1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <linux/debugfs.h>
46 #include <linux/ethtool.h>
47 #include <linux/mdio.h>
48 
49 #include "t4vf_common.h"
50 #include "t4vf_defs.h"
51 
52 #include "../cxgb4/t4_regs.h"
53 #include "../cxgb4/t4_msg.h"
54 
55 /*
56  * Generic information about the driver.
57  */
58 #define DRV_VERSION "2.0.0-ko"
59 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver"
60 
61 /*
62  * Module Parameters.
63  * ==================
64  */
65 
66 /*
67  * Default ethtool "message level" for adapters.
68  */
69 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
70 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
71 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
72 
73 /*
74  * The driver uses the best interrupt scheme available on a platform in the
75  * order MSI-X then MSI.  This parameter determines which of these schemes the
76  * driver may consider as follows:
77  *
78  *     msi = 2: choose from among MSI-X and MSI
79  *     msi = 1: only consider MSI interrupts
80  *
81  * Note that unlike the Physical Function driver, this Virtual Function driver
82  * does _not_ support legacy INTx interrupts (this limitation is mandated by
83  * the PCI-E SR-IOV standard).
84  */
85 #define MSI_MSIX	2
86 #define MSI_MSI		1
87 #define MSI_DEFAULT	MSI_MSIX
88 
89 static int msi = MSI_DEFAULT;
90 
91 module_param(msi, int, 0644);
92 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
93 
94 /*
95  * Fundamental constants.
96  * ======================
97  */
98 
99 enum {
100 	MAX_TXQ_ENTRIES		= 16384,
101 	MAX_RSPQ_ENTRIES	= 16384,
102 	MAX_RX_BUFFERS		= 16384,
103 
104 	MIN_TXQ_ENTRIES		= 32,
105 	MIN_RSPQ_ENTRIES	= 128,
106 	MIN_FL_ENTRIES		= 16,
107 
108 	/*
109 	 * For purposes of manipulating the Free List size we need to
110 	 * recognize that Free Lists are actually Egress Queues (the host
111 	 * produces free buffers which the hardware consumes), Egress Queues
112 	 * indices are all in units of Egress Context Units bytes, and free
113 	 * list entries are 64-bit PCI DMA addresses.  And since the state of
114 	 * the Producer Index == the Consumer Index implies an EMPTY list, we
115 	 * always have at least one Egress Unit's worth of Free List entries
116 	 * unused.  See sge.c for more details ...
117 	 */
118 	EQ_UNIT = SGE_EQ_IDXSIZE,
119 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
120 	MIN_FL_RESID = FL_PER_EQ_UNIT,
121 };
122 
123 /*
124  * Global driver state.
125  * ====================
126  */
127 
128 static struct dentry *cxgb4vf_debugfs_root;
129 
130 /*
131  * OS "Callback" functions.
132  * ========================
133  */
134 
135 /*
136  * The link status has changed on the indicated "port" (Virtual Interface).
137  */
138 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
139 {
140 	struct net_device *dev = adapter->port[pidx];
141 
142 	/*
143 	 * If the port is disabled or the current recorded "link up"
144 	 * status matches the new status, just return.
145 	 */
146 	if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
147 		return;
148 
149 	/*
150 	 * Tell the OS that the link status has changed and print a short
151 	 * informative message on the console about the event.
152 	 */
153 	if (link_ok) {
154 		const char *s;
155 		const char *fc;
156 		const struct port_info *pi = netdev_priv(dev);
157 
158 		netif_carrier_on(dev);
159 
160 		switch (pi->link_cfg.speed) {
161 		case 100:
162 			s = "100Mbps";
163 			break;
164 		case 1000:
165 			s = "1Gbps";
166 			break;
167 		case 10000:
168 			s = "10Gbps";
169 			break;
170 		case 25000:
171 			s = "25Gbps";
172 			break;
173 		case 40000:
174 			s = "40Gbps";
175 			break;
176 		case 100000:
177 			s = "100Gbps";
178 			break;
179 
180 		default:
181 			s = "unknown";
182 			break;
183 		}
184 
185 		switch ((int)pi->link_cfg.fc) {
186 		case PAUSE_RX:
187 			fc = "RX";
188 			break;
189 
190 		case PAUSE_TX:
191 			fc = "TX";
192 			break;
193 
194 		case PAUSE_RX | PAUSE_TX:
195 			fc = "RX/TX";
196 			break;
197 
198 		default:
199 			fc = "no";
200 			break;
201 		}
202 
203 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
204 	} else {
205 		netif_carrier_off(dev);
206 		netdev_info(dev, "link down\n");
207 	}
208 }
209 
210 /*
211  * THe port module type has changed on the indicated "port" (Virtual
212  * Interface).
213  */
214 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx)
215 {
216 	static const char * const mod_str[] = {
217 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
218 	};
219 	const struct net_device *dev = adapter->port[pidx];
220 	const struct port_info *pi = netdev_priv(dev);
221 
222 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
223 		dev_info(adapter->pdev_dev, "%s: port module unplugged\n",
224 			 dev->name);
225 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
226 		dev_info(adapter->pdev_dev, "%s: %s port module inserted\n",
227 			 dev->name, mod_str[pi->mod_type]);
228 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
229 		dev_info(adapter->pdev_dev, "%s: unsupported optical port "
230 			 "module inserted\n", dev->name);
231 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
232 		dev_info(adapter->pdev_dev, "%s: unknown port module inserted,"
233 			 "forcing TWINAX\n", dev->name);
234 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
235 		dev_info(adapter->pdev_dev, "%s: transceiver module error\n",
236 			 dev->name);
237 	else
238 		dev_info(adapter->pdev_dev, "%s: unknown module type %d "
239 			 "inserted\n", dev->name, pi->mod_type);
240 }
241 
242 static int cxgb4vf_set_addr_hash(struct port_info *pi)
243 {
244 	struct adapter *adapter = pi->adapter;
245 	u64 vec = 0;
246 	bool ucast = false;
247 	struct hash_mac_addr *entry;
248 
249 	/* Calculate the hash vector for the updated list and program it */
250 	list_for_each_entry(entry, &adapter->mac_hlist, list) {
251 		ucast |= is_unicast_ether_addr(entry->addr);
252 		vec |= (1ULL << hash_mac_addr(entry->addr));
253 	}
254 	return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false);
255 }
256 
257 /**
258  *	cxgb4vf_change_mac - Update match filter for a MAC address.
259  *	@pi: the port_info
260  *	@viid: the VI id
261  *	@tcam_idx: TCAM index of existing filter for old value of MAC address,
262  *		   or -1
263  *	@addr: the new MAC address value
264  *	@persist: whether a new MAC allocation should be persistent
265  *	@add_smt: if true also add the address to the HW SMT
266  *
267  *	Modifies an MPS filter and sets it to the new MAC address if
268  *	@tcam_idx >= 0, or adds the MAC address to a new filter if
269  *	@tcam_idx < 0. In the latter case the address is added persistently
270  *	if @persist is %true.
271  *	Addresses are programmed to hash region, if tcam runs out of entries.
272  *
273  */
274 static int cxgb4vf_change_mac(struct port_info *pi, unsigned int viid,
275 			      int *tcam_idx, const u8 *addr, bool persistent)
276 {
277 	struct hash_mac_addr *new_entry, *entry;
278 	struct adapter *adapter = pi->adapter;
279 	int ret;
280 
281 	ret = t4vf_change_mac(adapter, viid, *tcam_idx, addr, persistent);
282 	/* We ran out of TCAM entries. try programming hash region. */
283 	if (ret == -ENOMEM) {
284 		/* If the MAC address to be updated is in the hash addr
285 		 * list, update it from the list
286 		 */
287 		list_for_each_entry(entry, &adapter->mac_hlist, list) {
288 			if (entry->iface_mac) {
289 				ether_addr_copy(entry->addr, addr);
290 				goto set_hash;
291 			}
292 		}
293 		new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
294 		if (!new_entry)
295 			return -ENOMEM;
296 		ether_addr_copy(new_entry->addr, addr);
297 		new_entry->iface_mac = true;
298 		list_add_tail(&new_entry->list, &adapter->mac_hlist);
299 set_hash:
300 		ret = cxgb4vf_set_addr_hash(pi);
301 	} else if (ret >= 0) {
302 		*tcam_idx = ret;
303 		ret = 0;
304 	}
305 
306 	return ret;
307 }
308 
309 /*
310  * Net device operations.
311  * ======================
312  */
313 
314 
315 
316 
317 /*
318  * Perform the MAC and PHY actions needed to enable a "port" (Virtual
319  * Interface).
320  */
321 static int link_start(struct net_device *dev)
322 {
323 	int ret;
324 	struct port_info *pi = netdev_priv(dev);
325 
326 	/*
327 	 * We do not set address filters and promiscuity here, the stack does
328 	 * that step explicitly. Enable vlan accel.
329 	 */
330 	ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
331 			      true);
332 	if (ret == 0)
333 		ret = cxgb4vf_change_mac(pi, pi->viid,
334 					 &pi->xact_addr_filt,
335 					 dev->dev_addr, true);
336 
337 	/*
338 	 * We don't need to actually "start the link" itself since the
339 	 * firmware will do that for us when the first Virtual Interface
340 	 * is enabled on a port.
341 	 */
342 	if (ret == 0)
343 		ret = t4vf_enable_pi(pi->adapter, pi, true, true);
344 
345 	return ret;
346 }
347 
348 /*
349  * Name the MSI-X interrupts.
350  */
351 static void name_msix_vecs(struct adapter *adapter)
352 {
353 	int namelen = sizeof(adapter->msix_info[0].desc) - 1;
354 	int pidx;
355 
356 	/*
357 	 * Firmware events.
358 	 */
359 	snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
360 		 "%s-FWeventq", adapter->name);
361 	adapter->msix_info[MSIX_FW].desc[namelen] = 0;
362 
363 	/*
364 	 * Ethernet queues.
365 	 */
366 	for_each_port(adapter, pidx) {
367 		struct net_device *dev = adapter->port[pidx];
368 		const struct port_info *pi = netdev_priv(dev);
369 		int qs, msi;
370 
371 		for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
372 			snprintf(adapter->msix_info[msi].desc, namelen,
373 				 "%s-%d", dev->name, qs);
374 			adapter->msix_info[msi].desc[namelen] = 0;
375 		}
376 	}
377 }
378 
379 /*
380  * Request all of our MSI-X resources.
381  */
382 static int request_msix_queue_irqs(struct adapter *adapter)
383 {
384 	struct sge *s = &adapter->sge;
385 	int rxq, msi, err;
386 
387 	/*
388 	 * Firmware events.
389 	 */
390 	err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
391 			  0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
392 	if (err)
393 		return err;
394 
395 	/*
396 	 * Ethernet queues.
397 	 */
398 	msi = MSIX_IQFLINT;
399 	for_each_ethrxq(s, rxq) {
400 		err = request_irq(adapter->msix_info[msi].vec,
401 				  t4vf_sge_intr_msix, 0,
402 				  adapter->msix_info[msi].desc,
403 				  &s->ethrxq[rxq].rspq);
404 		if (err)
405 			goto err_free_irqs;
406 		msi++;
407 	}
408 	return 0;
409 
410 err_free_irqs:
411 	while (--rxq >= 0)
412 		free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
413 	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
414 	return err;
415 }
416 
417 /*
418  * Free our MSI-X resources.
419  */
420 static void free_msix_queue_irqs(struct adapter *adapter)
421 {
422 	struct sge *s = &adapter->sge;
423 	int rxq, msi;
424 
425 	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
426 	msi = MSIX_IQFLINT;
427 	for_each_ethrxq(s, rxq)
428 		free_irq(adapter->msix_info[msi++].vec,
429 			 &s->ethrxq[rxq].rspq);
430 }
431 
432 /*
433  * Turn on NAPI and start up interrupts on a response queue.
434  */
435 static void qenable(struct sge_rspq *rspq)
436 {
437 	napi_enable(&rspq->napi);
438 
439 	/*
440 	 * 0-increment the Going To Sleep register to start the timer and
441 	 * enable interrupts.
442 	 */
443 	t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
444 		     CIDXINC_V(0) |
445 		     SEINTARM_V(rspq->intr_params) |
446 		     INGRESSQID_V(rspq->cntxt_id));
447 }
448 
449 /*
450  * Enable NAPI scheduling and interrupt generation for all Receive Queues.
451  */
452 static void enable_rx(struct adapter *adapter)
453 {
454 	int rxq;
455 	struct sge *s = &adapter->sge;
456 
457 	for_each_ethrxq(s, rxq)
458 		qenable(&s->ethrxq[rxq].rspq);
459 	qenable(&s->fw_evtq);
460 
461 	/*
462 	 * The interrupt queue doesn't use NAPI so we do the 0-increment of
463 	 * its Going To Sleep register here to get it started.
464 	 */
465 	if (adapter->flags & CXGB4VF_USING_MSI)
466 		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
467 			     CIDXINC_V(0) |
468 			     SEINTARM_V(s->intrq.intr_params) |
469 			     INGRESSQID_V(s->intrq.cntxt_id));
470 
471 }
472 
473 /*
474  * Wait until all NAPI handlers are descheduled.
475  */
476 static void quiesce_rx(struct adapter *adapter)
477 {
478 	struct sge *s = &adapter->sge;
479 	int rxq;
480 
481 	for_each_ethrxq(s, rxq)
482 		napi_disable(&s->ethrxq[rxq].rspq.napi);
483 	napi_disable(&s->fw_evtq.napi);
484 }
485 
486 /*
487  * Response queue handler for the firmware event queue.
488  */
489 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
490 			  const struct pkt_gl *gl)
491 {
492 	/*
493 	 * Extract response opcode and get pointer to CPL message body.
494 	 */
495 	struct adapter *adapter = rspq->adapter;
496 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
497 	void *cpl = (void *)(rsp + 1);
498 
499 	switch (opcode) {
500 	case CPL_FW6_MSG: {
501 		/*
502 		 * We've received an asynchronous message from the firmware.
503 		 */
504 		const struct cpl_fw6_msg *fw_msg = cpl;
505 		if (fw_msg->type == FW6_TYPE_CMD_RPL)
506 			t4vf_handle_fw_rpl(adapter, fw_msg->data);
507 		break;
508 	}
509 
510 	case CPL_FW4_MSG: {
511 		/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
512 		 */
513 		const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
514 		opcode = CPL_OPCODE_G(ntohl(p->opcode_qid));
515 		if (opcode != CPL_SGE_EGR_UPDATE) {
516 			dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
517 				, opcode);
518 			break;
519 		}
520 		cpl = (void *)p;
521 		/*FALLTHROUGH*/
522 	}
523 
524 	case CPL_SGE_EGR_UPDATE: {
525 		/*
526 		 * We've received an Egress Queue Status Update message.  We
527 		 * get these, if the SGE is configured to send these when the
528 		 * firmware passes certain points in processing our TX
529 		 * Ethernet Queue or if we make an explicit request for one.
