1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/module.h> 39 #include <linux/moduleparam.h> 40 #include <linux/init.h> 41 #include <linux/pci.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/netdevice.h> 44 #include <linux/etherdevice.h> 45 #include <linux/debugfs.h> 46 #include <linux/ethtool.h> 47 #include <linux/mdio.h> 48 49 #include "t4vf_common.h" 50 #include "t4vf_defs.h" 51 52 #include "../cxgb4/t4_regs.h" 53 #include "../cxgb4/t4_msg.h" 54 55 /* 56 * Generic information about the driver. 57 */ 58 #define DRV_VERSION "2.0.0-ko" 59 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver" 60 61 /* 62 * Module Parameters. 63 * ================== 64 */ 65 66 /* 67 * Default ethtool "message level" for adapters. 68 */ 69 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 70 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 71 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 72 73 /* 74 * The driver uses the best interrupt scheme available on a platform in the 75 * order MSI-X then MSI. This parameter determines which of these schemes the 76 * driver may consider as follows: 77 * 78 * msi = 2: choose from among MSI-X and MSI 79 * msi = 1: only consider MSI interrupts 80 * 81 * Note that unlike the Physical Function driver, this Virtual Function driver 82 * does _not_ support legacy INTx interrupts (this limitation is mandated by 83 * the PCI-E SR-IOV standard). 84 */ 85 #define MSI_MSIX 2 86 #define MSI_MSI 1 87 #define MSI_DEFAULT MSI_MSIX 88 89 static int msi = MSI_DEFAULT; 90 91 module_param(msi, int, 0644); 92 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI"); 93 94 /* 95 * Fundamental constants. 96 * ====================== 97 */ 98 99 enum { 100 MAX_TXQ_ENTRIES = 16384, 101 MAX_RSPQ_ENTRIES = 16384, 102 MAX_RX_BUFFERS = 16384, 103 104 MIN_TXQ_ENTRIES = 32, 105 MIN_RSPQ_ENTRIES = 128, 106 MIN_FL_ENTRIES = 16, 107 108 /* 109 * For purposes of manipulating the Free List size we need to 110 * recognize that Free Lists are actually Egress Queues (the host 111 * produces free buffers which the hardware consumes), Egress Queues 112 * indices are all in units of Egress Context Units bytes, and free 113 * list entries are 64-bit PCI DMA addresses. And since the state of 114 * the Producer Index == the Consumer Index implies an EMPTY list, we 115 * always have at least one Egress Unit's worth of Free List entries 116 * unused. See sge.c for more details ... 117 */ 118 EQ_UNIT = SGE_EQ_IDXSIZE, 119 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 120 MIN_FL_RESID = FL_PER_EQ_UNIT, 121 }; 122 123 /* 124 * Global driver state. 125 * ==================== 126 */ 127 128 static struct dentry *cxgb4vf_debugfs_root; 129 130 /* 131 * OS "Callback" functions. 132 * ======================== 133 */ 134 135 /* 136 * The link status has changed on the indicated "port" (Virtual Interface). 137 */ 138 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok) 139 { 140 struct net_device *dev = adapter->port[pidx]; 141 142 /* 143 * If the port is disabled or the current recorded "link up" 144 * status matches the new status, just return. 145 */ 146 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev)) 147 return; 148 149 /* 150 * Tell the OS that the link status has changed and print a short 151 * informative message on the console about the event. 152 */ 153 if (link_ok) { 154 const char *s; 155 const char *fc; 156 const struct port_info *pi = netdev_priv(dev); 157 158 switch (pi->link_cfg.speed) { 159 case 100: 160 s = "100Mbps"; 161 break; 162 case 1000: 163 s = "1Gbps"; 164 break; 165 case 10000: 166 s = "10Gbps"; 167 break; 168 case 25000: 169 s = "25Gbps"; 170 break; 171 case 40000: 172 s = "40Gbps"; 173 break; 174 case 100000: 175 s = "100Gbps"; 176 break; 177 178 default: 179 s = "unknown"; 180 break; 181 } 182 183 switch ((int)pi->link_cfg.fc) { 184 case PAUSE_RX: 185 fc = "RX"; 186 break; 187 188 case PAUSE_TX: 189 fc = "TX"; 190 break; 191 192 case PAUSE_RX | PAUSE_TX: 193 fc = "RX/TX"; 194 break; 195 196 default: 197 fc = "no"; 198 break; 199 } 200 201 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc); 202 } else { 203 netdev_info(dev, "link down\n"); 204 } 205 } 206 207 /* 208 * THe port module type has changed on the indicated "port" (Virtual 209 * Interface). 210 */ 211 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx) 212 { 213 static const char * const mod_str[] = { 214 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 215 }; 216 const struct net_device *dev = adapter->port[pidx]; 217 const struct port_info *pi = netdev_priv(dev); 218 219 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 220 dev_info(adapter->pdev_dev, "%s: port module unplugged\n", 221 dev->name); 222 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 223 dev_info(adapter->pdev_dev, "%s: %s port module inserted\n", 224 dev->name, mod_str[pi->mod_type]); 225 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 226 dev_info(adapter->pdev_dev, "%s: unsupported optical port " 227 "module inserted\n", dev->name); 228 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 229 dev_info(adapter->pdev_dev, "%s: unknown port module inserted," 230 "forcing TWINAX\n", dev->name); 231 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 232 dev_info(adapter->pdev_dev, "%s: transceiver module error\n", 233 dev->name); 234 else 235 dev_info(adapter->pdev_dev, "%s: unknown module type %d " 236 "inserted\n", dev->name, pi->mod_type); 237 } 238 239 /* 240 * Net device operations. 241 * ====================== 242 */ 243 244 245 246 247 /* 248 * Perform the MAC and PHY actions needed to enable a "port" (Virtual 249 * Interface). 250 */ 251 static int link_start(struct net_device *dev) 252 { 253 int ret; 254 struct port_info *pi = netdev_priv(dev); 255 256 /* 257 * We do not set address filters and promiscuity here, the stack does 258 * that step explicitly. Enable vlan accel. 259 */ 260 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1, 261 true); 262 if (ret == 0) { 263 ret = t4vf_change_mac(pi->adapter, pi->viid, 264 pi->xact_addr_filt, dev->dev_addr, true); 265 if (ret >= 0) { 266 pi->xact_addr_filt = ret; 267 ret = 0; 268 } 269 } 270 271 /* 272 * We don't need to actually "start the link" itself since the 273 * firmware will do that for us when the first Virtual Interface 274 * is enabled on a port. 275 */ 276 if (ret == 0) 277 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true); 278 279 /* The Virtual Interfaces are connected to an internal switch on the 280 * chip which allows VIs attached to the same port to talk to each 281 * other even when the port link is down. As a result, we generally 282 * want to always report a VI's link as being "up", provided there are 283 * no errors in enabling vi. 284 */ 285 286 if (ret == 0) 287 netif_carrier_on(dev); 288 289 return ret; 290 } 291 292 /* 293 * Name the MSI-X interrupts. 294 */ 295 static void name_msix_vecs(struct adapter *adapter) 296 { 297 int namelen = sizeof(adapter->msix_info[0].desc) - 1; 298 int pidx; 299 300 /* 301 * Firmware events. 302 */ 303 snprintf(adapter->msix_info[MSIX_FW].desc, namelen, 304 "%s-FWeventq", adapter->name); 305 adapter->msix_info[MSIX_FW].desc[namelen] = 0; 306 307 /* 308 * Ethernet queues. 309 */ 310 for_each_port(adapter, pidx) { 311 struct net_device *dev = adapter->port[pidx]; 312 const struct port_info *pi = netdev_priv(dev); 313 int qs, msi; 314 315 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) { 316 snprintf(adapter->msix_info[msi].desc, namelen, 317 "%s-%d", dev->name, qs); 318 adapter->msix_info[msi].desc[namelen] = 0; 319 } 320 } 321 } 322 323 /* 324 * Request all of our MSI-X resources. 325 */ 326 static int request_msix_queue_irqs(struct adapter *adapter) 327 { 328 struct sge *s = &adapter->sge; 329 int rxq, msi, err; 330 331 /* 332 * Firmware events. 333 */ 334 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix, 335 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq); 336 if (err) 337 return err; 338 339 /* 340 * Ethernet queues. 341 */ 342 msi = MSIX_IQFLINT; 343 for_each_ethrxq(s, rxq) { 344 err = request_irq(adapter->msix_info[msi].vec, 345 t4vf_sge_intr_msix, 0, 346 adapter->msix_info[msi].desc, 347 &s->ethrxq[rxq].rspq); 348 if (err) 349 goto err_free_irqs; 350 msi++; 351 } 352 return 0; 353 354 err_free_irqs: 355 while (--rxq >= 0) 356 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq); 357 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 358 return err; 359 } 360 361 /* 362 * Free our MSI-X resources. 363 */ 364 static void free_msix_queue_irqs(struct adapter *adapter) 365 { 366 struct sge *s = &adapter->sge; 367 int rxq, msi; 368 369 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 370 msi = MSIX_IQFLINT; 371 for_each_ethrxq(s, rxq) 372 free_irq(adapter->msix_info[msi++].vec, 373 &s->ethrxq[rxq].rspq); 374 } 375 376 /* 377 * Turn on NAPI and start up interrupts on a response queue. 378 */ 379 static void qenable(struct sge_rspq *rspq) 380 { 381 napi_enable(&rspq->napi); 382 383 /* 384 * 0-increment the Going To Sleep register to start the timer and 385 * enable interrupts. 386 */ 387 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 388 CIDXINC_V(0) | 389 SEINTARM_V(rspq->intr_params) | 390 INGRESSQID_V(rspq->cntxt_id)); 391 } 392 393 /* 394 * Enable NAPI scheduling and interrupt generation for all Receive Queues. 395 */ 396 static void enable_rx(struct adapter *adapter) 397 { 398 int rxq; 399 struct sge *s = &adapter->sge; 400 401 for_each_ethrxq(s, rxq) 402 qenable(&s->ethrxq[rxq].rspq); 403 qenable(&s->fw_evtq); 404 405 /* 406 * The interrupt queue doesn't use NAPI so we do the 0-increment of 407 * its Going To Sleep register here to get it started. 408 */ 409 if (adapter->flags & USING_MSI) 410 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 411 CIDXINC_V(0) | 412 SEINTARM_V(s->intrq.intr_params) | 413 INGRESSQID_V(s->intrq.cntxt_id)); 414 415 } 416 417 /* 418 * Wait until all NAPI handlers are descheduled. 419 */ 420 static void quiesce_rx(struct adapter *adapter) 421 { 422 struct sge *s = &adapter->sge; 423 int rxq; 424 425 for_each_ethrxq(s, rxq) 426 napi_disable(&s->ethrxq[rxq].rspq.napi); 427 napi_disable(&s->fw_evtq.napi); 428 } 429 430 /* 431 * Response queue handler for the firmware event queue. 432 */ 433 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp, 434 const struct pkt_gl *gl) 435 { 436 /* 437 * Extract response opcode and get pointer to CPL message body. 438 */ 439 struct adapter *adapter = rspq->adapter; 440 u8 opcode = ((const struct rss_header *)rsp)->opcode; 441 void *cpl = (void *)(rsp + 1); 442 443 switch (opcode) { 444 case CPL_FW6_MSG: { 445 /* 446 * We've received an asynchronous message from the firmware. 447 */ 448 const struct cpl_fw6_msg *fw_msg = cpl; 449 if (fw_msg->type == FW6_TYPE_CMD_RPL) 450 t4vf_handle_fw_rpl(adapter, fw_msg->data); 451 break; 452 } 453 454 case CPL_FW4_MSG: { 455 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 456 */ 457 const struct cpl_sge_egr_update *p = (void *)(rsp + 3); 458 opcode = CPL_OPCODE_G(ntohl(p->opcode_qid)); 459 if (opcode != CPL_SGE_EGR_UPDATE) { 460 dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 461 , opcode); 462 break; 463 } 464 cpl = (void *)p; 465 /*FALLTHROUGH*/ 466 } 467 468 case CPL_SGE_EGR_UPDATE: { 469 /* 470 * We've received an Egress Queue Status Update message. We 471 * get these, if the SGE is configured to send these when the 472 * firmware passes certain points in processing our TX 473 * Ethernet Queue or if we make an explicit request for one. 474 * We use these updates to determine when we may need to 475 * restart a TX Ethernet Queue which was stopped for lack of 476 * free TX Queue Descriptors ... 477 */ 478 const struct cpl_sge_egr_update *p = cpl; 479 unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid)); 480 struct sge *s = &adapter->sge; 481 struct sge_txq *tq; 482 struct sge_eth_txq *txq; 483 unsigned int eq_idx; 484 485 /* 486 * Perform sanity checking on the Queue ID to make sure it 487 * really refers to one of our TX Ethernet Egress Queues which 488 * is active and matches the queue's ID. None of these error 489 * conditions should ever happen so we may want to either make 490 * them fatal and/or conditionalized under DEBUG. 491 */ 492 eq_idx = EQ_IDX(s, qid); 493 if (unlikely(eq_idx >= MAX_EGRQ)) { 494 dev_err(adapter->pdev_dev, 495 "Egress Update QID %d out of range\n", qid); 496 break; 497 } 498 tq = s->egr_map[eq_idx]; 499 if (unlikely(tq == NULL)) { 500 dev_err(adapter->pdev_dev, 501 "Egress Update QID %d TXQ=NULL\n", qid); 502 break; 503 } 504 txq = container_of(tq, struct sge_eth_txq, q); 505 if (unlikely(tq->abs_id != qid)) { 506 dev_err(adapter->pdev_dev, 507 "Egress Update QID %d refers to TXQ %d\n", 508 qid, tq->abs_id); 509 break; 510 } 511 512 /* 513 * Restart a stopped TX Queue which has less than half of its 514 * TX ring in use ... 