1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/module.h> 39 #include <linux/moduleparam.h> 40 #include <linux/init.h> 41 #include <linux/pci.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/netdevice.h> 44 #include <linux/etherdevice.h> 45 #include <linux/debugfs.h> 46 #include <linux/ethtool.h> 47 #include <linux/mdio.h> 48 49 #include "t4vf_common.h" 50 #include "t4vf_defs.h" 51 52 #include "../cxgb4/t4_regs.h" 53 #include "../cxgb4/t4_msg.h" 54 55 /* 56 * Generic information about the driver. 57 */ 58 #define DRV_VERSION "2.0.0-ko" 59 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver" 60 61 /* 62 * Module Parameters. 63 * ================== 64 */ 65 66 /* 67 * Default ethtool "message level" for adapters. 68 */ 69 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 70 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 71 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 72 73 static int dflt_msg_enable = DFLT_MSG_ENABLE; 74 75 module_param(dflt_msg_enable, int, 0644); 76 MODULE_PARM_DESC(dflt_msg_enable, 77 "default adapter ethtool message level bitmap, " 78 "deprecated parameter"); 79 80 /* 81 * The driver uses the best interrupt scheme available on a platform in the 82 * order MSI-X then MSI. This parameter determines which of these schemes the 83 * driver may consider as follows: 84 * 85 * msi = 2: choose from among MSI-X and MSI 86 * msi = 1: only consider MSI interrupts 87 * 88 * Note that unlike the Physical Function driver, this Virtual Function driver 89 * does _not_ support legacy INTx interrupts (this limitation is mandated by 90 * the PCI-E SR-IOV standard). 91 */ 92 #define MSI_MSIX 2 93 #define MSI_MSI 1 94 #define MSI_DEFAULT MSI_MSIX 95 96 static int msi = MSI_DEFAULT; 97 98 module_param(msi, int, 0644); 99 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI"); 100 101 /* 102 * Fundamental constants. 103 * ====================== 104 */ 105 106 enum { 107 MAX_TXQ_ENTRIES = 16384, 108 MAX_RSPQ_ENTRIES = 16384, 109 MAX_RX_BUFFERS = 16384, 110 111 MIN_TXQ_ENTRIES = 32, 112 MIN_RSPQ_ENTRIES = 128, 113 MIN_FL_ENTRIES = 16, 114 115 /* 116 * For purposes of manipulating the Free List size we need to 117 * recognize that Free Lists are actually Egress Queues (the host 118 * produces free buffers which the hardware consumes), Egress Queues 119 * indices are all in units of Egress Context Units bytes, and free 120 * list entries are 64-bit PCI DMA addresses. And since the state of 121 * the Producer Index == the Consumer Index implies an EMPTY list, we 122 * always have at least one Egress Unit's worth of Free List entries 123 * unused. See sge.c for more details ... 124 */ 125 EQ_UNIT = SGE_EQ_IDXSIZE, 126 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 127 MIN_FL_RESID = FL_PER_EQ_UNIT, 128 }; 129 130 /* 131 * Global driver state. 132 * ==================== 133 */ 134 135 static struct dentry *cxgb4vf_debugfs_root; 136 137 /* 138 * OS "Callback" functions. 139 * ======================== 140 */ 141 142 /* 143 * The link status has changed on the indicated "port" (Virtual Interface). 144 */ 145 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok) 146 { 147 struct net_device *dev = adapter->port[pidx]; 148 149 /* 150 * If the port is disabled or the current recorded "link up" 151 * status matches the new status, just return. 152 */ 153 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev)) 154 return; 155 156 /* 157 * Tell the OS that the link status has changed and print a short 158 * informative message on the console about the event. 159 */ 160 if (link_ok) { 161 const char *s; 162 const char *fc; 163 const struct port_info *pi = netdev_priv(dev); 164 165 netif_carrier_on(dev); 166 167 switch (pi->link_cfg.speed) { 168 case 40000: 169 s = "40Gbps"; 170 break; 171 172 case 10000: 173 s = "10Gbps"; 174 break; 175 176 case 1000: 177 s = "1000Mbps"; 178 break; 179 180 case 100: 181 s = "100Mbps"; 182 break; 183 184 default: 185 s = "unknown"; 186 break; 187 } 188 189 switch (pi->link_cfg.fc) { 190 case PAUSE_RX: 191 fc = "RX"; 192 break; 193 194 case PAUSE_TX: 195 fc = "TX"; 196 break; 197 198 case PAUSE_RX|PAUSE_TX: 199 fc = "RX/TX"; 200 break; 201 202 default: 203 fc = "no"; 204 break; 205 } 206 207 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc); 208 } else { 209 netif_carrier_off(dev); 210 netdev_info(dev, "link down\n"); 211 } 212 } 213 214 /* 215 * THe port module type has changed on the indicated "port" (Virtual 216 * Interface). 217 */ 218 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx) 219 { 220 static const char * const mod_str[] = { 221 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 222 }; 223 const struct net_device *dev = adapter->port[pidx]; 224 const struct port_info *pi = netdev_priv(dev); 225 226 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 227 dev_info(adapter->pdev_dev, "%s: port module unplugged\n", 228 dev->name); 229 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 230 dev_info(adapter->pdev_dev, "%s: %s port module inserted\n", 231 dev->name, mod_str[pi->mod_type]); 232 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 233 dev_info(adapter->pdev_dev, "%s: unsupported optical port " 234 "module inserted\n", dev->name); 235 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 236 dev_info(adapter->pdev_dev, "%s: unknown port module inserted," 237 "forcing TWINAX\n", dev->name); 238 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 239 dev_info(adapter->pdev_dev, "%s: transceiver module error\n", 240 dev->name); 241 else 242 dev_info(adapter->pdev_dev, "%s: unknown module type %d " 243 "inserted\n", dev->name, pi->mod_type); 244 } 245 246 /* 247 * Net device operations. 248 * ====================== 249 */ 250 251 252 253 254 /* 255 * Perform the MAC and PHY actions needed to enable a "port" (Virtual 256 * Interface). 257 */ 258 static int link_start(struct net_device *dev) 259 { 260 int ret; 261 struct port_info *pi = netdev_priv(dev); 262 263 /* 264 * We do not set address filters and promiscuity here, the stack does 265 * that step explicitly. Enable vlan accel. 266 */ 267 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1, 268 true); 269 if (ret == 0) { 270 ret = t4vf_change_mac(pi->adapter, pi->viid, 271 pi->xact_addr_filt, dev->dev_addr, true); 272 if (ret >= 0) { 273 pi->xact_addr_filt = ret; 274 ret = 0; 275 } 276 } 277 278 /* 279 * We don't need to actually "start the link" itself since the 280 * firmware will do that for us when the first Virtual Interface 281 * is enabled on a port. 282 */ 283 if (ret == 0) 284 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true); 285 return ret; 286 } 287 288 /* 289 * Name the MSI-X interrupts. 290 */ 291 static void name_msix_vecs(struct adapter *adapter) 292 { 293 int namelen = sizeof(adapter->msix_info[0].desc) - 1; 294 int pidx; 295 296 /* 297 * Firmware events. 298 */ 299 snprintf(adapter->msix_info[MSIX_FW].desc, namelen, 300 "%s-FWeventq", adapter->name); 301 adapter->msix_info[MSIX_FW].desc[namelen] = 0; 302 303 /* 304 * Ethernet queues. 305 */ 306 for_each_port(adapter, pidx) { 307 struct net_device *dev = adapter->port[pidx]; 308 const struct port_info *pi = netdev_priv(dev); 309 int qs, msi; 310 311 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) { 312 snprintf(adapter->msix_info[msi].desc, namelen, 313 "%s-%d", dev->name, qs); 314 adapter->msix_info[msi].desc[namelen] = 0; 315 } 316 } 317 } 318 319 /* 320 * Request all of our MSI-X resources. 321 */ 322 static int request_msix_queue_irqs(struct adapter *adapter) 323 { 324 struct sge *s = &adapter->sge; 325 int rxq, msi, err; 326 327 /* 328 * Firmware events. 329 */ 330 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix, 331 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq); 332 if (err) 333 return err; 334 335 /* 336 * Ethernet queues. 337 */ 338 msi = MSIX_IQFLINT; 339 for_each_ethrxq(s, rxq) { 340 err = request_irq(adapter->msix_info[msi].vec, 341 t4vf_sge_intr_msix, 0, 342 adapter->msix_info[msi].desc, 343 &s->ethrxq[rxq].rspq); 344 if (err) 345 goto err_free_irqs; 346 msi++; 347 } 348 return 0; 349 350 err_free_irqs: 351 while (--rxq >= 0) 352 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq); 353 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 354 return err; 355 } 356 357 /* 358 * Free our MSI-X resources. 359 */ 360 static void free_msix_queue_irqs(struct adapter *adapter) 361 { 362 struct sge *s = &adapter->sge; 363 int rxq, msi; 364 365 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 366 msi = MSIX_IQFLINT; 367 for_each_ethrxq(s, rxq) 368 free_irq(adapter->msix_info[msi++].vec, 369 &s->ethrxq[rxq].rspq); 370 } 371 372 /* 373 * Turn on NAPI and start up interrupts on a response queue. 374 */ 375 static void qenable(struct sge_rspq *rspq) 376 { 377 napi_enable(&rspq->napi); 378 379 /* 380 * 0-increment the Going To Sleep register to start the timer and 381 * enable interrupts. 382 */ 383 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 384 CIDXINC_V(0) | 385 SEINTARM_V(rspq->intr_params) | 386 INGRESSQID_V(rspq->cntxt_id)); 387 } 388 389 /* 390 * Enable NAPI scheduling and interrupt generation for all Receive Queues. 391 */ 392 static void enable_rx(struct adapter *adapter) 393 { 394 int rxq; 395 struct sge *s = &adapter->sge; 396 397 for_each_ethrxq(s, rxq) 398 qenable(&s->ethrxq[rxq].rspq); 399 qenable(&s->fw_evtq); 400 401 /* 402 * The interrupt queue doesn't use NAPI so we do the 0-increment of 403 * its Going To Sleep register here to get it started. 404 */ 405 if (adapter->flags & USING_MSI) 406 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 407 CIDXINC_V(0) | 408 SEINTARM_V(s->intrq.intr_params) | 409 INGRESSQID_V(s->intrq.cntxt_id)); 410 411 } 412 413 /* 414 * Wait until all NAPI handlers are descheduled. 415 */ 416 static void quiesce_rx(struct adapter *adapter) 417 { 418 struct sge *s = &adapter->sge; 419 int rxq; 420 421 for_each_ethrxq(s, rxq) 422 napi_disable(&s->ethrxq[rxq].rspq.napi); 423 napi_disable(&s->fw_evtq.napi); 424 } 425 426 /* 427 * Response queue handler for the firmware event queue. 428 */ 429 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp, 430 const struct pkt_gl *gl) 431 { 432 /* 433 * Extract response opcode and get pointer to CPL message body. 434 */ 435 struct adapter *adapter = rspq->adapter; 436 u8 opcode = ((const struct rss_header *)rsp)->opcode; 437 void *cpl = (void *)(rsp + 1); 438 439 switch (opcode) { 440 case CPL_FW6_MSG: { 441 /* 442 * We've received an asynchronous message from the firmware. 443 */ 444 const struct cpl_fw6_msg *fw_msg = cpl; 445 if (fw_msg->type == FW6_TYPE_CMD_RPL) 446 t4vf_handle_fw_rpl(adapter, fw_msg->data); 447 break; 448 } 449 450 case CPL_FW4_MSG: { 451 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 452 */ 453 const struct cpl_sge_egr_update *p = (void *)(rsp + 3); 454 opcode = CPL_OPCODE_G(ntohl(p->opcode_qid)); 455 if (opcode != CPL_SGE_EGR_UPDATE) { 456 dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 457 , opcode); 458 break; 459 } 460 cpl = (void *)p; 461 /*FALLTHROUGH*/ 462 } 463 464 case CPL_SGE_EGR_UPDATE: { 465 /* 466 * We've received an Egress Queue Status Update message. We 467 * get these, if the SGE is configured to send these when the 468 * firmware passes certain points in processing our TX 469 * Ethernet Queue or if we make an explicit request for one. 470 * We use these updates to determine when we may need to 471 * restart a TX Ethernet Queue which was stopped for lack of 472 * free TX Queue Descriptors ... 473 */ 474 const struct cpl_sge_egr_update *p = cpl; 475 unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid)); 476 struct sge *s = &adapter->sge; 477 struct sge_txq *tq; 478 struct sge_eth_txq *txq; 479 unsigned int eq_idx; 480 481 /* 482 * Perform sanity checking on the Queue ID to make sure it 483 * really refers to one of our TX Ethernet Egress Queues which 484 * is active and matches the queue's ID. None of these error 485 * conditions should ever happen so we may want to either make 486 * them fatal and/or conditionalized under DEBUG. 