530 		 * We use these updates to determine when we may need to
531 		 * restart a TX Ethernet Queue which was stopped for lack of
532 		 * free TX Queue Descriptors ...
533 		 */
534 		const struct cpl_sge_egr_update *p = cpl;
535 		unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid));
536 		struct sge *s = &adapter->sge;
537 		struct sge_txq *tq;
538 		struct sge_eth_txq *txq;
539 		unsigned int eq_idx;
540 
541 		/*
542 		 * Perform sanity checking on the Queue ID to make sure it
543 		 * really refers to one of our TX Ethernet Egress Queues which
544 		 * is active and matches the queue's ID.  None of these error
545 		 * conditions should ever happen so we may want to either make
546 		 * them fatal and/or conditionalized under DEBUG.
547 		 */
548 		eq_idx = EQ_IDX(s, qid);
549 		if (unlikely(eq_idx >= MAX_EGRQ)) {
550 			dev_err(adapter->pdev_dev,
551 				"Egress Update QID %d out of range\n", qid);
552 			break;
553 		}
554 		tq = s->egr_map[eq_idx];
555 		if (unlikely(tq == NULL)) {
556 			dev_err(adapter->pdev_dev,
557 				"Egress Update QID %d TXQ=NULL\n", qid);
558 			break;
559 		}
560 		txq = container_of(tq, struct sge_eth_txq, q);
561 		if (unlikely(tq->abs_id != qid)) {
562 			dev_err(adapter->pdev_dev,
563 				"Egress Update QID %d refers to TXQ %d\n",
564 				qid, tq->abs_id);
565 			break;
566 		}
567 
568 		/*
569 		 * Restart a stopped TX Queue which has less than half of its
570 		 * TX ring in use ...
571 		 */
572 		txq->q.restarts++;
573 		netif_tx_wake_queue(txq->txq);
574 		break;
575 	}
576 
577 	default:
578 		dev_err(adapter->pdev_dev,
579 			"unexpected CPL %#x on FW event queue\n", opcode);
580 	}
581 
582 	return 0;
583 }
584 
585 /*
586  * Allocate SGE TX/RX response queues.  Determine how many sets of SGE queues
587  * to use and initializes them.  We support multiple "Queue Sets" per port if
588  * we have MSI-X, otherwise just one queue set per port.
589  */
590 static int setup_sge_queues(struct adapter *adapter)
591 {
592 	struct sge *s = &adapter->sge;
593 	int err, pidx, msix;
594 
595 	/*
596 	 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
597 	 * state.
598 	 */
599 	bitmap_zero(s->starving_fl, MAX_EGRQ);
600 
601 	/*
602 	 * If we're using MSI interrupt mode we need to set up a "forwarded
603 	 * interrupt" queue which we'll set up with our MSI vector.  The rest
604 	 * of the ingress queues will be set up to forward their interrupts to
605 	 * this queue ...  This must be first since t4vf_sge_alloc_rxq() uses
606 	 * the intrq's queue ID as the interrupt forwarding queue for the
607 	 * subsequent calls ...
608 	 */
609 	if (adapter->flags & CXGB4VF_USING_MSI) {
610 		err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
611 					 adapter->port[0], 0, NULL, NULL);
612 		if (err)
613 			goto err_free_queues;
614 	}
615 
616 	/*
617 	 * Allocate our ingress queue for asynchronous firmware messages.
618 	 */
619 	err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
620 				 MSIX_FW, NULL, fwevtq_handler);
621 	if (err)
622 		goto err_free_queues;
623 
624 	/*
625 	 * Allocate each "port"'s initial Queue Sets.  These can be changed
626 	 * later on ... up to the point where any interface on the adapter is
627 	 * brought up at which point lots of things get nailed down
628 	 * permanently ...
629 	 */
630 	msix = MSIX_IQFLINT;
631 	for_each_port(adapter, pidx) {
632 		struct net_device *dev = adapter->port[pidx];
633 		struct port_info *pi = netdev_priv(dev);
634 		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
635 		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
636 		int qs;
637 
638 		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
639 			err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
640 						 dev, msix++,
641 						 &rxq->fl, t4vf_ethrx_handler);
642 			if (err)
643 				goto err_free_queues;
644 
645 			err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
646 					     netdev_get_tx_queue(dev, qs),
647 					     s->fw_evtq.cntxt_id);
648 			if (err)
649 				goto err_free_queues;
650 
651 			rxq->rspq.idx = qs;
652 			memset(&rxq->stats, 0, sizeof(rxq->stats));
653 		}
654 	}
655 
656 	/*
657 	 * Create the reverse mappings for the queues.
658 	 */
659 	s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
660 	s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
661 	IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
662 	for_each_port(adapter, pidx) {
663 		struct net_device *dev = adapter->port[pidx];
664 		struct port_info *pi = netdev_priv(dev);
665 		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
666 		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
667 		int qs;
668 
669 		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
670 			IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
671 			EQ_MAP(s, txq->q.abs_id) = &txq->q;
672 
673 			/*
674 			 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
675 			 * for Free Lists but since all of the Egress Queues
676 			 * (including Free Lists) have Relative Queue IDs
677 			 * which are computed as Absolute - Base Queue ID, we
678 			 * can synthesize the Absolute Queue IDs for the Free
679 			 * Lists.  This is useful for debugging purposes when
680 			 * we want to dump Queue Contexts via the PF Driver.
681 			 */
682 			rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
683 			EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
684 		}
685 	}
686 	return 0;
687 
688 err_free_queues:
689 	t4vf_free_sge_resources(adapter);
690 	return err;
691 }
692 
693 /*
694  * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
695  * queues.  We configure the RSS CPU lookup table to distribute to the number
696  * of HW receive queues, and the response queue lookup table to narrow that
697  * down to the response queues actually configured for each "port" (Virtual
698  * Interface).  We always configure the RSS mapping for all ports since the
699  * mapping table has plenty of entries.
700  */
701 static int setup_rss(struct adapter *adapter)
702 {
703 	int pidx;
704 
705 	for_each_port(adapter, pidx) {
706 		struct port_info *pi = adap2pinfo(adapter, pidx);
707 		struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
708 		u16 rss[MAX_PORT_QSETS];
709 		int qs, err;
710 
711 		for (qs = 0; qs < pi->nqsets; qs++)
712 			rss[qs] = rxq[qs].rspq.abs_id;
713 
714 		err = t4vf_config_rss_range(adapter, pi->viid,
715 					    0, pi->rss_size, rss, pi->nqsets);
716 		if (err)
717 			return err;
718 
719 		/*
720 		 * Perform Global RSS Mode-specific initialization.
721 		 */
722 		switch (adapter->params.rss.mode) {
723 		case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
724 			/*
725 			 * If Tunnel All Lookup isn't specified in the global
726 			 * RSS Configuration, then we need to specify a
727 			 * default Ingress Queue for any ingress packets which
728 			 * aren't hashed.  We'll use our first ingress queue
729 			 * ...
730 			 */
731 			if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
732 				union rss_vi_config config;
733 				err = t4vf_read_rss_vi_config(adapter,
734 							      pi->viid,
735 							      &config);
736 				if (err)
737 					return err;
738 				config.basicvirtual.defaultq =
739 					rxq[0].rspq.abs_id;
740 				err = t4vf_write_rss_vi_config(adapter,
741 							       pi->viid,
742 							       &config);
743 				if (err)
744 					return err;
745 			}
746 			break;
747 		}
748 	}
749 
750 	return 0;
751 }
752 
753 /*
754  * Bring the adapter up.  Called whenever we go from no "ports" open to having
755  * one open.  This function performs the actions necessary to make an adapter
756  * operational, such as completing the initialization of HW modules, and
757  * enabling interrupts.  Must be called with the rtnl lock held.  (Note that
758  * this is called "cxgb_up" in the PF Driver.)
759  */
760 static int adapter_up(struct adapter *adapter)
761 {
762 	int err;
763 
764 	/*
765 	 * If this is the first time we've been called, perform basic
766 	 * adapter setup.  Once we've done this, many of our adapter
767 	 * parameters can no longer be changed ...
768 	 */
769 	if ((adapter->flags & CXGB4VF_FULL_INIT_DONE) == 0) {
770 		err = setup_sge_queues(adapter);
771 		if (err)
772 			return err;
773 		err = setup_rss(adapter);
774 		if (err) {
775 			t4vf_free_sge_resources(adapter);
776 			return err;
777 		}
778 
779 		if (adapter->flags & CXGB4VF_USING_MSIX)
780 			name_msix_vecs(adapter);
781 
782 		adapter->flags |= CXGB4VF_FULL_INIT_DONE;
783 	}
784 
785 	/*
786 	 * Acquire our interrupt resources.  We only support MSI-X and MSI.
787 	 */
788 	BUG_ON((adapter->flags &
789 	       (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
790 	if (adapter->flags & CXGB4VF_USING_MSIX)
791 		err = request_msix_queue_irqs(adapter);
792 	else
793 		err = request_irq(adapter->pdev->irq,
794 				  t4vf_intr_handler(adapter), 0,
795 				  adapter->name, adapter);
796 	if (err) {
797 		dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
798 			err);
799 		return err;
800 	}
801 
802 	/*
803 	 * Enable NAPI ingress processing and return success.
804 	 */
805 	enable_rx(adapter);
806 	t4vf_sge_start(adapter);
807 
808 	return 0;
809 }
810 
811 /*
812  * Bring the adapter down.  Called whenever the last "port" (Virtual
813  * Interface) closed.  (Note that this routine is called "cxgb_down" in the PF
814  * Driver.)
815  */
816 static void adapter_down(struct adapter *adapter)
817 {
818 	/*
819 	 * Free interrupt resources.
820 	 */
821 	if (adapter->flags & CXGB4VF_USING_MSIX)
822 		free_msix_queue_irqs(adapter);
823 	else
824 		free_irq(adapter->pdev->irq, adapter);
825 
826 	/*
827 	 * Wait for NAPI handlers to finish.
828 	 */
829 	quiesce_rx(adapter);
830 }
831 
832 /*
833  * Start up a net device.
834  */
835 static int cxgb4vf_open(struct net_device *dev)
836 {
837 	int err;
838 	struct port_info *pi = netdev_priv(dev);
839 	struct adapter *adapter = pi->adapter;
840 
841 	/*
842 	 * If we don't have a connection to the firmware there's nothing we
843 	 * can do.
844 	 */
845 	if (!(adapter->flags & CXGB4VF_FW_OK))
846 		return -ENXIO;
847 
848 	/*
849 	 * If this is the first interface that we're opening on the "adapter",
850 	 * bring the "adapter" up now.
851 	 */
852 	if (adapter->open_device_map == 0) {
853 		err = adapter_up(adapter);
854 		if (err)
855 			return err;
856 	}
857 
858 	/* It's possible that the basic port information could have
859 	 * changed since we first read it.
860 	 */
861 	err = t4vf_update_port_info(pi);
862 	if (err < 0)
863 		return err;
864 
865 	/*
866 	 * Note that this interface is up and start everything up ...
867 	 */
868 	err = link_start(dev);
869 	if (err)
870 		goto err_unwind;
871 
872 	pi->vlan_id = t4vf_get_vf_vlan_acl(adapter);
873 
874 	netif_tx_start_all_queues(dev);
875 	set_bit(pi->port_id, &adapter->open_device_map);
876 	return 0;
877 
878 err_unwind:
879 	if (adapter->open_device_map == 0)
880 		adapter_down(adapter);
881 	return err;
882 }
883 
884 /*
885  * Shut down a net device.  This routine is called "cxgb_close" in the PF
886  * Driver ...
887  */
888 static int cxgb4vf_stop(struct net_device *dev)
889 {
890 	struct port_info *pi = netdev_priv(dev);
891 	struct adapter *adapter = pi->adapter;
892 
893 	netif_tx_stop_all_queues(dev);
894 	netif_carrier_off(dev);
895 	t4vf_enable_pi(adapter, pi, false, false);
896 
897 	clear_bit(pi->port_id, &adapter->open_device_map);
898 	if (adapter->open_device_map == 0)
899 		adapter_down(adapter);
900 	return 0;
901 }
902 
903 /*
904  * Translate our basic statistics into the standard "ifconfig" statistics.
905  */
906 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
907 {
908 	struct t4vf_port_stats stats;
909 	struct port_info *pi = netdev2pinfo(dev);
910 	struct adapter *adapter = pi->adapter;
911 	struct net_device_stats *ns = &dev->stats;
912 	int err;
913 
914 	spin_lock(&adapter->stats_lock);
915 	err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
916 	spin_unlock(&adapter->stats_lock);
917 
918 	memset(ns, 0, sizeof(*ns));
919 	if (err)
920 		return ns;
921 
922 	ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
923 			stats.tx_ucast_bytes + stats.tx_offload_bytes);
924 	ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
925 			  stats.tx_ucast_frames + stats.tx_offload_frames);
926 	ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
927 			stats.rx_ucast_bytes);
928 	ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
929 			  stats.rx_ucast_frames);
930 	ns->multicast = stats.rx_mcast_frames;
931 	ns->tx_errors = stats.tx_drop_frames;
932 	ns->rx_errors = stats.rx_err_frames;
933 
934 	return ns;
935 }
936 
937 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr)
938 {
939 	struct port_info *pi = netdev_priv(netdev);
940 	struct adapter *adapter = pi->adapter;
941 	int ret;
942 	u64 mhash = 0;
943 	u64 uhash = 0;
944 	bool free = false;
945 	bool ucast = is_unicast_ether_addr(mac_addr);
946 	const u8 *maclist[1] = {mac_addr};
947 	struct hash_mac_addr *new_entry;
948 
949 	ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist,
950 				  NULL, ucast ? &uhash : &mhash, false);
951 	if (ret < 0)
952 		goto out;
953 	/* if hash != 0, then add the addr to hash addr list
954 	 * so on the end we will calculate the hash for the
955 	 * list and program it
956 	 */
957 	if (uhash || mhash) {
958 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
959 		if (!new_entry)
960 			return -ENOMEM;
961 		ether_addr_copy(new_entry->addr, mac_addr);
962 		list_add_tail(&new_entry->list, &adapter->mac_hlist);
963 		ret = cxgb4vf_set_addr_hash(pi);
964 	}
965 out:
966 	return ret < 0 ? ret : 0;
967 }
968 
969 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
970 {
971 	struct port_info *pi = netdev_priv(netdev);
972 	struct adapter *adapter = pi->adapter;
973 	int ret;
974 	const u8 *maclist[1] = {mac_addr};
975 	struct hash_mac_addr *entry, *tmp;
976 
977 	/* If the MAC address to be removed is in the hash addr
978 	 * list, delete it from the list and update hash vector
979 	 */
980 	list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) {
981 		if (ether_addr_equal(entry->addr, mac_addr)) {
982 			list_del(&entry->list);
983 			kfree(entry);
984 			return cxgb4vf_set_addr_hash(pi);
985 		}
986 	}
987 
988 	ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false);
989 	return ret < 0 ? -EINVAL : 0;
990 }
991 
992 /*
993  * Set RX properties of a port, such as promiscruity, address filters, and MTU.