515 */ 516 txq->q.restarts++; 517 netif_tx_wake_queue(txq->txq); 518 break; 519 } 520 521 default: 522 dev_err(adapter->pdev_dev, 523 "unexpected CPL %#x on FW event queue\n", opcode); 524 } 525 526 return 0; 527 } 528 529 /* 530 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues 531 * to use and initializes them. We support multiple "Queue Sets" per port if 532 * we have MSI-X, otherwise just one queue set per port. 533 */ 534 static int setup_sge_queues(struct adapter *adapter) 535 { 536 struct sge *s = &adapter->sge; 537 int err, pidx, msix; 538 539 /* 540 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error 541 * state. 542 */ 543 bitmap_zero(s->starving_fl, MAX_EGRQ); 544 545 /* 546 * If we're using MSI interrupt mode we need to set up a "forwarded 547 * interrupt" queue which we'll set up with our MSI vector. The rest 548 * of the ingress queues will be set up to forward their interrupts to 549 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses 550 * the intrq's queue ID as the interrupt forwarding queue for the 551 * subsequent calls ... 552 */ 553 if (adapter->flags & USING_MSI) { 554 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false, 555 adapter->port[0], 0, NULL, NULL); 556 if (err) 557 goto err_free_queues; 558 } 559 560 /* 561 * Allocate our ingress queue for asynchronous firmware messages. 562 */ 563 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0], 564 MSIX_FW, NULL, fwevtq_handler); 565 if (err) 566 goto err_free_queues; 567 568 /* 569 * Allocate each "port"'s initial Queue Sets. These can be changed 570 * later on ... up to the point where any interface on the adapter is 571 * brought up at which point lots of things get nailed down 572 * permanently ... 573 */ 574 msix = MSIX_IQFLINT; 575 for_each_port(adapter, pidx) { 576 struct net_device *dev = adapter->port[pidx]; 577 struct port_info *pi = netdev_priv(dev); 578 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 579 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 580 int qs; 581 582 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 583 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false, 584 dev, msix++, 585 &rxq->fl, t4vf_ethrx_handler); 586 if (err) 587 goto err_free_queues; 588 589 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev, 590 netdev_get_tx_queue(dev, qs), 591 s->fw_evtq.cntxt_id); 592 if (err) 593 goto err_free_queues; 594 595 rxq->rspq.idx = qs; 596 memset(&rxq->stats, 0, sizeof(rxq->stats)); 597 } 598 } 599 600 /* 601 * Create the reverse mappings for the queues. 602 */ 603 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id; 604 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id; 605 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq; 606 for_each_port(adapter, pidx) { 607 struct net_device *dev = adapter->port[pidx]; 608 struct port_info *pi = netdev_priv(dev); 609 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 610 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 611 int qs; 612 613 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 614 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq; 615 EQ_MAP(s, txq->q.abs_id) = &txq->q; 616 617 /* 618 * The FW_IQ_CMD doesn't return the Absolute Queue IDs 619 * for Free Lists but since all of the Egress Queues 620 * (including Free Lists) have Relative Queue IDs 621 * which are computed as Absolute - Base Queue ID, we 622 * can synthesize the Absolute Queue IDs for the Free 623 * Lists. This is useful for debugging purposes when 624 * we want to dump Queue Contexts via the PF Driver. 625 */ 626 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base; 627 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl; 628 } 629 } 630 return 0; 631 632 err_free_queues: 633 t4vf_free_sge_resources(adapter); 634 return err; 635 } 636 637 /* 638 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive 639 * queues. We configure the RSS CPU lookup table to distribute to the number 640 * of HW receive queues, and the response queue lookup table to narrow that 641 * down to the response queues actually configured for each "port" (Virtual 642 * Interface). We always configure the RSS mapping for all ports since the 643 * mapping table has plenty of entries. 644 */ 645 static int setup_rss(struct adapter *adapter) 646 { 647 int pidx; 648 649 for_each_port(adapter, pidx) { 650 struct port_info *pi = adap2pinfo(adapter, pidx); 651 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 652 u16 rss[MAX_PORT_QSETS]; 653 int qs, err; 654 655 for (qs = 0; qs < pi->nqsets; qs++) 656 rss[qs] = rxq[qs].rspq.abs_id; 657 658 err = t4vf_config_rss_range(adapter, pi->viid, 659 0, pi->rss_size, rss, pi->nqsets); 660 if (err) 661 return err; 662 663 /* 664 * Perform Global RSS Mode-specific initialization. 665 */ 666 switch (adapter->params.rss.mode) { 667 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: 668 /* 669 * If Tunnel All Lookup isn't specified in the global 670 * RSS Configuration, then we need to specify a 671 * default Ingress Queue for any ingress packets which 672 * aren't hashed. We'll use our first ingress queue 673 * ... 674 */ 675 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) { 676 union rss_vi_config config; 677 err = t4vf_read_rss_vi_config(adapter, 678 pi->viid, 679 &config); 680 if (err) 681 return err; 682 config.basicvirtual.defaultq = 683 rxq[0].rspq.abs_id; 684 err = t4vf_write_rss_vi_config(adapter, 685 pi->viid, 686 &config); 687 if (err) 688 return err; 689 } 690 break; 691 } 692 } 693 694 return 0; 695 } 696 697 /* 698 * Bring the adapter up. Called whenever we go from no "ports" open to having 699 * one open. This function performs the actions necessary to make an adapter 700 * operational, such as completing the initialization of HW modules, and 701 * enabling interrupts. Must be called with the rtnl lock held. (Note that 702 * this is called "cxgb_up" in the PF Driver.) 703 */ 704 static int adapter_up(struct adapter *adapter) 705 { 706 int err; 707 708 /* 709 * If this is the first time we've been called, perform basic 710 * adapter setup. Once we've done this, many of our adapter 711 * parameters can no longer be changed ... 712 */ 713 if ((adapter->flags & FULL_INIT_DONE) == 0) { 714 err = setup_sge_queues(adapter); 715 if (err) 716 return err; 717 err = setup_rss(adapter); 718 if (err) { 719 t4vf_free_sge_resources(adapter); 720 return err; 721 } 722 723 if (adapter->flags & USING_MSIX) 724 name_msix_vecs(adapter); 725 adapter->flags |= FULL_INIT_DONE; 726 } 727 728 /* 729 * Acquire our interrupt resources. We only support MSI-X and MSI. 730 */ 731 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 732 if (adapter->flags & USING_MSIX) 733 err = request_msix_queue_irqs(adapter); 734 else 735 err = request_irq(adapter->pdev->irq, 736 t4vf_intr_handler(adapter), 0, 737 adapter->name, adapter); 738 if (err) { 739 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n", 740 err); 741 return err; 742 } 743 744 /* 745 * Enable NAPI ingress processing and return success. 746 */ 747 enable_rx(adapter); 748 t4vf_sge_start(adapter); 749 750 /* Initialize hash mac addr list*/ 751 INIT_LIST_HEAD(&adapter->mac_hlist); 752 return 0; 753 } 754 755 /* 756 * Bring the adapter down. Called whenever the last "port" (Virtual 757 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF 758 * Driver.) 759 */ 760 static void adapter_down(struct adapter *adapter) 761 { 762 /* 763 * Free interrupt resources. 764 */ 765 if (adapter->flags & USING_MSIX) 766 free_msix_queue_irqs(adapter); 767 else 768 free_irq(adapter->pdev->irq, adapter); 769 770 /* 771 * Wait for NAPI handlers to finish. 772 */ 773 quiesce_rx(adapter); 774 } 775 776 /* 777 * Start up a net device. 778 */ 779 static int cxgb4vf_open(struct net_device *dev) 780 { 781 int err; 782 struct port_info *pi = netdev_priv(dev); 783 struct adapter *adapter = pi->adapter; 784 785 /* 786 * If this is the first interface that we're opening on the "adapter", 787 * bring the "adapter" up now. 788 */ 789 if (adapter->open_device_map == 0) { 790 err = adapter_up(adapter); 791 if (err) 792 return err; 793 } 794 795 /* 796 * Note that this interface is up and start everything up ... 797 */ 798 err = link_start(dev); 799 if (err) 800 goto err_unwind; 801 802 pi->vlan_id = t4vf_get_vf_vlan_acl(adapter); 803 804 netif_tx_start_all_queues(dev); 805 set_bit(pi->port_id, &adapter->open_device_map); 806 return 0; 807 808 err_unwind: 809 if (adapter->open_device_map == 0) 810 adapter_down(adapter); 811 return err; 812 } 813 814 /* 815 * Shut down a net device. This routine is called "cxgb_close" in the PF 816 * Driver ... 817 */ 818 static int cxgb4vf_stop(struct net_device *dev) 819 { 820 struct port_info *pi = netdev_priv(dev); 821 struct adapter *adapter = pi->adapter; 822 823 netif_tx_stop_all_queues(dev); 824 netif_carrier_off(dev); 825 t4vf_enable_vi(adapter, pi->viid, false, false); 826 pi->link_cfg.link_ok = 0; 827 828 clear_bit(pi->port_id, &adapter->open_device_map); 829 if (adapter->open_device_map == 0) 830 adapter_down(adapter); 831 return 0; 832 } 833 834 /* 835 * Translate our basic statistics into the standard "ifconfig" statistics. 836 */ 837 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev) 838 { 839 struct t4vf_port_stats stats; 840 struct port_info *pi = netdev2pinfo(dev); 841 struct adapter *adapter = pi->adapter; 842 struct net_device_stats *ns = &dev->stats; 843 int err; 844 845 spin_lock(&adapter->stats_lock); 846 err = t4vf_get_port_stats(adapter, pi->pidx, &stats); 847 spin_unlock(&adapter->stats_lock); 848 849 memset(ns, 0, sizeof(*ns)); 850 if (err) 851 return ns; 852 853 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes + 854 stats.tx_ucast_bytes + stats.tx_offload_bytes); 855 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames + 856 stats.tx_ucast_frames + stats.tx_offload_frames); 857 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes + 858 stats.rx_ucast_bytes); 859 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames + 860 stats.rx_ucast_frames); 861 ns->multicast = stats.rx_mcast_frames; 862 ns->tx_errors = stats.tx_drop_frames; 863 ns->rx_errors = stats.rx_err_frames; 864 865 return ns; 866 } 867 868 static inline int cxgb4vf_set_addr_hash(struct port_info *pi) 869 { 870 struct adapter *adapter = pi->adapter; 871 u64 vec = 0; 872 bool ucast = false; 873 struct hash_mac_addr *entry; 874 875 /* Calculate the hash vector for the updated list and program it */ 876 list_for_each_entry(entry, &adapter->mac_hlist, list) { 877 ucast |= is_unicast_ether_addr(entry->addr); 878 vec |= (1ULL << hash_mac_addr(entry->addr)); 879 } 880 return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false); 881 } 882 883 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr) 884 { 885 struct port_info *pi = netdev_priv(netdev); 886 struct adapter *adapter = pi->adapter; 887 int ret; 888 u64 mhash = 0; 889 u64 uhash = 0; 890 bool free = false; 891 bool ucast = is_unicast_ether_addr(mac_addr); 892 const u8 *maclist[1] = {mac_addr}; 893 struct hash_mac_addr *new_entry; 894 895 ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist, 896 NULL, ucast ? &uhash : &mhash, false); 897 if (ret < 0) 898 goto out; 899 /* if hash != 0, then add the addr to hash addr list 900 * so on the end we will calculate the hash for the 901 * list and program it 902 */ 903 if (uhash || mhash) { 904 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 905 if (!new_entry) 906 return -ENOMEM; 907 ether_addr_copy(new_entry->addr, mac_addr); 908 list_add_tail(&new_entry->list, &adapter->mac_hlist); 909 ret = cxgb4vf_set_addr_hash(pi); 910 } 911 out: 912 return ret < 0 ? ret : 0; 913 } 914 915 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 916 { 917 struct port_info *pi = netdev_priv(netdev); 918 struct adapter *adapter = pi->adapter; 919 int ret; 920 const u8 *maclist[1] = {mac_addr}; 921 struct hash_mac_addr *entry, *tmp; 922 923 /* If the MAC address to be removed is in the hash addr 924 * list, delete it from the list and update hash vector 925 */ 926 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) { 927 if (ether_addr_equal(entry->addr, mac_addr)) { 928 list_del(&entry->list); 929 kfree(entry); 930 return cxgb4vf_set_addr_hash(pi); 931 } 932 } 933 934 ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false); 935 return ret < 0 ? -EINVAL : 0; 936 } 937 938 /* 939 * Set RX properties of a port, such as promiscruity, address filters, and MTU. 940 * If @mtu is -1 it is left unchanged. 941 */ 942 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 943 { 944 struct port_info *pi = netdev_priv(dev); 945 946 __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 947 __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 948 return t4vf_set_rxmode(pi->adapter, pi->viid, -1, 949 (dev->flags & IFF_PROMISC) != 0, 950 (dev->flags & IFF_ALLMULTI) != 0, 951 1, -1, sleep_ok); 952 } 953 954 /* 955 * Set the current receive modes on the device. 