487 */ 488 eq_idx = EQ_IDX(s, qid); 489 if (unlikely(eq_idx >= MAX_EGRQ)) { 490 dev_err(adapter->pdev_dev, 491 "Egress Update QID %d out of range\n", qid); 492 break; 493 } 494 tq = s->egr_map[eq_idx]; 495 if (unlikely(tq == NULL)) { 496 dev_err(adapter->pdev_dev, 497 "Egress Update QID %d TXQ=NULL\n", qid); 498 break; 499 } 500 txq = container_of(tq, struct sge_eth_txq, q); 501 if (unlikely(tq->abs_id != qid)) { 502 dev_err(adapter->pdev_dev, 503 "Egress Update QID %d refers to TXQ %d\n", 504 qid, tq->abs_id); 505 break; 506 } 507 508 /* 509 * Restart a stopped TX Queue which has less than half of its 510 * TX ring in use ... 511 */ 512 txq->q.restarts++; 513 netif_tx_wake_queue(txq->txq); 514 break; 515 } 516 517 default: 518 dev_err(adapter->pdev_dev, 519 "unexpected CPL %#x on FW event queue\n", opcode); 520 } 521 522 return 0; 523 } 524 525 /* 526 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues 527 * to use and initializes them. We support multiple "Queue Sets" per port if 528 * we have MSI-X, otherwise just one queue set per port. 529 */ 530 static int setup_sge_queues(struct adapter *adapter) 531 { 532 struct sge *s = &adapter->sge; 533 int err, pidx, msix; 534 535 /* 536 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error 537 * state. 538 */ 539 bitmap_zero(s->starving_fl, MAX_EGRQ); 540 541 /* 542 * If we're using MSI interrupt mode we need to set up a "forwarded 543 * interrupt" queue which we'll set up with our MSI vector. The rest 544 * of the ingress queues will be set up to forward their interrupts to 545 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses 546 * the intrq's queue ID as the interrupt forwarding queue for the 547 * subsequent calls ... 548 */ 549 if (adapter->flags & USING_MSI) { 550 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false, 551 adapter->port[0], 0, NULL, NULL); 552 if (err) 553 goto err_free_queues; 554 } 555 556 /* 557 * Allocate our ingress queue for asynchronous firmware messages. 558 */ 559 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0], 560 MSIX_FW, NULL, fwevtq_handler); 561 if (err) 562 goto err_free_queues; 563 564 /* 565 * Allocate each "port"'s initial Queue Sets. These can be changed 566 * later on ... up to the point where any interface on the adapter is 567 * brought up at which point lots of things get nailed down 568 * permanently ... 569 */ 570 msix = MSIX_IQFLINT; 571 for_each_port(adapter, pidx) { 572 struct net_device *dev = adapter->port[pidx]; 573 struct port_info *pi = netdev_priv(dev); 574 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 575 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 576 int qs; 577 578 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 579 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false, 580 dev, msix++, 581 &rxq->fl, t4vf_ethrx_handler); 582 if (err) 583 goto err_free_queues; 584 585 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev, 586 netdev_get_tx_queue(dev, qs), 587 s->fw_evtq.cntxt_id); 588 if (err) 589 goto err_free_queues; 590 591 rxq->rspq.idx = qs; 592 memset(&rxq->stats, 0, sizeof(rxq->stats)); 593 } 594 } 595 596 /* 597 * Create the reverse mappings for the queues. 598 */ 599 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id; 600 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id; 601 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq; 602 for_each_port(adapter, pidx) { 603 struct net_device *dev = adapter->port[pidx]; 604 struct port_info *pi = netdev_priv(dev); 605 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 606 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 607 int qs; 608 609 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 610 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq; 611 EQ_MAP(s, txq->q.abs_id) = &txq->q; 612 613 /* 614 * The FW_IQ_CMD doesn't return the Absolute Queue IDs 615 * for Free Lists but since all of the Egress Queues 616 * (including Free Lists) have Relative Queue IDs 617 * which are computed as Absolute - Base Queue ID, we 618 * can synthesize the Absolute Queue IDs for the Free 619 * Lists. This is useful for debugging purposes when 620 * we want to dump Queue Contexts via the PF Driver. 621 */ 622 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base; 623 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl; 624 } 625 } 626 return 0; 627 628 err_free_queues: 629 t4vf_free_sge_resources(adapter); 630 return err; 631 } 632 633 /* 634 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive 635 * queues. We configure the RSS CPU lookup table to distribute to the number 636 * of HW receive queues, and the response queue lookup table to narrow that 637 * down to the response queues actually configured for each "port" (Virtual 638 * Interface). We always configure the RSS mapping for all ports since the 639 * mapping table has plenty of entries. 640 */ 641 static int setup_rss(struct adapter *adapter) 642 { 643 int pidx; 644 645 for_each_port(adapter, pidx) { 646 struct port_info *pi = adap2pinfo(adapter, pidx); 647 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 648 u16 rss[MAX_PORT_QSETS]; 649 int qs, err; 650 651 for (qs = 0; qs < pi->nqsets; qs++) 652 rss[qs] = rxq[qs].rspq.abs_id; 653 654 err = t4vf_config_rss_range(adapter, pi->viid, 655 0, pi->rss_size, rss, pi->nqsets); 656 if (err) 657 return err; 658 659 /* 660 * Perform Global RSS Mode-specific initialization. 661 */ 662 switch (adapter->params.rss.mode) { 663 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: 664 /* 665 * If Tunnel All Lookup isn't specified in the global 666 * RSS Configuration, then we need to specify a 667 * default Ingress Queue for any ingress packets which 668 * aren't hashed. We'll use our first ingress queue 669 * ... 670 */ 671 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) { 672 union rss_vi_config config; 673 err = t4vf_read_rss_vi_config(adapter, 674 pi->viid, 675 &config); 676 if (err) 677 return err; 678 config.basicvirtual.defaultq = 679 rxq[0].rspq.abs_id; 680 err = t4vf_write_rss_vi_config(adapter, 681 pi->viid, 682 &config); 683 if (err) 684 return err; 685 } 686 break; 687 } 688 } 689 690 return 0; 691 } 692 693 /* 694 * Bring the adapter up. Called whenever we go from no "ports" open to having 695 * one open. This function performs the actions necessary to make an adapter 696 * operational, such as completing the initialization of HW modules, and 697 * enabling interrupts. Must be called with the rtnl lock held. (Note that 698 * this is called "cxgb_up" in the PF Driver.) 699 */ 700 static int adapter_up(struct adapter *adapter) 701 { 702 int err; 703 704 /* 705 * If this is the first time we've been called, perform basic 706 * adapter setup. Once we've done this, many of our adapter 707 * parameters can no longer be changed ... 708 */ 709 if ((adapter->flags & FULL_INIT_DONE) == 0) { 710 err = setup_sge_queues(adapter); 711 if (err) 712 return err; 713 err = setup_rss(adapter); 714 if (err) { 715 t4vf_free_sge_resources(adapter); 716 return err; 717 } 718 719 if (adapter->flags & USING_MSIX) 720 name_msix_vecs(adapter); 721 adapter->flags |= FULL_INIT_DONE; 722 } 723 724 /* 725 * Acquire our interrupt resources. We only support MSI-X and MSI. 726 */ 727 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 728 if (adapter->flags & USING_MSIX) 729 err = request_msix_queue_irqs(adapter); 730 else 731 err = request_irq(adapter->pdev->irq, 732 t4vf_intr_handler(adapter), 0, 733 adapter->name, adapter); 734 if (err) { 735 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n", 736 err); 737 return err; 738 } 739 740 /* 741 * Enable NAPI ingress processing and return success. 742 */ 743 enable_rx(adapter); 744 t4vf_sge_start(adapter); 745 746 /* Initialize hash mac addr list*/ 747 INIT_LIST_HEAD(&adapter->mac_hlist); 748 return 0; 749 } 750 751 /* 752 * Bring the adapter down. Called whenever the last "port" (Virtual 753 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF 754 * Driver.) 755 */ 756 static void adapter_down(struct adapter *adapter) 757 { 758 /* 759 * Free interrupt resources. 760 */ 761 if (adapter->flags & USING_MSIX) 762 free_msix_queue_irqs(adapter); 763 else 764 free_irq(adapter->pdev->irq, adapter); 765 766 /* 767 * Wait for NAPI handlers to finish. 768 */ 769 quiesce_rx(adapter); 770 } 771 772 /* 773 * Start up a net device. 774 */ 775 static int cxgb4vf_open(struct net_device *dev) 776 { 777 int err; 778 struct port_info *pi = netdev_priv(dev); 779 struct adapter *adapter = pi->adapter; 780 781 /* 782 * If this is the first interface that we're opening on the "adapter", 783 * bring the "adapter" up now. 784 */ 785 if (adapter->open_device_map == 0) { 786 err = adapter_up(adapter); 787 if (err) 788 return err; 789 } 790 791 /* 792 * Note that this interface is up and start everything up ... 793 */ 794 err = link_start(dev); 795 if (err) 796 goto err_unwind; 797 798 netif_tx_start_all_queues(dev); 799 set_bit(pi->port_id, &adapter->open_device_map); 800 return 0; 801 802 err_unwind: 803 if (adapter->open_device_map == 0) 804 adapter_down(adapter); 805 return err; 806 } 807 808 /* 809 * Shut down a net device. This routine is called "cxgb_close" in the PF 810 * Driver ... 811 */ 812 static int cxgb4vf_stop(struct net_device *dev) 813 { 814 struct port_info *pi = netdev_priv(dev); 815 struct adapter *adapter = pi->adapter; 816 817 netif_tx_stop_all_queues(dev); 818 netif_carrier_off(dev); 819 t4vf_enable_vi(adapter, pi->viid, false, false); 820 pi->link_cfg.link_ok = 0; 821 822 clear_bit(pi->port_id, &adapter->open_device_map); 823 if (adapter->open_device_map == 0) 824 adapter_down(adapter); 825 return 0; 826 } 827 828 /* 829 * Translate our basic statistics into the standard "ifconfig" statistics. 830 */ 831 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev) 832 { 833 struct t4vf_port_stats stats; 834 struct port_info *pi = netdev2pinfo(dev); 835 struct adapter *adapter = pi->adapter; 836 struct net_device_stats *ns = &dev->stats; 837 int err; 838 839 spin_lock(&adapter->stats_lock); 840 err = t4vf_get_port_stats(adapter, pi->pidx, &stats); 841 spin_unlock(&adapter->stats_lock); 842 843 memset(ns, 0, sizeof(*ns)); 844 if (err) 845 return ns; 846 847 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes + 848 stats.tx_ucast_bytes + stats.tx_offload_bytes); 849 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames + 850 stats.tx_ucast_frames + stats.tx_offload_frames); 851 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes + 852 stats.rx_ucast_bytes); 853 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames + 854 stats.rx_ucast_frames); 855 ns->multicast = stats.rx_mcast_frames; 856 ns->tx_errors = stats.tx_drop_frames; 857 ns->rx_errors = stats.rx_err_frames; 858 859 return ns; 860 } 861 862 static inline int cxgb4vf_set_addr_hash(struct port_info *pi) 863 { 864 struct adapter *adapter = pi->adapter; 865 u64 vec = 0; 866 bool ucast = false; 867 struct hash_mac_addr *entry; 868 869 /* Calculate the hash vector for the updated list and program it */ 870 list_for_each_entry(entry, &adapter->mac_hlist, list) { 871 ucast |= is_unicast_ether_addr(entry->addr); 872 vec |= (1ULL << hash_mac_addr(entry->addr)); 873 } 874 return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false); 875 } 876 877 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr) 878 { 879 struct port_info *pi = netdev_priv(netdev); 880 struct adapter *adapter = pi->adapter; 881 int ret; 882 u64 mhash = 0; 883 u64 uhash = 0; 884 bool free = false; 885 bool ucast = is_unicast_ether_addr(mac_addr); 886 const u8 *maclist[1] = {mac_addr}; 887 struct hash_mac_addr *new_entry; 888 889 ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist, 890 NULL, ucast ? &uhash : &mhash, false); 891 if (ret < 0) 892 goto out; 893 /* if hash != 0, then add the addr to hash addr list 894 * so on the end we will calculate the hash for the 895 * list and program it 896 */ 897 if (uhash || mhash) { 898 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 899 if (!new_entry) 900 return -ENOMEM; 901 ether_addr_copy(new_entry->addr, mac_addr); 902 list_add_tail(&new_entry->list, &adapter->mac_hlist); 903 ret = cxgb4vf_set_addr_hash(pi); 904 } 905 out: 906 return ret < 0 ? ret : 0; 907 } 908 909 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 910 { 911 struct port_info *pi = netdev_priv(netdev); 912 struct adapter *adapter = pi->adapter; 913 int ret; 914 const u8 *maclist[1] = {mac_addr}; 915 struct hash_mac_addr *entry, *tmp; 916 917 /* If the MAC address to be removed is in the hash addr 918 * list, delete it from the list and update hash vector 919 */ 920 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) { 921 if (ether_addr_equal(entry->addr, mac_addr)) { 922 list_del(&entry->list); 923 kfree(entry); 924 return cxgb4vf_set_addr_hash(pi); 925 } 926 } 927 928 ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false); 929 return ret < 0 ? -EINVAL : 0; 930 } 931 932 /* 933 * Set RX properties of a port, such as promiscruity, address filters, and MTU. 934 * If @mtu is -1 it is left unchanged. 