1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <linux/debugfs.h>
46 #include <linux/ethtool.h>
47 #include <linux/mdio.h>
48 
49 #include "t4vf_common.h"
50 #include "t4vf_defs.h"
51 
52 #include "../cxgb4/t4_regs.h"
53 #include "../cxgb4/t4_msg.h"
54 
55 /*
56  * Generic information about the driver.
57  */
58 #define DRV_VERSION "2.0.0-ko"
59 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver"
60 
61 /*
62  * Module Parameters.
63  * ==================
64  */
65 
66 /*
67  * Default ethtool "message level" for adapters.
68  */
69 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
70 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
71 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
72 
73 /*
74  * The driver uses the best interrupt scheme available on a platform in the
75  * order MSI-X then MSI.  This parameter determines which of these schemes the
76  * driver may consider as follows:
77  *
78  *     msi = 2: choose from among MSI-X and MSI
79  *     msi = 1: only consider MSI interrupts
80  *
81  * Note that unlike the Physical Function driver, this Virtual Function driver
82  * does _not_ support legacy INTx interrupts (this limitation is mandated by
83  * the PCI-E SR-IOV standard).
84  */
85 #define MSI_MSIX	2
86 #define MSI_MSI		1
87 #define MSI_DEFAULT	MSI_MSIX
88 
89 static int msi = MSI_DEFAULT;
90 
91 module_param(msi, int, 0644);
92 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
93 
94 /*
95  * Fundamental constants.
96  * ======================
97  */
98 
99 enum {
100 	MAX_TXQ_ENTRIES		= 16384,
101 	MAX_RSPQ_ENTRIES	= 16384,
102 	MAX_RX_BUFFERS		= 16384,
103 
104 	MIN_TXQ_ENTRIES		= 32,
105 	MIN_RSPQ_ENTRIES	= 128,
106 	MIN_FL_ENTRIES		= 16,
107 
108 	/*
109 	 * For purposes of manipulating the Free List size we need to
110 	 * recognize that Free Lists are actually Egress Queues (the host
111 	 * produces free buffers which the hardware consumes), Egress Queues
112 	 * indices are all in units of Egress Context Units bytes, and free
113 	 * list entries are 64-bit PCI DMA addresses.  And since the state of
114 	 * the Producer Index == the Consumer Index implies an EMPTY list, we
115 	 * always have at least one Egress Unit's worth of Free List entries
116 	 * unused.  See sge.c for more details ...
117 	 */
118 	EQ_UNIT = SGE_EQ_IDXSIZE,
119 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
120 	MIN_FL_RESID = FL_PER_EQ_UNIT,
121 };
122 
123 /*
124  * Global driver state.
125  * ====================
126  */
127 
128 static struct dentry *cxgb4vf_debugfs_root;
129 
130 /*
131  * OS "Callback" functions.
132  * ========================
133  */
134 
135 /*
136  * The link status has changed on the indicated "port" (Virtual Interface).
137  */
138 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
139 {
140 	struct net_device *dev = adapter->port[pidx];
141 
142 	/*
143 	 * If the port is disabled or the current recorded "link up"
144 	 * status matches the new status, just return.
145 	 */
146 	if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
147 		return;
148 
149 	/*
150 	 * Tell the OS that the link status has changed and print a short
151 	 * informative message on the console about the event.
152 	 */
153 	if (link_ok) {
154 		const char *s;
155 		const char *fc;
156 		const struct port_info *pi = netdev_priv(dev);
157 
158 		switch (pi->link_cfg.speed) {
159 		case 100:
160 			s = "100Mbps";
161 			break;
162 		case 1000:
163 			s = "1Gbps";
164 			break;
165 		case 10000:
166 			s = "10Gbps";
167 			break;
168 		case 25000:
169 			s = "25Gbps";
170 			break;
171 		case 40000:
172 			s = "40Gbps";
173 			break;
174 		case 100000:
175 			s = "100Gbps";
176 			break;
177 
178 		default:
179 			s = "unknown";
180 			break;
181 		}
182 
183 		switch ((int)pi->link_cfg.fc) {
184 		case PAUSE_RX:
185 			fc = "RX";
186 			break;
187 
188 		case PAUSE_TX:
189 			fc = "TX";
190 			break;
191 
192 		case PAUSE_RX | PAUSE_TX:
193 			fc = "RX/TX";
194 			break;
195 
196 		default:
197 			fc = "no";
198 			break;
199 		}
200 
201 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
202 	} else {
203 		netdev_info(dev, "link down\n");
204 	}
205 }
206 
207 /*
208  * THe port module type has changed on the indicated "port" (Virtual
209  * Interface).
210  */
211 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx)
212 {
213 	static const char * const mod_str[] = {
214 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
215 	};
216 	const struct net_device *dev = adapter->port[pidx];
217 	const struct port_info *pi = netdev_priv(dev);
218 
219 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
220 		dev_info(adapter->pdev_dev, "%s: port module unplugged\n",
221 			 dev->name);
222 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
223 		dev_info(adapter->pdev_dev, "%s: %s port module inserted\n",
224 			 dev->name, mod_str[pi->mod_type]);
225 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
226 		dev_info(adapter->pdev_dev, "%s: unsupported optical port "
227 			 "module inserted\n", dev->name);
228 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
229 		dev_info(adapter->pdev_dev, "%s: unknown port module inserted,"
230 			 "forcing TWINAX\n", dev->name);
231 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
232 		dev_info(adapter->pdev_dev, "%s: transceiver module error\n",
233 			 dev->name);
234 	else
235 		dev_info(adapter->pdev_dev, "%s: unknown module type %d "
236 			 "inserted\n", dev->name, pi->mod_type);
237 }
238 
239 /*
240  * Net device operations.
241  * ======================
242  */
243 
244 
245 
246 
247 /*
248  * Perform the MAC and PHY actions needed to enable a "port" (Virtual
249  * Interface).
250  */
251 static int link_start(struct net_device *dev)
252 {
253 	int ret;
254 	struct port_info *pi = netdev_priv(dev);
255 
256 	/*
257 	 * We do not set address filters and promiscuity here, the stack does
258 	 * that step explicitly. Enable vlan accel.
259 	 */
260 	ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
261 			      true);
262 	if (ret == 0) {
263 		ret = t4vf_change_mac(pi->adapter, pi->viid,
264 				      pi->xact_addr_filt, dev->dev_addr, true);
265 		if (ret >= 0) {
266 			pi->xact_addr_filt = ret;
267 			ret = 0;
268 		}
269 	}
270 
271 	/*
272 	 * We don't need to actually "start the link" itself since the
273 	 * firmware will do that for us when the first Virtual Interface
274 	 * is enabled on a port.
275 	 */
276 	if (ret == 0)
277 		ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
278 
279 	/* The Virtual Interfaces are connected to an internal switch on the
280 	 * chip which allows VIs attached to the same port to talk to each
281 	 * other even when the port link is down.  As a result, we generally
282 	 * want to always report a VI's link as being "up", provided there are
283 	 * no errors in enabling vi.
284 	 */
285 
286 	if (ret == 0)
287 		netif_carrier_on(dev);
288 
289 	return ret;
290 }
291 
292 /*
293  * Name the MSI-X interrupts.
294  */
295 static void name_msix_vecs(struct adapter *adapter)
296 {
297 	int namelen = sizeof(adapter->msix_info[0].desc) - 1;
298 	int pidx;
299 
300 	/*
301 	 * Firmware events.
302 	 */
303 	snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
304 		 "%s-FWeventq", adapter->name);
305 	adapter->msix_info[MSIX_FW].desc[namelen] = 0;
306 
307 	/*
308 	 * Ethernet queues.
309 	 */
310 	for_each_port(adapter, pidx) {
311 		struct net_device *dev = adapter->port[pidx];
312 		const struct port_info *pi = netdev_priv(dev);
313 		int qs, msi;
314 
315 		for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
316 			snprintf(adapter->msix_info[msi].desc, namelen,
317 				 "%s-%d", dev->name, qs);
318 			adapter->msix_info[msi].desc[namelen] = 0;
319 		}
320 	}
321 }
322 
323 /*
324  * Request all of our MSI-X resources.
325  */
326 static int request_msix_queue_irqs(struct adapter *adapter)
327 {
328 	struct sge *s = &adapter->sge;
329 	int rxq, msi, err;
330 
331 	/*
332 	 * Firmware events.
333 	 */
334 	err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
335 			  0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
336 	if (err)
337 		return err;
338 
339 	/*
340 	 * Ethernet queues.
341 	 */
342 	msi = MSIX_IQFLINT;
343 	for_each_ethrxq(s, rxq) {
344 		err = request_irq(adapter->msix_info[msi].vec,
345 				  t4vf_sge_intr_msix, 0,
346 				  adapter->msix_info[msi].desc,
347 				  &s->ethrxq[rxq].rspq);
348 		if (err)
349 			goto err_free_irqs;
350 		msi++;
351 	}
352 	return 0;
353 
354 err_free_irqs:
355 	while (--rxq >= 0)
356 		free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
357 	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
358 	return err;
359 }
360 
361 /*
362  * Free our MSI-X resources.
363  */
364 static void free_msix_queue_irqs(struct adapter *adapter)
365 {
366 	struct sge *s = &adapter->sge;
367 	int rxq, msi;
368 
369 	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
370 	msi = MSIX_IQFLINT;
371 	for_each_ethrxq(s, rxq)
372 		free_irq(adapter->msix_info[msi++].vec,
373 			 &s->ethrxq[rxq].rspq);
374 }
375 
376 /*
377  * Turn on NAPI and start up interrupts on a response queue.
378  */
379 static void qenable(struct sge_rspq *rspq)
380 {
381 	napi_enable(&rspq->napi);
382 
383 	/*
384 	 * 0-increment the Going To Sleep register to start the timer and
385 	 * enable interrupts.
386 	 */
387 	t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
388 		     CIDXINC_V(0) |
389 		     SEINTARM_V(rspq->intr_params) |
390 		     INGRESSQID_V(rspq->cntxt_id));
391 }
392 
393 /*
394  * Enable NAPI scheduling and interrupt generation for all Receive Queues.
395  */
396 static void enable_rx(struct adapter *adapter)
397 {
398 	int rxq;
399 	struct sge *s = &adapter->sge;
400 
401 	for_each_ethrxq(s, rxq)
402 		qenable(&s->ethrxq[rxq].rspq);
403 	qenable(&s->fw_evtq);
404 
405 	/*
406 	 * The interrupt queue doesn't use NAPI so we do the 0-increment of
407 	 * its Going To Sleep register here to get it started.
408 	 */
409 	if (adapter->flags & USING_MSI)
410 		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
411 			     CIDXINC_V(0) |
412 			     SEINTARM_V(s->intrq.intr_params) |
413 			     INGRESSQID_V(s->intrq.cntxt_id));
414 
415 }
416 
417 /*
418  * Wait until all NAPI handlers are descheduled.
419  */
420 static void quiesce_rx(struct adapter *adapter)
421 {
422 	struct sge *s = &adapter->sge;
423 	int rxq;
424 
425 	for_each_ethrxq(s, rxq)
426 		napi_disable(&s->ethrxq[rxq].rspq.napi);
427 	napi_disable(&s->fw_evtq.napi);
428 }
429 
430 /*
431  * Response queue handler for the firmware event queue.
432  */
433 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
434 			  const struct pkt_gl *gl)
435 {
436 	/*
437 	 * Extract response opcode and get pointer to CPL message body.
438 	 */
439 	struct adapter *adapter = rspq->adapter;
440 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
441 	void *cpl = (void *)(rsp + 1);
442 
443 	switch (opcode) {
444 	case CPL_FW6_MSG: {
445 		/*
446 		 * We've received an asynchronous message from the firmware.
447 		 */
448 		const struct cpl_fw6_msg *fw_msg = cpl;
449 		if (fw_msg->type == FW6_TYPE_CMD_RPL)
450 			t4vf_handle_fw_rpl(adapter, fw_msg->data);
451 		break;
452 	}
453 
454 	case CPL_FW4_MSG: {
455 		/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
456 		 */
457 		const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
458 		opcode = CPL_OPCODE_G(ntohl(p->opcode_qid));
459 		if (opcode != CPL_SGE_EGR_UPDATE) {
460 			dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
461 				, opcode);
462 			break;
463 		}
464 		cpl = (void *)p;
465 		/*FALLTHROUGH*/
466 	}
467 
468 	case CPL_SGE_EGR_UPDATE: {
469 		/*
470 		 * We've received an Egress Queue Status Update message.  We
471 		 * get these, if the SGE is configured to send these when the
472 		 * firmware passes certain points in processing our TX
473 		 * Ethernet Queue or if we make an explicit request for one.
474 		 * We use these updates to determine when we may need to
475 		 * restart a TX Ethernet Queue which was stopped for lack of
476 		 * free TX Queue Descriptors ...
477 		 */
478 		const struct cpl_sge_egr_update *p = cpl;
479 		unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid));
480 		struct sge *s = &adapter->sge;
481 		struct sge_txq *tq;
482 		struct sge_eth_txq *txq;
483 		unsigned int eq_idx;
484 
485 		/*
486 		 * Perform sanity checking on the Queue ID to make sure it
487 		 * really refers to one of our TX Ethernet Egress Queues which
488 		 * is active and matches the queue's ID.  None of these error
489 		 * conditions should ever happen so we may want to either make
490 		 * them fatal and/or conditionalized under DEBUG.
491 		 */
492 		eq_idx = EQ_IDX(s, qid);
493 		if (unlikely(eq_idx >= MAX_EGRQ)) {
494 			dev_err(adapter->pdev_dev,
495 				"Egress Update QID %d out of range\n", qid);
496 			break;
497 		}
498 		tq = s->egr_map[eq_idx];
499 		if (unlikely(tq == NULL)) {
500 			dev_err(adapter->pdev_dev,
501 				"Egress Update QID %d TXQ=NULL\n", qid);
502 			break;
503 		}
504 		txq = container_of(tq, struct sge_eth_txq, q);
505 		if (unlikely(tq->abs_id != qid)) {
506 			dev_err(adapter->pdev_dev,
507 				"Egress Update QID %d refers to TXQ %d\n",
508 				qid, tq->abs_id);
509 			break;
510 		}
511 
512 		/*
513 		 * Restart a stopped TX Queue which has less than half of its
514 		 * TX ring in use ...
