1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/module.h> 39 #include <linux/moduleparam.h> 40 #include <linux/init.h> 41 #include <linux/pci.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/netdevice.h> 44 #include <linux/etherdevice.h> 45 #include <linux/debugfs.h> 46 #include <linux/ethtool.h> 47 #include <linux/mdio.h> 48 49 #include "t4vf_common.h" 50 #include "t4vf_defs.h" 51 52 #include "../cxgb4/t4_regs.h" 53 #include "../cxgb4/t4_msg.h" 54 55 /* 56 * Generic information about the driver. 57 */ 58 #define DRV_VERSION "2.0.0-ko" 59 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver" 60 61 /* 62 * Module Parameters. 63 * ================== 64 */ 65 66 /* 67 * Default ethtool "message level" for adapters. 68 */ 69 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 70 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 71 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 72 73 /* 74 * The driver uses the best interrupt scheme available on a platform in the 75 * order MSI-X then MSI. This parameter determines which of these schemes the 76 * driver may consider as follows: 77 * 78 * msi = 2: choose from among MSI-X and MSI 79 * msi = 1: only consider MSI interrupts 80 * 81 * Note that unlike the Physical Function driver, this Virtual Function driver 82 * does _not_ support legacy INTx interrupts (this limitation is mandated by 83 * the PCI-E SR-IOV standard). 84 */ 85 #define MSI_MSIX 2 86 #define MSI_MSI 1 87 #define MSI_DEFAULT MSI_MSIX 88 89 static int msi = MSI_DEFAULT; 90 91 module_param(msi, int, 0644); 92 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI"); 93 94 /* 95 * Fundamental constants. 96 * ====================== 97 */ 98 99 enum { 100 MAX_TXQ_ENTRIES = 16384, 101 MAX_RSPQ_ENTRIES = 16384, 102 MAX_RX_BUFFERS = 16384, 103 104 MIN_TXQ_ENTRIES = 32, 105 MIN_RSPQ_ENTRIES = 128, 106 MIN_FL_ENTRIES = 16, 107 108 /* 109 * For purposes of manipulating the Free List size we need to 110 * recognize that Free Lists are actually Egress Queues (the host 111 * produces free buffers which the hardware consumes), Egress Queues 112 * indices are all in units of Egress Context Units bytes, and free 113 * list entries are 64-bit PCI DMA addresses. And since the state of 114 * the Producer Index == the Consumer Index implies an EMPTY list, we 115 * always have at least one Egress Unit's worth of Free List entries 116 * unused. See sge.c for more details ... 117 */ 118 EQ_UNIT = SGE_EQ_IDXSIZE, 119 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 120 MIN_FL_RESID = FL_PER_EQ_UNIT, 121 }; 122 123 /* 124 * Global driver state. 125 * ==================== 126 */ 127 128 static struct dentry *cxgb4vf_debugfs_root; 129 130 /* 131 * OS "Callback" functions. 132 * ======================== 133 */ 134 135 /* 136 * The link status has changed on the indicated "port" (Virtual Interface). 137 */ 138 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok) 139 { 140 struct net_device *dev = adapter->port[pidx]; 141 142 /* 143 * If the port is disabled or the current recorded "link up" 144 * status matches the new status, just return. 145 */ 146 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev)) 147 return; 148 149 /* 150 * Tell the OS that the link status has changed and print a short 151 * informative message on the console about the event. 