1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <linux/debugfs.h>
46 #include <linux/ethtool.h>
47 #include <linux/mdio.h>
48 
49 #include "t4vf_common.h"
50 #include "t4vf_defs.h"
51 
52 #include "../cxgb4/t4_regs.h"
53 #include "../cxgb4/t4_msg.h"
54 
55 /*
56  * Generic information about the driver.
57  */
58 #define DRV_VERSION "2.0.0-ko"
59 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver"
60 
61 /*
62  * Module Parameters.
63  * ==================
64  */
65 
66 /*
67  * Default ethtool "message level" for adapters.
68  */
69 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
70 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
71 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
72 
73 /*
74  * The driver uses the best interrupt scheme available on a platform in the
75  * order MSI-X then MSI.  This parameter determines which of these schemes the
76  * driver may consider as follows:
77  *
78  *     msi = 2: choose from among MSI-X and MSI
79  *     msi = 1: only consider MSI interrupts
80  *
81  * Note that unlike the Physical Function driver, this Virtual Function driver
82  * does _not_ support legacy INTx interrupts (this limitation is mandated by
83  * the PCI-E SR-IOV standard).
84  */
85 #define MSI_MSIX	2
86 #define MSI_MSI		1
87 #define MSI_DEFAULT	MSI_MSIX
88 
89 static int msi = MSI_DEFAULT;
90 
91 module_param(msi, int, 0644);
92 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
93 
94 /*
95  * Fundamental constants.
96  * ======================
97  */
98 
99 enum {
100 	MAX_TXQ_ENTRIES		= 16384,
101 	MAX_RSPQ_ENTRIES	= 16384,
102 	MAX_RX_BUFFERS		= 16384,
103 
104 	MIN_TXQ_ENTRIES		= 32,
105 	MIN_RSPQ_ENTRIES	= 128,
106 	MIN_FL_ENTRIES		= 16,
107 
108 	/*
109 	 * For purposes of manipulating the Free List size we need to
110 	 * recognize that Free Lists are actually Egress Queues (the host
111 	 * produces free buffers which the hardware consumes), Egress Queues
112 	 * indices are all in units of Egress Context Units bytes, and free
113 	 * list entries are 64-bit PCI DMA addresses.  And since the state of
114 	 * the Producer Index == the Consumer Index implies an EMPTY list, we
115 	 * always have at least one Egress Unit's worth of Free List entries
116 	 * unused.  See sge.c for more details ...
117 	 */
118 	EQ_UNIT = SGE_EQ_IDXSIZE,
119 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
120 	MIN_FL_RESID = FL_PER_EQ_UNIT,
121 };
122 
123 /*
124  * Global driver state.
125  * ====================
126  */
127 
128 static struct dentry *cxgb4vf_debugfs_root;
129 
130 /*
131  * OS "Callback" functions.
132  * ========================
133  */
134 
135 /*
136  * The link status has changed on the indicated "port" (Virtual Interface).
137  */
138 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
139 {
140 	struct net_device *dev = adapter->port[pidx];
141 
142 	/*
143 	 * If the port is disabled or the current recorded "link up"
144 	 * status matches the new status, just return.
145 	 */
146 	if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
147 		return;
148 
149 	/*
150 	 * Tell the OS that the link status has changed and print a short
151 	 * informative message on the console about the event.
152 	 */
153 	if (link_ok) {
154 		const char *s;
155 		const char *fc;
156 		const struct port_info *pi = netdev_priv(dev);
157 
158 		switch (pi->link_cfg.speed) {
159 		case 100:
160 			s = "100Mbps";
161 			break;
162 		case 1000:
163 			s = "1Gbps";
164 			break;
165 		case 10000:
166 			s = "10Gbps";
167 			break;
168 		case 25000:
169 			s = "25Gbps";
170 			break;
171 		case 40000:
172 			s = "40Gbps";
173 			break;
174 		case 100000:
175 			s = "100Gbps";
176 			break;
177 
178 		default:
179 			s = "unknown";
180 			break;
181 		}
182 
183 		switch ((int)pi->link_cfg.fc) {
184 		case PAUSE_RX:
185 			fc = "RX";
186 			break;
187 
188 		case PAUSE_TX:
189 			fc = "TX";
190 			break;
191 
192 		case PAUSE_RX | PAUSE_TX:
193 			fc = "RX/TX";
194 			break;
195 
196 		default:
197 			fc = "no";
198 			break;
199 		}
200 
201 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
202 	} else {
203 		netdev_info(dev, "link down\n");
204 	}
205 }
206 
207 /*
208  * THe port module type has changed on the indicated "port" (Virtual
209  * Interface).
210  */
211 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx)
212 {
213 	static const char * const mod_str[] = {
214 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
215 	};
216 	const struct net_device *dev = adapter->port[pidx];
217 	const struct port_info *pi = netdev_priv(dev);
218 
219 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
220 		dev_info(adapter->pdev_dev, "%s: port module unplugged\n",
221 			 dev->name);
222 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
223 		dev_info(adapter->pdev_dev, "%s: %s port module inserted\n",
224 			 dev->name, mod_str[pi->mod_type]);
225 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
226 		dev_info(adapter->pdev_dev, "%s: unsupported optical port "
227 			 "module inserted\n", dev->name);
228 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
229 		dev_info(adapter->pdev_dev, "%s: unknown port module inserted,"
230 			 "forcing TWINAX\n", dev->name);
231 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
232 		dev_info(adapter->pdev_dev, "%s: transceiver module error\n",
233 			 dev->name);
234 	else
235 		dev_info(adapter->pdev_dev, "%s: unknown module type %d "
236 			 "inserted\n", dev->name, pi->mod_type);
237 }
238 
239 /*
240  * Net device operations.
241  * ======================
242  */
243 
244 
245 
246 
247 /*
248  * Perform the MAC and PHY actions needed to enable a "port" (Virtual
249  * Interface).
250  */
251 static int link_start(struct net_device *dev)
252 {
253 	int ret;
254 	struct port_info *pi = netdev_priv(dev);
255 
256 	/*
257 	 * We do not set address filters and promiscuity here, the stack does
258 	 * that step explicitly. Enable vlan accel.
259 	 */
260 	ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
261 			      true);
262 	if (ret == 0) {
263 		ret = t4vf_change_mac(pi->adapter, pi->viid,
264 				      pi->xact_addr_filt, dev->dev_addr, true);
265 		if (ret >= 0) {
266 			pi->xact_addr_filt = ret;
267 			ret = 0;
268 		}
269 	}
270 
271 	/*
272 	 * We don't need to actually "start the link" itself since the
273 	 * firmware will do that for us when the first Virtual Interface
274 	 * is enabled on a port.
275 	 */
276 	if (ret == 0)
277 		ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
278 
279 	/* The Virtual Interfaces are connected to an internal switch on the
280 	 * chip which allows VIs attached to the same port to talk to each
281 	 * other even when the port link is down.  As a result, we generally
282 	 * want to always report a VI's link as being "up", provided there are
283 	 * no errors in enabling vi.
284 	 */
285 
286 	if (ret == 0)
287 		netif_carrier_on(dev);
288 
289 	return ret;
290 }
291 
292 /*
293  * Name the MSI-X interrupts.
294  */
295 static void name_msix_vecs(struct adapter *adapter)
296 {
297 	int namelen = sizeof(adapter->msix_info[0].desc) - 1;
298 	int pidx;
299 
300 	/*
301 	 * Firmware events.
302 	 */
303 	snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
304 		 "%s-FWeventq", adapter->name);
305 	adapter->msix_info[MSIX_FW].desc[namelen] = 0;
306 
307 	/*
308 	 * Ethernet queues.
309 	 */
310 	for_each_port(adapter, pidx) {
311 		struct net_device *dev = adapter->port[pidx];
312 		const struct port_info *pi = netdev_priv(dev);
313 		int qs, msi;
314 
315 		for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
316 			snprintf(adapter->msix_info[msi].desc, namelen,
317 				 "%s-%d", dev->name, qs);
318 			adapter->msix_info[msi].desc[namelen] = 0;
319 		}
320 	}
321 }
322 
323 /*
324  * Request all of our MSI-X resources.
325  */
326 static int request_msix_queue_irqs(struct adapter *adapter)
327 {
328 	struct sge *s = &adapter->sge;
329 	int rxq, msi, err;
330 
331 	/*
332 	 * Firmware events.
333 	 */
334 	err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
335 			  0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
336 	if (err)
337 		return err;
338 
339 	/*
340 	 * Ethernet queues.
341 	 */
342 	msi = MSIX_IQFLINT;
343 	for_each_ethrxq(s, rxq) {
344 		err = request_irq(adapter->msix_info[msi].vec,
345 				  t4vf_sge_intr_msix, 0,
346 				  adapter->msix_info[msi].desc,
347 				  &s->ethrxq[rxq].rspq);
348 		if (err)
349 			goto err_free_irqs;
350 		msi++;
351 	}
352 	return 0;
353 
354 err_free_irqs:
355 	while (--rxq >= 0)
356 		free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
357 	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
358 	return err;
359 }
360 
361 /*
362  * Free our MSI-X resources.
363  */
364 static void free_msix_queue_irqs(struct adapter *adapter)
365 {
366 	struct sge *s = &adapter->sge;
367 	int rxq, msi;
368 
369 	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
370 	msi = MSIX_IQFLINT;
371 	for_each_ethrxq(s, rxq)
372 		free_irq(adapter->msix_info[msi++].vec,
373 			 &s->ethrxq[rxq].rspq);
374 }
375 
376 /*
377  * Turn on NAPI and start up interrupts on a response queue.
378  */
379 static void qenable(struct sge_rspq *rspq)
380 {
381 	napi_enable(&rspq->napi);
382 
383 	/*
384 	 * 0-increment the Going To Sleep register to start the timer and
385 	 * enable interrupts.
386 	 */
387 	t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
388 		     CIDXINC_V(0) |
389 		     SEINTARM_V(rspq->intr_params) |
390 		     INGRESSQID_V(rspq->cntxt_id));
391 }
392 
393 /*
394  * Enable NAPI scheduling and interrupt generation for all Receive Queues.
395  */
396 static void enable_rx(struct adapter *adapter)
397 {
398 	int rxq;
399 	struct sge *s = &adapter->sge;
400 
401 	for_each_ethrxq(s, rxq)
402 		qenable(&s->ethrxq[rxq].rspq);
403 	qenable(&s->fw_evtq);
404 
405 	/*
406 	 * The interrupt queue doesn't use NAPI so we do the 0-increment of
407 	 * its Going To Sleep register here to get it started.
408 	 */
409 	if (adapter->flags & USING_MSI)
410 		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
411 			     CIDXINC_V(0) |
412 			     SEINTARM_V(s->intrq.intr_params) |
413 			     INGRESSQID_V(s->intrq.cntxt_id));
414 
415 }
416 
417 /*
418  * Wait until all NAPI handlers are descheduled.
419  */
420 static void quiesce_rx(struct adapter *adapter)
421 {
422 	struct sge *s = &adapter->sge;
423 	int rxq;
424 
425 	for_each_ethrxq(s, rxq)
426 		napi_disable(&s->ethrxq[rxq].rspq.napi);
427 	napi_disable(&s->fw_evtq.napi);
428 }
429 
430 /*
431  * Response queue handler for the firmware event queue.
432  */
433 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
434 			  const struct pkt_gl *gl)
435 {
436 	/*
437 	 * Extract response opcode and get pointer to CPL message body.
438 	 */
439 	struct adapter *adapter = rspq->adapter;
440 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
441 	void *cpl = (void *)(rsp + 1);
442 
443 	switch (opcode) {
444 	case CPL_FW6_MSG: {
445 		/*
446 		 * We've received an asynchronous message from the firmware.
447 		 */
448 		const struct cpl_fw6_msg *fw_msg = cpl;
449 		if (fw_msg->type == FW6_TYPE_CMD_RPL)
450 			t4vf_handle_fw_rpl(adapter, fw_msg->data);
451 		break;
452 	}
453 
454 	case CPL_FW4_MSG: {
455 		/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
456 		 */
457 		const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
458 		opcode = CPL_OPCODE_G(ntohl(p->opcode_qid));
459 		if (opcode != CPL_SGE_EGR_UPDATE) {
460 			dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
461 				, opcode);
462 			break;
463 		}
464 		cpl = (void *)p;
465 		/*FALLTHROUGH*/
466 	}
467 
468 	case CPL_SGE_EGR_UPDATE: {
469 		/*
470 		 * We've received an Egress Queue Status Update message.  We
471 		 * get these, if the SGE is configured to send these when the
472 		 * firmware passes certain points in processing our TX
473 		 * Ethernet Queue or if we make an explicit request for one.
474 		 * We use these updates to determine when we may need to
475 		 * restart a TX Ethernet Queue which was stopped for lack of
476 		 * free TX Queue Descriptors ...
477 		 */
478 		const struct cpl_sge_egr_update *p = cpl;
479 		unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid));
480 		struct sge *s = &adapter->sge;
481 		struct sge_txq *tq;
482 		struct sge_eth_txq *txq;
483 		unsigned int eq_idx;
484 
485 		/*
486 		 * Perform sanity checking on the Queue ID to make sure it
487 		 * really refers to one of our TX Ethernet Egress Queues which
488 		 * is active and matches the queue's ID.  None of these error
489 		 * conditions should ever happen so we may want to either make
490 		 * them fatal and/or conditionalized under DEBUG.
491 		 */
492 		eq_idx = EQ_IDX(s, qid);
493 		if (unlikely(eq_idx >= MAX_EGRQ)) {
494 			dev_err(adapter->pdev_dev,
495 				"Egress Update QID %d out of range\n", qid);
496 			break;
497 		}
498 		tq = s->egr_map[eq_idx];
499 		if (unlikely(tq == NULL)) {
500 			dev_err(adapter->pdev_dev,
501 				"Egress Update QID %d TXQ=NULL\n", qid);
502 			break;
503 		}
504 		txq = container_of(tq, struct sge_eth_txq, q);
505 		if (unlikely(tq->abs_id != qid)) {
506 			dev_err(adapter->pdev_dev,
507 				"Egress Update QID %d refers to TXQ %d\n",
508 				qid, tq->abs_id);
509 			break;
510 		}
511 
512 		/*
513 		 * Restart a stopped TX Queue which has less than half of its
514 		 * TX ring in use ...