935 */ 936 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 937 { 938 struct port_info *pi = netdev_priv(dev); 939 940 __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 941 __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 942 return t4vf_set_rxmode(pi->adapter, pi->viid, -1, 943 (dev->flags & IFF_PROMISC) != 0, 944 (dev->flags & IFF_ALLMULTI) != 0, 945 1, -1, sleep_ok); 946 } 947 948 /* 949 * Set the current receive modes on the device. 950 */ 951 static void cxgb4vf_set_rxmode(struct net_device *dev) 952 { 953 /* unfortunately we can't return errors to the stack */ 954 set_rxmode(dev, -1, false); 955 } 956 957 /* 958 * Find the entry in the interrupt holdoff timer value array which comes 959 * closest to the specified interrupt holdoff value. 960 */ 961 static int closest_timer(const struct sge *s, int us) 962 { 963 int i, timer_idx = 0, min_delta = INT_MAX; 964 965 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 966 int delta = us - s->timer_val[i]; 967 if (delta < 0) 968 delta = -delta; 969 if (delta < min_delta) { 970 min_delta = delta; 971 timer_idx = i; 972 } 973 } 974 return timer_idx; 975 } 976 977 static int closest_thres(const struct sge *s, int thres) 978 { 979 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX; 980 981 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 982 delta = thres - s->counter_val[i]; 983 if (delta < 0) 984 delta = -delta; 985 if (delta < min_delta) { 986 min_delta = delta; 987 pktcnt_idx = i; 988 } 989 } 990 return pktcnt_idx; 991 } 992 993 /* 994 * Return a queue's interrupt hold-off time in us. 0 means no timer. 995 */ 996 static unsigned int qtimer_val(const struct adapter *adapter, 997 const struct sge_rspq *rspq) 998 { 999 unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params); 1000 1001 return timer_idx < SGE_NTIMERS 1002 ? adapter->sge.timer_val[timer_idx] 1003 : 0; 1004 } 1005 1006 /** 1007 * set_rxq_intr_params - set a queue's interrupt holdoff parameters 1008 * @adapter: the adapter 1009 * @rspq: the RX response queue 1010 * @us: the hold-off time in us, or 0 to disable timer 1011 * @cnt: the hold-off packet count, or 0 to disable counter 1012 * 1013 * Sets an RX response queue's interrupt hold-off time and packet count. 1014 * At least one of the two needs to be enabled for the queue to generate 1015 * interrupts. 1016 */ 1017 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq, 1018 unsigned int us, unsigned int cnt) 1019 { 1020 unsigned int timer_idx; 1021 1022 /* 1023 * If both the interrupt holdoff timer and count are specified as 1024 * zero, default to a holdoff count of 1 ... 1025 */ 1026 if ((us | cnt) == 0) 1027 cnt = 1; 1028 1029 /* 1030 * If an interrupt holdoff count has been specified, then find the 1031 * closest configured holdoff count and use that. If the response 1032 * queue has already been created, then update its queue context 1033 * parameters ... 1034 */ 1035 if (cnt) { 1036 int err; 1037 u32 v, pktcnt_idx; 1038 1039 pktcnt_idx = closest_thres(&adapter->sge, cnt); 1040 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) { 1041 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1042 FW_PARAMS_PARAM_X_V( 1043 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1044 FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id); 1045 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx); 1046 if (err) 1047 return err; 1048 } 1049 rspq->pktcnt_idx = pktcnt_idx; 1050 } 1051 1052 /* 1053 * Compute the closest holdoff timer index from the supplied holdoff 1054 * timer value. 1055 */ 1056 timer_idx = (us == 0 1057 ? SGE_TIMER_RSTRT_CNTR 1058 : closest_timer(&adapter->sge, us)); 1059 1060 /* 1061 * Update the response queue's interrupt coalescing parameters and 1062 * return success. 1063 */ 1064 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 1065 QINTR_CNT_EN_V(cnt > 0)); 1066 return 0; 1067 } 1068 1069 /* 1070 * Return a version number to identify the type of adapter. The scheme is: 1071 * - bits 0..9: chip version 1072 * - bits 10..15: chip revision 1073 */ 1074 static inline unsigned int mk_adap_vers(const struct adapter *adapter) 1075 { 1076 /* 1077 * Chip version 4, revision 0x3f (cxgb4vf). 1078 */ 1079 return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10); 1080 } 1081 1082 /* 1083 * Execute the specified ioctl command. 1084 */ 1085 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1086 { 1087 int ret = 0; 1088 1089 switch (cmd) { 1090 /* 1091 * The VF Driver doesn't have access to any of the other 1092 * common Ethernet device ioctl()'s (like reading/writing 1093 * PHY registers, etc. 1094 */ 1095 1096 default: 1097 ret = -EOPNOTSUPP; 1098 break; 1099 } 1100 return ret; 1101 } 1102 1103 /* 1104 * Change the device's MTU. 1105 */ 1106 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu) 1107 { 1108 int ret; 1109 struct port_info *pi = netdev_priv(dev); 1110 1111 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu, 1112 -1, -1, -1, -1, true); 1113 if (!ret) 1114 dev->mtu = new_mtu; 1115 return ret; 1116 } 1117 1118 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev, 1119 netdev_features_t features) 1120 { 1121 /* 1122 * Since there is no support for separate rx/tx vlan accel 1123 * enable/disable make sure tx flag is always in same state as rx. 1124 */ 1125 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1126 features |= NETIF_F_HW_VLAN_CTAG_TX; 1127 else 1128 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 1129 1130 return features; 1131 } 1132 1133 static int cxgb4vf_set_features(struct net_device *dev, 1134 netdev_features_t features) 1135 { 1136 struct port_info *pi = netdev_priv(dev); 1137 netdev_features_t changed = dev->features ^ features; 1138 1139 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 1140 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, 1141 features & NETIF_F_HW_VLAN_CTAG_TX, 0); 1142 1143 return 0; 1144 } 1145 1146 /* 1147 * Change the devices MAC address. 1148 */ 1149 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr) 1150 { 1151 int ret; 1152 struct sockaddr *addr = _addr; 1153 struct port_info *pi = netdev_priv(dev); 1154 1155 if (!is_valid_ether_addr(addr->sa_data)) 1156 return -EADDRNOTAVAIL; 1157 1158 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt, 1159 addr->sa_data, true); 1160 if (ret < 0) 1161 return ret; 1162 1163 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 1164 pi->xact_addr_filt = ret; 1165 return 0; 1166 } 1167 1168 #ifdef CONFIG_NET_POLL_CONTROLLER 1169 /* 1170 * Poll all of our receive queues. This is called outside of normal interrupt 1171 * context. 1172 */ 1173 static void cxgb4vf_poll_controller(struct net_device *dev) 1174 { 1175 struct port_info *pi = netdev_priv(dev); 1176 struct adapter *adapter = pi->adapter; 1177 1178 if (adapter->flags & USING_MSIX) { 1179 struct sge_eth_rxq *rxq; 1180 int nqsets; 1181 1182 rxq = &adapter->sge.ethrxq[pi->first_qset]; 1183 for (nqsets = pi->nqsets; nqsets; nqsets--) { 1184 t4vf_sge_intr_msix(0, &rxq->rspq); 1185 rxq++; 1186 } 1187 } else 1188 t4vf_intr_handler(adapter)(0, adapter); 1189 } 1190 #endif 1191 1192 /* 1193 * Ethtool operations. 1194 * =================== 1195 * 1196 * Note that we don't support any ethtool operations which change the physical 1197 * state of the port to which we're linked. 1198 */ 1199 1200 /** 1201 * from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool 1202 * @port_type: Firmware Port Type 1203 * @mod_type: Firmware Module Type 1204 * 1205 * Translate Firmware Port/Module type to Ethtool Port Type. 1206 */ 1207 static int from_fw_port_mod_type(enum fw_port_type port_type, 1208 enum fw_port_module_type mod_type) 1209 { 1210 if (port_type == FW_PORT_TYPE_BT_SGMII || 1211 port_type == FW_PORT_TYPE_BT_XFI || 1212 port_type == FW_PORT_TYPE_BT_XAUI) { 1213 return PORT_TP; 1214 } else if (port_type == FW_PORT_TYPE_FIBER_XFI || 1215 port_type == FW_PORT_TYPE_FIBER_XAUI) { 1216 return PORT_FIBRE; 1217 } else if (port_type == FW_PORT_TYPE_SFP || 1218 port_type == FW_PORT_TYPE_QSFP_10G || 1219 port_type == FW_PORT_TYPE_QSA || 1220 port_type == FW_PORT_TYPE_QSFP) { 1221 if (mod_type == FW_PORT_MOD_TYPE_LR || 1222 mod_type == FW_PORT_MOD_TYPE_SR || 1223 mod_type == FW_PORT_MOD_TYPE_ER || 1224 mod_type == FW_PORT_MOD_TYPE_LRM) 1225 return PORT_FIBRE; 1226 else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE || 1227 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE) 1228 return PORT_DA; 1229 else 1230 return PORT_OTHER; 1231 } 1232 1233 return PORT_OTHER; 1234 } 1235 1236 /** 1237 * fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask 1238 * @port_type: Firmware Port Type 1239 * @fw_caps: Firmware Port Capabilities 1240 * @link_mode_mask: ethtool Link Mode Mask 1241 * 1242 * Translate a Firmware Port Capabilities specification to an ethtool 1243 * Link Mode Mask. 1244 */ 1245 static void fw_caps_to_lmm(enum fw_port_type port_type, 1246 unsigned int fw_caps, 1247 unsigned long *link_mode_mask) 1248 { 1249 #define SET_LMM(__lmm_name) __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name\ 1250 ## _BIT, link_mode_mask) 1251 1252 #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \ 1253 do { \ 1254 if (fw_caps & FW_PORT_CAP_ ## __fw_name) \ 1255 SET_LMM(__lmm_name); \ 1256 } while (0) 1257 1258 switch (port_type) { 1259 case FW_PORT_TYPE_BT_SGMII: 1260 case FW_PORT_TYPE_BT_XFI: 1261 case FW_PORT_TYPE_BT_XAUI: 1262 SET_LMM(TP); 1263 FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full); 1264 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1265 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1266 break; 1267 1268 case FW_PORT_TYPE_KX4: 1269 case FW_PORT_TYPE_KX: 1270 SET_LMM(Backplane); 1271 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1272 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1273 break; 1274 1275 case FW_PORT_TYPE_KR: 1276 SET_LMM(Backplane); 1277 SET_LMM(10000baseKR_Full); 1278 break; 1279 1280 case FW_PORT_TYPE_BP_AP: 1281 SET_LMM(Backplane); 1282 SET_LMM(10000baseR_FEC); 1283 SET_LMM(10000baseKR_Full); 1284 SET_LMM(1000baseKX_Full); 1285 break; 1286 1287 case FW_PORT_TYPE_BP4_AP: 1288 SET_LMM(Backplane); 1289 SET_LMM(10000baseR_FEC); 1290 SET_LMM(10000baseKR_Full); 1291 SET_LMM(1000baseKX_Full); 1292 SET_LMM(10000baseKX4_Full); 1293 break; 1294 1295 case FW_PORT_TYPE_FIBER_XFI: 1296 case FW_PORT_TYPE_FIBER_XAUI: 1297 case FW_PORT_TYPE_SFP: 1298 case FW_PORT_TYPE_QSFP_10G: 1299 case FW_PORT_TYPE_QSA: 1300 SET_LMM(FIBRE); 1301 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1302 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1303 break; 1304 1305 case FW_PORT_TYPE_BP40_BA: 1306 case FW_PORT_TYPE_QSFP: 1307 SET_LMM(FIBRE); 1308 SET_LMM(40000baseSR4_Full); 1309 break; 1310 1311 case FW_PORT_TYPE_CR_QSFP: 1312 case FW_PORT_TYPE_SFP28: 1313 SET_LMM(FIBRE); 1314 SET_LMM(25000baseCR_Full); 1315 break; 1316 1317 case FW_PORT_TYPE_KR4_100G: 1318 case FW_PORT_TYPE_CR4_QSFP: 1319 SET_LMM(FIBRE); 1320 SET_LMM(100000baseCR4_Full); 1321 break; 1322 1323 default: 1324 break; 1325 } 1326 1327 FW_CAPS_TO_LMM(ANEG, Autoneg); 1328 FW_CAPS_TO_LMM(802_3_PAUSE, Pause); 1329 FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause); 1330 1331 #undef FW_CAPS_TO_LMM 1332 #undef SET_LMM 1333 } 1334 1335 static int cxgb4vf_get_link_ksettings(struct net_device *dev, 1336 struct ethtool_link_ksettings 1337 *link_ksettings) 1338 { 1339 const struct port_info *pi = netdev_priv(dev); 1340 struct ethtool_link_settings *base = &link_ksettings->base; 1341 1342 ethtool_link_ksettings_zero_link_mode(link_ksettings, supported); 1343 ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising); 1344 ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising); 1345 1346 base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type); 1347 1348 if (pi->mdio_addr >= 0) { 1349 base->phy_address = pi->mdio_addr; 1350 base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII 1351 ? ETH_MDIO_SUPPORTS_C22 1352 : ETH_MDIO_SUPPORTS_C45); 1353 } else { 1354 base->phy_address = 255; 1355 base->mdio_support = 0; 1356 } 1357 1358 fw_caps_to_lmm(pi->port_type, pi->link_cfg.supported, 1359 link_ksettings->link_modes.supported); 1360 fw_caps_to_lmm(pi->port_type, pi->link_cfg.advertising, 1361 link_ksettings->link_modes.advertising); 1362 fw_caps_to_lmm(pi->port_type, pi->link_cfg.lp_advertising, 1363 link_ksettings->link_modes.lp_advertising); 1364 1365 if (netif_carrier_ok(dev)) { 1366 base->speed = pi->link_cfg.speed; 1367 base->duplex = DUPLEX_FULL; 1368 } else { 1369 base->speed = SPEED_UNKNOWN; 1370 base->duplex = DUPLEX_UNKNOWN; 1371 } 1372 1373 base->autoneg = pi->link_cfg.autoneg; 1374 if (pi->link_cfg.supported & FW_PORT_CAP_ANEG) 1375 ethtool_link_ksettings_add_link_mode(link_ksettings, 1376 supported, Autoneg); 1377 if (pi->link_cfg.autoneg) 1378 ethtool_link_ksettings_add_link_mode(link_ksettings, 1379 advertising, Autoneg); 1380 1381 return 0; 1382 } 1383 1384 /* 1385 * Return our driver information. 