip) 1895 ? PL_VF_WHOAMI_A : PL_VF_REVISION_A)); 1896 reg_block_dump(adapter, regbuf, 1897 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST, 1898 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST); 1899 1900 reg_block_dump(adapter, regbuf, 1901 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST, 1902 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST); 1903 } 1904 1905 /* 1906 * Report current Wake On LAN settings. 1907 */ 1908 static void cxgb4vf_get_wol(struct net_device *dev, 1909 struct ethtool_wolinfo *wol) 1910 { 1911 wol->supported = 0; 1912 wol->wolopts = 0; 1913 memset(&wol->sopass, 0, sizeof(wol->sopass)); 1914 } 1915 1916 /* 1917 * TCP Segmentation Offload flags which we support. 1918 */ 1919 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1920 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 1921 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 1922 1923 static const struct ethtool_ops cxgb4vf_ethtool_ops = { 1924 .get_link_ksettings = cxgb4vf_get_link_ksettings, 1925 .get_fecparam = cxgb4vf_get_fecparam, 1926 .get_drvinfo = cxgb4vf_get_drvinfo, 1927 .get_msglevel = cxgb4vf_get_msglevel, 1928 .set_msglevel = cxgb4vf_set_msglevel, 1929 .get_ringparam = cxgb4vf_get_ringparam, 1930 .set_ringparam = cxgb4vf_set_ringparam, 1931 .get_coalesce = cxgb4vf_get_coalesce, 1932 .set_coalesce = cxgb4vf_set_coalesce, 1933 .get_pauseparam = cxgb4vf_get_pauseparam, 1934 .get_link = ethtool_op_get_link, 1935 .get_strings = cxgb4vf_get_strings, 1936 .set_phys_id = cxgb4vf_phys_id, 1937 .get_sset_count = cxgb4vf_get_sset_count, 1938 .get_ethtool_stats = cxgb4vf_get_ethtool_stats, 1939 .get_regs_len = cxgb4vf_get_regs_len, 1940 .get_regs = cxgb4vf_get_regs, 1941 .get_wol = cxgb4vf_get_wol, 1942 }; 1943 1944 /* 1945 * /sys/kernel/debug/cxgb4vf support code and data. 1946 * ================================================ 1947 */ 1948 1949 /* 1950 * Show Firmware Mailbox Command/Reply Log 1951 * 1952 * Note that we don't do any locking when dumping the Firmware Mailbox Log so 1953 * it's possible that we can catch things during a log update and therefore 1954 * see partially corrupted log entries. But i9t's probably Good Enough(tm). 1955 * If we ever decide that we want to make sure that we're dumping a coherent 1956 * log, we'd need to perform locking in the mailbox logging and in 1957 * mboxlog_open() where we'd need to grab the entire mailbox log in one go 1958 * like we do for the Firmware Device Log. But as stated above, meh ... 1959 */ 1960 static int mboxlog_show(struct seq_file *seq, void *v) 1961 { 1962 struct adapter *adapter = seq->private; 1963 struct mbox_cmd_log *log = adapter->mbox_log; 1964 struct mbox_cmd *entry; 1965 int entry_idx, i; 1966 1967 if (v == SEQ_START_TOKEN) { 1968 seq_printf(seq, 1969 "%10s %15s %5s %5s %s\n", 1970 "Seq#", "Tstamp", "Atime", "Etime", 1971 "Command/Reply"); 1972 return 0; 1973 } 1974 1975 entry_idx = log->cursor + ((uintptr_t)v - 2); 1976 if (entry_idx >= log->size) 1977 entry_idx -= log->size; 1978 entry = mbox_cmd_log_entry(log, entry_idx); 1979 1980 /* skip over unused entries */ 1981 if (entry->timestamp == 0) 1982 return 0; 1983 1984 seq_printf(seq, "%10u %15llu %5d %5d", 1985 entry->seqno, entry->timestamp, 1986 entry->access, entry->execute); 1987 for (i = 0; i < MBOX_LEN / 8; i++) { 1988 u64 flit = entry->cmd[i]; 1989 u32 hi = (u32)(flit >> 32); 1990 u32 lo = (u32)flit; 1991 1992 seq_printf(seq, " %08x %08x", hi, lo); 1993 } 1994 seq_puts(seq, "\n"); 1995 return 0; 1996 } 1997 1998 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos) 1999 { 2000 struct adapter *adapter = seq->private; 2001 struct mbox_cmd_log *log = adapter->mbox_log; 2002 2003 return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL); 2004 } 2005 2006 static void *mboxlog_start(struct seq_file *seq, loff_t *pos) 2007 { 2008 return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN; 2009 } 2010 2011 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos) 2012 { 2013 ++*pos; 2014 return mboxlog_get_idx(seq, *pos); 2015 } 2016 2017 static void mboxlog_stop(struct seq_file *seq, void *v) 2018 { 2019 } 2020 2021 static const struct seq_operations mboxlog_seq_ops = { 2022 .start = mboxlog_start, 2023 .next = mboxlog_next, 2024 .stop = mboxlog_stop, 2025 .show = mboxlog_show 2026 }; 2027 2028 static int mboxlog_open(struct inode *inode, struct file *file) 2029 { 2030 int res = seq_open(file, &mboxlog_seq_ops); 2031 2032 if (!res) { 2033 struct seq_file *seq = file->private_data; 2034 2035 seq->private = inode->i_private; 2036 } 2037 return res; 2038 } 2039 2040 static const struct file_operations mboxlog_fops = { 2041 .owner = THIS_MODULE, 2042 .open = mboxlog_open, 2043 .read = seq_read, 2044 .llseek = seq_lseek, 2045 .release = seq_release, 2046 }; 2047 2048 /* 2049 * Show SGE Queue Set information. We display QPL Queues Sets per line. 2050 */ 2051 #define QPL 4 2052 2053 static int sge_qinfo_show(struct seq_file *seq, void *v) 2054 { 2055 struct adapter *adapter = seq->private; 2056 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2057 int qs, r = (uintptr_t)v - 1; 2058 2059 if (r) 2060 seq_putc(seq, '\n'); 2061 2062 #define S3(fmt_spec, s, v) \ 2063 do {\ 2064 seq_printf(seq, "%-12s", s); \ 2065 for (qs = 0; qs < n; ++qs) \ 2066 seq_printf(seq, " %16" fmt_spec, v); \ 2067 seq_putc(seq, '\n'); \ 2068 } while (0) 2069 #define S(s, v) S3("s", s, v) 2070 #define T(s, v) S3("u", s, txq[qs].v) 2071 #define R(s, v) S3("u", s, rxq[qs].v) 2072 2073 if (r < eth_entries) { 2074 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2075 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2076 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2077 2078 S("QType:", "Ethernet"); 2079 S("Interface:", 2080 (rxq[qs].rspq.netdev 2081 ? rxq[qs].rspq.netdev->name 2082 : "N/A")); 2083 S3("d", "Port:", 2084 (rxq[qs].rspq.netdev 2085 ? ((struct port_info *) 2086 netdev_priv(rxq[qs].rspq.netdev))->port_id 2087 : -1)); 2088 T("TxQ ID:", q.abs_id); 2089 T("TxQ size:", q.size); 2090 T("TxQ inuse:", q.in_use); 2091 T("TxQ PIdx:", q.pidx); 2092 T("TxQ CIdx:", q.cidx); 2093 R("RspQ ID:", rspq.abs_id); 2094 R("RspQ size:", rspq.size); 2095 R("RspQE size:", rspq.iqe_len); 2096 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq)); 2097 S3("u", "Intr pktcnt:", 2098 