994  * If @mtu is -1 it is left unchanged.
995  */
996 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
997 {
998 	struct port_info *pi = netdev_priv(dev);
999 
1000 	__dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
1001 	__dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
1002 	return t4vf_set_rxmode(pi->adapter, pi->viid, -1,
1003 			       (dev->flags & IFF_PROMISC) != 0,
1004 			       (dev->flags & IFF_ALLMULTI) != 0,
1005 			       1, -1, sleep_ok);
1006 }
1007 
1008 /*
1009  * Set the current receive modes on the device.
1010  */
1011 static void cxgb4vf_set_rxmode(struct net_device *dev)
1012 {
1013 	/* unfortunately we can't return errors to the stack */
1014 	set_rxmode(dev, -1, false);
1015 }
1016 
1017 /*
1018  * Find the entry in the interrupt holdoff timer value array which comes
1019  * closest to the specified interrupt holdoff value.
1020  */
1021 static int closest_timer(const struct sge *s, int us)
1022 {
1023 	int i, timer_idx = 0, min_delta = INT_MAX;
1024 
1025 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1026 		int delta = us - s->timer_val[i];
1027 		if (delta < 0)
1028 			delta = -delta;
1029 		if (delta < min_delta) {
1030 			min_delta = delta;
1031 			timer_idx = i;
1032 		}
1033 	}
1034 	return timer_idx;
1035 }
1036 
1037 static int closest_thres(const struct sge *s, int thres)
1038 {
1039 	int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
1040 
1041 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1042 		delta = thres - s->counter_val[i];
1043 		if (delta < 0)
1044 			delta = -delta;
1045 		if (delta < min_delta) {
1046 			min_delta = delta;
1047 			pktcnt_idx = i;
1048 		}
1049 	}
1050 	return pktcnt_idx;
1051 }
1052 
1053 /*
1054  * Return a queue's interrupt hold-off time in us.  0 means no timer.
1055  */
1056 static unsigned int qtimer_val(const struct adapter *adapter,
1057 			       const struct sge_rspq *rspq)
1058 {
1059 	unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params);
1060 
1061 	return timer_idx < SGE_NTIMERS
1062 		? adapter->sge.timer_val[timer_idx]
1063 		: 0;
1064 }
1065 
1066 /**
1067  *	set_rxq_intr_params - set a queue's interrupt holdoff parameters
1068  *	@adapter: the adapter
1069  *	@rspq: the RX response queue
1070  *	@us: the hold-off time in us, or 0 to disable timer
1071  *	@cnt: the hold-off packet count, or 0 to disable counter
1072  *
1073  *	Sets an RX response queue's interrupt hold-off time and packet count.
1074  *	At least one of the two needs to be enabled for the queue to generate
1075  *	interrupts.
1076  */
1077 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1078 			       unsigned int us, unsigned int cnt)
1079 {
1080 	unsigned int timer_idx;
1081 
1082 	/*
1083 	 * If both the interrupt holdoff timer and count are specified as
1084 	 * zero, default to a holdoff count of 1 ...
1085 	 */
1086 	if ((us | cnt) == 0)
1087 		cnt = 1;
1088 
1089 	/*
1090 	 * If an interrupt holdoff count has been specified, then find the
1091 	 * closest configured holdoff count and use that.  If the response
1092 	 * queue has already been created, then update its queue context
1093 	 * parameters ...
1094 	 */
1095 	if (cnt) {
1096 		int err;
1097 		u32 v, pktcnt_idx;
1098 
1099 		pktcnt_idx = closest_thres(&adapter->sge, cnt);
1100 		if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1101 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1102 			    FW_PARAMS_PARAM_X_V(
1103 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1104 			    FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id);
1105 			err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1106 			if (err)
1107 				return err;
1108 		}
1109 		rspq->pktcnt_idx = pktcnt_idx;
1110 	}
1111 
1112 	/*
1113 	 * Compute the closest holdoff timer index from the supplied holdoff
1114 	 * timer value.
1115 	 */
1116 	timer_idx = (us == 0
1117 		     ? SGE_TIMER_RSTRT_CNTR
1118 		     : closest_timer(&adapter->sge, us));
1119 
1120 	/*
1121 	 * Update the response queue's interrupt coalescing parameters and
1122 	 * return success.
1123 	 */
1124 	rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
1125 			     QINTR_CNT_EN_V(cnt > 0));
1126 	return 0;
1127 }
1128 
1129 /*
1130  * Return a version number to identify the type of adapter.  The scheme is:
1131  * - bits 0..9: chip version
1132  * - bits 10..15: chip revision
1133  */
1134 static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1135 {
1136 	/*
1137 	 * Chip version 4, revision 0x3f (cxgb4vf).
1138 	 */
1139 	return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1140 }
1141 
1142 /*
1143  * Execute the specified ioctl command.
1144  */
1145 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1146 {
1147 	int ret = 0;
1148 
1149 	switch (cmd) {
1150 	    /*
1151 	     * The VF Driver doesn't have access to any of the other
1152 	     * common Ethernet device ioctl()'s (like reading/writing
1153 	     * PHY registers, etc.
1154 	     */
1155 
1156 	default:
1157 		ret = -EOPNOTSUPP;
1158 		break;
1159 	}
1160 	return ret;
1161 }
1162 
1163 /*
1164  * Change the device's MTU.
1165  */
1166 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1167 {
1168 	int ret;
1169 	struct port_info *pi = netdev_priv(dev);
1170 
1171 	ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1172 			      -1, -1, -1, -1, true);
1173 	if (!ret)
1174 		dev->mtu = new_mtu;
1175 	return ret;
1176 }
1177 
1178 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1179 	netdev_features_t features)
1180 {
1181 	/*
1182 	 * Since there is no support for separate rx/tx vlan accel
1183 	 * enable/disable make sure tx flag is always in same state as rx.
1184 	 */
1185 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1186 		features |= NETIF_F_HW_VLAN_CTAG_TX;
1187 	else
1188 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1189 
1190 	return features;
1191 }
1192 
1193 static int cxgb4vf_set_features(struct net_device *dev,
1194 	netdev_features_t features)
1195 {
1196 	struct port_info *pi = netdev_priv(dev);
1197 	netdev_features_t changed = dev->features ^ features;
1198 
1199 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1200 		t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1201 				features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1202 
1203 	return 0;
1204 }
1205 
1206 /*
1207  * Change the devices MAC address.
1208  */
1209 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1210 {
1211 	int ret;
1212 	struct sockaddr *addr = _addr;
1213 	struct port_info *pi = netdev_priv(dev);
1214 
1215 	if (!is_valid_ether_addr(addr->sa_data))
1216 		return -EADDRNOTAVAIL;
1217 
1218 	ret = cxgb4vf_change_mac(pi, pi->viid, &pi->xact_addr_filt,
1219 				 addr->sa_data, true);
1220 	if (ret < 0)
1221 		return ret;
1222 
1223 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1224 	return 0;
1225 }
1226 
1227 #ifdef CONFIG_NET_POLL_CONTROLLER
1228 /*
1229  * Poll all of our receive queues.  This is called outside of normal interrupt
1230  * context.
1231  */
1232 static void cxgb4vf_poll_controller(struct net_device *dev)
1233 {
1234 	struct port_info *pi = netdev_priv(dev);
1235 	struct adapter *adapter = pi->adapter;
1236 
1237 	if (adapter->flags & CXGB4VF_USING_MSIX) {
1238 		struct sge_eth_rxq *rxq;
1239 		int nqsets;
1240 
1241 		rxq = &adapter->sge.ethrxq[pi->first_qset];
1242 		for (nqsets = pi->nqsets; nqsets; nqsets--) {
1243 			t4vf_sge_intr_msix(0, &rxq->rspq);
1244 			rxq++;
1245 		}
1246 	} else
1247 		t4vf_intr_handler(adapter)(0, adapter);
1248 }
1249 #endif
1250 
1251 /*
1252  * Ethtool operations.
1253  * ===================
1254  *
1255  * Note that we don't support any ethtool operations which change the physical
1256  * state of the port to which we're linked.
1257  */
1258 
1259 /**
1260  *	from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
1261  *	@port_type: Firmware Port Type
1262  *	@mod_type: Firmware Module Type
1263  *
1264  *	Translate Firmware Port/Module type to Ethtool Port Type.
1265  */
1266 static int from_fw_port_mod_type(enum fw_port_type port_type,
1267 				 enum fw_port_module_type mod_type)
1268 {
1269 	if (port_type == FW_PORT_TYPE_BT_SGMII ||
1270 	    port_type == FW_PORT_TYPE_BT_XFI ||
1271 	    port_type == FW_PORT_TYPE_BT_XAUI) {
1272 		return PORT_TP;
1273 	} else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
1274 		   port_type == FW_PORT_TYPE_FIBER_XAUI) {
1275 		return PORT_FIBRE;
1276 	} else if (port_type == FW_PORT_TYPE_SFP ||
1277 		   port_type == FW_PORT_TYPE_QSFP_10G ||
1278 		   port_type == FW_PORT_TYPE_QSA ||
1279 		   port_type == FW_PORT_TYPE_QSFP ||
1280 		   port_type == FW_PORT_TYPE_CR4_QSFP ||
1281 		   port_type == FW_PORT_TYPE_CR_QSFP ||
1282 		   port_type == FW_PORT_TYPE_CR2_QSFP ||
1283 		   port_type == FW_PORT_TYPE_SFP28) {
1284 		if (mod_type == FW_PORT_MOD_TYPE_LR ||
1285 		    mod_type == FW_PORT_MOD_TYPE_SR ||
1286 		    mod_type == FW_PORT_MOD_TYPE_ER ||
1287 		    mod_type == FW_PORT_MOD_TYPE_LRM)
1288 			return PORT_FIBRE;
1289 		else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1290 			 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1291 			return PORT_DA;
1292 		else
1293 			return PORT_OTHER;
1294 	} else if (port_type == FW_PORT_TYPE_KR4_100G ||
1295 		   port_type == FW_PORT_TYPE_KR_SFP28 ||
1296 		   port_type == FW_PORT_TYPE_KR_XLAUI) {
1297 		return PORT_NONE;
1298 	}
1299 
1300 	return PORT_OTHER;
1301 }
1302 
1303 /**
1304  *	fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
1305  *	@port_type: Firmware Port Type
1306  *	@fw_caps: Firmware Port Capabilities
1307  *	@link_mode_mask: ethtool Link Mode Mask
1308  *
1309  *	Translate a Firmware Port Capabilities specification to an ethtool
1310  *	Link Mode Mask.
1311  */
1312 static void fw_caps_to_lmm(enum fw_port_type port_type,
1313 			   unsigned int fw_caps,
1314 			   unsigned long *link_mode_mask)
1315 {
1316 	#define SET_LMM(__lmm_name) \
1317 		__set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
1318 			  link_mode_mask)
1319 
1320 	#define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
1321 		do { \
1322 			if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1323 				SET_LMM(__lmm_name); \
1324 		} while (0)
1325 
1326 	switch (port_type) {
1327 	case FW_PORT_TYPE_BT_SGMII:
1328 	case FW_PORT_TYPE_BT_XFI:
1329 	case FW_PORT_TYPE_BT_XAUI:
1330 		SET_LMM(TP);
1331 		FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
1332 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1333 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1334 		break;
1335 
1336 	case FW_PORT_TYPE_KX4:
1337 	case FW_PORT_TYPE_KX:
1338 		SET_LMM(Backplane);
1339 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1340 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1341 		break;
1342 
1343 	case FW_PORT_TYPE_KR:
1344 		SET_LMM(Backplane);
1345 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1346 		break;
1347 
1348 	case FW_PORT_TYPE_BP_AP:
1349 		SET_LMM(Backplane);
1350 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1351 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1352 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1353 		break;
1354 
1355 	case FW_PORT_TYPE_BP4_AP:
1356 		SET_LMM(Backplane);
1357 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1358 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1359 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1360 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1361 		break;
1362 
1363 	case FW_PORT_TYPE_FIBER_XFI:
1364 	case FW_PORT_TYPE_FIBER_XAUI:
1365 	case FW_PORT_TYPE_SFP:
1366 	case FW_PORT_TYPE_QSFP_10G:
1367 	case FW_PORT_TYPE_QSA:
1368 		SET_LMM(FIBRE);
1369 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1370 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1371 		break;
1372 
1373 	case FW_PORT_TYPE_BP40_BA:
1374 	case FW_PORT_TYPE_QSFP:
1375 		SET_LMM(FIBRE);
1376 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1377 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1378 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1379 		break;
1380 
1381 	case FW_PORT_TYPE_CR_QSFP:
1382 	case FW_PORT_TYPE_SFP28:
1383 		SET_LMM(FIBRE);
1384 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1385 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1386 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1387 		break;
1388 
1389 	case FW_PORT_TYPE_KR_SFP28:
1390 		SET_LMM(Backplane);
1391 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1392 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1393 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full);
1394 		break;
1395 
1396 	case FW_PORT_TYPE_KR_XLAUI:
1397 		SET_LMM(Backplane);
1398 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1399 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1400 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full);
1401 		break;
1402 
1403 	case FW_PORT_TYPE_CR2_QSFP:
1404 		SET_LMM(FIBRE);
1405 		FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full);
1406 		break;
1407 
1408 	case FW_PORT_TYPE_KR4_100G:
1409 	case FW_PORT_TYPE_CR4_QSFP:
1410 		SET_LMM(FIBRE);
1411 		FW_CAPS_TO_LMM(SPEED_1G,  1000baseT_Full);
1412 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1413 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1414 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1415 		FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full);
1416 		FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full);
1417 		break;
1418 
1419 	default:
1420 		break;
1421 	}
1422 
1423 	if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) {
1424 		FW_CAPS_TO_LMM(FEC_RS, FEC_RS);
1425 		FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER);
1426 	} else {
1427 		SET_LMM(FEC_NONE);
1428 	}
1429 
1430 	FW_CAPS_TO_LMM(ANEG, Autoneg);
1431 	FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
1432 	FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
1433 
1434 	#undef FW_CAPS_TO_LMM
1435 	#undef SET_LMM
1436 }
1437 
1438 static int cxgb4vf_get_link_ksettings(struct net_device *dev,
1439 				  struct ethtool_link_ksettings *link_ksettings)
1440 {
1441 	struct port_info *pi = netdev_priv(dev);
1442 	struct ethtool_link_settings *base = &link_ksettings->base;
1443 
1444 	/* For the nonce, the Firmware doesn't send up Port State changes
1445 	 * when the Virtual Interface attached to the Port is down.  So
1446 	 * if it's down, let's grab any changes.