1386 */ 1387 static void cxgb4vf_get_drvinfo(struct net_device *dev, 1388 struct ethtool_drvinfo *drvinfo) 1389 { 1390 struct adapter *adapter = netdev2adap(dev); 1391 1392 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver)); 1393 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version)); 1394 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)), 1395 sizeof(drvinfo->bus_info)); 1396 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 1397 "%u.%u.%u.%u, TP %u.%u.%u.%u", 1398 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev), 1399 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev), 1400 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev), 1401 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev), 1402 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev), 1403 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev), 1404 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev), 1405 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev)); 1406 } 1407 1408 /* 1409 * Return current adapter message level. 1410 */ 1411 static u32 cxgb4vf_get_msglevel(struct net_device *dev) 1412 { 1413 return netdev2adap(dev)->msg_enable; 1414 } 1415 1416 /* 1417 * Set current adapter message level. 1418 */ 1419 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel) 1420 { 1421 netdev2adap(dev)->msg_enable = msglevel; 1422 } 1423 1424 /* 1425 * Return the device's current Queue Set ring size parameters along with the 1426 * allowed maximum values. Since ethtool doesn't understand the concept of 1427 * multi-queue devices, we just return the current values associated with the 1428 * first Queue Set. 1429 */ 1430 static void cxgb4vf_get_ringparam(struct net_device *dev, 1431 struct ethtool_ringparam *rp) 1432 { 1433 const struct port_info *pi = netdev_priv(dev); 1434 const struct sge *s = &pi->adapter->sge; 1435 1436 rp->rx_max_pending = MAX_RX_BUFFERS; 1437 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES; 1438 rp->rx_jumbo_max_pending = 0; 1439 rp->tx_max_pending = MAX_TXQ_ENTRIES; 1440 1441 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID; 1442 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; 1443 rp->rx_jumbo_pending = 0; 1444 rp->tx_pending = s->ethtxq[pi->first_qset].q.size; 1445 } 1446 1447 /* 1448 * Set the Queue Set ring size parameters for the device. Again, since 1449 * ethtool doesn't allow for the concept of multiple queues per device, we'll 1450 * apply these new values across all of the Queue Sets associated with the 1451 * device -- after vetting them of course! 1452 */ 1453 static int cxgb4vf_set_ringparam(struct net_device *dev, 1454 struct ethtool_ringparam *rp) 1455 { 1456 const struct port_info *pi = netdev_priv(dev); 1457 struct adapter *adapter = pi->adapter; 1458 struct sge *s = &adapter->sge; 1459 int qs; 1460 1461 if (rp->rx_pending > MAX_RX_BUFFERS || 1462 rp->rx_jumbo_pending || 1463 rp->tx_pending > MAX_TXQ_ENTRIES || 1464 rp->rx_mini_pending > MAX_RSPQ_ENTRIES || 1465 rp->rx_mini_pending < MIN_RSPQ_ENTRIES || 1466 rp->rx_pending < MIN_FL_ENTRIES || 1467 rp->tx_pending < MIN_TXQ_ENTRIES) 1468 return -EINVAL; 1469 1470 if (adapter->flags & FULL_INIT_DONE) 1471 return -EBUSY; 1472 1473 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) { 1474 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID; 1475 s->ethrxq[qs].rspq.size = rp->rx_mini_pending; 1476 s->ethtxq[qs].q.size = rp->tx_pending; 1477 } 1478 return 0; 1479 } 1480 1481 /* 1482 * Return the interrupt holdoff timer and count for the first Queue Set on the 1483 * device. Our extension ioctl() (the cxgbtool interface) allows the 1484 * interrupt holdoff timer to be read on all of the device's Queue Sets. 1485 */ 1486 static int cxgb4vf_get_coalesce(struct net_device *dev, 1487 struct ethtool_coalesce *coalesce) 1488 { 1489 const struct port_info *pi = netdev_priv(dev); 1490 const struct adapter *adapter = pi->adapter; 1491 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq; 1492 1493 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq); 1494 coalesce->rx_max_coalesced_frames = 1495 ((rspq->intr_params & QINTR_CNT_EN_F) 1496 ? adapter->sge.counter_val[rspq->pktcnt_idx] 1497 : 0); 1498 return 0; 1499 } 1500 1501 /* 1502 * Set the RX interrupt holdoff timer and count for the first Queue Set on the 1503 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set 1504 * the interrupt holdoff timer on any of the device's Queue Sets. 1505 */ 1506 static int cxgb4vf_set_coalesce(struct net_device *dev, 1507 struct ethtool_coalesce *coalesce) 1508 { 1509 const struct port_info *pi = netdev_priv(dev); 1510 struct adapter *adapter = pi->adapter; 1511 1512 return set_rxq_intr_params(adapter, 1513 &adapter->sge.ethrxq[pi->first_qset].rspq, 1514 coalesce->rx_coalesce_usecs, 1515 coalesce->rx_max_coalesced_frames); 1516 } 1517 1518 /* 1519 * Report current port link pause parameter settings. 1520 */ 1521 static void cxgb4vf_get_pauseparam(struct net_device *dev, 1522 struct ethtool_pauseparam *pauseparam) 1523 { 1524 struct port_info *pi = netdev_priv(dev); 1525 1526 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; 1527 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0; 1528 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0; 1529 } 1530 1531 /* 1532 * Identify the port by blinking the port's LED. 1533 */ 1534 static int cxgb4vf_phys_id(struct net_device *dev, 1535 enum ethtool_phys_id_state state) 1536 { 1537 unsigned int val; 1538 struct port_info *pi = netdev_priv(dev); 1539 1540 if (state == ETHTOOL_ID_ACTIVE) 1541 val = 0xffff; 1542 else if (state == ETHTOOL_ID_INACTIVE) 1543 val = 0; 1544 else 1545 return -EINVAL; 1546 1547 return t4vf_identify_port(pi->adapter, pi->viid, val); 1548 } 1549 1550 /* 1551 * Port stats maintained per queue of the port. 1552 */ 1553 struct queue_port_stats { 1554 u64 tso; 1555 u64 tx_csum; 1556 u64 rx_csum; 1557 u64 vlan_ex; 1558 u64 vlan_ins; 1559 u64 lro_pkts; 1560 u64 lro_merged; 1561 }; 1562 1563 /* 1564 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that 1565 * these need to match the order of statistics returned by 1566 * t4vf_get_port_stats(). 1567 */ 1568 static const char stats_strings[][ETH_GSTRING_LEN] = { 1569 /* 1570 * These must match the layout of the t4vf_port_stats structure. 1571 */ 1572 "TxBroadcastBytes ", 1573 "TxBroadcastFrames ", 1574 "TxMulticastBytes ", 1575 "TxMulticastFrames ", 1576 "TxUnicastBytes ", 1577 "TxUnicastFrames ", 1578 "TxDroppedFrames ", 1579 "TxOffloadBytes ", 1580 "TxOffloadFrames ", 1581 "RxBroadcastBytes ", 1582 "RxBroadcastFrames ", 1583 "RxMulticastBytes ", 1584 "RxMulticastFrames ", 1585 "RxUnicastBytes ", 1586 "RxUnicastFrames ", 1587 "RxErrorFrames ", 1588 1589 /* 1590 * These are accumulated per-queue statistics and must match the 1591 * order of the fields in the queue_port_stats structure. 1592 */ 1593 "TSO ", 1594 "TxCsumOffload ", 1595 "RxCsumGood ", 1596 "VLANextractions ", 1597 "VLANinsertions ", 1598 "GROPackets ", 1599 "GROMerged ", 1600 }; 1601 1602 /* 1603 * Return the number of statistics in the specified statistics set. 1604 */ 1605 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset) 1606 { 1607 switch (sset) { 1608 case ETH_SS_STATS: 1609 return ARRAY_SIZE(stats_strings); 1610 default: 1611 return -EOPNOTSUPP; 1612 } 1613 /*NOTREACHED*/ 1614 } 1615 1616 /* 1617 * Return the strings for the specified statistics set. 1618 */ 1619 static void cxgb4vf_get_strings(struct net_device *dev, 1620 u32 sset, 1621 u8 *data) 1622 { 1623 switch (sset) { 1624 case ETH_SS_STATS: 1625 memcpy(data, stats_strings, sizeof(stats_strings)); 1626 break; 1627 } 1628 } 1629 1630 /* 1631 * Small utility routine to accumulate queue statistics across the queues of 1632 * a "port". 1633 */ 1634 static void collect_sge_port_stats(const struct adapter *adapter, 1635 const struct port_info *pi, 1636 struct queue_port_stats *stats) 1637 { 1638 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset]; 1639 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 1640 int qs; 1641 1642 memset(stats, 0, sizeof(*stats)); 1643 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 1644 stats->tso += txq->tso; 1645 stats->tx_csum += txq->tx_cso; 1646 stats->rx_csum += rxq->stats.rx_cso; 1647 stats->vlan_ex += rxq->stats.vlan_ex; 1648 stats->vlan_ins += txq->vlan_ins; 1649 stats->lro_pkts += rxq->stats.lro_pkts; 1650 stats->lro_merged += rxq->stats.lro_merged; 1651 } 1652 } 1653 1654 /* 1655 * Return the ETH_SS_STATS statistics set. 1656 */ 1657 static void cxgb4vf_get_ethtool_stats(struct net_device *dev, 1658 struct ethtool_stats *stats, 1659 u64 *data) 1660 { 1661 struct port_info *pi = netdev2pinfo(dev); 1662 struct adapter *adapter = pi->adapter; 1663 int err = t4vf_get_port_stats(adapter, pi->pidx, 1664 (struct t4vf_port_stats *)data); 1665 if (err) 1666 memset(data, 0, sizeof(struct t4vf_port_stats)); 1667 1668 data += sizeof(struct t4vf_port_stats) / sizeof(u64); 1669 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); 1670 } 1671 1672 /* 1673 * Return the size of our register map. 1674 */ 1675 static int cxgb4vf_get_regs_len(struct net_device *dev) 1676 { 1677 return T4VF_REGMAP_SIZE; 1678 } 1679 1680 /* 1681 * Dump a block of registers, start to end inclusive, into a buffer. 1682 */ 1683 static void reg_block_dump(struct adapter *adapter, void *regbuf, 1684 unsigned int start, unsigned int end) 1685 { 1686 u32 *bp = regbuf + start - T4VF_REGMAP_START; 1687 1688 for ( ; start <= end; start += sizeof(u32)) { 1689 /* 1690 * Avoid reading the Mailbox Control register since that 1691 * can trigger a Mailbox Ownership Arbitration cycle and 1692 * interfere with communication with the firmware. 1693 */ 1694 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL) 1695 *bp++ = 0xffff; 1696 else 1697 *bp++ = t4_read_reg(adapter, start); 1698 } 1699 } 1700 1701 /* 1702 * Copy our entire register map into the provided buffer. 1703 */ 1704 static void cxgb4vf_get_regs(struct net_device *dev, 1705 struct ethtool_regs *regs, 1706 void *regbuf) 1707 { 1708 struct adapter *adapter = netdev2adap(dev); 1709 1710 regs->version = mk_adap_vers(adapter); 1711 1712 /* 1713 * Fill in register buffer with our register map. 1714 */ 1715 memset(regbuf, 0, T4VF_REGMAP_SIZE); 1716 1717 reg_block_dump(adapter, regbuf, 1718 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST, 1719 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST); 1720 reg_block_dump(adapter, regbuf, 1721 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST, 1722 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST); 1723 1724 /* T5 adds new registers in the PL Register map. 1725 */ 1726 reg_block_dump(adapter, regbuf, 1727 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST, 1728 T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip) 1729 ? PL_VF_WHOAMI_A : PL_VF_REVISION_A)); 1730 reg_block_dump(adapter, regbuf, 1731 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST, 1732 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST); 1733 1734 reg_block_dump(adapter, regbuf, 1735 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST, 1736 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST); 1737 } 1738 1739 /* 1740 * Report current Wake On LAN settings. 