152 */ 153 if (link_ok) { 154 const char *s; 155 const char *fc; 156 const struct port_info *pi = netdev_priv(dev); 157 158 switch (pi->link_cfg.speed) { 159 case 100: 160 s = "100Mbps"; 161 break; 162 case 1000: 163 s = "1Gbps"; 164 break; 165 case 10000: 166 s = "10Gbps"; 167 break; 168 case 25000: 169 s = "25Gbps"; 170 break; 171 case 40000: 172 s = "40Gbps"; 173 break; 174 case 100000: 175 s = "100Gbps"; 176 break; 177 178 default: 179 s = "unknown"; 180 break; 181 } 182 183 switch ((int)pi->link_cfg.fc) { 184 case PAUSE_RX: 185 fc = "RX"; 186 break; 187 188 case PAUSE_TX: 189 fc = "TX"; 190 break; 191 192 case PAUSE_RX | PAUSE_TX: 193 fc = "RX/TX"; 194 break; 195 196 default: 197 fc = "no"; 198 break; 199 } 200 201 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc); 202 } else { 203 netdev_info(dev, "link down\n"); 204 } 205 } 206 207 /* 208 * THe port module type has changed on the indicated "port" (Virtual 209 * Interface). 210 */ 211 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx) 212 { 213 static const char * const mod_str[] = { 214 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 215 }; 216 const struct net_device *dev = adapter->port[pidx]; 217 const struct port_info *pi = netdev_priv(dev); 218 219 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 220 dev_info(adapter->pdev_dev, "%s: port module unplugged\n", 221 dev->name); 222 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 223 dev_info(adapter->pdev_dev, "%s: %s port module inserted\n", 224 dev->name, mod_str[pi->mod_type]); 225 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 226 dev_info(adapter->pdev_dev, "%s: unsupported optical port " 227 "module inserted\n", dev->name); 228 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 229 dev_info(adapter->pdev_dev, "%s: unknown port module inserted," 230 "forcing TWINAX\n", dev->name); 231 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 232 dev_info(adapter->pdev_dev, "%s: transceiver module error\n", 233 dev->name); 234 else 235 dev_info(adapter->pdev_dev, "%s: unknown module type %d " 236 "inserted\n", dev->name, pi->mod_type); 237 } 238 239 /* 240 * Net device operations. 241 * ====================== 242 */ 243 244 245 246 247 /* 248 * Perform the MAC and PHY actions needed to enable a "port" (Virtual 249 * Interface). 250 */ 251 static int link_start(struct net_device *dev) 252 { 253 int ret; 254 struct port_info *pi = netdev_priv(dev); 255 256 /* 257 * We do not set address filters and promiscuity here, the stack does 258 * that step explicitly. Enable vlan accel. 259 */ 260 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1, 261 true); 262 if (ret == 0) { 263 ret = t4vf_change_mac(pi->adapter, pi->viid, 264 pi->xact_addr_filt, dev->dev_addr, true); 265 if (ret >= 0) { 266 pi->xact_addr_filt = ret; 267 ret = 0; 268 } 269 } 270 271 /* 272 * We don't need to actually "start the link" itself since the 273 * firmware will do that for us when the first Virtual Interface 274 * is enabled on a port. 275 */ 276 if (ret == 0) 277 ret = t4vf_enable_pi(pi->adapter, pi, true, true); 278 279 /* The Virtual Interfaces are connected to an internal switch on the 280 * chip which allows VIs attached to the same port to talk to each 281 * other even when the port link is down. As a result, we generally 282 * want to always report a VI's link as being "up", provided there are 283 * no errors in enabling vi. 284 */ 285 286 if (ret == 0) 287 netif_carrier_on(dev); 288 289 return ret; 290 } 291 292 /* 293 * Name the MSI-X interrupts. 294 */ 295 static void name_msix_vecs(struct adapter *adapter) 296 { 297 int namelen = sizeof(adapter->msix_info[0].desc) - 1; 298 int pidx; 299 300 /* 301 * Firmware events. 302 */ 303 snprintf(adapter->msix_info[MSIX_FW].desc, namelen, 304 "%s-FWeventq", adapter->name); 305 adapter->msix_info[MSIX_FW].desc[namelen] = 0; 306 307 /* 308 * Ethernet queues. 