1447 	 */
1448 	if (!netif_running(dev))
1449 		(void)t4vf_update_port_info(pi);
1450 
1451 	ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
1452 	ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
1453 	ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
1454 
1455 	base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
1456 
1457 	if (pi->mdio_addr >= 0) {
1458 		base->phy_address = pi->mdio_addr;
1459 		base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
1460 				      ? ETH_MDIO_SUPPORTS_C22
1461 				      : ETH_MDIO_SUPPORTS_C45);
1462 	} else {
1463 		base->phy_address = 255;
1464 		base->mdio_support = 0;
1465 	}
1466 
1467 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps,
1468 		       link_ksettings->link_modes.supported);
1469 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps,
1470 		       link_ksettings->link_modes.advertising);
1471 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps,
1472 		       link_ksettings->link_modes.lp_advertising);
1473 
1474 	if (netif_carrier_ok(dev)) {
1475 		base->speed = pi->link_cfg.speed;
1476 		base->duplex = DUPLEX_FULL;
1477 	} else {
1478 		base->speed = SPEED_UNKNOWN;
1479 		base->duplex = DUPLEX_UNKNOWN;
1480 	}
1481 
1482 	if (pi->link_cfg.fc & PAUSE_RX) {
1483 		if (pi->link_cfg.fc & PAUSE_TX) {
1484 			ethtool_link_ksettings_add_link_mode(link_ksettings,
1485 							     advertising,
1486 							     Pause);
1487 		} else {
1488 			ethtool_link_ksettings_add_link_mode(link_ksettings,
1489 							     advertising,
1490 							     Asym_Pause);
1491 		}
1492 	} else if (pi->link_cfg.fc & PAUSE_TX) {
1493 		ethtool_link_ksettings_add_link_mode(link_ksettings,
1494 						     advertising,
1495 						     Asym_Pause);
1496 	}
1497 
1498 	base->autoneg = pi->link_cfg.autoneg;
1499 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG)
1500 		ethtool_link_ksettings_add_link_mode(link_ksettings,
1501 						     supported, Autoneg);
1502 	if (pi->link_cfg.autoneg)
1503 		ethtool_link_ksettings_add_link_mode(link_ksettings,
1504 						     advertising, Autoneg);
1505 
1506 	return 0;
1507 }
1508 
1509 /* Translate the Firmware FEC value into the ethtool value. */
1510 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec)
1511 {
1512 	unsigned int eth_fec = 0;
1513 
1514 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
1515 		eth_fec |= ETHTOOL_FEC_RS;
1516 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1517 		eth_fec |= ETHTOOL_FEC_BASER;
1518 
1519 	/* if nothing is set, then FEC is off */
1520 	if (!eth_fec)
1521 		eth_fec = ETHTOOL_FEC_OFF;
1522 
1523 	return eth_fec;
1524 }
1525 
1526 /* Translate Common Code FEC value into ethtool value. */
1527 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec)
1528 {
1529 	unsigned int eth_fec = 0;
1530 
1531 	if (cc_fec & FEC_AUTO)
1532 		eth_fec |= ETHTOOL_FEC_AUTO;
1533 	if (cc_fec & FEC_RS)
1534 		eth_fec |= ETHTOOL_FEC_RS;
1535 	if (cc_fec & FEC_BASER_RS)
1536 		eth_fec |= ETHTOOL_FEC_BASER;
1537 
1538 	/* if nothing is set, then FEC is off */
1539 	if (!eth_fec)
1540 		eth_fec = ETHTOOL_FEC_OFF;
1541 
1542 	return eth_fec;
1543 }
1544 
1545 static int cxgb4vf_get_fecparam(struct net_device *dev,
1546 				struct ethtool_fecparam *fec)
1547 {
1548 	const struct port_info *pi = netdev_priv(dev);
1549 	const struct link_config *lc = &pi->link_cfg;
1550 
1551 	/* Translate the Firmware FEC Support into the ethtool value.  We
1552 	 * always support IEEE 802.3 "automatic" selection of Link FEC type if
1553 	 * any FEC is supported.
1554 	 */
1555 	fec->fec = fwcap_to_eth_fec(lc->pcaps);
1556 	if (fec->fec != ETHTOOL_FEC_OFF)
1557 		fec->fec |= ETHTOOL_FEC_AUTO;
1558 
1559 	/* Translate the current internal FEC parameters into the
1560 	 * ethtool values.
1561 	 */
1562 	fec->active_fec = cc_to_eth_fec(lc->fec);
1563 	return 0;
1564 }
1565 
1566 /*
1567  * Return our driver information.
1568  */
1569 static void cxgb4vf_get_drvinfo(struct net_device *dev,
1570 				struct ethtool_drvinfo *drvinfo)
1571 {
1572 	struct adapter *adapter = netdev2adap(dev);
1573 
1574 	strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1575 	strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
1576 	strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1577 		sizeof(drvinfo->bus_info));
1578 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1579 		 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1580 		 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev),
1581 		 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev),
1582 		 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev),
1583 		 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev),
1584 		 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev),
1585 		 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev),
1586 		 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev),
1587 		 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev));
1588 }
1589 
1590 /*
1591  * Return current adapter message level.
1592  */
1593 static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1594 {
1595 	return netdev2adap(dev)->msg_enable;
1596 }
1597 
1598 /*
1599  * Set current adapter message level.
1600  */
1601 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1602 {
1603 	netdev2adap(dev)->msg_enable = msglevel;
1604 }
1605 
1606 /*
1607  * Return the device's current Queue Set ring size parameters along with the
1608  * allowed maximum values.  Since ethtool doesn't understand the concept of
1609  * multi-queue devices, we just return the current values associated with the
1610  * first Queue Set.
1611  */
1612 static void cxgb4vf_get_ringparam(struct net_device *dev,
1613 				  struct ethtool_ringparam *rp)
1614 {
1615 	const struct port_info *pi = netdev_priv(dev);
1616 	const struct sge *s = &pi->adapter->sge;
1617 
1618 	rp->rx_max_pending = MAX_RX_BUFFERS;
1619 	rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1620 	rp->rx_jumbo_max_pending = 0;
1621 	rp->tx_max_pending = MAX_TXQ_ENTRIES;
1622 
1623 	rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1624 	rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1625 	rp->rx_jumbo_pending = 0;
1626 	rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1627 }
1628 
1629 /*
1630  * Set the Queue Set ring size parameters for the device.  Again, since
1631  * ethtool doesn't allow for the concept of multiple queues per device, we'll
1632  * apply these new values across all of the Queue Sets associated with the
1633  * device -- after vetting them of course!
1634  */
1635 static int cxgb4vf_set_ringparam(struct net_device *dev,
1636 				 struct ethtool_ringparam *rp)
1637 {
1638 	const struct port_info *pi = netdev_priv(dev);
1639 	struct adapter *adapter = pi->adapter;
1640 	struct sge *s = &adapter->sge;
1641 	int qs;
1642 
1643 	if (rp->rx_pending > MAX_RX_BUFFERS ||
1644 	    rp->rx_jumbo_pending ||
1645 	    rp->tx_pending > MAX_TXQ_ENTRIES ||
1646 	    rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1647 	    rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1648 	    rp->rx_pending < MIN_FL_ENTRIES ||
1649 	    rp->tx_pending < MIN_TXQ_ENTRIES)
1650 		return -EINVAL;
1651 
1652 	if (adapter->flags & CXGB4VF_FULL_INIT_DONE)
1653 		return -EBUSY;
1654 
1655 	for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1656 		s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1657 		s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1658 		s->ethtxq[qs].q.size = rp->tx_pending;
1659 	}
1660 	return 0;
1661 }
1662 
1663 /*
1664  * Return the interrupt holdoff timer and count for the first Queue Set on the
1665  * device.  Our extension ioctl() (the cxgbtool interface) allows the
1666  * interrupt holdoff timer to be read on all of the device's Queue Sets.
1667  */
1668 static int cxgb4vf_get_coalesce(struct net_device *dev,
1669 				struct ethtool_coalesce *coalesce)
1670 {
1671 	const struct port_info *pi = netdev_priv(dev);
1672 	const struct adapter *adapter = pi->adapter;
1673 	const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1674 
1675 	coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1676 	coalesce->rx_max_coalesced_frames =
1677 		((rspq->intr_params & QINTR_CNT_EN_F)
1678 		 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1679 		 : 0);
1680 	return 0;
1681 }
1682 
1683 /*
1684  * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1685  * interface.  Our extension ioctl() (the cxgbtool interface) allows us to set
1686  * the interrupt holdoff timer on any of the device's Queue Sets.
1687  */
1688 static int cxgb4vf_set_coalesce(struct net_device *dev,
1689 				struct ethtool_coalesce *coalesce)
1690 {
1691 	const struct port_info *pi = netdev_priv(dev);
1692 	struct adapter *adapter = pi->adapter;
1693 
1694 	return set_rxq_intr_params(adapter,
1695 				   &adapter->sge.ethrxq[pi->first_qset].rspq,
1696 				   coalesce->rx_coalesce_usecs,
1697 				   coalesce->rx_max_coalesced_frames);
1698 }
1699 
1700 /*
1701  * Report current port link pause parameter settings.
1702  */
1703 static void cxgb4vf_get_pauseparam(struct net_device *dev,
1704 				   struct ethtool_pauseparam *pauseparam)
1705 {
1706 	struct port_info *pi = netdev_priv(dev);
1707 
1708 	pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1709 	pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1710 	pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1711 }
1712 
1713 /*
1714  * Identify the port by blinking the port's LED.
1715  */
1716 static int cxgb4vf_phys_id(struct net_device *dev,
1717 			   enum ethtool_phys_id_state state)
1718 {
1719 	unsigned int val;
1720 	struct port_info *pi = netdev_priv(dev);
1721 
1722 	if (state == ETHTOOL_ID_ACTIVE)
1723 		val = 0xffff;
1724 	else if (state == ETHTOOL_ID_INACTIVE)
1725 		val = 0;
1726 	else
1727 		return -EINVAL;
1728 
1729 	return t4vf_identify_port(pi->adapter, pi->viid, val);
1730 }
1731 
1732 /*
1733  * Port stats maintained per queue of the port.
1734  */
1735 struct queue_port_stats {
1736 	u64 tso;
1737 	u64 tx_csum;
1738 	u64 rx_csum;
1739 	u64 vlan_ex;
1740 	u64 vlan_ins;
1741 	u64 lro_pkts;
1742 	u64 lro_merged;
1743 };
1744 
1745 /*
1746  * Strings for the ETH_SS_STATS statistics set ("ethtool -S").  Note that
1747  * these need to match the order of statistics returned by
1748  * t4vf_get_port_stats().
1749  */
1750 static const char stats_strings[][ETH_GSTRING_LEN] = {
1751 	/*
1752 	 * These must match the layout of the t4vf_port_stats structure.
1753 	 */
1754 	"TxBroadcastBytes  ",
1755 	"TxBroadcastFrames ",
1756 	"TxMulticastBytes  ",
1757 	"TxMulticastFrames ",
1758 	"TxUnicastBytes    ",
1759 	"TxUnicastFrames   ",
1760 	"TxDroppedFrames   ",
1761 	"TxOffloadBytes    ",
1762 	"TxOffloadFrames   ",
1763 	"RxBroadcastBytes  ",
1764 	"RxBroadcastFrames ",
1765 	"RxMulticastBytes  ",
1766 	"RxMulticastFrames ",
1767 	"RxUnicastBytes    ",
1768 	"RxUnicastFrames   ",
1769 	"RxErrorFrames     ",
1770 
1771 	/*
1772 	 * These are accumulated per-queue statistics and must match the
1773 	 * order of the fields in the queue_port_stats structure.
1774 	 */
1775 	"TSO               ",
1776 	"TxCsumOffload     ",
1777 	"RxCsumGood        ",
1778 	"VLANextractions   ",
1779 	"VLANinsertions    ",
1780 	"GROPackets        ",
1781 	"GROMerged         ",
1782 };
1783 
1784 /*
1785  * Return the number of statistics in the specified statistics set.
1786  */
1787 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1788 {
1789 	switch (sset) {
1790 	case ETH_SS_STATS:
1791 		return ARRAY_SIZE(stats_strings);
1792 	default:
1793 		return -EOPNOTSUPP;
1794 	}
1795 	/*NOTREACHED*/
1796 }
1797 
1798 /*
1799  * Return the strings for the specified statistics set.
1800  */
1801 static void cxgb4vf_get_strings(struct net_device *dev,
1802 				u32 sset,
1803 				u8 *data)
1804 {
1805 	switch (sset) {
1806 	case ETH_SS_STATS:
1807 		memcpy(data, stats_strings, sizeof(stats_strings));
1808 		break;
1809 	}
1810 }
1811 
1812 /*
1813  * Small utility routine to accumulate queue statistics across the queues of
1814  * a "port".
1815  */
1816 static void collect_sge_port_stats(const struct adapter *adapter,
1817 				   const struct port_info *pi,
1818 				   struct queue_port_stats *stats)
1819 {
1820 	const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1821 	const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1822 	int qs;
1823 
1824 	memset(stats, 0, sizeof(*stats));
1825 	for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1826 		stats->tso += txq->tso;
1827 		stats->tx_csum += txq->tx_cso;
1828 		stats->rx_csum += rxq->stats.rx_cso;
1829 		stats->vlan_ex += rxq->stats.vlan_ex;
1830 		stats->vlan_ins += txq->vlan_ins;
1831 		stats->lro_pkts += rxq->stats.lro_pkts;
1832 		stats->lro_merged += rxq->stats.lro_merged;
1833 	}
1834 }
1835 
1836 /*
1837  * Return the ETH_SS_STATS statistics set.
1838  */
1839 static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1840 				      struct ethtool_stats *stats,
1841 				      u64 *data)
1842 {
1843 	struct port_info *pi = netdev2pinfo(dev);
1844 	struct adapter *adapter = pi->adapter;
1845 	int err = t4vf_get_port_stats(adapter, pi->pidx,
1846 				      (struct t4vf_port_stats *)data);
1847 	if (err)
1848 		memset(data, 0, sizeof(struct t4vf_port_stats));
1849 
1850 	data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1851 	collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1852 }
1853 
1854 /*
1855  * Return the size of our register map.
1856  */
1857 static int cxgb4vf_get_regs_len(struct net_device *dev)
1858 {
1859 	return T4VF_REGMAP_SIZE;
1860 }
1861 
1862 /*
1863  * Dump a block of registers, start to end inclusive, into a buffer.
1864  */
1865 static void reg_block_dump(struct adapter *adapter, void *regbuf,
1866 			   unsigned int start, unsigned int end)
1867 {
1868 	u32 *bp = regbuf + start - T4VF_REGMAP_START;
1869 
1870 	for ( ; start <= end; start += sizeof(u32)) {
1871 		/*
1872 		 * Avoid reading the Mailbox Control register since that
1873 		 * can trigger a Mailbox Ownership Arbitration cycle and
1874 		 * interfere with communication with the firmware.
1875 		 */
1876 		if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1877 			*bp++ = 0xffff;
1878 		else
1879 			*bp++ = t4_read_reg(adapter, start);
1880 	}
1881 }
1882 
1883 /*
1884  * Copy our entire register map into the provided buffer.