956 */ 957 static void cxgb4vf_set_rxmode(struct net_device *dev) 958 { 959 /* unfortunately we can't return errors to the stack */ 960 set_rxmode(dev, -1, false); 961 } 962 963 /* 964 * Find the entry in the interrupt holdoff timer value array which comes 965 * closest to the specified interrupt holdoff value. 966 */ 967 static int closest_timer(const struct sge *s, int us) 968 { 969 int i, timer_idx = 0, min_delta = INT_MAX; 970 971 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 972 int delta = us - s->timer_val[i]; 973 if (delta < 0) 974 delta = -delta; 975 if (delta < min_delta) { 976 min_delta = delta; 977 timer_idx = i; 978 } 979 } 980 return timer_idx; 981 } 982 983 static int closest_thres(const struct sge *s, int thres) 984 { 985 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX; 986 987 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 988 delta = thres - s->counter_val[i]; 989 if (delta < 0) 990 delta = -delta; 991 if (delta < min_delta) { 992 min_delta = delta; 993 pktcnt_idx = i; 994 } 995 } 996 return pktcnt_idx; 997 } 998 999 /* 1000 * Return a queue's interrupt hold-off time in us. 0 means no timer. 1001 */ 1002 static unsigned int qtimer_val(const struct adapter *adapter, 1003 const struct sge_rspq *rspq) 1004 { 1005 unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params); 1006 1007 return timer_idx < SGE_NTIMERS 1008 ? adapter->sge.timer_val[timer_idx] 1009 : 0; 1010 } 1011 1012 /** 1013 * set_rxq_intr_params - set a queue's interrupt holdoff parameters 1014 * @adapter: the adapter 1015 * @rspq: the RX response queue 1016 * @us: the hold-off time in us, or 0 to disable timer 1017 * @cnt: the hold-off packet count, or 0 to disable counter 1018 * 1019 * Sets an RX response queue's interrupt hold-off time and packet count. 1020 * At least one of the two needs to be enabled for the queue to generate 1021 * interrupts. 1022 */ 1023 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq, 1024 unsigned int us, unsigned int cnt) 1025 { 1026 unsigned int timer_idx; 1027 1028 /* 1029 * If both the interrupt holdoff timer and count are specified as 1030 * zero, default to a holdoff count of 1 ... 1031 */ 1032 if ((us | cnt) == 0) 1033 cnt = 1; 1034 1035 /* 1036 * If an interrupt holdoff count has been specified, then find the 1037 * closest configured holdoff count and use that. If the response 1038 * queue has already been created, then update its queue context 1039 * parameters ... 1040 */ 1041 if (cnt) { 1042 int err; 1043 u32 v, pktcnt_idx; 1044 1045 pktcnt_idx = closest_thres(&adapter->sge, cnt); 1046 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) { 1047 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1048 FW_PARAMS_PARAM_X_V( 1049 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1050 FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id); 1051 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx); 1052 if (err) 1053 return err; 1054 } 1055 rspq->pktcnt_idx = pktcnt_idx; 1056 } 1057 1058 /* 1059 * Compute the closest holdoff timer index from the supplied holdoff 1060 * timer value. 1061 */ 1062 timer_idx = (us == 0 1063 ? SGE_TIMER_RSTRT_CNTR 1064 : closest_timer(&adapter->sge, us)); 1065 1066 /* 1067 * Update the response queue's interrupt coalescing parameters and 1068 * return success. 1069 */ 1070 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 1071 QINTR_CNT_EN_V(cnt > 0)); 1072 return 0; 1073 } 1074 1075 /* 1076 * Return a version number to identify the type of adapter. The scheme is: 1077 * - bits 0..9: chip version 1078 * - bits 10..15: chip revision 1079 */ 1080 static inline unsigned int mk_adap_vers(const struct adapter *adapter) 1081 { 1082 /* 1083 * Chip version 4, revision 0x3f (cxgb4vf). 1084 */ 1085 return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10); 1086 } 1087 1088 /* 1089 * Execute the specified ioctl command. 1090 */ 1091 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1092 { 1093 int ret = 0; 1094 1095 switch (cmd) { 1096 /* 1097 * The VF Driver doesn't have access to any of the other 1098 * common Ethernet device ioctl()'s (like reading/writing 1099 * PHY registers, etc. 1100 */ 1101 1102 default: 1103 ret = -EOPNOTSUPP; 1104 break; 1105 } 1106 return ret; 1107 } 1108 1109 /* 1110 * Change the device's MTU. 1111 */ 1112 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu) 1113 { 1114 int ret; 1115 struct port_info *pi = netdev_priv(dev); 1116 1117 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu, 1118 -1, -1, -1, -1, true); 1119 if (!ret) 1120 dev->mtu = new_mtu; 1121 return ret; 1122 } 1123 1124 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev, 1125 netdev_features_t features) 1126 { 1127 /* 1128 * Since there is no support for separate rx/tx vlan accel 1129 * enable/disable make sure tx flag is always in same state as rx. 1130 */ 1131 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1132 features |= NETIF_F_HW_VLAN_CTAG_TX; 1133 else 1134 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 1135 1136 return features; 1137 } 1138 1139 static int cxgb4vf_set_features(struct net_device *dev, 1140 netdev_features_t features) 1141 { 1142 struct port_info *pi = netdev_priv(dev); 1143 netdev_features_t changed = dev->features ^ features; 1144 1145 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 1146 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, 1147 features & NETIF_F_HW_VLAN_CTAG_TX, 0); 1148 1149 return 0; 1150 } 1151 1152 /* 1153 * Change the devices MAC address. 1154 */ 1155 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr) 1156 { 1157 int ret; 1158 struct sockaddr *addr = _addr; 1159 struct port_info *pi = netdev_priv(dev); 1160 1161 if (!is_valid_ether_addr(addr->sa_data)) 1162 return -EADDRNOTAVAIL; 1163 1164 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt, 1165 addr->sa_data, true); 1166 if (ret < 0) 1167 return ret; 1168 1169 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 1170 pi->xact_addr_filt = ret; 1171 return 0; 1172 } 1173 1174 #ifdef CONFIG_NET_POLL_CONTROLLER 1175 /* 1176 * Poll all of our receive queues. This is called outside of normal interrupt 1177 * context. 1178 */ 1179 static void cxgb4vf_poll_controller(struct net_device *dev) 1180 { 1181 struct port_info *pi = netdev_priv(dev); 1182 struct adapter *adapter = pi->adapter; 1183 1184 if (adapter->flags & USING_MSIX) { 1185 struct sge_eth_rxq *rxq; 1186 int nqsets; 1187 1188 rxq = &adapter->sge.ethrxq[pi->first_qset]; 1189 for (nqsets = pi->nqsets; nqsets; nqsets--) { 1190 t4vf_sge_intr_msix(0, &rxq->rspq); 1191 rxq++; 1192 } 1193 } else 1194 t4vf_intr_handler(adapter)(0, adapter); 1195 } 1196 #endif 1197 1198 /* 1199 * Ethtool operations. 1200 * =================== 1201 * 1202 * Note that we don't support any ethtool operations which change the physical 1203 * state of the port to which we're linked. 1204 */ 1205 1206 /** 1207 * from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool 1208 * @port_type: Firmware Port Type 1209 * @mod_type: Firmware Module Type 1210 * 1211 * Translate Firmware Port/Module type to Ethtool Port Type. 1212 */ 1213 static int from_fw_port_mod_type(enum fw_port_type port_type, 1214 enum fw_port_module_type mod_type) 1215 { 1216 if (port_type == FW_PORT_TYPE_BT_SGMII || 1217 port_type == FW_PORT_TYPE_BT_XFI || 1218 port_type == FW_PORT_TYPE_BT_XAUI) { 1219 return PORT_TP; 1220 } else if (port_type == FW_PORT_TYPE_FIBER_XFI || 1221 port_type == FW_PORT_TYPE_FIBER_XAUI) { 1222 return PORT_FIBRE; 1223 } else if (port_type == FW_PORT_TYPE_SFP || 1224 port_type == FW_PORT_TYPE_QSFP_10G || 1225 port_type == FW_PORT_TYPE_QSA || 1226 port_type == FW_PORT_TYPE_QSFP || 1227 port_type == FW_PORT_TYPE_CR4_QSFP || 1228 port_type == FW_PORT_TYPE_CR_QSFP || 1229 port_type == FW_PORT_TYPE_CR2_QSFP || 1230 port_type == FW_PORT_TYPE_SFP28) { 1231 if (mod_type == FW_PORT_MOD_TYPE_LR || 1232 mod_type == FW_PORT_MOD_TYPE_SR || 1233 mod_type == FW_PORT_MOD_TYPE_ER || 1234 mod_type == FW_PORT_MOD_TYPE_LRM) 1235 return PORT_FIBRE; 1236 else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE || 1237 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE) 1238 return PORT_DA; 1239 else 1240 return PORT_OTHER; 1241 } else if (port_type == FW_PORT_TYPE_KR4_100G || 1242 port_type == FW_PORT_TYPE_KR_SFP28 || 1243 port_type == FW_PORT_TYPE_KR_XLAUI) { 1244 return PORT_NONE; 1245 } 1246 1247 return PORT_OTHER; 1248 } 1249 1250 /** 1251 * fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask 1252 * @port_type: Firmware Port Type 1253 * @fw_caps: Firmware Port Capabilities 1254 * @link_mode_mask: ethtool Link Mode Mask 1255 * 1256 * Translate a Firmware Port Capabilities specification to an ethtool 1257 * Link Mode Mask. 1258 */ 1259 static void fw_caps_to_lmm(enum fw_port_type port_type, 1260 unsigned int fw_caps, 1261 unsigned long *link_mode_mask) 1262 { 1263 #define SET_LMM(__lmm_name) \ 1264 __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \ 1265 link_mode_mask) 1266 1267 #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \ 1268 do { \ 1269 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \ 1270 SET_LMM(__lmm_name); \ 1271 } while (0) 1272 1273 switch (port_type) { 1274 case FW_PORT_TYPE_BT_SGMII: 1275 case FW_PORT_TYPE_BT_XFI: 1276 case FW_PORT_TYPE_BT_XAUI: 1277 SET_LMM(TP); 1278 FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full); 1279 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1280 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1281 break; 1282 1283 case FW_PORT_TYPE_KX4: 1284 case FW_PORT_TYPE_KX: 1285 SET_LMM(Backplane); 1286 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1287 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1288 break; 1289 1290 case FW_PORT_TYPE_KR: 1291 SET_LMM(Backplane); 1292 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1293 break; 1294 1295 case FW_PORT_TYPE_BP_AP: 1296 SET_LMM(Backplane); 1297 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1298 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); 1299 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1300 break; 1301 1302 case FW_PORT_TYPE_BP4_AP: 1303 SET_LMM(Backplane); 1304 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1305 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); 1306 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1307 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1308 break; 1309 1310 case FW_PORT_TYPE_FIBER_XFI: 1311 case FW_PORT_TYPE_FIBER_XAUI: 1312 case FW_PORT_TYPE_SFP: 1313 case FW_PORT_TYPE_QSFP_10G: 1314 case FW_PORT_TYPE_QSA: 1315 SET_LMM(FIBRE); 1316 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1317 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1318 break; 1319 1320 case FW_PORT_TYPE_BP40_BA: 1321 case FW_PORT_TYPE_QSFP: 1322 SET_LMM(FIBRE); 1323 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1324 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1325 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); 1326 break; 1327 1328 case FW_PORT_TYPE_CR_QSFP: 1329 case FW_PORT_TYPE_SFP28: 1330 SET_LMM(FIBRE); 1331 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1332 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1333 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); 1334 break; 1335 1336 case FW_PORT_TYPE_KR_SFP28: 1337 SET_LMM(Backplane); 1338 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1339 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1340 FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full); 1341 break; 1342 1343 case FW_PORT_TYPE_KR_XLAUI: 1344 SET_LMM(Backplane); 1345 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1346 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1347 FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full); 1348 break; 1349 1350 case FW_PORT_TYPE_CR2_QSFP: 1351 SET_LMM(FIBRE); 1352 FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full); 1353 break; 1354 1355 case FW_PORT_TYPE_KR4_100G: 1356 case FW_PORT_TYPE_CR4_QSFP: 1357 SET_LMM(FIBRE); 1358 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1359 FW_CAPS_TO_LMM(SPEED_10G, 10000baseSR_Full); 1360 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); 1361 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); 1362 FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full); 1363 FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full); 1364 break; 1365 1366 default: 1367 break; 1368 } 1369 1370 FW_CAPS_TO_LMM(ANEG, Autoneg); 1371 FW_CAPS_TO_LMM(802_3_PAUSE, Pause); 1372 FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause); 1373 1374 #undef FW_CAPS_TO_LMM 1375 #undef SET_LMM 1376 } 1377 1378 static int cxgb4vf_get_link_ksettings(struct net_device *dev, 1379 struct ethtool_link_ksettings *link_ksettings) 1380 { 1381 struct port_info *pi = netdev_priv(dev); 1382 struct ethtool_link_settings *base = &link_ksettings->base; 1383 1384 /* For the nonce, the Firmware doesn't send up Port State changes 1385 * when the Virtual Interface attached to the Port is down. So 1386 * if it's down, let's grab any changes. 