309 */ 310 for_each_port(adapter, pidx) { 311 struct net_device *dev = adapter->port[pidx]; 312 const struct port_info *pi = netdev_priv(dev); 313 int qs, msi; 314 315 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) { 316 snprintf(adapter->msix_info[msi].desc, namelen, 317 "%s-%d", dev->name, qs); 318 adapter->msix_info[msi].desc[namelen] = 0; 319 } 320 } 321 } 322 323 /* 324 * Request all of our MSI-X resources. 325 */ 326 static int request_msix_queue_irqs(struct adapter *adapter) 327 { 328 struct sge *s = &adapter->sge; 329 int rxq, msi, err; 330 331 /* 332 * Firmware events. 333 */ 334 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix, 335 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq); 336 if (err) 337 return err; 338 339 /* 340 * Ethernet queues. 341 */ 342 msi = MSIX_IQFLINT; 343 for_each_ethrxq(s, rxq) { 344 err = request_irq(adapter->msix_info[msi].vec, 345 t4vf_sge_intr_msix, 0, 346 adapter->msix_info[msi].desc, 347 &s->ethrxq[rxq].rspq); 348 if (err) 349 goto err_free_irqs; 350 msi++; 351 } 352 return 0; 353 354 err_free_irqs: 355 while (--rxq >= 0) 356 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq); 357 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 358 return err; 359 } 360 361 /* 362 * Free our MSI-X resources. 363 */ 364 static void free_msix_queue_irqs(struct adapter *adapter) 365 { 366 struct sge *s = &adapter->sge; 367 int rxq, msi; 368 369 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 370 msi = MSIX_IQFLINT; 371 for_each_ethrxq(s, rxq) 372 free_irq(adapter->msix_info[msi++].vec, 373 &s->ethrxq[rxq].rspq); 374 } 375 376 /* 377 * Turn on NAPI and start up interrupts on a response queue. 378 */ 379 static void qenable(struct sge_rspq *rspq) 380 { 381 napi_enable(&rspq->napi); 382 383 /* 384 * 0-increment the Going To Sleep register to start the timer and 385 * enable interrupts. 386 */ 387 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 388 CIDXINC_V(0) | 389 SEINTARM_V(rspq->intr_params) | 390 INGRESSQID_V(rspq->cntxt_id)); 391 } 392 393 /* 394 * Enable NAPI scheduling and interrupt generation for all Receive Queues. 395 */ 396 static void enable_rx(struct adapter *adapter) 397 { 398 int rxq; 399 struct sge *s = &adapter->sge; 400 401 for_each_ethrxq(s, rxq) 402 qenable(&s->ethrxq[rxq].rspq); 403 qenable(&s->fw_evtq); 404 405 /* 406 * The interrupt queue doesn't use NAPI so we do the 0-increment of 407 * its Going To Sleep register here to get it started. 408 */ 409 if (adapter->flags & USING_MSI) 410 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 411 CIDXINC_V(0) | 412 SEINTARM_V(s->intrq.intr_params) | 413 INGRESSQID_V(s->intrq.cntxt_id)); 414 415 } 416 417 /* 418 * Wait until all NAPI handlers are descheduled. 419 */ 420 static void quiesce_rx(struct adapter *adapter) 421 { 422 struct sge *s = &adapter->sge; 423 int rxq; 424 425 for_each_ethrxq(s, rxq) 426 napi_disable(&s->ethrxq[rxq].rspq.napi); 427 napi_disable(&s->fw_evtq.napi); 428 } 429 430 /* 431 * Response queue handler for the firmware event queue. 432 */ 433 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp, 434 const struct pkt_gl *gl) 435 { 436 /* 437 * Extract response opcode and get pointer to CPL message body. 438 */ 439 struct adapter *adapter = rspq->adapter; 440 u8 opcode = ((const struct rss_header *)rsp)->opcode; 441 void *cpl = (void *)(rsp + 1); 442 443 switch (opcode) { 444 case CPL_FW6_MSG: { 445 /* 446 * We've received an asynchronous message from the firmware. 