1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/module.h> 39 #include <linux/moduleparam.h> 40 #include <linux/init.h> 41 #include <linux/pci.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/netdevice.h> 44 #include <linux/etherdevice.h> 45 #include <linux/debugfs.h> 46 #include <linux/ethtool.h> 47 #include <linux/mdio.h> 48 49 #include "t4vf_common.h" 50 #include "t4vf_defs.h" 51 52 #include "../cxgb4/t4_regs.h" 53 #include "../cxgb4/t4_msg.h" 54 55 /* 56 * Generic information about the driver. 57 */ 58 #define DRV_VERSION "2.0.0-ko" 59 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver" 60 61 /* 62 * Module Parameters. 63 * ================== 64 */ 65 66 /* 67 * Default ethtool "message level" for adapters. 68 */ 69 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 70 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 71 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 72 73 /* 74 * The driver uses the best interrupt scheme available on a platform in the 75 * order MSI-X then MSI. This parameter determines which of these schemes the 76 * driver may consider as follows: 77 * 78 * msi = 2: choose from among MSI-X and MSI 79 * msi = 1: only consider MSI interrupts 80 * 81 * Note that unlike the Physical Function driver, this Virtual Function driver 82 * does _not_ support legacy INTx interrupts (this limitation is mandated by 83 * the PCI-E SR-IOV standard). 84 */ 85 #define MSI_MSIX 2 86 #define MSI_MSI 1 87 #define MSI_DEFAULT MSI_MSIX 88 89 static int msi = MSI_DEFAULT; 90 91 module_param(msi, int, 0644); 92 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI"); 93 94 /* 95 * Fundamental constants. 96 * ====================== 97 */ 98 99 enum { 100 MAX_TXQ_ENTRIES = 16384, 101 MAX_RSPQ_ENTRIES = 16384, 102 MAX_RX_BUFFERS = 16384, 103 104 MIN_TXQ_ENTRIES = 32, 105 MIN_RSPQ_ENTRIES = 128, 106 MIN_FL_ENTRIES = 16, 107 108 /* 109 * For purposes of manipulating the Free List size we need to 110 * recognize that Free Lists are actually Egress Queues (the host 111 * produces free buffers which the hardware consumes), Egress Queues 112 * indices are all in units of Egress Context Units bytes, and free 113 * list entries are 64-bit PCI DMA addresses. And since the state of 114 * the Producer Index == the Consumer Index implies an EMPTY list, we 115 * always have at least one Egress Unit's worth of Free List entries 116 * unused. See sge.c for more details ... 117 */ 118 EQ_UNIT = SGE_EQ_IDXSIZE, 119 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 120 MIN_FL_RESID = FL_PER_EQ_UNIT, 121 }; 122 123 /* 124 * Global driver state. 125 * ==================== 126 */ 127 128 static struct dentry *cxgb4vf_debugfs_root; 129 130 /* 131 * OS "Callback" functions. 132 * ======================== 133 */ 134 135 /* 136 * The link status has changed on the indicated "port" (Virtual Interface). 137 */ 138 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok) 139 { 140 struct net_device *dev = adapter->port[pidx]; 141 142 /* 143 * If the port is disabled or the current recorded "link up" 144 * status matches the new status, just return. 145 */ 146 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev)) 147 return; 148 149 /* 150 * Tell the OS that the link status has changed and print a short 151 * informative message on the console about the event. 152 */ 153 if (link_ok) { 154 const char *s; 155 const char *fc; 156 const struct port_info *pi = netdev_priv(dev); 157 158 netif_carrier_on(dev); 159 160 switch (pi->link_cfg.speed) { 161 case 100: 162 s = "100Mbps"; 163 break; 164 case 1000: 165 s = "1Gbps"; 166 break; 167 case 10000: 168 s = "10Gbps"; 169 break; 170 case 25000: 171 s = "25Gbps"; 172 break; 173 case 40000: 174 s = "40Gbps"; 175 break; 176 case 100000: 177 s = "100Gbps"; 178 break; 179 180 default: 181 s = "unknown"; 182 break; 183 } 184 185 switch ((int)pi->link_cfg.fc) { 186 case PAUSE_RX: 187 fc = "RX"; 188 break; 189 190 case PAUSE_TX: 191 fc = "TX"; 192 break; 193 194 case PAUSE_RX | PAUSE_TX: 195 fc = "RX/TX"; 196 break; 197 198 default: 199 fc = "no"; 200 break; 201 } 202 203 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc); 204 } else { 205 netif_carrier_off(dev); 206 netdev_info(dev, "link down\n"); 207 } 208 } 209 210 /* 211 * THe port module type has changed on the indicated "port" (Virtual 212 * Interface). 213 */ 214 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx) 215 { 216 static const char * const mod_str[] = { 217 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 218 }; 219 const struct net_device *dev = adapter->port[pidx]; 220 const struct port_info *pi = netdev_priv(dev); 221 222 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 223 dev_info(adapter->pdev_dev, "%s: port module unplugged\n", 224 dev->name); 225 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 226 dev_info(adapter->pdev_dev, "%s: %s port module inserted\n", 227 dev->name, mod_str[pi->mod_type]); 228 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 229 dev_info(adapter->pdev_dev, "%s: unsupported optical port " 230 "module inserted\n", dev->name); 231 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 232 dev_info(adapter->pdev_dev, "%s: unknown port module inserted," 233 "forcing TWINAX\n", dev->name); 234 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 235 dev_info(adapter->pdev_dev, "%s: transceiver module error\n", 236 dev->name); 237 else 238 dev_info(adapter->pdev_dev, "%s: unknown module type %d " 239 "inserted\n", dev->name, pi->mod_type); 240 } 241 242 static int cxgb4vf_set_addr_hash(struct port_info *pi) 243 { 244 struct adapter *adapter = pi->adapter; 245 u64 vec = 0; 246 bool ucast = false; 247 struct hash_mac_addr *entry; 248 249 /* Calculate the hash vector for the updated list and program it */ 250 list_for_each_entry(entry, &adapter->mac_hlist, list) { 251 ucast |= is_unicast_ether_addr(entry->addr); 252 vec |= (1ULL << hash_mac_addr(entry->addr)); 253 } 254 return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false); 255 } 256 257 /** 258 * cxgb4vf_change_mac - Update match filter for a MAC address. 259 * @pi: the port_info 260 * @viid: the VI id 261 * @tcam_idx: TCAM index of existing filter for old value of MAC address, 262 * or -1 263 * @addr: the new MAC address value 264 * @persist: whether a new MAC allocation should be persistent 265 * @add_smt: if true also add the address to the HW SMT 266 * 267 * Modifies an MPS filter and sets it to the new MAC address if 268 * @tcam_idx >= 0, or adds the MAC address to a new filter if 269 * @tcam_idx < 0. In the latter case the address is added persistently 270 * if @persist is %true. 271 * Addresses are programmed to hash region, if tcam runs out of entries. 272 * 273 */ 274 static int cxgb4vf_change_mac(struct port_info *pi, unsigned int viid, 275 int *tcam_idx, const u8 *addr, bool persistent) 276 { 277 struct hash_mac_addr *new_entry, *entry; 278 struct adapter *adapter = pi->adapter; 279 int ret; 280 281 ret = t4vf_change_mac(adapter, viid, *tcam_idx, addr, persistent); 282 /* We ran out of TCAM entries. try programming hash region. */ 283 if (ret == -ENOMEM) { 284 /* If the MAC address to be updated is in the hash addr 285 * list, update it from the list 286 */ 287 list_for_each_entry(entry, &adapter->mac_hlist, list) { 288 if (entry->iface_mac) { 289 ether_addr_copy(entry->addr, addr); 290 goto set_hash; 291 } 292 } 293 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL); 294 if (!new_entry) 295 return -ENOMEM; 296 ether_addr_copy(new_entry->addr, addr); 297 new_entry->iface_mac = true; 298 list_add_tail(&new_entry->list, &adapter->mac_hlist); 299 set_hash: 300 ret = cxgb4vf_set_addr_hash(pi); 301 } else if (ret >= 0) { 302 *tcam_idx = ret; 303 ret = 0; 304 } 305 306 return ret; 307 } 308 309 /* 310 * Net device operations. 311 * ====================== 312 */ 313 314 315 316 317 /* 318 * Perform the MAC and PHY actions needed to enable a "port" (Virtual 319 * Interface). 320 */ 321 static int link_start(struct net_device *dev) 322 { 323 int ret; 324 struct port_info *pi = netdev_priv(dev); 325 326 /* 327 * We do not set address filters and promiscuity here, the stack does 328 * that step explicitly. Enable vlan accel. 329 */ 330 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1, 331 true); 332 if (ret == 0) 333 ret = cxgb4vf_change_mac(pi, pi->viid, 334 &pi->xact_addr_filt, 335 dev->dev_addr, true); 336 337 /* 338 * We don't need to actually "start the link" itself since the 339 * firmware will do that for us when the first Virtual Interface 340 * is enabled on a port. 341 */ 342 if (ret == 0) 343 ret = t4vf_enable_pi(pi->adapter, pi, true, true); 344 345 return ret; 346 } 347 348 /* 349 * Name the MSI-X interrupts. 350 */ 351 static void name_msix_vecs(struct adapter *adapter) 352 { 353 int namelen = sizeof(adapter->msix_info[0].desc) - 1; 354 int pidx; 355 356 /* 357 * Firmware events. 358 */ 359 snprintf(adapter->msix_info[MSIX_FW].desc, namelen, 360 "%s-FWeventq", adapter->name); 361 adapter->msix_info[MSIX_FW].desc[namelen] = 0; 362 363 /* 364 * Ethernet queues. 365 */ 366 for_each_port(adapter, pidx) { 367 struct net_device *dev = adapter->port[pidx]; 368 const struct port_info *pi = netdev_priv(dev); 369 int qs, msi; 370 371 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) { 372 snprintf(adapter->msix_info[msi].desc, namelen, 373 "%s-%d", dev->name, qs); 374 adapter->msix_info[msi].desc[namelen] = 0; 375 } 376 } 377 } 378 379 /* 380 * Request all of our MSI-X resources. 381 */ 382 static int request_msix_queue_irqs(struct adapter *adapter) 383 { 384 struct sge *s = &adapter->sge; 385 int rxq, msi, err; 386 387 /* 388 * Firmware events. 389 */ 390 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix, 391 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq); 392 if (err) 393 return err; 394 395 /* 396 * Ethernet queues. 397 */ 398 msi = MSIX_IQFLINT; 399 for_each_ethrxq(s, rxq) { 400 err = request_irq(adapter->msix_info[msi].vec, 401 t4vf_sge_intr_msix, 0, 402 adapter->msix_info[msi].desc, 403 &s->ethrxq[rxq].rspq); 404 if (err) 405 goto err_free_irqs; 406 msi++; 407 } 408 return 0; 409 410 err_free_irqs: 411 while (--rxq >= 0) 412 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq); 413 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 414 return err; 415 } 416 417 /* 418 * Free our MSI-X resources. 419 */ 420 static void free_msix_queue_irqs(struct adapter *adapter) 421 { 422 struct sge *s = &adapter->sge; 423 int rxq, msi; 424 425 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 426 msi = MSIX_IQFLINT; 427 for_each_ethrxq(s, rxq) 428 free_irq(adapter->msix_info[msi++].vec, 429 &s->ethrxq[rxq].rspq); 430 } 431 432 /* 433 * Turn on NAPI and start up interrupts on a response queue. 434 */ 435 static void qenable(struct sge_rspq *rspq) 436 { 437 napi_enable(&rspq->napi); 438 439 /* 440 * 0-increment the Going To Sleep register to start the timer and 441 * enable interrupts. 442 */ 443 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 444 CIDXINC_V(0) | 445 SEINTARM_V(rspq->intr_params) | 446 INGRESSQID_V(rspq->cntxt_id)); 447 } 448 449 /* 450 * Enable NAPI scheduling and interrupt generation for all Receive Queues. 451 */ 452 static void enable_rx(struct adapter *adapter) 453 { 454 int rxq; 455 struct sge *s = &adapter->sge; 456 457 for_each_ethrxq(s, rxq) 458 qenable(&s->ethrxq[rxq].rspq); 459 qenable(&s->fw_evtq); 460 461 /* 462 * The interrupt queue doesn't use NAPI so we do the 0-increment of 463 * its Going To Sleep register here to get it started. 464 */ 465 if (adapter->flags & CXGB4VF_USING_MSI) 466 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 467 CIDXINC_V(0) | 468 SEINTARM_V(s->intrq.intr_params) | 469 INGRESSQID_V(s->intrq.cntxt_id)); 470 471 } 472 473 /* 474 * Wait until all NAPI handlers are descheduled. 475 */ 476 static void quiesce_rx(struct adapter *adapter) 477 { 478 struct sge *s = &adapter->sge; 479 int rxq; 480 481 for_each_ethrxq(s, rxq) 482 napi_disable(&s->ethrxq[rxq].rspq.napi); 483 napi_disable(&s->fw_evtq.napi); 484 } 485 486 /* 487 * Response queue handler for the firmware event queue. 488 */ 489 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp, 490 const struct pkt_gl *gl) 491 { 492 /* 493 * Extract response opcode and get pointer to CPL message body. 494 */ 495 struct adapter *adapter = rspq->adapter; 496 u8 opcode = ((const struct rss_header *)rsp)->opcode; 497 void *cpl = (void *)(rsp + 1); 498 499 switch (opcode) { 500 case CPL_FW6_MSG: { 501 /* 502 * We've received an asynchronous message from the firmware. 503 */ 504 const struct cpl_fw6_msg *fw_msg = cpl; 505 if (fw_msg->type == FW6_TYPE_CMD_RPL) 506 t4vf_handle_fw_rpl(adapter, fw_msg->data); 507 break; 508 } 509 510 case CPL_FW4_MSG: { 511 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 512 */ 513 const struct cpl_sge_egr_update *p = (void *)(rsp + 3); 514 opcode = CPL_OPCODE_G(ntohl(p->opcode_qid)); 515 if (opcode != CPL_SGE_EGR_UPDATE) { 516 dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 517 , opcode); 518 break; 519 } 520 cpl = (void *)p; 521 /*FALLTHROUGH*/ 522 } 523 524 case CPL_SGE_EGR_UPDATE: { 525 /* 526 * We've received an Egress Queue Status Update message. We 527 * get these, if the SGE is configured to send these when the 528 * firmware passes certain points in processing our TX 529 * Ethernet Queue or if we make an explicit request for one. 530 * We use these updates to determine when we may need to 531 * restart a TX Ethernet Queue which was stopped for lack of 532 * free TX Queue Descriptors ... 