1741 */ 1742 static void cxgb4vf_get_wol(struct net_device *dev, 1743 struct ethtool_wolinfo *wol) 1744 { 1745 wol->supported = 0; 1746 wol->wolopts = 0; 1747 memset(&wol->sopass, 0, sizeof(wol->sopass)); 1748 } 1749 1750 /* 1751 * TCP Segmentation Offload flags which we support. 1752 */ 1753 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1754 1755 static const struct ethtool_ops cxgb4vf_ethtool_ops = { 1756 .get_link_ksettings = cxgb4vf_get_link_ksettings, 1757 .get_drvinfo = cxgb4vf_get_drvinfo, 1758 .get_msglevel = cxgb4vf_get_msglevel, 1759 .set_msglevel = cxgb4vf_set_msglevel, 1760 .get_ringparam = cxgb4vf_get_ringparam, 1761 .set_ringparam = cxgb4vf_set_ringparam, 1762 .get_coalesce = cxgb4vf_get_coalesce, 1763 .set_coalesce = cxgb4vf_set_coalesce, 1764 .get_pauseparam = cxgb4vf_get_pauseparam, 1765 .get_link = ethtool_op_get_link, 1766 .get_strings = cxgb4vf_get_strings, 1767 .set_phys_id = cxgb4vf_phys_id, 1768 .get_sset_count = cxgb4vf_get_sset_count, 1769 .get_ethtool_stats = cxgb4vf_get_ethtool_stats, 1770 .get_regs_len = cxgb4vf_get_regs_len, 1771 .get_regs = cxgb4vf_get_regs, 1772 .get_wol = cxgb4vf_get_wol, 1773 }; 1774 1775 /* 1776 * /sys/kernel/debug/cxgb4vf support code and data. 1777 * ================================================ 1778 */ 1779 1780 /* 1781 * Show Firmware Mailbox Command/Reply Log 1782 * 1783 * Note that we don't do any locking when dumping the Firmware Mailbox Log so 1784 * it's possible that we can catch things during a log update and therefore 1785 * see partially corrupted log entries. But i9t's probably Good Enough(tm). 1786 * If we ever decide that we want to make sure that we're dumping a coherent 1787 * log, we'd need to perform locking in the mailbox logging and in 1788 * mboxlog_open() where we'd need to grab the entire mailbox log in one go 1789 * like we do for the Firmware Device Log. But as stated above, meh ... 1790 */ 1791 static int mboxlog_show(struct seq_file *seq, void *v) 1792 { 1793 struct adapter *adapter = seq->private; 1794 struct mbox_cmd_log *log = adapter->mbox_log; 1795 struct mbox_cmd *entry; 1796 int entry_idx, i; 1797 1798 if (v == SEQ_START_TOKEN) { 1799 seq_printf(seq, 1800 "%10s %15s %5s %5s %s\n", 1801 "Seq#", "Tstamp", "Atime", "Etime", 1802 "Command/Reply"); 1803 return 0; 1804 } 1805 1806 entry_idx = log->cursor + ((uintptr_t)v - 2); 1807 if (entry_idx >= log->size) 1808 entry_idx -= log->size; 1809 entry = mbox_cmd_log_entry(log, entry_idx); 1810 1811 /* skip over unused entries */ 1812 if (entry->timestamp == 0) 1813 return 0; 1814 1815 seq_printf(seq, "%10u %15llu %5d %5d", 1816 entry->seqno, entry->timestamp, 1817 entry->access, entry->execute); 1818 for (i = 0; i < MBOX_LEN / 8; i++) { 1819 u64 flit = entry->cmd[i]; 1820 u32 hi = (u32)(flit >> 32); 1821 u32 lo = (u32)flit; 1822 1823 seq_printf(seq, " %08x %08x", hi, lo); 1824 } 1825 seq_puts(seq, "\n"); 1826 return 0; 1827 } 1828 1829 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos) 1830 { 1831 struct adapter *adapter = seq->private; 1832 struct mbox_cmd_log *log = adapter->mbox_log; 1833 1834 return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL); 1835 } 1836 1837 static void *mboxlog_start(struct seq_file *seq, loff_t *pos) 1838 { 1839 return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN; 1840 } 1841 1842 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos) 1843 { 1844 ++*pos; 1845 return mboxlog_get_idx(seq, *pos); 1846 } 1847 1848 static void mboxlog_stop(struct seq_file *seq, void *v) 1849 { 1850 } 1851 1852 static const struct seq_operations mboxlog_seq_ops = { 1853 .start = mboxlog_start, 1854 .next = mboxlog_next, 1855 .stop = mboxlog_stop, 1856 .show = mboxlog_show 1857 }; 1858 1859 static int mboxlog_open(struct inode *inode, struct file *file) 1860 { 1861 int res = seq_open(file, &mboxlog_seq_ops); 1862 1863 if (!res) { 1864 struct seq_file *seq = file->private_data; 1865 1866 seq->private = inode->i_private; 1867 } 1868 return res; 1869 } 1870 1871 static const struct file_operations mboxlog_fops = { 1872 .owner = THIS_MODULE, 1873 .open = mboxlog_open, 1874 .read = seq_read, 1875 .llseek = seq_lseek, 1876 .release = seq_release, 1877 }; 1878 1879 /* 1880 * Show SGE Queue Set information. We display QPL Queues Sets per line. 1881 */ 1882 #define QPL 4 1883 1884 static int sge_qinfo_show(struct seq_file *seq, void *v) 1885 { 1886 struct adapter *adapter = seq->private; 1887 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 1888 int qs, r = (uintptr_t)v - 1; 1889 1890 if (r) 1891 seq_putc(seq, '\n'); 1892 1893 #define S3(fmt_spec, s, v) \ 1894 do {\ 1895 seq_printf(seq, "%-12s", s); \ 1896 for (qs = 0; qs < n; ++qs) \ 1897 seq_printf(seq, " %16" fmt_spec, v); \ 1898 seq_putc(seq, '\n'); \ 1899 } while (0) 1900 #define S(s, v) S3("s", s, v) 1901 #define T(s, v) S3("u", s, txq[qs].v) 1902 #define R(s, v) S3("u", s, rxq[qs].v) 1903 1904 if (r < eth_entries) { 1905 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 1906 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 1907 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 1908 1909 S("QType:", "Ethernet"); 1910 S("Interface:", 1911 (rxq[qs].rspq.netdev 1912 ? rxq[qs].rspq.netdev->name 1913 : "N/A")); 1914 S3("d", "Port:", 1915 (rxq[qs].rspq.netdev 1916 ? ((struct port_info *) 1917 netdev_priv(rxq[qs].rspq.netdev))->port_id 1918 : -1)); 1919 T("TxQ ID:", q.abs_id); 1920 T("TxQ size:", q.size); 1921 T("TxQ inuse:", q.in_use); 1922 T("TxQ PIdx:", q.pidx); 1923 T("TxQ CIdx:", q.cidx); 1924 R("RspQ ID:", rspq.abs_id); 1925 R("RspQ size:", rspq.size); 1926 R("RspQE size:", rspq.iqe_len); 1927 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq)); 1928 S3("u", "Intr pktcnt:", 1929 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]); 1930 R("RspQ CIdx:", rspq.cidx); 1931 R("RspQ Gen:", rspq.gen); 1932 R("FL ID:", fl.abs_id); 1933 R("FL size:", fl.size - MIN_FL_RESID); 1934 R("FL avail:", fl.avail); 1935 R("FL PIdx:", fl.pidx); 1936 R("FL CIdx:", fl.cidx); 1937 return 0; 1938 } 1939 1940 r -= eth_entries; 1941 if (r == 0) { 1942 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 1943 1944 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue"); 1945 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id); 1946 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 1947 qtimer_val(adapter, evtq)); 1948 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 1949 adapter->sge.counter_val[evtq->pktcnt_idx]); 1950 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx); 1951 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen); 1952 } else if (r == 1) { 1953 const struct sge_rspq *intrq = &adapter->sge.intrq; 1954 1955 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue"); 1956 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id); 1957 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 1958 qtimer_val(adapter, intrq)); 1959 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 1960 adapter->sge.counter_val[intrq->pktcnt_idx]); 1961 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx); 1962 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen); 1963 } 1964 1965 #undef R 1966 #undef T 1967 #undef S 1968 #undef S3 1969 1970 return 0; 1971 } 1972 1973 /* 1974 * Return the number of "entries" in our "file". We group the multi-Queue 1975 * sections with QPL Queue Sets per "entry". The sections of the output are: 1976 * 1977 * Ethernet RX/TX Queue Sets 1978 * Firmware Event Queue 1979 * Forwarded Interrupt Queue (if in MSI mode) 1980 */ 1981 static int sge_queue_entries(const struct adapter *adapter) 1982 { 1983 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 1984 ((adapter->flags & USING_MSI) != 0); 1985 } 1986 1987 static void *sge_queue_start(struct seq_file *seq, loff_t *pos) 1988 { 1989 int entries = sge_queue_entries(seq->private); 1990 1991 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 1992 } 1993 1994 static void sge_queue_stop(struct seq_file *seq, void *v) 1995 { 1996 } 1997 1998 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos) 1999 { 2000 int entries = sge_queue_entries(seq->private); 2001 2002 ++*pos; 2003 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2004 } 2005 2006 static const struct seq_operations sge_qinfo_seq_ops = { 2007 .start = sge_queue_start, 2008 .next = sge_queue_next, 2009 .stop = sge_queue_stop, 2010 .show = sge_qinfo_show 2011 }; 2012 2013 static int sge_qinfo_open(struct inode *inode, struct file *file) 2014 { 2015 int res = seq_open(file, &sge_qinfo_seq_ops); 2016 2017 if (!res) { 2018 struct seq_file *seq = file->private_data; 2019 seq->private = inode->i_private; 2020 } 2021 return res; 2022 } 2023 2024 static const struct file_operations sge_qinfo_debugfs_fops = { 2025 .owner = THIS_MODULE, 2026 .open = sge_qinfo_open, 2027 .read = seq_read, 2028 .llseek = seq_lseek, 2029 .release = seq_release, 2030 }; 2031 2032 /* 2033 * Show SGE Queue Set statistics. We display QPL Queues Sets per line. 2034 */ 2035 #define QPL 4 2036 2037 static int sge_qstats_show(struct seq_file *seq, void *v) 2038 { 2039 struct adapter *adapter = seq->private; 2040 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2041 int qs, r = (uintptr_t)v - 1; 2042 2043 if (r) 2044 seq_putc(seq, '\n'); 2045 2046 #define S3(fmt, s, v) \ 2047 do { \ 2048 seq_printf(seq, "%-16s", s); \ 2049 for (qs = 0; qs < n; ++qs) \ 2050 seq_printf(seq, " %8" fmt, v); \ 2051 seq_putc(seq, '\n'); \ 2052 } while (0) 2053 #define S(s, v) S3("s", s, v) 2054 2055 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v) 2056 #define T(s, v) T3("lu", s, v) 2057 2058 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v) 2059 #define R(s, v) R3("lu", s, v) 2060 2061 if (r < eth_entries) { 2062 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2063 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2064 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2065 2066 S("QType:", "Ethernet"); 2067 S("Interface:", 2068 (rxq[qs].rspq.netdev 2069 ? rxq[qs].rspq.netdev->name 2070 : "N/A")); 2071 R3("u", "RspQNullInts:", rspq.unhandled_irqs); 2072 R("RxPackets:", stats.pkts); 2073 R("RxCSO:", stats.rx_cso); 2074 R("VLANxtract:", stats.vlan_ex); 2075 R("LROmerged:", stats.lro_merged); 2076 R("LROpackets:", stats.lro_pkts); 2077 R("RxDrops:", stats.rx_drops); 2078 T("TSO:", tso); 2079 T("TxCSO:", tx_cso); 2080 T("VLANins:", vlan_ins); 2081 T("TxQFull:", q.stops); 2082 T("TxQRestarts:", q.restarts); 2083 T("TxMapErr:", mapping_err); 2084 R("FLAllocErr:", fl.alloc_failed); 2085 R("FLLrgAlcErr:", fl.large_alloc_failed); 2086 R("FLStarving:", fl.starving); 2087 return 0; 2088 } 2089 2090 r -= eth_entries; 2091 if (r == 0) { 2092 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2093 2094 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue"); 2095 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2096 evtq->unhandled_irqs); 2097 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx); 2098 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen); 2099 } else if (r == 1) { 2100 const struct sge_rspq *intrq = &adapter->sge.intrq; 2101 2102 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue"); 2103 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2104 intrq->unhandled_irqs); 2105 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx); 2106 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen); 2107 } 2108 2109 #undef R 2110 #undef T 2111 #undef S 2112 #undef R3 2113 #undef T3 2114 #undef S3 2115 2116 return 0; 2117 } 2118 2119 /* 2120 * Return the number of "entries" in our "file". We group the multi-Queue 2121 * sections with QPL Queue Sets per "entry". The sections of the output are: 2122 * 2123 * Ethernet RX/TX Queue Sets 2124 * Firmware Event Queue 2125 * Forwarded Interrupt Queue (if in MSI mode) 2126 */ 2127 static int sge_qstats_entries(const struct adapter *adapter) 2128 { 2129 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2130 ((adapter->flags & USING_MSI) != 0); 2131 } 2132 2133 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos) 2134 { 2135 int entries = sge_qstats_entries(seq->private); 2136 2137 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2138 } 2139 2140 static void sge_qstats_stop(struct seq_file *seq, void *v) 2141 { 2142 } 2143 2144 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos) 2145 { 2146 int entries = sge_qstats_entries(seq->private); 2147 2148 (*pos)++; 2149 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2150 } 2151 2152 static const struct seq_operations sge_qstats_seq_ops = { 2153 .start = sge_qstats_start, 2154 .next = sge_qstats_next, 2155 .stop = sge_qstats_stop, 2156 .show = sge_qstats_show 2157 }; 2158 2159 static int sge_qstats_open(struct inode *inode, struct file *file) 2160 { 2161 int res = seq_open(file, &sge_qstats_seq_ops); 2162 2163 if (res == 0) { 2164 struct seq_file *seq = file->private_data; 2165 seq->private = inode->i_private; 2166 } 2167 return res; 2168 } 2169 2170 static const struct file_operations sge_qstats_proc_fops = { 2171 .owner = THIS_MODULE, 2172 .open = sge_qstats_open, 2173 .read = seq_read, 2174 .llseek = seq_lseek, 2175 .release = seq_release, 2176 }; 2177 2178 /* 2179 * Show PCI-E SR-IOV Virtual Function Resource Limits. 