515 		 */
516 		txq->q.restarts++;
517 		netif_tx_wake_queue(txq->txq);
518 		break;
519 	}
520 
521 	default:
522 		dev_err(adapter->pdev_dev,
523 			"unexpected CPL %#x on FW event queue\n", opcode);
524 	}
525 
526 	return 0;
527 }
528 
529 /*
530  * Allocate SGE TX/RX response queues.  Determine how many sets of SGE queues
531  * to use and initializes them.  We support multiple "Queue Sets" per port if
532  * we have MSI-X, otherwise just one queue set per port.
533  */
534 static int setup_sge_queues(struct adapter *adapter)
535 {
536 	struct sge *s = &adapter->sge;
537 	int err, pidx, msix;
538 
539 	/*
540 	 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
541 	 * state.
542 	 */
543 	bitmap_zero(s->starving_fl, MAX_EGRQ);
544 
545 	/*
546 	 * If we're using MSI interrupt mode we need to set up a "forwarded
547 	 * interrupt" queue which we'll set up with our MSI vector.  The rest
548 	 * of the ingress queues will be set up to forward their interrupts to
549 	 * this queue ...  This must be first since t4vf_sge_alloc_rxq() uses
550 	 * the intrq's queue ID as the interrupt forwarding queue for the
551 	 * subsequent calls ...
552 	 */
553 	if (adapter->flags & USING_MSI) {
554 		err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
555 					 adapter->port[0], 0, NULL, NULL);
556 		if (err)
557 			goto err_free_queues;
558 	}
559 
560 	/*
561 	 * Allocate our ingress queue for asynchronous firmware messages.
562 	 */
563 	err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
564 				 MSIX_FW, NULL, fwevtq_handler);
565 	if (err)
566 		goto err_free_queues;
567 
568 	/*
569 	 * Allocate each "port"'s initial Queue Sets.  These can be changed
570 	 * later on ... up to the point where any interface on the adapter is
571 	 * brought up at which point lots of things get nailed down
572 	 * permanently ...
573 	 */
574 	msix = MSIX_IQFLINT;
575 	for_each_port(adapter, pidx) {
576 		struct net_device *dev = adapter->port[pidx];
577 		struct port_info *pi = netdev_priv(dev);
578 		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
579 		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
580 		int qs;
581 
582 		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
583 			err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
584 						 dev, msix++,
585 						 &rxq->fl, t4vf_ethrx_handler);
586 			if (err)
587 				goto err_free_queues;
588 
589 			err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
590 					     netdev_get_tx_queue(dev, qs),
591 					     s->fw_evtq.cntxt_id);
592 			if (err)
593 				goto err_free_queues;
594 
595 			rxq->rspq.idx = qs;
596 			memset(&rxq->stats, 0, sizeof(rxq->stats));
597 		}
598 	}
599 
600 	/*
601 	 * Create the reverse mappings for the queues.
602 	 */
603 	s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
604 	s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
605 	IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
606 	for_each_port(adapter, pidx) {
607 		struct net_device *dev = adapter->port[pidx];
608 		struct port_info *pi = netdev_priv(dev);
609 		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
610 		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
611 		int qs;
612 
613 		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
614 			IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
615 			EQ_MAP(s, txq->q.abs_id) = &txq->q;
616 
617 			/*
618 			 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
619 			 * for Free Lists but since all of the Egress Queues
620 			 * (including Free Lists) have Relative Queue IDs
621 			 * which are computed as Absolute - Base Queue ID, we
622 			 * can synthesize the Absolute Queue IDs for the Free
623 			 * Lists.  This is useful for debugging purposes when
624 			 * we want to dump Queue Contexts via the PF Driver.
625 			 */
626 			rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
627 			EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
628 		}
629 	}
630 	return 0;
631 
632 err_free_queues:
633 	t4vf_free_sge_resources(adapter);
634 	return err;
635 }
636 
637 /*
638  * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
639  * queues.  We configure the RSS CPU lookup table to distribute to the number
640  * of HW receive queues, and the response queue lookup table to narrow that
641  * down to the response queues actually configured for each "port" (Virtual
642  * Interface).  We always configure the RSS mapping for all ports since the
643  * mapping table has plenty of entries.
644  */
645 static int setup_rss(struct adapter *adapter)
646 {
647 	int pidx;
648 
649 	for_each_port(adapter, pidx) {
650 		struct port_info *pi = adap2pinfo(adapter, pidx);
651 		struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
652 		u16 rss[MAX_PORT_QSETS];
653 		int qs, err;
654 
655 		for (qs = 0; qs < pi->nqsets; qs++)
656 			rss[qs] = rxq[qs].rspq.abs_id;
657 
658 		err = t4vf_config_rss_range(adapter, pi->viid,
659 					    0, pi->rss_size, rss, pi->nqsets);
660 		if (err)
661 			return err;
662 
663 		/*
664 		 * Perform Global RSS Mode-specific initialization.
665 		 */
666 		switch (adapter->params.rss.mode) {
667 		case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
668 			/*
669 			 * If Tunnel All Lookup isn't specified in the global
670 			 * RSS Configuration, then we need to specify a
671 			 * default Ingress Queue for any ingress packets which
672 			 * aren't hashed.  We'll use our first ingress queue
673 			 * ...
674 			 */
675 			if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
676 				union rss_vi_config config;
677 				err = t4vf_read_rss_vi_config(adapter,
678 							      pi->viid,
679 							      &config);
680 				if (err)
681 					return err;
682 				config.basicvirtual.defaultq =
683 					rxq[0].rspq.abs_id;
684 				err = t4vf_write_rss_vi_config(adapter,
685 							       pi->viid,
686 							       &config);
687 				if (err)
688 					return err;
689 			}
690 			break;
691 		}
692 	}
693 
694 	return 0;
695 }
696 
697 /*
698  * Bring the adapter up.  Called whenever we go from no "ports" open to having
699  * one open.  This function performs the actions necessary to make an adapter
700  * operational, such as completing the initialization of HW modules, and
701  * enabling interrupts.  Must be called with the rtnl lock held.  (Note that
702  * this is called "cxgb_up" in the PF Driver.)
703  */
704 static int adapter_up(struct adapter *adapter)
705 {
706 	int err;
707 
708 	/*
709 	 * If this is the first time we've been called, perform basic
710 	 * adapter setup.  Once we've done this, many of our adapter
711 	 * parameters can no longer be changed ...
712 	 */
713 	if ((adapter->flags & FULL_INIT_DONE) == 0) {
714 		err = setup_sge_queues(adapter);
715 		if (err)
716 			return err;
717 		err = setup_rss(adapter);
718 		if (err) {
719 			t4vf_free_sge_resources(adapter);
720 			return err;
721 		}
722 
723 		if (adapter->flags & USING_MSIX)
724 			name_msix_vecs(adapter);
725 		adapter->flags |= FULL_INIT_DONE;
726 	}
727 
728 	/*
729 	 * Acquire our interrupt resources.  We only support MSI-X and MSI.
730 	 */
731 	BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
732 	if (adapter->flags & USING_MSIX)
733 		err = request_msix_queue_irqs(adapter);
734 	else
735 		err = request_irq(adapter->pdev->irq,
736 				  t4vf_intr_handler(adapter), 0,
737 				  adapter->name, adapter);
738 	if (err) {
739 		dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
740 			err);
741 		return err;
742 	}
743 
744 	/*
745 	 * Enable NAPI ingress processing and return success.
746 	 */
747 	enable_rx(adapter);
748 	t4vf_sge_start(adapter);
749 
750 	/* Initialize hash mac addr list*/
751 	INIT_LIST_HEAD(&adapter->mac_hlist);
752 	return 0;
753 }
754 
755 /*
756  * Bring the adapter down.  Called whenever the last "port" (Virtual
757  * Interface) closed.  (Note that this routine is called "cxgb_down" in the PF
758  * Driver.)
759  */
760 static void adapter_down(struct adapter *adapter)
761 {
762 	/*
763 	 * Free interrupt resources.
764 	 */
765 	if (adapter->flags & USING_MSIX)
766 		free_msix_queue_irqs(adapter);
767 	else
768 		free_irq(adapter->pdev->irq, adapter);
769 
770 	/*
771 	 * Wait for NAPI handlers to finish.
772 	 */
773 	quiesce_rx(adapter);
774 }
775 
776 /*
777  * Start up a net device.
778  */
779 static int cxgb4vf_open(struct net_device *dev)
780 {
781 	int err;
782 	struct port_info *pi = netdev_priv(dev);
783 	struct adapter *adapter = pi->adapter;
784 
785 	/*
786 	 * If this is the first interface that we're opening on the "adapter",
787 	 * bring the "adapter" up now.
788 	 */
789 	if (adapter->open_device_map == 0) {
790 		err = adapter_up(adapter);
791 		if (err)
792 			return err;
793 	}
794 
795 	/*
796 	 * Note that this interface is up and start everything up ...
797 	 */
798 	err = link_start(dev);
799 	if (err)
800 		goto err_unwind;
801 
802 	pi->vlan_id = t4vf_get_vf_vlan_acl(adapter);
803 
804 	netif_tx_start_all_queues(dev);
805 	set_bit(pi->port_id, &adapter->open_device_map);
806 	return 0;
807 
808 err_unwind:
809 	if (adapter->open_device_map == 0)
810 		adapter_down(adapter);
811 	return err;
812 }
813 
814 /*
815  * Shut down a net device.  This routine is called "cxgb_close" in the PF
816  * Driver ...
817  */
818 static int cxgb4vf_stop(struct net_device *dev)
819 {
820 	struct port_info *pi = netdev_priv(dev);
821 	struct adapter *adapter = pi->adapter;
822 
823 	netif_tx_stop_all_queues(dev);
824 	netif_carrier_off(dev);
825 	t4vf_enable_vi(adapter, pi->viid, false, false);
826 	pi->link_cfg.link_ok = 0;
827 
828 	clear_bit(pi->port_id, &adapter->open_device_map);
829 	if (adapter->open_device_map == 0)
830 		adapter_down(adapter);
831 	return 0;
832 }
833 
834 /*
835  * Translate our basic statistics into the standard "ifconfig" statistics.
836  */
837 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
838 {
839 	struct t4vf_port_stats stats;
840 	struct port_info *pi = netdev2pinfo(dev);
841 	struct adapter *adapter = pi->adapter;
842 	struct net_device_stats *ns = &dev->stats;
843 	int err;
844 
845 	spin_lock(&adapter->stats_lock);
846 	err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
847 	spin_unlock(&adapter->stats_lock);
848 
849 	memset(ns, 0, sizeof(*ns));
850 	if (err)
851 		return ns;
852 
853 	ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
854 			stats.tx_ucast_bytes + stats.tx_offload_bytes);
855 	ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
856 			  stats.tx_ucast_frames + stats.tx_offload_frames);
857 	ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
858 			stats.rx_ucast_bytes);
859 	ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
860 			  stats.rx_ucast_frames);
861 	ns->multicast = stats.rx_mcast_frames;
862 	ns->tx_errors = stats.tx_drop_frames;
863 	ns->rx_errors = stats.rx_err_frames;
864 
865 	return ns;
866 }
867 
868 static inline int cxgb4vf_set_addr_hash(struct port_info *pi)
869 {
870 	struct adapter *adapter = pi->adapter;
871 	u64 vec = 0;
872 	bool ucast = false;
873 	struct hash_mac_addr *entry;
874 
875 	/* Calculate the hash vector for the updated list and program it */
876 	list_for_each_entry(entry, &adapter->mac_hlist, list) {
877 		ucast |= is_unicast_ether_addr(entry->addr);
878 		vec |= (1ULL << hash_mac_addr(entry->addr));
879 	}
880 	return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false);
881 }
882 
883 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr)
884 {
885 	struct port_info *pi = netdev_priv(netdev);
886 	struct adapter *adapter = pi->adapter;
887 	int ret;
888 	u64 mhash = 0;
889 	u64 uhash = 0;
890 	bool free = false;
891 	bool ucast = is_unicast_ether_addr(mac_addr);
892 	const u8 *maclist[1] = {mac_addr};
893 	struct hash_mac_addr *new_entry;
894 
895 	ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist,
896 				  NULL, ucast ? &uhash : &mhash, false);
897 	if (ret < 0)
898 		goto out;
899 	/* if hash != 0, then add the addr to hash addr list
900 	 * so on the end we will calculate the hash for the
901 	 * list and program it
902 	 */
903 	if (uhash || mhash) {
904 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
905 		if (!new_entry)
906 			return -ENOMEM;
907 		ether_addr_copy(new_entry->addr, mac_addr);
908 		list_add_tail(&new_entry->list, &adapter->mac_hlist);
909 		ret = cxgb4vf_set_addr_hash(pi);
910 	}
911 out:
912 	return ret < 0 ? ret : 0;
913 }
914 
915 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
916 {
917 	struct port_info *pi = netdev_priv(netdev);
918 	struct adapter *adapter = pi->adapter;
919 	int ret;
920 	const u8 *maclist[1] = {mac_addr};
921 	struct hash_mac_addr *entry, *tmp;
922 
923 	/* If the MAC address to be removed is in the hash addr
924 	 * list, delete it from the list and update hash vector
925 	 */
926 	list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) {
927 		if (ether_addr_equal(entry->addr, mac_addr)) {
928 			list_del(&entry->list);
929 			kfree(entry);
930 			return cxgb4vf_set_addr_hash(pi);
931 		}
932 	}
933 
934 	ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false);
935 	return ret < 0 ? -EINVAL : 0;
936 }
937 
938 /*
939  * Set RX properties of a port, such as promiscruity, address filters, and MTU.
940  * If @mtu is -1 it is left unchanged.
941  */
942 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
943 {
944 	struct port_info *pi = netdev_priv(dev);
945 
946 	__dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
947 	__dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
948 	return t4vf_set_rxmode(pi->adapter, pi->viid, -1,
949 			       (dev->flags & IFF_PROMISC) != 0,
950 			       (dev->flags & IFF_ALLMULTI) != 0,
951 			       1, -1, sleep_ok);
952 }
953 
954 /*
955  * Set the current receive modes on the device.
956  */
957 static void cxgb4vf_set_rxmode(struct net_device *dev)
958 {
959 	/* unfortunately we can't return errors to the stack */
960 	set_rxmode(dev, -1, false);
961 }
962 
963 /*
964  * Find the entry in the interrupt holdoff timer value array which comes
965  * closest to the specified interrupt holdoff value.