447 */ 448 const struct cpl_fw6_msg *fw_msg = cpl; 449 if (fw_msg->type == FW6_TYPE_CMD_RPL) 450 t4vf_handle_fw_rpl(adapter, fw_msg->data); 451 break; 452 } 453 454 case CPL_FW4_MSG: { 455 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 456 */ 457 const struct cpl_sge_egr_update *p = (void *)(rsp + 3); 458 opcode = CPL_OPCODE_G(ntohl(p->opcode_qid)); 459 if (opcode != CPL_SGE_EGR_UPDATE) { 460 dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 461 , opcode); 462 break; 463 } 464 cpl = (void *)p; 465 /*FALLTHROUGH*/ 466 } 467 468 case CPL_SGE_EGR_UPDATE: { 469 /* 470 * We've received an Egress Queue Status Update message. We 471 * get these, if the SGE is configured to send these when the 472 * firmware passes certain points in processing our TX 473 * Ethernet Queue or if we make an explicit request for one. 474 * We use these updates to determine when we may need to 475 * restart a TX Ethernet Queue which was stopped for lack of 476 * free TX Queue Descriptors ... 477 */ 478 const struct cpl_sge_egr_update *p = cpl; 479 unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid)); 480 struct sge *s = &adapter->sge; 481 struct sge_txq *tq; 482 struct sge_eth_txq *txq; 483 unsigned int eq_idx; 484 485 /* 486 * Perform sanity checking on the Queue ID to make sure it 487 * really refers to one of our TX Ethernet Egress Queues which 488 * is active and matches the queue's ID. None of these error 489 * conditions should ever happen so we may want to either make 490 * them fatal and/or conditionalized under DEBUG. 491 */ 492 eq_idx = EQ_IDX(s, qid); 493 if (unlikely(eq_idx >= MAX_EGRQ)) { 494 dev_err(adapter->pdev_dev, 495 "Egress Update QID %d out of range\n", qid); 496 break; 497 } 498 tq = s->egr_map[eq_idx]; 499 if (unlikely(tq == NULL)) { 500 dev_err(adapter->pdev_dev, 501 "Egress Update QID %d TXQ=NULL\n", qid); 502 break; 503 } 504 txq = container_of(tq, struct sge_eth_txq, q); 505 if (unlikely(tq->abs_id != qid)) { 506 dev_err(adapter->pdev_dev, 507 "Egress Update QID %d refers to TXQ %d\n", 508 qid, tq->abs_id); 509 break; 510 } 511 512 /* 513 * Restart a stopped TX Queue which has less than half of its 514 * TX ring in use ... 515 */ 516 txq->q.restarts++; 517 netif_tx_wake_queue(txq->txq); 518 break; 519 } 520 521 default: 522 dev_err(adapter->pdev_dev, 523 "unexpected CPL %#x on FW event queue\n", opcode); 524 } 525 526 return 0; 527 } 528 529 /* 530 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues 531 * to use and initializes them. We support multiple "Queue Sets" per port if 532 * we have MSI-X, otherwise just one queue set per port. 533 */ 534 static int setup_sge_queues(struct adapter *adapter) 535 { 536 struct sge *s = &adapter->sge; 537 int err, pidx, msix; 538 539 /* 540 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error 541 * state. 542 */ 543 bitmap_zero(s->starving_fl, MAX_EGRQ); 544 545 /* 546 * If we're using MSI interrupt mode we need to set up a "forwarded 547 * interrupt" queue which we'll set up with our MSI vector. The rest 548 * of the ingress queues will be set up to forward their interrupts to 549 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses 550 * the intrq's queue ID as the interrupt forwarding queue for the 551 * subsequent calls ... 552 */ 553 if (adapter->flags & USING_MSI) { 554 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false, 555 adapter->port[0], 0, NULL, NULL); 556 if (err) 557 goto err_free_queues; 558 } 559 560 /* 561 * Allocate our ingress queue for asynchronous firmware messages. 562 */ 563 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0], 564 MSIX_FW, NULL, fwevtq_handler); 565 if (err) 566 goto err_free_queues; 567 568 /* 569 * Allocate each "port"'s initial Queue Sets. These can be changed 570 * later on ... up to the point where any interface on the adapter is 571 * brought up at which point lots of things get nailed down 572 * permanently ... 