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]); 2099 R("RspQ CIdx:", rspq.cidx); 2100 R("RspQ Gen:", rspq.gen); 2101 R("FL ID:", fl.abs_id); 2102 R("FL size:", fl.size - MIN_FL_RESID); 2103 R("FL avail:", fl.avail); 2104 R("FL PIdx:", fl.pidx); 2105 R("FL CIdx:", fl.cidx); 2106 return 0; 2107 } 2108 2109 r -= eth_entries; 2110 if (r == 0) { 2111 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2112 2113 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue"); 2114 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id); 2115 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2116 qtimer_val(adapter, evtq)); 2117 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2118 adapter->sge.counter_val[evtq->pktcnt_idx]); 2119 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx); 2120 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen); 2121 } else if (r == 1) { 2122 const struct sge_rspq *intrq = &adapter->sge.intrq; 2123 2124 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue"); 2125 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id); 2126 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2127 qtimer_val(adapter, intrq)); 2128 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2129 adapter->sge.counter_val[intrq->pktcnt_idx]); 2130 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx); 2131 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen); 2132 } 2133 2134 #undef R 2135 #undef T 2136 #undef S 2137 #undef S3 2138 2139 return 0; 2140 } 2141 2142 /* 2143 * Return the number of "entries" in our "file". We group the multi-Queue 2144 * sections with QPL Queue Sets per "entry". The sections of the output are: 2145 * 2146 * Ethernet RX/TX Queue Sets 2147 * Firmware Event Queue 2148 * Forwarded Interrupt Queue (if in MSI mode) 2149 */ 2150 static int sge_queue_entries(const struct adapter *adapter) 2151 { 2152 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2153 ((adapter->flags & CXGB4VF_USING_MSI) != 0); 2154 } 2155 2156 static void *sge_queue_start(struct seq_file *seq, loff_t *pos) 2157 { 2158 int entries = sge_queue_entries(seq->private); 2159 2160 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2161 } 2162 2163 static void sge_queue_stop(struct seq_file *seq, void *v) 2164 { 2165 } 2166 2167 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos) 2168 { 2169 int entries = sge_queue_entries(seq->private); 2170 2171 ++*pos; 2172 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2173 } 2174 2175 static const struct seq_operations sge_qinfo_seq_ops = { 2176 .start = sge_queue_start, 2177 .next = sge_queue_next, 2178 .stop = sge_queue_stop, 2179 .show = sge_qinfo_show 2180 }; 2181 2182 static int sge_qinfo_open(struct inode *inode, struct file *file) 2183 { 2184 int res = seq_open(file, &sge_qinfo_seq_ops); 2185 2186 if (!res) { 2187 struct seq_file *seq = file->private_data; 2188 seq->private = inode->i_private; 2189 } 2190 return res; 2191 } 2192 2193 static const struct file_operations sge_qinfo_debugfs_fops = { 2194 .owner = THIS_MODULE, 2195 .open = sge_qinfo_open, 2196 .read = seq_read, 2197 .llseek = seq_lseek, 2198 .release = seq_release, 2199 }; 2200 2201 /* 2202 * Show SGE Queue Set statistics. We display QPL Queues Sets per line. 2203 */ 2204 #define QPL 4 2205 2206 static int sge_qstats_show(struct seq_file *seq, void *v) 2207 { 2208 struct adapter *adapter = seq->private; 2209 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2210 int qs, r = (uintptr_t)v - 1; 2211 2212 if (r) 2213 seq_putc(seq, '\n'); 2214 2215 #define S3(fmt, s, v) \ 2216 do { \ 2217 seq_printf(seq, "%-16s", s); \ 2218 for (qs = 0; qs < n; ++qs) \ 2219 seq_printf(seq, " %8" fmt, v); \ 2220 seq_putc(seq, '\n'); \ 2221 } while (0) 2222 #define S(s, v) S3("s", s, v) 2223 2224 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v) 2225 #define T(s, v) T3("lu", s, v) 2226 2227 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v) 2228 #define R(s, v) R3("lu", s, v) 2229 2230 if (r < eth_entries) { 2231 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2232 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2233 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2234 2235 S("QType:", "Ethernet"); 2236 S("Interface:", 2237 (rxq[qs].rspq.netdev 2238 ? rxq[qs].rspq.netdev->name 2239 : "N/A")); 2240 R3("u", "RspQNullInts:", rspq.unhandled_irqs); 2241 R("RxPackets:", stats.pkts); 2242 R("RxCSO:", stats.rx_cso); 2243 R("VLANxtract:", stats.vlan_ex); 2244 R("LROmerged:", stats.lro_merged); 2245 R("LROpackets:", stats.lro_pkts); 2246 R("RxDrops:", stats.rx_drops); 2247 T("TSO:", tso); 2248 T("TxCSO:", tx_cso); 2249 T("VLANins:", vlan_ins); 2250 T("TxQFull:", q.stops); 2251 T("TxQRestarts:", q.restarts); 2252 T("TxMapErr:", mapping_err); 2253 R("FLAllocErr:", fl.alloc_failed); 2254 R("FLLrgAlcErr:", fl.large_alloc_failed); 2255 R("FLStarving:", fl.starving); 2256 return 0; 2257 } 2258 2259 r -= eth_entries; 2260 if (r == 0) { 2261 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2262 2263 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue"); 2264 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2265 evtq->unhandled_irqs); 2266 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx); 2267 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen); 2268 } else if (r == 1) { 2269 const struct sge_rspq *intrq = &adapter->sge.intrq; 2270 2271 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue"); 2272 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2273 intrq->unhandled_irqs); 2274 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx); 2275 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen); 2276 } 2277 2278 #undef R 2279 #undef T 2280 #undef S 2281 #undef R3 2282 #undef T3 2283 #undef S3 2284 2285 return 0; 2286 } 2287 2288 /* 2289 * Return the number of "entries" in our "file". We group the multi-Queue 2290 * sections with QPL Queue Sets per "entry". The sections of the output are: 2291 * 2292 * Ethernet RX/TX Queue Sets 2293 * Firmware Event Queue 2294 * Forwarded Interrupt Queue (if in MSI mode) 2295 */ 2296 static int sge_qstats_entries(const struct adapter *adapter) 2297 { 2298 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2299 ((adapter->flags & CXGB4VF_USING_MSI) != 0); 2300 } 2301 2302 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos) 2303 { 2304 int entries = sge_qstats_entries(seq->private); 2305 2306 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2307 } 2308 2309 static void sge_qstats_stop(struct seq_file *seq, void *v) 2310 { 2311 } 2312 2313 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos) 2314 { 2315 int entries = sge_qstats_entries(seq->private); 2316 2317 (*pos)++; 2318 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2319 } 2320 2321 static const struct seq_operations sge_qstats_seq_ops = { 2322 .start = sge_qstats_start, 2323 .next = sge_qstats_next, 2324 .stop = sge_qstats_stop, 2325 .show = sge_qstats_show 2326 }; 2327 2328 static int sge_qstats_open(struct inode *inode, struct file *file) 2329 { 2330 int res = seq_open(file, &sge_qstats_seq_ops); 2331 2332 if (res == 0) { 2333 struct seq_file *seq = file->private_data; 2334 seq->private = inode->i_private; 2335 } 2336 return res; 2337 } 2338 2339 static const struct file_operations sge_qstats_proc_fops = { 2340 .owner = THIS_MODULE, 2341 .open = sge_qstats_open, 2342 .read = seq_read, 2343 .llseek = seq_lseek, 2344 .release = seq_release, 2345 }; 2346 2347 /* 2348 * Show PCI-E SR-IOV Virtual Function Resource Limits. 2349 */ 2350 static int resources_show(struct seq_file *seq, void *v) 2351 { 2352 struct adapter *adapter = seq->private; 2353 struct vf_resources *vfres = &adapter->params.vfres; 2354 2355 #define S(desc, fmt, var) \ 2356 seq_printf(seq, "%-60s " fmt "\n", \ 2357 desc " (" #var "):", vfres->var) 2358 2359 S("Virtual Interfaces", "%d", nvi); 2360 S("Egress Queues", "%d", neq); 2361 S("Ethernet Control", "%d", nethctrl); 2362 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint); 2363 S("Ingress Queues", "%d", niq); 2364 S("Traffic Class", "%d", tc); 2365 S("Port Access Rights Mask", "%#x", pmask); 2366 S("MAC Address Filters", "%d", nexactf); 2367 S("Firmware Command Read Capabilities", "%#x", r_caps); 2368 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps); 2369 2370 #undef S 2371 2372 return 0; 2373 } 2374 DEFINE_SHOW_ATTRIBUTE(resources); 2375 2376 /* 2377 * Show Virtual Interfaces. 2378 */ 2379 static int interfaces_show(struct seq_file *seq, void *v) 2380 { 2381 if (v == SEQ_START_TOKEN) { 2382 seq_puts(seq, "Interface Port VIID\n"); 2383 } else { 2384 struct adapter *adapter = seq->private; 2385 int pidx = (uintptr_t)v - 2; 2386 struct net_device *dev = adapter->port[pidx]; 2387 struct port_info *pi = netdev_priv(dev); 2388 2389 seq_printf(seq, "%9s %4d %#5x\n", 2390 dev->name, pi->port_id, pi->viid); 2391 } 2392 return 0; 2393 } 2394 2395 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos) 2396 { 2397 return pos <= adapter->params.nports 2398 ? (void *)(uintptr_t)(pos + 1) 2399 : NULL; 2400 } 2401 2402 static void *interfaces_start(struct seq_file *seq, loff_t *pos) 2403 { 2404 return *pos 2405 ? interfaces_get_idx(seq->private, *pos) 2406 : SEQ_START_TOKEN; 2407 } 2408 2409 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos) 2410 { 2411 (*pos)++; 2412 return interfaces_get_idx(seq->private, *pos); 2413 } 2414 2415 static void interfaces_stop(struct seq_file *seq, void *v) 2416 { 2417 } 2418 2419 static const struct seq_operations interfaces_seq_ops = { 2420 .start = interfaces_start, 2421 .next = interfaces_next, 2422 .stop = interfaces_stop, 2423 .show = interfaces_show 2424 }; 2425 2426 static int interfaces_open(struct inode *inode, struct file *file) 2427 { 2428 int res = seq_open(file, &interfaces_seq_ops); 2429 2430 if (res == 0) { 2431 struct seq_file *seq = file->private_data; 2432 seq->private = inode->i_private; 2433 } 2434 return res; 2435 } 2436 2437 static const struct file_operations interfaces_proc_fops = { 2438 .owner = THIS_MODULE, 2439 .open = interfaces_open, 2440 .read = seq_read, 2441 .llseek = seq_lseek, 2442 .release = seq_release, 2443 }; 2444 2445 /* 2446 * /sys/kernel/debugfs/cxgb4vf/ files list. 2447 */ 2448 struct cxgb4vf_debugfs_entry { 2449 const char *name; /* name of debugfs node */ 2450 umode_t mode; /* file system mode */ 2451 const struct file_operations *fops; 2452 }; 2453 2454 static struct cxgb4vf_debugfs_entry debugfs_files[] = { 2455 { "mboxlog", 0444, &mboxlog_fops }, 2456 { "sge_qinfo", 0444, &sge_qinfo_debugfs_fops }, 2457 { "sge_qstats", 0444, &sge_qstats_proc_fops }, 2458 { "resources", 0444, &resources_fops }, 2459 { "interfaces", 0444, &interfaces_proc_fops }, 2460 }; 2461 2462 /* 2463 * Module and device initialization and cleanup code. 2464 * ================================================== 2465 */ 2466 2467 /* 2468 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the 2469 * directory (debugfs_root) has already been set up. 2470 */ 2471 static int setup_debugfs(struct adapter *adapter) 2472 { 2473 int i; 2474 2475 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2476 2477 /* 2478 * Debugfs support is best effort. 2479 */ 2480 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) 2481 debugfs_create_file(debugfs_files[i].name, 2482 debugfs_files[i].mode, 2483 adapter->debugfs_root, (void *)adapter, 2484 debugfs_files[i].fops); 2485 2486 return 0; 2487 } 2488 2489 /* 2490 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave 2491 * it to our caller to tear down the directory (debugfs_root). 2492 */ 2493 static void cleanup_debugfs(struct adapter *adapter) 2494 { 2495 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2496 2497 /* 2498 * Unlike our sister routine cleanup_proc(), we don't need to remove 2499 * individual entries because a call will be made to 2500 * debugfs_remove_recursive(). We just need to clean up any ancillary 2501 * persistent state. 2502 */ 2503 /* nothing to do */ 2504 } 2505 2506 /* Figure out how many Ports and Queue Sets we can support. This depends on 2507 * knowing our Virtual Function Resources and may be called a second time if 2508 * we fall back from MSI-X to MSI Interrupt Mode. 2509 */ 2510 static void size_nports_qsets(struct adapter *adapter) 2511 { 2512 struct vf_resources *vfres = &adapter->params.vfres; 2513 unsigned int ethqsets, pmask_nports; 2514 2515 /* The number of "ports" which we support is equal to the number of 2516 * Virtual Interfaces with which we've been provisioned. 