533 */ 534 const struct cpl_sge_egr_update *p = cpl; 535 unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid)); 536 struct sge *s = &adapter->sge; 537 struct sge_txq *tq; 538 struct sge_eth_txq *txq; 539 unsigned int eq_idx; 540 541 /* 542 * Perform sanity checking on the Queue ID to make sure it 543 * really refers to one of our TX Ethernet Egress Queues which 544 * is active and matches the queue's ID. None of these error 545 * conditions should ever happen so we may want to either make 546 * them fatal and/or conditionalized under DEBUG. 547 */ 548 eq_idx = EQ_IDX(s, qid); 549 if (unlikely(eq_idx >= MAX_EGRQ)) { 550 dev_err(adapter->pdev_dev, 551 "Egress Update QID %d out of range\n", qid); 552 break; 553 } 554 tq = s->egr_map[eq_idx]; 555 if (unlikely(tq == NULL)) { 556 dev_err(adapter->pdev_dev, 557 "Egress Update QID %d TXQ=NULL\n", qid); 558 break; 559 } 560 txq = container_of(tq, struct sge_eth_txq, q); 561 if (unlikely(tq->abs_id != qid)) { 562 dev_err(adapter->pdev_dev, 563 "Egress Update QID %d refers to TXQ %d\n", 564 qid, tq->abs_id); 565 break; 566 } 567 568 /* 569 * Restart a stopped TX Queue which has less than half of its 570 * TX ring in use ... 571 */ 572 txq->q.restarts++; 573 netif_tx_wake_queue(txq->txq); 574 break; 575 } 576 577 default: 578 dev_err(adapter->pdev_dev, 579 "unexpected CPL %#x on FW event queue\n", opcode); 580 } 581 582 return 0; 583 } 584 585 /* 586 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues 587 * to use and initializes them. We support multiple "Queue Sets" per port if 588 * we have MSI-X, otherwise just one queue set per port. 589 */ 590 static int setup_sge_queues(struct adapter *adapter) 591 { 592 struct sge *s = &adapter->sge; 593 int err, pidx, msix; 594 595 /* 596 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error 597 * state. 598 */ 599 bitmap_zero(s->starving_fl, MAX_EGRQ); 600 601 /* 602 * If we're using MSI interrupt mode we need to set up a "forwarded 603 * interrupt" queue which we'll set up with our MSI vector. The rest 604 * of the ingress queues will be set up to forward their interrupts to 605 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses 606 * the intrq's queue ID as the interrupt forwarding queue for the 607 * subsequent calls ... 608 */ 609 if (adapter->flags & CXGB4VF_USING_MSI) { 610 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false, 611 adapter->port[0], 0, NULL, NULL); 612 if (err) 613 goto err_free_queues; 614 } 615 616 /* 617 * Allocate our ingress queue for asynchronous firmware messages. 618 */ 619 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0], 620 MSIX_FW, NULL, fwevtq_handler); 621 if (err) 622 goto err_free_queues; 623 624 /* 625 * Allocate each "port"'s initial Queue Sets. These can be changed 626 * later on ... up to the point where any interface on the adapter is 627 * brought up at which point lots of things get nailed down 628 * permanently ... 629 */ 630 msix = MSIX_IQFLINT; 631 for_each_port(adapter, pidx) { 632 struct net_device *dev = adapter->port[pidx]; 633 struct port_info *pi = netdev_priv(dev); 634 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 635 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 636 int qs; 637 638 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 639 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false, 640 dev, msix++, 641 &rxq->fl, t4vf_ethrx_handler); 642 if (err) 643 goto err_free_queues; 644 645 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev, 646 netdev_get_tx_queue(dev, qs), 647 s->fw_evtq.cntxt_id); 648 if (err) 649 goto err_free_queues; 650 651 rxq->rspq.idx = qs; 652 memset(&rxq->stats, 0, sizeof(rxq->stats)); 653 } 654 } 655 656 /* 657 * Create the reverse mappings for the queues. 658 */ 659 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id; 660 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id; 661 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq; 662 for_each_port(adapter, pidx) { 663 struct net_device *dev = adapter->port[pidx]; 664 struct port_info *pi = netdev_priv(dev); 665 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 666 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 667 int qs; 668 669 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 670 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq; 671 EQ_MAP(s, txq->q.abs_id) = &txq->q; 672 673 /* 674 * The FW_IQ_CMD doesn't return the Absolute Queue IDs 675 * for Free Lists but since all of the Egress Queues 676 * (including Free Lists) have Relative Queue IDs 677 * which are computed as Absolute - Base Queue ID, we 678 * can synthesize the Absolute Queue IDs for the Free 679 * Lists. This is useful for debugging purposes when 680 * we want to dump Queue Contexts via the PF Driver. 681 */ 682 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base; 683 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl; 684 } 685 } 686 return 0; 687 688 err_free_queues: 689 t4vf_free_sge_resources(adapter); 690 return err; 691 } 692 693 /* 694 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive 695 * queues. We configure the RSS CPU lookup table to distribute to the number 696 * of HW receive queues, and the response queue lookup table to narrow that 697 * down to the response queues actually configured for each "port" (Virtual 698 * Interface). We always configure the RSS mapping for all ports since the 699 * mapping table has plenty of entries. 700 */ 701 static int setup_rss(struct adapter *adapter) 702 { 703 int pidx; 704 705 for_each_port(adapter, pidx) { 706 struct port_info *pi = adap2pinfo(adapter, pidx); 707 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 708 u16 rss[MAX_PORT_QSETS]; 709 int qs, err; 710 711 for (qs = 0; qs < pi->nqsets; qs++) 712 rss[qs] = rxq[qs].rspq.abs_id; 713 714 err = t4vf_config_rss_range(adapter, pi->viid, 715 0, pi->rss_size, rss, pi->nqsets); 716 if (err) 717 return err; 718 719 /* 720 * Perform Global RSS Mode-specific initialization. 721 */ 722 switch (adapter->params.rss.mode) { 723 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: 724 /* 725 * If Tunnel All Lookup isn't specified in the global 726 * RSS Configuration, then we need to specify a 727 * default Ingress Queue for any ingress packets which 728 * aren't hashed. We'll use our first ingress queue 729 * ... 730 */ 731 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) { 732 union rss_vi_config config; 733 err = t4vf_read_rss_vi_config(adapter, 734 pi->viid, 735 &config); 736 if (err) 737 return err; 738 config.basicvirtual.defaultq = 739 rxq[0].rspq.abs_id; 740 err = t4vf_write_rss_vi_config(adapter, 741 pi->viid, 742 &config); 743 if (err) 744 return err; 745 } 746 break; 747 } 748 } 749 750 return 0; 751 } 752 753 /* 754 * Bring the adapter up. Called whenever we go from no "ports" open to having 755 * one open. This function performs the actions necessary to make an adapter 756 * operational, such as completing the initialization of HW modules, and 757 * enabling interrupts. Must be called with the rtnl lock held. (Note that 758 * this is called "cxgb_up" in the PF Driver.) 759 */ 760 static int adapter_up(struct adapter *adapter) 761 { 762 int err; 763 764 /* 765 * If this is the first time we've been called, perform basic 766 * adapter setup. Once we've done this, many of our adapter 767 * parameters can no longer be changed ... 768 */ 769 if ((adapter->flags & CXGB4VF_FULL_INIT_DONE) == 0) { 770 err = setup_sge_queues(adapter); 771 if (err) 772 return err; 773 err = setup_rss(adapter); 774 if (err) { 775 t4vf_free_sge_resources(adapter); 776 return err; 777 } 778 779 if (adapter->flags & CXGB4VF_USING_MSIX) 780 name_msix_vecs(adapter); 781 782 adapter->flags |= CXGB4VF_FULL_INIT_DONE; 783 } 784 785 /* 786 * Acquire our interrupt resources. We only support MSI-X and MSI. 787 */ 788 BUG_ON((adapter->flags & 789 (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0); 790 if (adapter->flags & CXGB4VF_USING_MSIX) 791 err = request_msix_queue_irqs(adapter); 792 else 793 err = request_irq(adapter->pdev->irq, 794 t4vf_intr_handler(adapter), 0, 795 adapter->name, adapter); 796 if (err) { 797 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n", 798 err); 799 return err; 800 } 801 802 /* 803 * Enable NAPI ingress processing and return success. 804 */ 805 enable_rx(adapter); 806 t4vf_sge_start(adapter); 807 808 return 0; 809 } 810 811 /* 812 * Bring the adapter down. Called whenever the last "port" (Virtual 813 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF 814 * Driver.) 815 */ 816 static void adapter_down(struct adapter *adapter) 817 { 818 /* 819 * Free interrupt resources. 820 */ 821 if (adapter->flags & CXGB4VF_USING_MSIX) 822 free_msix_queue_irqs(adapter); 823 else 824 free_irq(adapter->pdev->irq, adapter); 825 826 /* 827 * Wait for NAPI handlers to finish. 828 */ 829 quiesce_rx(adapter); 830 } 831 832 /* 833 * Start up a net device. 834 */ 835 static int cxgb4vf_open(struct net_device *dev) 836 { 837 int err; 838 struct port_info *pi = netdev_priv(dev); 839 struct adapter *adapter = pi->adapter; 840 841 /* 842 * If we don't have a connection to the firmware there's nothing we 843 * can do. 844 */ 845 if (!(adapter->flags & CXGB4VF_FW_OK)) 846 return -ENXIO; 847 848 /* 849 * If this is the first interface that we're opening on the "adapter", 850 * bring the "adapter" up now. 851 */ 852 if (adapter->open_device_map == 0) { 853 err = adapter_up(adapter); 854 if (err) 855 return err; 856 } 857 858 /* It's possible that the basic port information could have 859 * changed since we first read it. 860 */ 861 err = t4vf_update_port_info(pi); 862 if (err < 0) 863 return err; 864 865 /* 866 * Note that this interface is up and start everything up ... 867 */ 868 err = link_start(dev); 869 if (err) 870 goto err_unwind; 871 872 pi->vlan_id = t4vf_get_vf_vlan_acl(adapter); 873 874 netif_tx_start_all_queues(dev); 875 set_bit(pi->port_id, &adapter->open_device_map); 876 return 0; 877 878 err_unwind: 879 if (adapter->open_device_map == 0) 880 adapter_down(adapter); 881 return err; 882 } 883 884 /* 885 * Shut down a net device. This routine is called "cxgb_close" in the PF 886 * Driver ... 887 */ 888 static int cxgb4vf_stop(struct net_device *dev) 889 { 890 struct port_info *pi = netdev_priv(dev); 891 struct adapter *adapter = pi->adapter; 892 893 netif_tx_stop_all_queues(dev); 894 netif_carrier_off(dev); 895 t4vf_enable_pi(adapter, pi, false, false); 896 897 clear_bit(pi->port_id, &adapter->open_device_map); 898 if (adapter->open_device_map == 0) 899 adapter_down(adapter); 900 return 0; 901 } 902 903 /* 904 * Translate our basic statistics into the standard "ifconfig" statistics. 905 */ 906 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev) 907 { 908 struct t4vf_port_stats stats; 909 struct port_info *pi = netdev2pinfo(dev); 910 struct adapter *adapter = pi->adapter; 911 struct net_device_stats *ns = &dev->stats; 912 int err; 913 914 spin_lock(&adapter->stats_lock); 915 err = t4vf_get_port_stats(adapter, pi->pidx, &stats); 916 spin_unlock(&adapter->stats_lock); 917 918 memset(ns, 0, sizeof(*ns)); 919 if (err) 920 return ns; 921 922 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes + 923 stats.tx_ucast_bytes + stats.tx_offload_bytes); 924 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames + 925 stats.tx_ucast_frames + stats.tx_offload_frames); 926 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes + 927 stats.rx_ucast_bytes); 928 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames + 929 stats.rx_ucast_frames); 930 ns->multicast = stats.rx_mcast_frames; 931 ns->tx_errors = stats.tx_drop_frames; 932 ns->rx_errors = stats.rx_err_frames; 933 934 return ns; 935 } 936 937 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr) 938 { 939 struct port_info *pi = netdev_priv(netdev); 940 struct adapter *adapter = pi->adapter; 941 int ret; 942 u64 mhash = 0; 943 u64 uhash = 0; 944 bool free = false; 945 bool ucast = is_unicast_ether_addr(mac_addr); 946 const u8 *maclist[1] = {mac_addr}; 947 struct hash_mac_addr *new_entry; 948 949 ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist, 950 NULL, ucast ? &uhash : &mhash, false); 951 if (ret < 0) 952 goto out; 953 /* if hash != 0, then add the addr to hash addr list 954 * so on the end we will calculate the hash for the 955 * list and program it 956 */ 957 if (uhash || mhash) { 958 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 959 if (!new_entry) 960 return -ENOMEM; 961 ether_addr_copy(new_entry->addr, mac_addr); 962 list_add_tail(&new_entry->list, &adapter->mac_hlist); 963 ret = cxgb4vf_set_addr_hash(pi); 964 } 965 out: 966 return ret < 0 ? ret : 0; 967 } 968 969 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 970 { 971 struct port_info *pi = netdev_priv(netdev); 972 struct adapter *adapter = pi->adapter; 973 int ret; 974 const u8 *maclist[1] = {mac_addr}; 975 struct hash_mac_addr *entry, *tmp; 976 977 /* If the MAC address to be removed is in the hash addr 978 * list, delete it from the list and update hash vector 979 */ 980 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) { 981 if (ether_addr_equal(entry->addr, mac_addr)) { 982 list_del(&entry->list); 983 kfree(entry); 984 return cxgb4vf_set_addr_hash(pi); 985 } 986 } 987 988 ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false); 989 return ret < 0 ? -EINVAL : 0; 990 } 991 992 /* 993 * Set RX properties of a port, such as promiscruity, address filters, and MTU. 994 * If @mtu is -1 it is left unchanged. 