2180 */ 2181 static int resources_show(struct seq_file *seq, void *v) 2182 { 2183 struct adapter *adapter = seq->private; 2184 struct vf_resources *vfres = &adapter->params.vfres; 2185 2186 #define S(desc, fmt, var) \ 2187 seq_printf(seq, "%-60s " fmt "\n", \ 2188 desc " (" #var "):", vfres->var) 2189 2190 S("Virtual Interfaces", "%d", nvi); 2191 S("Egress Queues", "%d", neq); 2192 S("Ethernet Control", "%d", nethctrl); 2193 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint); 2194 S("Ingress Queues", "%d", niq); 2195 S("Traffic Class", "%d", tc); 2196 S("Port Access Rights Mask", "%#x", pmask); 2197 S("MAC Address Filters", "%d", nexactf); 2198 S("Firmware Command Read Capabilities", "%#x", r_caps); 2199 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps); 2200 2201 #undef S 2202 2203 return 0; 2204 } 2205 2206 static int resources_open(struct inode *inode, struct file *file) 2207 { 2208 return single_open(file, resources_show, inode->i_private); 2209 } 2210 2211 static const struct file_operations resources_proc_fops = { 2212 .owner = THIS_MODULE, 2213 .open = resources_open, 2214 .read = seq_read, 2215 .llseek = seq_lseek, 2216 .release = single_release, 2217 }; 2218 2219 /* 2220 * Show Virtual Interfaces. 2221 */ 2222 static int interfaces_show(struct seq_file *seq, void *v) 2223 { 2224 if (v == SEQ_START_TOKEN) { 2225 seq_puts(seq, "Interface Port VIID\n"); 2226 } else { 2227 struct adapter *adapter = seq->private; 2228 int pidx = (uintptr_t)v - 2; 2229 struct net_device *dev = adapter->port[pidx]; 2230 struct port_info *pi = netdev_priv(dev); 2231 2232 seq_printf(seq, "%9s %4d %#5x\n", 2233 dev->name, pi->port_id, pi->viid); 2234 } 2235 return 0; 2236 } 2237 2238 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos) 2239 { 2240 return pos <= adapter->params.nports 2241 ? (void *)(uintptr_t)(pos + 1) 2242 : NULL; 2243 } 2244 2245 static void *interfaces_start(struct seq_file *seq, loff_t *pos) 2246 { 2247 return *pos 2248 ? interfaces_get_idx(seq->private, *pos) 2249 : SEQ_START_TOKEN; 2250 } 2251 2252 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos) 2253 { 2254 (*pos)++; 2255 return interfaces_get_idx(seq->private, *pos); 2256 } 2257 2258 static void interfaces_stop(struct seq_file *seq, void *v) 2259 { 2260 } 2261 2262 static const struct seq_operations interfaces_seq_ops = { 2263 .start = interfaces_start, 2264 .next = interfaces_next, 2265 .stop = interfaces_stop, 2266 .show = interfaces_show 2267 }; 2268 2269 static int interfaces_open(struct inode *inode, struct file *file) 2270 { 2271 int res = seq_open(file, &interfaces_seq_ops); 2272 2273 if (res == 0) { 2274 struct seq_file *seq = file->private_data; 2275 seq->private = inode->i_private; 2276 } 2277 return res; 2278 } 2279 2280 static const struct file_operations interfaces_proc_fops = { 2281 .owner = THIS_MODULE, 2282 .open = interfaces_open, 2283 .read = seq_read, 2284 .llseek = seq_lseek, 2285 .release = seq_release, 2286 }; 2287 2288 /* 2289 * /sys/kernel/debugfs/cxgb4vf/ files list. 2290 */ 2291 struct cxgb4vf_debugfs_entry { 2292 const char *name; /* name of debugfs node */ 2293 umode_t mode; /* file system mode */ 2294 const struct file_operations *fops; 2295 }; 2296 2297 static struct cxgb4vf_debugfs_entry debugfs_files[] = { 2298 { "mboxlog", S_IRUGO, &mboxlog_fops }, 2299 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops }, 2300 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops }, 2301 { "resources", S_IRUGO, &resources_proc_fops }, 2302 { "interfaces", S_IRUGO, &interfaces_proc_fops }, 2303 }; 2304 2305 /* 2306 * Module and device initialization and cleanup code. 2307 * ================================================== 2308 */ 2309 2310 /* 2311 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the 2312 * directory (debugfs_root) has already been set up. 2313 */ 2314 static int setup_debugfs(struct adapter *adapter) 2315 { 2316 int i; 2317 2318 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2319 2320 /* 2321 * Debugfs support is best effort. 2322 */ 2323 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) 2324 (void)debugfs_create_file(debugfs_files[i].name, 2325 debugfs_files[i].mode, 2326 adapter->debugfs_root, 2327 (void *)adapter, 2328 debugfs_files[i].fops); 2329 2330 return 0; 2331 } 2332 2333 /* 2334 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave 2335 * it to our caller to tear down the directory (debugfs_root). 2336 */ 2337 static void cleanup_debugfs(struct adapter *adapter) 2338 { 2339 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2340 2341 /* 2342 * Unlike our sister routine cleanup_proc(), we don't need to remove 2343 * individual entries because a call will be made to 2344 * debugfs_remove_recursive(). We just need to clean up any ancillary 2345 * persistent state. 2346 */ 2347 /* nothing to do */ 2348 } 2349 2350 /* Figure out how many Ports and Queue Sets we can support. This depends on 2351 * knowing our Virtual Function Resources and may be called a second time if 2352 * we fall back from MSI-X to MSI Interrupt Mode. 2353 */ 2354 static void size_nports_qsets(struct adapter *adapter) 2355 { 2356 struct vf_resources *vfres = &adapter->params.vfres; 2357 unsigned int ethqsets, pmask_nports; 2358 2359 /* The number of "ports" which we support is equal to the number of 2360 * Virtual Interfaces with which we've been provisioned. 2361 */ 2362 adapter->params.nports = vfres->nvi; 2363 if (adapter->params.nports > MAX_NPORTS) { 2364 dev_warn(adapter->pdev_dev, "only using %d of %d maximum" 2365 " allowed virtual interfaces\n", MAX_NPORTS, 2366 adapter->params.nports); 2367 adapter->params.nports = MAX_NPORTS; 2368 } 2369 2370 /* We may have been provisioned with more VIs than the number of 2371 * ports we're allowed to access (our Port Access Rights Mask). 2372 * This is obviously a configuration conflict but we don't want to 2373 * crash the kernel or anything silly just because of that. 2374 */ 2375 pmask_nports = hweight32(adapter->params.vfres.pmask); 2376 if (pmask_nports < adapter->params.nports) { 2377 dev_warn(adapter->pdev_dev, "only using %d of %d provisioned" 2378 " virtual interfaces; limited by Port Access Rights" 2379 " mask %#x\n", pmask_nports, adapter->params.nports, 2380 adapter->params.vfres.pmask); 2381 adapter->params.nports = pmask_nports; 2382 } 2383 2384 /* We need to reserve an Ingress Queue for the Asynchronous Firmware 2385 * Event Queue. And if we're using MSI Interrupts, we'll also need to 2386 * reserve an Ingress Queue for a Forwarded Interrupts. 2387 * 2388 * The rest of the FL/Intr-capable ingress queues will be matched up 2389 * one-for-one with Ethernet/Control egress queues in order to form 2390 * "Queue Sets" which will be aportioned between the "ports". For 2391 * each Queue Set, we'll need the ability to allocate two Egress 2392 * Contexts -- one for the Ingress Queue Free List and one for the TX 2393 * Ethernet Queue. 2394 * 2395 * Note that even if we're currently configured to use MSI-X 2396 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded 2397 * to MSI Interrupts if we can't get enough MSI-X Interrupts. If that 2398 * happens we'll need to adjust things later. 2399 */ 2400 ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI); 2401 if (vfres->nethctrl != ethqsets) 2402 ethqsets = min(vfres->nethctrl, ethqsets); 2403 if (vfres->neq < ethqsets*2) 2404 ethqsets = vfres->neq/2; 2405 if (ethqsets > MAX_ETH_QSETS) 2406 ethqsets = MAX_ETH_QSETS; 2407 adapter->sge.max_ethqsets = ethqsets; 2408 2409 if (adapter->sge.max_ethqsets < adapter->params.nports) { 2410 dev_warn(adapter->pdev_dev, "only using %d of %d available" 2411 " virtual interfaces (too few Queue Sets)\n", 2412 adapter->sge.max_ethqsets, adapter->params.nports); 2413 adapter->params.nports = adapter->sge.max_ethqsets; 2414 } 2415 } 2416 2417 /* 2418 * Perform early "adapter" initialization. This is where we discover what 2419 * adapter parameters we're going to be using and initialize basic adapter 2420 * hardware support. 2421 */ 2422 static int adap_init0(struct adapter *adapter) 2423 { 2424 struct sge_params *sge_params = &adapter->params.sge; 2425 struct sge *s = &adapter->sge; 2426 int err; 2427 u32 param, val = 0; 2428 2429 /* 2430 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux 2431 * 2.6.31 and later we can't call pci_reset_function() in order to 2432 * issue an FLR because of a self- deadlock on the device semaphore. 2433 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the 2434 * cases where they're needed -- for instance, some versions of KVM 2435 * fail to reset "Assigned Devices" when the VM reboots. Therefore we 2436 * use the firmware based reset in order to reset any per function 2437 * state. 2438 */ 2439 err = t4vf_fw_reset(adapter); 2440 if (err < 0) { 2441 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err); 2442 return err; 2443 } 2444 2445 /* 2446 * Grab basic operational parameters. These will predominantly have 2447 * been set up by the Physical Function Driver or will be hard coded 2448 * into the adapter. We just have to live with them ... Note that 2449 * we _must_ get our VPD parameters before our SGE parameters because 2450 * we need to know the adapter's core clock from the VPD in order to 2451 * properly decode the SGE Timer Values. 2452 */ 2453 err = t4vf_get_dev_params(adapter); 2454 if (err) { 2455 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2456 " device parameters: err=%d\n", err); 2457 return err; 2458 } 2459 err = t4vf_get_vpd_params(adapter); 2460 if (err) { 2461 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2462 " VPD parameters: err=%d\n", err); 2463 return err; 2464 } 2465 err = t4vf_get_sge_params(adapter); 2466 if (err) { 2467 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2468 " SGE parameters: err=%d\n", err); 2469 return err; 2470 } 2471 err = t4vf_get_rss_glb_config(adapter); 2472 if (err) { 2473 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2474 " RSS parameters: err=%d\n", err); 2475 return err; 2476 } 2477 if (adapter->params.rss.mode != 2478 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 2479 dev_err(adapter->pdev_dev, "unable to operate with global RSS" 2480 " mode %d\n", adapter->params.rss.mode); 2481 return -EINVAL; 2482 } 2483 err = t4vf_sge_init(adapter); 2484 if (err) { 2485 dev_err(adapter->pdev_dev, "unable to use adapter parameters:" 2486 " err=%d\n", err); 2487 return err; 2488 } 2489 2490 /* If we're running on newer firmware, let it know that we're 2491 * prepared to deal with encapsulated CPL messages. Older 2492 * firmware won't understand this and we'll just get 2493 * unencapsulated messages ... 2494 */ 2495 param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2496 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP); 2497 val = 1; 2498 (void) t4vf_set_params(adapter, 1, ¶m, &val); 2499 2500 /* 2501 * Retrieve our RX interrupt holdoff timer values and counter 2502 * threshold values from the SGE parameters. 