573 */ 574 msix = MSIX_IQFLINT; 575 for_each_port(adapter, pidx) { 576 struct net_device *dev = adapter->port[pidx]; 577 struct port_info *pi = netdev_priv(dev); 578 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 579 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 580 int qs; 581 582 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 583 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false, 584 dev, msix++, 585 &rxq->fl, t4vf_ethrx_handler); 586 if (err) 587 goto err_free_queues; 588 589 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev, 590 netdev_get_tx_queue(dev, qs), 591 s->fw_evtq.cntxt_id); 592 if (err) 593 goto err_free_queues; 594 595 rxq->rspq.idx = qs; 596 memset(&rxq->stats, 0, sizeof(rxq->stats)); 597 } 598 } 599 600 /* 601 * Create the reverse mappings for the queues. 602 */ 603 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id; 604 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id; 605 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq; 606 for_each_port(adapter, pidx) { 607 struct net_device *dev = adapter->port[pidx]; 608 struct port_info *pi = netdev_priv(dev); 609 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 610 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 611 int qs; 612 613 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 614 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq; 615 EQ_MAP(s, txq->q.abs_id) = &txq->q; 616 617 /* 618 * The FW_IQ_CMD doesn't return the Absolute Queue IDs 619 * for Free Lists but since all of the Egress Queues 620 * (including Free Lists) have Relative Queue IDs 621 * which are computed as Absolute - Base Queue ID, we 622 * can synthesize the Absolute Queue IDs for the Free 623 * Lists. This is useful for debugging purposes when 624 * we want to dump Queue Contexts via the PF Driver. 625 */ 626 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base; 627 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl; 628 } 629 } 630 return 0; 631 632 err_free_queues: 633 t4vf_free_sge_resources(adapter); 634 return err; 635 } 636 637 /* 638 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive 639 * queues. We configure the RSS CPU lookup table to distribute to the number 640 * of HW receive queues, and the response queue lookup table to narrow that 641 * down to the response queues actually configured for each "port" (Virtual 642 * Interface). We always configure the RSS mapping for all ports since the 643 * mapping table has plenty of entries. 644 */ 645 static int setup_rss(struct adapter *adapter) 646 { 647 int pidx; 648 649 for_each_port(adapter, pidx) { 650 struct port_info *pi = adap2pinfo(adapter, pidx); 651 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 652 u16 rss[MAX_PORT_QSETS]; 653 int qs, err; 654 655 for (qs = 0; qs < pi->nqsets; qs++) 656 rss[qs] = rxq[qs].rspq.abs_id; 657 658 err = t4vf_config_rss_range(adapter, pi->viid, 659 0, pi->rss_size, rss, pi->nqsets); 660 if (err) 661 return err; 662 663 /* 664 * Perform Global RSS Mode-specific initialization. 665 */ 666 switch (adapter->params.rss.mode) { 667 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: 668 /* 669 * If Tunnel All Lookup isn't specified in the global 670 * RSS Configuration, then we need to specify a 671 * default Ingress Queue for any ingress packets which 672 * aren't hashed. We'll use our first ingress queue 673 * ... 674 */ 675 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) { 676 union rss_vi_config config; 677 err = t4vf_read_rss_vi_config(adapter, 678 pi->viid, 679 &config); 680 if (err) 681 return err; 682 config.basicvirtual.defaultq = 683 rxq[0].rspq.abs_id; 684 err = t4vf_write_rss_vi_config(adapter, 685 pi->viid, 686 &config); 687 if (err) 688 return err; 689 } 690 break; 691 } 692 } 693 694 return 0; 695 } 696 697 /* 698 * Bring the adapter up. Called whenever we go from no "ports" open to having 699 * one open. This function performs the actions necessary to make an adapter 700 * operational, such as completing the initialization of HW modules, and 701 * enabling interrupts. Must be called with the rtnl lock held. (Note that 702 * this is called "cxgb_up" in the PF Driver.) 