515 		 */
516 		txq->q.restarts++;
517 		netif_tx_wake_queue(txq->txq);
518 		break;
519 	}
520 
521 	default:
522 		dev_err(adapter->pdev_dev,
523 			"unexpected CPL %#x on FW event queue\n", opcode);
524 	}
525 
526 	return 0;
527 }
528 
529 /*
530  * Allocate SGE TX/RX response queues.  Determine how many sets of SGE queues
531  * to use and initializes them.  We support multiple "Queue Sets" per port if
532  * we have MSI-X, otherwise just one queue set per port.
533  */
534 static int setup_sge_queues(struct adapter *adapter)
535 {
536 	struct sge *s = &adapter->sge;
537 	int err, pidx, msix;
538 
539 	/*
540 	 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
541 	 * state.
542 	 */
543 	bitmap_zero(s->starving_fl, MAX_EGRQ);
544 
545 	/*
546 	 * If we're using MSI interrupt mode we need to set up a "forwarded
547 	 * interrupt" queue which we'll set up with our MSI vector.  The rest
548 	 * of the ingress queues will be set up to forward their interrupts to
549 	 * this queue ...  This must be first since t4vf_sge_alloc_rxq() uses
550 	 * the intrq's queue ID as the interrupt forwarding queue for the
551 	 * subsequent calls ...
552 	 */
553 	if (adapter->flags & USING_MSI) {
554 		err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
555 					 adapter->port[0], 0, NULL, NULL);
556 		if (err)
557 			goto err_free_queues;
558 	}
559 
560 	/*
561 	 * Allocate our ingress queue for asynchronous firmware messages.
562 	 */
563 	err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
564 				 MSIX_FW, NULL, fwevtq_handler);
565 	if (err)
566 		goto err_free_queues;
567 
568 	/*
569 	 * Allocate each "port"'s initial Queue Sets.  These can be changed
570 	 * later on ... up to the point where any interface on the adapter is
571 	 * brought up at which point lots of things get nailed down
572 	 * permanently ...
573 	 */
574 	msix = MSIX_IQFLINT;
575 	for_each_port(adapter, pidx) {
576 		struct net_device *dev = adapter->port[pidx];
577 		struct port_info *pi = netdev_priv(dev);
578 		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
579 		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
580 		int qs;
581 
582 		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
583 			err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
584 						 dev, msix++,
585 						 &rxq->fl, t4vf_ethrx_handler);
586 			if (err)
587 				goto err_free_queues;
588 
589 			err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
590 					     netdev_get_tx_queue(dev, qs),
591 					     s->fw_evtq.cntxt_id);
592 			if (err)
593 				goto err_free_queues;
594 
595 			rxq->rspq.idx = qs;
596 			memset(&rxq->stats, 0, sizeof(rxq->stats));
597 		}
598 	}
599 
600 	/*
601 	 * Create the reverse mappings for the queues.
602 	 */
603 	s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
604 	s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
605 	IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
606 	for_each_port(adapter, pidx) {
607 		struct net_device *dev = adapter->port[pidx];
608 		struct port_info *pi = netdev_priv(dev);
609 		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
610 		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
611 		int qs;
612 
613 		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
614 			IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
615 			EQ_MAP(s, txq->q.abs_id) = &txq->q;
616 
617 			/*
618 			 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
619 			 * for Free Lists but since all of the Egress Queues
620 			 * (including Free Lists) have Relative Queue IDs
621 			 * which are computed as Absolute - Base Queue ID, we
622 			 * can synthesize the Absolute Queue IDs for the Free
623 			 * Lists.  This is useful for debugging purposes when
624 			 * we want to dump Queue Contexts via the PF Driver.
625 			 */
626 			rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
627 			EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
628 		}
629 	}
630 	return 0;
631 
632 err_free_queues:
633 	t4vf_free_sge_resources(adapter);
634 	return err;
635 }
636 
637 /*
638  * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
639  * queues.  We configure the RSS CPU lookup table to distribute to the number
640  * of HW receive queues, and the response queue lookup table to narrow that
641  * down to the response queues actually configured for each "port" (Virtual
642  * Interface).  We always configure the RSS mapping for all ports since the
643  * mapping table has plenty of entries.
644  */
645 static int setup_rss(struct adapter *adapter)
646 {
647 	int pidx;
648 
649 	for_each_port(adapter, pidx) {
650 		struct port_info *pi = adap2pinfo(adapter, pidx);
651 		struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
652 		u16 rss[MAX_PORT_QSETS];
653 		int qs, err;
654 
655 		for (qs = 0; qs < pi->nqsets; qs++)
656 			rss[qs] = rxq[qs].rspq.abs_id;
657 
658 		err = t4vf_config_rss_range(adapter, pi->viid,
659 					    0, pi->rss_size, rss, pi->nqsets);
660 		if (err)
661 			return err;
662 
663 		/*
664 		 * Perform Global RSS Mode-specific initialization.
665 		 */
666 		switch (adapter->params.rss.mode) {
667 		case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
668 			/*
669 			 * If Tunnel All Lookup isn't specified in the global
670 			 * RSS Configuration, then we need to specify a
671 			 * default Ingress Queue for any ingress packets which
672 			 * aren't hashed.  We'll use our first ingress queue
673 			 * ...
674 			 */
675 			if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
676 				union rss_vi_config config;
677 				err = t4vf_read_rss_vi_config(adapter,
678 							      pi->viid,
679 							      &config);
680 				if (err)
681 					return err;
682 				config.basicvirtual.defaultq =
683 					rxq[0].rspq.abs_id;
684 				err = t4vf_write_rss_vi_config(adapter,
685 							       pi->viid,
686 							       &config);
687 				if (err)
688 					return err;
689 			}
690 			break;
691 		}
692 	}
693 
694 	return 0;
695 }
696 
697 /*
698  * Bring the adapter up.  Called whenever we go from no "ports" open to having
699  * one open.  This function performs the actions necessary to make an adapter
700  * operational, such as completing the initialization of HW modules, and
701  * enabling interrupts.  Must be called with the rtnl lock held.  (Note that
702  * this is called "cxgb_up" in the PF Driver.)
703  */
704 static int adapter_up(struct adapter *adapter)
705 {
706 	int err;
707 
708 	/*
709 	 * If this is the first time we've been called, perform basic
710 	 * adapter setup.  Once we've done this, many of our adapter
711 	 * parameters can no longer be changed ...
712 	 */
713 	if ((adapter->flags & FULL_INIT_DONE) == 0) {
714 		err = setup_sge_queues(adapter);
715 		if (err)
716 			return err;
717 		err = setup_rss(adapter);
718 		if (err) {
719 			t4vf_free_sge_resources(adapter);
720 			return err;
721 		}
722 
723 		if (adapter->flags & USING_MSIX)
724 			name_msix_vecs(adapter);
725 		adapter->flags |= FULL_INIT_DONE;
726 	}
727 
728 	/*
729 	 * Acquire our interrupt resources.  We only support MSI-X and MSI.
730 	 */
731 	BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
732 	if (adapter->flags & USING_MSIX)
733 		err = request_msix_queue_irqs(adapter);
734 	else
735 		err = request_irq(adapter->pdev->irq,
736 				  t4vf_intr_handler(adapter), 0,
737 				  adapter->name, adapter);
738 	if (err) {
739 		dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
740 			err);
741 		return err;
742 	}
743 
744 	/*
745 	 * Enable NAPI ingress processing and return success.
746 	 */
747 	enable_rx(adapter);
748 	t4vf_sge_start(adapter);
749 
750 	/* Initialize hash mac addr list*/
751 	INIT_LIST_HEAD(&adapter->mac_hlist);
752 	return 0;
753 }
754 
755 /*
756  * Bring the adapter down.  Called whenever the last "port" (Virtual
757  * Interface) closed.  (Note that this routine is called "cxgb_down" in the PF
758  * Driver.)
759  */
760 static void adapter_down(struct adapter *adapter)
761 {
762 	/*
763 	 * Free interrupt resources.
764 	 */
765 	if (adapter->flags & USING_MSIX)
766 		free_msix_queue_irqs(adapter);
767 	else
768 		free_irq(adapter->pdev->irq, adapter);
769 
770 	/*
771 	 * Wait for NAPI handlers to finish.
772 	 */
773 	quiesce_rx(adapter);
774 }
775 
776 /*
777  * Start up a net device.
778  */
779 static int cxgb4vf_open(struct net_device *dev)
780 {
781 	int err;
782 	struct port_info *pi = netdev_priv(dev);
783 	struct adapter *adapter = pi->adapter;
784 
785 	/*
786 	 * If this is the first interface that we're opening on the "adapter",
787 	 * bring the "adapter" up now.
788 	 */
789 	if (adapter->open_device_map == 0) {
790 		err = adapter_up(adapter);
791 		if (err)
792 			return err;
793 	}
794 
795 	/*
796 	 * Note that this interface is up and start everything up ...
797 	 */
798 	err = link_start(dev);
799 	if (err)
800 		goto err_unwind;
801 
802 	pi->vlan_id = t4vf_get_vf_vlan_acl(adapter);
803 
804 	netif_tx_start_all_queues(dev);
805 	set_bit(pi->port_id, &adapter->open_device_map);
806 	return 0;
807 
808 err_unwind:
809 	if (adapter->open_device_map == 0)
810 		adapter_down(adapter);
811 	return err;
812 }
813 
814 /*
815  * Shut down a net device.  This routine is called "cxgb_close" in the PF
816  * Driver ...
817  */
818 static int cxgb4vf_stop(struct net_device *dev)
819 {
820 	struct port_info *pi = netdev_priv(dev);
821 	struct adapter *adapter = pi->adapter;
822 
823 	netif_tx_stop_all_queues(dev);
824 	netif_carrier_off(dev);
825 	t4vf_enable_vi(adapter, pi->viid, false, false);
826 	pi->link_cfg.link_ok = 0;
827 
828 	clear_bit(pi->port_id, &adapter->open_device_map);
829 	if (adapter->open_device_map == 0)
830 		adapter_down(adapter);
831 	return 0;
832 }
833 
834 /*
835  * Translate our basic statistics into the standard "ifconfig" statistics.
836  */
837 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
838 {
839 	struct t4vf_port_stats stats;
840 	struct port_info *pi = netdev2pinfo(dev);
841 	struct adapter *adapter = pi->adapter;
842 	struct net_device_stats *ns = &dev->stats;
843 	int err;
844 
845 	spin_lock(&adapter->stats_lock);
846 	err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
847 	spin_unlock(&adapter->stats_lock);
848 
849 	memset(ns, 0, sizeof(*ns));
850 	if (err)
851 		return ns;
852 
853 	ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
854 			stats.tx_ucast_bytes + stats.tx_offload_bytes);
855 	ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
856 			  stats.tx_ucast_frames + stats.tx_offload_frames);
857 	ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
858 			stats.rx_ucast_bytes);
859 	ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
860 			  stats.rx_ucast_frames);
861 	ns->multicast = stats.rx_mcast_frames;
862 	ns->tx_errors = stats.tx_drop_frames;
863 	ns->rx_errors = stats.rx_err_frames;
864 
865 	return ns;
866 }
867 
868 static inline int cxgb4vf_set_addr_hash(struct port_info *pi)
869 {
870 	struct adapter *adapter = pi->adapter;
871 	u64 vec = 0;
872 	bool ucast = false;
873 	struct hash_mac_addr *entry;
874 
875 	/* Calculate the hash vector for the updated list and program it */
876 	list_for_each_entry(entry, &adapter->mac_hlist, list) {
877 		ucast |= is_unicast_ether_addr(entry->addr);
878 		vec |= (1ULL << hash_mac_addr(entry->addr));
879 	}
880 	return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false);
881 }
882 
883 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr)
884 {
885 	struct port_info *pi = netdev_priv(netdev);
886 	struct adapter *adapter = pi->adapter;
887 	int ret;
888 	u64 mhash = 0;
889 	u64 uhash = 0;
890 	bool free = false;
891 	bool ucast = is_unicast_ether_addr(mac_addr);
892 	const u8 *maclist[1] = {mac_addr};
893 	struct hash_mac_addr *new_entry;
894 
895 	ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist,
896 				  NULL, ucast ? &uhash : &mhash, false);
897 	if (ret < 0)
898 		goto out;
899 	/* if hash != 0, then add the addr to hash addr list
900 	 * so on the end we will calculate the hash for the
901 	 * list and program it
902 	 */
903 	if (uhash || mhash) {
904 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
905 		if (!new_entry)
906 			return -ENOMEM;
907 		ether_addr_copy(new_entry->addr, mac_addr);
908 		list_add_tail(&new_entry->list, &adapter->mac_hlist);
909 		ret = cxgb4vf_set_addr_hash(pi);
910 	}
911 out:
912 	return ret < 0 ? ret : 0;
913 }
914 
915 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
916 {
917 	struct port_info *pi = netdev_priv(netdev);
918 	struct adapter *adapter = pi->adapter;
919 	int ret;
920 	const u8 *maclist[1] = {mac_addr};
921 	struct hash_mac_addr *entry, *tmp;
922 
923 	/* If the MAC address to be removed is in the hash addr
924 	 * list, delete it from the list and update hash vector
925 	 */
926 	list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) {
927 		if (ether_addr_equal(entry->addr, mac_addr)) {
928 			list_del(&entry->list);
929 			kfree(entry);
930 			return cxgb4vf_set_addr_hash(pi);
931 		}
932 	}
933 
934 	ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false);
935 	return ret < 0 ? -EINVAL : 0;
936 }
937 
938 /*
939  * Set RX properties of a port, such as promiscruity, address filters, and MTU.
940  * If @mtu is -1 it is left unchanged.
941  */
942 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
943 {
944 	struct port_info *pi = netdev_priv(dev);
945 
946 	__dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
947 	__dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
948 	return t4vf_set_rxmode(pi->adapter, pi->viid, -1,
949 			       (dev->flags & IFF_PROMISC) != 0,
950 			       (dev->flags & IFF_ALLMULTI) != 0,
951 			       1, -1, sleep_ok);
952 }
953 
954 /*
955  * Set the current receive modes on the device.
956  */
957 static void cxgb4vf_set_rxmode(struct net_device *dev)
958 {
959 	/* unfortunately we can't return errors to the stack */
960 	set_rxmode(dev, -1, false);
961 }
962 
963 /*
964  * Find the entry in the interrupt holdoff timer value array which comes
965  * closest to the specified interrupt holdoff value.