1387 */ 1388 if (!netif_running(dev)) 1389 (void)t4vf_update_port_info(pi); 1390 1391 ethtool_link_ksettings_zero_link_mode(link_ksettings, supported); 1392 ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising); 1393 ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising); 1394 1395 base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type); 1396 1397 if (pi->mdio_addr >= 0) { 1398 base->phy_address = pi->mdio_addr; 1399 base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII 1400 ? ETH_MDIO_SUPPORTS_C22 1401 : ETH_MDIO_SUPPORTS_C45); 1402 } else { 1403 base->phy_address = 255; 1404 base->mdio_support = 0; 1405 } 1406 1407 fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps, 1408 link_ksettings->link_modes.supported); 1409 fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps, 1410 link_ksettings->link_modes.advertising); 1411 fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps, 1412 link_ksettings->link_modes.lp_advertising); 1413 1414 if (netif_carrier_ok(dev)) { 1415 base->speed = pi->link_cfg.speed; 1416 base->duplex = DUPLEX_FULL; 1417 } else { 1418 base->speed = SPEED_UNKNOWN; 1419 base->duplex = DUPLEX_UNKNOWN; 1420 } 1421 1422 if (pi->link_cfg.fc & PAUSE_RX) { 1423 if (pi->link_cfg.fc & PAUSE_TX) { 1424 ethtool_link_ksettings_add_link_mode(link_ksettings, 1425 advertising, 1426 Pause); 1427 } else { 1428 ethtool_link_ksettings_add_link_mode(link_ksettings, 1429 advertising, 1430 Asym_Pause); 1431 } 1432 } else if (pi->link_cfg.fc & PAUSE_TX) { 1433 ethtool_link_ksettings_add_link_mode(link_ksettings, 1434 advertising, 1435 Asym_Pause); 1436 } 1437 1438 base->autoneg = pi->link_cfg.autoneg; 1439 if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG) 1440 ethtool_link_ksettings_add_link_mode(link_ksettings, 1441 supported, Autoneg); 1442 if (pi->link_cfg.autoneg) 1443 ethtool_link_ksettings_add_link_mode(link_ksettings, 1444 advertising, Autoneg); 1445 1446 return 0; 1447 } 1448 1449 /* Translate the Firmware FEC value into the ethtool value. */ 1450 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec) 1451 { 1452 unsigned int eth_fec = 0; 1453 1454 if (fw_fec & FW_PORT_CAP32_FEC_RS) 1455 eth_fec |= ETHTOOL_FEC_RS; 1456 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 1457 eth_fec |= ETHTOOL_FEC_BASER; 1458 1459 /* if nothing is set, then FEC is off */ 1460 if (!eth_fec) 1461 eth_fec = ETHTOOL_FEC_OFF; 1462 1463 return eth_fec; 1464 } 1465 1466 /* Translate Common Code FEC value into ethtool value. */ 1467 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec) 1468 { 1469 unsigned int eth_fec = 0; 1470 1471 if (cc_fec & FEC_AUTO) 1472 eth_fec |= ETHTOOL_FEC_AUTO; 1473 if (cc_fec & FEC_RS) 1474 eth_fec |= ETHTOOL_FEC_RS; 1475 if (cc_fec & FEC_BASER_RS) 1476 eth_fec |= ETHTOOL_FEC_BASER; 1477 1478 /* if nothing is set, then FEC is off */ 1479 if (!eth_fec) 1480 eth_fec = ETHTOOL_FEC_OFF; 1481 1482 return eth_fec; 1483 } 1484 1485 static int cxgb4vf_get_fecparam(struct net_device *dev, 1486 struct ethtool_fecparam *fec) 1487 { 1488 const struct port_info *pi = netdev_priv(dev); 1489 const struct link_config *lc = &pi->link_cfg; 1490 1491 /* Translate the Firmware FEC Support into the ethtool value. We 1492 * always support IEEE 802.3 "automatic" selection of Link FEC type if 1493 * any FEC is supported. 1494 */ 1495 fec->fec = fwcap_to_eth_fec(lc->pcaps); 1496 if (fec->fec != ETHTOOL_FEC_OFF) 1497 fec->fec |= ETHTOOL_FEC_AUTO; 1498 1499 /* Translate the current internal FEC parameters into the 1500 * ethtool values. 1501 */ 1502 fec->active_fec = cc_to_eth_fec(lc->fec); 1503 return 0; 1504 } 1505 1506 /* 1507 * Return our driver information. 1508 */ 1509 static void cxgb4vf_get_drvinfo(struct net_device *dev, 1510 struct ethtool_drvinfo *drvinfo) 1511 { 1512 struct adapter *adapter = netdev2adap(dev); 1513 1514 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver)); 1515 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version)); 1516 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)), 1517 sizeof(drvinfo->bus_info)); 1518 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 1519 "%u.%u.%u.%u, TP %u.%u.%u.%u", 1520 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev), 1521 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev), 1522 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev), 1523 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev), 1524 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev), 1525 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev), 1526 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev), 1527 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev)); 1528 } 1529 1530 /* 1531 * Return current adapter message level. 1532 */ 1533 static u32 cxgb4vf_get_msglevel(struct net_device *dev) 1534 { 1535 return netdev2adap(dev)->msg_enable; 1536 } 1537 1538 /* 1539 * Set current adapter message level. 1540 */ 1541 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel) 1542 { 1543 netdev2adap(dev)->msg_enable = msglevel; 1544 } 1545 1546 /* 1547 * Return the device's current Queue Set ring size parameters along with the 1548 * allowed maximum values. Since ethtool doesn't understand the concept of 1549 * multi-queue devices, we just return the current values associated with the 1550 * first Queue Set. 1551 */ 1552 static void cxgb4vf_get_ringparam(struct net_device *dev, 1553 struct ethtool_ringparam *rp) 1554 { 1555 const struct port_info *pi = netdev_priv(dev); 1556 const struct sge *s = &pi->adapter->sge; 1557 1558 rp->rx_max_pending = MAX_RX_BUFFERS; 1559 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES; 1560 rp->rx_jumbo_max_pending = 0; 1561 rp->tx_max_pending = MAX_TXQ_ENTRIES; 1562 1563 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID; 1564 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; 1565 rp->rx_jumbo_pending = 0; 1566 rp->tx_pending = s->ethtxq[pi->first_qset].q.size; 1567 } 1568 1569 /* 1570 * Set the Queue Set ring size parameters for the device. Again, since 1571 * ethtool doesn't allow for the concept of multiple queues per device, we'll 1572 * apply these new values across all of the Queue Sets associated with the 1573 * device -- after vetting them of course! 1574 */ 1575 static int cxgb4vf_set_ringparam(struct net_device *dev, 1576 struct ethtool_ringparam *rp) 1577 { 1578 const struct port_info *pi = netdev_priv(dev); 1579 struct adapter *adapter = pi->adapter; 1580 struct sge *s = &adapter->sge; 1581 int qs; 1582 1583 if (rp->rx_pending > MAX_RX_BUFFERS || 1584 rp->rx_jumbo_pending || 1585 rp->tx_pending > MAX_TXQ_ENTRIES || 1586 rp->rx_mini_pending > MAX_RSPQ_ENTRIES || 1587 rp->rx_mini_pending < MIN_RSPQ_ENTRIES || 1588 rp->rx_pending < MIN_FL_ENTRIES || 1589 rp->tx_pending < MIN_TXQ_ENTRIES) 1590 return -EINVAL; 1591 1592 if (adapter->flags & FULL_INIT_DONE) 1593 return -EBUSY; 1594 1595 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) { 1596 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID; 1597 s->ethrxq[qs].rspq.size = rp->rx_mini_pending; 1598 s->ethtxq[qs].q.size = rp->tx_pending; 1599 } 1600 return 0; 1601 } 1602 1603 /* 1604 * Return the interrupt holdoff timer and count for the first Queue Set on the 1605 * device. Our extension ioctl() (the cxgbtool interface) allows the 1606 * interrupt holdoff timer to be read on all of the device's Queue Sets. 1607 */ 1608 static int cxgb4vf_get_coalesce(struct net_device *dev, 1609 struct ethtool_coalesce *coalesce) 1610 { 1611 const struct port_info *pi = netdev_priv(dev); 1612 const struct adapter *adapter = pi->adapter; 1613 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq; 1614 1615 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq); 1616 coalesce->rx_max_coalesced_frames = 1617 ((rspq->intr_params & QINTR_CNT_EN_F) 1618 ? adapter->sge.counter_val[rspq->pktcnt_idx] 1619 : 0); 1620 return 0; 1621 } 1622 1623 /* 1624 * Set the RX interrupt holdoff timer and count for the first Queue Set on the 1625 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set 1626 * the interrupt holdoff timer on any of the device's Queue Sets. 1627 */ 1628 static int cxgb4vf_set_coalesce(struct net_device *dev, 1629 struct ethtool_coalesce *coalesce) 1630 { 1631 const struct port_info *pi = netdev_priv(dev); 1632 struct adapter *adapter = pi->adapter; 1633 1634 return set_rxq_intr_params(adapter, 1635 &adapter->sge.ethrxq[pi->first_qset].rspq, 1636 coalesce->rx_coalesce_usecs, 1637 coalesce->rx_max_coalesced_frames); 1638 } 1639 1640 /* 1641 * Report current port link pause parameter settings. 1642 */ 1643 static void cxgb4vf_get_pauseparam(struct net_device *dev, 1644 struct ethtool_pauseparam *pauseparam) 1645 { 1646 struct port_info *pi = netdev_priv(dev); 1647 1648 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; 1649 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0; 1650 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0; 1651 } 1652 1653 /* 1654 * Identify the port by blinking the port's LED. 1655 */ 1656 static int cxgb4vf_phys_id(struct net_device *dev, 1657 enum ethtool_phys_id_state state) 1658 { 1659 unsigned int val; 1660 struct port_info *pi = netdev_priv(dev); 1661 1662 if (state == ETHTOOL_ID_ACTIVE) 1663 val = 0xffff; 1664 else if (state == ETHTOOL_ID_INACTIVE) 1665 val = 0; 1666 else 1667 return -EINVAL; 1668 1669 return t4vf_identify_port(pi->adapter, pi->viid, val); 1670 } 1671 1672 /* 1673 * Port stats maintained per queue of the port. 1674 */ 1675 struct queue_port_stats { 1676 u64 tso; 1677 u64 tx_csum; 1678 u64 rx_csum; 1679 u64 vlan_ex; 1680 u64 vlan_ins; 1681 u64 lro_pkts; 1682 u64 lro_merged; 1683 }; 1684 1685 /* 1686 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that 1687 * these need to match the order of statistics returned by 1688 * t4vf_get_port_stats(). 1689 */ 1690 static const char stats_strings[][ETH_GSTRING_LEN] = { 1691 /* 1692 * These must match the layout of the t4vf_port_stats structure. 1693 */ 1694 "TxBroadcastBytes ", 1695 "TxBroadcastFrames ", 1696 "TxMulticastBytes ", 1697 "TxMulticastFrames ", 1698 "TxUnicastBytes ", 1699 "TxUnicastFrames ", 1700 "TxDroppedFrames ", 1701 "TxOffloadBytes ", 1702 "TxOffloadFrames ", 1703 "RxBroadcastBytes ", 1704 "RxBroadcastFrames ", 1705 "RxMulticastBytes ", 1706 "RxMulticastFrames ", 1707 "RxUnicastBytes ", 1708 "RxUnicastFrames ", 1709 "RxErrorFrames ", 1710 1711 /* 1712 * These are accumulated per-queue statistics and must match the 1713 * order of the fields in the queue_port_stats structure. 1714 */ 1715 "TSO ", 1716 "TxCsumOffload ", 1717 "RxCsumGood ", 1718 "VLANextractions ", 1719 "VLANinsertions ", 1720 "GROPackets ", 1721 "GROMerged ", 1722 }; 1723 1724 /* 1725 * Return the number of statistics in the specified statistics set. 1726 */ 1727 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset) 1728 { 1729 switch (sset) { 1730 case ETH_SS_STATS: 1731 return ARRAY_SIZE(stats_strings); 1732 default: 1733 return -EOPNOTSUPP; 1734 } 1735 /*NOTREACHED*/ 1736 } 1737 1738 /* 1739 * Return the strings for the specified statistics set. 1740 */ 1741 static void cxgb4vf_get_strings(struct net_device *dev, 1742 u32 sset, 1743 u8 *data) 1744 { 1745 switch (sset) { 1746 case ETH_SS_STATS: 1747 memcpy(data, stats_strings, sizeof(stats_strings)); 1748 break; 1749 } 1750 } 1751 1752 /* 1753 * Small utility routine to accumulate queue statistics across the queues of 1754 * a "port". 1755 */ 1756 static void collect_sge_port_stats(const struct adapter *adapter, 1757 const struct port_info *pi, 1758 struct queue_port_stats *stats) 1759 { 1760 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset]; 1761 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 1762 int qs; 1763 1764 memset(stats, 0, sizeof(*stats)); 1765 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 1766 stats->tso += txq->tso; 1767 stats->tx_csum += txq->tx_cso; 1768 stats->rx_csum += rxq->stats.rx_cso; 1769 stats->vlan_ex += rxq->stats.vlan_ex; 1770 stats->vlan_ins += txq->vlan_ins; 1771 stats->lro_pkts += rxq->stats.lro_pkts; 1772 stats->lro_merged += rxq->stats.lro_merged; 1773 } 1774 } 1775 1776 /* 1777 * Return the ETH_SS_STATS statistics set. 1778 */ 1779 static void cxgb4vf_get_ethtool_stats(struct net_device *dev, 1780 struct ethtool_stats *stats, 1781 u64 *data) 1782 { 1783 struct port_info *pi = netdev2pinfo(dev); 1784 struct adapter *adapter = pi->adapter; 1785 int err = t4vf_get_port_stats(adapter, pi->pidx, 1786 (struct t4vf_port_stats *)data); 1787 if (err) 1788 memset(data, 0, sizeof(struct t4vf_port_stats)); 1789 1790 data += sizeof(struct t4vf_port_stats) / sizeof(u64); 1791 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); 1792 } 1793 1794 /* 1795 * Return the size of our register map. 1796 */ 1797 static int cxgb4vf_get_regs_len(struct net_device *dev) 1798 { 1799 return T4VF_REGMAP_SIZE; 1800 } 1801 1802 /* 1803 * Dump a block of registers, start to end inclusive, into a buffer. 