703 */ 704 static int adapter_up(struct adapter *adapter) 705 { 706 int err; 707 708 /* 709 * If this is the first time we've been called, perform basic 710 * adapter setup. Once we've done this, many of our adapter 711 * parameters can no longer be changed ... 712 */ 713 if ((adapter->flags & FULL_INIT_DONE) == 0) { 714 err = setup_sge_queues(adapter); 715 if (err) 716 return err; 717 err = setup_rss(adapter); 718 if (err) { 719 t4vf_free_sge_resources(adapter); 720 return err; 721 } 722 723 if (adapter->flags & USING_MSIX) 724 name_msix_vecs(adapter); 725 726 adapter->flags |= FULL_INIT_DONE; 727 } 728 729 /* 730 * Acquire our interrupt resources. We only support MSI-X and MSI. 731 */ 732 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 733 if (adapter->flags & USING_MSIX) 734 err = request_msix_queue_irqs(adapter); 735 else 736 err = request_irq(adapter->pdev->irq, 737 t4vf_intr_handler(adapter), 0, 738 adapter->name, adapter); 739 if (err) { 740 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n", 741 err); 742 return err; 743 } 744 745 /* 746 * Enable NAPI ingress processing and return success. 747 */ 748 enable_rx(adapter); 749 t4vf_sge_start(adapter); 750 751 return 0; 752 } 753 754 /* 755 * Bring the adapter down. Called whenever the last "port" (Virtual 756 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF 757 * Driver.) 758 */ 759 static void adapter_down(struct adapter *adapter) 760 { 761 /* 762 * Free interrupt resources. 763 */ 764 if (adapter->flags & USING_MSIX) 765 free_msix_queue_irqs(adapter); 766 else 767 free_irq(adapter->pdev->irq, adapter); 768 769 /* 770 * Wait for NAPI handlers to finish. 771 */ 772 quiesce_rx(adapter); 773 } 774 775 /* 776 * Start up a net device. 777 */ 778 static int cxgb4vf_open(struct net_device *dev) 779 { 780 int err; 781 struct port_info *pi = netdev_priv(dev); 782 struct adapter *adapter = pi->adapter; 783 784 /* 785 * If this is the first interface that we're opening on the "adapter", 786 * bring the "adapter" up now. 787 */ 788 if (adapter->open_device_map == 0) { 789 err = adapter_up(adapter); 790 if (err) 791 return err; 792 } 793 794 /* 795 * Note that this interface is up and start everything up ... 796 */ 797 err = link_start(dev); 798 if (err) 799 goto err_unwind; 800 801 pi->vlan_id = t4vf_get_vf_vlan_acl(adapter); 802 803 netif_tx_start_all_queues(dev); 804 set_bit(pi->port_id, &adapter->open_device_map); 805 return 0; 806 807 err_unwind: 808 if (adapter->open_device_map == 0) 809 adapter_down(adapter); 810 return err; 811 } 812 813 /* 814 * Shut down a net device. This routine is called "cxgb_close" in the PF 815 * Driver ... 816 */ 817 static int cxgb4vf_stop(struct net_device *dev) 818 { 819 struct port_info *pi = netdev_priv(dev); 820 struct adapter *adapter = pi->adapter; 821 822 netif_tx_stop_all_queues(dev); 823 netif_carrier_off(dev); 824 t4vf_enable_pi(adapter, pi, false, false); 825 826 clear_bit(pi->port_id, &adapter->open_device_map); 827 if (adapter->open_device_map == 0) 828 adapter_down(adapter); 829 return 0; 830 } 831 832 /* 833 * Translate our basic statistics into the standard "ifconfig" statistics. 