966  */
967 static int closest_timer(const struct sge *s, int us)
968 {
969 	int i, timer_idx = 0, min_delta = INT_MAX;
970 
971 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
972 		int delta = us - s->timer_val[i];
973 		if (delta < 0)
974 			delta = -delta;
975 		if (delta < min_delta) {
976 			min_delta = delta;
977 			timer_idx = i;
978 		}
979 	}
980 	return timer_idx;
981 }
982 
983 static int closest_thres(const struct sge *s, int thres)
984 {
985 	int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
986 
987 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
988 		delta = thres - s->counter_val[i];
989 		if (delta < 0)
990 			delta = -delta;
991 		if (delta < min_delta) {
992 			min_delta = delta;
993 			pktcnt_idx = i;
994 		}
995 	}
996 	return pktcnt_idx;
997 }
998 
999 /*
1000  * Return a queue's interrupt hold-off time in us.  0 means no timer.
1001  */
1002 static unsigned int qtimer_val(const struct adapter *adapter,
1003 			       const struct sge_rspq *rspq)
1004 {
1005 	unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params);
1006 
1007 	return timer_idx < SGE_NTIMERS
1008 		? adapter->sge.timer_val[timer_idx]
1009 		: 0;
1010 }
1011 
1012 /**
1013  *	set_rxq_intr_params - set a queue's interrupt holdoff parameters
1014  *	@adapter: the adapter
1015  *	@rspq: the RX response queue
1016  *	@us: the hold-off time in us, or 0 to disable timer
1017  *	@cnt: the hold-off packet count, or 0 to disable counter
1018  *
1019  *	Sets an RX response queue's interrupt hold-off time and packet count.
1020  *	At least one of the two needs to be enabled for the queue to generate
1021  *	interrupts.
1022  */
1023 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1024 			       unsigned int us, unsigned int cnt)
1025 {
1026 	unsigned int timer_idx;
1027 
1028 	/*
1029 	 * If both the interrupt holdoff timer and count are specified as
1030 	 * zero, default to a holdoff count of 1 ...
1031 	 */
1032 	if ((us | cnt) == 0)
1033 		cnt = 1;
1034 
1035 	/*
1036 	 * If an interrupt holdoff count has been specified, then find the
1037 	 * closest configured holdoff count and use that.  If the response
1038 	 * queue has already been created, then update its queue context
1039 	 * parameters ...
1040 	 */
1041 	if (cnt) {
1042 		int err;
1043 		u32 v, pktcnt_idx;
1044 
1045 		pktcnt_idx = closest_thres(&adapter->sge, cnt);
1046 		if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1047 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1048 			    FW_PARAMS_PARAM_X_V(
1049 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1050 			    FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id);
1051 			err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1052 			if (err)
1053 				return err;
1054 		}
1055 		rspq->pktcnt_idx = pktcnt_idx;
1056 	}
1057 
1058 	/*
1059 	 * Compute the closest holdoff timer index from the supplied holdoff
1060 	 * timer value.
1061 	 */
1062 	timer_idx = (us == 0
1063 		     ? SGE_TIMER_RSTRT_CNTR
1064 		     : closest_timer(&adapter->sge, us));
1065 
1066 	/*
1067 	 * Update the response queue's interrupt coalescing parameters and
1068 	 * return success.
1069 	 */
1070 	rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
1071 			     QINTR_CNT_EN_V(cnt > 0));
1072 	return 0;
1073 }
1074 
1075 /*
1076  * Return a version number to identify the type of adapter.  The scheme is:
1077  * - bits 0..9: chip version
1078  * - bits 10..15: chip revision
1079  */
1080 static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1081 {
1082 	/*
1083 	 * Chip version 4, revision 0x3f (cxgb4vf).
1084 	 */
1085 	return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1086 }
1087 
1088 /*
1089  * Execute the specified ioctl command.
1090  */
1091 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1092 {
1093 	int ret = 0;
1094 
1095 	switch (cmd) {
1096 	    /*
1097 	     * The VF Driver doesn't have access to any of the other
1098 	     * common Ethernet device ioctl()'s (like reading/writing
1099 	     * PHY registers, etc.
1100 	     */
1101 
1102 	default:
1103 		ret = -EOPNOTSUPP;
1104 		break;
1105 	}
1106 	return ret;
1107 }
1108 
1109 /*
1110  * Change the device's MTU.
1111  */
1112 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1113 {
1114 	int ret;
1115 	struct port_info *pi = netdev_priv(dev);
1116 
1117 	ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1118 			      -1, -1, -1, -1, true);
1119 	if (!ret)
1120 		dev->mtu = new_mtu;
1121 	return ret;
1122 }
1123 
1124 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1125 	netdev_features_t features)
1126 {
1127 	/*
1128 	 * Since there is no support for separate rx/tx vlan accel
1129 	 * enable/disable make sure tx flag is always in same state as rx.
1130 	 */
1131 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1132 		features |= NETIF_F_HW_VLAN_CTAG_TX;
1133 	else
1134 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1135 
1136 	return features;
1137 }
1138 
1139 static int cxgb4vf_set_features(struct net_device *dev,
1140 	netdev_features_t features)
1141 {
1142 	struct port_info *pi = netdev_priv(dev);
1143 	netdev_features_t changed = dev->features ^ features;
1144 
1145 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1146 		t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1147 				features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1148 
1149 	return 0;
1150 }
1151 
1152 /*
1153  * Change the devices MAC address.
1154  */
1155 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1156 {
1157 	int ret;
1158 	struct sockaddr *addr = _addr;
1159 	struct port_info *pi = netdev_priv(dev);
1160 
1161 	if (!is_valid_ether_addr(addr->sa_data))
1162 		return -EADDRNOTAVAIL;
1163 
1164 	ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1165 			      addr->sa_data, true);
1166 	if (ret < 0)
1167 		return ret;
1168 
1169 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1170 	pi->xact_addr_filt = ret;
1171 	return 0;
1172 }
1173 
1174 #ifdef CONFIG_NET_POLL_CONTROLLER
1175 /*
1176  * Poll all of our receive queues.  This is called outside of normal interrupt
1177  * context.
1178  */
1179 static void cxgb4vf_poll_controller(struct net_device *dev)
1180 {
1181 	struct port_info *pi = netdev_priv(dev);
1182 	struct adapter *adapter = pi->adapter;
1183 
1184 	if (adapter->flags & USING_MSIX) {
1185 		struct sge_eth_rxq *rxq;
1186 		int nqsets;
1187 
1188 		rxq = &adapter->sge.ethrxq[pi->first_qset];
1189 		for (nqsets = pi->nqsets; nqsets; nqsets--) {
1190 			t4vf_sge_intr_msix(0, &rxq->rspq);
1191 			rxq++;
1192 		}
1193 	} else
1194 		t4vf_intr_handler(adapter)(0, adapter);
1195 }
1196 #endif
1197 
1198 /*
1199  * Ethtool operations.
1200  * ===================
1201  *
1202  * Note that we don't support any ethtool operations which change the physical
1203  * state of the port to which we're linked.
1204  */
1205 
1206 /**
1207  *	from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
1208  *	@port_type: Firmware Port Type
1209  *	@mod_type: Firmware Module Type
1210  *
1211  *	Translate Firmware Port/Module type to Ethtool Port Type.
1212  */
1213 static int from_fw_port_mod_type(enum fw_port_type port_type,
1214 				 enum fw_port_module_type mod_type)
1215 {
1216 	if (port_type == FW_PORT_TYPE_BT_SGMII ||
1217 	    port_type == FW_PORT_TYPE_BT_XFI ||
1218 	    port_type == FW_PORT_TYPE_BT_XAUI) {
1219 		return PORT_TP;
1220 	} else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
1221 		   port_type == FW_PORT_TYPE_FIBER_XAUI) {
1222 		return PORT_FIBRE;
1223 	} else if (port_type == FW_PORT_TYPE_SFP ||
1224 		   port_type == FW_PORT_TYPE_QSFP_10G ||
1225 		   port_type == FW_PORT_TYPE_QSA ||
1226 		   port_type == FW_PORT_TYPE_QSFP ||
1227 		   port_type == FW_PORT_TYPE_CR4_QSFP ||
1228 		   port_type == FW_PORT_TYPE_CR_QSFP ||
1229 		   port_type == FW_PORT_TYPE_CR2_QSFP ||
1230 		   port_type == FW_PORT_TYPE_SFP28) {
1231 		if (mod_type == FW_PORT_MOD_TYPE_LR ||
1232 		    mod_type == FW_PORT_MOD_TYPE_SR ||
1233 		    mod_type == FW_PORT_MOD_TYPE_ER ||
1234 		    mod_type == FW_PORT_MOD_TYPE_LRM)
1235 			return PORT_FIBRE;
1236 		else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1237 			 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1238 			return PORT_DA;
1239 		else
1240 			return PORT_OTHER;
1241 	} else if (port_type == FW_PORT_TYPE_KR4_100G ||
1242 		   port_type == FW_PORT_TYPE_KR_SFP28 ||
1243 		   port_type == FW_PORT_TYPE_KR_XLAUI) {
1244 		return PORT_NONE;
1245 	}
1246 
1247 	return PORT_OTHER;
1248 }
1249 
1250 /**
1251  *	fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
1252  *	@port_type: Firmware Port Type
1253  *	@fw_caps: Firmware Port Capabilities
1254  *	@link_mode_mask: ethtool Link Mode Mask
1255  *
1256  *	Translate a Firmware Port Capabilities specification to an ethtool
1257  *	Link Mode Mask.
1258  */
1259 static void fw_caps_to_lmm(enum fw_port_type port_type,
1260 			   unsigned int fw_caps,
1261 			   unsigned long *link_mode_mask)
1262 {
1263 	#define SET_LMM(__lmm_name) \
1264 		__set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
1265 			  link_mode_mask)
1266 
1267 	#define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
1268 		do { \
1269 			if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1270 				SET_LMM(__lmm_name); \
1271 		} while (0)
1272 
1273 	switch (port_type) {
1274 	case FW_PORT_TYPE_BT_SGMII:
1275 	case FW_PORT_TYPE_BT_XFI:
1276 	case FW_PORT_TYPE_BT_XAUI:
1277 		SET_LMM(TP);
1278 		FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
1279 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1280 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1281 		break;
1282 
1283 	case FW_PORT_TYPE_KX4:
1284 	case FW_PORT_TYPE_KX:
1285 		SET_LMM(Backplane);
1286 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1287 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1288 		break;
1289 
1290 	case FW_PORT_TYPE_KR:
1291 		SET_LMM(Backplane);
1292 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1293 		break;
1294 
1295 	case FW_PORT_TYPE_BP_AP:
1296 		SET_LMM(Backplane);
1297 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1298 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1299 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1300 		break;
1301 
1302 	case FW_PORT_TYPE_BP4_AP:
1303 		SET_LMM(Backplane);
1304 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1305 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1306 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1307 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1308 		break;
1309 
1310 	case FW_PORT_TYPE_FIBER_XFI:
1311 	case FW_PORT_TYPE_FIBER_XAUI:
1312 	case FW_PORT_TYPE_SFP:
1313 	case FW_PORT_TYPE_QSFP_10G:
1314 	case FW_PORT_TYPE_QSA:
1315 		SET_LMM(FIBRE);
1316 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1317 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1318 		break;
1319 
1320 	case FW_PORT_TYPE_BP40_BA:
1321 	case FW_PORT_TYPE_QSFP:
1322 		SET_LMM(FIBRE);
1323 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1324 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1325 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1326 		break;
1327 
1328 	case FW_PORT_TYPE_CR_QSFP:
1329 	case FW_PORT_TYPE_SFP28:
1330 		SET_LMM(FIBRE);
1331 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1332 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1333 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1334 		break;
1335 
1336 	case FW_PORT_TYPE_KR_SFP28:
1337 		SET_LMM(Backplane);
1338 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1339 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1340 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full);
1341 		break;
1342 
1343 	case FW_PORT_TYPE_KR_XLAUI:
1344 		SET_LMM(Backplane);
1345 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1346 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1347 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full);
1348 		break;
1349 
1350 	case FW_PORT_TYPE_CR2_QSFP:
1351 		SET_LMM(FIBRE);
1352 		FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full);
1353 		break;
1354 
1355 	case FW_PORT_TYPE_KR4_100G:
1356 	case FW_PORT_TYPE_CR4_QSFP:
1357 		SET_LMM(FIBRE);
1358 		FW_CAPS_TO_LMM(SPEED_1G,  1000baseT_Full);
1359 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseSR_Full);
1360 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1361 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1362 		FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full);
1363 		FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full);
1364 		break;
1365 
1366 	default:
1367 		break;
1368 	}
1369 
1370 	FW_CAPS_TO_LMM(ANEG, Autoneg);
1371 	FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
1372 	FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
1373 
1374 	#undef FW_CAPS_TO_LMM
1375 	#undef SET_LMM
1376 }
1377 
1378 static int cxgb4vf_get_link_ksettings(struct net_device *dev,
1379 				  struct ethtool_link_ksettings *link_ksettings)
1380 {
1381 	struct port_info *pi = netdev_priv(dev);
1382 	struct ethtool_link_settings *base = &link_ksettings->base;
1383 
1384 	/* For the nonce, the Firmware doesn't send up Port State changes
1385 	 * when the Virtual Interface attached to the Port is down.  So
1386 	 * if it's down, let's grab any changes.