1885  */
1886 static void cxgb4vf_get_regs(struct net_device *dev,
1887 			     struct ethtool_regs *regs,
1888 			     void *regbuf)
1889 {
1890 	struct adapter *adapter = netdev2adap(dev);
1891 
1892 	regs->version = mk_adap_vers(adapter);
1893 
1894 	/*
1895 	 * Fill in register buffer with our register map.
1896 	 */
1897 	memset(regbuf, 0, T4VF_REGMAP_SIZE);
1898 
1899 	reg_block_dump(adapter, regbuf,
1900 		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1901 		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1902 	reg_block_dump(adapter, regbuf,
1903 		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1904 		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1905 
1906 	/* T5 adds new registers in the PL Register map.
1907 	 */
1908 	reg_block_dump(adapter, regbuf,
1909 		       T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1910 		       T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1911 		       ? PL_VF_WHOAMI_A : PL_VF_REVISION_A));
1912 	reg_block_dump(adapter, regbuf,
1913 		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1914 		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1915 
1916 	reg_block_dump(adapter, regbuf,
1917 		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1918 		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1919 }
1920 
1921 /*
1922  * Report current Wake On LAN settings.
1923  */
1924 static void cxgb4vf_get_wol(struct net_device *dev,
1925 			    struct ethtool_wolinfo *wol)
1926 {
1927 	wol->supported = 0;
1928 	wol->wolopts = 0;
1929 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1930 }
1931 
1932 /*
1933  * TCP Segmentation Offload flags which we support.
1934  */
1935 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1936 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
1937 		   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
1938 
1939 static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1940 	.get_link_ksettings	= cxgb4vf_get_link_ksettings,
1941 	.get_fecparam		= cxgb4vf_get_fecparam,
1942 	.get_drvinfo		= cxgb4vf_get_drvinfo,
1943 	.get_msglevel		= cxgb4vf_get_msglevel,
1944 	.set_msglevel		= cxgb4vf_set_msglevel,
1945 	.get_ringparam		= cxgb4vf_get_ringparam,
1946 	.set_ringparam		= cxgb4vf_set_ringparam,
1947 	.get_coalesce		= cxgb4vf_get_coalesce,
1948 	.set_coalesce		= cxgb4vf_set_coalesce,
1949 	.get_pauseparam		= cxgb4vf_get_pauseparam,
1950 	.get_link		= ethtool_op_get_link,
1951 	.get_strings		= cxgb4vf_get_strings,
1952 	.set_phys_id		= cxgb4vf_phys_id,
1953 	.get_sset_count		= cxgb4vf_get_sset_count,
1954 	.get_ethtool_stats	= cxgb4vf_get_ethtool_stats,
1955 	.get_regs_len		= cxgb4vf_get_regs_len,
1956 	.get_regs		= cxgb4vf_get_regs,
1957 	.get_wol		= cxgb4vf_get_wol,
1958 };
1959 
1960 /*
1961  * /sys/kernel/debug/cxgb4vf support code and data.
1962  * ================================================
1963  */
1964 
1965 /*
1966  * Show Firmware Mailbox Command/Reply Log
1967  *
1968  * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1969  * it's possible that we can catch things during a log update and therefore
1970  * see partially corrupted log entries.  But i9t's probably Good Enough(tm).
1971  * If we ever decide that we want to make sure that we're dumping a coherent
1972  * log, we'd need to perform locking in the mailbox logging and in
1973  * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1974  * like we do for the Firmware Device Log.  But as stated above, meh ...
1975  */
1976 static int mboxlog_show(struct seq_file *seq, void *v)
1977 {
1978 	struct adapter *adapter = seq->private;
1979 	struct mbox_cmd_log *log = adapter->mbox_log;
1980 	struct mbox_cmd *entry;
1981 	int entry_idx, i;
1982 
1983 	if (v == SEQ_START_TOKEN) {
1984 		seq_printf(seq,
1985 			   "%10s  %15s  %5s  %5s  %s\n",
1986 			   "Seq#", "Tstamp", "Atime", "Etime",
1987 			   "Command/Reply");
1988 		return 0;
1989 	}
1990 
1991 	entry_idx = log->cursor + ((uintptr_t)v - 2);
1992 	if (entry_idx >= log->size)
1993 		entry_idx -= log->size;
1994 	entry = mbox_cmd_log_entry(log, entry_idx);
1995 
1996 	/* skip over unused entries */
1997 	if (entry->timestamp == 0)
1998 		return 0;
1999 
2000 	seq_printf(seq, "%10u  %15llu  %5d  %5d",
2001 		   entry->seqno, entry->timestamp,
2002 		   entry->access, entry->execute);
2003 	for (i = 0; i < MBOX_LEN / 8; i++) {
2004 		u64 flit = entry->cmd[i];
2005 		u32 hi = (u32)(flit >> 32);
2006 		u32 lo = (u32)flit;
2007 
2008 		seq_printf(seq, "  %08x %08x", hi, lo);
2009 	}
2010 	seq_puts(seq, "\n");
2011 	return 0;
2012 }
2013 
2014 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos)
2015 {
2016 	struct adapter *adapter = seq->private;
2017 	struct mbox_cmd_log *log = adapter->mbox_log;
2018 
2019 	return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL);
2020 }
2021 
2022 static void *mboxlog_start(struct seq_file *seq, loff_t *pos)
2023 {
2024 	return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN;
2025 }
2026 
2027 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos)
2028 {
2029 	++*pos;
2030 	return mboxlog_get_idx(seq, *pos);
2031 }
2032 
2033 static void mboxlog_stop(struct seq_file *seq, void *v)
2034 {
2035 }
2036 
2037 static const struct seq_operations mboxlog_seq_ops = {
2038 	.start = mboxlog_start,
2039 	.next  = mboxlog_next,
2040 	.stop  = mboxlog_stop,
2041 	.show  = mboxlog_show
2042 };
2043 
2044 static int mboxlog_open(struct inode *inode, struct file *file)
2045 {
2046 	int res = seq_open(file, &mboxlog_seq_ops);
2047 
2048 	if (!res) {
2049 		struct seq_file *seq = file->private_data;
2050 
2051 		seq->private = inode->i_private;
2052 	}
2053 	return res;
2054 }
2055 
2056 static const struct file_operations mboxlog_fops = {
2057 	.owner   = THIS_MODULE,
2058 	.open    = mboxlog_open,
2059 	.read    = seq_read,
2060 	.llseek  = seq_lseek,
2061 	.release = seq_release,
2062 };
2063 
2064 /*
2065  * Show SGE Queue Set information.  We display QPL Queues Sets per line.
2066  */
2067 #define QPL	4
2068 
2069 static int sge_qinfo_show(struct seq_file *seq, void *v)
2070 {
2071 	struct adapter *adapter = seq->private;
2072 	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2073 	int qs, r = (uintptr_t)v - 1;
2074 
2075 	if (r)
2076 		seq_putc(seq, '\n');
2077 
2078 	#define S3(fmt_spec, s, v) \
2079 		do {\
2080 			seq_printf(seq, "%-12s", s); \
2081 			for (qs = 0; qs < n; ++qs) \
2082 				seq_printf(seq, " %16" fmt_spec, v); \
2083 			seq_putc(seq, '\n'); \
2084 		} while (0)
2085 	#define S(s, v)		S3("s", s, v)
2086 	#define T(s, v)		S3("u", s, txq[qs].v)
2087 	#define R(s, v)		S3("u", s, rxq[qs].v)
2088 
2089 	if (r < eth_entries) {
2090 		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2091 		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2092 		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2093 
2094 		S("QType:", "Ethernet");
2095 		S("Interface:",
2096 		  (rxq[qs].rspq.netdev
2097 		   ? rxq[qs].rspq.netdev->name
2098 		   : "N/A"));
2099 		S3("d", "Port:",
2100 		   (rxq[qs].rspq.netdev
2101 		    ? ((struct port_info *)
2102 		       netdev_priv(rxq[qs].rspq.netdev))->port_id
2103 		    : -1));
2104 		T("TxQ ID:", q.abs_id);
2105 		T("TxQ size:", q.size);
2106 		T("TxQ inuse:", q.in_use);
2107 		T("TxQ PIdx:", q.pidx);
2108 		T("TxQ CIdx:", q.cidx);
2109 		R("RspQ ID:", rspq.abs_id);
2110 		R("RspQ size:", rspq.size);
2111 		R("RspQE size:", rspq.iqe_len);
2112 		S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
2113 		S3("u", "Intr pktcnt:",
2114 		   adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
2115 		R("RspQ CIdx:", rspq.cidx);
2116 		R("RspQ Gen:", rspq.gen);
2117 		R("FL ID:", fl.abs_id);
2118 		R("FL size:", fl.size - MIN_FL_RESID);
2119 		R("FL avail:", fl.avail);
2120 		R("FL PIdx:", fl.pidx);
2121 		R("FL CIdx:", fl.cidx);
2122 		return 0;
2123 	}
2124 
2125 	r -= eth_entries;
2126 	if (r == 0) {
2127 		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2128 
2129 		seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
2130 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
2131 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2132 			   qtimer_val(adapter, evtq));
2133 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2134 			   adapter->sge.counter_val[evtq->pktcnt_idx]);
2135 		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
2136 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
2137 	} else if (r == 1) {
2138 		const struct sge_rspq *intrq = &adapter->sge.intrq;
2139 
2140 		seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
2141 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
2142 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2143 			   qtimer_val(adapter, intrq));
2144 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2145 			   adapter->sge.counter_val[intrq->pktcnt_idx]);
2146 		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
2147 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
2148 	}
2149 
2150 	#undef R
2151 	#undef T
2152 	#undef S
2153 	#undef S3
2154 
2155 	return 0;
2156 }
2157 
2158 /*
2159  * Return the number of "entries" in our "file".  We group the multi-Queue
2160  * sections with QPL Queue Sets per "entry".  The sections of the output are:
2161  *
2162  *     Ethernet RX/TX Queue Sets
2163  *     Firmware Event Queue
2164  *     Forwarded Interrupt Queue (if in MSI mode)
2165  */
2166 static int sge_queue_entries(const struct adapter *adapter)
2167 {
2168 	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2169 		((adapter->flags & CXGB4VF_USING_MSI) != 0);
2170 }
2171 
2172 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
2173 {
2174 	int entries = sge_queue_entries(seq->private);
2175 
2176 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2177 }
2178 
2179 static void sge_queue_stop(struct seq_file *seq, void *v)
2180 {
2181 }
2182 
2183 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2184 {
2185 	int entries = sge_queue_entries(seq->private);
2186 
2187 	++*pos;
2188 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2189 }
2190 
2191 static const struct seq_operations sge_qinfo_seq_ops = {
2192 	.start = sge_queue_start,
2193 	.next  = sge_queue_next,
2194 	.stop  = sge_queue_stop,
2195 	.show  = sge_qinfo_show
2196 };
2197 
2198 static int sge_qinfo_open(struct inode *inode, struct file *file)
2199 {
2200 	int res = seq_open(file, &sge_qinfo_seq_ops);
2201 
2202 	if (!res) {
2203 		struct seq_file *seq = file->private_data;
2204 		seq->private = inode->i_private;
2205 	}
2206 	return res;
2207 }
2208 
2209 static const struct file_operations sge_qinfo_debugfs_fops = {
2210 	.owner   = THIS_MODULE,
2211 	.open    = sge_qinfo_open,
2212 	.read    = seq_read,
2213 	.llseek  = seq_lseek,
2214 	.release = seq_release,
2215 };
2216 
2217 /*
2218  * Show SGE Queue Set statistics.  We display QPL Queues Sets per line.
2219  */
2220 #define QPL	4
2221 
2222 static int sge_qstats_show(struct seq_file *seq, void *v)
2223 {
2224 	struct adapter *adapter = seq->private;
2225 	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2226 	int qs, r = (uintptr_t)v - 1;
2227 
2228 	if (r)
2229 		seq_putc(seq, '\n');
2230 
2231 	#define S3(fmt, s, v) \
2232 		do { \
2233 			seq_printf(seq, "%-16s", s); \
2234 			for (qs = 0; qs < n; ++qs) \
2235 				seq_printf(seq, " %8" fmt, v); \
2236 			seq_putc(seq, '\n'); \
2237 		} while (0)
2238 	#define S(s, v)		S3("s", s, v)
2239 
2240 	#define T3(fmt, s, v)	S3(fmt, s, txq[qs].v)
2241 	#define T(s, v)		T3("lu", s, v)
2242 
2243 	#define R3(fmt, s, v)	S3(fmt, s, rxq[qs].v)
2244 	#define R(s, v)		R3("lu", s, v)
2245 
2246 	if (r < eth_entries) {
2247 		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2248 		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2249 		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2250 
2251 		S("QType:", "Ethernet");
2252 		S("Interface:",
2253 		  (rxq[qs].rspq.netdev
2254 		   ? rxq[qs].rspq.netdev->name
2255 		   : "N/A"));
2256 		R3("u", "RspQNullInts:", rspq.unhandled_irqs);
2257 		R("RxPackets:", stats.pkts);
2258 		R("RxCSO:", stats.rx_cso);
2259 		R("VLANxtract:", stats.vlan_ex);
2260 		R("LROmerged:", stats.lro_merged);
2261 		R("LROpackets:", stats.lro_pkts);
2262 		R("RxDrops:", stats.rx_drops);
2263 		T("TSO:", tso);
2264 		T("TxCSO:", tx_cso);
2265 		T("VLANins:", vlan_ins);
2266 		T("TxQFull:", q.stops);
2267 		T("TxQRestarts:", q.restarts);
2268 		T("TxMapErr:", mapping_err);
2269 		R("FLAllocErr:", fl.alloc_failed);
2270 		R("FLLrgAlcErr:", fl.large_alloc_failed);
2271 		R("FLStarving:", fl.starving);
2272 		return 0;
2273 	}
2274 
2275 	r -= eth_entries;
2276 	if (r == 0) {
2277 		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2278 
2279 		seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
2280 		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2281 			   evtq->unhandled_irqs);
2282 		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
2283 		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
2284 	} else if (r == 1) {
2285 		const struct sge_rspq *intrq = &adapter->sge.intrq;
2286 
2287 		seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
2288 		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2289 			   intrq->unhandled_irqs);
2290 		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
2291 		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
2292 	}
2293 
2294 	#undef R
2295 	#undef T
2296 	#undef S
2297 	#undef R3
2298 	#undef T3
2299 	#undef S3
2300 
2301 	return 0;
2302 }
2303 
2304 /*
2305  * Return the number of "entries" in our "file".  We group the multi-Queue
2306  * sections with QPL Queue Sets per "entry".  The sections of the output are:
2307  *
2308  *     Ethernet RX/TX Queue Sets
2309  *     Firmware Event Queue
2310  *     Forwarded Interrupt Queue (if in MSI mode)
2311  */
2312 static int sge_qstats_entries(const struct adapter *adapter)
2313 {
2314 	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2315 		((adapter->flags & CXGB4VF_USING_MSI) != 0);
2316 }
2317 
2318 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
2319 {
2320 	int entries = sge_qstats_entries(seq->private);
2321 
2322 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2323 }
2324 
2325 static void sge_qstats_stop(struct seq_file *seq, void *v)
2326 {
2327 }
2328 
2329 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
2330 {
2331 	int entries = sge_qstats_entries(seq->private);
2332 
2333 	(*pos)++;
2334 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2335 }
2336 
2337 static const struct seq_operations sge_qstats_seq_ops = {
2338 	.start = sge_qstats_start,
2339 	.next  = sge_qstats_next,
2340 	.stop  = sge_qstats_stop,
2341 	.show  = sge_qstats_show
2342 };
2343 
2344 static int sge_qstats_open(struct inode *inode, struct file *file)
2345 {
2346 	int res = seq_open(file, &sge_qstats_seq_ops);
2347 
2348 	if (res == 0) {
2349 		struct seq_file *seq = file->private_data;
2350 		seq->private = inode->i_private;
2351 	}
2352 	return res;
2353 }
2354 
2355 static const struct file_operations sge_qstats_proc_fops = {
2356 	.owner   = THIS_MODULE,
2357 	.open    = sge_qstats_open,
2358 	.read    = seq_read,
2359 	.llseek  = seq_lseek,
2360 	.release = seq_release,
2361 };
2362 
2363 /*
2364  * Show PCI-E SR-IOV Virtual Function Resource Limits.