2517 */ 2518 adapter->params.nports = vfres->nvi; 2519 if (adapter->params.nports > MAX_NPORTS) { 2520 dev_warn(adapter->pdev_dev, "only using %d of %d maximum" 2521 " allowed virtual interfaces\n", MAX_NPORTS, 2522 adapter->params.nports); 2523 adapter->params.nports = MAX_NPORTS; 2524 } 2525 2526 /* We may have been provisioned with more VIs than the number of 2527 * ports we're allowed to access (our Port Access Rights Mask). 2528 * This is obviously a configuration conflict but we don't want to 2529 * crash the kernel or anything silly just because of that. 2530 */ 2531 pmask_nports = hweight32(adapter->params.vfres.pmask); 2532 if (pmask_nports < adapter->params.nports) { 2533 dev_warn(adapter->pdev_dev, "only using %d of %d provisioned" 2534 " virtual interfaces; limited by Port Access Rights" 2535 " mask %#x\n", pmask_nports, adapter->params.nports, 2536 adapter->params.vfres.pmask); 2537 adapter->params.nports = pmask_nports; 2538 } 2539 2540 /* We need to reserve an Ingress Queue for the Asynchronous Firmware 2541 * Event Queue. And if we're using MSI Interrupts, we'll also need to 2542 * reserve an Ingress Queue for a Forwarded Interrupts. 2543 * 2544 * The rest of the FL/Intr-capable ingress queues will be matched up 2545 * one-for-one with Ethernet/Control egress queues in order to form 2546 * "Queue Sets" which will be aportioned between the "ports". For 2547 * each Queue Set, we'll need the ability to allocate two Egress 2548 * Contexts -- one for the Ingress Queue Free List and one for the TX 2549 * Ethernet Queue. 2550 * 2551 * Note that even if we're currently configured to use MSI-X 2552 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded 2553 * to MSI Interrupts if we can't get enough MSI-X Interrupts. If that 2554 * happens we'll need to adjust things later. 2555 */ 2556 ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI); 2557 if (vfres->nethctrl != ethqsets) 2558 ethqsets = min(vfres->nethctrl, ethqsets); 2559 if (vfres->neq < ethqsets*2) 2560 ethqsets = vfres->neq/2; 2561 if (ethqsets > MAX_ETH_QSETS) 2562 ethqsets = MAX_ETH_QSETS; 2563 adapter->sge.max_ethqsets = ethqsets; 2564 2565 if (adapter->sge.max_ethqsets < adapter->params.nports) { 2566 dev_warn(adapter->pdev_dev, "only using %d of %d available" 2567 " virtual interfaces (too few Queue Sets)\n", 2568 adapter->sge.max_ethqsets, adapter->params.nports); 2569 adapter->params.nports = adapter->sge.max_ethqsets; 2570 } 2571 } 2572 2573 /* 2574 * Perform early "adapter" initialization. This is where we discover what 2575 * adapter parameters we're going to be using and initialize basic adapter 2576 * hardware support. 2577 */ 2578 static int adap_init0(struct adapter *adapter) 2579 { 2580 struct sge_params *sge_params = &adapter->params.sge; 2581 struct sge *s = &adapter->sge; 2582 int err; 2583 u32 param, val = 0; 2584 2585 /* 2586 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux 2587 * 2.6.31 and later we can't call pci_reset_function() in order to 2588 * issue an FLR because of a self- deadlock on the device semaphore. 2589 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the 2590 * cases where they're needed -- for instance, some versions of KVM 2591 * fail to reset "Assigned Devices" when the VM reboots. Therefore we 2592 * use the firmware based reset in order to reset any per function 2593 * state. 2594 */ 2595 err = t4vf_fw_reset(adapter); 2596 if (err < 0) { 2597 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err); 2598 return err; 2599 } 2600 2601 /* 2602 * Grab basic operational parameters. These will predominantly have 2603 * been set up by the Physical Function Driver or will be hard coded 2604 * into the adapter. We just have to live with them ... Note that 2605 * we _must_ get our VPD parameters before our SGE parameters because 2606 * we need to know the adapter's core clock from the VPD in order to 2607 * properly decode the SGE Timer Values. 2608 */ 2609 err = t4vf_get_dev_params(adapter); 2610 if (err) { 2611 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2612 " device parameters: err=%d\n", err); 2613 return err; 2614 } 2615 err = t4vf_get_vpd_params(adapter); 2616 if (err) { 2617 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2618 " VPD parameters: err=%d\n", err); 2619 return err; 2620 } 2621 err = t4vf_get_sge_params(adapter); 2622 if (err) { 2623 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2624 " SGE parameters: err=%d\n", err); 2625 return err; 2626 } 2627 err = t4vf_get_rss_glb_config(adapter); 2628 if (err) { 2629 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2630 " RSS parameters: err=%d\n", err); 2631 return err; 2632 } 2633 if (adapter->params.rss.mode != 2634 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 2635 dev_err(adapter->pdev_dev, "unable to operate with global RSS" 2636 " mode %d\n", adapter->params.rss.mode); 2637 return -EINVAL; 2638 } 2639 err = t4vf_sge_init(adapter); 2640 if (err) { 2641 dev_err(adapter->pdev_dev, "unable to use adapter parameters:" 2642 " err=%d\n", err); 2643 return err; 2644 } 2645 2646 /* If we're running on newer firmware, let it know that we're 2647 * prepared to deal with encapsulated CPL messages. Older 2648 * firmware won't understand this and we'll just get 2649 * unencapsulated messages ... 2650 */ 2651 param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2652 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP); 2653 val = 1; 2654 (void) t4vf_set_params(adapter, 1, ¶m, &val); 2655 2656 /* 2657 * Retrieve our RX interrupt holdoff timer values and counter 2658 * threshold values from the SGE parameters. 2659 */ 2660 s->timer_val[0] = core_ticks_to_us(adapter, 2661 TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1)); 2662 s->timer_val[1] = core_ticks_to_us(adapter, 2663 TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1)); 2664 s->timer_val[2] = core_ticks_to_us(adapter, 2665 TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3)); 2666 s->timer_val[3] = core_ticks_to_us(adapter, 2667 TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3)); 2668 s->timer_val[4] = core_ticks_to_us(adapter, 2669 TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5)); 2670 s->timer_val[5] = core_ticks_to_us(adapter, 2671 TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5)); 2672 2673 s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold); 2674 s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold); 2675 s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold); 2676 s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold); 2677 2678 /* 2679 * Grab our Virtual Interface resource allocation, extract the 2680 * features that we're interested in and do a bit of sanity testing on 2681 * what we discover. 