966  */
967 static int closest_timer(const struct sge *s, int us)
968 {
969 	int i, timer_idx = 0, min_delta = INT_MAX;
970 
971 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
972 		int delta = us - s->timer_val[i];
973 		if (delta < 0)
974 			delta = -delta;
975 		if (delta < min_delta) {
976 			min_delta = delta;
977 			timer_idx = i;
978 		}
979 	}
980 	return timer_idx;
981 }
982 
983 static int closest_thres(const struct sge *s, int thres)
984 {
985 	int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
986 
987 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
988 		delta = thres - s->counter_val[i];
989 		if (delta < 0)
990 			delta = -delta;
991 		if (delta < min_delta) {
992 			min_delta = delta;
993 			pktcnt_idx = i;
994 		}
995 	}
996 	return pktcnt_idx;
997 }
998 
999 /*
1000  * Return a queue's interrupt hold-off time in us.  0 means no timer.
1001  */
1002 static unsigned int qtimer_val(const struct adapter *adapter,
1003 			       const struct sge_rspq *rspq)
1004 {
1005 	unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params);
1006 
1007 	return timer_idx < SGE_NTIMERS
1008 		? adapter->sge.timer_val[timer_idx]
1009 		: 0;
1010 }
1011 
1012 /**
1013  *	set_rxq_intr_params - set a queue's interrupt holdoff parameters
1014  *	@adapter: the adapter
1015  *	@rspq: the RX response queue
1016  *	@us: the hold-off time in us, or 0 to disable timer
1017  *	@cnt: the hold-off packet count, or 0 to disable counter
1018  *
1019  *	Sets an RX response queue's interrupt hold-off time and packet count.
1020  *	At least one of the two needs to be enabled for the queue to generate
1021  *	interrupts.
1022  */
1023 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1024 			       unsigned int us, unsigned int cnt)
1025 {
1026 	unsigned int timer_idx;
1027 
1028 	/*
1029 	 * If both the interrupt holdoff timer and count are specified as
1030 	 * zero, default to a holdoff count of 1 ...
1031 	 */
1032 	if ((us | cnt) == 0)
1033 		cnt = 1;
1034 
1035 	/*
1036 	 * If an interrupt holdoff count has been specified, then find the
1037 	 * closest configured holdoff count and use that.  If the response
1038 	 * queue has already been created, then update its queue context
1039 	 * parameters ...
1040 	 */
1041 	if (cnt) {
1042 		int err;
1043 		u32 v, pktcnt_idx;
1044 
1045 		pktcnt_idx = closest_thres(&adapter->sge, cnt);
1046 		if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1047 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1048 			    FW_PARAMS_PARAM_X_V(
1049 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1050 			    FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id);
1051 			err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1052 			if (err)
1053 				return err;
1054 		}
1055 		rspq->pktcnt_idx = pktcnt_idx;
1056 	}
1057 
1058 	/*
1059 	 * Compute the closest holdoff timer index from the supplied holdoff
1060 	 * timer value.
1061 	 */
1062 	timer_idx = (us == 0
1063 		     ? SGE_TIMER_RSTRT_CNTR
1064 		     : closest_timer(&adapter->sge, us));
1065 
1066 	/*
1067 	 * Update the response queue's interrupt coalescing parameters and
1068 	 * return success.
1069 	 */
1070 	rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
1071 			     QINTR_CNT_EN_V(cnt > 0));
1072 	return 0;
1073 }
1074 
1075 /*
1076  * Return a version number to identify the type of adapter.  The scheme is:
1077  * - bits 0..9: chip version
1078  * - bits 10..15: chip revision
1079  */
1080 static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1081 {
1082 	/*
1083 	 * Chip version 4, revision 0x3f (cxgb4vf).
1084 	 */
1085 	return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1086 }
1087 
1088 /*
1089  * Execute the specified ioctl command.
1090  */
1091 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1092 {
1093 	int ret = 0;
1094 
1095 	switch (cmd) {
1096 	    /*
1097 	     * The VF Driver doesn't have access to any of the other
1098 	     * common Ethernet device ioctl()'s (like reading/writing
1099 	     * PHY registers, etc.
1100 	     */
1101 
1102 	default:
1103 		ret = -EOPNOTSUPP;
1104 		break;
1105 	}
1106 	return ret;
1107 }
1108 
1109 /*
1110  * Change the device's MTU.
1111  */
1112 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1113 {
1114 	int ret;
1115 	struct port_info *pi = netdev_priv(dev);
1116 
1117 	ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1118 			      -1, -1, -1, -1, true);
1119 	if (!ret)
1120 		dev->mtu = new_mtu;
1121 	return ret;
1122 }
1123 
1124 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1125 	netdev_features_t features)
1126 {
1127 	/*
1128 	 * Since there is no support for separate rx/tx vlan accel
1129 	 * enable/disable make sure tx flag is always in same state as rx.
1130 	 */
1131 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1132 		features |= NETIF_F_HW_VLAN_CTAG_TX;
1133 	else
1134 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1135 
1136 	return features;
1137 }
1138 
1139 static int cxgb4vf_set_features(struct net_device *dev,
1140 	netdev_features_t features)
1141 {
1142 	struct port_info *pi = netdev_priv(dev);
1143 	netdev_features_t changed = dev->features ^ features;
1144 
1145 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1146 		t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1147 				features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1148 
1149 	return 0;
1150 }
1151 
1152 /*
1153  * Change the devices MAC address.
1154  */
1155 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1156 {
1157 	int ret;
1158 	struct sockaddr *addr = _addr;
1159 	struct port_info *pi = netdev_priv(dev);
1160 
1161 	if (!is_valid_ether_addr(addr->sa_data))
1162 		return -EADDRNOTAVAIL;
1163 
1164 	ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1165 			      addr->sa_data, true);
1166 	if (ret < 0)
1167 		return ret;
1168 
1169 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1170 	pi->xact_addr_filt = ret;
1171 	return 0;
1172 }
1173 
1174 #ifdef CONFIG_NET_POLL_CONTROLLER
1175 /*
1176  * Poll all of our receive queues.  This is called outside of normal interrupt
1177  * context.
1178  */
1179 static void cxgb4vf_poll_controller(struct net_device *dev)
1180 {
1181 	struct port_info *pi = netdev_priv(dev);
1182 	struct adapter *adapter = pi->adapter;
1183 
1184 	if (adapter->flags & USING_MSIX) {
1185 		struct sge_eth_rxq *rxq;
1186 		int nqsets;
1187 
1188 		rxq = &adapter->sge.ethrxq[pi->first_qset];
1189 		for (nqsets = pi->nqsets; nqsets; nqsets--) {
1190 			t4vf_sge_intr_msix(0, &rxq->rspq);
1191 			rxq++;
1192 		}
1193 	} else
1194 		t4vf_intr_handler(adapter)(0, adapter);
1195 }
1196 #endif
1197 
1198 /*
1199  * Ethtool operations.
1200  * ===================
1201  *
1202  * Note that we don't support any ethtool operations which change the physical
1203  * state of the port to which we're linked.
1204  */
1205 
1206 /**
1207  *	from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
1208  *	@port_type: Firmware Port Type
1209  *	@mod_type: Firmware Module Type
1210  *
1211  *	Translate Firmware Port/Module type to Ethtool Port Type.
1212  */
1213 static int from_fw_port_mod_type(enum fw_port_type port_type,
1214 				 enum fw_port_module_type mod_type)
1215 {
1216 	if (port_type == FW_PORT_TYPE_BT_SGMII ||
1217 	    port_type == FW_PORT_TYPE_BT_XFI ||
1218 	    port_type == FW_PORT_TYPE_BT_XAUI) {
1219 		return PORT_TP;
1220 	} else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
1221 		   port_type == FW_PORT_TYPE_FIBER_XAUI) {
1222 		return PORT_FIBRE;
1223 	} else if (port_type == FW_PORT_TYPE_SFP ||
1224 		   port_type == FW_PORT_TYPE_QSFP_10G ||
1225 		   port_type == FW_PORT_TYPE_QSA ||
1226 		   port_type == FW_PORT_TYPE_QSFP ||
1227 		   port_type == FW_PORT_TYPE_CR4_QSFP ||
1228 		   port_type == FW_PORT_TYPE_CR_QSFP ||
1229 		   port_type == FW_PORT_TYPE_CR2_QSFP ||
1230 		   port_type == FW_PORT_TYPE_SFP28) {
1231 		if (mod_type == FW_PORT_MOD_TYPE_LR ||
1232 		    mod_type == FW_PORT_MOD_TYPE_SR ||
1233 		    mod_type == FW_PORT_MOD_TYPE_ER ||
1234 		    mod_type == FW_PORT_MOD_TYPE_LRM)
1235 			return PORT_FIBRE;
1236 		else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1237 			 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1238 			return PORT_DA;
1239 		else
1240 			return PORT_OTHER;
1241 	} else if (port_type == FW_PORT_TYPE_KR4_100G ||
1242 		   port_type == FW_PORT_TYPE_KR_SFP28 ||
1243 		   port_type == FW_PORT_TYPE_KR_XLAUI) {
1244 		return PORT_NONE;
1245 	}
1246 
1247 	return PORT_OTHER;
1248 }
1249 
1250 /**
1251  *	fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
1252  *	@port_type: Firmware Port Type
1253  *	@fw_caps: Firmware Port Capabilities
1254  *	@link_mode_mask: ethtool Link Mode Mask
1255  *
1256  *	Translate a Firmware Port Capabilities specification to an ethtool
1257  *	Link Mode Mask.
1258  */
1259 static void fw_caps_to_lmm(enum fw_port_type port_type,
1260 			   unsigned int fw_caps,
1261 			   unsigned long *link_mode_mask)
1262 {
1263 	#define SET_LMM(__lmm_name) \
1264 		__set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
1265 			  link_mode_mask)
1266 
1267 	#define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
1268 		do { \
1269 			if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1270 				SET_LMM(__lmm_name); \
1271 		} while (0)
1272 
1273 	switch (port_type) {
1274 	case FW_PORT_TYPE_BT_SGMII:
1275 	case FW_PORT_TYPE_BT_XFI:
1276 	case FW_PORT_TYPE_BT_XAUI:
1277 		SET_LMM(TP);
1278 		FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
1279 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1280 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1281 		break;
1282 
1283 	case FW_PORT_TYPE_KX4:
1284 	case FW_PORT_TYPE_KX:
1285 		SET_LMM(Backplane);
1286 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1287 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1288 		break;
1289 
1290 	case FW_PORT_TYPE_KR:
1291 		SET_LMM(Backplane);
1292 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1293 		break;
1294 
1295 	case FW_PORT_TYPE_BP_AP:
1296 		SET_LMM(Backplane);
1297 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1298 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1299 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1300 		break;
1301 
1302 	case FW_PORT_TYPE_BP4_AP:
1303 		SET_LMM(Backplane);
1304 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1305 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1306 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1307 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1308 		break;
1309 
1310 	case FW_PORT_TYPE_FIBER_XFI:
1311 	case FW_PORT_TYPE_FIBER_XAUI:
1312 	case FW_PORT_TYPE_SFP:
1313 	case FW_PORT_TYPE_QSFP_10G:
1314 	case FW_PORT_TYPE_QSA:
1315 		SET_LMM(FIBRE);
1316 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1317 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1318 		break;
1319 
1320 	case FW_PORT_TYPE_BP40_BA:
1321 	case FW_PORT_TYPE_QSFP:
1322 		SET_LMM(FIBRE);
1323 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1324 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1325 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1326 		break;
1327 
1328 	case FW_PORT_TYPE_CR_QSFP:
1329 	case FW_PORT_TYPE_SFP28:
1330 		SET_LMM(FIBRE);
1331 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1332 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1333 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1334 		break;
1335 
1336 	case FW_PORT_TYPE_KR_SFP28:
1337 		SET_LMM(Backplane);
1338 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1339 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1340 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full);
1341 		break;
1342 
1343 	case FW_PORT_TYPE_KR_XLAUI:
1344 		SET_LMM(Backplane);
1345 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1346 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1347 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full);
1348 		break;
1349 
1350 	case FW_PORT_TYPE_CR2_QSFP:
1351 		SET_LMM(FIBRE);
1352 		FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full);
1353 		break;
1354 
1355 	case FW_PORT_TYPE_KR4_100G:
1356 	case FW_PORT_TYPE_CR4_QSFP:
1357 		SET_LMM(FIBRE);
1358 		FW_CAPS_TO_LMM(SPEED_1G,  1000baseT_Full);
1359 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseSR_Full);
1360 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1361 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1362 		FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full);
1363 		FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full);
1364 		break;
1365 
1366 	default:
1367 		break;
1368 	}
1369 
1370 	FW_CAPS_TO_LMM(ANEG, Autoneg);
1371 	FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
1372 	FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
1373 
1374 	#undef FW_CAPS_TO_LMM
1375 	#undef SET_LMM
1376 }
1377 
1378 static int cxgb4vf_get_link_ksettings(struct net_device *dev,
1379 				  struct ethtool_link_ksettings *link_ksettings)
1380 {
1381 	struct port_info *pi = netdev_priv(dev);
1382 	struct ethtool_link_settings *base = &link_ksettings->base;
1383 
1384 	/* For the nonce, the Firmware doesn't send up Port State changes
1385 	 * when the Virtual Interface attached to the Port is down.  So
1386 	 * if it's down, let's grab any changes.