2365  */
2366 static int resources_show(struct seq_file *seq, void *v)
2367 {
2368 	struct adapter *adapter = seq->private;
2369 	struct vf_resources *vfres = &adapter->params.vfres;
2370 
2371 	#define S(desc, fmt, var) \
2372 		seq_printf(seq, "%-60s " fmt "\n", \
2373 			   desc " (" #var "):", vfres->var)
2374 
2375 	S("Virtual Interfaces", "%d", nvi);
2376 	S("Egress Queues", "%d", neq);
2377 	S("Ethernet Control", "%d", nethctrl);
2378 	S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
2379 	S("Ingress Queues", "%d", niq);
2380 	S("Traffic Class", "%d", tc);
2381 	S("Port Access Rights Mask", "%#x", pmask);
2382 	S("MAC Address Filters", "%d", nexactf);
2383 	S("Firmware Command Read Capabilities", "%#x", r_caps);
2384 	S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
2385 
2386 	#undef S
2387 
2388 	return 0;
2389 }
2390 DEFINE_SHOW_ATTRIBUTE(resources);
2391 
2392 /*
2393  * Show Virtual Interfaces.
2394  */
2395 static int interfaces_show(struct seq_file *seq, void *v)
2396 {
2397 	if (v == SEQ_START_TOKEN) {
2398 		seq_puts(seq, "Interface  Port   VIID\n");
2399 	} else {
2400 		struct adapter *adapter = seq->private;
2401 		int pidx = (uintptr_t)v - 2;
2402 		struct net_device *dev = adapter->port[pidx];
2403 		struct port_info *pi = netdev_priv(dev);
2404 
2405 		seq_printf(seq, "%9s  %4d  %#5x\n",
2406 			   dev->name, pi->port_id, pi->viid);
2407 	}
2408 	return 0;
2409 }
2410 
2411 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
2412 {
2413 	return pos <= adapter->params.nports
2414 		? (void *)(uintptr_t)(pos + 1)
2415 		: NULL;
2416 }
2417 
2418 static void *interfaces_start(struct seq_file *seq, loff_t *pos)
2419 {
2420 	return *pos
2421 		? interfaces_get_idx(seq->private, *pos)
2422 		: SEQ_START_TOKEN;
2423 }
2424 
2425 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
2426 {
2427 	(*pos)++;
2428 	return interfaces_get_idx(seq->private, *pos);
2429 }
2430 
2431 static void interfaces_stop(struct seq_file *seq, void *v)
2432 {
2433 }
2434 
2435 static const struct seq_operations interfaces_seq_ops = {
2436 	.start = interfaces_start,
2437 	.next  = interfaces_next,
2438 	.stop  = interfaces_stop,
2439 	.show  = interfaces_show
2440 };
2441 
2442 static int interfaces_open(struct inode *inode, struct file *file)
2443 {
2444 	int res = seq_open(file, &interfaces_seq_ops);
2445 
2446 	if (res == 0) {
2447 		struct seq_file *seq = file->private_data;
2448 		seq->private = inode->i_private;
2449 	}
2450 	return res;
2451 }
2452 
2453 static const struct file_operations interfaces_proc_fops = {
2454 	.owner   = THIS_MODULE,
2455 	.open    = interfaces_open,
2456 	.read    = seq_read,
2457 	.llseek  = seq_lseek,
2458 	.release = seq_release,
2459 };
2460 
2461 /*
2462  * /sys/kernel/debugfs/cxgb4vf/ files list.
2463  */
2464 struct cxgb4vf_debugfs_entry {
2465 	const char *name;		/* name of debugfs node */
2466 	umode_t mode;			/* file system mode */
2467 	const struct file_operations *fops;
2468 };
2469 
2470 static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2471 	{ "mboxlog",    0444, &mboxlog_fops },
2472 	{ "sge_qinfo",  0444, &sge_qinfo_debugfs_fops },
2473 	{ "sge_qstats", 0444, &sge_qstats_proc_fops },
2474 	{ "resources",  0444, &resources_fops },
2475 	{ "interfaces", 0444, &interfaces_proc_fops },
2476 };
2477 
2478 /*
2479  * Module and device initialization and cleanup code.
2480  * ==================================================
2481  */
2482 
2483 /*
2484  * Set up out /sys/kernel/debug/cxgb4vf sub-nodes.  We assume that the
2485  * directory (debugfs_root) has already been set up.
2486  */
2487 static int setup_debugfs(struct adapter *adapter)
2488 {
2489 	int i;
2490 
2491 	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2492 
2493 	/*
2494 	 * Debugfs support is best effort.
2495 	 */
2496 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2497 		(void)debugfs_create_file(debugfs_files[i].name,
2498 				  debugfs_files[i].mode,
2499 				  adapter->debugfs_root,
2500 				  (void *)adapter,
2501 				  debugfs_files[i].fops);
2502 
2503 	return 0;
2504 }
2505 
2506 /*
2507  * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above.  We leave
2508  * it to our caller to tear down the directory (debugfs_root).
2509  */
2510 static void cleanup_debugfs(struct adapter *adapter)
2511 {
2512 	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2513 
2514 	/*
2515 	 * Unlike our sister routine cleanup_proc(), we don't need to remove
2516 	 * individual entries because a call will be made to
2517 	 * debugfs_remove_recursive().  We just need to clean up any ancillary
2518 	 * persistent state.
2519 	 */
2520 	/* nothing to do */
2521 }
2522 
2523 /* Figure out how many Ports and Queue Sets we can support.  This depends on
2524  * knowing our Virtual Function Resources and may be called a second time if
2525  * we fall back from MSI-X to MSI Interrupt Mode.
2526  */
2527 static void size_nports_qsets(struct adapter *adapter)
2528 {
2529 	struct vf_resources *vfres = &adapter->params.vfres;
2530 	unsigned int ethqsets, pmask_nports;
2531 
2532 	/* The number of "ports" which we support is equal to the number of
2533 	 * Virtual Interfaces with which we've been provisioned.
2534 	 */
2535 	adapter->params.nports = vfres->nvi;
2536 	if (adapter->params.nports > MAX_NPORTS) {
2537 		dev_warn(adapter->pdev_dev, "only using %d of %d maximum"
2538 			 " allowed virtual interfaces\n", MAX_NPORTS,
2539 			 adapter->params.nports);
2540 		adapter->params.nports = MAX_NPORTS;
2541 	}
2542 
2543 	/* We may have been provisioned with more VIs than the number of
2544 	 * ports we're allowed to access (our Port Access Rights Mask).
2545 	 * This is obviously a configuration conflict but we don't want to
2546 	 * crash the kernel or anything silly just because of that.
2547 	 */
2548 	pmask_nports = hweight32(adapter->params.vfres.pmask);
2549 	if (pmask_nports < adapter->params.nports) {
2550 		dev_warn(adapter->pdev_dev, "only using %d of %d provisioned"
2551 			 " virtual interfaces; limited by Port Access Rights"
2552 			 " mask %#x\n", pmask_nports, adapter->params.nports,
2553 			 adapter->params.vfres.pmask);
2554 		adapter->params.nports = pmask_nports;
2555 	}
2556 
2557 	/* We need to reserve an Ingress Queue for the Asynchronous Firmware
2558 	 * Event Queue.  And if we're using MSI Interrupts, we'll also need to
2559 	 * reserve an Ingress Queue for a Forwarded Interrupts.
2560 	 *
2561 	 * The rest of the FL/Intr-capable ingress queues will be matched up
2562 	 * one-for-one with Ethernet/Control egress queues in order to form
2563 	 * "Queue Sets" which will be aportioned between the "ports".  For
2564 	 * each Queue Set, we'll need the ability to allocate two Egress
2565 	 * Contexts -- one for the Ingress Queue Free List and one for the TX
2566 	 * Ethernet Queue.
2567 	 *
2568 	 * Note that even if we're currently configured to use MSI-X
2569 	 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded
2570 	 * to MSI Interrupts if we can't get enough MSI-X Interrupts.  If that
2571 	 * happens we'll need to adjust things later.
2572 	 */
2573 	ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI);
2574 	if (vfres->nethctrl != ethqsets)
2575 		ethqsets = min(vfres->nethctrl, ethqsets);
2576 	if (vfres->neq < ethqsets*2)
2577 		ethqsets = vfres->neq/2;
2578 	if (ethqsets > MAX_ETH_QSETS)
2579 		ethqsets = MAX_ETH_QSETS;
2580 	adapter->sge.max_ethqsets = ethqsets;
2581 
2582 	if (adapter->sge.max_ethqsets < adapter->params.nports) {
2583 		dev_warn(adapter->pdev_dev, "only using %d of %d available"
2584 			 " virtual interfaces (too few Queue Sets)\n",
2585 			 adapter->sge.max_ethqsets, adapter->params.nports);
2586 		adapter->params.nports = adapter->sge.max_ethqsets;
2587 	}
2588 }
2589 
2590 /*
2591  * Perform early "adapter" initialization.  This is where we discover what
2592  * adapter parameters we're going to be using and initialize basic adapter
2593  * hardware support.
2594  */
2595 static int adap_init0(struct adapter *adapter)
2596 {
2597 	struct sge_params *sge_params = &adapter->params.sge;
2598 	struct sge *s = &adapter->sge;
2599 	int err;
2600 	u32 param, val = 0;
2601 
2602 	/*
2603 	 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2604 	 * 2.6.31 and later we can't call pci_reset_function() in order to
2605 	 * issue an FLR because of a self- deadlock on the device semaphore.
2606 	 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2607 	 * cases where they're needed -- for instance, some versions of KVM
2608 	 * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
2609 	 * use the firmware based reset in order to reset any per function
2610 	 * state.
2611 	 */
2612 	err = t4vf_fw_reset(adapter);
2613 	if (err < 0) {
2614 		dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2615 		return err;
2616 	}
2617 
2618 	/*
2619 	 * Grab basic operational parameters.  These will predominantly have
2620 	 * been set up by the Physical Function Driver or will be hard coded
2621 	 * into the adapter.  We just have to live with them ...  Note that
2622 	 * we _must_ get our VPD parameters before our SGE parameters because
2623 	 * we need to know the adapter's core clock from the VPD in order to
2624 	 * properly decode the SGE Timer Values.
2625 	 */
2626 	err = t4vf_get_dev_params(adapter);
2627 	if (err) {
2628 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2629 			" device parameters: err=%d\n", err);
2630 		return err;
2631 	}
2632 	err = t4vf_get_vpd_params(adapter);
2633 	if (err) {
2634 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2635 			" VPD parameters: err=%d\n", err);
2636 		return err;
2637 	}
2638 	err = t4vf_get_sge_params(adapter);
2639 	if (err) {
2640 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2641 			" SGE parameters: err=%d\n", err);
2642 		return err;
2643 	}
2644 	err = t4vf_get_rss_glb_config(adapter);
2645 	if (err) {
2646 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2647 			" RSS parameters: err=%d\n", err);
2648 		return err;
2649 	}
2650 	if (adapter->params.rss.mode !=
2651 	    FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2652 		dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2653 			" mode %d\n", adapter->params.rss.mode);
2654 		return -EINVAL;
2655 	}
2656 	err = t4vf_sge_init(adapter);
2657 	if (err) {
2658 		dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2659 			" err=%d\n", err);
2660 		return err;
2661 	}
2662 
2663 	/* If we're running on newer firmware, let it know that we're
2664 	 * prepared to deal with encapsulated CPL messages.  Older
2665 	 * firmware won't understand this and we'll just get
2666 	 * unencapsulated messages ...
2667 	 */
2668 	param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2669 		FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2670 	val = 1;
2671 	(void) t4vf_set_params(adapter, 1, &param, &val);
2672 
2673 	/*
2674 	 * Retrieve our RX interrupt holdoff timer values and counter
2675 	 * threshold values from the SGE parameters.
2676 	 */
2677 	s->timer_val[0] = core_ticks_to_us(adapter,
2678 		TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1));
2679 	s->timer_val[1] = core_ticks_to_us(adapter,
2680 		TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1));
2681 	s->timer_val[2] = core_ticks_to_us(adapter,
2682 		TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3));
2683 	s->timer_val[3] = core_ticks_to_us(adapter,
2684 		TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3));
2685 	s->timer_val[4] = core_ticks_to_us(adapter,
2686 		TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5));
2687 	s->timer_val[5] = core_ticks_to_us(adapter,
2688 		TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5));
2689 
2690 	s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold);
2691 	s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold);
2692 	s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold);
2693 	s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold);
2694 
2695 	/*
2696 	 * Grab our Virtual Interface resource allocation, extract the
2697 	 * features that we're interested in and do a bit of sanity testing on
2698 	 * what we discover.
2699 	 */
2700 	err = t4vf_get_vfres(adapter);
2701 	if (err) {
2702 		dev_err(adapter->pdev_dev, "unable to get virtual interface"
2703 			" resources: err=%d\n", err);
2704 		return err;
2705 	}
2706 
2707 	/* Check for various parameter sanity issues */
2708 	if (adapter->params.vfres.pmask == 0) {
2709 		dev_err(adapter->pdev_dev, "no port access configured\n"
2710 			"usable!\n");
2711 		return -EINVAL;
2712 	}
2713 	if (adapter->params.vfres.nvi == 0) {
2714 		dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2715 			"usable!\n");
2716 		return -EINVAL;
2717 	}
2718 
2719 	/* Initialize nports and max_ethqsets now that we have our Virtual
2720 	 * Function Resources.