1804 */ 1805 static void reg_block_dump(struct adapter *adapter, void *regbuf, 1806 unsigned int start, unsigned int end) 1807 { 1808 u32 *bp = regbuf + start - T4VF_REGMAP_START; 1809 1810 for ( ; start <= end; start += sizeof(u32)) { 1811 /* 1812 * Avoid reading the Mailbox Control register since that 1813 * can trigger a Mailbox Ownership Arbitration cycle and 1814 * interfere with communication with the firmware. 1815 */ 1816 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL) 1817 *bp++ = 0xffff; 1818 else 1819 *bp++ = t4_read_reg(adapter, start); 1820 } 1821 } 1822 1823 /* 1824 * Copy our entire register map into the provided buffer. 1825 */ 1826 static void cxgb4vf_get_regs(struct net_device *dev, 1827 struct ethtool_regs *regs, 1828 void *regbuf) 1829 { 1830 struct adapter *adapter = netdev2adap(dev); 1831 1832 regs->version = mk_adap_vers(adapter); 1833 1834 /* 1835 * Fill in register buffer with our register map. 1836 */ 1837 memset(regbuf, 0, T4VF_REGMAP_SIZE); 1838 1839 reg_block_dump(adapter, regbuf, 1840 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST, 1841 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST); 1842 reg_block_dump(adapter, regbuf, 1843 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST, 1844 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST); 1845 1846 /* T5 adds new registers in the PL Register map. 1847 */ 1848 reg_block_dump(adapter, regbuf, 1849 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST, 1850 T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip) 1851 ? PL_VF_WHOAMI_A : PL_VF_REVISION_A)); 1852 reg_block_dump(adapter, regbuf, 1853 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST, 1854 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST); 1855 1856 reg_block_dump(adapter, regbuf, 1857 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST, 1858 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST); 1859 } 1860 1861 /* 1862 * Report current Wake On LAN settings. 1863 */ 1864 static void cxgb4vf_get_wol(struct net_device *dev, 1865 struct ethtool_wolinfo *wol) 1866 { 1867 wol->supported = 0; 1868 wol->wolopts = 0; 1869 memset(&wol->sopass, 0, sizeof(wol->sopass)); 1870 } 1871 1872 /* 1873 * TCP Segmentation Offload flags which we support. 1874 */ 1875 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1876 1877 static const struct ethtool_ops cxgb4vf_ethtool_ops = { 1878 .get_link_ksettings = cxgb4vf_get_link_ksettings, 1879 .get_fecparam = cxgb4vf_get_fecparam, 1880 .get_drvinfo = cxgb4vf_get_drvinfo, 1881 .get_msglevel = cxgb4vf_get_msglevel, 1882 .set_msglevel = cxgb4vf_set_msglevel, 1883 .get_ringparam = cxgb4vf_get_ringparam, 1884 .set_ringparam = cxgb4vf_set_ringparam, 1885 .get_coalesce = cxgb4vf_get_coalesce, 1886 .set_coalesce = cxgb4vf_set_coalesce, 1887 .get_pauseparam = cxgb4vf_get_pauseparam, 1888 .get_link = ethtool_op_get_link, 1889 .get_strings = cxgb4vf_get_strings, 1890 .set_phys_id = cxgb4vf_phys_id, 1891 .get_sset_count = cxgb4vf_get_sset_count, 1892 .get_ethtool_stats = cxgb4vf_get_ethtool_stats, 1893 .get_regs_len = cxgb4vf_get_regs_len, 1894 .get_regs = cxgb4vf_get_regs, 1895 .get_wol = cxgb4vf_get_wol, 1896 }; 1897 1898 /* 1899 * /sys/kernel/debug/cxgb4vf support code and data. 1900 * ================================================ 1901 */ 1902 1903 /* 1904 * Show Firmware Mailbox Command/Reply Log 1905 * 1906 * Note that we don't do any locking when dumping the Firmware Mailbox Log so 1907 * it's possible that we can catch things during a log update and therefore 1908 * see partially corrupted log entries. But i9t's probably Good Enough(tm). 1909 * If we ever decide that we want to make sure that we're dumping a coherent 1910 * log, we'd need to perform locking in the mailbox logging and in 1911 * mboxlog_open() where we'd need to grab the entire mailbox log in one go 1912 * like we do for the Firmware Device Log. But as stated above, meh ... 1913 */ 1914 static int mboxlog_show(struct seq_file *seq, void *v) 1915 { 1916 struct adapter *adapter = seq->private; 1917 struct mbox_cmd_log *log = adapter->mbox_log; 1918 struct mbox_cmd *entry; 1919 int entry_idx, i; 1920 1921 if (v == SEQ_START_TOKEN) { 1922 seq_printf(seq, 1923 "%10s %15s %5s %5s %s\n", 1924 "Seq#", "Tstamp", "Atime", "Etime", 1925 "Command/Reply"); 1926 return 0; 1927 } 1928 1929 entry_idx = log->cursor + ((uintptr_t)v - 2); 1930 if (entry_idx >= log->size) 1931 entry_idx -= log->size; 1932 entry = mbox_cmd_log_entry(log, entry_idx); 1933 1934 /* skip over unused entries */ 1935 if (entry->timestamp == 0) 1936 return 0; 1937 1938 seq_printf(seq, "%10u %15llu %5d %5d", 1939 entry->seqno, entry->timestamp, 1940 entry->access, entry->execute); 1941 for (i = 0; i < MBOX_LEN / 8; i++) { 1942 u64 flit = entry->cmd[i]; 1943 u32 hi = (u32)(flit >> 32); 1944 u32 lo = (u32)flit; 1945 1946 seq_printf(seq, " %08x %08x", hi, lo); 1947 } 1948 seq_puts(seq, "\n"); 1949 return 0; 1950 } 1951 1952 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos) 1953 { 1954 struct adapter *adapter = seq->private; 1955 struct mbox_cmd_log *log = adapter->mbox_log; 1956 1957 return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL); 1958 } 1959 1960 static void *mboxlog_start(struct seq_file *seq, loff_t *pos) 1961 { 1962 return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN; 1963 } 1964 1965 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos) 1966 { 1967 ++*pos; 1968 return mboxlog_get_idx(seq, *pos); 1969 } 1970 1971 static void mboxlog_stop(struct seq_file *seq, void *v) 1972 { 1973 } 1974 1975 static const struct seq_operations mboxlog_seq_ops = { 1976 .start = mboxlog_start, 1977 .next = mboxlog_next, 1978 .stop = mboxlog_stop, 1979 .show = mboxlog_show 1980 }; 1981 1982 static int mboxlog_open(struct inode *inode, struct file *file) 1983 { 1984 int res = seq_open(file, &mboxlog_seq_ops); 1985 1986 if (!res) { 1987 struct seq_file *seq = file->private_data; 1988 1989 seq->private = inode->i_private; 1990 } 1991 return res; 1992 } 1993 1994 static const struct file_operations mboxlog_fops = { 1995 .owner = THIS_MODULE, 1996 .open = mboxlog_open, 1997 .read = seq_read, 1998 .llseek = seq_lseek, 1999 .release = seq_release, 2000 }; 2001 2002 /* 2003 * Show SGE Queue Set information. We display QPL Queues Sets per line. 2004 */ 2005 #define QPL 4 2006 2007 static int sge_qinfo_show(struct seq_file *seq, void *v) 2008 { 2009 struct adapter *adapter = seq->private; 2010 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2011 int qs, r = (uintptr_t)v - 1; 2012 2013 if (r) 2014 seq_putc(seq, '\n'); 2015 2016 #define S3(fmt_spec, s, v) \ 2017 do {\ 2018 seq_printf(seq, "%-12s", s); \ 2019 for (qs = 0; qs < n; ++qs) \ 2020 seq_printf(seq, " %16" fmt_spec, v); \ 2021 seq_putc(seq, '\n'); \ 2022 } while (0) 2023 #define S(s, v) S3("s", s, v) 2024 #define T(s, v) S3("u", s, txq[qs].v) 2025 #define R(s, v) S3("u", s, rxq[qs].v) 2026 2027 if (r < eth_entries) { 2028 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2029 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2030 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2031 2032 S("QType:", "Ethernet"); 2033 S("Interface:", 2034 (rxq[qs].rspq.netdev 2035 ? rxq[qs].rspq.netdev->name 2036 : "N/A")); 2037 S3("d", "Port:", 2038 (rxq[qs].rspq.netdev 2039 ? ((struct port_info *) 2040 netdev_priv(rxq[qs].rspq.netdev))->port_id 2041 : -1)); 2042 T("TxQ ID:", q.abs_id); 2043 T("TxQ size:", q.size); 2044 T("TxQ inuse:", q.in_use); 2045 T("TxQ PIdx:", q.pidx); 2046 T("TxQ CIdx:", q.cidx); 2047 R("RspQ ID:", rspq.abs_id); 2048 R("RspQ size:", rspq.size); 2049 R("RspQE size:", rspq.iqe_len); 2050 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq)); 2051 S3("u", "Intr pktcnt:", 2052 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]); 2053 R("RspQ CIdx:", rspq.cidx); 2054 R("RspQ Gen:", rspq.gen); 2055 R("FL ID:", fl.abs_id); 2056 R("FL size:", fl.size - MIN_FL_RESID); 2057 R("FL avail:", fl.avail); 2058 R("FL PIdx:", fl.pidx); 2059 R("FL CIdx:", fl.cidx); 2060 return 0; 2061 } 2062 2063 r -= eth_entries; 2064 if (r == 0) { 2065 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2066 2067 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue"); 2068 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id); 2069 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2070 qtimer_val(adapter, evtq)); 2071 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2072 adapter->sge.counter_val[evtq->pktcnt_idx]); 2073 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx); 2074 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen); 2075 } else if (r == 1) { 2076 const struct sge_rspq *intrq = &adapter->sge.intrq; 2077 2078 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue"); 2079 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id); 2080 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2081 qtimer_val(adapter, intrq)); 2082 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2083 adapter->sge.counter_val[intrq->pktcnt_idx]); 2084 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx); 2085 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen); 2086 } 2087 2088 #undef R 2089 #undef T 2090 #undef S 2091 #undef S3 2092 2093 return 0; 2094 } 2095 2096 /* 2097 * Return the number of "entries" in our "file". We group the multi-Queue 2098 * sections with QPL Queue Sets per "entry". The sections of the output are: 2099 * 2100 * Ethernet RX/TX Queue Sets 2101 * Firmware Event Queue 2102 * Forwarded Interrupt Queue (if in MSI mode) 2103 */ 2104 static int sge_queue_entries(const struct adapter *adapter) 2105 { 2106 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2107 ((adapter->flags & USING_MSI) != 0); 2108 } 2109 2110 static void *sge_queue_start(struct seq_file *seq, loff_t *pos) 2111 { 2112 int entries = sge_queue_entries(seq->private); 2113 2114 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2115 } 2116 2117 static void sge_queue_stop(struct seq_file *seq, void *v) 2118 { 2119 } 2120 2121 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos) 2122 { 2123 int entries = sge_queue_entries(seq->private); 2124 2125 ++*pos; 2126 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2127 } 2128 2129 static const struct seq_operations sge_qinfo_seq_ops = { 2130 .start = sge_queue_start, 2131 .next = sge_queue_next, 2132 .stop = sge_queue_stop, 2133 .show = sge_qinfo_show 2134 }; 2135 2136 static int sge_qinfo_open(struct inode *inode, struct file *file) 2137 { 2138 int res = seq_open(file, &sge_qinfo_seq_ops); 2139 2140 if (!res) { 2141 struct seq_file *seq = file->private_data; 2142 seq->private = inode->i_private; 2143 } 2144 return res; 2145 } 2146 2147 static const struct file_operations sge_qinfo_debugfs_fops = { 2148 .owner = THIS_MODULE, 2149 .open = sge_qinfo_open, 2150 .read = seq_read, 2151 .llseek = seq_lseek, 2152 .release = seq_release, 2153 }; 2154 2155 /* 2156 * Show SGE Queue Set statistics. We display QPL Queues Sets per line. 2157 */ 2158 #define QPL 4 2159 2160 static int sge_qstats_show(struct seq_file *seq, void *v) 2161 { 2162 struct adapter *adapter = seq->private; 2163 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2164 int qs, r = (uintptr_t)v - 1; 2165 2166 if (r) 2167 seq_putc(seq, '\n'); 2168 2169 #define S3(fmt, s, v) \ 2170 do { \ 2171 seq_printf(seq, "%-16s", s); \ 2172 for (qs = 0; qs < n; ++qs) \ 2173 seq_printf(seq, " %8" fmt, v); \ 2174 seq_putc(seq, '\n'); \ 2175 } while (0) 2176 #define S(s, v) S3("s", s, v) 2177 2178 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v) 2179 #define T(s, v) T3("lu", s, v) 2180 2181 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v) 2182 #define R(s, v) R3("lu", s, v) 2183 2184 if (r < eth_entries) { 2185 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2186 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2187 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2188 2189 S("QType:", "Ethernet"); 2190 S("Interface:", 2191 (rxq[qs].rspq.netdev 2192 ? rxq[qs].rspq.netdev->name 2193 : "N/A")); 2194 R3("u", "RspQNullInts:", rspq.unhandled_irqs); 2195 R("RxPackets:", stats.pkts); 2196 R("RxCSO:", stats.rx_cso); 2197 R("VLANxtract:", stats.vlan_ex); 2198 R("LROmerged:", stats.lro_merged); 2199 R("LROpackets:", stats.lro_pkts); 2200 R("RxDrops:", stats.rx_drops); 2201 T("TSO:", tso); 2202 T("TxCSO:", tx_cso); 2203 T("VLANins:", vlan_ins); 2204 T("TxQFull:", q.stops); 2205 T("TxQRestarts:", q.restarts); 2206 T("TxMapErr:", mapping_err); 2207 R("FLAllocErr:", fl.alloc_failed); 2208 R("FLLrgAlcErr:", fl.large_alloc_failed); 2209 R("FLStarving:", fl.starving); 2210 return 0; 2211 } 2212 2213 r -= eth_entries; 2214 if (r == 0) { 2215 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2216 2217 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue"); 2218 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2219 evtq->unhandled_irqs); 2220 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx); 2221 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen); 2222 } else if (r == 1) { 2223 const