1387 	 */
1388 	if (!netif_running(dev))
1389 		(void)t4vf_update_port_info(pi);
1390 
1391 	ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
1392 	ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
1393 	ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
1394 
1395 	base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
1396 
1397 	if (pi->mdio_addr >= 0) {
1398 		base->phy_address = pi->mdio_addr;
1399 		base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
1400 				      ? ETH_MDIO_SUPPORTS_C22
1401 				      : ETH_MDIO_SUPPORTS_C45);
1402 	} else {
1403 		base->phy_address = 255;
1404 		base->mdio_support = 0;
1405 	}
1406 
1407 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps,
1408 		       link_ksettings->link_modes.supported);
1409 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps,
1410 		       link_ksettings->link_modes.advertising);
1411 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps,
1412 		       link_ksettings->link_modes.lp_advertising);
1413 
1414 	if (netif_carrier_ok(dev)) {
1415 		base->speed = pi->link_cfg.speed;
1416 		base->duplex = DUPLEX_FULL;
1417 	} else {
1418 		base->speed = SPEED_UNKNOWN;
1419 		base->duplex = DUPLEX_UNKNOWN;
1420 	}
1421 
1422 	if (pi->link_cfg.fc & PAUSE_RX) {
1423 		if (pi->link_cfg.fc & PAUSE_TX) {
1424 			ethtool_link_ksettings_add_link_mode(link_ksettings,
1425 							     advertising,
1426 							     Pause);
1427 		} else {
1428 			ethtool_link_ksettings_add_link_mode(link_ksettings,
1429 							     advertising,
1430 							     Asym_Pause);
1431 		}
1432 	} else if (pi->link_cfg.fc & PAUSE_TX) {
1433 		ethtool_link_ksettings_add_link_mode(link_ksettings,
1434 						     advertising,
1435 						     Asym_Pause);
1436 	}
1437 
1438 	base->autoneg = pi->link_cfg.autoneg;
1439 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG)
1440 		ethtool_link_ksettings_add_link_mode(link_ksettings,
1441 						     supported, Autoneg);
1442 	if (pi->link_cfg.autoneg)
1443 		ethtool_link_ksettings_add_link_mode(link_ksettings,
1444 						     advertising, Autoneg);
1445 
1446 	return 0;
1447 }
1448 
1449 /* Translate the Firmware FEC value into the ethtool value. */
1450 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec)
1451 {
1452 	unsigned int eth_fec = 0;
1453 
1454 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
1455 		eth_fec |= ETHTOOL_FEC_RS;
1456 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1457 		eth_fec |= ETHTOOL_FEC_BASER;
1458 
1459 	/* if nothing is set, then FEC is off */
1460 	if (!eth_fec)
1461 		eth_fec = ETHTOOL_FEC_OFF;
1462 
1463 	return eth_fec;
1464 }
1465 
1466 /* Translate Common Code FEC value into ethtool value. */
1467 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec)
1468 {
1469 	unsigned int eth_fec = 0;
1470 
1471 	if (cc_fec & FEC_AUTO)
1472 		eth_fec |= ETHTOOL_FEC_AUTO;
1473 	if (cc_fec & FEC_RS)
1474 		eth_fec |= ETHTOOL_FEC_RS;
1475 	if (cc_fec & FEC_BASER_RS)
1476 		eth_fec |= ETHTOOL_FEC_BASER;
1477 
1478 	/* if nothing is set, then FEC is off */
1479 	if (!eth_fec)
1480 		eth_fec = ETHTOOL_FEC_OFF;
1481 
1482 	return eth_fec;
1483 }
1484 
1485 static int cxgb4vf_get_fecparam(struct net_device *dev,
1486 				struct ethtool_fecparam *fec)
1487 {
1488 	const struct port_info *pi = netdev_priv(dev);
1489 	const struct link_config *lc = &pi->link_cfg;
1490 
1491 	/* Translate the Firmware FEC Support into the ethtool value.  We
1492 	 * always support IEEE 802.3 "automatic" selection of Link FEC type if
1493 	 * any FEC is supported.
1494 	 */
1495 	fec->fec = fwcap_to_eth_fec(lc->pcaps);
1496 	if (fec->fec != ETHTOOL_FEC_OFF)
1497 		fec->fec |= ETHTOOL_FEC_AUTO;
1498 
1499 	/* Translate the current internal FEC parameters into the
1500 	 * ethtool values.
1501 	 */
1502 	fec->active_fec = cc_to_eth_fec(lc->fec);
1503 	return 0;
1504 }
1505 
1506 /*
1507  * Return our driver information.
1508  */
1509 static void cxgb4vf_get_drvinfo(struct net_device *dev,
1510 				struct ethtool_drvinfo *drvinfo)
1511 {
1512 	struct adapter *adapter = netdev2adap(dev);
1513 
1514 	strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1515 	strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
1516 	strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1517 		sizeof(drvinfo->bus_info));
1518 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1519 		 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1520 		 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev),
1521 		 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev),
1522 		 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev),
1523 		 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev),
1524 		 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev),
1525 		 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev),
1526 		 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev),
1527 		 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev));
1528 }
1529 
1530 /*
1531  * Return current adapter message level.
1532  */
1533 static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1534 {
1535 	return netdev2adap(dev)->msg_enable;
1536 }
1537 
1538 /*
1539  * Set current adapter message level.
1540  */
1541 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1542 {
1543 	netdev2adap(dev)->msg_enable = msglevel;
1544 }
1545 
1546 /*
1547  * Return the device's current Queue Set ring size parameters along with the
1548  * allowed maximum values.  Since ethtool doesn't understand the concept of
1549  * multi-queue devices, we just return the current values associated with the
1550  * first Queue Set.
1551  */
1552 static void cxgb4vf_get_ringparam(struct net_device *dev,
1553 				  struct ethtool_ringparam *rp)
1554 {
1555 	const struct port_info *pi = netdev_priv(dev);
1556 	const struct sge *s = &pi->adapter->sge;
1557 
1558 	rp->rx_max_pending = MAX_RX_BUFFERS;
1559 	rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1560 	rp->rx_jumbo_max_pending = 0;
1561 	rp->tx_max_pending = MAX_TXQ_ENTRIES;
1562 
1563 	rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1564 	rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1565 	rp->rx_jumbo_pending = 0;
1566 	rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1567 }
1568 
1569 /*
1570  * Set the Queue Set ring size parameters for the device.  Again, since
1571  * ethtool doesn't allow for the concept of multiple queues per device, we'll
1572  * apply these new values across all of the Queue Sets associated with the
1573  * device -- after vetting them of course!
1574  */
1575 static int cxgb4vf_set_ringparam(struct net_device *dev,
1576 				 struct ethtool_ringparam *rp)
1577 {
1578 	const struct port_info *pi = netdev_priv(dev);
1579 	struct adapter *adapter = pi->adapter;
1580 	struct sge *s = &adapter->sge;
1581 	int qs;
1582 
1583 	if (rp->rx_pending > MAX_RX_BUFFERS ||
1584 	    rp->rx_jumbo_pending ||
1585 	    rp->tx_pending > MAX_TXQ_ENTRIES ||
1586 	    rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1587 	    rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1588 	    rp->rx_pending < MIN_FL_ENTRIES ||
1589 	    rp->tx_pending < MIN_TXQ_ENTRIES)
1590 		return -EINVAL;
1591 
1592 	if (adapter->flags & FULL_INIT_DONE)
1593 		return -EBUSY;
1594 
1595 	for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1596 		s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1597 		s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1598 		s->ethtxq[qs].q.size = rp->tx_pending;
1599 	}
1600 	return 0;
1601 }
1602 
1603 /*
1604  * Return the interrupt holdoff timer and count for the first Queue Set on the
1605  * device.  Our extension ioctl() (the cxgbtool interface) allows the
1606  * interrupt holdoff timer to be read on all of the device's Queue Sets.
1607  */
1608 static int cxgb4vf_get_coalesce(struct net_device *dev,
1609 				struct ethtool_coalesce *coalesce)
1610 {
1611 	const struct port_info *pi = netdev_priv(dev);
1612 	const struct adapter *adapter = pi->adapter;
1613 	const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1614 
1615 	coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1616 	coalesce->rx_max_coalesced_frames =
1617 		((rspq->intr_params & QINTR_CNT_EN_F)
1618 		 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1619 		 : 0);
1620 	return 0;
1621 }
1622 
1623 /*
1624  * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1625  * interface.  Our extension ioctl() (the cxgbtool interface) allows us to set
1626  * the interrupt holdoff timer on any of the device's Queue Sets.
1627  */
1628 static int cxgb4vf_set_coalesce(struct net_device *dev,
1629 				struct ethtool_coalesce *coalesce)
1630 {
1631 	const struct port_info *pi = netdev_priv(dev);
1632 	struct adapter *adapter = pi->adapter;
1633 
1634 	return set_rxq_intr_params(adapter,
1635 				   &adapter->sge.ethrxq[pi->first_qset].rspq,
1636 				   coalesce->rx_coalesce_usecs,
1637 				   coalesce->rx_max_coalesced_frames);
1638 }
1639 
1640 /*
1641  * Report current port link pause parameter settings.
1642  */
1643 static void cxgb4vf_get_pauseparam(struct net_device *dev,
1644 				   struct ethtool_pauseparam *pauseparam)
1645 {
1646 	struct port_info *pi = netdev_priv(dev);
1647 
1648 	pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1649 	pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1650 	pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1651 }
1652 
1653 /*
1654  * Identify the port by blinking the port's LED.
1655  */
1656 static int cxgb4vf_phys_id(struct net_device *dev,
1657 			   enum ethtool_phys_id_state state)
1658 {
1659 	unsigned int val;
1660 	struct port_info *pi = netdev_priv(dev);
1661 
1662 	if (state == ETHTOOL_ID_ACTIVE)
1663 		val = 0xffff;
1664 	else if (state == ETHTOOL_ID_INACTIVE)
1665 		val = 0;
1666 	else
1667 		return -EINVAL;
1668 
1669 	return t4vf_identify_port(pi->adapter, pi->viid, val);
1670 }
1671 
1672 /*
1673  * Port stats maintained per queue of the port.
1674  */
1675 struct queue_port_stats {
1676 	u64 tso;
1677 	u64 tx_csum;
1678 	u64 rx_csum;
1679 	u64 vlan_ex;
1680 	u64 vlan_ins;
1681 	u64 lro_pkts;
1682 	u64 lro_merged;
1683 };
1684 
1685 /*
1686  * Strings for the ETH_SS_STATS statistics set ("ethtool -S").  Note that
1687  * these need to match the order of statistics returned by
1688  * t4vf_get_port_stats().
1689  */
1690 static const char stats_strings[][ETH_GSTRING_LEN] = {
1691 	/*
1692 	 * These must match the layout of the t4vf_port_stats structure.
1693 	 */
1694 	"TxBroadcastBytes  ",
1695 	"TxBroadcastFrames ",
1696 	"TxMulticastBytes  ",
1697 	"TxMulticastFrames ",
1698 	"TxUnicastBytes    ",
1699 	"TxUnicastFrames   ",
1700 	"TxDroppedFrames   ",
1701 	"TxOffloadBytes    ",
1702 	"TxOffloadFrames   ",
1703 	"RxBroadcastBytes  ",
1704 	"RxBroadcastFrames ",
1705 	"RxMulticastBytes  ",
1706 	"RxMulticastFrames ",
1707 	"RxUnicastBytes    ",
1708 	"RxUnicastFrames   ",
1709 	"RxErrorFrames     ",
1710 
1711 	/*
1712 	 * These are accumulated per-queue statistics and must match the
1713 	 * order of the fields in the queue_port_stats structure.
1714 	 */
1715 	"TSO               ",
1716 	"TxCsumOffload     ",
1717 	"RxCsumGood        ",
1718 	"VLANextractions   ",
1719 	"VLANinsertions    ",
1720 	"GROPackets        ",
1721 	"GROMerged         ",
1722 };
1723 
1724 /*
1725  * Return the number of statistics in the specified statistics set.
1726  */
1727 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1728 {
1729 	switch (sset) {
1730 	case ETH_SS_STATS:
1731 		return ARRAY_SIZE(stats_strings);
1732 	default:
1733 		return -EOPNOTSUPP;
1734 	}
1735 	/*NOTREACHED*/
1736 }
1737 
1738 /*
1739  * Return the strings for the specified statistics set.
1740  */
1741 static void cxgb4vf_get_strings(struct net_device *dev,
1742 				u32 sset,
1743 				u8 *data)
1744 {
1745 	switch (sset) {
1746 	case ETH_SS_STATS:
1747 		memcpy(data, stats_strings, sizeof(stats_strings));
1748 		break;
1749 	}
1750 }
1751 
1752 /*
1753  * Small utility routine to accumulate queue statistics across the queues of
1754  * a "port".
1755  */
1756 static void collect_sge_port_stats(const struct adapter *adapter,
1757 				   const struct port_info *pi,
1758 				   struct queue_port_stats *stats)
1759 {
1760 	const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1761 	const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1762 	int qs;
1763 
1764 	memset(stats, 0, sizeof(*stats));
1765 	for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1766 		stats->tso += txq->tso;
1767 		stats->tx_csum += txq->tx_cso;
1768 		stats->rx_csum += rxq->stats.rx_cso;
1769 		stats->vlan_ex += rxq->stats.vlan_ex;
1770 		stats->vlan_ins += txq->vlan_ins;
1771 		stats->lro_pkts += rxq->stats.lro_pkts;
1772 		stats->lro_merged += rxq->stats.lro_merged;
1773 	}
1774 }
1775 
1776 /*
1777  * Return the ETH_SS_STATS statistics set.
1778  */
1779 static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1780 				      struct ethtool_stats *stats,
1781 				      u64 *data)
1782 {
1783 	struct port_info *pi = netdev2pinfo(dev);
1784 	struct adapter *adapter = pi->adapter;
1785 	int err = t4vf_get_port_stats(adapter, pi->pidx,
1786 				      (struct t4vf_port_stats *)data);
1787 	if (err)
1788 		memset(data, 0, sizeof(struct t4vf_port_stats));
1789 
1790 	data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1791 	collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1792 }
1793 
1794 /*
1795  * Return the size of our register map.
1796  */
1797 static int cxgb4vf_get_regs_len(struct net_device *dev)
1798 {
1799 	return T4VF_REGMAP_SIZE;
1800 }
1801 
1802 /*
1803  * Dump a block of registers, start to end inclusive, into a buffer.
1804  */
1805 static void reg_block_dump(struct adapter *adapter, void *regbuf,
1806 			   unsigned int start, unsigned int end)
1807 {
1808 	u32 *bp = regbuf + start - T4VF_REGMAP_START;
1809 
1810 	for ( ; start <= end; start += sizeof(u32)) {
1811 		/*
1812 		 * Avoid reading the Mailbox Control register since that
1813 		 * can trigger a Mailbox Ownership Arbitration cycle and
1814 		 * interfere with communication with the firmware.
1815 		 */
1816 		if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1817 			*bp++ = 0xffff;
1818 		else
1819 			*bp++ = t4_read_reg(adapter, start);
1820 	}
1821 }
1822 
1823 /*
1824  * Copy our entire register map into the provided buffer.
1825  */
1826 static void cxgb4vf_get_regs(struct net_device *dev,
1827 			     struct ethtool_regs *regs,
1828 			     void *regbuf)
1829 {
1830 	struct adapter *adapter = netdev2adap(dev);
1831 
1832 	regs->version = mk_adap_vers(adapter);
1833 
1834 	/*
1835 	 * Fill in register buffer with our register map.
1836 	 */
1837 	memset(regbuf, 0, T4VF_REGMAP_SIZE);
1838 
1839 	reg_block_dump(adapter, regbuf,
1840 		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1841 		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1842 	reg_block_dump(adapter, regbuf,
1843 		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1844 		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1845 
1846 	/* T5 adds new registers in the PL Register map.