2682 */ 2683 err = t4vf_get_vfres(adapter); 2684 if (err) { 2685 dev_err(adapter->pdev_dev, "unable to get virtual interface" 2686 " resources: err=%d\n", err); 2687 return err; 2688 } 2689 2690 /* Check for various parameter sanity issues */ 2691 if (adapter->params.vfres.pmask == 0) { 2692 dev_err(adapter->pdev_dev, "no port access configured\n" 2693 "usable!\n"); 2694 return -EINVAL; 2695 } 2696 if (adapter->params.vfres.nvi == 0) { 2697 dev_err(adapter->pdev_dev, "no virtual interfaces configured/" 2698 "usable!\n"); 2699 return -EINVAL; 2700 } 2701 2702 /* Initialize nports and max_ethqsets now that we have our Virtual 2703 * Function Resources. 2704 */ 2705 size_nports_qsets(adapter); 2706 2707 adapter->flags |= CXGB4VF_FW_OK; 2708 return 0; 2709 } 2710 2711 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx, 2712 u8 pkt_cnt_idx, unsigned int size, 2713 unsigned int iqe_size) 2714 { 2715 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 2716 (pkt_cnt_idx < SGE_NCOUNTERS ? 2717 QINTR_CNT_EN_F : 0)); 2718 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS 2719 ? pkt_cnt_idx 2720 : 0); 2721 rspq->iqe_len = iqe_size; 2722 rspq->size = size; 2723 } 2724 2725 /* 2726 * Perform default configuration of DMA queues depending on the number and 2727 * type of ports we found and the number of available CPUs. Most settings can 2728 * be modified by the admin via ethtool and cxgbtool prior to the adapter 2729 * being brought up for the first time. 2730 */ 2731 static void cfg_queues(struct adapter *adapter) 2732 { 2733 struct sge *s = &adapter->sge; 2734 int q10g, n10g, qidx, pidx, qs; 2735 size_t iqe_size; 2736 2737 /* 2738 * We should not be called till we know how many Queue Sets we can 2739 * support. In particular, this means that we need to know what kind 2740 * of interrupts we'll be using ... 2741 */ 2742 BUG_ON((adapter->flags & 2743 (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0); 2744 2745 /* 2746 * Count the number of 10GbE Virtual Interfaces that we have. 2747 */ 2748 n10g = 0; 2749 for_each_port(adapter, pidx) 2750 n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg); 2751 2752 /* 2753 * We default to 1 queue per non-10G port and up to # of cores queues 2754 * per 10G port. 2755 */ 2756 if (n10g == 0) 2757 q10g = 0; 2758 else { 2759 int n1g = (adapter->params.nports - n10g); 2760 q10g = (adapter->sge.max_ethqsets - n1g) / n10g; 2761 if (q10g > num_online_cpus()) 2762 q10g = num_online_cpus(); 2763 } 2764 2765 /* 2766 * Allocate the "Queue Sets" to the various Virtual Interfaces. 2767 * The layout will be established in setup_sge_queues() when the 2768 * adapter is brough up for the first time. 2769 */ 2770 qidx = 0; 2771 for_each_port(adapter, pidx) { 2772 struct port_info *pi = adap2pinfo(adapter, pidx); 2773 2774 pi->first_qset = qidx; 2775 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 2776 qidx += pi->nqsets; 2777 } 2778 s->ethqsets = qidx; 2779 2780 /* 2781 * The Ingress Queue Entry Size for our various Response Queues needs 2782 * to be big enough to accommodate the largest message we can receive 2783 * from the chip/firmware; which is 64 bytes ... 2784 */ 2785 iqe_size = 64; 2786 2787 /* 2788 * Set up default Queue Set parameters ... Start off with the 2789 * shortest interrupt holdoff timer. 2790 */ 2791 for (qs = 0; qs < s->max_ethqsets; qs++) { 2792 struct sge_eth_rxq *rxq = &s->ethrxq[qs]; 2793 struct sge_eth_txq *txq = &s->ethtxq[qs]; 2794 2795 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size); 2796 rxq->fl.size = 72; 2797 txq->q.size = 1024; 2798 } 2799 2800 /* 2801 * The firmware event queue is used for link state changes and 2802 * notifications of TX DMA completions. 2803 */ 2804 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size); 2805 2806 /* 2807 * The forwarded interrupt queue is used when we're in MSI interrupt 2808 * mode. In this mode all interrupts associated with RX queues will 2809 * be forwarded to a single queue which we'll associate with our MSI 2810 * interrupt vector. The messages dropped in the forwarded interrupt 2811 * queue will indicate which ingress queue needs servicing ... This 2812 * queue needs to be large enough to accommodate all of the ingress 2813 * queues which are forwarding their interrupt (+1 to prevent the PIDX 2814 * from equalling the CIDX if every ingress queue has an outstanding 2815 * interrupt). The queue doesn't need to be any larger because no 2816 * ingress queue will ever have more than one outstanding interrupt at 2817 * any time ... 2818 */ 2819 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1, 2820 iqe_size); 2821 } 2822 2823 /* 2824 * Reduce the number of Ethernet queues across all ports to at most n. 2825 * n provides at least one queue per port. 2826 */ 2827 static void reduce_ethqs(struct adapter *adapter, int n) 2828 { 2829 int i; 2830 struct port_info *pi; 2831 2832 /* 2833 * While we have too many active Ether Queue Sets, interate across the 2834 * "ports" and reduce their individual Queue Set allocations. 2835 */ 2836 BUG_ON(n < adapter->params.nports); 2837 while (n < adapter->sge.ethqsets) 2838 for_each_port(adapter, i) { 2839 pi = adap2pinfo(adapter, i); 2840 if (pi->nqsets > 1) { 2841 pi->nqsets--; 2842 adapter->sge.ethqsets--; 2843 if (adapter->sge.ethqsets <= n) 2844 break; 2845 } 2846 } 2847 2848 /* 2849 * Reassign the starting Queue Sets for each of the "ports" ... 2850 */ 2851 n = 0; 2852 for_each_port(adapter, i) { 2853 pi = adap2pinfo(adapter, i); 2854 pi->first_qset = n; 2855 n += pi->nqsets; 2856 } 2857 } 2858 2859 /* 2860 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally 2861 * we get a separate MSI-X vector for every "Queue Set" plus any extras we 2862 * need. Minimally we need one for every Virtual Interface plus those needed 2863 * for our "extras". Note that this process may lower the maximum number of 2864 * allowed Queue Sets ... 