2721 	 */
2722 	size_nports_qsets(adapter);
2723 
2724 	adapter->flags |= CXGB4VF_FW_OK;
2725 	return 0;
2726 }
2727 
2728 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2729 			     u8 pkt_cnt_idx, unsigned int size,
2730 			     unsigned int iqe_size)
2731 {
2732 	rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
2733 			     (pkt_cnt_idx < SGE_NCOUNTERS ?
2734 			      QINTR_CNT_EN_F : 0));
2735 	rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2736 			    ? pkt_cnt_idx
2737 			    : 0);
2738 	rspq->iqe_len = iqe_size;
2739 	rspq->size = size;
2740 }
2741 
2742 /*
2743  * Perform default configuration of DMA queues depending on the number and
2744  * type of ports we found and the number of available CPUs.  Most settings can
2745  * be modified by the admin via ethtool and cxgbtool prior to the adapter
2746  * being brought up for the first time.
2747  */
2748 static void cfg_queues(struct adapter *adapter)
2749 {
2750 	struct sge *s = &adapter->sge;
2751 	int q10g, n10g, qidx, pidx, qs;
2752 	size_t iqe_size;
2753 
2754 	/*
2755 	 * We should not be called till we know how many Queue Sets we can
2756 	 * support.  In particular, this means that we need to know what kind
2757 	 * of interrupts we'll be using ...
2758 	 */
2759 	BUG_ON((adapter->flags &
2760 	       (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
2761 
2762 	/*
2763 	 * Count the number of 10GbE Virtual Interfaces that we have.
2764 	 */
2765 	n10g = 0;
2766 	for_each_port(adapter, pidx)
2767 		n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2768 
2769 	/*
2770 	 * We default to 1 queue per non-10G port and up to # of cores queues
2771 	 * per 10G port.
2772 	 */
2773 	if (n10g == 0)
2774 		q10g = 0;
2775 	else {
2776 		int n1g = (adapter->params.nports - n10g);
2777 		q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2778 		if (q10g > num_online_cpus())
2779 			q10g = num_online_cpus();
2780 	}
2781 
2782 	/*
2783 	 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2784 	 * The layout will be established in setup_sge_queues() when the
2785 	 * adapter is brough up for the first time.
2786 	 */
2787 	qidx = 0;
2788 	for_each_port(adapter, pidx) {
2789 		struct port_info *pi = adap2pinfo(adapter, pidx);
2790 
2791 		pi->first_qset = qidx;
2792 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
2793 		qidx += pi->nqsets;
2794 	}
2795 	s->ethqsets = qidx;
2796 
2797 	/*
2798 	 * The Ingress Queue Entry Size for our various Response Queues needs
2799 	 * to be big enough to accommodate the largest message we can receive
2800 	 * from the chip/firmware; which is 64 bytes ...
2801 	 */
2802 	iqe_size = 64;
2803 
2804 	/*
2805 	 * Set up default Queue Set parameters ...  Start off with the
2806 	 * shortest interrupt holdoff timer.
2807 	 */
2808 	for (qs = 0; qs < s->max_ethqsets; qs++) {
2809 		struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2810 		struct sge_eth_txq *txq = &s->ethtxq[qs];
2811 
2812 		init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2813 		rxq->fl.size = 72;
2814 		txq->q.size = 1024;
2815 	}
2816 
2817 	/*
2818 	 * The firmware event queue is used for link state changes and
2819 	 * notifications of TX DMA completions.
2820 	 */
2821 	init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2822 
2823 	/*
2824 	 * The forwarded interrupt queue is used when we're in MSI interrupt
2825 	 * mode.  In this mode all interrupts associated with RX queues will
2826 	 * be forwarded to a single queue which we'll associate with our MSI
2827 	 * interrupt vector.  The messages dropped in the forwarded interrupt
2828 	 * queue will indicate which ingress queue needs servicing ...  This
2829 	 * queue needs to be large enough to accommodate all of the ingress
2830 	 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2831 	 * from equalling the CIDX if every ingress queue has an outstanding
2832 	 * interrupt).  The queue doesn't need to be any larger because no
2833 	 * ingress queue will ever have more than one outstanding interrupt at
2834 	 * any time ...
2835 	 */
2836 	init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2837 		  iqe_size);
2838 }
2839 
2840 /*
2841  * Reduce the number of Ethernet queues across all ports to at most n.
2842  * n provides at least one queue per port.
2843  */
2844 static void reduce_ethqs(struct adapter *adapter, int n)
2845 {
2846 	int i;
2847 	struct port_info *pi;
2848 
2849 	/*
2850 	 * While we have too many active Ether Queue Sets, interate across the
2851 	 * "ports" and reduce their individual Queue Set allocations.
2852 	 */
2853 	BUG_ON(n < adapter->params.nports);
2854 	while (n < adapter->sge.ethqsets)
2855 		for_each_port(adapter, i) {
2856 			pi = adap2pinfo(adapter, i);
2857 			if (pi->nqsets > 1) {
2858 				pi->nqsets--;
2859 				adapter->sge.ethqsets--;
2860 				if (adapter->sge.ethqsets <= n)
2861 					break;
2862 			}
2863 		}
2864 
2865 	/*
2866 	 * Reassign the starting Queue Sets for each of the "ports" ...
2867 	 */
2868 	n = 0;
2869 	for_each_port(adapter, i) {
2870 		pi = adap2pinfo(adapter, i);
2871 		pi->first_qset = n;
2872 		n += pi->nqsets;
2873 	}
2874 }
2875 
2876 /*
2877  * We need to grab enough MSI-X vectors to cover our interrupt needs.  Ideally
2878  * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2879  * need.  Minimally we need one for every Virtual Interface plus those needed
2880  * for our "extras".  Note that this process may lower the maximum number of
2881  * allowed Queue Sets ...
2882  */
2883 static int enable_msix(struct adapter *adapter)
2884 {
2885 	int i, want, need, nqsets;
2886 	struct msix_entry entries[MSIX_ENTRIES];
2887 	struct sge *s = &adapter->sge;
2888 
2889 	for (i = 0; i < MSIX_ENTRIES; ++i)
2890 		entries[i].entry = i;
2891 
2892 	/*
2893 	 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2894 	 * plus those needed for our "extras" (for example, the firmware
2895 	 * message queue).  We _need_ at least one "Queue Set" per Virtual
2896 	 * Interface plus those needed for our "extras".  So now we get to see
2897 	 * if the song is right ...
2898 	 */
2899 	want = s->max_ethqsets + MSIX_EXTRAS;
2900 	need = adapter->params.nports + MSIX_EXTRAS;
2901 
2902 	want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2903 	if (want < 0)
2904 		return want;
2905 
2906 	nqsets = want - MSIX_EXTRAS;
2907 	if (nqsets < s->max_ethqsets) {
2908 		dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2909 			 " for %d Queue Sets\n", nqsets);
2910 		s->max_ethqsets = nqsets;
2911 		if (nqsets < s->ethqsets)
2912 			reduce_ethqs(adapter, nqsets);
2913 	}
2914 	for (i = 0; i < want; ++i)
2915 		adapter->msix_info[i].vec = entries[i].vector;
2916 
2917 	return 0;
2918 }
2919 
2920 static const struct net_device_ops cxgb4vf_netdev_ops	= {
2921 	.ndo_open		= cxgb4vf_open,
2922 	.ndo_stop		= cxgb4vf_stop,
2923 	.ndo_start_xmit		= t4vf_eth_xmit,
2924 	.ndo_get_stats		= cxgb4vf_get_stats,
2925 	.ndo_set_rx_mode	= cxgb4vf_set_rxmode,
2926 	.ndo_set_mac_address	= cxgb4vf_set_mac_addr,
2927 	.ndo_validate_addr	= eth_validate_addr,
2928 	.ndo_do_ioctl		= cxgb4vf_do_ioctl,
2929 	.ndo_change_mtu		= cxgb4vf_change_mtu,
2930 	.ndo_fix_features	= cxgb4vf_fix_features,
2931 	.ndo_set_features	= cxgb4vf_set_features,
2932 #ifdef CONFIG_NET_POLL_CONTROLLER
2933 	.ndo_poll_controller	= cxgb4vf_poll_controller,
2934 #endif
2935 };
2936 
2937 /*
2938  * "Probe" a device: initialize a device and construct all kernel and driver
2939  * state needed to manage the device.  This routine is called "init_one" in
2940  * the PF Driver ...
2941  */
2942 static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2943 			     const struct pci_device_id *ent)
2944 {
2945 	int pci_using_dac;
2946 	int err, pidx;
2947 	unsigned int pmask;
2948 	struct adapter *adapter;
2949 	struct port_info *pi;
2950 	struct net_device *netdev;
2951 	unsigned int pf;
2952 
2953 	/*
2954 	 * Print our driver banner the first time we're called to initialize a
2955 	 * device.
2956 	 */
2957 	pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
2958 
2959 	/*
2960 	 * Initialize generic PCI device state.
2961 	 */
2962 	err = pci_enable_device(pdev);
2963 	if (err) {
2964 		dev_err(&pdev->dev, "cannot enable PCI device\n");
2965 		return err;
2966 	}
2967 
2968 	/*
2969 	 * Reserve PCI resources for the device.  If we can't get them some
2970 	 * other driver may have already claimed the device ...
2971 	 */
2972 	err = pci_request_regions(pdev, KBUILD_MODNAME);
2973 	if (err) {
2974 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2975 		goto err_disable_device;
2976 	}
2977 
2978 	/*
2979 	 * Set up our DMA mask: try for 64-bit address masking first and
2980 	 * fall back to 32-bit if we can't get 64 bits ...
2981 	 */
2982 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2983 	if (err == 0) {
2984 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2985 		if (err) {
2986 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2987 				" coherent allocations\n");
2988 			goto err_release_regions;
2989 		}
2990 		pci_using_dac = 1;
2991 	} else {
2992 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2993 		if (err != 0) {
2994 			dev_err(&pdev->dev, "no usable DMA configuration\n");
2995 			goto err_release_regions;
2996 		}
2997 		pci_using_dac = 0;
2998 	}
2999 
3000 	/*
3001 	 * Enable bus mastering for the device ...
3002 	 */
3003 	pci_set_master(pdev);
3004 
3005 	/*
3006 	 * Allocate our adapter data structure and attach it to the device.
3007 	 */
3008 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3009 	if (!adapter) {
3010 		err = -ENOMEM;
3011 		goto err_release_regions;
3012 	}
3013 	pci_set_drvdata(pdev, adapter);
3014 	adapter->pdev = pdev;
3015 	adapter->pdev_dev = &pdev->dev;
3016 
3017 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
3018 				    (sizeof(struct mbox_cmd) *
3019 				     T4VF_OS_LOG_MBOX_CMDS),
3020 				    GFP_KERNEL);
3021 	if (!adapter->mbox_log) {
3022 		err = -ENOMEM;
3023 		goto err_free_adapter;
3024 	}
3025 	adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS;
3026 
3027 	/*
3028 	 * Initialize SMP data synchronization resources.
3029 	 */
3030 	spin_lock_init(&adapter->stats_lock);
3031 	spin_lock_init(&adapter->mbox_lock);
3032 	INIT_LIST_HEAD(&adapter->mlist.list);
3033 
3034 	/*
3035 	 * Map our I/O registers in BAR0.
3036 	 */
3037 	adapter->regs = pci_ioremap_bar(pdev, 0);
3038 	if (!adapter->regs) {
3039 		dev_err(&pdev->dev, "cannot map device registers\n");
3040 		err = -ENOMEM;
3041 		goto err_free_adapter;
3042 	}
3043 
3044 	/* Wait for the device to become ready before proceeding ...
3045 	 */
3046 	err = t4vf_prep_adapter(adapter);
3047 	if (err) {
3048 		dev_err(adapter->pdev_dev, "device didn't become ready:"
3049 			" err=%d\n", err);
3050 		goto err_unmap_bar0;
3051 	}
3052 
3053 	/* For T5 and later we want to use the new BAR-based User Doorbells,
3054 	 * so we need to map BAR2 here ...
3055 	 */
3056 	if (!is_t4(adapter->params.chip)) {
3057 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
3058 					   pci_resource_len(pdev, 2));
3059 		if (!adapter->bar2) {
3060 			dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n");
3061 			err = -ENOMEM;
3062 			goto err_unmap_bar0;
3063 		}
3064 	}
3065 	/*
3066 	 * Initialize adapter level features.
3067 	 */
3068 	adapter->name = pci_name(pdev);
3069 	adapter->msg_enable = DFLT_MSG_ENABLE;
3070 
3071 	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
3072 	 * Ingress Packet Data to Free List Buffers in order to allow for
3073 	 * chipset performance optimizations between the Root Complex and
3074 	 * Memory Controllers.  (Messages to the associated Ingress Queue
3075 	 * notifying new Packet Placement in the Free Lists Buffers will be
3076 	 * send without the Relaxed Ordering Attribute thus guaranteeing that
3077 	 * all preceding PCIe Transaction Layer Packets will be processed
3078 	 * first.)  But some Root Complexes have various issues with Upstream
3079 	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
3080 	 * The PCIe devices which under the Root Complexes will be cleared the
3081 	 * Relaxed Ordering bit in the configuration space, So we check our
3082 	 * PCIe configuration space to see if it's flagged with advice against
3083 	 * using Relaxed Ordering.
3084 	 */
3085 	if (!pcie_relaxed_ordering_enabled(pdev))
3086 		adapter->flags |= CXGB4VF_ROOT_NO_RELAXED_ORDERING;
3087 
3088 	err = adap_init0(adapter);
3089 	if (err)
3090 		dev_err(&pdev->dev,
3091 			"Adapter initialization failed, error %d. Continuing in debug mode\n",
3092 			err);
3093 
3094 	/* Initialize hash mac addr list */
3095 	INIT_LIST_HEAD(&adapter->mac_hlist);
3096 
3097 	/*
3098 	 * Allocate our "adapter ports" and stitch everything together.
3099 	 */
3100 	pmask = adapter->params.vfres.pmask;
3101 	pf = t4vf_get_pf_from_vf(adapter);
3102 	for_each_port(adapter, pidx) {
3103 		int port_id, viid;
3104 		u8 mac[ETH_ALEN];
3105 		unsigned int naddr = 1;
3106 
3107 		/*
3108 		 * We simplistically allocate our virtual interfaces
3109 		 * sequentially across the port numbers to which we have
3110 		 * access rights.  This should be configurable in some manner
3111 		 * ...
3112 		 */
3113 		if (pmask == 0)
3114 			break;
3115 		port_id = ffs(pmask) - 1;
3116 		pmask &= ~(1 << port_id);
3117 
3118 		/*
3119 		 * Allocate our network device and stitch things together.