2503 */ 2504 s->timer_val[0] = core_ticks_to_us(adapter, 2505 TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1)); 2506 s->timer_val[1] = core_ticks_to_us(adapter, 2507 TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1)); 2508 s->timer_val[2] = core_ticks_to_us(adapter, 2509 TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3)); 2510 s->timer_val[3] = core_ticks_to_us(adapter, 2511 TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3)); 2512 s->timer_val[4] = core_ticks_to_us(adapter, 2513 TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5)); 2514 s->timer_val[5] = core_ticks_to_us(adapter, 2515 TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5)); 2516 2517 s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold); 2518 s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold); 2519 s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold); 2520 s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold); 2521 2522 /* 2523 * Grab our Virtual Interface resource allocation, extract the 2524 * features that we're interested in and do a bit of sanity testing on 2525 * what we discover. 2526 */ 2527 err = t4vf_get_vfres(adapter); 2528 if (err) { 2529 dev_err(adapter->pdev_dev, "unable to get virtual interface" 2530 " resources: err=%d\n", err); 2531 return err; 2532 } 2533 2534 /* Check for various parameter sanity issues */ 2535 if (adapter->params.vfres.pmask == 0) { 2536 dev_err(adapter->pdev_dev, "no port access configured\n" 2537 "usable!\n"); 2538 return -EINVAL; 2539 } 2540 if (adapter->params.vfres.nvi == 0) { 2541 dev_err(adapter->pdev_dev, "no virtual interfaces configured/" 2542 "usable!\n"); 2543 return -EINVAL; 2544 } 2545 2546 /* Initialize nports and max_ethqsets now that we have our Virtual 2547 * Function Resources. 2548 */ 2549 size_nports_qsets(adapter); 2550 2551 return 0; 2552 } 2553 2554 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx, 2555 u8 pkt_cnt_idx, unsigned int size, 2556 unsigned int iqe_size) 2557 { 2558 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 2559 (pkt_cnt_idx < SGE_NCOUNTERS ? 2560 QINTR_CNT_EN_F : 0)); 2561 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS 2562 ? pkt_cnt_idx 2563 : 0); 2564 rspq->iqe_len = iqe_size; 2565 rspq->size = size; 2566 } 2567 2568 /* 2569 * Perform default configuration of DMA queues depending on the number and 2570 * type of ports we found and the number of available CPUs. Most settings can 2571 * be modified by the admin via ethtool and cxgbtool prior to the adapter 2572 * being brought up for the first time. 2573 */ 2574 static void cfg_queues(struct adapter *adapter) 2575 { 2576 struct sge *s = &adapter->sge; 2577 int q10g, n10g, qidx, pidx, qs; 2578 size_t iqe_size; 2579 2580 /* 2581 * We should not be called till we know how many Queue Sets we can 2582 * support. In particular, this means that we need to know what kind 2583 * of interrupts we'll be using ... 2584 */ 2585 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 2586 2587 /* 2588 * Count the number of 10GbE Virtual Interfaces that we have. 2589 */ 2590 n10g = 0; 2591 for_each_port(adapter, pidx) 2592 n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg); 2593 2594 /* 2595 * We default to 1 queue per non-10G port and up to # of cores queues 2596 * per 10G port. 2597 */ 2598 if (n10g == 0) 2599 q10g = 0; 2600 else { 2601 int n1g = (adapter->params.nports - n10g); 2602 q10g = (adapter->sge.max_ethqsets - n1g) / n10g; 2603 if (q10g > num_online_cpus()) 2604 q10g = num_online_cpus(); 2605 } 2606 2607 /* 2608 * Allocate the "Queue Sets" to the various Virtual Interfaces. 2609 * The layout will be established in setup_sge_queues() when the 2610 * adapter is brough up for the first time. 2611 */ 2612 qidx = 0; 2613 for_each_port(adapter, pidx) { 2614 struct port_info *pi = adap2pinfo(adapter, pidx); 2615 2616 pi->first_qset = qidx; 2617 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 2618 qidx += pi->nqsets; 2619 } 2620 s->ethqsets = qidx; 2621 2622 /* 2623 * The Ingress Queue Entry Size for our various Response Queues needs 2624 * to be big enough to accommodate the largest message we can receive 2625 * from the chip/firmware; which is 64 bytes ... 2626 */ 2627 iqe_size = 64; 2628 2629 /* 2630 * Set up default Queue Set parameters ... Start off with the 2631 * shortest interrupt holdoff timer. 2632 */ 2633 for (qs = 0; qs < s->max_ethqsets; qs++) { 2634 struct sge_eth_rxq *rxq = &s->ethrxq[qs]; 2635 struct sge_eth_txq *txq = &s->ethtxq[qs]; 2636 2637 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size); 2638 rxq->fl.size = 72; 2639 txq->q.size = 1024; 2640 } 2641 2642 /* 2643 * The firmware event queue is used for link state changes and 2644 * notifications of TX DMA completions. 2645 */ 2646 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size); 2647 2648 /* 2649 * The forwarded interrupt queue is used when we're in MSI interrupt 2650 * mode. In this mode all interrupts associated with RX queues will 2651 * be forwarded to a single queue which we'll associate with our MSI 2652 * interrupt vector. The messages dropped in the forwarded interrupt 2653 * queue will indicate which ingress queue needs servicing ... This 2654 * queue needs to be large enough to accommodate all of the ingress 2655 * queues which are forwarding their interrupt (+1 to prevent the PIDX 2656 * from equalling the CIDX if every ingress queue has an outstanding 2657 * interrupt). The queue doesn't need to be any larger because no 2658 * ingress queue will ever have more than one outstanding interrupt at 2659 * any time ... 2660 */ 2661 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1, 2662 iqe_size); 2663 } 2664 2665 /* 2666 * Reduce the number of Ethernet queues across all ports to at most n. 2667 * n provides at least one queue per port. 2668 */ 2669 static void reduce_ethqs(struct adapter *adapter, int n) 2670 { 2671 int i; 2672 struct port_info *pi; 2673 2674 /* 2675 * While we have too many active Ether Queue Sets, interate across the 2676 * "ports" and reduce their individual Queue Set allocations. 2677 */ 2678 BUG_ON(n < adapter->params.nports); 2679 while (n < adapter->sge.ethqsets) 2680 for_each_port(adapter, i) { 2681 pi = adap2pinfo(adapter, i); 2682 if (pi->nqsets > 1) { 2683 pi->nqsets--; 2684 adapter->sge.ethqsets--; 2685 if (adapter->sge.ethqsets <= n) 2686 break; 2687 } 2688 } 2689 2690 /* 2691 * Reassign the starting Queue Sets for each of the "ports" ... 2692 */ 2693 n = 0; 2694 for_each_port(adapter, i) { 2695 pi = adap2pinfo(adapter, i); 2696 pi->first_qset = n; 2697 n += pi->nqsets; 2698 } 2699 } 2700 2701 /* 2702 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally 2703 * we get a separate MSI-X vector for every "Queue Set" plus any extras we 2704 * need. Minimally we need one for every Virtual Interface plus those needed 2705 * for our "extras". Note that this process may lower the maximum number of 2706 * allowed Queue Sets ... 2707 */ 2708 static int enable_msix(struct adapter *adapter) 2709 { 2710 int i, want, need, nqsets; 2711 struct msix_entry entries[MSIX_ENTRIES]; 2712 struct sge *s = &adapter->sge; 2713 2714 for (i = 0; i < MSIX_ENTRIES; ++i) 2715 entries[i].entry = i; 2716 2717 /* 2718 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets" 2719 * plus those needed for our "extras" (for example, the firmware 2720 * message queue). We _need_ at least one "Queue Set" per Virtual 2721 * Interface plus those needed for our "extras". So now we get to see 2722 * if the song is right ... 2723 */ 2724 want = s->max_ethqsets + MSIX_EXTRAS; 2725 need = adapter->params.nports + MSIX_EXTRAS; 2726 2727 want = pci_enable_msix_range(adapter->pdev, entries, need, want); 2728 if (want < 0) 2729 return want; 2730 2731 nqsets = want - MSIX_EXTRAS; 2732 if (nqsets < s->max_ethqsets) { 2733 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors" 2734 " for %d Queue Sets\n", nqsets); 2735 s->max_ethqsets = nqsets; 2736 if (nqsets < s->ethqsets) 2737 reduce_ethqs(adapter, nqsets); 2738 } 2739 for (i = 0; i < want; ++i) 2740 adapter->msix_info[i].vec = entries[i].vector; 2741 2742 return 0; 2743 } 2744 2745 static const struct net_device_ops cxgb4vf_netdev_ops = { 2746 .ndo_open = cxgb4vf_open, 2747 .ndo_stop = cxgb4vf_stop, 2748 .ndo_start_xmit = t4vf_eth_xmit, 2749 .ndo_get_stats = cxgb4vf_get_stats, 2750 .ndo_set_rx_mode = cxgb4vf_set_rxmode, 2751 .ndo_set_mac_address = cxgb4vf_set_mac_addr, 2752 .ndo_validate_addr = eth_validate_addr, 2753 .ndo_do_ioctl = cxgb4vf_do_ioctl, 2754 .ndo_change_mtu = cxgb4vf_change_mtu, 2755 .ndo_fix_features = cxgb4vf_fix_features, 2756 .ndo_set_features = cxgb4vf_set_features, 2757 #ifdef CONFIG_NET_POLL_CONTROLLER 2758 .ndo_poll_controller = cxgb4vf_poll_controller, 2759 #endif 2760 }; 2761 2762 /* 2763 * "Probe" a device: initialize a device and construct all kernel and driver 2764 * state needed to manage the device. This routine is called "init_one" in 2765 * the PF Driver ... 2766 */ 2767 static int cxgb4vf_pci_probe(struct pci_dev *pdev, 2768 const struct pci_device_id *ent) 2769 { 2770 int pci_using_dac; 2771 int err, pidx; 2772 unsigned int pmask; 2773 struct adapter *adapter; 2774 struct port_info *pi; 2775 struct net_device *netdev; 2776 unsigned int pf; 2777 2778 /* 2779 * Print our driver banner the first time we're called to initialize a 2780 * device. 2781 */ 2782 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION); 2783 2784 /* 2785 * Initialize generic PCI device state. 2786 */ 2787 err = pci_enable_device(pdev); 2788 if (err) { 2789 dev_err(&pdev->dev, "cannot enable PCI device\n"); 2790 return err; 2791 } 2792 2793 /* 2794 * Reserve PCI resources for the device. If we can't get them some 2795 * other driver may have already claimed the device ... 2796 */ 2797 err = pci_request_regions(pdev, KBUILD_MODNAME); 2798 if (err) { 2799 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 2800 goto err_disable_device; 2801 } 2802 2803 /* 2804 * Set up our DMA mask: try for 64-bit address masking first and 2805 * fall back to 32-bit if we can't get 64 bits ... 2806 */ 2807 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 2808 if (err == 0) { 2809 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 2810 if (err) { 2811 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for" 2812 " coherent allocations\n"); 2813 goto err_release_regions; 2814 } 2815 pci_using_dac = 1; 2816 } else { 2817 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2818 if (err != 0) { 2819 dev_err(&pdev->dev, "no usable DMA configuration\n"); 2820 goto err_release_regions; 2821 } 2822 pci_using_dac = 0; 2823 } 2824 2825 /* 2826 * Enable bus mastering for the device ... 2827 */ 2828 pci_set_master(pdev); 2829 2830 /* 2831 * Allocate our adapter data structure and attach it to the device. 2832 */ 2833 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 2834 if (!adapter) { 2835 err = -ENOMEM; 2836 goto err_release_regions; 2837 } 2838 pci_set_drvdata(pdev, adapter); 2839 adapter->pdev = pdev; 2840 adapter->pdev_dev = &pdev->dev; 2841 2842 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 2843 (sizeof(struct mbox_cmd) * 2844 T4VF_OS_LOG_MBOX_CMDS), 2845 GFP_KERNEL); 2846 if (!adapter->mbox_log) { 2847 err = -ENOMEM; 2848 goto err_free_adapter; 2849 } 2850 adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS; 2851 2852 /* 2853 * Initialize SMP data synchronization resources. 2854 */ 2855 spin_lock_init(&adapter->stats_lock); 2856 spin_lock_init(&adapter->mbox_lock); 2857 INIT_LIST_HEAD(&adapter->mlist.list); 2858 2859 /* 2860 * Map our I/O registers in BAR0. 2861 */ 2862 adapter->regs = pci_ioremap_bar(pdev, 0); 2863 if (!adapter->regs) { 2864 dev_err(&pdev->dev, "cannot map device registers\n"); 2865 err = -ENOMEM; 2866 goto err_free_adapter; 2867 } 2868 2869 /* Wait for the device to become ready before proceeding ... 2870 */ 2871 err = t4vf_prep_adapter(adapter); 2872 if (err) { 2873 dev_err(adapter->pdev_dev, "device didn't become ready:" 2874 " err=%d\n", err); 2875 goto err_unmap_bar0; 2876 } 2877 2878 /* For T5 and later we want to use the new BAR-based User Doorbells, 2879 * so we need to map BAR2 here ... 2880 */ 2881 if (!is_t4(adapter->params.chip)) { 2882 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 2883 pci_resource_len(pdev, 2)); 2884 if (!adapter->bar2) { 2885 dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n"); 2886 err = -ENOMEM; 2887 goto err_unmap_bar0; 2888 } 2889 } 2890 /* 2891 * Initialize adapter level features. 