1387 	 */
1388 	if (!netif_running(dev))
1389 		(void)t4vf_update_port_info(pi);
1390 
1391 	ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
1392 	ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
1393 	ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
1394 
1395 	base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
1396 
1397 	if (pi->mdio_addr >= 0) {
1398 		base->phy_address = pi->mdio_addr;
1399 		base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
1400 				      ? ETH_MDIO_SUPPORTS_C22
1401 				      : ETH_MDIO_SUPPORTS_C45);
1402 	} else {
1403 		base->phy_address = 255;
1404 		base->mdio_support = 0;
1405 	}
1406 
1407 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps,
1408 		       link_ksettings->link_modes.supported);
1409 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps,
1410 		       link_ksettings->link_modes.advertising);
1411 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps,
1412 		       link_ksettings->link_modes.lp_advertising);
1413 
1414 	if (netif_carrier_ok(dev)) {
1415 		base->speed = pi->link_cfg.speed;
1416 		base->duplex = DUPLEX_FULL;
1417 	} else {
1418 		base->speed = SPEED_UNKNOWN;
1419 		base->duplex = DUPLEX_UNKNOWN;
1420 	}
1421 
1422 	base->autoneg = pi->link_cfg.autoneg;
1423 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG)
1424 		ethtool_link_ksettings_add_link_mode(link_ksettings,
1425 						     supported, Autoneg);
1426 	if (pi->link_cfg.autoneg)
1427 		ethtool_link_ksettings_add_link_mode(link_ksettings,
1428 						     advertising, Autoneg);
1429 
1430 	return 0;
1431 }
1432 
1433 /* Translate the Firmware FEC value into the ethtool value. */
1434 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec)
1435 {
1436 	unsigned int eth_fec = 0;
1437 
1438 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
1439 		eth_fec |= ETHTOOL_FEC_RS;
1440 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1441 		eth_fec |= ETHTOOL_FEC_BASER;
1442 
1443 	/* if nothing is set, then FEC is off */
1444 	if (!eth_fec)
1445 		eth_fec = ETHTOOL_FEC_OFF;
1446 
1447 	return eth_fec;
1448 }
1449 
1450 /* Translate Common Code FEC value into ethtool value. */
1451 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec)
1452 {
1453 	unsigned int eth_fec = 0;
1454 
1455 	if (cc_fec & FEC_AUTO)
1456 		eth_fec |= ETHTOOL_FEC_AUTO;
1457 	if (cc_fec & FEC_RS)
1458 		eth_fec |= ETHTOOL_FEC_RS;
1459 	if (cc_fec & FEC_BASER_RS)
1460 		eth_fec |= ETHTOOL_FEC_BASER;
1461 
1462 	/* if nothing is set, then FEC is off */
1463 	if (!eth_fec)
1464 		eth_fec = ETHTOOL_FEC_OFF;
1465 
1466 	return eth_fec;
1467 }
1468 
1469 static int cxgb4vf_get_fecparam(struct net_device *dev,
1470 				struct ethtool_fecparam *fec)
1471 {
1472 	const struct port_info *pi = netdev_priv(dev);
1473 	const struct link_config *lc = &pi->link_cfg;
1474 
1475 	/* Translate the Firmware FEC Support into the ethtool value.  We
1476 	 * always support IEEE 802.3 "automatic" selection of Link FEC type if
1477 	 * any FEC is supported.
1478 	 */
1479 	fec->fec = fwcap_to_eth_fec(lc->pcaps);
1480 	if (fec->fec != ETHTOOL_FEC_OFF)
1481 		fec->fec |= ETHTOOL_FEC_AUTO;
1482 
1483 	/* Translate the current internal FEC parameters into the
1484 	 * ethtool values.
1485 	 */
1486 	fec->active_fec = cc_to_eth_fec(lc->fec);
1487 	return 0;
1488 }
1489 
1490 /*
1491  * Return our driver information.
1492  */
1493 static void cxgb4vf_get_drvinfo(struct net_device *dev,
1494 				struct ethtool_drvinfo *drvinfo)
1495 {
1496 	struct adapter *adapter = netdev2adap(dev);
1497 
1498 	strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1499 	strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
1500 	strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1501 		sizeof(drvinfo->bus_info));
1502 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1503 		 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1504 		 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev),
1505 		 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev),
1506 		 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev),
1507 		 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev),
1508 		 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev),
1509 		 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev),
1510 		 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev),
1511 		 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev));
1512 }
1513 
1514 /*
1515  * Return current adapter message level.
1516  */
1517 static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1518 {
1519 	return netdev2adap(dev)->msg_enable;
1520 }
1521 
1522 /*
1523  * Set current adapter message level.
1524  */
1525 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1526 {
1527 	netdev2adap(dev)->msg_enable = msglevel;
1528 }
1529 
1530 /*
1531  * Return the device's current Queue Set ring size parameters along with the
1532  * allowed maximum values.  Since ethtool doesn't understand the concept of
1533  * multi-queue devices, we just return the current values associated with the
1534  * first Queue Set.
1535  */
1536 static void cxgb4vf_get_ringparam(struct net_device *dev,
1537 				  struct ethtool_ringparam *rp)
1538 {
1539 	const struct port_info *pi = netdev_priv(dev);
1540 	const struct sge *s = &pi->adapter->sge;
1541 
1542 	rp->rx_max_pending = MAX_RX_BUFFERS;
1543 	rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1544 	rp->rx_jumbo_max_pending = 0;
1545 	rp->tx_max_pending = MAX_TXQ_ENTRIES;
1546 
1547 	rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1548 	rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1549 	rp->rx_jumbo_pending = 0;
1550 	rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1551 }
1552 
1553 /*
1554  * Set the Queue Set ring size parameters for the device.  Again, since
1555  * ethtool doesn't allow for the concept of multiple queues per device, we'll
1556  * apply these new values across all of the Queue Sets associated with the
1557  * device -- after vetting them of course!
1558  */
1559 static int cxgb4vf_set_ringparam(struct net_device *dev,
1560 				 struct ethtool_ringparam *rp)
1561 {
1562 	const struct port_info *pi = netdev_priv(dev);
1563 	struct adapter *adapter = pi->adapter;
1564 	struct sge *s = &adapter->sge;
1565 	int qs;
1566 
1567 	if (rp->rx_pending > MAX_RX_BUFFERS ||
1568 	    rp->rx_jumbo_pending ||
1569 	    rp->tx_pending > MAX_TXQ_ENTRIES ||
1570 	    rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1571 	    rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1572 	    rp->rx_pending < MIN_FL_ENTRIES ||
1573 	    rp->tx_pending < MIN_TXQ_ENTRIES)
1574 		return -EINVAL;
1575 
1576 	if (adapter->flags & FULL_INIT_DONE)
1577 		return -EBUSY;
1578 
1579 	for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1580 		s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1581 		s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1582 		s->ethtxq[qs].q.size = rp->tx_pending;
1583 	}
1584 	return 0;
1585 }
1586 
1587 /*
1588  * Return the interrupt holdoff timer and count for the first Queue Set on the
1589  * device.  Our extension ioctl() (the cxgbtool interface) allows the
1590  * interrupt holdoff timer to be read on all of the device's Queue Sets.
1591  */
1592 static int cxgb4vf_get_coalesce(struct net_device *dev,
1593 				struct ethtool_coalesce *coalesce)
1594 {
1595 	const struct port_info *pi = netdev_priv(dev);
1596 	const struct adapter *adapter = pi->adapter;
1597 	const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1598 
1599 	coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1600 	coalesce->rx_max_coalesced_frames =
1601 		((rspq->intr_params & QINTR_CNT_EN_F)
1602 		 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1603 		 : 0);
1604 	return 0;
1605 }
1606 
1607 /*
1608  * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1609  * interface.  Our extension ioctl() (the cxgbtool interface) allows us to set
1610  * the interrupt holdoff timer on any of the device's Queue Sets.
1611  */
1612 static int cxgb4vf_set_coalesce(struct net_device *dev,
1613 				struct ethtool_coalesce *coalesce)
1614 {
1615 	const struct port_info *pi = netdev_priv(dev);
1616 	struct adapter *adapter = pi->adapter;
1617 
1618 	return set_rxq_intr_params(adapter,
1619 				   &adapter->sge.ethrxq[pi->first_qset].rspq,
1620 				   coalesce->rx_coalesce_usecs,
1621 				   coalesce->rx_max_coalesced_frames);
1622 }
1623 
1624 /*
1625  * Report current port link pause parameter settings.
1626  */
1627 static void cxgb4vf_get_pauseparam(struct net_device *dev,
1628 				   struct ethtool_pauseparam *pauseparam)
1629 {
1630 	struct port_info *pi = netdev_priv(dev);
1631 
1632 	pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1633 	pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1634 	pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1635 }
1636 
1637 /*
1638  * Identify the port by blinking the port's LED.
1639  */
1640 static int cxgb4vf_phys_id(struct net_device *dev,
1641 			   enum ethtool_phys_id_state state)
1642 {
1643 	unsigned int val;
1644 	struct port_info *pi = netdev_priv(dev);
1645 
1646 	if (state == ETHTOOL_ID_ACTIVE)
1647 		val = 0xffff;
1648 	else if (state == ETHTOOL_ID_INACTIVE)
1649 		val = 0;
1650 	else
1651 		return -EINVAL;
1652 
1653 	return t4vf_identify_port(pi->adapter, pi->viid, val);
1654 }
1655 
1656 /*
1657  * Port stats maintained per queue of the port.
1658  */
1659 struct queue_port_stats {
1660 	u64 tso;
1661 	u64 tx_csum;
1662 	u64 rx_csum;
1663 	u64 vlan_ex;
1664 	u64 vlan_ins;
1665 	u64 lro_pkts;
1666 	u64 lro_merged;
1667 };
1668 
1669 /*
1670  * Strings for the ETH_SS_STATS statistics set ("ethtool -S").  Note that
1671  * these need to match the order of statistics returned by
1672  * t4vf_get_port_stats().
1673  */
1674 static const char stats_strings[][ETH_GSTRING_LEN] = {
1675 	/*
1676 	 * These must match the layout of the t4vf_port_stats structure.
1677 	 */
1678 	"TxBroadcastBytes  ",
1679 	"TxBroadcastFrames ",
1680 	"TxMulticastBytes  ",
1681 	"TxMulticastFrames ",
1682 	"TxUnicastBytes    ",
1683 	"TxUnicastFrames   ",
1684 	"TxDroppedFrames   ",
1685 	"TxOffloadBytes    ",
1686 	"TxOffloadFrames   ",
1687 	"RxBroadcastBytes  ",
1688 	"RxBroadcastFrames ",
1689 	"RxMulticastBytes  ",
1690 	"RxMulticastFrames ",
1691 	"RxUnicastBytes    ",
1692 	"RxUnicastFrames   ",
1693 	"RxErrorFrames     ",
1694 
1695 	/*
1696 	 * These are accumulated per-queue statistics and must match the
1697 	 * order of the fields in the queue_port_stats structure.
1698 	 */
1699 	"TSO               ",
1700 	"TxCsumOffload     ",
1701 	"RxCsumGood        ",
1702 	"VLANextractions   ",
1703 	"VLANinsertions    ",
1704 	"GROPackets        ",
1705 	"GROMerged         ",
1706 };
1707 
1708 /*
1709  * Return the number of statistics in the specified statistics set.
1710  */
1711 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1712 {
1713 	switch (sset) {
1714 	case ETH_SS_STATS:
1715 		return ARRAY_SIZE(stats_strings);
1716 	default:
1717 		return -EOPNOTSUPP;
1718 	}
1719 	/*NOTREACHED*/
1720 }
1721 
1722 /*
1723  * Return the strings for the specified statistics set.
1724  */
1725 static void cxgb4vf_get_strings(struct net_device *dev,
1726 				u32 sset,
1727 				u8 *data)
1728 {
1729 	switch (sset) {
1730 	case ETH_SS_STATS:
1731 		memcpy(data, stats_strings, sizeof(stats_strings));
1732 		break;
1733 	}
1734 }
1735 
1736 /*
1737  * Small utility routine to accumulate queue statistics across the queues of
1738  * a "port".
1739  */
1740 static void collect_sge_port_stats(const struct adapter *adapter,
1741 				   const struct port_info *pi,
1742 				   struct queue_port_stats *stats)
1743 {
1744 	const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1745 	const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1746 	int qs;
1747 
1748 	memset(stats, 0, sizeof(*stats));
1749 	for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1750 		stats->tso += txq->tso;
1751 		stats->tx_csum += txq->tx_cso;
1752 		stats->rx_csum += rxq->stats.rx_cso;
1753 		stats->vlan_ex += rxq->stats.vlan_ex;
1754 		stats->vlan_ins += txq->vlan_ins;
1755 		stats->lro_pkts += rxq->stats.lro_pkts;
1756 		stats->lro_merged += rxq->stats.lro_merged;
1757 	}
1758 }
1759 
1760 /*
1761  * Return the ETH_SS_STATS statistics set.
1762  */
1763 static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1764 				      struct ethtool_stats *stats,
1765 				      u64 *data)
1766 {
1767 	struct port_info *pi = netdev2pinfo(dev);
1768 	struct adapter *adapter = pi->adapter;
1769 	int err = t4vf_get_port_stats(adapter, pi->pidx,
1770 				      (struct t4vf_port_stats *)data);
1771 	if (err)
1772 		memset(data, 0, sizeof(struct t4vf_port_stats));
1773 
1774 	data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1775 	collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1776 }
1777 
1778 /*
1779  * Return the size of our register map.
1780  */
1781 static int cxgb4vf_get_regs_len(struct net_device *dev)
1782 {
1783 	return T4VF_REGMAP_SIZE;
1784 }
1785 
1786 /*
1787  * Dump a block of registers, start to end inclusive, into a buffer.
1788  */
1789 static void reg_block_dump(struct adapter *adapter, void *regbuf,
1790 			   unsigned int start, unsigned int end)
1791 {
1792 	u32 *bp = regbuf + start - T4VF_REGMAP_START;
1793 
1794 	for ( ; start <= end; start += sizeof(u32)) {
1795 		/*
1796 		 * Avoid reading the Mailbox Control register since that
1797 		 * can trigger a Mailbox Ownership Arbitration cycle and
1798 		 * interfere with communication with the firmware.
1799 		 */
1800 		if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1801 			*bp++ = 0xffff;
1802 		else
1803 			*bp++ = t4_read_reg(adapter, start);
1804 	}
1805 }
1806 
1807 /*
1808  * Copy our entire register map into the provided buffer.
1809  */
1810 static void cxgb4vf_get_regs(struct net_device *dev,
1811 			     struct ethtool_regs *regs,
1812 			     void *regbuf)
1813 {
1814 	struct adapter *adapter = netdev2adap(dev);
1815 
1816 	regs->version = mk_adap_vers(adapter);
1817 
1818 	/*
1819 	 * Fill in register buffer with our register map.
1820 	 */
1821 	memset(regbuf, 0, T4VF_REGMAP_SIZE);
1822 
1823 	reg_block_dump(adapter, regbuf,
1824 		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1825 		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1826 	reg_block_dump(adapter, regbuf,
1827 		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1828 		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1829 
1830 	/* T5 adds new registers in the PL Register map.
1831 	 */
1832 	reg_block_dump(adapter, regbuf,
1833 		       T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1834 		       T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1835 		       ? PL_VF_WHOAMI_A : PL_VF_REVISION_A));
1836 	reg_block_dump(adapter, regbuf,
1837 		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1838 		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1839 
1840 	reg_block_dump(adapter, regbuf,
1841 		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1842 		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1843 }
1844 
1845 /*
1846  * Report current Wake On LAN settings.