3120 		 */
3121 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
3122 					   MAX_PORT_QSETS);
3123 		if (netdev == NULL) {
3124 			err = -ENOMEM;
3125 			goto err_free_dev;
3126 		}
3127 		adapter->port[pidx] = netdev;
3128 		SET_NETDEV_DEV(netdev, &pdev->dev);
3129 		pi = netdev_priv(netdev);
3130 		pi->adapter = adapter;
3131 		pi->pidx = pidx;
3132 		pi->port_id = port_id;
3133 
3134 		/*
3135 		 * Initialize the starting state of our "port" and register
3136 		 * it.
3137 		 */
3138 		pi->xact_addr_filt = -1;
3139 		netdev->irq = pdev->irq;
3140 
3141 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS | NETIF_F_GRO |
3142 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
3143 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
3144 		netdev->features = netdev->hw_features;
3145 		if (pci_using_dac)
3146 			netdev->features |= NETIF_F_HIGHDMA;
3147 		netdev->vlan_features = netdev->features & VLAN_FEAT;
3148 
3149 		netdev->priv_flags |= IFF_UNICAST_FLT;
3150 		netdev->min_mtu = 81;
3151 		netdev->max_mtu = ETH_MAX_MTU;
3152 
3153 		netdev->netdev_ops = &cxgb4vf_netdev_ops;
3154 		netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
3155 		netdev->dev_port = pi->port_id;
3156 
3157 		/*
3158 		 * If we haven't been able to contact the firmware, there's
3159 		 * nothing else we can do for this "port" ...
3160 		 */
3161 		if (!(adapter->flags & CXGB4VF_FW_OK))
3162 			continue;
3163 
3164 		viid = t4vf_alloc_vi(adapter, port_id);
3165 		if (viid < 0) {
3166 			dev_err(&pdev->dev,
3167 				"cannot allocate VI for port %d: err=%d\n",
3168 				port_id, viid);
3169 			err = viid;
3170 			goto err_free_dev;
3171 		}
3172 		pi->viid = viid;
3173 
3174 		/*
3175 		 * Initialize the hardware/software state for the port.
3176 		 */
3177 		err = t4vf_port_init(adapter, pidx);
3178 		if (err) {
3179 			dev_err(&pdev->dev, "cannot initialize port %d\n",
3180 				pidx);
3181 			goto err_free_dev;
3182 		}
3183 
3184 		err = t4vf_get_vf_mac_acl(adapter, pf, &naddr, mac);
3185 		if (err) {
3186 			dev_err(&pdev->dev,
3187 				"unable to determine MAC ACL address, "
3188 				"continuing anyway.. (status %d)\n", err);
3189 		} else if (naddr && adapter->params.vfres.nvi == 1) {
3190 			struct sockaddr addr;
3191 
3192 			ether_addr_copy(addr.sa_data, mac);
3193 			err = cxgb4vf_set_mac_addr(netdev, &addr);
3194 			if (err) {
3195 				dev_err(&pdev->dev,
3196 					"unable to set MAC address %pM\n",
3197 					mac);
3198 				goto err_free_dev;
3199 			}
3200 			dev_info(&pdev->dev,
3201 				 "Using assigned MAC ACL: %pM\n", mac);
3202 		}
3203 	}
3204 
3205 	/* See what interrupts we'll be using.  If we've been configured to
3206 	 * use MSI-X interrupts, try to enable them but fall back to using
3207 	 * MSI interrupts if we can't enable MSI-X interrupts.  If we can't
3208 	 * get MSI interrupts we bail with the error.
3209 	 */
3210 	if (msi == MSI_MSIX && enable_msix(adapter) == 0)
3211 		adapter->flags |= CXGB4VF_USING_MSIX;
3212 	else {
3213 		if (msi == MSI_MSIX) {
3214 			dev_info(adapter->pdev_dev,
3215 				 "Unable to use MSI-X Interrupts; falling "
3216 				 "back to MSI Interrupts\n");
3217 
3218 			/* We're going to need a Forwarded Interrupt Queue so
3219 			 * that may cut into how many Queue Sets we can
3220 			 * support.
3221 			 */
3222 			msi = MSI_MSI;
3223 			size_nports_qsets(adapter);
3224 		}
3225 		err = pci_enable_msi(pdev);
3226 		if (err) {
3227 			dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;"
3228 				" err=%d\n", err);
3229 			goto err_free_dev;
3230 		}
3231 		adapter->flags |= CXGB4VF_USING_MSI;
3232 	}
3233 
3234 	/* Now that we know how many "ports" we have and what interrupt
3235 	 * mechanism we're going to use, we can configure our queue resources.
3236 	 */
3237 	cfg_queues(adapter);
3238 
3239 	/*
3240 	 * The "card" is now ready to go.  If any errors occur during device
3241 	 * registration we do not fail the whole "card" but rather proceed
3242 	 * only with the ports we manage to register successfully.  However we
3243 	 * must register at least one net device.
3244 	 */
3245 	for_each_port(adapter, pidx) {
3246 		struct port_info *pi = netdev_priv(adapter->port[pidx]);
3247 		netdev = adapter->port[pidx];
3248 		if (netdev == NULL)
3249 			continue;
3250 
3251 		netif_set_real_num_tx_queues(netdev, pi->nqsets);
3252 		netif_set_real_num_rx_queues(netdev, pi->nqsets);
3253 
3254 		err = register_netdev(netdev);
3255 		if (err) {
3256 			dev_warn(&pdev->dev, "cannot register net device %s,"
3257 				 " skipping\n", netdev->name);
3258 			continue;
3259 		}
3260 
3261 		netif_carrier_off(netdev);
3262 		set_bit(pidx, &adapter->registered_device_map);
3263 	}
3264 	if (adapter->registered_device_map == 0) {
3265 		dev_err(&pdev->dev, "could not register any net devices\n");
3266 		goto err_disable_interrupts;
3267 	}
3268 
3269 	/*
3270 	 * Set up our debugfs entries.
3271 	 */
3272 	if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
3273 		adapter->debugfs_root =
3274 			debugfs_create_dir(pci_name(pdev),
3275 					   cxgb4vf_debugfs_root);
3276 		if (IS_ERR_OR_NULL(adapter->debugfs_root))
3277 			dev_warn(&pdev->dev, "could not create debugfs"
3278 				 " directory");
3279 		else
3280 			setup_debugfs(adapter);
3281 	}
3282 
3283 	/*
3284 	 * Print a short notice on the existence and configuration of the new
3285 	 * VF network device ...
3286 	 */
3287 	for_each_port(adapter, pidx) {
3288 		dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
3289 			 adapter->port[pidx]->name,
3290 			 (adapter->flags & CXGB4VF_USING_MSIX) ? "MSI-X" :
3291 			 (adapter->flags & CXGB4VF_USING_MSI)  ? "MSI" : "");
3292 	}
3293 
3294 	/*
3295 	 * Return success!
3296 	 */
3297 	return 0;
3298 
3299 	/*
3300 	 * Error recovery and exit code.  Unwind state that's been created
3301 	 * so far and return the error.
3302 	 */
3303 err_disable_interrupts:
3304 	if (adapter->flags & CXGB4VF_USING_MSIX) {
3305 		pci_disable_msix(adapter->pdev);
3306 		adapter->flags &= ~CXGB4VF_USING_MSIX;
3307 	} else if (adapter->flags & CXGB4VF_USING_MSI) {
3308 		pci_disable_msi(adapter->pdev);
3309 		adapter->flags &= ~CXGB4VF_USING_MSI;
3310 	}
3311 
3312 err_free_dev:
3313 	for_each_port(adapter, pidx) {
3314 		netdev = adapter->port[pidx];
3315 		if (netdev == NULL)
3316 			continue;
3317 		pi = netdev_priv(netdev);
3318 		if (pi->viid)
3319 			t4vf_free_vi(adapter, pi->viid);
3320 		if (test_bit(pidx, &adapter->registered_device_map))
3321 			unregister_netdev(netdev);
3322 		free_netdev(netdev);
3323 	}
3324 
3325 	if (!is_t4(adapter->params.chip))
3326 		iounmap(adapter->bar2);
3327 
3328 err_unmap_bar0:
3329 	iounmap(adapter->regs);
3330 
3331 err_free_adapter:
3332 	kfree(adapter->mbox_log);
3333 	kfree(adapter);
3334 
3335 err_release_regions:
3336 	pci_release_regions(pdev);
3337 	pci_clear_master(pdev);
3338 
3339 err_disable_device:
3340 	pci_disable_device(pdev);
3341 
3342 	return err;
3343 }
3344 
3345 /*
3346  * "Remove" a device: tear down all kernel and driver state created in the
3347  * "probe" routine and quiesce the device (disable interrupts, etc.).  (Note
3348  * that this is called "remove_one" in the PF Driver.)
3349  */
3350 static void cxgb4vf_pci_remove(struct pci_dev *pdev)
3351 {
3352 	struct adapter *adapter = pci_get_drvdata(pdev);
3353 	struct hash_mac_addr *entry, *tmp;
3354 
3355 	/*
3356 	 * Tear down driver state associated with device.
3357 	 */
3358 	if (adapter) {
3359 		int pidx;
3360 
3361 		/*
3362 		 * Stop all of our activity.  Unregister network port,
3363 		 * disable interrupts, etc.
3364 		 */
3365 		for_each_port(adapter, pidx)
3366 			if (test_bit(pidx, &adapter->registered_device_map))
3367 				unregister_netdev(adapter->port[pidx]);
3368 		t4vf_sge_stop(adapter);
3369 		if (adapter->flags & CXGB4VF_USING_MSIX) {
3370 			pci_disable_msix(adapter->pdev);
3371 			adapter->flags &= ~CXGB4VF_USING_MSIX;
3372 		} else if (adapter->flags & CXGB4VF_USING_MSI) {
3373 			pci_disable_msi(adapter->pdev);
3374 			adapter->flags &= ~CXGB4VF_USING_MSI;
3375 		}
3376 
3377 		/*
3378 		 * Tear down our debugfs entries.
3379 		 */
3380 		if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
3381 			cleanup_debugfs(adapter);
3382 			debugfs_remove_recursive(adapter->debugfs_root);
3383 		}
3384 
3385 		/*
3386 		 * Free all of the various resources which we've acquired ...
3387 		 */
3388 		t4vf_free_sge_resources(adapter);
3389 		for_each_port(adapter, pidx) {
3390 			struct net_device *netdev = adapter->port[pidx];
3391 			struct port_info *pi;
3392 
3393 			if (netdev == NULL)
3394 				continue;
3395 
3396 			pi = netdev_priv(netdev);
3397 			if (pi->viid)
3398 				t4vf_free_vi(adapter, pi->viid);
3399 			free_netdev(netdev);
3400 		}
3401 		iounmap(adapter->regs);
3402 		if (!is_t4(adapter->params.chip))
3403 			iounmap(adapter->bar2);
3404 		kfree(adapter->mbox_log);
3405 		list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
3406 					 list) {
3407 			list_del(&entry->list);
3408 			kfree(entry);
3409 		}
3410 		kfree(adapter);
3411 	}
3412 
3413 	/*
3414 	 * Disable the device and release its PCI resources.
3415 	 */
3416 	pci_disable_device(pdev);
3417 	pci_clear_master(pdev);
3418 	pci_release_regions(pdev);
3419 }
3420 
3421 /*
3422  * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
3423  * delivery.
3424  */
3425 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
3426 {
3427 	struct adapter *adapter;
3428 	int pidx;
3429 
3430 	adapter = pci_get_drvdata(pdev);
3431 	if (!adapter)
3432 		return;
3433 
3434 	/* Disable all Virtual Interfaces.  This will shut down the
3435 	 * delivery of all ingress packets into the chip for these
3436 	 * Virtual Interfaces.
3437 	 */
3438 	for_each_port(adapter, pidx)
3439 		if (test_bit(pidx, &adapter->registered_device_map))
3440 			unregister_netdev(adapter->port[pidx]);
3441 
3442 	/* Free up all Queues which will prevent further DMA and
3443 	 * Interrupts allowing various internal pathways to drain.
3444 	 */
3445 	t4vf_sge_stop(adapter);
3446 	if (adapter->flags & CXGB4VF_USING_MSIX) {
3447 		pci_disable_msix(adapter->pdev);
3448 		adapter->flags &= ~CXGB4VF_USING_MSIX;
3449 	} else if (adapter->flags & CXGB4VF_USING_MSI) {
3450 		pci_disable_msi(adapter->pdev);
3451 		adapter->flags &= ~CXGB4VF_USING_MSI;
3452 	}
3453 
3454 	/*
3455 	 * Free up all Queues which will prevent further DMA and
3456 	 * Interrupts allowing various internal pathways to drain.
3457 	 */
3458 	t4vf_free_sge_resources(adapter);
3459 	pci_set_drvdata(pdev, NULL);
3460 }
3461 
3462 /* Macros needed to support the PCI Device ID Table ...
3463  */
3464 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
3465 	static const struct pci_device_id cxgb4vf_pci_tbl[] = {
3466 #define CH_PCI_DEVICE_ID_FUNCTION	0x8
3467 
3468 #define CH_PCI_ID_TABLE_ENTRY(devid) \
3469 		{ PCI_VDEVICE(CHELSIO, (devid)), 0 }
3470 
3471 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
3472 
3473 #include "../cxgb4/t4_pci_id_tbl.h"
3474 
3475 MODULE_DESCRIPTION(DRV_DESC);
3476 MODULE_AUTHOR("Chelsio Communications");
3477 MODULE_LICENSE("Dual BSD/GPL");
3478 MODULE_VERSION(DRV_VERSION);
3479 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
3480 
3481 static struct pci_driver cxgb4vf_driver = {
3482 	.name		= KBUILD_MODNAME,
3483 	.id_table	= cxgb4vf_pci_tbl,
3484 	.probe		= cxgb4vf_pci_probe,
3485 	.remove		= cxgb4vf_pci_remove,
3486 	.shutdown	= cxgb4vf_pci_shutdown,
3487 };
3488 
3489 /*
3490  * Initialize global driver state.
3491  */
3492 static int __init cxgb4vf_module_init(void)
3493 {
3494 	int ret;
3495 
3496 	/*
3497 	 * Vet our module parameters.
3498 	 */
3499 	if (msi != MSI_MSIX && msi != MSI_MSI) {
3500 		pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
3501 			msi, MSI_MSIX, MSI_MSI);
3502 		return -EINVAL;
3503 	}
3504 
3505 	/* Debugfs support is optional, just warn if this fails */
3506 	cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3507 	if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3508 		pr_warn("could not create debugfs entry, continuing\n");
3509 
3510 	ret = pci_register_driver(&cxgb4vf_driver);
3511 	if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3512 		debugfs_remove(cxgb4vf_debugfs_root);
3513 	return ret;
3514 }
3515 
3516 /*
3517  * Tear down global driver state.
3518  */
3519 static void __exit cxgb4vf_module_exit(void)
3520 {
3521 	pci_unregister_driver(&cxgb4vf_driver);
3522 	debugfs_remove(cxgb4vf_debugfs_root);
3523 }
3524 
3525 module_init(cxgb4vf_module_init);
3526 module_exit(cxgb4vf_module_exit);
3527