995 */ 996 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 997 { 998 struct port_info *pi = netdev_priv(dev); 999 1000 __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 1001 __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 1002 return t4vf_set_rxmode(pi->adapter, pi->viid, -1, 1003 (dev->flags & IFF_PROMISC) != 0, 1004 (dev->flags & IFF_ALLMULTI) != 0, 1005 1, -1, sleep_ok); 1006 } 1007 1008 /* 1009 * Set the current receive modes on the device. 1010 */ 1011 static void cxgb4vf_set_rxmode(struct net_device *dev) 1012 { 1013 /* unfortunately we can't return errors to the stack */ 1014 set_rxmode(dev, -1, false); 1015 } 1016 1017 /* 1018 * Find the entry in the interrupt holdoff timer value array which comes 1019 * closest to the specified interrupt holdoff value. 1020 */ 1021 static int closest_timer(const struct sge *s, int us) 1022 { 1023 int i, timer_idx = 0, min_delta = INT_MAX; 1024 1025 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1026 int delta = us - s->timer_val[i]; 1027 if (delta < 0) 1028 delta = -delta; 1029 if (delta < min_delta) { 1030 min_delta = delta; 1031 timer_idx = i; 1032 } 1033 } 1034 return timer_idx; 1035 } 1036 1037 static int closest_thres(const struct sge *s, int thres) 1038 { 1039 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX; 1040 1041 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1042 delta = thres - s->counter_val[i]; 1043 if (delta < 0) 1044 delta = -delta; 1045 if (delta < min_delta) { 1046 min_delta = delta; 1047 pktcnt_idx = i; 1048 } 1049 } 1050 return pktcnt_idx; 1051 } 1052 1053 /* 1054 * Return a queue's interrupt hold-off time in us. 0 means no timer. 1055 */ 1056 static unsigned int qtimer_val(const struct adapter *adapter, 1057 const struct sge_rspq *rspq) 1058 { 1059 unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params); 1060 1061 return timer_idx < SGE_NTIMERS 1062 ? adapter->sge.timer_val[timer_idx] 1063 : 0; 1064 } 1065 1066 /** 1067 * set_rxq_intr_params - set a queue's interrupt holdoff parameters 1068 * @adapter: the adapter 1069 * @rspq: the RX response queue 1070 * @us: the hold-off time in us, or 0 to disable timer 1071 * @cnt: the hold-off packet count, or 0 to disable counter 1072 * 1073 * Sets an RX response queue's interrupt hold-off time and packet count. 1074 * At least one of the two needs to be enabled for the queue to generate 1075 * interrupts. 1076 */ 1077 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq, 1078 unsigned int us, unsigned int cnt) 1079 { 1080 unsigned int timer_idx; 1081 1082 /* 1083 * If both the interrupt holdoff timer and count are specified as 1084 * zero, default to a holdoff count of 1 ... 1085 */ 1086 if ((us | cnt) == 0) 1087 cnt = 1; 1088 1089 /* 1090 * If an interrupt holdoff count has been specified, then find the 1091 * closest configured holdoff count and use that. If the response 1092 * queue has already been created, then update its queue context 1093 * parameters ... 1094 */ 1095 if (cnt) { 1096 int err; 1097 u32 v, pktcnt_idx; 1098 1099 pktcnt_idx = closest_thres(&adapter->sge, cnt); 1100 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) { 1101 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1102 FW_PARAMS_PARAM_X_V( 1103 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1104 FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id); 1105 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx); 1106 if (err) 1107 return err; 1108 } 1109 rspq->pktcnt_idx = pktcnt_idx; 1110 } 1111 1112 /* 1113 * Compute the closest holdoff timer index from the supplied holdoff 1114 * timer value. 1115 */ 1116 timer_idx = (us == 0 1117 ? SGE_TIMER_RSTRT_CNTR 1118 : closest_timer(&adapter->sge, us)); 1119 1120 /* 1121 * Update the response queue's interrupt coalescing parameters and 1122 * return success. 1123 */ 1124 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 1125 QINTR_CNT_EN_V(cnt > 0)); 1126 return 0; 1127 } 1128 1129 /* 1130 * Return a version number to identify the type of adapter. The scheme is: 1131 * - bits 0..9: chip version 1132 * - bits 10..15: chip revision 1133 */ 1134 static inline unsigned int mk_adap_vers(const struct adapter *adapter) 1135 { 1136 /* 1137 * Chip version 4, revision 0x3f (cxgb4vf). 1138 */ 1139 return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10); 1140 } 1141 1142 /* 1143 * Execute the specified ioctl command. 1144 */ 1145 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1146 { 1147 int ret = 0; 1148 1149 switch (cmd) { 1150 /* 1151 * The VF Driver doesn't have access to any of the other 1152 * common Ethernet device ioctl()'s (like reading/writing 1153 * PHY registers, etc. 1154 */ 1155 1156 default: 1157 ret = -EOPNOTSUPP; 1158 break; 1159 } 1160 return ret; 1161 } 1162 1163 /* 1164 * Change the device's MTU. 1165 */ 1166 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu) 1167 { 1168 int ret; 1169 struct port_info *pi = netdev_priv(dev); 1170 1171 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu, 1172 -1, -1, -1, -1, true); 1173 if (!ret) 1174 dev->mtu = new_mtu; 1175 return ret; 1176 } 1177 1178 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev, 1179 netdev_features_t features) 1180 { 1181 /* 1182 * Since there is no support for separate rx/tx vlan accel 1183 * enable/disable make sure tx flag is always in same state as rx. 1184 */ 1185 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1186 features |= NETIF_F_HW_VLAN_CTAG_TX; 1187 else 1188 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 1189 1190 return features; 1191 } 1192 1193 static int cxgb4vf_set_features(struct net_device *dev, 1194 netdev_features_t features) 1195 { 1196 struct port_info *pi = netdev_priv(dev); 1197 netdev_features_t changed = dev->features ^ features; 1198 1199 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 1200 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, 1201 features & NETIF_F_HW_VLAN_CTAG_TX, 0); 1202 1203 return 0; 1204 } 1205 1206 /* 1207 * Change the devices MAC address. 1208 */ 1209 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr) 1210 { 1211 int ret; 1212 struct sockaddr *addr = _addr; 1213 struct port_info *pi = netdev_priv(dev); 1214 1215 if (!is_valid_ether_addr(addr->sa_data)) 1216 return -EADDRNOTAVAIL; 1217 1218 ret = cxgb4vf_change_mac(pi, pi->viid, &pi->xact_addr_filt, 1219 addr->sa_data, true); 1220 if (ret < 0) 1221 return ret; 1222 1223 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 1224 return 0; 1225 } 1226 1227 #ifdef CONFIG_NET_POLL_CONTROLLER 1228 /* 1229 * Poll all of our receive queues. This is called outside of normal interrupt 1230 * context. 1231 */ 1232 static void cxgb4vf_poll_controller(struct net_device *dev) 1233 { 1234 struct port_info *pi = netdev_priv(dev); 1235 struct adapter *adapter = pi->adapter; 1236 1237 if (adapter->flags & CXGB4VF_USING_MSIX) { 1238 struct sge_eth_rxq *rxq; 1239 int nqsets; 1240 1241 rxq = &adapter->sge.ethrxq[pi->first_qset]; 1242 for (nqsets = pi->nqsets; nqsets; nqsets--) { 1243 t4vf_sge_intr_msix(0, &rxq->rspq); 1244 rxq++; 1245 } 1246 } else 1247 t4vf_intr_handler(adapter)(0, adapter); 1248 } 1249 #endif 1250 1251 /* 1252 * Ethtool operations. 1253 * =================== 1254 * 1255 * Note that we don't support any ethtool operations which change the physical 1256 * state of the port to which we're linked. 1257 */ 1258 1259 /** 1260 * from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool 1261 * @port_type: Firmware Port Type 1262 * @mod_type: Firmware Module Type 1263 * 1264 * Translate Firmware Port/Module type to Ethtool Port Type. 1265 */ 1266 static int from_fw_port_mod_type(enum fw_port_type port_type, 1267 enum fw_port_module_type mod_type) 1268 { 1269 if (port_type == FW_PORT_TYPE_BT_SGMII || 1270 port_type == FW_PORT_TYPE_BT_XFI || 1271 port_type == FW_PORT_TYPE_BT_XAUI) { 1272 return PORT_TP; 1273 } else if (port_type == FW_PORT_TYPE_FIBER_XFI || 1274 port_type == FW_PORT_TYPE_FIBER_XAUI) { 1275 return PORT_FIBRE; 1276 } else if (port_type == FW_PORT_TYPE_SFP || 1277 port_type == FW_PORT_TYPE_QSFP_10G || 1278 port_type == FW_PORT_TYPE_QSA || 1279 port_type == FW_PORT_TYPE_QSFP || 1280 port_type == FW_PORT_TYPE_CR4_QSFP || 1281 port_type == FW_PORT_TYPE_CR_QSFP || 1282 port_type == FW_PORT_TYPE_CR2_QSFP || 1283 port_type == FW_PORT_TYPE_SFP28) { 1284 if (mod_type == FW_PORT_MOD_TYPE_LR || 1285 mod_type == FW_PORT_MOD_TYPE_SR || 1286 mod_type == FW_PORT_MOD_TYPE_ER || 1287 mod_type == FW_PORT_MOD_TYPE_LRM) 1288 return PORT_FIBRE; 1289 else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE || 1290 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE) 1291 return PORT_DA; 1292 else 1293 return PORT_OTHER; 1294 } else if (port_type == FW_PORT_TYPE_KR4_100G || 1295 port_type == FW_PORT_TYPE_KR_SFP28 || 1296 port_type == FW_PORT_TYPE_KR_XLAUI) { 1297 return PORT_NONE; 1298 } 1299 1300 return PORT_OTHER; 1301 } 1302 1303 /** 1304 * fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask 1305 * @port_type: Firmware Port Type 1306 * @fw_caps: Firmware Port Capabilities 1307 * @link_mode_mask: ethtool Link Mode Mask 1308 * 1309 * Translate a Firmware Port Capabilities specification to an ethtool 1310 * Link Mode Mask. 1311 */ 1312 static void fw_caps_to_lmm(enum fw_port_type port_type, 1313 unsigned int fw_caps, 1314 unsigned long *link_mode_mask) 1315 { 1316 #define SET_LMM(__lmm_name) \ 1317 __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \ 1318 link_mode_mask) 1319 1320 #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \ 1321 do { \ 1322 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \ 1323 SET_LMM(__lmm_name); \ 1324 } while (0) 1325 1326 switch (port_type) { 1327 case FW_PORT_TYPE_BT_SGMII: 1328 case FW_PORT_TYPE_BT_XFI: 1329 case FW_PORT_TYPE_BT_XAUI: 1330 SET_LMM(TP); 1331 FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full); 1332 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1333 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1334 break; 1335 1336 case FW_PORT_TYPE_KX4: 1337 case FW_PORT_TYPE_KX: 1338 SET_LMM(Backplane); 1339 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1340 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1341 break; 1342 1343 case FW_PORT_TYPE_KR: 1344 SET_LMM(Backplane); 1345 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1346 break; 1347 1348 case FW_PORT_TYPE_BP_AP: 1349 SET_LMM(Backplane); 1350 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1351 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); 1352 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1353 break; 1354 1355 case FW_PORT_TYPE_BP4_AP: 1356 SET_LMM(Backplane); 1357 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1358 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); 1359 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1360 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1361 break; 1362 1363 case FW_PORT_TYPE_FIBER_XFI: 1364 case FW_PORT_TYPE_FIBER_XAUI: 1365 case FW_PORT_TYPE_SFP: 1366 case FW_PORT_TYPE_QSFP_10G: 1367 case FW_PORT_TYPE_QSA: 1368 SET_LMM(FIBRE); 1369 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1370 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1371 break; 1372 1373 case FW_PORT_TYPE_BP40_BA: 1374 case FW_PORT_TYPE_QSFP: 1375 SET_LMM(FIBRE); 1376 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1377 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1378 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); 1379 break; 1380 1381 case FW_PORT_TYPE_CR_QSFP: 1382 case FW_PORT_TYPE_SFP28: 1383 SET_LMM(FIBRE); 1384 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1385 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1386 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); 1387 break; 1388 1389 case FW_PORT_TYPE_KR_SFP28: 1390 SET_LMM(Backplane); 1391 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1392 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1393 FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full); 1394 break; 1395 1396 case FW_PORT_TYPE_KR_XLAUI: 1397 SET_LMM(Backplane); 1398 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1399 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1400 FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full); 1401 break; 1402 1403 case FW_PORT_TYPE_CR2_QSFP: 1404 SET_LMM(FIBRE); 1405 FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full); 1406 break; 1407 1408 case FW_PORT_TYPE_KR4_100G: 1409 case FW_PORT_TYPE_CR4_QSFP: 1410 SET_LMM(FIBRE); 1411 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1412 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1413 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); 1414 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); 1415 FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full); 1416 FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full); 1417 break; 1418 1419 default: 1420 break; 1421 } 1422 1423 if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) { 1424 FW_CAPS_TO_LMM(FEC_RS, FEC_RS); 1425 FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER); 1426 } else { 1427 SET_LMM(FEC_NONE); 1428 } 1429 1430 FW_CAPS_TO_LMM(ANEG, Autoneg); 1431 FW_CAPS_TO_LMM(802_3_PAUSE, Pause); 1432 FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause); 1433 1434 #undef FW_CAPS_TO_LMM 1435 #undef SET_LMM 1436 } 1437 1438 static int cxgb4vf_get_link_ksettings(struct net_device *dev, 1439 struct ethtool_link_ksettings *link_ksettings) 1440 { 1441 struct port_info *pi = netdev_priv(dev); 1442 struct ethtool_link_settings *base = &link_ksettings->base; 1443 1444 /* For the nonce, the Firmware doesn't send up Port State changes 1445 * when the Virtual Interface attached to the Port is down. So 1446 * if it's down, let's grab any changes. 