1847  */
1848 static void cxgb4vf_get_wol(struct net_device *dev,
1849 			    struct ethtool_wolinfo *wol)
1850 {
1851 	wol->supported = 0;
1852 	wol->wolopts = 0;
1853 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1854 }
1855 
1856 /*
1857  * TCP Segmentation Offload flags which we support.
1858  */
1859 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1860 
1861 static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1862 	.get_link_ksettings	= cxgb4vf_get_link_ksettings,
1863 	.get_fecparam		= cxgb4vf_get_fecparam,
1864 	.get_drvinfo		= cxgb4vf_get_drvinfo,
1865 	.get_msglevel		= cxgb4vf_get_msglevel,
1866 	.set_msglevel		= cxgb4vf_set_msglevel,
1867 	.get_ringparam		= cxgb4vf_get_ringparam,
1868 	.set_ringparam		= cxgb4vf_set_ringparam,
1869 	.get_coalesce		= cxgb4vf_get_coalesce,
1870 	.set_coalesce		= cxgb4vf_set_coalesce,
1871 	.get_pauseparam		= cxgb4vf_get_pauseparam,
1872 	.get_link		= ethtool_op_get_link,
1873 	.get_strings		= cxgb4vf_get_strings,
1874 	.set_phys_id		= cxgb4vf_phys_id,
1875 	.get_sset_count		= cxgb4vf_get_sset_count,
1876 	.get_ethtool_stats	= cxgb4vf_get_ethtool_stats,
1877 	.get_regs_len		= cxgb4vf_get_regs_len,
1878 	.get_regs		= cxgb4vf_get_regs,
1879 	.get_wol		= cxgb4vf_get_wol,
1880 };
1881 
1882 /*
1883  * /sys/kernel/debug/cxgb4vf support code and data.
1884  * ================================================
1885  */
1886 
1887 /*
1888  * Show Firmware Mailbox Command/Reply Log
1889  *
1890  * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1891  * it's possible that we can catch things during a log update and therefore
1892  * see partially corrupted log entries.  But i9t's probably Good Enough(tm).
1893  * If we ever decide that we want to make sure that we're dumping a coherent
1894  * log, we'd need to perform locking in the mailbox logging and in
1895  * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1896  * like we do for the Firmware Device Log.  But as stated above, meh ...
1897  */
1898 static int mboxlog_show(struct seq_file *seq, void *v)
1899 {
1900 	struct adapter *adapter = seq->private;
1901 	struct mbox_cmd_log *log = adapter->mbox_log;
1902 	struct mbox_cmd *entry;
1903 	int entry_idx, i;
1904 
1905 	if (v == SEQ_START_TOKEN) {
1906 		seq_printf(seq,
1907 			   "%10s  %15s  %5s  %5s  %s\n",
1908 			   "Seq#", "Tstamp", "Atime", "Etime",
1909 			   "Command/Reply");
1910 		return 0;
1911 	}
1912 
1913 	entry_idx = log->cursor + ((uintptr_t)v - 2);
1914 	if (entry_idx >= log->size)
1915 		entry_idx -= log->size;
1916 	entry = mbox_cmd_log_entry(log, entry_idx);
1917 
1918 	/* skip over unused entries */
1919 	if (entry->timestamp == 0)
1920 		return 0;
1921 
1922 	seq_printf(seq, "%10u  %15llu  %5d  %5d",
1923 		   entry->seqno, entry->timestamp,
1924 		   entry->access, entry->execute);
1925 	for (i = 0; i < MBOX_LEN / 8; i++) {
1926 		u64 flit = entry->cmd[i];
1927 		u32 hi = (u32)(flit >> 32);
1928 		u32 lo = (u32)flit;
1929 
1930 		seq_printf(seq, "  %08x %08x", hi, lo);
1931 	}
1932 	seq_puts(seq, "\n");
1933 	return 0;
1934 }
1935 
1936 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos)
1937 {
1938 	struct adapter *adapter = seq->private;
1939 	struct mbox_cmd_log *log = adapter->mbox_log;
1940 
1941 	return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL);
1942 }
1943 
1944 static void *mboxlog_start(struct seq_file *seq, loff_t *pos)
1945 {
1946 	return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN;
1947 }
1948 
1949 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos)
1950 {
1951 	++*pos;
1952 	return mboxlog_get_idx(seq, *pos);
1953 }
1954 
1955 static void mboxlog_stop(struct seq_file *seq, void *v)
1956 {
1957 }
1958 
1959 static const struct seq_operations mboxlog_seq_ops = {
1960 	.start = mboxlog_start,
1961 	.next  = mboxlog_next,
1962 	.stop  = mboxlog_stop,
1963 	.show  = mboxlog_show
1964 };
1965 
1966 static int mboxlog_open(struct inode *inode, struct file *file)
1967 {
1968 	int res = seq_open(file, &mboxlog_seq_ops);
1969 
1970 	if (!res) {
1971 		struct seq_file *seq = file->private_data;
1972 
1973 		seq->private = inode->i_private;
1974 	}
1975 	return res;
1976 }
1977 
1978 static const struct file_operations mboxlog_fops = {
1979 	.owner   = THIS_MODULE,
1980 	.open    = mboxlog_open,
1981 	.read    = seq_read,
1982 	.llseek  = seq_lseek,
1983 	.release = seq_release,
1984 };
1985 
1986 /*
1987  * Show SGE Queue Set information.  We display QPL Queues Sets per line.
1988  */
1989 #define QPL	4
1990 
1991 static int sge_qinfo_show(struct seq_file *seq, void *v)
1992 {
1993 	struct adapter *adapter = seq->private;
1994 	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1995 	int qs, r = (uintptr_t)v - 1;
1996 
1997 	if (r)
1998 		seq_putc(seq, '\n');
1999 
2000 	#define S3(fmt_spec, s, v) \
2001 		do {\
2002 			seq_printf(seq, "%-12s", s); \
2003 			for (qs = 0; qs < n; ++qs) \
2004 				seq_printf(seq, " %16" fmt_spec, v); \
2005 			seq_putc(seq, '\n'); \
2006 		} while (0)
2007 	#define S(s, v)		S3("s", s, v)
2008 	#define T(s, v)		S3("u", s, txq[qs].v)
2009 	#define R(s, v)		S3("u", s, rxq[qs].v)
2010 
2011 	if (r < eth_entries) {
2012 		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2013 		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2014 		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2015 
2016 		S("QType:", "Ethernet");
2017 		S("Interface:",
2018 		  (rxq[qs].rspq.netdev
2019 		   ? rxq[qs].rspq.netdev->name
2020 		   : "N/A"));
2021 		S3("d", "Port:",
2022 		   (rxq[qs].rspq.netdev
2023 		    ? ((struct port_info *)
2024 		       netdev_priv(rxq[qs].rspq.netdev))->port_id
2025 		    : -1));
2026 		T("TxQ ID:", q.abs_id);
2027 		T("TxQ size:", q.size);
2028 		T("TxQ inuse:", q.in_use);
2029 		T("TxQ PIdx:", q.pidx);
2030 		T("TxQ CIdx:", q.cidx);
2031 		R("RspQ ID:", rspq.abs_id);
2032 		R("RspQ size:", rspq.size);
2033 		R("RspQE size:", rspq.iqe_len);
2034 		S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
2035 		S3("u", "Intr pktcnt:",
2036 		   adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
2037 		R("RspQ CIdx:", rspq.cidx);
2038 		R("RspQ Gen:", rspq.gen);
2039 		R("FL ID:", fl.abs_id);
2040 		R("FL size:", fl.size - MIN_FL_RESID);
2041 		R("FL avail:", fl.avail);
2042 		R("FL PIdx:", fl.pidx);
2043 		R("FL CIdx:", fl.cidx);
2044 		return 0;
2045 	}
2046 
2047 	r -= eth_entries;
2048 	if (r == 0) {
2049 		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2050 
2051 		seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
2052 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
2053 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2054 			   qtimer_val(adapter, evtq));
2055 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2056 			   adapter->sge.counter_val[evtq->pktcnt_idx]);
2057 		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
2058 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
2059 	} else if (r == 1) {
2060 		const struct sge_rspq *intrq = &adapter->sge.intrq;
2061 
2062 		seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
2063 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
2064 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2065 			   qtimer_val(adapter, intrq));
2066 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2067 			   adapter->sge.counter_val[intrq->pktcnt_idx]);
2068 		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
2069 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
2070 	}
2071 
2072 	#undef R
2073 	#undef T
2074 	#undef S
2075 	#undef S3
2076 
2077 	return 0;
2078 }
2079 
2080 /*
2081  * Return the number of "entries" in our "file".  We group the multi-Queue
2082  * sections with QPL Queue Sets per "entry".  The sections of the output are:
2083  *
2084  *     Ethernet RX/TX Queue Sets
2085  *     Firmware Event Queue
2086  *     Forwarded Interrupt Queue (if in MSI mode)
2087  */
2088 static int sge_queue_entries(const struct adapter *adapter)
2089 {
2090 	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2091 		((adapter->flags & USING_MSI) != 0);
2092 }
2093 
2094 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
2095 {
2096 	int entries = sge_queue_entries(seq->private);
2097 
2098 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2099 }
2100 
2101 static void sge_queue_stop(struct seq_file *seq, void *v)
2102 {
2103 }
2104 
2105 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2106 {
2107 	int entries = sge_queue_entries(seq->private);
2108 
2109 	++*pos;
2110 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2111 }
2112 
2113 static const struct seq_operations sge_qinfo_seq_ops = {
2114 	.start = sge_queue_start,
2115 	.next  = sge_queue_next,
2116 	.stop  = sge_queue_stop,
2117 	.show  = sge_qinfo_show
2118 };
2119 
2120 static int sge_qinfo_open(struct inode *inode, struct file *file)
2121 {
2122 	int res = seq_open(file, &sge_qinfo_seq_ops);
2123 
2124 	if (!res) {
2125 		struct seq_file *seq = file->private_data;
2126 		seq->private = inode->i_private;
2127 	}
2128 	return res;
2129 }
2130 
2131 static const struct file_operations sge_qinfo_debugfs_fops = {
2132 	.owner   = THIS_MODULE,
2133 	.open    = sge_qinfo_open,
2134 	.read    = seq_read,
2135 	.llseek  = seq_lseek,
2136 	.release = seq_release,
2137 };
2138 
2139 /*
2140  * Show SGE Queue Set statistics.  We display QPL Queues Sets per line.
2141  */
2142 #define QPL	4
2143 
2144 static int sge_qstats_show(struct seq_file *seq, void *v)
2145 {
2146 	struct adapter *adapter = seq->private;
2147 	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2148 	int qs, r = (uintptr_t)v - 1;
2149 
2150 	if (r)
2151 		seq_putc(seq, '\n');
2152 
2153 	#define S3(fmt, s, v) \
2154 		do { \
2155 			seq_printf(seq, "%-16s", s); \
2156 			for (qs = 0; qs < n; ++qs) \
2157 				seq_printf(seq, " %8" fmt, v); \
2158 			seq_putc(seq, '\n'); \
2159 		} while (0)
2160 	#define S(s, v)		S3("s", s, v)
2161 
2162 	#define T3(fmt, s, v)	S3(fmt, s, txq[qs].v)
2163 	#define T(s, v)		T3("lu", s, v)
2164 
2165 	#define R3(fmt, s, v)	S3(fmt, s, rxq[qs].v)
2166 	#define R(s, v)		R3("lu", s, v)
2167 
2168 	if (r < eth_entries) {
2169 		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2170 		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2171 		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2172 
2173 		S("QType:", "Ethernet");
2174 		S("Interface:",
2175 		  (rxq[qs].rspq.netdev
2176 		   ? rxq[qs].rspq.netdev->name
2177 		   : "N/A"));
2178 		R3("u", "RspQNullInts:", rspq.unhandled_irqs);
2179 		R("RxPackets:", stats.pkts);
2180 		R("RxCSO:", stats.rx_cso);
2181 		R("VLANxtract:", stats.vlan_ex);
2182 		R("LROmerged:", stats.lro_merged);
2183 		R("LROpackets:", stats.lro_pkts);
2184 		R("RxDrops:", stats.rx_drops);
2185 		T("TSO:", tso);
2186 		T("TxCSO:", tx_cso);
2187 		T("VLANins:", vlan_ins);
2188 		T("TxQFull:", q.stops);
2189 		T("TxQRestarts:", q.restarts);
2190 		T("TxMapErr:", mapping_err);
2191 		R("FLAllocErr:", fl.alloc_failed);
2192 		R("FLLrgAlcErr:", fl.large_alloc_failed);
2193 		R("FLStarving:", fl.starving);
2194 		return 0;
2195 	}
2196 
2197 	r -= eth_entries;
2198 	if (r == 0) {
2199 		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2200 
2201 		seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
2202 		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2203 			   evtq->unhandled_irqs);
2204 		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
2205 		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
2206 	} else if (r == 1) {
2207 		const struct sge_rspq *intrq = &adapter->sge.intrq;
2208 
2209 		seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
2210 		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2211 			   intrq->unhandled_irqs);
2212 		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
2213 		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
2214 	}
2215 
2216 	#undef R
2217 	#undef T
2218 	#undef S
2219 	#undef R3
2220 	#undef T3
2221 	#undef S3
2222 
2223 	return 0;
2224 }
2225 
2226 /*
2227  * Return the number of "entries" in our "file".  We group the multi-Queue
2228  * sections with QPL Queue Sets per "entry".  The sections of the output are:
2229  *
2230  *     Ethernet RX/TX Queue Sets
2231  *     Firmware Event Queue
2232  *     Forwarded Interrupt Queue (if in MSI mode)
2233  */
2234 static int sge_qstats_entries(const struct adapter *adapter)
2235 {
2236 	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2237 		((adapter->flags & USING_MSI) != 0);
2238 }
2239 
2240 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
2241 {
2242 	int entries = sge_qstats_entries(seq->private);
2243 
2244 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2245 }
2246 
2247 static void sge_qstats_stop(struct seq_file *seq, void *v)
2248 {
2249 }
2250 
2251 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
2252 {
2253 	int entries = sge_qstats_entries(seq->private);
2254 
2255 	(*pos)++;
2256 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2257 }
2258 
2259 static const struct seq_operations sge_qstats_seq_ops = {
2260 	.start = sge_qstats_start,
2261 	.next  = sge_qstats_next,
2262 	.stop  = sge_qstats_stop,
2263 	.show  = sge_qstats_show
2264 };
2265 
2266 static int sge_qstats_open(struct inode *inode, struct file *file)
2267 {
2268 	int res = seq_open(file, &sge_qstats_seq_ops);
2269 
2270 	if (res == 0) {
2271 		struct seq_file *seq = file->private_data;
2272 		seq->private = inode->i_private;
2273 	}
2274 	return res;
2275 }
2276 
2277 static const struct file_operations sge_qstats_proc_fops = {
2278 	.owner   = THIS_MODULE,
2279 	.open    = sge_qstats_open,
2280 	.read    = seq_read,
2281 	.llseek  = seq_lseek,
2282 	.release = seq_release,
2283 };
2284 
2285 /*
2286  * Show PCI-E SR-IOV Virtual Function Resource Limits.