struct sge_rspq *intrq = &adapter->sge.intrq; 2224 2225 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue"); 2226 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2227 intrq->unhandled_irqs); 2228 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx); 2229 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen); 2230 } 2231 2232 #undef R 2233 #undef T 2234 #undef S 2235 #undef R3 2236 #undef T3 2237 #undef S3 2238 2239 return 0; 2240 } 2241 2242 /* 2243 * Return the number of "entries" in our "file". We group the multi-Queue 2244 * sections with QPL Queue Sets per "entry". The sections of the output are: 2245 * 2246 * Ethernet RX/TX Queue Sets 2247 * Firmware Event Queue 2248 * Forwarded Interrupt Queue (if in MSI mode) 2249 */ 2250 static int sge_qstats_entries(const struct adapter *adapter) 2251 { 2252 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2253 ((adapter->flags & USING_MSI) != 0); 2254 } 2255 2256 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos) 2257 { 2258 int entries = sge_qstats_entries(seq->private); 2259 2260 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2261 } 2262 2263 static void sge_qstats_stop(struct seq_file *seq, void *v) 2264 { 2265 } 2266 2267 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos) 2268 { 2269 int entries = sge_qstats_entries(seq->private); 2270 2271 (*pos)++; 2272 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2273 } 2274 2275 static const struct seq_operations sge_qstats_seq_ops = { 2276 .start = sge_qstats_start, 2277 .next = sge_qstats_next, 2278 .stop = sge_qstats_stop, 2279 .show = sge_qstats_show 2280 }; 2281 2282 static int sge_qstats_open(struct inode *inode, struct file *file) 2283 { 2284 int res = seq_open(file, &sge_qstats_seq_ops); 2285 2286 if (res == 0) { 2287 struct seq_file *seq = file->private_data; 2288 seq->private = inode->i_private; 2289 } 2290 return res; 2291 } 2292 2293 static const struct file_operations sge_qstats_proc_fops = { 2294 .owner = THIS_MODULE, 2295 .open = sge_qstats_open, 2296 .read = seq_read, 2297 .llseek = seq_lseek, 2298 .release = seq_release, 2299 }; 2300 2301 /* 2302 * Show PCI-E SR-IOV Virtual Function Resource Limits. 2303 */ 2304 static int resources_show(struct seq_file *seq, void *v) 2305 { 2306 struct adapter *adapter = seq->private; 2307 struct vf_resources *vfres = &adapter->params.vfres; 2308 2309 #define S(desc, fmt, var) \ 2310 seq_printf(seq, "%-60s " fmt "\n", \ 2311 desc " (" #var "):", vfres->var) 2312 2313 S("Virtual Interfaces", "%d", nvi); 2314 S("Egress Queues", "%d", neq); 2315 S("Ethernet Control", "%d", nethctrl); 2316 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint); 2317 S("Ingress Queues", "%d", niq); 2318 S("Traffic Class", "%d", tc); 2319 S("Port Access Rights Mask", "%#x", pmask); 2320 S("MAC Address Filters", "%d", nexactf); 2321 S("Firmware Command Read Capabilities", "%#x", r_caps); 2322 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps); 2323 2324 #undef S 2325 2326 return 0; 2327 } 2328 2329 static int resources_open(struct inode *inode, struct file *file) 2330 { 2331 return single_open(file, resources_show, inode->i_private); 2332 } 2333 2334 static const struct file_operations resources_proc_fops = { 2335 .owner = THIS_MODULE, 2336 .open = resources_open, 2337 .read = seq_read, 2338 .llseek = seq_lseek, 2339 .release = single_release, 2340 }; 2341 2342 /* 2343 * Show Virtual Interfaces. 2344 */ 2345 static int interfaces_show(struct seq_file *seq, void *v) 2346 { 2347 if (v == SEQ_START_TOKEN) { 2348 seq_puts(seq, "Interface Port VIID\n"); 2349 } else { 2350 struct adapter *adapter = seq->private; 2351 int pidx = (uintptr_t)v - 2; 2352 struct net_device *dev = adapter->port[pidx]; 2353 struct port_info *pi = netdev_priv(dev); 2354 2355 seq_printf(seq, "%9s %4d %#5x\n", 2356 dev->name, pi->port_id, pi->viid); 2357 } 2358 return 0; 2359 } 2360 2361 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos) 2362 { 2363 return pos <= adapter->params.nports 2364 ? (void *)(uintptr_t)(pos + 1) 2365 : NULL; 2366 } 2367 2368 static void *interfaces_start(struct seq_file *seq, loff_t *pos) 2369 { 2370 return *pos 2371 ? interfaces_get_idx(seq->private, *pos) 2372 : SEQ_START_TOKEN; 2373 } 2374 2375 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos) 2376 { 2377 (*pos)++; 2378 return interfaces_get_idx(seq->private, *pos); 2379 } 2380 2381 static void interfaces_stop(struct seq_file *seq, void *v) 2382 { 2383 } 2384 2385 static const struct seq_operations interfaces_seq_ops = { 2386 .start = interfaces_start, 2387 .next = interfaces_next, 2388 .stop = interfaces_stop, 2389 .show = interfaces_show 2390 }; 2391 2392 static int interfaces_open(struct inode *inode, struct file *file) 2393 { 2394 int res = seq_open(file, &interfaces_seq_ops); 2395 2396 if (res == 0) { 2397 struct seq_file *seq = file->private_data; 2398 seq->private = inode->i_private; 2399 } 2400 return res; 2401 } 2402 2403 static const struct file_operations interfaces_proc_fops = { 2404 .owner = THIS_MODULE, 2405 .open = interfaces_open, 2406 .read = seq_read, 2407 .llseek = seq_lseek, 2408 .release = seq_release, 2409 }; 2410 2411 /* 2412 * /sys/kernel/debugfs/cxgb4vf/ files list. 2413 */ 2414 struct cxgb4vf_debugfs_entry { 2415 const char *name; /* name of debugfs node */ 2416 umode_t mode; /* file system mode */ 2417 const struct file_operations *fops; 2418 }; 2419 2420 static struct cxgb4vf_debugfs_entry debugfs_files[] = { 2421 { "mboxlog", 0444, &mboxlog_fops }, 2422 { "sge_qinfo", 0444, &sge_qinfo_debugfs_fops }, 2423 { "sge_qstats", 0444, &sge_qstats_proc_fops }, 2424 { "resources", 0444, &resources_proc_fops }, 2425 { "interfaces", 0444, &interfaces_proc_fops }, 2426 }; 2427 2428 /* 2429 * Module and device initialization and cleanup code. 2430 * ================================================== 2431 */ 2432 2433 /* 2434 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the 2435 * directory (debugfs_root) has already been set up. 2436 */ 2437 static int setup_debugfs(struct adapter *adapter) 2438 { 2439 int i; 2440 2441 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2442 2443 /* 2444 * Debugfs support is best effort. 2445 */ 2446 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) 2447 (void)debugfs_create_file(debugfs_files[i].name, 2448 debugfs_files[i].mode, 2449 adapter->debugfs_root, 2450 (void *)adapter, 2451 debugfs_files[i].fops); 2452 2453 return 0; 2454 } 2455 2456 /* 2457 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave 2458 * it to our caller to tear down the directory (debugfs_root). 2459 */ 2460 static void cleanup_debugfs(struct adapter *adapter) 2461 { 2462 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2463 2464 /* 2465 * Unlike our sister routine cleanup_proc(), we don't need to remove 2466 * individual entries because a call will be made to 2467 * debugfs_remove_recursive(). We just need to clean up any ancillary 2468 * persistent state. 2469 */ 2470 /* nothing to do */ 2471 } 2472 2473 /* Figure out how many Ports and Queue Sets we can support. This depends on 2474 * knowing our Virtual Function Resources and may be called a second time if 2475 * we fall back from MSI-X to MSI Interrupt Mode. 2476 */ 2477 static void size_nports_qsets(struct adapter *adapter) 2478 { 2479 struct vf_resources *vfres = &adapter->params.vfres; 2480 unsigned int ethqsets, pmask_nports; 2481 2482 /* The number of "ports" which we support is equal to the number of 2483 * Virtual Interfaces with which we've been provisioned. 2484 */ 2485 adapter->params.nports = vfres->nvi; 2486 if (adapter->params.nports > MAX_NPORTS) { 2487 dev_warn(adapter->pdev_dev, "only using %d of %d maximum" 2488 " allowed virtual interfaces\n", MAX_NPORTS, 2489 adapter->params.nports); 2490 adapter->params.nports = MAX_NPORTS; 2491 } 2492 2493 /* We may have been provisioned with more VIs than the number of 2494 * ports we're allowed to access (our Port Access Rights Mask). 2495 * This is obviously a configuration conflict but we don't want to 2496 * crash the kernel or anything silly just because of that. 2497 */ 2498 pmask_nports = hweight32(adapter->params.vfres.pmask); 2499 if (pmask_nports < adapter->params.nports) { 2500 dev_warn(adapter->pdev_dev, "only using %d of %d provisioned" 2501 " virtual interfaces; limited by Port Access Rights" 2502 " mask %#x\n", pmask_nports, adapter->params.nports, 2503 adapter->params.vfres.pmask); 2504 adapter->params.nports = pmask_nports; 2505 } 2506 2507 /* We need to reserve an Ingress Queue for the Asynchronous Firmware 2508 * Event Queue. And if we're using MSI Interrupts, we'll also need to 2509 * reserve an Ingress Queue for a Forwarded Interrupts. 2510 * 2511 * The rest of the FL/Intr-capable ingress queues will be matched up 2512 * one-for-one with Ethernet/Control egress queues in order to form 2513 * "Queue Sets" which will be aportioned between the "ports". For 2514 * each Queue Set, we'll need the ability to allocate two Egress 2515 * Contexts -- one for the Ingress Queue Free List and one for the TX 2516 * Ethernet Queue. 2517 * 2518 * Note that even if we're currently configured to use MSI-X 2519 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded 2520 * to MSI Interrupts if we can't get enough MSI-X Interrupts. If that 2521 * happens we'll need to adjust things later. 2522 */ 2523 ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI); 2524 if (vfres->nethctrl != ethqsets) 2525 ethqsets = min(vfres->nethctrl, ethqsets); 2526 if (vfres->neq < ethqsets*2) 2527 ethqsets = vfres->neq/2; 2528 if (ethqsets > MAX_ETH_QSETS) 2529 ethqsets = MAX_ETH_QSETS; 2530 adapter->sge.max_ethqsets = ethqsets; 2531 2532 if (adapter->sge.max_ethqsets < adapter->params.nports) { 2533 dev_warn(adapter->pdev_dev, "only using %d of %d available" 2534 " virtual interfaces (too few Queue Sets)\n", 2535 adapter->sge.max_ethqsets, adapter->params.nports); 2536 adapter->params.nports = adapter->sge.max_ethqsets; 2537 } 2538 } 2539 2540 /* 2541 * Perform early "adapter" initialization. This is where we discover what 2542 * adapter parameters we're going to be using and initialize basic adapter 2543 * hardware support. 2544 */ 2545 static int adap_init0(struct adapter *adapter) 2546 { 2547 struct sge_params *sge_params = &adapter->params.sge; 2548 struct sge *s = &adapter->sge; 2549 int err; 2550 u32 param, val = 0; 2551 2552 /* 2553 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux 2554 * 2.6.31 and later we can't call pci_reset_function() in order to 2555 * issue an FLR because of a self- deadlock on the device semaphore. 2556 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the 2557 * cases where they're needed -- for instance, some versions of KVM 2558 * fail to reset "Assigned Devices" when the VM reboots. Therefore we 2559 * use the firmware based reset in order to reset any per function 2560 * state. 2561 */ 2562 err = t4vf_fw_reset(adapter); 2563 if (err < 0) { 2564 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err); 2565 return err; 2566 } 2567 2568 /* 2569 * Grab basic operational parameters. These will predominantly have 2570 * been set up by the Physical Function Driver or will be hard coded 2571 * into the adapter. We just have to live with them ... Note that 2572 * we _must_ get our VPD parameters before our SGE parameters because 2573 * we need to know the adapter's core clock from the VPD in order to 2574 * properly decode the SGE Timer Values. 2575 */ 2576 err = t4vf_get_dev_params(adapter); 2577 if (err) { 2578 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2579 " device parameters: err=%d\n", err); 2580 return err; 2581 } 2582 err = t4vf_get_vpd_params(adapter); 2583 if (err) { 2584 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2585 " VPD parameters: err=%d\n", err); 2586 return err; 2587 } 2588 err = t4vf_get_sge_params(adapter); 2589 if (err) { 2590 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2591 " SGE parameters: err=%d\n", err); 2592 return err; 2593 } 2594 err = t4vf_get_rss_glb_config(adapter); 2595 if (err) { 2596 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2597 " RSS parameters: err=%d\n", err); 2598 return err; 2599 } 2600 if (adapter->params.rss.mode != 2601 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 2602 dev_err(adapter->pdev_dev, "unable to operate with global RSS" 2603 " mode %d\n", adapter->params.rss.mode); 2604 return -EINVAL; 2605 } 2606 err = t4vf_sge_init(adapter); 2607 if (err) { 2608 dev_err(adapter->pdev_dev, "unable to use adapter parameters:" 2609 " err=%d\n", err); 2610 return err; 2611 } 2612 2613 /* If we're running on newer firmware, let it know that we're 2614 * prepared to deal with encapsulated CPL messages. Older 2615 * firmware won't understand this and we'll just get 2616 * unencapsulated messages ... 