1447 */ 1448 if (!netif_running(dev)) 1449 (void)t4vf_update_port_info(pi); 1450 1451 ethtool_link_ksettings_zero_link_mode(link_ksettings, supported); 1452 ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising); 1453 ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising); 1454 1455 base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type); 1456 1457 if (pi->mdio_addr >= 0) { 1458 base->phy_address = pi->mdio_addr; 1459 base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII 1460 ? ETH_MDIO_SUPPORTS_C22 1461 : ETH_MDIO_SUPPORTS_C45); 1462 } else { 1463 base->phy_address = 255; 1464 base->mdio_support = 0; 1465 } 1466 1467 fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps, 1468 link_ksettings->link_modes.supported); 1469 fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps, 1470 link_ksettings->link_modes.advertising); 1471 fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps, 1472 link_ksettings->link_modes.lp_advertising); 1473 1474 if (netif_carrier_ok(dev)) { 1475 base->speed = pi->link_cfg.speed; 1476 base->duplex = DUPLEX_FULL; 1477 } else { 1478 base->speed = SPEED_UNKNOWN; 1479 base->duplex = DUPLEX_UNKNOWN; 1480 } 1481 1482 if (pi->link_cfg.fc & PAUSE_RX) { 1483 if (pi->link_cfg.fc & PAUSE_TX) { 1484 ethtool_link_ksettings_add_link_mode(link_ksettings, 1485 advertising, 1486 Pause); 1487 } else { 1488 ethtool_link_ksettings_add_link_mode(link_ksettings, 1489 advertising, 1490 Asym_Pause); 1491 } 1492 } else if (pi->link_cfg.fc & PAUSE_TX) { 1493 ethtool_link_ksettings_add_link_mode(link_ksettings, 1494 advertising, 1495 Asym_Pause); 1496 } 1497 1498 base->autoneg = pi->link_cfg.autoneg; 1499 if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG) 1500 ethtool_link_ksettings_add_link_mode(link_ksettings, 1501 supported, Autoneg); 1502 if (pi->link_cfg.autoneg) 1503 ethtool_link_ksettings_add_link_mode(link_ksettings, 1504 advertising, Autoneg); 1505 1506 return 0; 1507 } 1508 1509 /* Translate the Firmware FEC value into the ethtool value. */ 1510 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec) 1511 { 1512 unsigned int eth_fec = 0; 1513 1514 if (fw_fec & FW_PORT_CAP32_FEC_RS) 1515 eth_fec |= ETHTOOL_FEC_RS; 1516 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 1517 eth_fec |= ETHTOOL_FEC_BASER; 1518 1519 /* if nothing is set, then FEC is off */ 1520 if (!eth_fec) 1521 eth_fec = ETHTOOL_FEC_OFF; 1522 1523 return eth_fec; 1524 } 1525 1526 /* Translate Common Code FEC value into ethtool value. */ 1527 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec) 1528 { 1529 unsigned int eth_fec = 0; 1530 1531 if (cc_fec & FEC_AUTO) 1532 eth_fec |= ETHTOOL_FEC_AUTO; 1533 if (cc_fec & FEC_RS) 1534 eth_fec |= ETHTOOL_FEC_RS; 1535 if (cc_fec & FEC_BASER_RS) 1536 eth_fec |= ETHTOOL_FEC_BASER; 1537 1538 /* if nothing is set, then FEC is off */ 1539 if (!eth_fec) 1540 eth_fec = ETHTOOL_FEC_OFF; 1541 1542 return eth_fec; 1543 } 1544 1545 static int cxgb4vf_get_fecparam(struct net_device *dev, 1546 struct ethtool_fecparam *fec) 1547 { 1548 const struct port_info *pi = netdev_priv(dev); 1549 const struct link_config *lc = &pi->link_cfg; 1550 1551 /* Translate the Firmware FEC Support into the ethtool value. We 1552 * always support IEEE 802.3 "automatic" selection of Link FEC type if 1553 * any FEC is supported. 1554 */ 1555 fec->fec = fwcap_to_eth_fec(lc->pcaps); 1556 if (fec->fec != ETHTOOL_FEC_OFF) 1557 fec->fec |= ETHTOOL_FEC_AUTO; 1558 1559 /* Translate the current internal FEC parameters into the 1560 * ethtool values. 1561 */ 1562 fec->active_fec = cc_to_eth_fec(lc->fec); 1563 return 0; 1564 } 1565 1566 /* 1567 * Return our driver information. 1568 */ 1569 static void cxgb4vf_get_drvinfo(struct net_device *dev, 1570 struct ethtool_drvinfo *drvinfo) 1571 { 1572 struct adapter *adapter = netdev2adap(dev); 1573 1574 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver)); 1575 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version)); 1576 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)), 1577 sizeof(drvinfo->bus_info)); 1578 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 1579 "%u.%u.%u.%u, TP %u.%u.%u.%u", 1580 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev), 1581 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev), 1582 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev), 1583 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev), 1584 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev), 1585 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev), 1586 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev), 1587 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev)); 1588 } 1589 1590 /* 1591 * Return current adapter message level. 1592 */ 1593 static u32 cxgb4vf_get_msglevel(struct net_device *dev) 1594 { 1595 return netdev2adap(dev)->msg_enable; 1596 } 1597 1598 /* 1599 * Set current adapter message level. 1600 */ 1601 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel) 1602 { 1603 netdev2adap(dev)->msg_enable = msglevel; 1604 } 1605 1606 /* 1607 * Return the device's current Queue Set ring size parameters along with the 1608 * allowed maximum values. Since ethtool doesn't understand the concept of 1609 * multi-queue devices, we just return the current values associated with the 1610 * first Queue Set. 1611 */ 1612 static void cxgb4vf_get_ringparam(struct net_device *dev, 1613 struct ethtool_ringparam *rp) 1614 { 1615 const struct port_info *pi = netdev_priv(dev); 1616 const struct sge *s = &pi->adapter->sge; 1617 1618 rp->rx_max_pending = MAX_RX_BUFFERS; 1619 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES; 1620 rp->rx_jumbo_max_pending = 0; 1621 rp->tx_max_pending = MAX_TXQ_ENTRIES; 1622 1623 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID; 1624 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; 1625 rp->rx_jumbo_pending = 0; 1626 rp->tx_pending = s->ethtxq[pi->first_qset].q.size; 1627 } 1628 1629 /* 1630 * Set the Queue Set ring size parameters for the device. Again, since 1631 * ethtool doesn't allow for the concept of multiple queues per device, we'll 1632 * apply these new values across all of the Queue Sets associated with the 1633 * device -- after vetting them of course! 1634 */ 1635 static int cxgb4vf_set_ringparam(struct net_device *dev, 1636 struct ethtool_ringparam *rp) 1637 { 1638 const struct port_info *pi = netdev_priv(dev); 1639 struct adapter *adapter = pi->adapter; 1640 struct sge *s = &adapter->sge; 1641 int qs; 1642 1643 if (rp->rx_pending > MAX_RX_BUFFERS || 1644 rp->rx_jumbo_pending || 1645 rp->tx_pending > MAX_TXQ_ENTRIES || 1646 rp->rx_mini_pending > MAX_RSPQ_ENTRIES || 1647 rp->rx_mini_pending < MIN_RSPQ_ENTRIES || 1648 rp->rx_pending < MIN_FL_ENTRIES || 1649 rp->tx_pending < MIN_TXQ_ENTRIES) 1650 return -EINVAL; 1651 1652 if (adapter->flags & CXGB4VF_FULL_INIT_DONE) 1653 return -EBUSY; 1654 1655 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) { 1656 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID; 1657 s->ethrxq[qs].rspq.size = rp->rx_mini_pending; 1658 s->ethtxq[qs].q.size = rp->tx_pending; 1659 } 1660 return 0; 1661 } 1662 1663 /* 1664 * Return the interrupt holdoff timer and count for the first Queue Set on the 1665 * device. Our extension ioctl() (the cxgbtool interface) allows the 1666 * interrupt holdoff timer to be read on all of the device's Queue Sets. 1667 */ 1668 static int cxgb4vf_get_coalesce(struct net_device *dev, 1669 struct ethtool_coalesce *coalesce) 1670 { 1671 const struct port_info *pi = netdev_priv(dev); 1672 const struct adapter *adapter = pi->adapter; 1673 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq; 1674 1675 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq); 1676 coalesce->rx_max_coalesced_frames = 1677 ((rspq->intr_params & QINTR_CNT_EN_F) 1678 ? adapter->sge.counter_val[rspq->pktcnt_idx] 1679 : 0); 1680 return 0; 1681 } 1682 1683 /* 1684 * Set the RX interrupt holdoff timer and count for the first Queue Set on the 1685 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set 1686 * the interrupt holdoff timer on any of the device's Queue Sets. 1687 */ 1688 static int cxgb4vf_set_coalesce(struct net_device *dev, 1689 struct ethtool_coalesce *coalesce) 1690 { 1691 const struct port_info *pi = netdev_priv(dev); 1692 struct adapter *adapter = pi->adapter; 1693 1694 return set_rxq_intr_params(adapter, 1695 &adapter->sge.ethrxq[pi->first_qset].rspq, 1696 coalesce->rx_coalesce_usecs, 1697 coalesce->rx_max_coalesced_frames); 1698 } 1699 1700 /* 1701 * Report current port link pause parameter settings. 1702 */ 1703 static void cxgb4vf_get_pauseparam(struct net_device *dev, 1704 struct ethtool_pauseparam *pauseparam) 1705 { 1706 struct port_info *pi = netdev_priv(dev); 1707 1708 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; 1709 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0; 1710 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0; 1711 } 1712 1713 /* 1714 * Identify the port by blinking the port's LED. 1715 */ 1716 static int cxgb4vf_phys_id(struct net_device *dev, 1717 enum ethtool_phys_id_state state) 1718 { 1719 unsigned int val; 1720 struct port_info *pi = netdev_priv(dev); 1721 1722 if (state == ETHTOOL_ID_ACTIVE) 1723 val = 0xffff; 1724 else if (state == ETHTOOL_ID_INACTIVE) 1725 val = 0; 1726 else 1727 return -EINVAL; 1728 1729 return t4vf_identify_port(pi->adapter, pi->viid, val); 1730 } 1731 1732 /* 1733 * Port stats maintained per queue of the port. 1734 */ 1735 struct queue_port_stats { 1736 u64 tso; 1737 u64 tx_csum; 1738 u64 rx_csum; 1739 u64 vlan_ex; 1740 u64 vlan_ins; 1741 u64 lro_pkts; 1742 u64 lro_merged; 1743 }; 1744 1745 /* 1746 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that 1747 * these need to match the order of statistics returned by 1748 * t4vf_get_port_stats(). 1749 */ 1750 static const char stats_strings[][ETH_GSTRING_LEN] = { 1751 /* 1752 * These must match the layout of the t4vf_port_stats structure. 1753 */ 1754 "TxBroadcastBytes ", 1755 "TxBroadcastFrames ", 1756 "TxMulticastBytes ", 1757 "TxMulticastFrames ", 1758 "TxUnicastBytes ", 1759 "TxUnicastFrames ", 1760 "TxDroppedFrames ", 1761 "TxOffloadBytes ", 1762 "TxOffloadFrames ", 1763 "RxBroadcastBytes ", 1764 "RxBroadcastFrames ", 1765 "RxMulticastBytes ", 1766 "RxMulticastFrames ", 1767 "RxUnicastBytes ", 1768 "RxUnicastFrames ", 1769 "RxErrorFrames ", 1770 1771 /* 1772 * These are accumulated per-queue statistics and must match the 1773 * order of the fields in the queue_port_stats structure. 1774 */ 1775 "TSO ", 1776 "TxCsumOffload ", 1777 "RxCsumGood ", 1778 "VLANextractions ", 1779 "VLANinsertions ", 1780 "GROPackets ", 1781 "GROMerged ", 1782 }; 1783 1784 /* 1785 * Return the number of statistics in the specified statistics set. 1786 */ 1787 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset) 1788 { 1789 switch (sset) { 1790 case ETH_SS_STATS: 1791 return ARRAY_SIZE(stats_strings); 1792 default: 1793 return -EOPNOTSUPP; 1794 } 1795 /*NOTREACHED*/ 1796 } 1797 1798 /* 1799 * Return the strings for the specified statistics set. 1800 */ 1801 static void cxgb4vf_get_strings(struct net_device *dev, 1802 u32 sset, 1803 u8 *data) 1804 { 1805 switch (sset) { 1806 case ETH_SS_STATS: 1807 memcpy(data, stats_strings, sizeof(stats_strings)); 1808 break; 1809 } 1810 } 1811 1812 /* 1813 * Small utility routine to accumulate queue statistics across the queues of 1814 * a "port". 1815 */ 1816 static void collect_sge_port_stats(const struct adapter *adapter, 1817 const struct port_info *pi, 1818 struct queue_port_stats *stats) 1819 { 1820 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset]; 1821 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 1822 int qs; 1823 1824 memset(stats, 0, sizeof(*stats)); 1825 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 1826 stats->tso += txq->tso; 1827 stats->tx_csum += txq->tx_cso; 1828 stats->rx_csum += rxq->stats.rx_cso; 1829 stats->vlan_ex += rxq->stats.vlan_ex; 1830 stats->vlan_ins += txq->vlan_ins; 1831 stats->lro_pkts += rxq->stats.lro_pkts; 1832 stats->lro_merged += rxq->stats.lro_merged; 1833 } 1834 } 1835 1836 /* 1837 * Return the ETH_SS_STATS statistics set. 1838 */ 1839 static void cxgb4vf_get_ethtool_stats(struct net_device *dev, 1840 struct ethtool_stats *stats, 1841 u64 *data) 1842 { 1843 struct port_info *pi = netdev2pinfo(dev); 1844 struct adapter *adapter = pi->adapter; 1845 int err = t4vf_get_port_stats(adapter, pi->pidx, 1846 (struct t4vf_port_stats *)data); 1847 if (err) 1848 memset(data, 0, sizeof(struct t4vf_port_stats)); 1849 1850 data += sizeof(struct t4vf_port_stats) / sizeof(u64); 1851 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); 1852 } 1853 1854 /* 1855 * Return the size of our register map. 1856 */ 1857 static int cxgb4vf_get_regs_len(struct net_device *dev) 1858 { 1859 return T4VF_REGMAP_SIZE; 1860 } 1861 1862 /* 1863 * Dump a block of registers, start to end inclusive, into a buffer. 