2287  */
2288 static int resources_show(struct seq_file *seq, void *v)
2289 {
2290 	struct adapter *adapter = seq->private;
2291 	struct vf_resources *vfres = &adapter->params.vfres;
2292 
2293 	#define S(desc, fmt, var) \
2294 		seq_printf(seq, "%-60s " fmt "\n", \
2295 			   desc " (" #var "):", vfres->var)
2296 
2297 	S("Virtual Interfaces", "%d", nvi);
2298 	S("Egress Queues", "%d", neq);
2299 	S("Ethernet Control", "%d", nethctrl);
2300 	S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
2301 	S("Ingress Queues", "%d", niq);
2302 	S("Traffic Class", "%d", tc);
2303 	S("Port Access Rights Mask", "%#x", pmask);
2304 	S("MAC Address Filters", "%d", nexactf);
2305 	S("Firmware Command Read Capabilities", "%#x", r_caps);
2306 	S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
2307 
2308 	#undef S
2309 
2310 	return 0;
2311 }
2312 
2313 static int resources_open(struct inode *inode, struct file *file)
2314 {
2315 	return single_open(file, resources_show, inode->i_private);
2316 }
2317 
2318 static const struct file_operations resources_proc_fops = {
2319 	.owner   = THIS_MODULE,
2320 	.open    = resources_open,
2321 	.read    = seq_read,
2322 	.llseek  = seq_lseek,
2323 	.release = single_release,
2324 };
2325 
2326 /*
2327  * Show Virtual Interfaces.
2328  */
2329 static int interfaces_show(struct seq_file *seq, void *v)
2330 {
2331 	if (v == SEQ_START_TOKEN) {
2332 		seq_puts(seq, "Interface  Port   VIID\n");
2333 	} else {
2334 		struct adapter *adapter = seq->private;
2335 		int pidx = (uintptr_t)v - 2;
2336 		struct net_device *dev = adapter->port[pidx];
2337 		struct port_info *pi = netdev_priv(dev);
2338 
2339 		seq_printf(seq, "%9s  %4d  %#5x\n",
2340 			   dev->name, pi->port_id, pi->viid);
2341 	}
2342 	return 0;
2343 }
2344 
2345 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
2346 {
2347 	return pos <= adapter->params.nports
2348 		? (void *)(uintptr_t)(pos + 1)
2349 		: NULL;
2350 }
2351 
2352 static void *interfaces_start(struct seq_file *seq, loff_t *pos)
2353 {
2354 	return *pos
2355 		? interfaces_get_idx(seq->private, *pos)
2356 		: SEQ_START_TOKEN;
2357 }
2358 
2359 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
2360 {
2361 	(*pos)++;
2362 	return interfaces_get_idx(seq->private, *pos);
2363 }
2364 
2365 static void interfaces_stop(struct seq_file *seq, void *v)
2366 {
2367 }
2368 
2369 static const struct seq_operations interfaces_seq_ops = {
2370 	.start = interfaces_start,
2371 	.next  = interfaces_next,
2372 	.stop  = interfaces_stop,
2373 	.show  = interfaces_show
2374 };
2375 
2376 static int interfaces_open(struct inode *inode, struct file *file)
2377 {
2378 	int res = seq_open(file, &interfaces_seq_ops);
2379 
2380 	if (res == 0) {
2381 		struct seq_file *seq = file->private_data;
2382 		seq->private = inode->i_private;
2383 	}
2384 	return res;
2385 }
2386 
2387 static const struct file_operations interfaces_proc_fops = {
2388 	.owner   = THIS_MODULE,
2389 	.open    = interfaces_open,
2390 	.read    = seq_read,
2391 	.llseek  = seq_lseek,
2392 	.release = seq_release,
2393 };
2394 
2395 /*
2396  * /sys/kernel/debugfs/cxgb4vf/ files list.
2397  */
2398 struct cxgb4vf_debugfs_entry {
2399 	const char *name;		/* name of debugfs node */
2400 	umode_t mode;			/* file system mode */
2401 	const struct file_operations *fops;
2402 };
2403 
2404 static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2405 	{ "mboxlog",    0444, &mboxlog_fops },
2406 	{ "sge_qinfo",  0444, &sge_qinfo_debugfs_fops },
2407 	{ "sge_qstats", 0444, &sge_qstats_proc_fops },
2408 	{ "resources",  0444, &resources_proc_fops },
2409 	{ "interfaces", 0444, &interfaces_proc_fops },
2410 };
2411 
2412 /*
2413  * Module and device initialization and cleanup code.
2414  * ==================================================
2415  */
2416 
2417 /*
2418  * Set up out /sys/kernel/debug/cxgb4vf sub-nodes.  We assume that the
2419  * directory (debugfs_root) has already been set up.
2420  */
2421 static int setup_debugfs(struct adapter *adapter)
2422 {
2423 	int i;
2424 
2425 	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2426 
2427 	/*
2428 	 * Debugfs support is best effort.
2429 	 */
2430 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2431 		(void)debugfs_create_file(debugfs_files[i].name,
2432 				  debugfs_files[i].mode,
2433 				  adapter->debugfs_root,
2434 				  (void *)adapter,
2435 				  debugfs_files[i].fops);
2436 
2437 	return 0;
2438 }
2439 
2440 /*
2441  * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above.  We leave
2442  * it to our caller to tear down the directory (debugfs_root).
2443  */
2444 static void cleanup_debugfs(struct adapter *adapter)
2445 {
2446 	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2447 
2448 	/*
2449 	 * Unlike our sister routine cleanup_proc(), we don't need to remove
2450 	 * individual entries because a call will be made to
2451 	 * debugfs_remove_recursive().  We just need to clean up any ancillary
2452 	 * persistent state.
2453 	 */
2454 	/* nothing to do */
2455 }
2456 
2457 /* Figure out how many Ports and Queue Sets we can support.  This depends on
2458  * knowing our Virtual Function Resources and may be called a second time if
2459  * we fall back from MSI-X to MSI Interrupt Mode.
2460  */
2461 static void size_nports_qsets(struct adapter *adapter)
2462 {
2463 	struct vf_resources *vfres = &adapter->params.vfres;
2464 	unsigned int ethqsets, pmask_nports;
2465 
2466 	/* The number of "ports" which we support is equal to the number of
2467 	 * Virtual Interfaces with which we've been provisioned.
2468 	 */
2469 	adapter->params.nports = vfres->nvi;
2470 	if (adapter->params.nports > MAX_NPORTS) {
2471 		dev_warn(adapter->pdev_dev, "only using %d of %d maximum"
2472 			 " allowed virtual interfaces\n", MAX_NPORTS,
2473 			 adapter->params.nports);
2474 		adapter->params.nports = MAX_NPORTS;
2475 	}
2476 
2477 	/* We may have been provisioned with more VIs than the number of
2478 	 * ports we're allowed to access (our Port Access Rights Mask).
2479 	 * This is obviously a configuration conflict but we don't want to
2480 	 * crash the kernel or anything silly just because of that.
2481 	 */
2482 	pmask_nports = hweight32(adapter->params.vfres.pmask);
2483 	if (pmask_nports < adapter->params.nports) {
2484 		dev_warn(adapter->pdev_dev, "only using %d of %d provisioned"
2485 			 " virtual interfaces; limited by Port Access Rights"
2486 			 " mask %#x\n", pmask_nports, adapter->params.nports,
2487 			 adapter->params.vfres.pmask);
2488 		adapter->params.nports = pmask_nports;
2489 	}
2490 
2491 	/* We need to reserve an Ingress Queue for the Asynchronous Firmware
2492 	 * Event Queue.  And if we're using MSI Interrupts, we'll also need to
2493 	 * reserve an Ingress Queue for a Forwarded Interrupts.
2494 	 *
2495 	 * The rest of the FL/Intr-capable ingress queues will be matched up
2496 	 * one-for-one with Ethernet/Control egress queues in order to form
2497 	 * "Queue Sets" which will be aportioned between the "ports".  For
2498 	 * each Queue Set, we'll need the ability to allocate two Egress
2499 	 * Contexts -- one for the Ingress Queue Free List and one for the TX
2500 	 * Ethernet Queue.
2501 	 *
2502 	 * Note that even if we're currently configured to use MSI-X
2503 	 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded
2504 	 * to MSI Interrupts if we can't get enough MSI-X Interrupts.  If that
2505 	 * happens we'll need to adjust things later.
2506 	 */
2507 	ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI);
2508 	if (vfres->nethctrl != ethqsets)
2509 		ethqsets = min(vfres->nethctrl, ethqsets);
2510 	if (vfres->neq < ethqsets*2)
2511 		ethqsets = vfres->neq/2;
2512 	if (ethqsets > MAX_ETH_QSETS)
2513 		ethqsets = MAX_ETH_QSETS;
2514 	adapter->sge.max_ethqsets = ethqsets;
2515 
2516 	if (adapter->sge.max_ethqsets < adapter->params.nports) {
2517 		dev_warn(adapter->pdev_dev, "only using %d of %d available"
2518 			 " virtual interfaces (too few Queue Sets)\n",
2519 			 adapter->sge.max_ethqsets, adapter->params.nports);
2520 		adapter->params.nports = adapter->sge.max_ethqsets;
2521 	}
2522 }
2523 
2524 /*
2525  * Perform early "adapter" initialization.  This is where we discover what
2526  * adapter parameters we're going to be using and initialize basic adapter
2527  * hardware support.
2528  */
2529 static int adap_init0(struct adapter *adapter)
2530 {
2531 	struct sge_params *sge_params = &adapter->params.sge;
2532 	struct sge *s = &adapter->sge;
2533 	int err;
2534 	u32 param, val = 0;
2535 
2536 	/*
2537 	 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2538 	 * 2.6.31 and later we can't call pci_reset_function() in order to
2539 	 * issue an FLR because of a self- deadlock on the device semaphore.
2540 	 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2541 	 * cases where they're needed -- for instance, some versions of KVM
2542 	 * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
2543 	 * use the firmware based reset in order to reset any per function
2544 	 * state.
2545 	 */
2546 	err = t4vf_fw_reset(adapter);
2547 	if (err < 0) {
2548 		dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2549 		return err;
2550 	}
2551 
2552 	/*
2553 	 * Grab basic operational parameters.  These will predominantly have
2554 	 * been set up by the Physical Function Driver or will be hard coded
2555 	 * into the adapter.  We just have to live with them ...  Note that
2556 	 * we _must_ get our VPD parameters before our SGE parameters because
2557 	 * we need to know the adapter's core clock from the VPD in order to
2558 	 * properly decode the SGE Timer Values.
2559 	 */
2560 	err = t4vf_get_dev_params(adapter);
2561 	if (err) {
2562 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2563 			" device parameters: err=%d\n", err);
2564 		return err;
2565 	}
2566 	err = t4vf_get_vpd_params(adapter);
2567 	if (err) {
2568 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2569 			" VPD parameters: err=%d\n", err);
2570 		return err;
2571 	}
2572 	err = t4vf_get_sge_params(adapter);
2573 	if (err) {
2574 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2575 			" SGE parameters: err=%d\n", err);
2576 		return err;
2577 	}
2578 	err = t4vf_get_rss_glb_config(adapter);
2579 	if (err) {
2580 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2581 			" RSS parameters: err=%d\n", err);
2582 		return err;
2583 	}
2584 	if (adapter->params.rss.mode !=
2585 	    FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2586 		dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2587 			" mode %d\n", adapter->params.rss.mode);
2588 		return -EINVAL;
2589 	}
2590 	err = t4vf_sge_init(adapter);
2591 	if (err) {
2592 		dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2593 			" err=%d\n", err);
2594 		return err;
2595 	}
2596 
2597 	/* If we're running on newer firmware, let it know that we're
2598 	 * prepared to deal with encapsulated CPL messages.  Older
2599 	 * firmware won't understand this and we'll just get
2600 	 * unencapsulated messages ...
2601 	 */
2602 	param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2603 		FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2604 	val = 1;
2605 	(void) t4vf_set_params(adapter, 1, &param, &val);
2606 
2607 	/*
2608 	 * Retrieve our RX interrupt holdoff timer values and counter
2609 	 * threshold values from the SGE parameters.
2610 	 */
2611 	s->timer_val[0] = core_ticks_to_us(adapter,
2612 		TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1));
2613 	s->timer_val[1] = core_ticks_to_us(adapter,
2614 		TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1));
2615 	s->timer_val[2] = core_ticks_to_us(adapter,
2616 		TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3));
2617 	s->timer_val[3] = core_ticks_to_us(adapter,
2618 		TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3));
2619 	s->timer_val[4] = core_ticks_to_us(adapter,
2620 		TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5));
2621 	s->timer_val[5] = core_ticks_to_us(adapter,
2622 		TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5));
2623 
2624 	s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold);
2625 	s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold);
2626 	s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold);
2627 	s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold);
2628 
2629 	/*
2630 	 * Grab our Virtual Interface resource allocation, extract the
2631 	 * features that we're interested in and do a bit of sanity testing on
2632 	 * what we discover.
2633 	 */
2634 	err = t4vf_get_vfres(adapter);
2635 	if (err) {
2636 		dev_err(adapter->pdev_dev, "unable to get virtual interface"
2637 			" resources: err=%d\n", err);
2638 		return err;
2639 	}
2640 
2641 	/* Check for various parameter sanity issues */
2642 	if (adapter->params.vfres.pmask == 0) {
2643 		dev_err(adapter->pdev_dev, "no port access configured\n"
2644 			"usable!\n");
2645 		return -EINVAL;
2646 	}
2647 	if (adapter->params.vfres.nvi == 0) {
2648 		dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2649 			"usable!\n");
2650 		return -EINVAL;
2651 	}
2652 
2653 	/* Initialize nports and max_ethqsets now that we have our Virtual
2654 	 * Function Resources.