2865 */ 2866 static int enable_msix(struct adapter *adapter) 2867 { 2868 int i, want, need, nqsets; 2869 struct msix_entry entries[MSIX_ENTRIES]; 2870 struct sge *s = &adapter->sge; 2871 2872 for (i = 0; i < MSIX_ENTRIES; ++i) 2873 entries[i].entry = i; 2874 2875 /* 2876 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets" 2877 * plus those needed for our "extras" (for example, the firmware 2878 * message queue). We _need_ at least one "Queue Set" per Virtual 2879 * Interface plus those needed for our "extras". So now we get to see 2880 * if the song is right ... 2881 */ 2882 want = s->max_ethqsets + MSIX_EXTRAS; 2883 need = adapter->params.nports + MSIX_EXTRAS; 2884 2885 want = pci_enable_msix_range(adapter->pdev, entries, need, want); 2886 if (want < 0) 2887 return want; 2888 2889 nqsets = want - MSIX_EXTRAS; 2890 if (nqsets < s->max_ethqsets) { 2891 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors" 2892 " for %d Queue Sets\n", nqsets); 2893 s->max_ethqsets = nqsets; 2894 if (nqsets < s->ethqsets) 2895 reduce_ethqs(adapter, nqsets); 2896 } 2897 for (i = 0; i < want; ++i) 2898 adapter->msix_info[i].vec = entries[i].vector; 2899 2900 return 0; 2901 } 2902 2903 static const struct net_device_ops cxgb4vf_netdev_ops = { 2904 .ndo_open = cxgb4vf_open, 2905 .ndo_stop = cxgb4vf_stop, 2906 .ndo_start_xmit = t4vf_eth_xmit, 2907 .ndo_get_stats = cxgb4vf_get_stats, 2908 .ndo_set_rx_mode = cxgb4vf_set_rxmode, 2909 .ndo_set_mac_address = cxgb4vf_set_mac_addr, 2910 .ndo_validate_addr = eth_validate_addr, 2911 .ndo_do_ioctl = cxgb4vf_do_ioctl, 2912 .ndo_change_mtu = cxgb4vf_change_mtu, 2913 .ndo_fix_features = cxgb4vf_fix_features, 2914 .ndo_set_features = cxgb4vf_set_features, 2915 #ifdef CONFIG_NET_POLL_CONTROLLER 2916 .ndo_poll_controller = cxgb4vf_poll_controller, 2917 #endif 2918 }; 2919 2920 /* 2921 * "Probe" a device: initialize a device and construct all kernel and driver 2922 * state needed to manage the device. This routine is called "init_one" in 2923 * the PF Driver ... 2924 */ 2925 static int cxgb4vf_pci_probe(struct pci_dev *pdev, 2926 const struct pci_device_id *ent) 2927 { 2928 int pci_using_dac; 2929 int err, pidx; 2930 unsigned int pmask; 2931 struct adapter *adapter; 2932 struct port_info *pi; 2933 struct net_device *netdev; 2934 unsigned int pf; 2935 2936 /* 2937 * Print our driver banner the first time we're called to initialize a 2938 * device. 2939 */ 2940 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION); 2941 2942 /* 2943 * Initialize generic PCI device state. 2944 */ 2945 err = pci_enable_device(pdev); 2946 if (err) { 2947 dev_err(&pdev->dev, "cannot enable PCI device\n"); 2948 return err; 2949 } 2950 2951 /* 2952 * Reserve PCI resources for the device. If we can't get them some 2953 * other driver may have already claimed the device ... 2954 */ 2955 err = pci_request_regions(pdev, KBUILD_MODNAME); 2956 if (err) { 2957 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 2958 goto err_disable_device; 2959 } 2960 2961 /* 2962 * Set up our DMA mask: try for 64-bit address masking first and 2963 * fall back to 32-bit if we can't get 64 bits ... 2964 */ 2965 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 2966 if (err == 0) { 2967 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 2968 if (err) { 2969 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for" 2970 " coherent allocations\n"); 2971 goto err_release_regions; 2972 } 2973 pci_using_dac = 1; 2974 } else { 2975 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2976 if (err != 0) { 2977 dev_err(&pdev->dev, "no usable DMA configuration\n"); 2978 goto err_release_regions; 2979 } 2980 pci_using_dac = 0; 2981 } 2982 2983 /* 2984 * Enable bus mastering for the device ... 2985 */ 2986 pci_set_master(pdev); 2987 2988 /* 2989 * Allocate our adapter data structure and attach it to the device. 2990 */ 2991 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 2992 if (!adapter) { 2993 err = -ENOMEM; 2994 goto err_release_regions; 2995 } 2996 pci_set_drvdata(pdev, adapter); 2997 adapter->pdev = pdev; 2998 adapter->pdev_dev = &pdev->dev; 2999 3000 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 3001 (sizeof(struct mbox_cmd) * 3002 T4VF_OS_LOG_MBOX_CMDS), 3003 GFP_KERNEL); 3004 if (!adapter->mbox_log) { 3005 err = -ENOMEM; 3006 goto err_free_adapter; 3007 } 3008 adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS; 3009 3010 /* 3011 * Initialize SMP data synchronization resources. 3012 */ 3013 spin_lock_init(&adapter->stats_lock); 3014 spin_lock_init(&adapter->mbox_lock); 3015 INIT_LIST_HEAD(&adapter->mlist.list); 3016 3017 /* 3018 * Map our I/O registers in BAR0. 3019 */ 3020 adapter->regs = pci_ioremap_bar(pdev, 0); 3021 if (!adapter->regs) { 3022 dev_err(&pdev->dev, "cannot map device registers\n"); 3023 err = -ENOMEM; 3024 goto err_free_adapter; 3025 } 3026 3027 /* Wait for the device to become ready before proceeding ... 3028 */ 3029 err = t4vf_prep_adapter(adapter); 3030 if (err) { 3031 dev_err(adapter->pdev_dev, "device didn't become ready:" 3032 " err=%d\n", err); 3033 goto err_unmap_bar0; 3034 } 3035 3036 /* For T5 and later we want to use the new BAR-based User Doorbells, 3037 * so we need to map BAR2 here ... 3038 */ 3039 if (!is_t4(adapter->params.chip)) { 3040 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 3041 pci_resource_len(pdev, 2)); 3042 if (!adapter->bar2) { 3043 dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n"); 3044 err = -ENOMEM; 3045 goto err_unmap_bar0; 3046 } 3047 } 3048 /* 3049 * Initialize adapter level features. 3050 */ 3051 adapter->name = pci_name(pdev); 3052 adapter->msg_enable = DFLT_MSG_ENABLE; 3053 3054 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 3055 * Ingress Packet Data to Free List Buffers in order to allow for 3056 * chipset performance optimizations between the Root Complex and 3057 * Memory Controllers. (Messages to the associated Ingress Queue 3058 * notifying new Packet Placement in the Free Lists Buffers will be 3059 * send without the Relaxed Ordering Attribute thus guaranteeing that 3060 * all preceding PCIe Transaction Layer Packets will be processed 3061 * first.) But some Root Complexes have various issues with Upstream 3062 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 3063 * The PCIe devices which under the Root Complexes will be cleared the 3064 * Relaxed Ordering bit in the configuration space, So we check our 3065 * PCIe configuration space to see if it's flagged with advice against 3066 * using Relaxed Ordering. 