1847 	 */
1848 	reg_block_dump(adapter, regbuf,
1849 		       T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1850 		       T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1851 		       ? PL_VF_WHOAMI_A : PL_VF_REVISION_A));
1852 	reg_block_dump(adapter, regbuf,
1853 		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1854 		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1855 
1856 	reg_block_dump(adapter, regbuf,
1857 		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1858 		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1859 }
1860 
1861 /*
1862  * Report current Wake On LAN settings.
1863  */
1864 static void cxgb4vf_get_wol(struct net_device *dev,
1865 			    struct ethtool_wolinfo *wol)
1866 {
1867 	wol->supported = 0;
1868 	wol->wolopts = 0;
1869 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1870 }
1871 
1872 /*
1873  * TCP Segmentation Offload flags which we support.
1874  */
1875 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1876 
1877 static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1878 	.get_link_ksettings	= cxgb4vf_get_link_ksettings,
1879 	.get_fecparam		= cxgb4vf_get_fecparam,
1880 	.get_drvinfo		= cxgb4vf_get_drvinfo,
1881 	.get_msglevel		= cxgb4vf_get_msglevel,
1882 	.set_msglevel		= cxgb4vf_set_msglevel,
1883 	.get_ringparam		= cxgb4vf_get_ringparam,
1884 	.set_ringparam		= cxgb4vf_set_ringparam,
1885 	.get_coalesce		= cxgb4vf_get_coalesce,
1886 	.set_coalesce		= cxgb4vf_set_coalesce,
1887 	.get_pauseparam		= cxgb4vf_get_pauseparam,
1888 	.get_link		= ethtool_op_get_link,
1889 	.get_strings		= cxgb4vf_get_strings,
1890 	.set_phys_id		= cxgb4vf_phys_id,
1891 	.get_sset_count		= cxgb4vf_get_sset_count,
1892 	.get_ethtool_stats	= cxgb4vf_get_ethtool_stats,
1893 	.get_regs_len		= cxgb4vf_get_regs_len,
1894 	.get_regs		= cxgb4vf_get_regs,
1895 	.get_wol		= cxgb4vf_get_wol,
1896 };
1897 
1898 /*
1899  * /sys/kernel/debug/cxgb4vf support code and data.
1900  * ================================================
1901  */
1902 
1903 /*
1904  * Show Firmware Mailbox Command/Reply Log
1905  *
1906  * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1907  * it's possible that we can catch things during a log update and therefore
1908  * see partially corrupted log entries.  But i9t's probably Good Enough(tm).
1909  * If we ever decide that we want to make sure that we're dumping a coherent
1910  * log, we'd need to perform locking in the mailbox logging and in
1911  * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1912  * like we do for the Firmware Device Log.  But as stated above, meh ...
1913  */
1914 static int mboxlog_show(struct seq_file *seq, void *v)
1915 {
1916 	struct adapter *adapter = seq->private;
1917 	struct mbox_cmd_log *log = adapter->mbox_log;
1918 	struct mbox_cmd *entry;
1919 	int entry_idx, i;
1920 
1921 	if (v == SEQ_START_TOKEN) {
1922 		seq_printf(seq,
1923 			   "%10s  %15s  %5s  %5s  %s\n",
1924 			   "Seq#", "Tstamp", "Atime", "Etime",
1925 			   "Command/Reply");
1926 		return 0;
1927 	}
1928 
1929 	entry_idx = log->cursor + ((uintptr_t)v - 2);
1930 	if (entry_idx >= log->size)
1931 		entry_idx -= log->size;
1932 	entry = mbox_cmd_log_entry(log, entry_idx);
1933 
1934 	/* skip over unused entries */
1935 	if (entry->timestamp == 0)
1936 		return 0;
1937 
1938 	seq_printf(seq, "%10u  %15llu  %5d  %5d",
1939 		   entry->seqno, entry->timestamp,
1940 		   entry->access, entry->execute);
1941 	for (i = 0; i < MBOX_LEN / 8; i++) {
1942 		u64 flit = entry->cmd[i];
1943 		u32 hi = (u32)(flit >> 32);
1944 		u32 lo = (u32)flit;
1945 
1946 		seq_printf(seq, "  %08x %08x", hi, lo);
1947 	}
1948 	seq_puts(seq, "\n");
1949 	return 0;
1950 }
1951 
1952 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos)
1953 {
1954 	struct adapter *adapter = seq->private;
1955 	struct mbox_cmd_log *log = adapter->mbox_log;
1956 
1957 	return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL);
1958 }
1959 
1960 static void *mboxlog_start(struct seq_file *seq, loff_t *pos)
1961 {
1962 	return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN;
1963 }
1964 
1965 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos)
1966 {
1967 	++*pos;
1968 	return mboxlog_get_idx(seq, *pos);
1969 }
1970 
1971 static void mboxlog_stop(struct seq_file *seq, void *v)
1972 {
1973 }
1974 
1975 static const struct seq_operations mboxlog_seq_ops = {
1976 	.start = mboxlog_start,
1977 	.next  = mboxlog_next,
1978 	.stop  = mboxlog_stop,
1979 	.show  = mboxlog_show
1980 };
1981 
1982 static int mboxlog_open(struct inode *inode, struct file *file)
1983 {
1984 	int res = seq_open(file, &mboxlog_seq_ops);
1985 
1986 	if (!res) {
1987 		struct seq_file *seq = file->private_data;
1988 
1989 		seq->private = inode->i_private;
1990 	}
1991 	return res;
1992 }
1993 
1994 static const struct file_operations mboxlog_fops = {
1995 	.owner   = THIS_MODULE,
1996 	.open    = mboxlog_open,
1997 	.read    = seq_read,
1998 	.llseek  = seq_lseek,
1999 	.release = seq_release,
2000 };
2001 
2002 /*
2003  * Show SGE Queue Set information.  We display QPL Queues Sets per line.
2004  */
2005 #define QPL	4
2006 
2007 static int sge_qinfo_show(struct seq_file *seq, void *v)
2008 {
2009 	struct adapter *adapter = seq->private;
2010 	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2011 	int qs, r = (uintptr_t)v - 1;
2012 
2013 	if (r)
2014 		seq_putc(seq, '\n');
2015 
2016 	#define S3(fmt_spec, s, v) \
2017 		do {\
2018 			seq_printf(seq, "%-12s", s); \
2019 			for (qs = 0; qs < n; ++qs) \
2020 				seq_printf(seq, " %16" fmt_spec, v); \
2021 			seq_putc(seq, '\n'); \
2022 		} while (0)
2023 	#define S(s, v)		S3("s", s, v)
2024 	#define T(s, v)		S3("u", s, txq[qs].v)
2025 	#define R(s, v)		S3("u", s, rxq[qs].v)
2026 
2027 	if (r < eth_entries) {
2028 		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2029 		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2030 		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2031 
2032 		S("QType:", "Ethernet");
2033 		S("Interface:",
2034 		  (rxq[qs].rspq.netdev
2035 		   ? rxq[qs].rspq.netdev->name
2036 		   : "N/A"));
2037 		S3("d", "Port:",
2038 		   (rxq[qs].rspq.netdev
2039 		    ? ((struct port_info *)
2040 		       netdev_priv(rxq[qs].rspq.netdev))->port_id
2041 		    : -1));
2042 		T("TxQ ID:", q.abs_id);
2043 		T("TxQ size:", q.size);
2044 		T("TxQ inuse:", q.in_use);
2045 		T("TxQ PIdx:", q.pidx);
2046 		T("TxQ CIdx:", q.cidx);
2047 		R("RspQ ID:", rspq.abs_id);
2048 		R("RspQ size:", rspq.size);
2049 		R("RspQE size:", rspq.iqe_len);
2050 		S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
2051 		S3("u", "Intr pktcnt:",
2052 		   adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
2053 		R("RspQ CIdx:", rspq.cidx);
2054 		R("RspQ Gen:", rspq.gen);
2055 		R("FL ID:", fl.abs_id);
2056 		R("FL size:", fl.size - MIN_FL_RESID);
2057 		R("FL avail:", fl.avail);
2058 		R("FL PIdx:", fl.pidx);
2059 		R("FL CIdx:", fl.cidx);
2060 		return 0;
2061 	}
2062 
2063 	r -= eth_entries;
2064 	if (r == 0) {
2065 		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2066 
2067 		seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
2068 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
2069 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2070 			   qtimer_val(adapter, evtq));
2071 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2072 			   adapter->sge.counter_val[evtq->pktcnt_idx]);
2073 		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
2074 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
2075 	} else if (r == 1) {
2076 		const struct sge_rspq *intrq = &adapter->sge.intrq;
2077 
2078 		seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
2079 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
2080 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2081 			   qtimer_val(adapter, intrq));
2082 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2083 			   adapter->sge.counter_val[intrq->pktcnt_idx]);
2084 		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
2085 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
2086 	}
2087 
2088 	#undef R
2089 	#undef T
2090 	#undef S
2091 	#undef S3
2092 
2093 	return 0;
2094 }
2095 
2096 /*
2097  * Return the number of "entries" in our "file".  We group the multi-Queue
2098  * sections with QPL Queue Sets per "entry".  The sections of the output are:
2099  *
2100  *     Ethernet RX/TX Queue Sets
2101  *     Firmware Event Queue
2102  *     Forwarded Interrupt Queue (if in MSI mode)
2103  */
2104 static int sge_queue_entries(const struct adapter *adapter)
2105 {
2106 	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2107 		((adapter->flags & USING_MSI) != 0);
2108 }
2109 
2110 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
2111 {
2112 	int entries = sge_queue_entries(seq->private);
2113 
2114 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2115 }
2116 
2117 static void sge_queue_stop(struct seq_file *seq, void *v)
2118 {
2119 }
2120 
2121 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2122 {
2123 	int entries = sge_queue_entries(seq->private);
2124 
2125 	++*pos;
2126 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2127 }
2128 
2129 static const struct seq_operations sge_qinfo_seq_ops = {
2130 	.start = sge_queue_start,
2131 	.next  = sge_queue_next,
2132 	.stop  = sge_queue_stop,
2133 	.show  = sge_qinfo_show
2134 };
2135 
2136 static int sge_qinfo_open(struct inode *inode, struct file *file)
2137 {
2138 	int res = seq_open(file, &sge_qinfo_seq_ops);
2139 
2140 	if (!res) {
2141 		struct seq_file *seq = file->private_data;
2142 		seq->private = inode->i_private;
2143 	}
2144 	return res;
2145 }
2146 
2147 static const struct file_operations sge_qinfo_debugfs_fops = {
2148 	.owner   = THIS_MODULE,
2149 	.open    = sge_qinfo_open,
2150 	.read    = seq_read,
2151 	.llseek  = seq_lseek,
2152 	.release = seq_release,
2153 };
2154 
2155 /*
2156  * Show SGE Queue Set statistics.  We display QPL Queues Sets per line.
2157  */
2158 #define QPL	4
2159 
2160 static int sge_qstats_show(struct seq_file *seq, void *v)
2161 {
2162 	struct adapter *adapter = seq->private;
2163 	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2164 	int qs, r = (uintptr_t)v - 1;
2165 
2166 	if (r)
2167 		seq_putc(seq, '\n');
2168 
2169 	#define S3(fmt, s, v) \
2170 		do { \
2171 			seq_printf(seq, "%-16s", s); \
2172 			for (qs = 0; qs < n; ++qs) \
2173 				seq_printf(seq, " %8" fmt, v); \
2174 			seq_putc(seq, '\n'); \
2175 		} while (0)
2176 	#define S(s, v)		S3("s", s, v)
2177 
2178 	#define T3(fmt, s, v)	S3(fmt, s, txq[qs].v)
2179 	#define T(s, v)		T3("lu", s, v)
2180 
2181 	#define R3(fmt, s, v)	S3(fmt, s, rxq[qs].v)
2182 	#define R(s, v)		R3("lu", s, v)
2183 
2184 	if (r < eth_entries) {
2185 		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2186 		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2187 		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2188 
2189 		S("QType:", "Ethernet");
2190 		S("Interface:",
2191 		  (rxq[qs].rspq.netdev
2192 		   ? rxq[qs].rspq.netdev->name
2193 		   : "N/A"));
2194 		R3("u", "RspQNullInts:", rspq.unhandled_irqs);
2195 		R("RxPackets:", stats.pkts);
2196 		R("RxCSO:", stats.rx_cso);
2197 		R("VLANxtract:", stats.vlan_ex);
2198 		R("LROmerged:", stats.lro_merged);
2199 		R("LROpackets:", stats.lro_pkts);
2200 		R("RxDrops:", stats.rx_drops);
2201 		T("TSO:", tso);
2202 		T("TxCSO:", tx_cso);
2203 		T("VLANins:", vlan_ins);
2204 		T("TxQFull:", q.stops);
2205 		T("TxQRestarts:", q.restarts);
2206 		T("TxMapErr:", mapping_err);
2207 		R("FLAllocErr:", fl.alloc_failed);
2208 		R("FLLrgAlcErr:", fl.large_alloc_failed);
2209 		R("FLStarving:", fl.starving);
2210 		return 0;
2211 	}
2212 
2213 	r -= eth_entries;
2214 	if (r == 0) {
2215 		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2216 
2217 		seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
2218 		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2219 			   evtq->unhandled_irqs);
2220 		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
2221 		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
2222 	} else if (r == 1) {
2223 		const struct sge_rspq *intrq = &adapter->sge.intrq;
2224 
2225 		seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
2226 		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2227 			   intrq->unhandled_irqs);
2228 		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
2229 		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
2230 	}
2231 
2232 	#undef R
2233 	#undef T
2234 	#undef S
2235 	#undef R3
2236 	#undef T3
2237 	#undef S3
2238 
2239 	return 0;
2240 }
2241 
2242 /*
2243  * Return the number of "entries" in our "file".  We group the multi-Queue
2244  * sections with QPL Queue Sets per "entry".  The sections of the output are:
2245  *
2246  *     Ethernet RX/TX Queue Sets
2247  *     Firmware Event Queue
2248  *     Forwarded Interrupt Queue (if in MSI mode)
2249  */
2250 static int sge_qstats_entries(const struct adapter *adapter)
2251 {
2252 	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2253 		((adapter->flags & USING_MSI) != 0);
2254 }
2255 
2256 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
2257 {
2258 	int entries = sge_qstats_entries(seq->private);
2259 
2260 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2261 }
2262 
2263 static void sge_qstats_stop(struct seq_file *seq, void *v)
2264 {
2265 }
2266 
2267 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
2268 {
2269 	int entries = sge_qstats_entries(seq->private);
2270 
2271 	(*pos)++;
2272 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2273 }
2274 
2275 static const struct seq_operations sge_qstats_seq_ops = {
2276 	.start = sge_qstats_start,
2277 	.next  = sge_qstats_next,
2278 	.stop  = sge_qstats_stop,
2279 	.show  = sge_qstats_show
2280 };
2281 
2282 static int sge_qstats_open(struct inode *inode, struct file *file)
2283 {
2284 	int res = seq_open(file, &sge_qstats_seq_ops);
2285 
2286 	if (res == 0) {
2287 		struct seq_file *seq = file->private_data;
2288 		seq->private = inode->i_private;
2289 	}
2290 	return res;
2291 }
2292 
2293 static const struct file_operations sge_qstats_proc_fops = {
2294 	.owner   = THIS_MODULE,
2295 	.open    = sge_qstats_open,
2296 	.read    = seq_read,
2297 	.llseek  = seq_lseek,
2298 	.release = seq_release,
2299 };
2300 
2301 /*
2302  * Show PCI-E SR-IOV Virtual Function Resource Limits.