2617 */ 2618 param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2619 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP); 2620 val = 1; 2621 (void) t4vf_set_params(adapter, 1, ¶m, &val); 2622 2623 /* 2624 * Retrieve our RX interrupt holdoff timer values and counter 2625 * threshold values from the SGE parameters. 2626 */ 2627 s->timer_val[0] = core_ticks_to_us(adapter, 2628 TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1)); 2629 s->timer_val[1] = core_ticks_to_us(adapter, 2630 TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1)); 2631 s->timer_val[2] = core_ticks_to_us(adapter, 2632 TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3)); 2633 s->timer_val[3] = core_ticks_to_us(adapter, 2634 TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3)); 2635 s->timer_val[4] = core_ticks_to_us(adapter, 2636 TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5)); 2637 s->timer_val[5] = core_ticks_to_us(adapter, 2638 TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5)); 2639 2640 s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold); 2641 s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold); 2642 s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold); 2643 s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold); 2644 2645 /* 2646 * Grab our Virtual Interface resource allocation, extract the 2647 * features that we're interested in and do a bit of sanity testing on 2648 * what we discover. 2649 */ 2650 err = t4vf_get_vfres(adapter); 2651 if (err) { 2652 dev_err(adapter->pdev_dev, "unable to get virtual interface" 2653 " resources: err=%d\n", err); 2654 return err; 2655 } 2656 2657 /* Check for various parameter sanity issues */ 2658 if (adapter->params.vfres.pmask == 0) { 2659 dev_err(adapter->pdev_dev, "no port access configured\n" 2660 "usable!\n"); 2661 return -EINVAL; 2662 } 2663 if (adapter->params.vfres.nvi == 0) { 2664 dev_err(adapter->pdev_dev, "no virtual interfaces configured/" 2665 "usable!\n"); 2666 return -EINVAL; 2667 } 2668 2669 /* Initialize nports and max_ethqsets now that we have our Virtual 2670 * Function Resources. 2671 */ 2672 size_nports_qsets(adapter); 2673 2674 return 0; 2675 } 2676 2677 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx, 2678 u8 pkt_cnt_idx, unsigned int size, 2679 unsigned int iqe_size) 2680 { 2681 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 2682 (pkt_cnt_idx < SGE_NCOUNTERS ? 2683 QINTR_CNT_EN_F : 0)); 2684 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS 2685 ? pkt_cnt_idx 2686 : 0); 2687 rspq->iqe_len = iqe_size; 2688 rspq->size = size; 2689 } 2690 2691 /* 2692 * Perform default configuration of DMA queues depending on the number and 2693 * type of ports we found and the number of available CPUs. Most settings can 2694 * be modified by the admin via ethtool and cxgbtool prior to the adapter 2695 * being brought up for the first time. 2696 */ 2697 static void cfg_queues(struct adapter *adapter) 2698 { 2699 struct sge *s = &adapter->sge; 2700 int q10g, n10g, qidx, pidx, qs; 2701 size_t iqe_size; 2702 2703 /* 2704 * We should not be called till we know how many Queue Sets we can 2705 * support. In particular, this means that we need to know what kind 2706 * of interrupts we'll be using ... 2707 */ 2708 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 2709 2710 /* 2711 * Count the number of 10GbE Virtual Interfaces that we have. 2712 */ 2713 n10g = 0; 2714 for_each_port(adapter, pidx) 2715 n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg); 2716 2717 /* 2718 * We default to 1 queue per non-10G port and up to # of cores queues 2719 * per 10G port. 2720 */ 2721 if (n10g == 0) 2722 q10g = 0; 2723 else { 2724 int n1g = (adapter->params.nports - n10g); 2725 q10g = (adapter->sge.max_ethqsets - n1g) / n10g; 2726 if (q10g > num_online_cpus()) 2727 q10g = num_online_cpus(); 2728 } 2729 2730 /* 2731 * Allocate the "Queue Sets" to the various Virtual Interfaces. 2732 * The layout will be established in setup_sge_queues() when the 2733 * adapter is brough up for the first time. 2734 */ 2735 qidx = 0; 2736 for_each_port(adapter, pidx) { 2737 struct port_info *pi = adap2pinfo(adapter, pidx); 2738 2739 pi->first_qset = qidx; 2740 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 2741 qidx += pi->nqsets; 2742 } 2743 s->ethqsets = qidx; 2744 2745 /* 2746 * The Ingress Queue Entry Size for our various Response Queues needs 2747 * to be big enough to accommodate the largest message we can receive 2748 * from the chip/firmware; which is 64 bytes ... 2749 */ 2750 iqe_size = 64; 2751 2752 /* 2753 * Set up default Queue Set parameters ... Start off with the 2754 * shortest interrupt holdoff timer. 2755 */ 2756 for (qs = 0; qs < s->max_ethqsets; qs++) { 2757 struct sge_eth_rxq *rxq = &s->ethrxq[qs]; 2758 struct sge_eth_txq *txq = &s->ethtxq[qs]; 2759 2760 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size); 2761 rxq->fl.size = 72; 2762 txq->q.size = 1024; 2763 } 2764 2765 /* 2766 * The firmware event queue is used for link state changes and 2767 * notifications of TX DMA completions. 2768 */ 2769 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size); 2770 2771 /* 2772 * The forwarded interrupt queue is used when we're in MSI interrupt 2773 * mode. In this mode all interrupts associated with RX queues will 2774 * be forwarded to a single queue which we'll associate with our MSI 2775 * interrupt vector. The messages dropped in the forwarded interrupt 2776 * queue will indicate which ingress queue needs servicing ... This 2777 * queue needs to be large enough to accommodate all of the ingress 2778 * queues which are forwarding their interrupt (+1 to prevent the PIDX 2779 * from equalling the CIDX if every ingress queue has an outstanding 2780 * interrupt). The queue doesn't need to be any larger because no 2781 * ingress queue will ever have more than one outstanding interrupt at 2782 * any time ... 2783 */ 2784 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1, 2785 iqe_size); 2786 } 2787 2788 /* 2789 * Reduce the number of Ethernet queues across all ports to at most n. 2790 * n provides at least one queue per port. 2791 */ 2792 static void reduce_ethqs(struct adapter *adapter, int n) 2793 { 2794 int i; 2795 struct port_info *pi; 2796 2797 /* 2798 * While we have too many active Ether Queue Sets, interate across the 2799 * "ports" and reduce their individual Queue Set allocations. 2800 */ 2801 BUG_ON(n < adapter->params.nports); 2802 while (n < adapter->sge.ethqsets) 2803 for_each_port(adapter, i) { 2804 pi = adap2pinfo(adapter, i); 2805 if (pi->nqsets > 1) { 2806 pi->nqsets--; 2807 adapter->sge.ethqsets--; 2808 if (adapter->sge.ethqsets <= n) 2809 break; 2810 } 2811 } 2812 2813 /* 2814 * Reassign the starting Queue Sets for each of the "ports" ... 2815 */ 2816 n = 0; 2817 for_each_port(adapter, i) { 2818 pi = adap2pinfo(adapter, i); 2819 pi->first_qset = n; 2820 n += pi->nqsets; 2821 } 2822 } 2823 2824 /* 2825 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally 2826 * we get a separate MSI-X vector for every "Queue Set" plus any extras we 2827 * need. Minimally we need one for every Virtual Interface plus those needed 2828 * for our "extras". Note that this process may lower the maximum number of 2829 * allowed Queue Sets ... 2830 */ 2831 static int enable_msix(struct adapter *adapter) 2832 { 2833 int i, want, need, nqsets; 2834 struct msix_entry entries[MSIX_ENTRIES]; 2835 struct sge *s = &adapter->sge; 2836 2837 for (i = 0; i < MSIX_ENTRIES; ++i) 2838 entries[i].entry = i; 2839 2840 /* 2841 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets" 2842 * plus those needed for our "extras" (for example, the firmware 2843 * message queue). We _need_ at least one "Queue Set" per Virtual 2844 * Interface plus those needed for our "extras". So now we get to see 2845 * if the song is right ... 2846 */ 2847 want = s->max_ethqsets + MSIX_EXTRAS; 2848 need = adapter->params.nports + MSIX_EXTRAS; 2849 2850 want = pci_enable_msix_range(adapter->pdev, entries, need, want); 2851 if (want < 0) 2852 return want; 2853 2854 nqsets = want - MSIX_EXTRAS; 2855 if (nqsets < s->max_ethqsets) { 2856 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors" 2857 " for %d Queue Sets\n", nqsets); 2858 s->max_ethqsets = nqsets; 2859 if (nqsets < s->ethqsets) 2860 reduce_ethqs(adapter, nqsets); 2861 } 2862 for (i = 0; i < want; ++i) 2863 adapter->msix_info[i].vec = entries[i].vector; 2864 2865 return 0; 2866 } 2867 2868 static const struct net_device_ops cxgb4vf_netdev_ops = { 2869 .ndo_open = cxgb4vf_open, 2870 .ndo_stop = cxgb4vf_stop, 2871 .ndo_start_xmit = t4vf_eth_xmit, 2872 .ndo_get_stats = cxgb4vf_get_stats, 2873 .ndo_set_rx_mode = cxgb4vf_set_rxmode, 2874 .ndo_set_mac_address = cxgb4vf_set_mac_addr, 2875 .ndo_validate_addr = eth_validate_addr, 2876 .ndo_do_ioctl = cxgb4vf_do_ioctl, 2877 .ndo_change_mtu = cxgb4vf_change_mtu, 2878 .ndo_fix_features = cxgb4vf_fix_features, 2879 .ndo_set_features = cxgb4vf_set_features, 2880 #ifdef CONFIG_NET_POLL_CONTROLLER 2881 .ndo_poll_controller = cxgb4vf_poll_controller, 2882 #endif 2883 }; 2884 2885 /* 2886 * "Probe" a device: initialize a device and construct all kernel and driver 2887 * state needed to manage the device. This routine is called "init_one" in 2888 * the PF Driver ... 2889 */ 2890 static int cxgb4vf_pci_probe(struct pci_dev *pdev, 2891 const struct pci_device_id *ent) 2892 { 2893 int pci_using_dac; 2894 int err, pidx; 2895 unsigned int pmask; 2896 struct adapter *adapter; 2897 struct port_info *pi; 2898 struct net_device *netdev; 2899 unsigned int pf; 2900 2901 /* 2902 * Print our driver banner the first time we're called to initialize a 2903 * device. 2904 */ 2905 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION); 2906 2907 /* 2908 * Initialize generic PCI device state. 2909 */ 2910 err = pci_enable_device(pdev); 2911 if (err) { 2912 dev_err(&pdev->dev, "cannot enable PCI device\n"); 2913 return err; 2914 } 2915 2916 /* 2917 * Reserve PCI resources for the device. If we can't get them some 2918 * other driver may have already claimed the device ... 2919 */ 2920 err = pci_request_regions(pdev, KBUILD_MODNAME); 2921 if (err) { 2922 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 2923 goto err_disable_device; 2924 } 2925 2926 /* 2927 * Set up our DMA mask: try for 64-bit address masking first and 2928 * fall back to 32-bit if we can't get 64 bits ... 2929 */ 2930 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 2931 if (err == 0) { 2932 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 2933 if (err) { 2934 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for" 2935 " coherent allocations\n"); 2936 goto err_release_regions; 2937 } 2938 pci_using_dac = 1; 2939 } else { 2940 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2941 if (err != 0) { 2942 dev_err(&pdev->dev, "no usable DMA configuration\n"); 2943 goto err_release_regions; 2944 } 2945 pci_using_dac = 0; 2946 } 2947 2948 /* 2949 * Enable bus mastering for the device ... 2950 */ 2951 pci_set_master(pdev); 2952 2953 /* 2954 * Allocate our adapter data structure and attach it to the device. 2955 */ 2956 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 2957 if (!adapter) { 2958 err = -ENOMEM; 2959 goto err_release_regions; 2960 } 2961 pci_set_drvdata(pdev, adapter); 2962 adapter->pdev = pdev; 2963 adapter->pdev_dev = &pdev->dev; 2964 2965 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 2966 (sizeof(struct mbox_cmd) * 2967 T4VF_OS_LOG_MBOX_CMDS), 2968 GFP_KERNEL); 2969 if (!adapter->mbox_log) { 2970 err = -ENOMEM; 2971 goto err_free_adapter; 2972 } 2973 adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS; 2974 2975 /* 2976 * Initialize SMP data synchronization resources. 2977 */ 2978 spin_lock_init(&adapter->stats_lock); 2979 spin_lock_init(&adapter->mbox_lock); 2980 INIT_LIST_HEAD(&adapter->mlist.list); 2981 2982 /* 2983 * Map our I/O registers in BAR0. 2984 */ 2985 adapter->regs = pci_ioremap_bar(pdev, 0); 2986 if (!adapter->regs) { 2987 dev_err(&pdev->dev, "cannot map device registers\n"); 2988 err = -ENOMEM; 2989 goto err_free_adapter; 2990 } 2991 2992 /* Wait for the device to become ready before proceeding ... 2993 */ 2994 err = t4vf_prep_adapter(adapter); 2995 if (err) { 2996 dev_err(adapter->pdev_dev, "device didn't become ready:" 2997 " err=%d\n", err); 2998 goto err_unmap_bar0; 2999 } 3000 3001 /* For T5 and later we want to use the new BAR-based User Doorbells, 3002 * so we need to map BAR2 here ... 3003 */ 3004 if (!is_t4(adapter->params.chip)) { 3005 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 3006 pci_resource_len(pdev, 2)); 3007 if (!adapter->bar2) { 3008 dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n"); 3009 err = -ENOMEM; 3010 goto err_unmap_bar0; 3011 } 3012 } 3013 /* 3014 * Initialize adapter level features. 