3067 */ 3068 if (!pcie_relaxed_ordering_enabled(pdev)) 3069 adapter->flags |= CXGB4VF_ROOT_NO_RELAXED_ORDERING; 3070 3071 err = adap_init0(adapter); 3072 if (err) 3073 dev_err(&pdev->dev, 3074 "Adapter initialization failed, error %d. Continuing in debug mode\n", 3075 err); 3076 3077 /* Initialize hash mac addr list */ 3078 INIT_LIST_HEAD(&adapter->mac_hlist); 3079 3080 /* 3081 * Allocate our "adapter ports" and stitch everything together. 3082 */ 3083 pmask = adapter->params.vfres.pmask; 3084 pf = t4vf_get_pf_from_vf(adapter); 3085 for_each_port(adapter, pidx) { 3086 int port_id, viid; 3087 u8 mac[ETH_ALEN]; 3088 unsigned int naddr = 1; 3089 3090 /* 3091 * We simplistically allocate our virtual interfaces 3092 * sequentially across the port numbers to which we have 3093 * access rights. This should be configurable in some manner 3094 * ... 3095 */ 3096 if (pmask == 0) 3097 break; 3098 port_id = ffs(pmask) - 1; 3099 pmask &= ~(1 << port_id); 3100 3101 /* 3102 * Allocate our network device and stitch things together. 3103 */ 3104 netdev = alloc_etherdev_mq(sizeof(struct port_info), 3105 MAX_PORT_QSETS); 3106 if (netdev == NULL) { 3107 err = -ENOMEM; 3108 goto err_free_dev; 3109 } 3110 adapter->port[pidx] = netdev; 3111 SET_NETDEV_DEV(netdev, &pdev->dev); 3112 pi = netdev_priv(netdev); 3113 pi->adapter = adapter; 3114 pi->pidx = pidx; 3115 pi->port_id = port_id; 3116 3117 /* 3118 * Initialize the starting state of our "port" and register 3119 * it. 3120 */ 3121 pi->xact_addr_filt = -1; 3122 netdev->irq = pdev->irq; 3123 3124 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | NETIF_F_GRO | 3125 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM | 3126 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 3127 netdev->features = netdev->hw_features; 3128 if (pci_using_dac) 3129 netdev->features |= NETIF_F_HIGHDMA; 3130 netdev->vlan_features = netdev->features & VLAN_FEAT; 3131 3132 netdev->priv_flags |= IFF_UNICAST_FLT; 3133 netdev->min_mtu = 81; 3134 netdev->max_mtu = ETH_MAX_MTU; 3135 3136 netdev->netdev_ops = &cxgb4vf_netdev_ops; 3137 netdev->ethtool_ops = &cxgb4vf_ethtool_ops; 3138 netdev->dev_port = pi->port_id; 3139 3140 /* 3141 * If we haven't been able to contact the firmware, there's 3142 * nothing else we can do for this "port" ... 3143 */ 3144 if (!(adapter->flags & CXGB4VF_FW_OK)) 3145 continue; 3146 3147 viid = t4vf_alloc_vi(adapter, port_id); 3148 if (viid < 0) { 3149 dev_err(&pdev->dev, 3150 "cannot allocate VI for port %d: err=%d\n", 3151 port_id, viid); 3152 err = viid; 3153 goto err_free_dev; 3154 } 3155 pi->viid = viid; 3156 3157 /* 3158 * Initialize the hardware/software state for the port. 3159 */ 3160 err = t4vf_port_init(adapter, pidx); 3161 if (err) { 3162 dev_err(&pdev->dev, "cannot initialize port %d\n", 3163 pidx); 3164 goto err_free_dev; 3165 } 3166 3167 err = t4vf_get_vf_mac_acl(adapter, pf, &naddr, mac); 3168 if (err) { 3169 dev_err(&pdev->dev, 3170 "unable to determine MAC ACL address, " 3171 "continuing anyway.. (status %d)\n", err); 3172 } else if (naddr && adapter->params.vfres.nvi == 1) { 3173 struct sockaddr addr; 3174 3175 ether_addr_copy(addr.sa_data, mac); 3176 err = cxgb4vf_set_mac_addr(netdev, &addr); 3177 if (err) { 3178 dev_err(&pdev->dev, 3179 "unable to set MAC address %pM\n", 3180 mac); 3181 goto err_free_dev; 3182 } 3183 dev_info(&pdev->dev, 3184 "Using assigned MAC ACL: %pM\n", mac); 3185 } 3186 } 3187 3188 /* See what interrupts we'll be using. If we've been configured to 3189 * use MSI-X interrupts, try to enable them but fall back to using 3190 * MSI interrupts if we can't enable MSI-X interrupts. If we can't 3191 * get MSI interrupts we bail with the error. 3192 */ 3193 if (msi == MSI_MSIX && enable_msix(adapter) == 0) 3194 adapter->flags |= CXGB4VF_USING_MSIX; 3195 else { 3196 if (msi == MSI_MSIX) { 3197 dev_info(adapter->pdev_dev, 3198 "Unable to use MSI-X Interrupts; falling " 3199 "back to MSI Interrupts\n"); 3200 3201 /* We're going to need a Forwarded Interrupt Queue so 3202 * that may cut into how many Queue Sets we can 3203 * support. 3204 */ 3205 msi = MSI_MSI; 3206 size_nports_qsets(adapter); 3207 } 3208 err = pci_enable_msi(pdev); 3209 if (err) { 3210 dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;" 3211 " err=%d\n", err); 3212 goto err_free_dev; 3213 } 3214 adapter->flags |= CXGB4VF_USING_MSI; 3215 } 3216 3217 /* Now that we know how many "ports" we have and what interrupt 3218 * mechanism we're going to use, we can configure our queue resources. 3219 */ 3220 cfg_queues(adapter); 3221 3222 /* 3223 * The "card" is now ready to go. If any errors occur during device 3224 * registration we do not fail the whole "card" but rather proceed 3225 * only with the ports we manage to register successfully. However we 3226 * must register at least one net device. 3227 */ 3228 for_each_port(adapter, pidx) { 3229 struct port_info *pi = netdev_priv(adapter->port[pidx]); 3230 netdev = adapter->port[pidx]; 3231 if (netdev == NULL) 3232 continue; 3233 3234 netif_set_real_num_tx_queues(netdev, pi->nqsets); 3235 netif_set_real_num_rx_queues(netdev, pi->nqsets); 3236 3237 err = register_netdev(netdev); 3238 if (err) { 3239 dev_warn(&pdev->dev, "cannot register net device %s," 3240 " skipping\n", netdev->name); 3241 continue; 3242 } 3243 3244 netif_carrier_off(netdev); 3245 set_bit(pidx, &adapter->registered_device_map); 3246 } 3247 if (adapter->registered_device_map == 0) { 3248 dev_err(&pdev->dev, "could not register any net devices\n"); 3249 goto err_disable_interrupts; 3250 } 3251 3252 /* 3253 * Set up our debugfs entries. 3254 */ 3255 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) { 3256 adapter->debugfs_root = 3257 debugfs_create_dir(pci_name(pdev), 3258 cxgb4vf_debugfs_root); 3259 setup_debugfs(adapter); 3260 } 3261 3262 /* 3263 * Print a short notice on the existence and configuration of the new 3264 * VF network device ... 3265 */ 3266 for_each_port(adapter, pidx) { 3267 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n", 3268 adapter->port[pidx]->name, 3269 (adapter->flags & CXGB4VF_USING_MSIX) ? "MSI-X" : 3270 (adapter->flags & CXGB4VF_USING_MSI) ? "MSI" : ""); 3271 } 3272 3273 /* 3274 * Return success! 3275 */ 3276 return 0; 3277 3278 /* 3279 * Error recovery and exit code. Unwind state that's been created 3280 * so far and return the error. 