2892 */ 2893 adapter->name = pci_name(pdev); 2894 adapter->msg_enable = dflt_msg_enable; 2895 err = adap_init0(adapter); 2896 if (err) 2897 goto err_unmap_bar; 2898 2899 /* 2900 * Allocate our "adapter ports" and stitch everything together. 2901 */ 2902 pmask = adapter->params.vfres.pmask; 2903 pf = t4vf_get_pf_from_vf(adapter); 2904 for_each_port(adapter, pidx) { 2905 int port_id, viid; 2906 u8 mac[ETH_ALEN]; 2907 unsigned int naddr = 1; 2908 2909 /* 2910 * We simplistically allocate our virtual interfaces 2911 * sequentially across the port numbers to which we have 2912 * access rights. This should be configurable in some manner 2913 * ... 2914 */ 2915 if (pmask == 0) 2916 break; 2917 port_id = ffs(pmask) - 1; 2918 pmask &= ~(1 << port_id); 2919 viid = t4vf_alloc_vi(adapter, port_id); 2920 if (viid < 0) { 2921 dev_err(&pdev->dev, "cannot allocate VI for port %d:" 2922 " err=%d\n", port_id, viid); 2923 err = viid; 2924 goto err_free_dev; 2925 } 2926 2927 /* 2928 * Allocate our network device and stitch things together. 2929 */ 2930 netdev = alloc_etherdev_mq(sizeof(struct port_info), 2931 MAX_PORT_QSETS); 2932 if (netdev == NULL) { 2933 t4vf_free_vi(adapter, viid); 2934 err = -ENOMEM; 2935 goto err_free_dev; 2936 } 2937 adapter->port[pidx] = netdev; 2938 SET_NETDEV_DEV(netdev, &pdev->dev); 2939 pi = netdev_priv(netdev); 2940 pi->adapter = adapter; 2941 pi->pidx = pidx; 2942 pi->port_id = port_id; 2943 pi->viid = viid; 2944 2945 /* 2946 * Initialize the starting state of our "port" and register 2947 * it. 2948 */ 2949 pi->xact_addr_filt = -1; 2950 netif_carrier_off(netdev); 2951 netdev->irq = pdev->irq; 2952 2953 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 2954 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2955 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM; 2956 netdev->vlan_features = NETIF_F_SG | TSO_FLAGS | 2957 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2958 NETIF_F_HIGHDMA; 2959 netdev->features = netdev->hw_features | 2960 NETIF_F_HW_VLAN_CTAG_TX; 2961 if (pci_using_dac) 2962 netdev->features |= NETIF_F_HIGHDMA; 2963 2964 netdev->priv_flags |= IFF_UNICAST_FLT; 2965 netdev->min_mtu = 81; 2966 netdev->max_mtu = ETH_MAX_MTU; 2967 2968 netdev->netdev_ops = &cxgb4vf_netdev_ops; 2969 netdev->ethtool_ops = &cxgb4vf_ethtool_ops; 2970 2971 /* 2972 * Initialize the hardware/software state for the port. 2973 */ 2974 err = t4vf_port_init(adapter, pidx); 2975 if (err) { 2976 dev_err(&pdev->dev, "cannot initialize port %d\n", 2977 pidx); 2978 goto err_free_dev; 2979 } 2980 2981 err = t4vf_get_vf_mac_acl(adapter, pf, &naddr, mac); 2982 if (err) { 2983 dev_err(&pdev->dev, 2984 "unable to determine MAC ACL address, " 2985 "continuing anyway.. (status %d)\n", err); 2986 } else if (naddr && adapter->params.vfres.nvi == 1) { 2987 struct sockaddr addr; 2988 2989 ether_addr_copy(addr.sa_data, mac); 2990 err = cxgb4vf_set_mac_addr(netdev, &addr); 2991 if (err) { 2992 dev_err(&pdev->dev, 2993 "unable to set MAC address %pM\n", 2994 mac); 2995 goto err_free_dev; 2996 } 2997 dev_info(&pdev->dev, 2998 "Using assigned MAC ACL: %pM\n", mac); 2999 } 3000 } 3001 3002 /* See what interrupts we'll be using. If we've been configured to 3003 * use MSI-X interrupts, try to enable them but fall back to using 3004 * MSI interrupts if we can't enable MSI-X interrupts. If we can't 3005 * get MSI interrupts we bail with the error. 3006 */ 3007 if (msi == MSI_MSIX && enable_msix(adapter) == 0) 3008 adapter->flags |= USING_MSIX; 3009 else { 3010 if (msi == MSI_MSIX) { 3011 dev_info(adapter->pdev_dev, 3012 "Unable to use MSI-X Interrupts; falling " 3013 "back to MSI Interrupts\n"); 3014 3015 /* We're going to need a Forwarded Interrupt Queue so 3016 * that may cut into how many Queue Sets we can 3017 * support. 3018 */ 3019 msi = MSI_MSI; 3020 size_nports_qsets(adapter); 3021 } 3022 err = pci_enable_msi(pdev); 3023 if (err) { 3024 dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;" 3025 " err=%d\n", err); 3026 goto err_free_dev; 3027 } 3028 adapter->flags |= USING_MSI; 3029 } 3030 3031 /* Now that we know how many "ports" we have and what interrupt 3032 * mechanism we're going to use, we can configure our queue resources. 3033 */ 3034 cfg_queues(adapter); 3035 3036 /* 3037 * The "card" is now ready to go. If any errors occur during device 3038 * registration we do not fail the whole "card" but rather proceed 3039 * only with the ports we manage to register successfully. However we 3040 * must register at least one net device. 3041 */ 3042 for_each_port(adapter, pidx) { 3043 struct port_info *pi = netdev_priv(adapter->port[pidx]); 3044 netdev = adapter->port[pidx]; 3045 if (netdev == NULL) 3046 continue; 3047 3048 netif_set_real_num_tx_queues(netdev, pi->nqsets); 3049 netif_set_real_num_rx_queues(netdev, pi->nqsets); 3050 3051 err = register_netdev(netdev); 3052 if (err) { 3053 dev_warn(&pdev->dev, "cannot register net device %s," 3054 " skipping\n", netdev->name); 3055 continue; 3056 } 3057 3058 set_bit(pidx, &adapter->registered_device_map); 3059 } 3060 if (adapter->registered_device_map == 0) { 3061 dev_err(&pdev->dev, "could not register any net devices\n"); 3062 goto err_disable_interrupts; 3063 } 3064 3065 /* 3066 * Set up our debugfs entries. 3067 */ 3068 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) { 3069 adapter->debugfs_root = 3070 debugfs_create_dir(pci_name(pdev), 3071 cxgb4vf_debugfs_root); 3072 if (IS_ERR_OR_NULL(adapter->debugfs_root)) 3073 dev_warn(&pdev->dev, "could not create debugfs" 3074 " directory"); 3075 else 3076 setup_debugfs(adapter); 3077 } 3078 3079 /* 3080 * Print a short notice on the existence and configuration of the new 3081 * VF network device ... 3082 */ 3083 for_each_port(adapter, pidx) { 3084 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n", 3085 adapter->port[pidx]->name, 3086 (adapter->flags & USING_MSIX) ? "MSI-X" : 3087 (adapter->flags & USING_MSI) ? "MSI" : ""); 3088 } 3089 3090 /* 3091 * Return success! 3092 */ 3093 return 0; 3094 3095 /* 3096 * Error recovery and exit code. Unwind state that's been created 3097 * so far and return the error. 3098 */ 3099 err_disable_interrupts: 3100 if (adapter->flags & USING_MSIX) { 3101 pci_disable_msix(adapter->pdev); 3102 adapter->flags &= ~USING_MSIX; 3103 } else if (adapter->flags & USING_MSI) { 3104 pci_disable_msi(adapter->pdev); 3105 adapter->flags &= ~USING_MSI; 3106 } 3107 3108 err_free_dev: 3109 for_each_port(adapter, pidx) { 3110 netdev = adapter->port[pidx]; 3111 if (netdev == NULL) 3112 continue; 3113 pi = netdev_priv(netdev); 3114 t4vf_free_vi(adapter, pi->viid); 3115 if (test_bit(pidx, &adapter->registered_device_map)) 3116 unregister_netdev(netdev); 3117 free_netdev(netdev); 3118 } 3119 3120 err_unmap_bar: 3121 if (!is_t4(adapter->params.chip)) 3122 iounmap(adapter->bar2); 3123 3124 err_unmap_bar0: 3125 iounmap(adapter->regs); 3126 3127 err_free_adapter: 3128 kfree(adapter->mbox_log); 3129 kfree(adapter); 3130 3131 err_release_regions: 3132 pci_release_regions(pdev); 3133 pci_clear_master(pdev); 3134 3135 err_disable_device: 3136 pci_disable_device(pdev); 3137 3138 return err; 3139 } 3140 3141 /* 3142 * "Remove" a device: tear down all kernel and driver state created in the 3143 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note 3144 * that this is called "remove_one" in the PF Driver.) 3145 */ 3146 static void cxgb4vf_pci_remove(struct pci_dev *pdev) 3147 { 3148 struct adapter *adapter = pci_get_drvdata(pdev); 3149 3150 /* 3151 * Tear down driver state associated with device. 3152 */ 3153 if (adapter) { 3154 int pidx; 3155 3156 /* 3157 * Stop all of our activity. Unregister network port, 3158 * disable interrupts, etc. 3159 */ 3160 for_each_port(adapter, pidx) 3161 if (test_bit(pidx, &adapter->registered_device_map)) 3162 unregister_netdev(adapter->port[pidx]); 3163 t4vf_sge_stop(adapter); 3164 if (adapter->flags & USING_MSIX) { 3165 pci_disable_msix(adapter->pdev); 3166 adapter->flags &= ~USING_MSIX; 3167 } else if (adapter->flags & USING_MSI) { 3168 pci_disable_msi(adapter->pdev); 3169 adapter->flags &= ~USING_MSI; 3170 } 3171 3172 /* 3173 * Tear down our debugfs entries. 3174 */ 3175 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) { 3176 cleanup_debugfs(adapter); 3177 debugfs_remove_recursive(adapter->debugfs_root); 3178 } 3179 3180 /* 3181 * Free all of the various resources which we've acquired ... 3182 */ 3183 t4vf_free_sge_resources(adapter); 3184 for_each_port(adapter, pidx) { 3185 struct net_device *netdev = adapter->port[pidx]; 3186 struct port_info *pi; 3187 3188 if (netdev == NULL) 3189 continue; 3190 3191 pi = netdev_priv(netdev); 3192 t4vf_free_vi(adapter, pi->viid); 3193 free_netdev(netdev); 3194 } 3195 iounmap(adapter->regs); 3196 if (!is_t4(adapter->params.chip)) 3197 iounmap(adapter->bar2); 3198 kfree(adapter->mbox_log); 3199 kfree(adapter); 3200 } 3201 3202 /* 3203 * Disable the device and release its PCI resources. 3204 */ 3205 pci_disable_device(pdev); 3206 pci_clear_master(pdev); 3207 pci_release_regions(pdev); 3208 } 3209 3210 /* 3211 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt 3212 * delivery. 3213 */ 3214 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev) 3215 { 3216 struct adapter *adapter; 3217 int pidx; 3218 3219 adapter = pci_get_drvdata(pdev); 3220 if (!adapter) 3221 return; 3222 3223 /* Disable all Virtual Interfaces. This will shut down the 3224 * delivery of all ingress packets into the chip for these 3225 * Virtual Interfaces. 3226 */ 3227 for_each_port(adapter, pidx) 3228 if (test_bit(pidx, &adapter->registered_device_map)) 3229 unregister_netdev(adapter->port[pidx]); 3230 3231 /* Free up all Queues which will prevent further DMA and 3232 * Interrupts allowing various internal pathways to drain. 3233 */ 3234 t4vf_sge_stop(adapter); 3235 if (adapter->flags & USING_MSIX) { 3236 pci_disable_msix(adapter->pdev); 3237 adapter->flags &= ~USING_MSIX; 3238 } else if (adapter->flags & USING_MSI) { 3239 pci_disable_msi(adapter->pdev); 3240 adapter->flags &= ~USING_MSI; 3241 } 3242 3243 /* 3244 * Free up all Queues which will prevent further DMA and 3245 * Interrupts allowing various internal pathways to drain. 3246 */ 3247 t4vf_free_sge_resources(adapter); 3248 pci_set_drvdata(pdev, NULL); 3249 } 3250 3251 /* Macros needed to support the PCI Device ID Table ... 3252 */ 3253 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 3254 static const struct pci_device_id cxgb4vf_pci_tbl[] = { 3255 #define CH_PCI_DEVICE_ID_FUNCTION 0x8 3256 3257 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 3258 { PCI_VDEVICE(CHELSIO, (devid)), 0 } 3259 3260 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } } 3261 3262 #include "../cxgb4/t4_pci_id_tbl.h" 3263 3264 MODULE_DESCRIPTION(DRV_DESC); 3265 MODULE_AUTHOR("Chelsio Communications"); 3266 MODULE_LICENSE("Dual BSD/GPL"); 3267 MODULE_VERSION(DRV_VERSION); 3268 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl); 3269 3270 static struct pci_driver cxgb4vf_driver = { 3271 .name = KBUILD_MODNAME, 3272 .id_table = cxgb4vf_pci_tbl, 3273 .probe = cxgb4vf_pci_probe, 3274 .remove = cxgb4vf_pci_remove, 3275 .shutdown = cxgb4vf_pci_shutdown, 3276 }; 3277 3278 /* 3279 * Initialize global driver state. 3280 */ 3281 static int __init cxgb4vf_module_init(void) 3282 { 3283 int ret; 3284 3285 /* 3286 * Vet our module parameters. 3287 */ 3288 if (msi != MSI_MSIX && msi != MSI_MSI) { 3289 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n", 3290 msi, MSI_MSIX, MSI_MSI); 3291 return -EINVAL; 3292 } 3293 3294 /* Debugfs support is optional, just warn if this fails */ 3295 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 3296 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) 3297 pr_warn("could not create debugfs entry, continuing\n"); 3298 3299 ret = pci_register_driver(&cxgb4vf_driver); 3300 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) 3301 debugfs_remove(cxgb4vf_debugfs_root); 3302 return ret; 3303 } 3304 3305 /* 3306 * Tear down global driver state. 3307 */ 3308 static void __exit cxgb4vf_module_exit(void) 3309 { 3310 pci_unregister_driver(&cxgb4vf_driver); 3311 debugfs_remove(cxgb4vf_debugfs_root); 3312 } 3313 3314 module_init(cxgb4vf_module_init); 3315 module_exit(cxgb4vf_module_exit); 3316