1864 */ 1865 static void reg_block_dump(struct adapter *adapter, void *regbuf, 1866 unsigned int start, unsigned int end) 1867 { 1868 u32 *bp = regbuf + start - T4VF_REGMAP_START; 1869 1870 for ( ; start <= end; start += sizeof(u32)) { 1871 /* 1872 * Avoid reading the Mailbox Control register since that 1873 * can trigger a Mailbox Ownership Arbitration cycle and 1874 * interfere with communication with the firmware. 1875 */ 1876 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL) 1877 *bp++ = 0xffff; 1878 else 1879 *bp++ = t4_read_reg(adapter, start); 1880 } 1881 } 1882 1883 /* 1884 * Copy our entire register map into the provided buffer. 1885 */ 1886 static void cxgb4vf_get_regs(struct net_device *dev, 1887 struct ethtool_regs *regs, 1888 void *regbuf) 1889 { 1890 struct adapter *adapter = netdev2adap(dev); 1891 1892 regs->version = mk_adap_vers(adapter); 1893 1894 /* 1895 * Fill in register buffer with our register map. 1896 */ 1897 memset(regbuf, 0, T4VF_REGMAP_SIZE); 1898 1899 reg_block_dump(adapter, regbuf, 1900 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST, 1901 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST); 1902 reg_block_dump(adapter, regbuf, 1903 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST, 1904 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST); 1905 1906 /* T5 adds new registers in the PL Register map. 1907 */ 1908 reg_block_dump(adapter, regbuf, 1909 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST, 1910 T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip) 1911 ? PL_VF_WHOAMI_A : PL_VF_REVISION_A)); 1912 reg_block_dump(adapter, regbuf, 1913 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST, 1914 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST); 1915 1916 reg_block_dump(adapter, regbuf, 1917 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST, 1918 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST); 1919 } 1920 1921 /* 1922 * Report current Wake On LAN settings. 1923 */ 1924 static void cxgb4vf_get_wol(struct net_device *dev, 1925 struct ethtool_wolinfo *wol) 1926 { 1927 wol->supported = 0; 1928 wol->wolopts = 0; 1929 memset(&wol->sopass, 0, sizeof(wol->sopass)); 1930 } 1931 1932 /* 1933 * TCP Segmentation Offload flags which we support. 1934 */ 1935 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1936 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 1937 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 1938 1939 static const struct ethtool_ops cxgb4vf_ethtool_ops = { 1940 .get_link_ksettings = cxgb4vf_get_link_ksettings, 1941 .get_fecparam = cxgb4vf_get_fecparam, 1942 .get_drvinfo = cxgb4vf_get_drvinfo, 1943 .get_msglevel = cxgb4vf_get_msglevel, 1944 .set_msglevel = cxgb4vf_set_msglevel, 1945 .get_ringparam = cxgb4vf_get_ringparam, 1946 .set_ringparam = cxgb4vf_set_ringparam, 1947 .get_coalesce = cxgb4vf_get_coalesce, 1948 .set_coalesce = cxgb4vf_set_coalesce, 1949 .get_pauseparam = cxgb4vf_get_pauseparam, 1950 .get_link = ethtool_op_get_link, 1951 .get_strings = cxgb4vf_get_strings, 1952 .set_phys_id = cxgb4vf_phys_id, 1953 .get_sset_count = cxgb4vf_get_sset_count, 1954 .get_ethtool_stats = cxgb4vf_get_ethtool_stats, 1955 .get_regs_len = cxgb4vf_get_regs_len, 1956 .get_regs = cxgb4vf_get_regs, 1957 .get_wol = cxgb4vf_get_wol, 1958 }; 1959 1960 /* 1961 * /sys/kernel/debug/cxgb4vf support code and data. 1962 * ================================================ 1963 */ 1964 1965 /* 1966 * Show Firmware Mailbox Command/Reply Log 1967 * 1968 * Note that we don't do any locking when dumping the Firmware Mailbox Log so 1969 * it's possible that we can catch things during a log update and therefore 1970 * see partially corrupted log entries. But i9t's probably Good Enough(tm). 1971 * If we ever decide that we want to make sure that we're dumping a coherent 1972 * log, we'd need to perform locking in the mailbox logging and in 1973 * mboxlog_open() where we'd need to grab the entire mailbox log in one go 1974 * like we do for the Firmware Device Log. But as stated above, meh ... 1975 */ 1976 static int mboxlog_show(struct seq_file *seq, void *v) 1977 { 1978 struct adapter *adapter = seq->private; 1979 struct mbox_cmd_log *log = adapter->mbox_log; 1980 struct mbox_cmd *entry; 1981 int entry_idx, i; 1982 1983 if (v == SEQ_START_TOKEN) { 1984 seq_printf(seq, 1985 "%10s %15s %5s %5s %s\n", 1986 "Seq#", "Tstamp", "Atime", "Etime", 1987 "Command/Reply"); 1988 return 0; 1989 } 1990 1991 entry_idx = log->cursor + ((uintptr_t)v - 2); 1992 if (entry_idx >= log->size) 1993 entry_idx -= log->size; 1994 entry = mbox_cmd_log_entry(log, entry_idx); 1995 1996 /* skip over unused entries */ 1997 if (entry->timestamp == 0) 1998 return 0; 1999 2000 seq_printf(seq, "%10u %15llu %5d %5d", 2001 entry->seqno, entry->timestamp, 2002 entry->access, entry->execute); 2003 for (i = 0; i < MBOX_LEN / 8; i++) { 2004 u64 flit = entry->cmd[i]; 2005 u32 hi = (u32)(flit >> 32); 2006 u32 lo = (u32)flit; 2007 2008 seq_printf(seq, " %08x %08x", hi, lo); 2009 } 2010 seq_puts(seq, "\n"); 2011 return 0; 2012 } 2013 2014 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos) 2015 { 2016 struct adapter *adapter = seq->private; 2017 struct mbox_cmd_log *log = adapter->mbox_log; 2018 2019 return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL); 2020 } 2021 2022 static void *mboxlog_start(struct seq_file *seq, loff_t *pos) 2023 { 2024 return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN; 2025 } 2026 2027 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos) 2028 { 2029 ++*pos; 2030 return mboxlog_get_idx(seq, *pos); 2031 } 2032 2033 static void mboxlog_stop(struct seq_file *seq, void *v) 2034 { 2035 } 2036 2037 static const struct seq_operations mboxlog_seq_ops = { 2038 .start = mboxlog_start, 2039 .next = mboxlog_next, 2040 .stop = mboxlog_stop, 2041 .show = mboxlog_show 2042 }; 2043 2044 static int mboxlog_open(struct inode *inode, struct file *file) 2045 { 2046 int res = seq_open(file, &mboxlog_seq_ops); 2047 2048 if (!res) { 2049 struct seq_file *seq = file->private_data; 2050 2051 seq->private = inode->i_private; 2052 } 2053 return res; 2054 } 2055 2056 static const struct file_operations mboxlog_fops = { 2057 .owner = THIS_MODULE, 2058 .open = mboxlog_open, 2059 .read = seq_read, 2060 .llseek = seq_lseek, 2061 .release = seq_release, 2062 }; 2063 2064 /* 2065 * Show SGE Queue Set information. We display QPL Queues Sets per line. 2066 */ 2067 #define QPL 4 2068 2069 static int sge_qinfo_show(struct seq_file *seq, void *v) 2070 { 2071 struct adapter *adapter = seq->private; 2072 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2073 int qs, r = (uintptr_t)v - 1; 2074 2075 if (r) 2076 seq_putc(seq, '\n'); 2077 2078 #define S3(fmt_spec, s, v) \ 2079 do {\ 2080 seq_printf(seq, "%-12s", s); \ 2081 for (qs = 0; qs < n; ++qs) \ 2082 seq_printf(seq, " %16" fmt_spec, v); \ 2083 seq_putc(seq, '\n'); \ 2084 } while (0) 2085 #define S(s, v) S3("s", s, v) 2086 #define T(s, v) S3("u", s, txq[qs].v) 2087 #define R(s, v) S3("u", s, rxq[qs].v) 2088 2089 if (r < eth_entries) { 2090 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2091 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2092 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2093 2094 S("QType:", "Ethernet"); 2095 S("Interface:", 2096 (rxq[qs].rspq.netdev 2097 ? rxq[qs].rspq.netdev->name 2098 : "N/A")); 2099 S3("d", "Port:", 2100 (rxq[qs].rspq.netdev 2101 ? ((struct port_info *) 2102 netdev_priv(rxq[qs].rspq.netdev))->port_id 2103 : -1)); 2104 T("TxQ ID:", q.abs_id); 2105 T("TxQ size:", q.size); 2106 T("TxQ inuse:", q.in_use); 2107 T("TxQ PIdx:", q.pidx); 2108 T("TxQ CIdx:", q.cidx); 2109 R("RspQ ID:", rspq.abs_id); 2110 R("RspQ size:", rspq.size); 2111 R("RspQE size:", rspq.iqe_len); 2112 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq)); 2113 S3("u", "Intr pktcnt:", 2114 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]); 2115 R("RspQ CIdx:", rspq.cidx); 2116 R("RspQ Gen:", rspq.gen); 2117 R("FL ID:", fl.abs_id); 2118 R("FL size:", fl.size - MIN_FL_RESID); 2119 R("FL avail:", fl.avail); 2120 R("FL PIdx:", fl.pidx); 2121 R("FL CIdx:", fl.cidx); 2122 return 0; 2123 } 2124 2125 r -= eth_entries; 2126 if (r == 0) { 2127 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2128 2129 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue"); 2130 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id); 2131 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2132 qtimer_val(adapter, evtq)); 2133 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2134 adapter->sge.counter_val[evtq->pktcnt_idx]); 2135 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx); 2136 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen); 2137 } else if (r == 1) { 2138 const struct sge_rspq *intrq = &adapter->sge.intrq; 2139 2140 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue"); 2141 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id); 2142 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2143 qtimer_val(adapter, intrq)); 2144 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2145 adapter->sge.counter_val[intrq->pktcnt_idx]); 2146 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx); 2147 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen); 2148 } 2149 2150 #undef R 2151 #undef T 2152 #undef S 2153 #undef S3 2154 2155 return 0; 2156 } 2157 2158 /* 2159 * Return the number of "entries" in our "file". We group the multi-Queue 2160 * sections with QPL Queue Sets per "entry". The sections of the output are: 2161 * 2162 * Ethernet RX/TX Queue Sets 2163 * Firmware Event Queue 2164 * Forwarded Interrupt Queue (if in MSI mode) 2165 */ 2166 static int sge_queue_entries(const struct adapter *adapter) 2167 { 2168 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2169 ((adapter->flags & CXGB4VF_USING_MSI) != 0); 2170 } 2171 2172 static void *sge_queue_start(struct seq_file *seq, loff_t *pos) 2173 { 2174 int entries = sge_queue_entries(seq->private); 2175 2176 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2177 } 2178 2179 static void sge_queue_stop(struct seq_file *seq, void *v) 2180 { 2181 } 2182 2183 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos) 2184 { 2185 int entries = sge_queue_entries(seq->private); 2186 2187 ++*pos; 2188 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2189 } 2190 2191 static const struct seq_operations sge_qinfo_seq_ops = { 2192 .start = sge_queue_start, 2193 .next = sge_queue_next, 2194 .stop = sge_queue_stop, 2195 .show = sge_qinfo_show 2196 }; 2197 2198 static int sge_qinfo_open(struct inode *inode, struct file *file) 2199 { 2200 int res = seq_open(file, &sge_qinfo_seq_ops); 2201 2202 if (!res) { 2203 struct seq_file *seq = file->private_data; 2204 seq->private = inode->i_private; 2205 } 2206 return res; 2207 } 2208 2209 static const struct file_operations sge_qinfo_debugfs_fops = { 2210 .owner = THIS_MODULE, 2211 .open = sge_qinfo_open, 2212 .read = seq_read, 2213 .llseek = seq_lseek, 2214 .release = seq_release, 2215 }; 2216 2217 /* 2218 * Show SGE Queue Set statistics. We display QPL Queues Sets per line. 2219 */ 2220 #define QPL 4 2221 2222 static int sge_qstats_show(struct seq_file *seq, void *v) 2223 { 2224 struct adapter *adapter = seq->private; 2225 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2226 int qs, r = (uintptr_t)v - 1; 2227 2228 if (r) 2229 seq_putc(seq, '\n'); 2230 2231 #define S3(fmt, s, v) \ 2232 do { \ 2233 seq_printf(seq, "%-16s", s); \ 2234 for (qs = 0; qs < n; ++qs) \ 2235 seq_printf(seq, " %8" fmt, v); \ 2236 seq_putc(seq, '\n'); \ 2237 } while (0) 2238 #define S(s, v) S3("s", s, v) 2239 2240 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v) 2241 #define T(s, v) T3("lu", s, v) 2242 2243 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v) 2244 #define R(s, v) R3("lu", s, v) 2245 2246 if (r < eth_entries) { 2247 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2248 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2249 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2250 2251 S("QType:", "Ethernet"); 2252 S("Interface:", 2253 (rxq[qs].rspq.netdev 2254 ? rxq[qs].rspq.netdev->name 2255 : "N/A")); 2256 R3("u", "RspQNullInts:", rspq.unhandled_irqs); 2257 R("RxPackets:", stats.pkts); 2258 R("RxCSO:", stats.rx_cso); 2259 R("VLANxtract:", stats.vlan_ex); 2260 R("LROmerged:", stats.lro_merged); 2261 R("LROpackets:", stats.lro_pkts); 2262 R("RxDrops:", stats.rx_drops); 2263 T("TSO:", tso); 2264 T("TxCSO:", tx_cso); 2265 T("VLANins:", vlan_ins); 2266 T("TxQFull:", q.stops); 2267 T("TxQRestarts:", q.restarts); 2268 T("TxMapErr:", mapping_err); 