3015 */ 3016 adapter->name = pci_name(pdev); 3017 adapter->msg_enable = DFLT_MSG_ENABLE; 3018 3019 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 3020 * Ingress Packet Data to Free List Buffers in order to allow for 3021 * chipset performance optimizations between the Root Complex and 3022 * Memory Controllers. (Messages to the associated Ingress Queue 3023 * notifying new Packet Placement in the Free Lists Buffers will be 3024 * send without the Relaxed Ordering Attribute thus guaranteeing that 3025 * all preceding PCIe Transaction Layer Packets will be processed 3026 * first.) But some Root Complexes have various issues with Upstream 3027 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 3028 * The PCIe devices which under the Root Complexes will be cleared the 3029 * Relaxed Ordering bit in the configuration space, So we check our 3030 * PCIe configuration space to see if it's flagged with advice against 3031 * using Relaxed Ordering. 3032 */ 3033 if (!pcie_relaxed_ordering_enabled(pdev)) 3034 adapter->flags |= ROOT_NO_RELAXED_ORDERING; 3035 3036 err = adap_init0(adapter); 3037 if (err) 3038 goto err_unmap_bar; 3039 3040 /* 3041 * Allocate our "adapter ports" and stitch everything together. 3042 */ 3043 pmask = adapter->params.vfres.pmask; 3044 pf = t4vf_get_pf_from_vf(adapter); 3045 for_each_port(adapter, pidx) { 3046 int port_id, viid; 3047 u8 mac[ETH_ALEN]; 3048 unsigned int naddr = 1; 3049 3050 /* 3051 * We simplistically allocate our virtual interfaces 3052 * sequentially across the port numbers to which we have 3053 * access rights. This should be configurable in some manner 3054 * ... 3055 */ 3056 if (pmask == 0) 3057 break; 3058 port_id = ffs(pmask) - 1; 3059 pmask &= ~(1 << port_id); 3060 viid = t4vf_alloc_vi(adapter, port_id); 3061 if (viid < 0) { 3062 dev_err(&pdev->dev, "cannot allocate VI for port %d:" 3063 " err=%d\n", port_id, viid); 3064 err = viid; 3065 goto err_free_dev; 3066 } 3067 3068 /* 3069 * Allocate our network device and stitch things together. 3070 */ 3071 netdev = alloc_etherdev_mq(sizeof(struct port_info), 3072 MAX_PORT_QSETS); 3073 if (netdev == NULL) { 3074 t4vf_free_vi(adapter, viid); 3075 err = -ENOMEM; 3076 goto err_free_dev; 3077 } 3078 adapter->port[pidx] = netdev; 3079 SET_NETDEV_DEV(netdev, &pdev->dev); 3080 pi = netdev_priv(netdev); 3081 pi->adapter = adapter; 3082 pi->pidx = pidx; 3083 pi->port_id = port_id; 3084 pi->viid = viid; 3085 3086 /* 3087 * Initialize the starting state of our "port" and register 3088 * it. 3089 */ 3090 pi->xact_addr_filt = -1; 3091 netif_carrier_off(netdev); 3092 netdev->irq = pdev->irq; 3093 3094 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 3095 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3096 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM; 3097 netdev->vlan_features = NETIF_F_SG | TSO_FLAGS | 3098 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3099 NETIF_F_HIGHDMA; 3100 netdev->features = netdev->hw_features | 3101 NETIF_F_HW_VLAN_CTAG_TX; 3102 if (pci_using_dac) 3103 netdev->features |= NETIF_F_HIGHDMA; 3104 3105 netdev->priv_flags |= IFF_UNICAST_FLT; 3106 netdev->min_mtu = 81; 3107 netdev->max_mtu = ETH_MAX_MTU; 3108 3109 netdev->netdev_ops = &cxgb4vf_netdev_ops; 3110 netdev->ethtool_ops = &cxgb4vf_ethtool_ops; 3111 netdev->dev_port = pi->port_id; 3112 3113 /* 3114 * Initialize the hardware/software state for the port. 3115 */ 3116 err = t4vf_port_init(adapter, pidx); 3117 if (err) { 3118 dev_err(&pdev->dev, "cannot initialize port %d\n", 3119 pidx); 3120 goto err_free_dev; 3121 } 3122 3123 err = t4vf_get_vf_mac_acl(adapter, pf, &naddr, mac); 3124 if (err) { 3125 dev_err(&pdev->dev, 3126 "unable to determine MAC ACL address, " 3127 "continuing anyway.. (status %d)\n", err); 3128 } else if (naddr && adapter->params.vfres.nvi == 1) { 3129 struct sockaddr addr; 3130 3131 ether_addr_copy(addr.sa_data, mac); 3132 err = cxgb4vf_set_mac_addr(netdev, &addr); 3133 if (err) { 3134 dev_err(&pdev->dev, 3135 "unable to set MAC address %pM\n", 3136 mac); 3137 goto err_free_dev; 3138 } 3139 dev_info(&pdev->dev, 3140 "Using assigned MAC ACL: %pM\n", mac); 3141 } 3142 } 3143 3144 /* See what interrupts we'll be using. If we've been configured to 3145 * use MSI-X interrupts, try to enable them but fall back to using 3146 * MSI interrupts if we can't enable MSI-X interrupts. If we can't 3147 * get MSI interrupts we bail with the error. 3148 */ 3149 if (msi == MSI_MSIX && enable_msix(adapter) == 0) 3150 adapter->flags |= USING_MSIX; 3151 else { 3152 if (msi == MSI_MSIX) { 3153 dev_info(adapter->pdev_dev, 3154 "Unable to use MSI-X Interrupts; falling " 3155 "back to MSI Interrupts\n"); 3156 3157 /* We're going to need a Forwarded Interrupt Queue so 3158 * that may cut into how many Queue Sets we can 3159 * support. 3160 */ 3161 msi = MSI_MSI; 3162 size_nports_qsets(adapter); 3163 } 3164 err = pci_enable_msi(pdev); 3165 if (err) { 3166 dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;" 3167 " err=%d\n", err); 3168 goto err_free_dev; 3169 } 3170 adapter->flags |= USING_MSI; 3171 } 3172 3173 /* Now that we know how many "ports" we have and what interrupt 3174 * mechanism we're going to use, we can configure our queue resources. 3175 */ 3176 cfg_queues(adapter); 3177 3178 /* 3179 * The "card" is now ready to go. If any errors occur during device 3180 * registration we do not fail the whole "card" but rather proceed 3181 * only with the ports we manage to register successfully. However we 3182 * must register at least one net device. 3183 */ 3184 for_each_port(adapter, pidx) { 3185 struct port_info *pi = netdev_priv(adapter->port[pidx]); 3186 netdev = adapter->port[pidx]; 3187 if (netdev == NULL) 3188 continue; 3189 3190 netif_set_real_num_tx_queues(netdev, pi->nqsets); 3191 netif_set_real_num_rx_queues(netdev, pi->nqsets); 3192 3193 err = register_netdev(netdev); 3194 if (err) { 3195 dev_warn(&pdev->dev, "cannot register net device %s," 3196 " skipping\n", netdev->name); 3197 continue; 3198 } 3199 3200 set_bit(pidx, &adapter->registered_device_map); 3201 } 3202 if (adapter->registered_device_map == 0) { 3203 dev_err(&pdev->dev, "could not register any net devices\n"); 3204 goto err_disable_interrupts; 3205 } 3206 3207 /* 3208 * Set up our debugfs entries. 3209 */ 3210 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) { 3211 adapter->debugfs_root = 3212 debugfs_create_dir(pci_name(pdev), 3213 cxgb4vf_debugfs_root); 3214 if (IS_ERR_OR_NULL(adapter->debugfs_root)) 3215 dev_warn(&pdev->dev, "could not create debugfs" 3216 " directory"); 3217 else 3218 setup_debugfs(adapter); 3219 } 3220 3221 /* 3222 * Print a short notice on the existence and configuration of the new 3223 * VF network device ... 3224 */ 3225 for_each_port(adapter, pidx) { 3226 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n", 3227 adapter->port[pidx]->name, 3228 (adapter->flags & USING_MSIX) ? "MSI-X" : 3229 (adapter->flags & USING_MSI) ? "MSI" : ""); 3230 } 3231 3232 /* 3233 * Return success! 3234 */ 3235 return 0; 3236 3237 /* 3238 * Error recovery and exit code. Unwind state that's been created 3239 * so far and return the error. 3240 */ 3241 err_disable_interrupts: 3242 if (adapter->flags & USING_MSIX) { 3243 pci_disable_msix(adapter->pdev); 3244 adapter->flags &= ~USING_MSIX; 3245 } else if (adapter->flags & USING_MSI) { 3246 pci_disable_msi(adapter->pdev); 3247 adapter->flags &= ~USING_MSI; 3248 } 3249 3250 err_free_dev: 3251 for_each_port(adapter, pidx) { 3252 netdev = adapter->port[pidx]; 3253 if (netdev == NULL) 3254 continue; 3255 pi = netdev_priv(netdev); 3256 t4vf_free_vi(adapter, pi->viid); 3257 if (test_bit(pidx, &adapter->registered_device_map)) 3258 unregister_netdev(netdev); 3259 free_netdev(netdev); 3260 } 3261 3262 err_unmap_bar: 3263 if (!is_t4(adapter->params.chip)) 3264 iounmap(adapter->bar2); 3265 3266 err_unmap_bar0: 3267 iounmap(adapter->regs); 3268 3269 err_free_adapter: 3270 kfree(adapter->mbox_log); 3271 kfree(adapter); 3272 3273 err_release_regions: 3274 pci_release_regions(pdev); 3275 pci_clear_master(pdev); 3276 3277 err_disable_device: 3278 pci_disable_device(pdev); 3279 3280 return err; 3281 } 3282 3283 /* 3284 * "Remove" a device: tear down all kernel and driver state created in the 3285 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note 3286 * that this is called "remove_one" in the PF Driver.) 3287 */ 3288 static void cxgb4vf_pci_remove(struct pci_dev *pdev) 3289 { 3290 struct adapter *adapter = pci_get_drvdata(pdev); 3291 3292 /* 3293 * Tear down driver state associated with device. 3294 */ 3295 if (adapter) { 3296 int pidx; 3297 3298 /* 3299 * Stop all of our activity. Unregister network port, 3300 * disable interrupts, etc. 3301 */ 3302 for_each_port(adapter, pidx) 3303 if (test_bit(pidx, &adapter->registered_device_map)) 3304 unregister_netdev(adapter->port[pidx]); 3305 t4vf_sge_stop(adapter); 3306 if (adapter->flags & USING_MSIX) { 3307 pci_disable_msix(adapter->pdev); 3308 adapter->flags &= ~USING_MSIX; 3309 } else if (adapter->flags & USING_MSI) { 3310 pci_disable_msi(adapter->pdev); 3311 adapter->flags &= ~USING_MSI; 3312 } 3313 3314 /* 3315 * Tear down our debugfs entries. 3316 */ 3317 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) { 3318 cleanup_debugfs(adapter); 3319 debugfs_remove_recursive(adapter->debugfs_root); 3320 } 3321 3322 /* 3323 * Free all of the various resources which we've acquired ... 3324 */ 3325 t4vf_free_sge_resources(adapter); 3326 for_each_port(adapter, pidx) { 3327 struct net_device *netdev = adapter->port[pidx]; 3328 struct port_info *pi; 3329 3330 if (netdev == NULL) 3331 continue; 3332 3333 pi = netdev_priv(netdev); 3334 t4vf_free_vi(adapter, pi->viid); 3335 free_netdev(netdev); 3336 } 3337 iounmap(adapter->regs); 3338 if (!is_t4(adapter->params.chip)) 3339 iounmap(adapter->bar2); 3340 kfree(adapter->mbox_log); 3341 kfree(adapter); 3342 } 3343 3344 /* 3345 * Disable the device and release its PCI resources. 3346 */ 3347 pci_disable_device(pdev); 3348 pci_clear_master(pdev); 3349 pci_release_regions(pdev); 3350 } 3351 3352 /* 3353 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt 3354 * delivery. 3355 */ 3356 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev) 3357 { 3358 struct adapter *adapter; 3359 int pidx; 3360 3361 adapter = pci_get_drvdata(pdev); 3362 if (!adapter) 3363 return; 3364 3365 /* Disable all Virtual Interfaces. This will shut down the 3366 * delivery of all ingress packets into the chip for these 3367 * Virtual Interfaces. 3368 */ 3369 for_each_port(adapter, pidx) 3370 if (test_bit(pidx, &adapter->registered_device_map)) 3371 unregister_netdev(adapter->port[pidx]); 3372 3373 /* Free up all Queues which will prevent further DMA and 3374 * Interrupts allowing various internal pathways to drain. 3375 */ 3376 t4vf_sge_stop(adapter); 3377 if (adapter->flags & USING_MSIX) { 3378 pci_disable_msix(adapter->pdev); 3379 adapter->flags &= ~USING_MSIX; 3380 } else if (adapter->flags & USING_MSI) { 3381 pci_disable_msi(adapter->pdev); 3382 adapter->flags &= ~USING_MSI; 3383 } 3384 3385 /* 3386 * Free up all Queues which will prevent further DMA and 3387 * Interrupts allowing various internal pathways to drain. 3388 */ 3389 t4vf_free_sge_resources(adapter); 3390 pci_set_drvdata(pdev, NULL); 3391 } 3392 3393 /* Macros needed to support the PCI Device ID Table ... 3394 */ 3395 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 3396 static const struct pci_device_id cxgb4vf_pci_tbl[] = { 3397 #define CH_PCI_DEVICE_ID_FUNCTION 0x8 3398 3399 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 3400 { PCI_VDEVICE(CHELSIO, (devid)), 0 } 3401 3402 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } } 3403 3404 #include "../cxgb4/t4_pci_id_tbl.h" 3405 3406 MODULE_DESCRIPTION(DRV_DESC); 3407 MODULE_AUTHOR("Chelsio Communications"); 3408 MODULE_LICENSE("Dual BSD/GPL"); 3409 MODULE_VERSION(DRV_VERSION); 3410 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl); 3411 3412 static struct pci_driver cxgb4vf_driver = { 3413 .name = KBUILD_MODNAME, 3414 .id_table = cxgb4vf_pci_tbl, 3415 .probe = cxgb4vf_pci_probe, 3416 .remove = cxgb4vf_pci_remove, 3417 .shutdown = cxgb4vf_pci_shutdown, 3418 }; 3419 3420 /* 3421 * Initialize global driver state. 3422 */ 3423 static int __init cxgb4vf_module_init(void) 3424 { 3425 int ret; 3426 3427 /* 3428 * Vet our module parameters. 3429 */ 3430 if (msi != MSI_MSIX && msi != MSI_MSI) { 3431 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n", 3432 msi, MSI_MSIX, MSI_MSI); 3433 return -EINVAL; 3434 } 3435 3436 /* Debugfs support is optional, just warn if this fails */ 3437 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 3438 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) 3439 pr_warn("could not create debugfs entry, continuing\n"); 3440 3441 ret = pci_register_driver(&cxgb4vf_driver); 3442 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) 3443 debugfs_remove(cxgb4vf_debugfs_root); 3444 return ret; 3445 } 3446 3447 /* 3448 * Tear down global driver state. 3449 */ 3450 static void __exit cxgb4vf_module_exit(void) 3451 { 3452 pci_unregister_driver(&cxgb4vf_driver); 3453 debugfs_remove(cxgb4vf_debugfs_root); 3454 } 3455 3456 module_init(cxgb4vf_module_init); 3457 module_exit(cxgb4vf_module_exit); 3458