2655 	 */
2656 	size_nports_qsets(adapter);
2657 
2658 	return 0;
2659 }
2660 
2661 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2662 			     u8 pkt_cnt_idx, unsigned int size,
2663 			     unsigned int iqe_size)
2664 {
2665 	rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
2666 			     (pkt_cnt_idx < SGE_NCOUNTERS ?
2667 			      QINTR_CNT_EN_F : 0));
2668 	rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2669 			    ? pkt_cnt_idx
2670 			    : 0);
2671 	rspq->iqe_len = iqe_size;
2672 	rspq->size = size;
2673 }
2674 
2675 /*
2676  * Perform default configuration of DMA queues depending on the number and
2677  * type of ports we found and the number of available CPUs.  Most settings can
2678  * be modified by the admin via ethtool and cxgbtool prior to the adapter
2679  * being brought up for the first time.
2680  */
2681 static void cfg_queues(struct adapter *adapter)
2682 {
2683 	struct sge *s = &adapter->sge;
2684 	int q10g, n10g, qidx, pidx, qs;
2685 	size_t iqe_size;
2686 
2687 	/*
2688 	 * We should not be called till we know how many Queue Sets we can
2689 	 * support.  In particular, this means that we need to know what kind
2690 	 * of interrupts we'll be using ...
2691 	 */
2692 	BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2693 
2694 	/*
2695 	 * Count the number of 10GbE Virtual Interfaces that we have.
2696 	 */
2697 	n10g = 0;
2698 	for_each_port(adapter, pidx)
2699 		n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2700 
2701 	/*
2702 	 * We default to 1 queue per non-10G port and up to # of cores queues
2703 	 * per 10G port.
2704 	 */
2705 	if (n10g == 0)
2706 		q10g = 0;
2707 	else {
2708 		int n1g = (adapter->params.nports - n10g);
2709 		q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2710 		if (q10g > num_online_cpus())
2711 			q10g = num_online_cpus();
2712 	}
2713 
2714 	/*
2715 	 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2716 	 * The layout will be established in setup_sge_queues() when the
2717 	 * adapter is brough up for the first time.
2718 	 */
2719 	qidx = 0;
2720 	for_each_port(adapter, pidx) {
2721 		struct port_info *pi = adap2pinfo(adapter, pidx);
2722 
2723 		pi->first_qset = qidx;
2724 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
2725 		qidx += pi->nqsets;
2726 	}
2727 	s->ethqsets = qidx;
2728 
2729 	/*
2730 	 * The Ingress Queue Entry Size for our various Response Queues needs
2731 	 * to be big enough to accommodate the largest message we can receive
2732 	 * from the chip/firmware; which is 64 bytes ...
2733 	 */
2734 	iqe_size = 64;
2735 
2736 	/*
2737 	 * Set up default Queue Set parameters ...  Start off with the
2738 	 * shortest interrupt holdoff timer.
2739 	 */
2740 	for (qs = 0; qs < s->max_ethqsets; qs++) {
2741 		struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2742 		struct sge_eth_txq *txq = &s->ethtxq[qs];
2743 
2744 		init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2745 		rxq->fl.size = 72;
2746 		txq->q.size = 1024;
2747 	}
2748 
2749 	/*
2750 	 * The firmware event queue is used for link state changes and
2751 	 * notifications of TX DMA completions.
2752 	 */
2753 	init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2754 
2755 	/*
2756 	 * The forwarded interrupt queue is used when we're in MSI interrupt
2757 	 * mode.  In this mode all interrupts associated with RX queues will
2758 	 * be forwarded to a single queue which we'll associate with our MSI
2759 	 * interrupt vector.  The messages dropped in the forwarded interrupt
2760 	 * queue will indicate which ingress queue needs servicing ...  This
2761 	 * queue needs to be large enough to accommodate all of the ingress
2762 	 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2763 	 * from equalling the CIDX if every ingress queue has an outstanding
2764 	 * interrupt).  The queue doesn't need to be any larger because no
2765 	 * ingress queue will ever have more than one outstanding interrupt at
2766 	 * any time ...
2767 	 */
2768 	init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2769 		  iqe_size);
2770 }
2771 
2772 /*
2773  * Reduce the number of Ethernet queues across all ports to at most n.
2774  * n provides at least one queue per port.
2775  */
2776 static void reduce_ethqs(struct adapter *adapter, int n)
2777 {
2778 	int i;
2779 	struct port_info *pi;
2780 
2781 	/*
2782 	 * While we have too many active Ether Queue Sets, interate across the
2783 	 * "ports" and reduce their individual Queue Set allocations.
2784 	 */
2785 	BUG_ON(n < adapter->params.nports);
2786 	while (n < adapter->sge.ethqsets)
2787 		for_each_port(adapter, i) {
2788 			pi = adap2pinfo(adapter, i);
2789 			if (pi->nqsets > 1) {
2790 				pi->nqsets--;
2791 				adapter->sge.ethqsets--;
2792 				if (adapter->sge.ethqsets <= n)
2793 					break;
2794 			}
2795 		}
2796 
2797 	/*
2798 	 * Reassign the starting Queue Sets for each of the "ports" ...
2799 	 */
2800 	n = 0;
2801 	for_each_port(adapter, i) {
2802 		pi = adap2pinfo(adapter, i);
2803 		pi->first_qset = n;
2804 		n += pi->nqsets;
2805 	}
2806 }
2807 
2808 /*
2809  * We need to grab enough MSI-X vectors to cover our interrupt needs.  Ideally
2810  * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2811  * need.  Minimally we need one for every Virtual Interface plus those needed
2812  * for our "extras".  Note that this process may lower the maximum number of
2813  * allowed Queue Sets ...
2814  */
2815 static int enable_msix(struct adapter *adapter)
2816 {
2817 	int i, want, need, nqsets;
2818 	struct msix_entry entries[MSIX_ENTRIES];
2819 	struct sge *s = &adapter->sge;
2820 
2821 	for (i = 0; i < MSIX_ENTRIES; ++i)
2822 		entries[i].entry = i;
2823 
2824 	/*
2825 	 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2826 	 * plus those needed for our "extras" (for example, the firmware
2827 	 * message queue).  We _need_ at least one "Queue Set" per Virtual
2828 	 * Interface plus those needed for our "extras".  So now we get to see
2829 	 * if the song is right ...
2830 	 */
2831 	want = s->max_ethqsets + MSIX_EXTRAS;
2832 	need = adapter->params.nports + MSIX_EXTRAS;
2833 
2834 	want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2835 	if (want < 0)
2836 		return want;
2837 
2838 	nqsets = want - MSIX_EXTRAS;
2839 	if (nqsets < s->max_ethqsets) {
2840 		dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2841 			 " for %d Queue Sets\n", nqsets);
2842 		s->max_ethqsets = nqsets;
2843 		if (nqsets < s->ethqsets)
2844 			reduce_ethqs(adapter, nqsets);
2845 	}
2846 	for (i = 0; i < want; ++i)
2847 		adapter->msix_info[i].vec = entries[i].vector;
2848 
2849 	return 0;
2850 }
2851 
2852 static const struct net_device_ops cxgb4vf_netdev_ops	= {
2853 	.ndo_open		= cxgb4vf_open,
2854 	.ndo_stop		= cxgb4vf_stop,
2855 	.ndo_start_xmit		= t4vf_eth_xmit,
2856 	.ndo_get_stats		= cxgb4vf_get_stats,
2857 	.ndo_set_rx_mode	= cxgb4vf_set_rxmode,
2858 	.ndo_set_mac_address	= cxgb4vf_set_mac_addr,
2859 	.ndo_validate_addr	= eth_validate_addr,
2860 	.ndo_do_ioctl		= cxgb4vf_do_ioctl,
2861 	.ndo_change_mtu		= cxgb4vf_change_mtu,
2862 	.ndo_fix_features	= cxgb4vf_fix_features,
2863 	.ndo_set_features	= cxgb4vf_set_features,
2864 #ifdef CONFIG_NET_POLL_CONTROLLER
2865 	.ndo_poll_controller	= cxgb4vf_poll_controller,
2866 #endif
2867 };
2868 
2869 /*
2870  * "Probe" a device: initialize a device and construct all kernel and driver
2871  * state needed to manage the device.  This routine is called "init_one" in
2872  * the PF Driver ...
2873  */
2874 static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2875 			     const struct pci_device_id *ent)
2876 {
2877 	int pci_using_dac;
2878 	int err, pidx;
2879 	unsigned int pmask;
2880 	struct adapter *adapter;
2881 	struct port_info *pi;
2882 	struct net_device *netdev;
2883 	unsigned int pf;
2884 
2885 	/*
2886 	 * Print our driver banner the first time we're called to initialize a
2887 	 * device.
2888 	 */
2889 	pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
2890 
2891 	/*
2892 	 * Initialize generic PCI device state.
2893 	 */
2894 	err = pci_enable_device(pdev);
2895 	if (err) {
2896 		dev_err(&pdev->dev, "cannot enable PCI device\n");
2897 		return err;
2898 	}
2899 
2900 	/*
2901 	 * Reserve PCI resources for the device.  If we can't get them some
2902 	 * other driver may have already claimed the device ...
2903 	 */
2904 	err = pci_request_regions(pdev, KBUILD_MODNAME);
2905 	if (err) {
2906 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2907 		goto err_disable_device;
2908 	}
2909 
2910 	/*
2911 	 * Set up our DMA mask: try for 64-bit address masking first and
2912 	 * fall back to 32-bit if we can't get 64 bits ...
2913 	 */
2914 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2915 	if (err == 0) {
2916 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2917 		if (err) {
2918 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2919 				" coherent allocations\n");
2920 			goto err_release_regions;
2921 		}
2922 		pci_using_dac = 1;
2923 	} else {
2924 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2925 		if (err != 0) {
2926 			dev_err(&pdev->dev, "no usable DMA configuration\n");
2927 			goto err_release_regions;
2928 		}
2929 		pci_using_dac = 0;
2930 	}
2931 
2932 	/*
2933 	 * Enable bus mastering for the device ...
2934 	 */
2935 	pci_set_master(pdev);
2936 
2937 	/*
2938 	 * Allocate our adapter data structure and attach it to the device.
2939 	 */
2940 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2941 	if (!adapter) {
2942 		err = -ENOMEM;
2943 		goto err_release_regions;
2944 	}
2945 	pci_set_drvdata(pdev, adapter);
2946 	adapter->pdev = pdev;
2947 	adapter->pdev_dev = &pdev->dev;
2948 
2949 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
2950 				    (sizeof(struct mbox_cmd) *
2951 				     T4VF_OS_LOG_MBOX_CMDS),
2952 				    GFP_KERNEL);
2953 	if (!adapter->mbox_log) {
2954 		err = -ENOMEM;
2955 		goto err_free_adapter;
2956 	}
2957 	adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS;
2958 
2959 	/*
2960 	 * Initialize SMP data synchronization resources.
2961 	 */
2962 	spin_lock_init(&adapter->stats_lock);
2963 	spin_lock_init(&adapter->mbox_lock);
2964 	INIT_LIST_HEAD(&adapter->mlist.list);
2965 
2966 	/*
2967 	 * Map our I/O registers in BAR0.
2968 	 */
2969 	adapter->regs = pci_ioremap_bar(pdev, 0);
2970 	if (!adapter->regs) {
2971 		dev_err(&pdev->dev, "cannot map device registers\n");
2972 		err = -ENOMEM;
2973 		goto err_free_adapter;
2974 	}
2975 
2976 	/* Wait for the device to become ready before proceeding ...
2977 	 */
2978 	err = t4vf_prep_adapter(adapter);
2979 	if (err) {
2980 		dev_err(adapter->pdev_dev, "device didn't become ready:"
2981 			" err=%d\n", err);
2982 		goto err_unmap_bar0;
2983 	}
2984 
2985 	/* For T5 and later we want to use the new BAR-based User Doorbells,
2986 	 * so we need to map BAR2 here ...
2987 	 */
2988 	if (!is_t4(adapter->params.chip)) {
2989 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
2990 					   pci_resource_len(pdev, 2));
2991 		if (!adapter->bar2) {
2992 			dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n");
2993 			err = -ENOMEM;
2994 			goto err_unmap_bar0;
2995 		}
2996 	}
2997 	/*
2998 	 * Initialize adapter level features.
2999 	 */
3000 	adapter->name = pci_name(pdev);
3001 	adapter->msg_enable = DFLT_MSG_ENABLE;
3002 
3003 	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
3004 	 * Ingress Packet Data to Free List Buffers in order to allow for
3005 	 * chipset performance optimizations between the Root Complex and
3006 	 * Memory Controllers.  (Messages to the associated Ingress Queue
3007 	 * notifying new Packet Placement in the Free Lists Buffers will be
3008 	 * send without the Relaxed Ordering Attribute thus guaranteeing that
3009 	 * all preceding PCIe Transaction Layer Packets will be processed
3010 	 * first.)  But some Root Complexes have various issues with Upstream
3011 	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
3012 	 * The PCIe devices which under the Root Complexes will be cleared the
3013 	 * Relaxed Ordering bit in the configuration space, So we check our
3014 	 * PCIe configuration space to see if it's flagged with advice against
3015 	 * using Relaxed Ordering.
3016 	 */
3017 	if (!pcie_relaxed_ordering_enabled(pdev))
3018 		adapter->flags |= ROOT_NO_RELAXED_ORDERING;
3019 
3020 	err = adap_init0(adapter);
3021 	if (err)
3022 		goto err_unmap_bar;
3023 
3024 	/*
3025 	 * Allocate our "adapter ports" and stitch everything together.
3026 	 */
3027 	pmask = adapter->params.vfres.pmask;
3028 	pf = t4vf_get_pf_from_vf(adapter);
3029 	for_each_port(adapter, pidx) {
3030 		int port_id, viid;
3031 		u8 mac[ETH_ALEN];
3032 		unsigned int naddr = 1;
3033 
3034 		/*
3035 		 * We simplistically allocate our virtual interfaces
3036 		 * sequentially across the port numbers to which we have
3037 		 * access rights.  This should be configurable in some manner
3038 		 * ...
3039 		 */
3040 		if (pmask == 0)
3041 			break;
3042 		port_id = ffs(pmask) - 1;
3043 		pmask &= ~(1 << port_id);
3044 		viid = t4vf_alloc_vi(adapter, port_id);
3045 		if (viid < 0) {
3046 			dev_err(&pdev->dev, "cannot allocate VI for port %d:"
3047 				" err=%d\n", port_id, viid);
3048 			err = viid;
3049 			goto err_free_dev;
3050 		}
3051 
3052 		/*
3053 		 * Allocate our network device and stitch things together.