2269 R("FLAllocErr:", fl.alloc_failed); 2270 R("FLLrgAlcErr:", fl.large_alloc_failed); 2271 R("FLStarving:", fl.starving); 2272 return 0; 2273 } 2274 2275 r -= eth_entries; 2276 if (r == 0) { 2277 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2278 2279 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue"); 2280 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2281 evtq->unhandled_irqs); 2282 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx); 2283 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen); 2284 } else if (r == 1) { 2285 const struct sge_rspq *intrq = &adapter->sge.intrq; 2286 2287 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue"); 2288 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2289 intrq->unhandled_irqs); 2290 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx); 2291 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen); 2292 } 2293 2294 #undef R 2295 #undef T 2296 #undef S 2297 #undef R3 2298 #undef T3 2299 #undef S3 2300 2301 return 0; 2302 } 2303 2304 /* 2305 * Return the number of "entries" in our "file". We group the multi-Queue 2306 * sections with QPL Queue Sets per "entry". The sections of the output are: 2307 * 2308 * Ethernet RX/TX Queue Sets 2309 * Firmware Event Queue 2310 * Forwarded Interrupt Queue (if in MSI mode) 2311 */ 2312 static int sge_qstats_entries(const struct adapter *adapter) 2313 { 2314 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2315 ((adapter->flags & CXGB4VF_USING_MSI) != 0); 2316 } 2317 2318 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos) 2319 { 2320 int entries = sge_qstats_entries(seq->private); 2321 2322 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2323 } 2324 2325 static void sge_qstats_stop(struct seq_file *seq, void *v) 2326 { 2327 } 2328 2329 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos) 2330 { 2331 int entries = sge_qstats_entries(seq->private); 2332 2333 (*pos)++; 2334 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2335 } 2336 2337 static const struct seq_operations sge_qstats_seq_ops = { 2338 .start = sge_qstats_start, 2339 .next = sge_qstats_next, 2340 .stop = sge_qstats_stop, 2341 .show = sge_qstats_show 2342 }; 2343 2344 static int sge_qstats_open(struct inode *inode, struct file *file) 2345 { 2346 int res = seq_open(file, &sge_qstats_seq_ops); 2347 2348 if (res == 0) { 2349 struct seq_file *seq = file->private_data; 2350 seq->private = inode->i_private; 2351 } 2352 return res; 2353 } 2354 2355 static const struct file_operations sge_qstats_proc_fops = { 2356 .owner = THIS_MODULE, 2357 .open = sge_qstats_open, 2358 .read = seq_read, 2359 .llseek = seq_lseek, 2360 .release = seq_release, 2361 }; 2362 2363 /* 2364 * Show PCI-E SR-IOV Virtual Function Resource Limits. 2365 */ 2366 static int resources_show(struct seq_file *seq, void *v) 2367 { 2368 struct adapter *adapter = seq->private; 2369 struct vf_resources *vfres = &adapter->params.vfres; 2370 2371 #define S(desc, fmt, var) \ 2372 seq_printf(seq, "%-60s " fmt "\n", \ 2373 desc " (" #var "):", vfres->var) 2374 2375 S("Virtual Interfaces", "%d", nvi); 2376 S("Egress Queues", "%d", neq); 2377 S("Ethernet Control", "%d", nethctrl); 2378 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint); 2379 S("Ingress Queues", "%d", niq); 2380 S("Traffic Class", "%d", tc); 2381 S("Port Access Rights Mask", "%#x", pmask); 2382 S("MAC Address Filters", "%d", nexactf); 2383 S("Firmware Command Read Capabilities", "%#x", r_caps); 2384 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps); 2385 2386 #undef S 2387 2388 return 0; 2389 } 2390 DEFINE_SHOW_ATTRIBUTE(resources); 2391 2392 /* 2393 * Show Virtual Interfaces. 2394 */ 2395 static int interfaces_show(struct seq_file *seq, void *v) 2396 { 2397 if (v == SEQ_START_TOKEN) { 2398 seq_puts(seq, "Interface Port VIID\n"); 2399 } else { 2400 struct adapter *adapter = seq->private; 2401 int pidx = (uintptr_t)v - 2; 2402 struct net_device *dev = adapter->port[pidx]; 2403 struct port_info *pi = netdev_priv(dev); 2404 2405 seq_printf(seq, "%9s %4d %#5x\n", 2406 dev->name, pi->port_id, pi->viid); 2407 } 2408 return 0; 2409 } 2410 2411 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos) 2412 { 2413 return pos <= adapter->params.nports 2414 ? (void *)(uintptr_t)(pos + 1) 2415 : NULL; 2416 } 2417 2418 static void *interfaces_start(struct seq_file *seq, loff_t *pos) 2419 { 2420 return *pos 2421 ? interfaces_get_idx(seq->private, *pos) 2422 : SEQ_START_TOKEN; 2423 } 2424 2425 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos) 2426 { 2427 (*pos)++; 2428 return interfaces_get_idx(seq->private, *pos); 2429 } 2430 2431 static void interfaces_stop(struct seq_file *seq, void *v) 2432 { 2433 } 2434 2435 static const struct seq_operations interfaces_seq_ops = { 2436 .start = interfaces_start, 2437 .next = interfaces_next, 2438 .stop = interfaces_stop, 2439 .show = interfaces_show 2440 }; 2441 2442 static int interfaces_open(struct inode *inode, struct file *file) 2443 { 2444 int res = seq_open(file, &interfaces_seq_ops); 2445 2446 if (res == 0) { 2447 struct seq_file *seq = file->private_data; 2448 seq->private = inode->i_private; 2449 } 2450 return res; 2451 } 2452 2453 static const struct file_operations interfaces_proc_fops = { 2454 .owner = THIS_MODULE, 2455 .open = interfaces_open, 2456 .read = seq_read, 2457 .llseek = seq_lseek, 2458 .release = seq_release, 2459 }; 2460 2461 /* 2462 * /sys/kernel/debugfs/cxgb4vf/ files list. 2463 */ 2464 struct cxgb4vf_debugfs_entry { 2465 const char *name; /* name of debugfs node */ 2466 umode_t mode; /* file system mode */ 2467 const struct file_operations *fops; 2468 }; 2469 2470 static struct cxgb4vf_debugfs_entry debugfs_files[] = { 2471 { "mboxlog", 0444, &mboxlog_fops }, 2472 { "sge_qinfo", 0444, &sge_qinfo_debugfs_fops }, 2473 { "sge_qstats", 0444, &sge_qstats_proc_fops }, 2474 { "resources", 0444, &resources_fops }, 2475 { "interfaces", 0444, &interfaces_proc_fops }, 2476 }; 2477 2478 /* 2479 * Module and device initialization and cleanup code. 2480 * ================================================== 2481 */ 2482 2483 /* 2484 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the 2485 * directory (debugfs_root) has already been set up. 2486 */ 2487 static int setup_debugfs(struct adapter *adapter) 2488 { 2489 int i; 2490 2491 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2492 2493 /* 2494 * Debugfs support is best effort. 2495 */ 2496 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) 2497 (void)debugfs_create_file(debugfs_files[i].name, 2498 debugfs_files[i].mode, 2499 adapter->debugfs_root, 2500 (void *)adapter, 2501 debugfs_files[i].fops); 2502 2503 return 0; 2504 } 2505 2506 /* 2507 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave 2508 * it to our caller to tear down the directory (debugfs_root). 2509 */ 2510 static void cleanup_debugfs(struct adapter *adapter) 2511 { 2512 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2513 2514 /* 2515 * Unlike our sister routine cleanup_proc(), we don't need to remove 2516 * individual entries because a call will be made to 2517 * debugfs_remove_recursive(). We just need to clean up any ancillary 2518 * persistent state. 2519 */ 2520 /* nothing to do */ 2521 } 2522 2523 /* Figure out how many Ports and Queue Sets we can support. This depends on 2524 * knowing our Virtual Function Resources and may be called a second time if 2525 * we fall back from MSI-X to MSI Interrupt Mode. 2526 */ 2527 static void size_nports_qsets(struct adapter *adapter) 2528 { 2529 struct vf_resources *vfres = &adapter->params.vfres; 2530 unsigned int ethqsets, pmask_nports; 2531 2532 /* The number of "ports" which we support is equal to the number of 2533 * Virtual Interfaces with which we've been provisioned. 2534 */ 2535 adapter->params.nports = vfres->nvi; 2536 if (adapter->params.nports > MAX_NPORTS) { 2537 dev_warn(adapter->pdev_dev, "only using %d of %d maximum" 2538 " allowed virtual interfaces\n", MAX_NPORTS, 2539 adapter->params.nports); 2540 adapter->params.nports = MAX_NPORTS; 2541 } 2542 2543 /* We may have been provisioned with more VIs than the number of 2544 * ports we're allowed to access (our Port Access Rights Mask). 2545 * This is obviously a configuration conflict but we don't want to 2546 * crash the kernel or anything silly just because of that. 2547 */ 2548 pmask_nports = hweight32(adapter->params.vfres.pmask); 2549 if (pmask_nports < adapter->params.nports) { 2550 dev_warn(adapter->pdev_dev, "only using %d of %d provisioned" 2551 " virtual interfaces; limited by Port Access Rights" 2552 " mask %#x\n", pmask_nports, adapter->params.nports, 2553 adapter->params.vfres.pmask); 2554 adapter->params.nports = pmask_nports; 2555 } 2556 2557 /* We need to reserve an Ingress Queue for the Asynchronous Firmware 2558 * Event Queue. And if we're using MSI Interrupts, we'll also need to 2559 * reserve an Ingress Queue for a Forwarded Interrupts. 2560 * 2561 * The rest of the FL/Intr-capable ingress queues will be matched up 2562 * one-for-one with Ethernet/Control egress queues in order to form 2563 * "Queue Sets" which will be aportioned between the "ports". For 2564 * each Queue Set, we'll need the ability to allocate two Egress 2565 * Contexts -- one for the Ingress Queue Free List and one for the TX 2566 * Ethernet Queue. 2567 * 2568 * Note that even if we're currently configured to use MSI-X 2569 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded 2570 * to MSI Interrupts if we can't get enough MSI-X Interrupts. If that 2571 * happens we'll need to adjust things later. 2572 */ 2573 ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI); 2574 if (vfres->nethctrl != ethqsets) 2575 ethqsets = min(vfres->nethctrl, ethqsets); 2576 if (vfres->neq < ethqsets*2) 2577 ethqsets = vfres->neq/2; 2578 if (ethqsets > MAX_ETH_QSETS) 2579 ethqsets = MAX_ETH_QSETS; 2580 adapter->sge.max_ethqsets = ethqsets; 2581 2582 if (adapter->sge.max_ethqsets < adapter->params.nports) { 2583 dev_warn(adapter->pdev_dev, "only using %d of %d available" 2584 " virtual interfaces (too few Queue Sets)\n", 2585 adapter->sge.max_ethqsets, adapter->params.nports); 2586 adapter->params.nports = adapter->sge.max_ethqsets; 2587 } 2588 } 2589 2590 /* 2591 * Perform early "adapter" initialization. This is where we discover what 2592 * adapter parameters we're going to be using and initialize basic adapter 2593 * hardware support. 2594 */ 2595 static int adap_init0(struct adapter *adapter) 2596 { 2597 struct sge_params *sge_params = &adapter->params.sge; 2598 struct sge *s = &adapter->sge; 2599 int err; 2600 u32 param, val = 0; 2601 2602 /* 2603 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux 2604 * 2.6.31 and later we can't call pci_reset_function() in order to 2605 * issue an FLR because of a self- deadlock on the device semaphore. 2606 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the 2607 * cases where they're needed -- for instance, some versions of KVM 2608 * fail to reset "Assigned Devices" when the VM reboots. Therefore we 2609 * use the firmware based reset in order to reset any per function 2610 * state. 2611 */ 2612 err = t4vf_fw_reset(adapter); 2613 if (err < 0) { 2614 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err); 2615 return err; 2616 } 2617 2618 /* 2619 * Grab basic operational parameters. These will predominantly have 2620 * been set up by the Physical Function Driver or will be hard coded 2621 * into the adapter. We just have to live with them ... Note that 2622 * we _must_ get our VPD parameters before our SGE parameters because 2623 * we need to know the adapter's core clock from the VPD in order to 2624 * properly decode the SGE Timer Values. 2625 */ 2626 err = t4vf_get_dev_params(adapter); 2627 if (err) { 2628 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2629 " device parameters: err=%d\n", err); 2630 return err; 2631 } 2632 err = t4vf_get_vpd_params(adapter); 2633 if (err) { 2634 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2635 " VPD parameters: err=%d\n", err); 2636 return err; 2637 } 2638 err = t4vf_get_sge_params(adapter); 2639 if (err) { 2640 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2641 " SGE parameters: err=%d\n", err); 2642 return err; 2643 } 2644 err = t4vf_get_rss_glb_config(adapter); 2645 if (err) { 2646 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2647 " RSS parameters: err=%d\n", err); 2648 return err; 2649 } 2650 if (adapter->params.rss.mode != 2651 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 2652 dev_err(adapter->pdev_dev, "unable to operate with global RSS" 2653 " mode %d\n", adapter->params.rss.mode); 2654 return -EINVAL; 2655 } 2656 err = t4vf_sge_init(adapter); 2657 if (err) { 2658 dev_err(adapter->pdev_dev, "unable to use adapter parameters:" 2659 " err=%d\n", err); 2660 return err; 2661 } 2662 2663 /* If we're running on newer firmware, let it know that we're 2664 * prepared to deal with encapsulated CPL messages. Older 2665 * firmware won't understand this and we'll just get 2666 * unencapsulated messages ... 2667 */ 2668 param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2669 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP); 2670 val = 1; 2671 (void) t4vf_set_params(adapter, 1, ¶m, &val); 2672 2673 /* 2674 * Retrieve our RX interrupt holdoff timer values and counter 2675 * threshold values from the SGE parameters. 