2303  */
2304 static int resources_show(struct seq_file *seq, void *v)
2305 {
2306 	struct adapter *adapter = seq->private;
2307 	struct vf_resources *vfres = &adapter->params.vfres;
2308 
2309 	#define S(desc, fmt, var) \
2310 		seq_printf(seq, "%-60s " fmt "\n", \
2311 			   desc " (" #var "):", vfres->var)
2312 
2313 	S("Virtual Interfaces", "%d", nvi);
2314 	S("Egress Queues", "%d", neq);
2315 	S("Ethernet Control", "%d", nethctrl);
2316 	S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
2317 	S("Ingress Queues", "%d", niq);
2318 	S("Traffic Class", "%d", tc);
2319 	S("Port Access Rights Mask", "%#x", pmask);
2320 	S("MAC Address Filters", "%d", nexactf);
2321 	S("Firmware Command Read Capabilities", "%#x", r_caps);
2322 	S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
2323 
2324 	#undef S
2325 
2326 	return 0;
2327 }
2328 
2329 static int resources_open(struct inode *inode, struct file *file)
2330 {
2331 	return single_open(file, resources_show, inode->i_private);
2332 }
2333 
2334 static const struct file_operations resources_proc_fops = {
2335 	.owner   = THIS_MODULE,
2336 	.open    = resources_open,
2337 	.read    = seq_read,
2338 	.llseek  = seq_lseek,
2339 	.release = single_release,
2340 };
2341 
2342 /*
2343  * Show Virtual Interfaces.
2344  */
2345 static int interfaces_show(struct seq_file *seq, void *v)
2346 {
2347 	if (v == SEQ_START_TOKEN) {
2348 		seq_puts(seq, "Interface  Port   VIID\n");
2349 	} else {
2350 		struct adapter *adapter = seq->private;
2351 		int pidx = (uintptr_t)v - 2;
2352 		struct net_device *dev = adapter->port[pidx];
2353 		struct port_info *pi = netdev_priv(dev);
2354 
2355 		seq_printf(seq, "%9s  %4d  %#5x\n",
2356 			   dev->name, pi->port_id, pi->viid);
2357 	}
2358 	return 0;
2359 }
2360 
2361 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
2362 {
2363 	return pos <= adapter->params.nports
2364 		? (void *)(uintptr_t)(pos + 1)
2365 		: NULL;
2366 }
2367 
2368 static void *interfaces_start(struct seq_file *seq, loff_t *pos)
2369 {
2370 	return *pos
2371 		? interfaces_get_idx(seq->private, *pos)
2372 		: SEQ_START_TOKEN;
2373 }
2374 
2375 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
2376 {
2377 	(*pos)++;
2378 	return interfaces_get_idx(seq->private, *pos);
2379 }
2380 
2381 static void interfaces_stop(struct seq_file *seq, void *v)
2382 {
2383 }
2384 
2385 static const struct seq_operations interfaces_seq_ops = {
2386 	.start = interfaces_start,
2387 	.next  = interfaces_next,
2388 	.stop  = interfaces_stop,
2389 	.show  = interfaces_show
2390 };
2391 
2392 static int interfaces_open(struct inode *inode, struct file *file)
2393 {
2394 	int res = seq_open(file, &interfaces_seq_ops);
2395 
2396 	if (res == 0) {
2397 		struct seq_file *seq = file->private_data;
2398 		seq->private = inode->i_private;
2399 	}
2400 	return res;
2401 }
2402 
2403 static const struct file_operations interfaces_proc_fops = {
2404 	.owner   = THIS_MODULE,
2405 	.open    = interfaces_open,
2406 	.read    = seq_read,
2407 	.llseek  = seq_lseek,
2408 	.release = seq_release,
2409 };
2410 
2411 /*
2412  * /sys/kernel/debugfs/cxgb4vf/ files list.
2413  */
2414 struct cxgb4vf_debugfs_entry {
2415 	const char *name;		/* name of debugfs node */
2416 	umode_t mode;			/* file system mode */
2417 	const struct file_operations *fops;
2418 };
2419 
2420 static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2421 	{ "mboxlog",    0444, &mboxlog_fops },
2422 	{ "sge_qinfo",  0444, &sge_qinfo_debugfs_fops },
2423 	{ "sge_qstats", 0444, &sge_qstats_proc_fops },
2424 	{ "resources",  0444, &resources_proc_fops },
2425 	{ "interfaces", 0444, &interfaces_proc_fops },
2426 };
2427 
2428 /*
2429  * Module and device initialization and cleanup code.
2430  * ==================================================
2431  */
2432 
2433 /*
2434  * Set up out /sys/kernel/debug/cxgb4vf sub-nodes.  We assume that the
2435  * directory (debugfs_root) has already been set up.
2436  */
2437 static int setup_debugfs(struct adapter *adapter)
2438 {
2439 	int i;
2440 
2441 	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2442 
2443 	/*
2444 	 * Debugfs support is best effort.
2445 	 */
2446 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2447 		(void)debugfs_create_file(debugfs_files[i].name,
2448 				  debugfs_files[i].mode,
2449 				  adapter->debugfs_root,
2450 				  (void *)adapter,
2451 				  debugfs_files[i].fops);
2452 
2453 	return 0;
2454 }
2455 
2456 /*
2457  * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above.  We leave
2458  * it to our caller to tear down the directory (debugfs_root).
2459  */
2460 static void cleanup_debugfs(struct adapter *adapter)
2461 {
2462 	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2463 
2464 	/*
2465 	 * Unlike our sister routine cleanup_proc(), we don't need to remove
2466 	 * individual entries because a call will be made to
2467 	 * debugfs_remove_recursive().  We just need to clean up any ancillary
2468 	 * persistent state.
2469 	 */
2470 	/* nothing to do */
2471 }
2472 
2473 /* Figure out how many Ports and Queue Sets we can support.  This depends on
2474  * knowing our Virtual Function Resources and may be called a second time if
2475  * we fall back from MSI-X to MSI Interrupt Mode.
2476  */
2477 static void size_nports_qsets(struct adapter *adapter)
2478 {
2479 	struct vf_resources *vfres = &adapter->params.vfres;
2480 	unsigned int ethqsets, pmask_nports;
2481 
2482 	/* The number of "ports" which we support is equal to the number of
2483 	 * Virtual Interfaces with which we've been provisioned.
2484 	 */
2485 	adapter->params.nports = vfres->nvi;
2486 	if (adapter->params.nports > MAX_NPORTS) {
2487 		dev_warn(adapter->pdev_dev, "only using %d of %d maximum"
2488 			 " allowed virtual interfaces\n", MAX_NPORTS,
2489 			 adapter->params.nports);
2490 		adapter->params.nports = MAX_NPORTS;
2491 	}
2492 
2493 	/* We may have been provisioned with more VIs than the number of
2494 	 * ports we're allowed to access (our Port Access Rights Mask).
2495 	 * This is obviously a configuration conflict but we don't want to
2496 	 * crash the kernel or anything silly just because of that.
2497 	 */
2498 	pmask_nports = hweight32(adapter->params.vfres.pmask);
2499 	if (pmask_nports < adapter->params.nports) {
2500 		dev_warn(adapter->pdev_dev, "only using %d of %d provisioned"
2501 			 " virtual interfaces; limited by Port Access Rights"
2502 			 " mask %#x\n", pmask_nports, adapter->params.nports,
2503 			 adapter->params.vfres.pmask);
2504 		adapter->params.nports = pmask_nports;
2505 	}
2506 
2507 	/* We need to reserve an Ingress Queue for the Asynchronous Firmware
2508 	 * Event Queue.  And if we're using MSI Interrupts, we'll also need to
2509 	 * reserve an Ingress Queue for a Forwarded Interrupts.
2510 	 *
2511 	 * The rest of the FL/Intr-capable ingress queues will be matched up
2512 	 * one-for-one with Ethernet/Control egress queues in order to form
2513 	 * "Queue Sets" which will be aportioned between the "ports".  For
2514 	 * each Queue Set, we'll need the ability to allocate two Egress
2515 	 * Contexts -- one for the Ingress Queue Free List and one for the TX
2516 	 * Ethernet Queue.
2517 	 *
2518 	 * Note that even if we're currently configured to use MSI-X
2519 	 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded
2520 	 * to MSI Interrupts if we can't get enough MSI-X Interrupts.  If that
2521 	 * happens we'll need to adjust things later.
2522 	 */
2523 	ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI);
2524 	if (vfres->nethctrl != ethqsets)
2525 		ethqsets = min(vfres->nethctrl, ethqsets);
2526 	if (vfres->neq < ethqsets*2)
2527 		ethqsets = vfres->neq/2;
2528 	if (ethqsets > MAX_ETH_QSETS)
2529 		ethqsets = MAX_ETH_QSETS;
2530 	adapter->sge.max_ethqsets = ethqsets;
2531 
2532 	if (adapter->sge.max_ethqsets < adapter->params.nports) {
2533 		dev_warn(adapter->pdev_dev, "only using %d of %d available"
2534 			 " virtual interfaces (too few Queue Sets)\n",
2535 			 adapter->sge.max_ethqsets, adapter->params.nports);
2536 		adapter->params.nports = adapter->sge.max_ethqsets;
2537 	}
2538 }
2539 
2540 /*
2541  * Perform early "adapter" initialization.  This is where we discover what
2542  * adapter parameters we're going to be using and initialize basic adapter
2543  * hardware support.
2544  */
2545 static int adap_init0(struct adapter *adapter)
2546 {
2547 	struct sge_params *sge_params = &adapter->params.sge;
2548 	struct sge *s = &adapter->sge;
2549 	int err;
2550 	u32 param, val = 0;
2551 
2552 	/*
2553 	 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2554 	 * 2.6.31 and later we can't call pci_reset_function() in order to
2555 	 * issue an FLR because of a self- deadlock on the device semaphore.
2556 	 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2557 	 * cases where they're needed -- for instance, some versions of KVM
2558 	 * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
2559 	 * use the firmware based reset in order to reset any per function
2560 	 * state.
2561 	 */
2562 	err = t4vf_fw_reset(adapter);
2563 	if (err < 0) {
2564 		dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2565 		return err;
2566 	}
2567 
2568 	/*
2569 	 * Grab basic operational parameters.  These will predominantly have
2570 	 * been set up by the Physical Function Driver or will be hard coded
2571 	 * into the adapter.  We just have to live with them ...  Note that
2572 	 * we _must_ get our VPD parameters before our SGE parameters because
2573 	 * we need to know the adapter's core clock from the VPD in order to
2574 	 * properly decode the SGE Timer Values.
2575 	 */
2576 	err = t4vf_get_dev_params(adapter);
2577 	if (err) {
2578 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2579 			" device parameters: err=%d\n", err);
2580 		return err;
2581 	}
2582 	err = t4vf_get_vpd_params(adapter);
2583 	if (err) {
2584 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2585 			" VPD parameters: err=%d\n", err);
2586 		return err;
2587 	}
2588 	err = t4vf_get_sge_params(adapter);
2589 	if (err) {
2590 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2591 			" SGE parameters: err=%d\n", err);
2592 		return err;
2593 	}
2594 	err = t4vf_get_rss_glb_config(adapter);
2595 	if (err) {
2596 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2597 			" RSS parameters: err=%d\n", err);
2598 		return err;
2599 	}
2600 	if (adapter->params.rss.mode !=
2601 	    FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2602 		dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2603 			" mode %d\n", adapter->params.rss.mode);
2604 		return -EINVAL;
2605 	}
2606 	err = t4vf_sge_init(adapter);
2607 	if (err) {
2608 		dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2609 			" err=%d\n", err);
2610 		return err;
2611 	}
2612 
2613 	/* If we're running on newer firmware, let it know that we're
2614 	 * prepared to deal with encapsulated CPL messages.  Older
2615 	 * firmware won't understand this and we'll just get
2616 	 * unencapsulated messages ...
2617 	 */
2618 	param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2619 		FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2620 	val = 1;
2621 	(void) t4vf_set_params(adapter, 1, &param, &val);
2622 
2623 	/*
2624 	 * Retrieve our RX interrupt holdoff timer values and counter
2625 	 * threshold values from the SGE parameters.
2626 	 */
2627 	s->timer_val[0] = core_ticks_to_us(adapter,
2628 		TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1));
2629 	s->timer_val[1] = core_ticks_to_us(adapter,
2630 		TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1));
2631 	s->timer_val[2] = core_ticks_to_us(adapter,
2632 		TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3));
2633 	s->timer_val[3] = core_ticks_to_us(adapter,
2634 		TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3));
2635 	s->timer_val[4] = core_ticks_to_us(adapter,
2636 		TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5));
2637 	s->timer_val[5] = core_ticks_to_us(adapter,
2638 		TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5));
2639 
2640 	s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold);
2641 	s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold);
2642 	s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold);
2643 	s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold);
2644 
2645 	/*
2646 	 * Grab our Virtual Interface resource allocation, extract the
2647 	 * features that we're interested in and do a bit of sanity testing on
2648 	 * what we discover.
2649 	 */
2650 	err = t4vf_get_vfres(adapter);
2651 	if (err) {
2652 		dev_err(adapter->pdev_dev, "unable to get virtual interface"
2653 			" resources: err=%d\n", err);
2654 		return err;
2655 	}
2656 
2657 	/* Check for various parameter sanity issues */
2658 	if (adapter->params.vfres.pmask == 0) {
2659 		dev_err(adapter->pdev_dev, "no port access configured\n"
2660 			"usable!\n");
2661 		return -EINVAL;
2662 	}
2663 	if (adapter->params.vfres.nvi == 0) {
2664 		dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2665 			"usable!\n");
2666 		return -EINVAL;
2667 	}
2668 
2669 	/* Initialize nports and max_ethqsets now that we have our Virtual
2670 	 * Function Resources.