3054 		 */
3055 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
3056 					   MAX_PORT_QSETS);
3057 		if (netdev == NULL) {
3058 			t4vf_free_vi(adapter, viid);
3059 			err = -ENOMEM;
3060 			goto err_free_dev;
3061 		}
3062 		adapter->port[pidx] = netdev;
3063 		SET_NETDEV_DEV(netdev, &pdev->dev);
3064 		pi = netdev_priv(netdev);
3065 		pi->adapter = adapter;
3066 		pi->pidx = pidx;
3067 		pi->port_id = port_id;
3068 		pi->viid = viid;
3069 
3070 		/*
3071 		 * Initialize the starting state of our "port" and register
3072 		 * it.
3073 		 */
3074 		pi->xact_addr_filt = -1;
3075 		netif_carrier_off(netdev);
3076 		netdev->irq = pdev->irq;
3077 
3078 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
3079 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3080 			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM;
3081 		netdev->vlan_features = NETIF_F_SG | TSO_FLAGS |
3082 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3083 			NETIF_F_HIGHDMA;
3084 		netdev->features = netdev->hw_features |
3085 				   NETIF_F_HW_VLAN_CTAG_TX;
3086 		if (pci_using_dac)
3087 			netdev->features |= NETIF_F_HIGHDMA;
3088 
3089 		netdev->priv_flags |= IFF_UNICAST_FLT;
3090 		netdev->min_mtu = 81;
3091 		netdev->max_mtu = ETH_MAX_MTU;
3092 
3093 		netdev->netdev_ops = &cxgb4vf_netdev_ops;
3094 		netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
3095 		netdev->dev_port = pi->port_id;
3096 
3097 		/*
3098 		 * Initialize the hardware/software state for the port.
3099 		 */
3100 		err = t4vf_port_init(adapter, pidx);
3101 		if (err) {
3102 			dev_err(&pdev->dev, "cannot initialize port %d\n",
3103 				pidx);
3104 			goto err_free_dev;
3105 		}
3106 
3107 		err = t4vf_get_vf_mac_acl(adapter, pf, &naddr, mac);
3108 		if (err) {
3109 			dev_err(&pdev->dev,
3110 				"unable to determine MAC ACL address, "
3111 				"continuing anyway.. (status %d)\n", err);
3112 		} else if (naddr && adapter->params.vfres.nvi == 1) {
3113 			struct sockaddr addr;
3114 
3115 			ether_addr_copy(addr.sa_data, mac);
3116 			err = cxgb4vf_set_mac_addr(netdev, &addr);
3117 			if (err) {
3118 				dev_err(&pdev->dev,
3119 					"unable to set MAC address %pM\n",
3120 					mac);
3121 				goto err_free_dev;
3122 			}
3123 			dev_info(&pdev->dev,
3124 				 "Using assigned MAC ACL: %pM\n", mac);
3125 		}
3126 	}
3127 
3128 	/* See what interrupts we'll be using.  If we've been configured to
3129 	 * use MSI-X interrupts, try to enable them but fall back to using
3130 	 * MSI interrupts if we can't enable MSI-X interrupts.  If we can't
3131 	 * get MSI interrupts we bail with the error.
3132 	 */
3133 	if (msi == MSI_MSIX && enable_msix(adapter) == 0)
3134 		adapter->flags |= USING_MSIX;
3135 	else {
3136 		if (msi == MSI_MSIX) {
3137 			dev_info(adapter->pdev_dev,
3138 				 "Unable to use MSI-X Interrupts; falling "
3139 				 "back to MSI Interrupts\n");
3140 
3141 			/* We're going to need a Forwarded Interrupt Queue so
3142 			 * that may cut into how many Queue Sets we can
3143 			 * support.
3144 			 */
3145 			msi = MSI_MSI;
3146 			size_nports_qsets(adapter);
3147 		}
3148 		err = pci_enable_msi(pdev);
3149 		if (err) {
3150 			dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;"
3151 				" err=%d\n", err);
3152 			goto err_free_dev;
3153 		}
3154 		adapter->flags |= USING_MSI;
3155 	}
3156 
3157 	/* Now that we know how many "ports" we have and what interrupt
3158 	 * mechanism we're going to use, we can configure our queue resources.
3159 	 */
3160 	cfg_queues(adapter);
3161 
3162 	/*
3163 	 * The "card" is now ready to go.  If any errors occur during device
3164 	 * registration we do not fail the whole "card" but rather proceed
3165 	 * only with the ports we manage to register successfully.  However we
3166 	 * must register at least one net device.
3167 	 */
3168 	for_each_port(adapter, pidx) {
3169 		struct port_info *pi = netdev_priv(adapter->port[pidx]);
3170 		netdev = adapter->port[pidx];
3171 		if (netdev == NULL)
3172 			continue;
3173 
3174 		netif_set_real_num_tx_queues(netdev, pi->nqsets);
3175 		netif_set_real_num_rx_queues(netdev, pi->nqsets);
3176 
3177 		err = register_netdev(netdev);
3178 		if (err) {
3179 			dev_warn(&pdev->dev, "cannot register net device %s,"
3180 				 " skipping\n", netdev->name);
3181 			continue;
3182 		}
3183 
3184 		set_bit(pidx, &adapter->registered_device_map);
3185 	}
3186 	if (adapter->registered_device_map == 0) {
3187 		dev_err(&pdev->dev, "could not register any net devices\n");
3188 		goto err_disable_interrupts;
3189 	}
3190 
3191 	/*
3192 	 * Set up our debugfs entries.
3193 	 */
3194 	if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
3195 		adapter->debugfs_root =
3196 			debugfs_create_dir(pci_name(pdev),
3197 					   cxgb4vf_debugfs_root);
3198 		if (IS_ERR_OR_NULL(adapter->debugfs_root))
3199 			dev_warn(&pdev->dev, "could not create debugfs"
3200 				 " directory");
3201 		else
3202 			setup_debugfs(adapter);
3203 	}
3204 
3205 	/*
3206 	 * Print a short notice on the existence and configuration of the new
3207 	 * VF network device ...
3208 	 */
3209 	for_each_port(adapter, pidx) {
3210 		dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
3211 			 adapter->port[pidx]->name,
3212 			 (adapter->flags & USING_MSIX) ? "MSI-X" :
3213 			 (adapter->flags & USING_MSI)  ? "MSI" : "");
3214 	}
3215 
3216 	/*
3217 	 * Return success!
3218 	 */
3219 	return 0;
3220 
3221 	/*
3222 	 * Error recovery and exit code.  Unwind state that's been created
3223 	 * so far and return the error.
3224 	 */
3225 err_disable_interrupts:
3226 	if (adapter->flags & USING_MSIX) {
3227 		pci_disable_msix(adapter->pdev);
3228 		adapter->flags &= ~USING_MSIX;
3229 	} else if (adapter->flags & USING_MSI) {
3230 		pci_disable_msi(adapter->pdev);
3231 		adapter->flags &= ~USING_MSI;
3232 	}
3233 
3234 err_free_dev:
3235 	for_each_port(adapter, pidx) {
3236 		netdev = adapter->port[pidx];
3237 		if (netdev == NULL)
3238 			continue;
3239 		pi = netdev_priv(netdev);
3240 		t4vf_free_vi(adapter, pi->viid);
3241 		if (test_bit(pidx, &adapter->registered_device_map))
3242 			unregister_netdev(netdev);
3243 		free_netdev(netdev);
3244 	}
3245 
3246 err_unmap_bar:
3247 	if (!is_t4(adapter->params.chip))
3248 		iounmap(adapter->bar2);
3249 
3250 err_unmap_bar0:
3251 	iounmap(adapter->regs);
3252 
3253 err_free_adapter:
3254 	kfree(adapter->mbox_log);
3255 	kfree(adapter);
3256 
3257 err_release_regions:
3258 	pci_release_regions(pdev);
3259 	pci_clear_master(pdev);
3260 
3261 err_disable_device:
3262 	pci_disable_device(pdev);
3263 
3264 	return err;
3265 }
3266 
3267 /*
3268  * "Remove" a device: tear down all kernel and driver state created in the
3269  * "probe" routine and quiesce the device (disable interrupts, etc.).  (Note
3270  * that this is called "remove_one" in the PF Driver.)
3271  */
3272 static void cxgb4vf_pci_remove(struct pci_dev *pdev)
3273 {
3274 	struct adapter *adapter = pci_get_drvdata(pdev);
3275 
3276 	/*
3277 	 * Tear down driver state associated with device.
3278 	 */
3279 	if (adapter) {
3280 		int pidx;
3281 
3282 		/*
3283 		 * Stop all of our activity.  Unregister network port,
3284 		 * disable interrupts, etc.
3285 		 */
3286 		for_each_port(adapter, pidx)
3287 			if (test_bit(pidx, &adapter->registered_device_map))
3288 				unregister_netdev(adapter->port[pidx]);
3289 		t4vf_sge_stop(adapter);
3290 		if (adapter->flags & USING_MSIX) {
3291 			pci_disable_msix(adapter->pdev);
3292 			adapter->flags &= ~USING_MSIX;
3293 		} else if (adapter->flags & USING_MSI) {
3294 			pci_disable_msi(adapter->pdev);
3295 			adapter->flags &= ~USING_MSI;
3296 		}
3297 
3298 		/*
3299 		 * Tear down our debugfs entries.
3300 		 */
3301 		if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
3302 			cleanup_debugfs(adapter);
3303 			debugfs_remove_recursive(adapter->debugfs_root);
3304 		}
3305 
3306 		/*
3307 		 * Free all of the various resources which we've acquired ...
3308 		 */
3309 		t4vf_free_sge_resources(adapter);
3310 		for_each_port(adapter, pidx) {
3311 			struct net_device *netdev = adapter->port[pidx];
3312 			struct port_info *pi;
3313 
3314 			if (netdev == NULL)
3315 				continue;
3316 
3317 			pi = netdev_priv(netdev);
3318 			t4vf_free_vi(adapter, pi->viid);
3319 			free_netdev(netdev);
3320 		}
3321 		iounmap(adapter->regs);
3322 		if (!is_t4(adapter->params.chip))
3323 			iounmap(adapter->bar2);
3324 		kfree(adapter->mbox_log);
3325 		kfree(adapter);
3326 	}
3327 
3328 	/*
3329 	 * Disable the device and release its PCI resources.
3330 	 */
3331 	pci_disable_device(pdev);
3332 	pci_clear_master(pdev);
3333 	pci_release_regions(pdev);
3334 }
3335 
3336 /*
3337  * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
3338  * delivery.
3339  */
3340 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
3341 {
3342 	struct adapter *adapter;
3343 	int pidx;
3344 
3345 	adapter = pci_get_drvdata(pdev);
3346 	if (!adapter)
3347 		return;
3348 
3349 	/* Disable all Virtual Interfaces.  This will shut down the
3350 	 * delivery of all ingress packets into the chip for these
3351 	 * Virtual Interfaces.
3352 	 */
3353 	for_each_port(adapter, pidx)
3354 		if (test_bit(pidx, &adapter->registered_device_map))
3355 			unregister_netdev(adapter->port[pidx]);
3356 
3357 	/* Free up all Queues which will prevent further DMA and
3358 	 * Interrupts allowing various internal pathways to drain.
3359 	 */
3360 	t4vf_sge_stop(adapter);
3361 	if (adapter->flags & USING_MSIX) {
3362 		pci_disable_msix(adapter->pdev);
3363 		adapter->flags &= ~USING_MSIX;
3364 	} else if (adapter->flags & USING_MSI) {
3365 		pci_disable_msi(adapter->pdev);
3366 		adapter->flags &= ~USING_MSI;
3367 	}
3368 
3369 	/*
3370 	 * Free up all Queues which will prevent further DMA and
3371 	 * Interrupts allowing various internal pathways to drain.
3372 	 */
3373 	t4vf_free_sge_resources(adapter);
3374 	pci_set_drvdata(pdev, NULL);
3375 }
3376 
3377 /* Macros needed to support the PCI Device ID Table ...
3378  */
3379 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
3380 	static const struct pci_device_id cxgb4vf_pci_tbl[] = {
3381 #define CH_PCI_DEVICE_ID_FUNCTION	0x8
3382 
3383 #define CH_PCI_ID_TABLE_ENTRY(devid) \
3384 		{ PCI_VDEVICE(CHELSIO, (devid)), 0 }
3385 
3386 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
3387 
3388 #include "../cxgb4/t4_pci_id_tbl.h"
3389 
3390 MODULE_DESCRIPTION(DRV_DESC);
3391 MODULE_AUTHOR("Chelsio Communications");
3392 MODULE_LICENSE("Dual BSD/GPL");
3393 MODULE_VERSION(DRV_VERSION);
3394 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
3395 
3396 static struct pci_driver cxgb4vf_driver = {
3397 	.name		= KBUILD_MODNAME,
3398 	.id_table	= cxgb4vf_pci_tbl,
3399 	.probe		= cxgb4vf_pci_probe,
3400 	.remove		= cxgb4vf_pci_remove,
3401 	.shutdown	= cxgb4vf_pci_shutdown,
3402 };
3403 
3404 /*
3405  * Initialize global driver state.
3406  */
3407 static int __init cxgb4vf_module_init(void)
3408 {
3409 	int ret;
3410 
3411 	/*
3412 	 * Vet our module parameters.
3413 	 */
3414 	if (msi != MSI_MSIX && msi != MSI_MSI) {
3415 		pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
3416 			msi, MSI_MSIX, MSI_MSI);
3417 		return -EINVAL;
3418 	}
3419 
3420 	/* Debugfs support is optional, just warn if this fails */
3421 	cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3422 	if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3423 		pr_warn("could not create debugfs entry, continuing\n");
3424 
3425 	ret = pci_register_driver(&cxgb4vf_driver);
3426 	if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3427 		debugfs_remove(cxgb4vf_debugfs_root);
3428 	return ret;
3429 }
3430 
3431 /*
3432  * Tear down global driver state.
3433  */
3434 static void __exit cxgb4vf_module_exit(void)
3435 {
3436 	pci_unregister_driver(&cxgb4vf_driver);
3437 	debugfs_remove(cxgb4vf_debugfs_root);
3438 }
3439 
3440 module_init(cxgb4vf_module_init);
3441 module_exit(cxgb4vf_module_exit);
3442