2676 */ 2677 s->timer_val[0] = core_ticks_to_us(adapter, 2678 TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1)); 2679 s->timer_val[1] = core_ticks_to_us(adapter, 2680 TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1)); 2681 s->timer_val[2] = core_ticks_to_us(adapter, 2682 TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3)); 2683 s->timer_val[3] = core_ticks_to_us(adapter, 2684 TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3)); 2685 s->timer_val[4] = core_ticks_to_us(adapter, 2686 TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5)); 2687 s->timer_val[5] = core_ticks_to_us(adapter, 2688 TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5)); 2689 2690 s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold); 2691 s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold); 2692 s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold); 2693 s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold); 2694 2695 /* 2696 * Grab our Virtual Interface resource allocation, extract the 2697 * features that we're interested in and do a bit of sanity testing on 2698 * what we discover. 2699 */ 2700 err = t4vf_get_vfres(adapter); 2701 if (err) { 2702 dev_err(adapter->pdev_dev, "unable to get virtual interface" 2703 " resources: err=%d\n", err); 2704 return err; 2705 } 2706 2707 /* Check for various parameter sanity issues */ 2708 if (adapter->params.vfres.pmask == 0) { 2709 dev_err(adapter->pdev_dev, "no port access configured\n" 2710 "usable!\n"); 2711 return -EINVAL; 2712 } 2713 if (adapter->params.vfres.nvi == 0) { 2714 dev_err(adapter->pdev_dev, "no virtual interfaces configured/" 2715 "usable!\n"); 2716 return -EINVAL; 2717 } 2718 2719 /* Initialize nports and max_ethqsets now that we have our Virtual 2720 * Function Resources. 2721 */ 2722 size_nports_qsets(adapter); 2723 2724 adapter->flags |= CXGB4VF_FW_OK; 2725 return 0; 2726 } 2727 2728 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx, 2729 u8 pkt_cnt_idx, unsigned int size, 2730 unsigned int iqe_size) 2731 { 2732 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 2733 (pkt_cnt_idx < SGE_NCOUNTERS ? 2734 QINTR_CNT_EN_F : 0)); 2735 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS 2736 ? pkt_cnt_idx 2737 : 0); 2738 rspq->iqe_len = iqe_size; 2739 rspq->size = size; 2740 } 2741 2742 /* 2743 * Perform default configuration of DMA queues depending on the number and 2744 * type of ports we found and the number of available CPUs. Most settings can 2745 * be modified by the admin via ethtool and cxgbtool prior to the adapter 2746 * being brought up for the first time. 2747 */ 2748 static void cfg_queues(struct adapter *adapter) 2749 { 2750 struct sge *s = &adapter->sge; 2751 int q10g, n10g, qidx, pidx, qs; 2752 size_t iqe_size; 2753 2754 /* 2755 * We should not be called till we know how many Queue Sets we can 2756 * support. In particular, this means that we need to know what kind 2757 * of interrupts we'll be using ... 2758 */ 2759 BUG_ON((adapter->flags & 2760 (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0); 2761 2762 /* 2763 * Count the number of 10GbE Virtual Interfaces that we have. 2764 */ 2765 n10g = 0; 2766 for_each_port(adapter, pidx) 2767 n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg); 2768 2769 /* 2770 * We default to 1 queue per non-10G port and up to # of cores queues 2771 * per 10G port. 2772 */ 2773 if (n10g == 0) 2774 q10g = 0; 2775 else { 2776 int n1g = (adapter->params.nports - n10g); 2777 q10g = (adapter->sge.max_ethqsets - n1g) / n10g; 2778 if (q10g > num_online_cpus()) 2779 q10g = num_online_cpus(); 2780 } 2781 2782 /* 2783 * Allocate the "Queue Sets" to the various Virtual Interfaces. 2784 * The layout will be established in setup_sge_queues() when the 2785 * adapter is brough up for the first time. 2786 */ 2787 qidx = 0; 2788 for_each_port(adapter, pidx) { 2789 struct port_info *pi = adap2pinfo(adapter, pidx); 2790 2791 pi->first_qset = qidx; 2792 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 2793 qidx += pi->nqsets; 2794 } 2795 s->ethqsets = qidx; 2796 2797 /* 2798 * The Ingress Queue Entry Size for our various Response Queues needs 2799 * to be big enough to accommodate the largest message we can receive 2800 * from the chip/firmware; which is 64 bytes ... 2801 */ 2802 iqe_size = 64; 2803 2804 /* 2805 * Set up default Queue Set parameters ... Start off with the 2806 * shortest interrupt holdoff timer. 2807 */ 2808 for (qs = 0; qs < s->max_ethqsets; qs++) { 2809 struct sge_eth_rxq *rxq = &s->ethrxq[qs]; 2810 struct sge_eth_txq *txq = &s->ethtxq[qs]; 2811 2812 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size); 2813 rxq->fl.size = 72; 2814 txq->q.size = 1024; 2815 } 2816 2817 /* 2818 * The firmware event queue is used for link state changes and 2819 * notifications of TX DMA completions. 2820 */ 2821 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size); 2822 2823 /* 2824 * The forwarded interrupt queue is used when we're in MSI interrupt 2825 * mode. In this mode all interrupts associated with RX queues will 2826 * be forwarded to a single queue which we'll associate with our MSI 2827 * interrupt vector. The messages dropped in the forwarded interrupt 2828 * queue will indicate which ingress queue needs servicing ... This 2829 * queue needs to be large enough to accommodate all of the ingress 2830 * queues which are forwarding their interrupt (+1 to prevent the PIDX 2831 * from equalling the CIDX if every ingress queue has an outstanding 2832 * interrupt). The queue doesn't need to be any larger because no 2833 * ingress queue will ever have more than one outstanding interrupt at 2834 * any time ... 2835 */ 2836 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1, 2837 iqe_size); 2838 } 2839 2840 /* 2841 * Reduce the number of Ethernet queues across all ports to at most n. 2842 * n provides at least one queue per port. 2843 */ 2844 static void reduce_ethqs(struct adapter *adapter, int n) 2845 { 2846 int i; 2847 struct port_info *pi; 2848 2849 /* 2850 * While we have too many active Ether Queue Sets, interate across the 2851 * "ports" and reduce their individual Queue Set allocations. 2852 */ 2853 BUG_ON(n < adapter->params.nports); 2854 while (n < adapter->sge.ethqsets) 2855 for_each_port(adapter, i) { 2856 pi = adap2pinfo(adapter, i); 2857 if (pi->nqsets > 1) { 2858 pi->nqsets--; 2859 adapter->sge.ethqsets--; 2860 if (adapter->sge.ethqsets <= n) 2861 break; 2862 } 2863 } 2864 2865 /* 2866 * Reassign the starting Queue Sets for each of the "ports" ... 2867 */ 2868 n = 0; 2869 for_each_port(adapter, i) { 2870 pi = adap2pinfo(adapter, i); 2871 pi->first_qset = n; 2872 n += pi->nqsets; 2873 } 2874 } 2875 2876 /* 2877 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally 2878 * we get a separate MSI-X vector for every "Queue Set" plus any extras we 2879 * need. Minimally we need one for every Virtual Interface plus those needed 2880 * for our "extras". Note that this process may lower the maximum number of 2881 * allowed Queue Sets ... 2882 */ 2883 static int enable_msix(struct adapter *adapter) 2884 { 2885 int i, want, need, nqsets; 2886 struct msix_entry entries[MSIX_ENTRIES]; 2887 struct sge *s = &adapter->sge; 2888 2889 for (i = 0; i < MSIX_ENTRIES; ++i) 2890 entries[i].entry = i; 2891 2892 /* 2893 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets" 2894 * plus those needed for our "extras" (for example, the firmware 2895 * message queue). We _need_ at least one "Queue Set" per Virtual 2896 * Interface plus those needed for our "extras". So now we get to see 2897 * if the song is right ... 2898 */ 2899 want = s->max_ethqsets + MSIX_EXTRAS; 2900 need = adapter->params.nports + MSIX_EXTRAS; 2901 2902 want = pci_enable_msix_range(adapter->pdev, entries, need, want); 2903 if (want < 0) 2904 return want; 2905 2906 nqsets = want - MSIX_EXTRAS; 2907 if (nqsets < s->max_ethqsets) { 2908 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors" 2909 " for %d Queue Sets\n", nqsets); 2910 s->max_ethqsets = nqsets; 2911 if (nqsets < s->ethqsets) 2912 reduce_ethqs(adapter, nqsets); 2913 } 2914 for (i = 0; i < want; ++i) 2915 adapter->msix_info[i].vec = entries[i].vector; 2916 2917 return 0; 2918 } 2919 2920 static const struct net_device_ops cxgb4vf_netdev_ops = { 2921 .ndo_open = cxgb4vf_open, 2922 .ndo_stop = cxgb4vf_stop, 2923 .ndo_start_xmit = t4vf_eth_xmit, 2924 .ndo_get_stats = cxgb4vf_get_stats, 2925 .ndo_set_rx_mode = cxgb4vf_set_rxmode, 2926 .ndo_set_mac_address = cxgb4vf_set_mac_addr, 2927 .ndo_validate_addr = eth_validate_addr, 2928 .ndo_do_ioctl = cxgb4vf_do_ioctl, 2929 .ndo_change_mtu = cxgb4vf_change_mtu, 2930 .ndo_fix_features = cxgb4vf_fix_features, 2931 .ndo_set_features = cxgb4vf_set_features, 2932 #ifdef CONFIG_NET_POLL_CONTROLLER 2933 .ndo_poll_controller = cxgb4vf_poll_controller, 2934 #endif 2935 }; 2936 2937 /* 2938 * "Probe" a device: initialize a device and construct all kernel and driver 2939 * state needed to manage the device. This routine is called "init_one" in 2940 * the PF Driver ... 2941 */ 2942 static int cxgb4vf_pci_probe(struct pci_dev *pdev, 2943 const struct pci_device_id *ent) 2944 { 2945 int pci_using_dac; 2946 int err, pidx; 2947 unsigned int pmask; 2948 struct adapter *adapter; 2949 struct port_info *pi; 2950 struct net_device *netdev; 2951 unsigned int pf; 2952 2953 /* 2954 * Print our driver banner the first time we're called to initialize a 2955 * device. 2956 */ 2957 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION); 2958 2959 /* 2960 * Initialize generic PCI device state. 2961 */ 2962 err = pci_enable_device(pdev); 2963 if (err) { 2964 dev_err(&pdev->dev, "cannot enable PCI device\n"); 2965 return err; 2966 } 2967 2968 /* 2969 * Reserve PCI resources for the device. If we can't get them some 2970 * other driver may have already claimed the device ... 2971 */ 2972 err = pci_request_regions(pdev, KBUILD_MODNAME); 2973 if (err) { 2974 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 2975 goto err_disable_device; 2976 } 2977 2978 /* 2979 * Set up our DMA mask: try for 64-bit address masking first and 2980 * fall back to 32-bit if we can't get 64 bits ... 2981 */ 2982 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 2983 if (err == 0) { 2984 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 2985 if (err) { 2986 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for" 2987 " coherent allocations\n"); 2988 goto err_release_regions; 2989 } 2990 pci_using_dac = 1; 2991 } else { 2992 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2993 if (err != 0) { 2994 dev_err(&pdev->dev, "no usable DMA configuration\n"); 2995 goto err_release_regions; 2996 } 2997 pci_using_dac = 0; 2998 } 2999 3000 /* 3001 * Enable bus mastering for the device ... 3002 */ 3003 pci_set_master(pdev); 3004 3005 /* 3006 * Allocate our adapter data structure and attach it to the device. 3007 */ 3008 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 3009 if (!adapter) { 3010 err = -ENOMEM; 3011 goto err_release_regions; 3012 } 3013 pci_set_drvdata(pdev, adapter); 3014 adapter->pdev = pdev; 3015 adapter->pdev_dev = &pdev->dev; 3016 3017 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 3018 (sizeof(struct mbox_cmd) * 3019 T4VF_OS_LOG_MBOX_CMDS), 3020 GFP_KERNEL); 3021 if (!adapter->mbox_log) { 3022 err = -ENOMEM; 3023 goto err_free_adapter; 3024 } 3025 adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS; 3026 3027 /* 3028 * Initialize SMP data synchronization resources. 3029 */ 3030 spin_lock_init(&adapter->stats_lock); 3031 spin_lock_init(&adapter->mbox_lock); 3032 INIT_LIST_HEAD(&adapter->mlist.list); 3033 3034 /* 3035 * Map our I/O registers in BAR0. 3036 */ 3037 adapter->regs = pci_ioremap_bar(pdev, 0); 3038 if (!adapter->regs) { 3039 dev_err(&pdev->dev, "cannot map device registers\n"); 3040 err = -ENOMEM; 3041 goto err_free_adapter; 3042 } 3043 3044 /* Wait for the device to become ready before proceeding ... 3045 */ 3046 err = t4vf_prep_adapter(adapter); 3047 if (err) { 3048 dev_err(adapter->pdev_dev, "device didn't become ready:" 3049 " err=%d\n", err); 3050 goto err_unmap_bar0; 3051 } 3052 3053 /* For T5 and later we want to use the new BAR-based User Doorbells, 3054 * so we need to map BAR2 here ... 3055 */ 3056 if (!is_t4(adapter->params.chip)) { 3057 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 3058 pci_resource_len(pdev, 2)); 3059 if (!adapter->bar2) { 3060 dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n"); 3061 err = -ENOMEM; 3062 goto err_unmap_bar0; 3063 } 3064 } 3065 /* 3066 * Initialize adapter level features. 3067 */ 3068 adapter->name = pci_name(pdev); 3069 adapter->msg_enable = DFLT_MSG_ENABLE; 3070 3071 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 3072 * Ingress Packet Data to Free List Buffers in order to allow for 3073 * chipset performance optimizations between the Root Complex and 3074 * Memory Controllers. (Messages to the associated Ingress Queue 3075 * notifying new Packet Placement in the Free Lists Buffers will be 3076 * send without the Relaxed Ordering Attribute thus guaranteeing that 3077 * all preceding PCIe Transaction Layer Packets will be processed 3078 * first.) But some Root Complexes have various issues with Upstream 3079 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 3080 * The PCIe devices which under the Root Complexes will be cleared the 3081 * Relaxed Ordering bit in the configuration space, So we check our 3082 * PCIe configuration space to see if it's flagged with advice against 3083 * using Relaxed Ordering. 