2671 	 */
2672 	size_nports_qsets(adapter);
2673 
2674 	return 0;
2675 }
2676 
2677 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2678 			     u8 pkt_cnt_idx, unsigned int size,
2679 			     unsigned int iqe_size)
2680 {
2681 	rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
2682 			     (pkt_cnt_idx < SGE_NCOUNTERS ?
2683 			      QINTR_CNT_EN_F : 0));
2684 	rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2685 			    ? pkt_cnt_idx
2686 			    : 0);
2687 	rspq->iqe_len = iqe_size;
2688 	rspq->size = size;
2689 }
2690 
2691 /*
2692  * Perform default configuration of DMA queues depending on the number and
2693  * type of ports we found and the number of available CPUs.  Most settings can
2694  * be modified by the admin via ethtool and cxgbtool prior to the adapter
2695  * being brought up for the first time.
2696  */
2697 static void cfg_queues(struct adapter *adapter)
2698 {
2699 	struct sge *s = &adapter->sge;
2700 	int q10g, n10g, qidx, pidx, qs;
2701 	size_t iqe_size;
2702 
2703 	/*
2704 	 * We should not be called till we know how many Queue Sets we can
2705 	 * support.  In particular, this means that we need to know what kind
2706 	 * of interrupts we'll be using ...
2707 	 */
2708 	BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2709 
2710 	/*
2711 	 * Count the number of 10GbE Virtual Interfaces that we have.
2712 	 */
2713 	n10g = 0;
2714 	for_each_port(adapter, pidx)
2715 		n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2716 
2717 	/*
2718 	 * We default to 1 queue per non-10G port and up to # of cores queues
2719 	 * per 10G port.
2720 	 */
2721 	if (n10g == 0)
2722 		q10g = 0;
2723 	else {
2724 		int n1g = (adapter->params.nports - n10g);
2725 		q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2726 		if (q10g > num_online_cpus())
2727 			q10g = num_online_cpus();
2728 	}
2729 
2730 	/*
2731 	 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2732 	 * The layout will be established in setup_sge_queues() when the
2733 	 * adapter is brough up for the first time.
2734 	 */
2735 	qidx = 0;
2736 	for_each_port(adapter, pidx) {
2737 		struct port_info *pi = adap2pinfo(adapter, pidx);
2738 
2739 		pi->first_qset = qidx;
2740 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
2741 		qidx += pi->nqsets;
2742 	}
2743 	s->ethqsets = qidx;
2744 
2745 	/*
2746 	 * The Ingress Queue Entry Size for our various Response Queues needs
2747 	 * to be big enough to accommodate the largest message we can receive
2748 	 * from the chip/firmware; which is 64 bytes ...
2749 	 */
2750 	iqe_size = 64;
2751 
2752 	/*
2753 	 * Set up default Queue Set parameters ...  Start off with the
2754 	 * shortest interrupt holdoff timer.
2755 	 */
2756 	for (qs = 0; qs < s->max_ethqsets; qs++) {
2757 		struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2758 		struct sge_eth_txq *txq = &s->ethtxq[qs];
2759 
2760 		init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2761 		rxq->fl.size = 72;
2762 		txq->q.size = 1024;
2763 	}
2764 
2765 	/*
2766 	 * The firmware event queue is used for link state changes and
2767 	 * notifications of TX DMA completions.
2768 	 */
2769 	init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2770 
2771 	/*
2772 	 * The forwarded interrupt queue is used when we're in MSI interrupt
2773 	 * mode.  In this mode all interrupts associated with RX queues will
2774 	 * be forwarded to a single queue which we'll associate with our MSI
2775 	 * interrupt vector.  The messages dropped in the forwarded interrupt
2776 	 * queue will indicate which ingress queue needs servicing ...  This
2777 	 * queue needs to be large enough to accommodate all of the ingress
2778 	 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2779 	 * from equalling the CIDX if every ingress queue has an outstanding
2780 	 * interrupt).  The queue doesn't need to be any larger because no
2781 	 * ingress queue will ever have more than one outstanding interrupt at
2782 	 * any time ...
2783 	 */
2784 	init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2785 		  iqe_size);
2786 }
2787 
2788 /*
2789  * Reduce the number of Ethernet queues across all ports to at most n.
2790  * n provides at least one queue per port.
2791  */
2792 static void reduce_ethqs(struct adapter *adapter, int n)
2793 {
2794 	int i;
2795 	struct port_info *pi;
2796 
2797 	/*
2798 	 * While we have too many active Ether Queue Sets, interate across the
2799 	 * "ports" and reduce their individual Queue Set allocations.
2800 	 */
2801 	BUG_ON(n < adapter->params.nports);
2802 	while (n < adapter->sge.ethqsets)
2803 		for_each_port(adapter, i) {
2804 			pi = adap2pinfo(adapter, i);
2805 			if (pi->nqsets > 1) {
2806 				pi->nqsets--;
2807 				adapter->sge.ethqsets--;
2808 				if (adapter->sge.ethqsets <= n)
2809 					break;
2810 			}
2811 		}
2812 
2813 	/*
2814 	 * Reassign the starting Queue Sets for each of the "ports" ...
2815 	 */
2816 	n = 0;
2817 	for_each_port(adapter, i) {
2818 		pi = adap2pinfo(adapter, i);
2819 		pi->first_qset = n;
2820 		n += pi->nqsets;
2821 	}
2822 }
2823 
2824 /*
2825  * We need to grab enough MSI-X vectors to cover our interrupt needs.  Ideally
2826  * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2827  * need.  Minimally we need one for every Virtual Interface plus those needed
2828  * for our "extras".  Note that this process may lower the maximum number of
2829  * allowed Queue Sets ...
2830  */
2831 static int enable_msix(struct adapter *adapter)
2832 {
2833 	int i, want, need, nqsets;
2834 	struct msix_entry entries[MSIX_ENTRIES];
2835 	struct sge *s = &adapter->sge;
2836 
2837 	for (i = 0; i < MSIX_ENTRIES; ++i)
2838 		entries[i].entry = i;
2839 
2840 	/*
2841 	 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2842 	 * plus those needed for our "extras" (for example, the firmware
2843 	 * message queue).  We _need_ at least one "Queue Set" per Virtual
2844 	 * Interface plus those needed for our "extras".  So now we get to see
2845 	 * if the song is right ...
2846 	 */
2847 	want = s->max_ethqsets + MSIX_EXTRAS;
2848 	need = adapter->params.nports + MSIX_EXTRAS;
2849 
2850 	want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2851 	if (want < 0)
2852 		return want;
2853 
2854 	nqsets = want - MSIX_EXTRAS;
2855 	if (nqsets < s->max_ethqsets) {
2856 		dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2857 			 " for %d Queue Sets\n", nqsets);
2858 		s->max_ethqsets = nqsets;
2859 		if (nqsets < s->ethqsets)
2860 			reduce_ethqs(adapter, nqsets);
2861 	}
2862 	for (i = 0; i < want; ++i)
2863 		adapter->msix_info[i].vec = entries[i].vector;
2864 
2865 	return 0;
2866 }
2867 
2868 static const struct net_device_ops cxgb4vf_netdev_ops	= {
2869 	.ndo_open		= cxgb4vf_open,
2870 	.ndo_stop		= cxgb4vf_stop,
2871 	.ndo_start_xmit		= t4vf_eth_xmit,
2872 	.ndo_get_stats		= cxgb4vf_get_stats,
2873 	.ndo_set_rx_mode	= cxgb4vf_set_rxmode,
2874 	.ndo_set_mac_address	= cxgb4vf_set_mac_addr,
2875 	.ndo_validate_addr	= eth_validate_addr,
2876 	.ndo_do_ioctl		= cxgb4vf_do_ioctl,
2877 	.ndo_change_mtu		= cxgb4vf_change_mtu,
2878 	.ndo_fix_features	= cxgb4vf_fix_features,
2879 	.ndo_set_features	= cxgb4vf_set_features,
2880 #ifdef CONFIG_NET_POLL_CONTROLLER
2881 	.ndo_poll_controller	= cxgb4vf_poll_controller,
2882 #endif
2883 };
2884 
2885 /*
2886  * "Probe" a device: initialize a device and construct all kernel and driver
2887  * state needed to manage the device.  This routine is called "init_one" in
2888  * the PF Driver ...
2889  */
2890 static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2891 			     const struct pci_device_id *ent)
2892 {
2893 	int pci_using_dac;
2894 	int err, pidx;
2895 	unsigned int pmask;
2896 	struct adapter *adapter;
2897 	struct port_info *pi;
2898 	struct net_device *netdev;
2899 	unsigned int pf;
2900 
2901 	/*
2902 	 * Print our driver banner the first time we're called to initialize a
2903 	 * device.
2904 	 */
2905 	pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
2906 
2907 	/*
2908 	 * Initialize generic PCI device state.
2909 	 */
2910 	err = pci_enable_device(pdev);
2911 	if (err) {
2912 		dev_err(&pdev->dev, "cannot enable PCI device\n");
2913 		return err;
2914 	}
2915 
2916 	/*
2917 	 * Reserve PCI resources for the device.  If we can't get them some
2918 	 * other driver may have already claimed the device ...
2919 	 */
2920 	err = pci_request_regions(pdev, KBUILD_MODNAME);
2921 	if (err) {
2922 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2923 		goto err_disable_device;
2924 	}
2925 
2926 	/*
2927 	 * Set up our DMA mask: try for 64-bit address masking first and
2928 	 * fall back to 32-bit if we can't get 64 bits ...
2929 	 */
2930 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2931 	if (err == 0) {
2932 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2933 		if (err) {
2934 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2935 				" coherent allocations\n");
2936 			goto err_release_regions;
2937 		}
2938 		pci_using_dac = 1;
2939 	} else {
2940 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2941 		if (err != 0) {
2942 			dev_err(&pdev->dev, "no usable DMA configuration\n");
2943 			goto err_release_regions;
2944 		}
2945 		pci_using_dac = 0;
2946 	}
2947 
2948 	/*
2949 	 * Enable bus mastering for the device ...
2950 	 */
2951 	pci_set_master(pdev);
2952 
2953 	/*
2954 	 * Allocate our adapter data structure and attach it to the device.
2955 	 */
2956 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2957 	if (!adapter) {
2958 		err = -ENOMEM;
2959 		goto err_release_regions;
2960 	}
2961 	pci_set_drvdata(pdev, adapter);
2962 	adapter->pdev = pdev;
2963 	adapter->pdev_dev = &pdev->dev;
2964 
2965 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
2966 				    (sizeof(struct mbox_cmd) *
2967 				     T4VF_OS_LOG_MBOX_CMDS),
2968 				    GFP_KERNEL);
2969 	if (!adapter->mbox_log) {
2970 		err = -ENOMEM;
2971 		goto err_free_adapter;
2972 	}
2973 	adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS;
2974 
2975 	/*
2976 	 * Initialize SMP data synchronization resources.
2977 	 */
2978 	spin_lock_init(&adapter->stats_lock);
2979 	spin_lock_init(&adapter->mbox_lock);
2980 	INIT_LIST_HEAD(&adapter->mlist.list);
2981 
2982 	/*
2983 	 * Map our I/O registers in BAR0.
2984 	 */
2985 	adapter->regs = pci_ioremap_bar(pdev, 0);
2986 	if (!adapter->regs) {
2987 		dev_err(&pdev->dev, "cannot map device registers\n");
2988 		err = -ENOMEM;
2989 		goto err_free_adapter;
2990 	}
2991 
2992 	/* Wait for the device to become ready before proceeding ...
2993 	 */
2994 	err = t4vf_prep_adapter(adapter);
2995 	if (err) {
2996 		dev_err(adapter->pdev_dev, "device didn't become ready:"
2997 			" err=%d\n", err);
2998 		goto err_unmap_bar0;
2999 	}
3000 
3001 	/* For T5 and later we want to use the new BAR-based User Doorbells,
3002 	 * so we need to map BAR2 here ...
3003 	 */
3004 	if (!is_t4(adapter->params.chip)) {
3005 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
3006 					   pci_resource_len(pdev, 2));
3007 		if (!adapter->bar2) {
3008 			dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n");
3009 			err = -ENOMEM;
3010 			goto err_unmap_bar0;
3011 		}
3012 	}
3013 	/*
3014 	 * Initialize adapter level features.
3015 	 */
3016 	adapter->name = pci_name(pdev);
3017 	adapter->msg_enable = DFLT_MSG_ENABLE;
3018 
3019 	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
3020 	 * Ingress Packet Data to Free List Buffers in order to allow for
3021 	 * chipset performance optimizations between the Root Complex and
3022 	 * Memory Controllers.  (Messages to the associated Ingress Queue
3023 	 * notifying new Packet Placement in the Free Lists Buffers will be
3024 	 * send without the Relaxed Ordering Attribute thus guaranteeing that
3025 	 * all preceding PCIe Transaction Layer Packets will be processed
3026 	 * first.)  But some Root Complexes have various issues with Upstream
3027 	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
3028 	 * The PCIe devices which under the Root Complexes will be cleared the
3029 	 * Relaxed Ordering bit in the configuration space, So we check our
3030 	 * PCIe configuration space to see if it's flagged with advice against
3031 	 * using Relaxed Ordering.
3032 	 */
3033 	if (!pcie_relaxed_ordering_enabled(pdev))
3034 		adapter->flags |= ROOT_NO_RELAXED_ORDERING;
3035 
3036 	err = adap_init0(adapter);
3037 	if (err)
3038 		goto err_unmap_bar;
3039 
3040 	/*
3041 	 * Allocate our "adapter ports" and stitch everything together.
3042 	 */
3043 	pmask = adapter->params.vfres.pmask;
3044 	pf = t4vf_get_pf_from_vf(adapter);
3045 	for_each_port(adapter, pidx) {
3046 		int port_id, viid;
3047 		u8 mac[ETH_ALEN];
3048 		unsigned int naddr = 1;
3049 
3050 		/*
3051 		 * We simplistically allocate our virtual interfaces
3052 		 * sequentially across the port numbers to which we have
3053 		 * access rights.  This should be configurable in some manner
3054 		 * ...
3055 		 */
3056 		if (pmask == 0)
3057 			break;
3058 		port_id = ffs(pmask) - 1;
3059 		pmask &= ~(1 << port_id);
3060 		viid = t4vf_alloc_vi(adapter, port_id);
3061 		if (viid < 0) {
3062 			dev_err(&pdev->dev, "cannot allocate VI for port %d:"
3063 				" err=%d\n", port_id, viid);
3064 			err = viid;
3065 			goto err_free_dev;
3066 		}
3067 
3068 		/*
3069 		 * Allocate our network device and stitch things together.