3281 */ 3282 err_disable_interrupts: 3283 if (adapter->flags & CXGB4VF_USING_MSIX) { 3284 pci_disable_msix(adapter->pdev); 3285 adapter->flags &= ~CXGB4VF_USING_MSIX; 3286 } else if (adapter->flags & CXGB4VF_USING_MSI) { 3287 pci_disable_msi(adapter->pdev); 3288 adapter->flags &= ~CXGB4VF_USING_MSI; 3289 } 3290 3291 err_free_dev: 3292 for_each_port(adapter, pidx) { 3293 netdev = adapter->port[pidx]; 3294 if (netdev == NULL) 3295 continue; 3296 pi = netdev_priv(netdev); 3297 if (pi->viid) 3298 t4vf_free_vi(adapter, pi->viid); 3299 if (test_bit(pidx, &adapter->registered_device_map)) 3300 unregister_netdev(netdev); 3301 free_netdev(netdev); 3302 } 3303 3304 if (!is_t4(adapter->params.chip)) 3305 iounmap(adapter->bar2); 3306 3307 err_unmap_bar0: 3308 iounmap(adapter->regs); 3309 3310 err_free_adapter: 3311 kfree(adapter->mbox_log); 3312 kfree(adapter); 3313 3314 err_release_regions: 3315 pci_release_regions(pdev); 3316 pci_clear_master(pdev); 3317 3318 err_disable_device: 3319 pci_disable_device(pdev); 3320 3321 return err; 3322 } 3323 3324 /* 3325 * "Remove" a device: tear down all kernel and driver state created in the 3326 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note 3327 * that this is called "remove_one" in the PF Driver.) 3328 */ 3329 static void cxgb4vf_pci_remove(struct pci_dev *pdev) 3330 { 3331 struct adapter *adapter = pci_get_drvdata(pdev); 3332 struct hash_mac_addr *entry, *tmp; 3333 3334 /* 3335 * Tear down driver state associated with device. 3336 */ 3337 if (adapter) { 3338 int pidx; 3339 3340 /* 3341 * Stop all of our activity. Unregister network port, 3342 * disable interrupts, etc. 3343 */ 3344 for_each_port(adapter, pidx) 3345 if (test_bit(pidx, &adapter->registered_device_map)) 3346 unregister_netdev(adapter->port[pidx]); 3347 t4vf_sge_stop(adapter); 3348 if (adapter->flags & CXGB4VF_USING_MSIX) { 3349 pci_disable_msix(adapter->pdev); 3350 adapter->flags &= ~CXGB4VF_USING_MSIX; 3351 } else if (adapter->flags & CXGB4VF_USING_MSI) { 3352 pci_disable_msi(adapter->pdev); 3353 adapter->flags &= ~CXGB4VF_USING_MSI; 3354 } 3355 3356 /* 3357 * Tear down our debugfs entries. 3358 */ 3359 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) { 3360 cleanup_debugfs(adapter); 3361 debugfs_remove_recursive(adapter->debugfs_root); 3362 } 3363 3364 /* 3365 * Free all of the various resources which we've acquired ... 3366 */ 3367 t4vf_free_sge_resources(adapter); 3368 for_each_port(adapter, pidx) { 3369 struct net_device *netdev = adapter->port[pidx]; 3370 struct port_info *pi; 3371 3372 if (netdev == NULL) 3373 continue; 3374 3375 pi = netdev_priv(netdev); 3376 if (pi->viid) 3377 t4vf_free_vi(adapter, pi->viid); 3378 free_netdev(netdev); 3379 } 3380 iounmap(adapter->regs); 3381 if (!is_t4(adapter->params.chip)) 3382 iounmap(adapter->bar2); 3383 kfree(adapter->mbox_log); 3384 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 3385 list) { 3386 list_del(&entry->list); 3387 kfree(entry); 3388 } 3389 kfree(adapter); 3390 } 3391 3392 /* 3393 * Disable the device and release its PCI resources. 3394 */ 3395 pci_disable_device(pdev); 3396 pci_clear_master(pdev); 3397 pci_release_regions(pdev); 3398 } 3399 3400 /* 3401 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt 3402 * delivery. 3403 */ 3404 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev) 3405 { 3406 struct adapter *adapter; 3407 int pidx; 3408 3409 adapter = pci_get_drvdata(pdev); 3410 if (!adapter) 3411 return; 3412 3413 /* Disable all Virtual Interfaces. This will shut down the 3414 * delivery of all ingress packets into the chip for these 3415 * Virtual Interfaces. 3416 */ 3417 for_each_port(adapter, pidx) 3418 if (test_bit(pidx, &adapter->registered_device_map)) 3419 unregister_netdev(adapter->port[pidx]); 3420 3421 /* Free up all Queues which will prevent further DMA and 3422 * Interrupts allowing various internal pathways to drain. 3423 */ 3424 t4vf_sge_stop(adapter); 3425 if (adapter->flags & CXGB4VF_USING_MSIX) { 3426 pci_disable_msix(adapter->pdev); 3427 adapter->flags &= ~CXGB4VF_USING_MSIX; 3428 } else if (adapter->flags & CXGB4VF_USING_MSI) { 3429 pci_disable_msi(adapter->pdev); 3430 adapter->flags &= ~CXGB4VF_USING_MSI; 3431 } 3432 3433 /* 3434 * Free up all Queues which will prevent further DMA and 3435 * Interrupts allowing various internal pathways to drain. 3436 */ 3437 t4vf_free_sge_resources(adapter); 3438 pci_set_drvdata(pdev, NULL); 3439 } 3440 3441 /* Macros needed to support the PCI Device ID Table ... 3442 */ 3443 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 3444 static const struct pci_device_id cxgb4vf_pci_tbl[] = { 3445 #define CH_PCI_DEVICE_ID_FUNCTION 0x8 3446 3447 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 3448 { PCI_VDEVICE(CHELSIO, (devid)), 0 } 3449 3450 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } } 3451 3452 #include "../cxgb4/t4_pci_id_tbl.h" 3453 3454 MODULE_DESCRIPTION(DRV_DESC); 3455 MODULE_AUTHOR("Chelsio Communications"); 3456 MODULE_LICENSE("Dual BSD/GPL"); 3457 MODULE_VERSION(DRV_VERSION); 3458 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl); 3459 3460 static struct pci_driver cxgb4vf_driver = { 3461 .name = KBUILD_MODNAME, 3462 .id_table = cxgb4vf_pci_tbl, 3463 .probe = cxgb4vf_pci_probe, 3464 .remove = cxgb4vf_pci_remove, 3465 .shutdown = cxgb4vf_pci_shutdown, 3466 }; 3467 3468 /* 3469 * Initialize global driver state. 3470 */ 3471 static int __init cxgb4vf_module_init(void) 3472 { 3473 int ret; 3474 3475 /* 3476 * Vet our module parameters. 3477 */ 3478 if (msi != MSI_MSIX && msi != MSI_MSI) { 3479 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n", 3480 msi, MSI_MSIX, MSI_MSI); 3481 return -EINVAL; 3482 } 3483 3484 /* Debugfs support is optional, debugfs will warn if this fails */ 3485 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 3486 3487 ret = pci_register_driver(&cxgb4vf_driver); 3488 if (ret < 0) 3489 debugfs_remove(cxgb4vf_debugfs_root); 3490 return ret; 3491 } 3492 3493 /* 3494 * Tear down global driver state. 3495 */ 3496 static void __exit cxgb4vf_module_exit(void) 3497 { 3498 pci_unregister_driver(&cxgb4vf_driver); 3499 debugfs_remove(cxgb4vf_debugfs_root); 3500 } 3501 3502 module_init(cxgb4vf_module_init); 3503 module_exit(cxgb4vf_module_exit); 3504