3084 */ 3085 if (!pcie_relaxed_ordering_enabled(pdev)) 3086 adapter->flags |= CXGB4VF_ROOT_NO_RELAXED_ORDERING; 3087 3088 err = adap_init0(adapter); 3089 if (err) 3090 dev_err(&pdev->dev, 3091 "Adapter initialization failed, error %d. Continuing in debug mode\n", 3092 err); 3093 3094 /* Initialize hash mac addr list */ 3095 INIT_LIST_HEAD(&adapter->mac_hlist); 3096 3097 /* 3098 * Allocate our "adapter ports" and stitch everything together. 3099 */ 3100 pmask = adapter->params.vfres.pmask; 3101 pf = t4vf_get_pf_from_vf(adapter); 3102 for_each_port(adapter, pidx) { 3103 int port_id, viid; 3104 u8 mac[ETH_ALEN]; 3105 unsigned int naddr = 1; 3106 3107 /* 3108 * We simplistically allocate our virtual interfaces 3109 * sequentially across the port numbers to which we have 3110 * access rights. This should be configurable in some manner 3111 * ... 3112 */ 3113 if (pmask == 0) 3114 break; 3115 port_id = ffs(pmask) - 1; 3116 pmask &= ~(1 << port_id); 3117 3118 /* 3119 * Allocate our network device and stitch things together. 3120 */ 3121 netdev = alloc_etherdev_mq(sizeof(struct port_info), 3122 MAX_PORT_QSETS); 3123 if (netdev == NULL) { 3124 err = -ENOMEM; 3125 goto err_free_dev; 3126 } 3127 adapter->port[pidx] = netdev; 3128 SET_NETDEV_DEV(netdev, &pdev->dev); 3129 pi = netdev_priv(netdev); 3130 pi->adapter = adapter; 3131 pi->pidx = pidx; 3132 pi->port_id = port_id; 3133 3134 /* 3135 * Initialize the starting state of our "port" and register 3136 * it. 3137 */ 3138 pi->xact_addr_filt = -1; 3139 netdev->irq = pdev->irq; 3140 3141 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | NETIF_F_GRO | 3142 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM | 3143 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 3144 netdev->features = netdev->hw_features; 3145 if (pci_using_dac) 3146 netdev->features |= NETIF_F_HIGHDMA; 3147 netdev->vlan_features = netdev->features & VLAN_FEAT; 3148 3149 netdev->priv_flags |= IFF_UNICAST_FLT; 3150 netdev->min_mtu = 81; 3151 netdev->max_mtu = ETH_MAX_MTU; 3152 3153 netdev->netdev_ops = &cxgb4vf_netdev_ops; 3154 netdev->ethtool_ops = &cxgb4vf_ethtool_ops; 3155 netdev->dev_port = pi->port_id; 3156 3157 /* 3158 * If we haven't been able to contact the firmware, there's 3159 * nothing else we can do for this "port" ... 3160 */ 3161 if (!(adapter->flags & CXGB4VF_FW_OK)) 3162 continue; 3163 3164 viid = t4vf_alloc_vi(adapter, port_id); 3165 if (viid < 0) { 3166 dev_err(&pdev->dev, 3167 "cannot allocate VI for port %d: err=%d\n", 3168 port_id, viid); 3169 err = viid; 3170 goto err_free_dev; 3171 } 3172 pi->viid = viid; 3173 3174 /* 3175 * Initialize the hardware/software state for the port. 3176 */ 3177 err = t4vf_port_init(adapter, pidx); 3178 if (err) { 3179 dev_err(&pdev->dev, "cannot initialize port %d\n", 3180 pidx); 3181 goto err_free_dev; 3182 } 3183 3184 err = t4vf_get_vf_mac_acl(adapter, pf, &naddr, mac); 3185 if (err) { 3186 dev_err(&pdev->dev, 3187 "unable to determine MAC ACL address, " 3188 "continuing anyway.. (status %d)\n", err); 3189 } else if (naddr && adapter->params.vfres.nvi == 1) { 3190 struct sockaddr addr; 3191 3192 ether_addr_copy(addr.sa_data, mac); 3193 err = cxgb4vf_set_mac_addr(netdev, &addr); 3194 if (err) { 3195 dev_err(&pdev->dev, 3196 "unable to set MAC address %pM\n", 3197 mac); 3198 goto err_free_dev; 3199 } 3200 dev_info(&pdev->dev, 3201 "Using assigned MAC ACL: %pM\n", mac); 3202 } 3203 } 3204 3205 /* See what interrupts we'll be using. If we've been configured to 3206 * use MSI-X interrupts, try to enable them but fall back to using 3207 * MSI interrupts if we can't enable MSI-X interrupts. If we can't 3208 * get MSI interrupts we bail with the error. 3209 */ 3210 if (msi == MSI_MSIX && enable_msix(adapter) == 0) 3211 adapter->flags |= CXGB4VF_USING_MSIX; 3212 else { 3213 if (msi == MSI_MSIX) { 3214 dev_info(adapter->pdev_dev, 3215 "Unable to use MSI-X Interrupts; falling " 3216 "back to MSI Interrupts\n"); 3217 3218 /* We're going to need a Forwarded Interrupt Queue so 3219 * that may cut into how many Queue Sets we can 3220 * support. 3221 */ 3222 msi = MSI_MSI; 3223 size_nports_qsets(adapter); 3224 } 3225 err = pci_enable_msi(pdev); 3226 if (err) { 3227 dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;" 3228 " err=%d\n", err); 3229 goto err_free_dev; 3230 } 3231 adapter->flags |= CXGB4VF_USING_MSI; 3232 } 3233 3234 /* Now that we know how many "ports" we have and what interrupt 3235 * mechanism we're going to use, we can configure our queue resources. 3236 */ 3237 cfg_queues(adapter); 3238 3239 /* 3240 * The "card" is now ready to go. If any errors occur during device 3241 * registration we do not fail the whole "card" but rather proceed 3242 * only with the ports we manage to register successfully. However we 3243 * must register at least one net device. 3244 */ 3245 for_each_port(adapter, pidx) { 3246 struct port_info *pi = netdev_priv(adapter->port[pidx]); 3247 netdev = adapter->port[pidx]; 3248 if (netdev == NULL) 3249 continue; 3250 3251 netif_set_real_num_tx_queues(netdev, pi->nqsets); 3252 netif_set_real_num_rx_queues(netdev, pi->nqsets); 3253 3254 err = register_netdev(netdev); 3255 if (err) { 3256 dev_warn(&pdev->dev, "cannot register net device %s," 3257 " skipping\n", netdev->name); 3258 continue; 3259 } 3260 3261 netif_carrier_off(netdev); 3262 set_bit(pidx, &adapter->registered_device_map); 3263 } 3264 if (adapter->registered_device_map == 0) { 3265 dev_err(&pdev->dev, "could not register any net devices\n"); 3266 goto err_disable_interrupts; 3267 } 3268 3269 /* 3270 * Set up our debugfs entries. 3271 */ 3272 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) { 3273 adapter->debugfs_root = 3274 debugfs_create_dir(pci_name(pdev), 3275 cxgb4vf_debugfs_root); 3276 if (IS_ERR_OR_NULL(adapter->debugfs_root)) 3277 dev_warn(&pdev->dev, "could not create debugfs" 3278 " directory"); 3279 else 3280 setup_debugfs(adapter); 3281 } 3282 3283 /* 3284 * Print a short notice on the existence and configuration of the new 3285 * VF network device ... 3286 */ 3287 for_each_port(adapter, pidx) { 3288 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n", 3289 adapter->port[pidx]->name, 3290 (adapter->flags & CXGB4VF_USING_MSIX) ? "MSI-X" : 3291 (adapter->flags & CXGB4VF_USING_MSI) ? "MSI" : ""); 3292 } 3293 3294 /* 3295 * Return success! 3296 */ 3297 return 0; 3298 3299 /* 3300 * Error recovery and exit code. Unwind state that's been created 3301 * so far and return the error. 3302 */ 3303 err_disable_interrupts: 3304 if (adapter->flags & CXGB4VF_USING_MSIX) { 3305 pci_disable_msix(adapter->pdev); 3306 adapter->flags &= ~CXGB4VF_USING_MSIX; 3307 } else if (adapter->flags & CXGB4VF_USING_MSI) { 3308 pci_disable_msi(adapter->pdev); 3309 adapter->flags &= ~CXGB4VF_USING_MSI; 3310 } 3311 3312 err_free_dev: 3313 for_each_port(adapter, pidx) { 3314 netdev = adapter->port[pidx]; 3315 if (netdev == NULL) 3316 continue; 3317 pi = netdev_priv(netdev); 3318 if (pi->viid) 3319 t4vf_free_vi(adapter, pi->viid); 3320 if (test_bit(pidx, &adapter->registered_device_map)) 3321 unregister_netdev(netdev); 3322 free_netdev(netdev); 3323 } 3324 3325 if (!is_t4(adapter->params.chip)) 3326 iounmap(adapter->bar2); 3327 3328 err_unmap_bar0: 3329 iounmap(adapter->regs); 3330 3331 err_free_adapter: 3332 kfree(adapter->mbox_log); 3333 kfree(adapter); 3334 3335 err_release_regions: 3336 pci_release_regions(pdev); 3337 pci_clear_master(pdev); 3338 3339 err_disable_device: 3340 pci_disable_device(pdev); 3341 3342 return err; 3343 } 3344 3345 /* 3346 * "Remove" a device: tear down all kernel and driver state created in the 3347 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note 3348 * that this is called "remove_one" in the PF Driver.) 3349 */ 3350 static void cxgb4vf_pci_remove(struct pci_dev *pdev) 3351 { 3352 struct adapter *adapter = pci_get_drvdata(pdev); 3353 struct hash_mac_addr *entry, *tmp; 3354 3355 /* 3356 * Tear down driver state associated with device. 3357 */ 3358 if (adapter) { 3359 int pidx; 3360 3361 /* 3362 * Stop all of our activity. Unregister network port, 3363 * disable interrupts, etc. 3364 */ 3365 for_each_port(adapter, pidx) 3366 if (test_bit(pidx, &adapter->registered_device_map)) 3367 unregister_netdev(adapter->port[pidx]); 3368 t4vf_sge_stop(adapter); 3369 if (adapter->flags & CXGB4VF_USING_MSIX) { 3370 pci_disable_msix(adapter->pdev); 3371 adapter->flags &= ~CXGB4VF_USING_MSIX; 3372 } else if (adapter->flags & CXGB4VF_USING_MSI) { 3373 pci_disable_msi(adapter->pdev); 3374 adapter->flags &= ~CXGB4VF_USING_MSI; 3375 } 3376 3377 /* 3378 * Tear down our debugfs entries. 3379 */ 3380 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) { 3381 cleanup_debugfs(adapter); 3382 debugfs_remove_recursive(adapter->debugfs_root); 3383 } 3384 3385 /* 3386 * Free all of the various resources which we've acquired ... 3387 */ 3388 t4vf_free_sge_resources(adapter); 3389 for_each_port(adapter, pidx) { 3390 struct net_device *netdev = adapter->port[pidx]; 3391 struct port_info *pi; 3392 3393 if (netdev == NULL) 3394 continue; 3395 3396 pi = netdev_priv(netdev); 3397 if (pi->viid) 3398 t4vf_free_vi(adapter, pi->viid); 3399 free_netdev(netdev); 3400 } 3401 iounmap(adapter->regs); 3402 if (!is_t4(adapter->params.chip)) 3403 iounmap(adapter->bar2); 3404 kfree(adapter->mbox_log); 3405 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 3406 list) { 3407 list_del(&entry->list); 3408 kfree(entry); 3409 } 3410 kfree(adapter); 3411 } 3412 3413 /* 3414 * Disable the device and release its PCI resources. 3415 */ 3416 pci_disable_device(pdev); 3417 pci_clear_master(pdev); 3418 pci_release_regions(pdev); 3419 } 3420 3421 /* 3422 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt 3423 * delivery. 3424 */ 3425 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev) 3426 { 3427 struct adapter *adapter; 3428 int pidx; 3429 3430 adapter = pci_get_drvdata(pdev); 3431 if (!adapter) 3432 return; 3433 3434 /* Disable all Virtual Interfaces. This will shut down the 3435 * delivery of all ingress packets into the chip for these 3436 * Virtual Interfaces. 3437 */ 3438 for_each_port(adapter, pidx) 3439 if (test_bit(pidx, &adapter->registered_device_map)) 3440 unregister_netdev(adapter->port[pidx]); 3441 3442 /* Free up all Queues which will prevent further DMA and 3443 * Interrupts allowing various internal pathways to drain. 3444 */ 3445 t4vf_sge_stop(adapter); 3446 if (adapter->flags & CXGB4VF_USING_MSIX) { 3447 pci_disable_msix(adapter->pdev); 3448 adapter->flags &= ~CXGB4VF_USING_MSIX; 3449 } else if (adapter->flags & CXGB4VF_USING_MSI) { 3450 pci_disable_msi(adapter->pdev); 3451 adapter->flags &= ~CXGB4VF_USING_MSI; 3452 } 3453 3454 /* 3455 * Free up all Queues which will prevent further DMA and 3456 * Interrupts allowing various internal pathways to drain. 3457 */ 3458 t4vf_free_sge_resources(adapter); 3459 pci_set_drvdata(pdev, NULL); 3460 } 3461 3462 /* Macros needed to support the PCI Device ID Table ... 3463 */ 3464 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 3465 static const struct pci_device_id cxgb4vf_pci_tbl[] = { 3466 #define CH_PCI_DEVICE_ID_FUNCTION 0x8 3467 3468 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 3469 { PCI_VDEVICE(CHELSIO, (devid)), 0 } 3470 3471 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } } 3472 3473 #include "../cxgb4/t4_pci_id_tbl.h" 3474 3475 MODULE_DESCRIPTION(DRV_DESC); 3476 MODULE_AUTHOR("Chelsio Communications"); 3477 MODULE_LICENSE("Dual BSD/GPL"); 3478 MODULE_VERSION(DRV_VERSION); 3479 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl); 3480 3481 static struct pci_driver cxgb4vf_driver = { 3482 .name = KBUILD_MODNAME, 3483 .id_table = cxgb4vf_pci_tbl, 3484 .probe = cxgb4vf_pci_probe, 3485 .remove = cxgb4vf_pci_remove, 3486 .shutdown = cxgb4vf_pci_shutdown, 3487 }; 3488 3489 /* 3490 * Initialize global driver state. 3491 */ 3492 static int __init cxgb4vf_module_init(void) 3493 { 3494 int ret; 3495 3496 /* 3497 * Vet our module parameters. 3498 */ 3499 if (msi != MSI_MSIX && msi != MSI_MSI) { 3500 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n", 3501 msi, MSI_MSIX, MSI_MSI); 3502 return -EINVAL; 3503 } 3504 3505 /* Debugfs support is optional, just warn if this fails */ 3506 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 3507 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) 3508 pr_warn("could not create debugfs entry, continuing\n"); 3509 3510 ret = pci_register_driver(&cxgb4vf_driver); 3511 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) 3512 debugfs_remove(cxgb4vf_debugfs_root); 3513 return ret; 3514 } 3515 3516 /* 3517 * Tear down global driver state. 3518 */ 3519 static void __exit cxgb4vf_module_exit(void) 3520 { 3521 pci_unregister_driver(&cxgb4vf_driver); 3522 debugfs_remove(cxgb4vf_debugfs_root); 3523 } 3524 3525 module_init(cxgb4vf_module_init); 3526 module_exit(cxgb4vf_module_exit); 3527