3070 		 */
3071 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
3072 					   MAX_PORT_QSETS);
3073 		if (netdev == NULL) {
3074 			t4vf_free_vi(adapter, viid);
3075 			err = -ENOMEM;
3076 			goto err_free_dev;
3077 		}
3078 		adapter->port[pidx] = netdev;
3079 		SET_NETDEV_DEV(netdev, &pdev->dev);
3080 		pi = netdev_priv(netdev);
3081 		pi->adapter = adapter;
3082 		pi->pidx = pidx;
3083 		pi->port_id = port_id;
3084 		pi->viid = viid;
3085 
3086 		/*
3087 		 * Initialize the starting state of our "port" and register
3088 		 * it.
3089 		 */
3090 		pi->xact_addr_filt = -1;
3091 		netif_carrier_off(netdev);
3092 		netdev->irq = pdev->irq;
3093 
3094 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
3095 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3096 			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM;
3097 		netdev->vlan_features = NETIF_F_SG | TSO_FLAGS |
3098 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3099 			NETIF_F_HIGHDMA;
3100 		netdev->features = netdev->hw_features |
3101 				   NETIF_F_HW_VLAN_CTAG_TX;
3102 		if (pci_using_dac)
3103 			netdev->features |= NETIF_F_HIGHDMA;
3104 
3105 		netdev->priv_flags |= IFF_UNICAST_FLT;
3106 		netdev->min_mtu = 81;
3107 		netdev->max_mtu = ETH_MAX_MTU;
3108 
3109 		netdev->netdev_ops = &cxgb4vf_netdev_ops;
3110 		netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
3111 		netdev->dev_port = pi->port_id;
3112 
3113 		/*
3114 		 * Initialize the hardware/software state for the port.
3115 		 */
3116 		err = t4vf_port_init(adapter, pidx);
3117 		if (err) {
3118 			dev_err(&pdev->dev, "cannot initialize port %d\n",
3119 				pidx);
3120 			goto err_free_dev;
3121 		}
3122 
3123 		err = t4vf_get_vf_mac_acl(adapter, pf, &naddr, mac);
3124 		if (err) {
3125 			dev_err(&pdev->dev,
3126 				"unable to determine MAC ACL address, "
3127 				"continuing anyway.. (status %d)\n", err);
3128 		} else if (naddr && adapter->params.vfres.nvi == 1) {
3129 			struct sockaddr addr;
3130 
3131 			ether_addr_copy(addr.sa_data, mac);
3132 			err = cxgb4vf_set_mac_addr(netdev, &addr);
3133 			if (err) {
3134 				dev_err(&pdev->dev,
3135 					"unable to set MAC address %pM\n",
3136 					mac);
3137 				goto err_free_dev;
3138 			}
3139 			dev_info(&pdev->dev,
3140 				 "Using assigned MAC ACL: %pM\n", mac);
3141 		}
3142 	}
3143 
3144 	/* See what interrupts we'll be using.  If we've been configured to
3145 	 * use MSI-X interrupts, try to enable them but fall back to using
3146 	 * MSI interrupts if we can't enable MSI-X interrupts.  If we can't
3147 	 * get MSI interrupts we bail with the error.
3148 	 */
3149 	if (msi == MSI_MSIX && enable_msix(adapter) == 0)
3150 		adapter->flags |= USING_MSIX;
3151 	else {
3152 		if (msi == MSI_MSIX) {
3153 			dev_info(adapter->pdev_dev,
3154 				 "Unable to use MSI-X Interrupts; falling "
3155 				 "back to MSI Interrupts\n");
3156 
3157 			/* We're going to need a Forwarded Interrupt Queue so
3158 			 * that may cut into how many Queue Sets we can
3159 			 * support.
3160 			 */
3161 			msi = MSI_MSI;
3162 			size_nports_qsets(adapter);
3163 		}
3164 		err = pci_enable_msi(pdev);
3165 		if (err) {
3166 			dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;"
3167 				" err=%d\n", err);
3168 			goto err_free_dev;
3169 		}
3170 		adapter->flags |= USING_MSI;
3171 	}
3172 
3173 	/* Now that we know how many "ports" we have and what interrupt
3174 	 * mechanism we're going to use, we can configure our queue resources.
3175 	 */
3176 	cfg_queues(adapter);
3177 
3178 	/*
3179 	 * The "card" is now ready to go.  If any errors occur during device
3180 	 * registration we do not fail the whole "card" but rather proceed
3181 	 * only with the ports we manage to register successfully.  However we
3182 	 * must register at least one net device.
3183 	 */
3184 	for_each_port(adapter, pidx) {
3185 		struct port_info *pi = netdev_priv(adapter->port[pidx]);
3186 		netdev = adapter->port[pidx];
3187 		if (netdev == NULL)
3188 			continue;
3189 
3190 		netif_set_real_num_tx_queues(netdev, pi->nqsets);
3191 		netif_set_real_num_rx_queues(netdev, pi->nqsets);
3192 
3193 		err = register_netdev(netdev);
3194 		if (err) {
3195 			dev_warn(&pdev->dev, "cannot register net device %s,"
3196 				 " skipping\n", netdev->name);
3197 			continue;
3198 		}
3199 
3200 		set_bit(pidx, &adapter->registered_device_map);
3201 	}
3202 	if (adapter->registered_device_map == 0) {
3203 		dev_err(&pdev->dev, "could not register any net devices\n");
3204 		goto err_disable_interrupts;
3205 	}
3206 
3207 	/*
3208 	 * Set up our debugfs entries.
3209 	 */
3210 	if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
3211 		adapter->debugfs_root =
3212 			debugfs_create_dir(pci_name(pdev),
3213 					   cxgb4vf_debugfs_root);
3214 		if (IS_ERR_OR_NULL(adapter->debugfs_root))
3215 			dev_warn(&pdev->dev, "could not create debugfs"
3216 				 " directory");
3217 		else
3218 			setup_debugfs(adapter);
3219 	}
3220 
3221 	/*
3222 	 * Print a short notice on the existence and configuration of the new
3223 	 * VF network device ...
3224 	 */
3225 	for_each_port(adapter, pidx) {
3226 		dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
3227 			 adapter->port[pidx]->name,
3228 			 (adapter->flags & USING_MSIX) ? "MSI-X" :
3229 			 (adapter->flags & USING_MSI)  ? "MSI" : "");
3230 	}
3231 
3232 	/*
3233 	 * Return success!
3234 	 */
3235 	return 0;
3236 
3237 	/*
3238 	 * Error recovery and exit code.  Unwind state that's been created
3239 	 * so far and return the error.
3240 	 */
3241 err_disable_interrupts:
3242 	if (adapter->flags & USING_MSIX) {
3243 		pci_disable_msix(adapter->pdev);
3244 		adapter->flags &= ~USING_MSIX;
3245 	} else if (adapter->flags & USING_MSI) {
3246 		pci_disable_msi(adapter->pdev);
3247 		adapter->flags &= ~USING_MSI;
3248 	}
3249 
3250 err_free_dev:
3251 	for_each_port(adapter, pidx) {
3252 		netdev = adapter->port[pidx];
3253 		if (netdev == NULL)
3254 			continue;
3255 		pi = netdev_priv(netdev);
3256 		t4vf_free_vi(adapter, pi->viid);
3257 		if (test_bit(pidx, &adapter->registered_device_map))
3258 			unregister_netdev(netdev);
3259 		free_netdev(netdev);
3260 	}
3261 
3262 err_unmap_bar:
3263 	if (!is_t4(adapter->params.chip))
3264 		iounmap(adapter->bar2);
3265 
3266 err_unmap_bar0:
3267 	iounmap(adapter->regs);
3268 
3269 err_free_adapter:
3270 	kfree(adapter->mbox_log);
3271 	kfree(adapter);
3272 
3273 err_release_regions:
3274 	pci_release_regions(pdev);
3275 	pci_clear_master(pdev);
3276 
3277 err_disable_device:
3278 	pci_disable_device(pdev);
3279 
3280 	return err;
3281 }
3282 
3283 /*
3284  * "Remove" a device: tear down all kernel and driver state created in the
3285  * "probe" routine and quiesce the device (disable interrupts, etc.).  (Note
3286  * that this is called "remove_one" in the PF Driver.)
3287  */
3288 static void cxgb4vf_pci_remove(struct pci_dev *pdev)
3289 {
3290 	struct adapter *adapter = pci_get_drvdata(pdev);
3291 
3292 	/*
3293 	 * Tear down driver state associated with device.
3294 	 */
3295 	if (adapter) {
3296 		int pidx;
3297 
3298 		/*
3299 		 * Stop all of our activity.  Unregister network port,
3300 		 * disable interrupts, etc.
3301 		 */
3302 		for_each_port(adapter, pidx)
3303 			if (test_bit(pidx, &adapter->registered_device_map))
3304 				unregister_netdev(adapter->port[pidx]);
3305 		t4vf_sge_stop(adapter);
3306 		if (adapter->flags & USING_MSIX) {
3307 			pci_disable_msix(adapter->pdev);
3308 			adapter->flags &= ~USING_MSIX;
3309 		} else if (adapter->flags & USING_MSI) {
3310 			pci_disable_msi(adapter->pdev);
3311 			adapter->flags &= ~USING_MSI;
3312 		}
3313 
3314 		/*
3315 		 * Tear down our debugfs entries.
3316 		 */
3317 		if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
3318 			cleanup_debugfs(adapter);
3319 			debugfs_remove_recursive(adapter->debugfs_root);
3320 		}
3321 
3322 		/*
3323 		 * Free all of the various resources which we've acquired ...
3324 		 */
3325 		t4vf_free_sge_resources(adapter);
3326 		for_each_port(adapter, pidx) {
3327 			struct net_device *netdev = adapter->port[pidx];
3328 			struct port_info *pi;
3329 
3330 			if (netdev == NULL)
3331 				continue;
3332 
3333 			pi = netdev_priv(netdev);
3334 			t4vf_free_vi(adapter, pi->viid);
3335 			free_netdev(netdev);
3336 		}
3337 		iounmap(adapter->regs);
3338 		if (!is_t4(adapter->params.chip))
3339 			iounmap(adapter->bar2);
3340 		kfree(adapter->mbox_log);
3341 		kfree(adapter);
3342 	}
3343 
3344 	/*
3345 	 * Disable the device and release its PCI resources.
3346 	 */
3347 	pci_disable_device(pdev);
3348 	pci_clear_master(pdev);
3349 	pci_release_regions(pdev);
3350 }
3351 
3352 /*
3353  * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
3354  * delivery.
3355  */
3356 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
3357 {
3358 	struct adapter *adapter;
3359 	int pidx;
3360 
3361 	adapter = pci_get_drvdata(pdev);
3362 	if (!adapter)
3363 		return;
3364 
3365 	/* Disable all Virtual Interfaces.  This will shut down the
3366 	 * delivery of all ingress packets into the chip for these
3367 	 * Virtual Interfaces.
3368 	 */
3369 	for_each_port(adapter, pidx)
3370 		if (test_bit(pidx, &adapter->registered_device_map))
3371 			unregister_netdev(adapter->port[pidx]);
3372 
3373 	/* Free up all Queues which will prevent further DMA and
3374 	 * Interrupts allowing various internal pathways to drain.
3375 	 */
3376 	t4vf_sge_stop(adapter);
3377 	if (adapter->flags & USING_MSIX) {
3378 		pci_disable_msix(adapter->pdev);
3379 		adapter->flags &= ~USING_MSIX;
3380 	} else if (adapter->flags & USING_MSI) {
3381 		pci_disable_msi(adapter->pdev);
3382 		adapter->flags &= ~USING_MSI;
3383 	}
3384 
3385 	/*
3386 	 * Free up all Queues which will prevent further DMA and
3387 	 * Interrupts allowing various internal pathways to drain.
3388 	 */
3389 	t4vf_free_sge_resources(adapter);
3390 	pci_set_drvdata(pdev, NULL);
3391 }
3392 
3393 /* Macros needed to support the PCI Device ID Table ...
3394  */
3395 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
3396 	static const struct pci_device_id cxgb4vf_pci_tbl[] = {
3397 #define CH_PCI_DEVICE_ID_FUNCTION	0x8
3398 
3399 #define CH_PCI_ID_TABLE_ENTRY(devid) \
3400 		{ PCI_VDEVICE(CHELSIO, (devid)), 0 }
3401 
3402 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
3403 
3404 #include "../cxgb4/t4_pci_id_tbl.h"
3405 
3406 MODULE_DESCRIPTION(DRV_DESC);
3407 MODULE_AUTHOR("Chelsio Communications");
3408 MODULE_LICENSE("Dual BSD/GPL");
3409 MODULE_VERSION(DRV_VERSION);
3410 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
3411 
3412 static struct pci_driver cxgb4vf_driver = {
3413 	.name		= KBUILD_MODNAME,
3414 	.id_table	= cxgb4vf_pci_tbl,
3415 	.probe		= cxgb4vf_pci_probe,
3416 	.remove		= cxgb4vf_pci_remove,
3417 	.shutdown	= cxgb4vf_pci_shutdown,
3418 };
3419 
3420 /*
3421  * Initialize global driver state.
3422  */
3423 static int __init cxgb4vf_module_init(void)
3424 {
3425 	int ret;
3426 
3427 	/*
3428 	 * Vet our module parameters.
3429 	 */
3430 	if (msi != MSI_MSIX && msi != MSI_MSI) {
3431 		pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
3432 			msi, MSI_MSIX, MSI_MSI);
3433 		return -EINVAL;
3434 	}
3435 
3436 	/* Debugfs support is optional, just warn if this fails */
3437 	cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3438 	if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3439 		pr_warn("could not create debugfs entry, continuing\n");
3440 
3441 	ret = pci_register_driver(&cxgb4vf_driver);
3442 	if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3443 		debugfs_remove(cxgb4vf_debugfs_root);
3444 	return ret;
3445 }
3446 
3447 /*
3448  * Tear down global driver state.
3449  */
3450 static void __exit cxgb4vf_module_exit(void)
3451 {
3452 	pci_unregister_driver(&cxgb4vf_driver);
3453 	debugfs_remove(cxgb4vf_debugfs_root);
3454 }
3455 
3456 module_init(cxgb4vf_module_init);
3457 module_exit(cxgb4vf_module_exit);
3458