834 */ 835 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev) 836 { 837 struct t4vf_port_stats stats; 838 struct port_info *pi = netdev2pinfo(dev); 839 struct adapter *adapter = pi->adapter; 840 struct net_device_stats *ns = &dev->stats; 841 int err; 842 843 spin_lock(&adapter->stats_lock); 844 err = t4vf_get_port_stats(adapter, pi->pidx, &stats); 845 spin_unlock(&adapter->stats_lock); 846 847 memset(ns, 0, sizeof(*ns)); 848 if (err) 849 return ns; 850 851 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes + 852 stats.tx_ucast_bytes + stats.tx_offload_bytes); 853 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames + 854 stats.tx_ucast_frames + stats.tx_offload_frames); 855 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes + 856 stats.rx_ucast_bytes); 857 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames + 858 stats.rx_ucast_frames); 859 ns->multicast = stats.rx_mcast_frames; 860 ns->tx_errors = stats.tx_drop_frames; 861 ns->rx_errors = stats.rx_err_frames; 862 863 return ns; 864 } 865 866 static inline int cxgb4vf_set_addr_hash(struct port_info *pi) 867 { 868 struct adapter *adapter = pi->adapter; 869 u64 vec = 0; 870 bool ucast = false; 871 struct hash_mac_addr *entry; 872 873 /* Calculate the hash vector for the updated list and program it */ 874 list_for_each_entry(entry, &adapter->mac_hlist, list) { 875 ucast |= is_unicast_ether_addr(entry->addr); 876 vec |= (1ULL << hash_mac_addr(entry->addr)); 877 } 878 return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false); 879 } 880 881 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr) 882 { 883 struct port_info *pi = netdev_priv(netdev); 884 struct adapter *adapter = pi->adapter; 885 int ret; 886 u64 mhash = 0; 887 u64 uhash = 0; 888 bool free = false; 889 bool ucast = is_unicast_ether_addr(mac_addr); 890 const u8 *maclist[1] = {mac_addr}; 891 struct hash_mac_addr *new_entry; 892 893 ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist, 894 NULL, ucast ? &uhash : &mhash, false); 895 if (ret < 0) 896 goto out; 897 /* if hash != 0, then add the addr to hash addr list 898 * so on the end we will calculate the hash for the 899 * list and program it 900 */ 901 if (uhash || mhash) { 902 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 903 if (!new_entry) 904 return -ENOMEM; 905 ether_addr_copy(new_entry->addr, mac_addr); 906 list_add_tail(&new_entry->list, &adapter->mac_hlist); 907 ret = cxgb4vf_set_addr_hash(pi); 908 } 909 out: 910 return ret < 0 ? ret : 0; 911 } 912 913 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 914 { 915 struct port_info *pi = netdev_priv(netdev); 916 struct adapter *adapter = pi->adapter; 917 int ret; 918 const u8 *maclist[1] = {mac_addr}; 919 struct hash_mac_addr *entry, *tmp; 920 921 /* If the MAC address to be removed is in the hash addr 922 * list, delete it from the list and update hash vector 923 */ 924 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) { 925 if (ether_addr_equal(entry->addr, mac_addr)) { 926 list_del(&entry->list); 927 kfree(entry); 928 return cxgb4vf_set_addr_hash(pi); 929 } 930 } 931 932 ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false); 933 return ret < 0 ? -EINVAL : 0; 934 } 935 936 /* 937 * Set RX properties of a port, such as promiscruity, address filters, and MTU. 938 * If @mtu is -1 it is left unchanged. 939 */ 940 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 941 { 942 struct port_info *pi = netdev_priv(dev); 943 944 __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 945 __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 946 return t4vf_set_rxmode(pi->adapter, pi->viid, -1, 947 (dev->flags & IFF_PROMISC) != 0, 948 (dev->flags & IFF_ALLMULTI) != 0, 949 1, -1, sleep_ok); 950 } 951 952 /* 953 * Set the current receive modes on the device. 954 */ 955 static void cxgb4vf_set_rxmode(struct net_device *dev) 956 { 957 /* unfortunately we can't return errors to the stack */ 958 set_rxmode(dev, -1, false); 959 } 960 961 /* 962 * Find the entry in the interrupt holdoff timer value array which comes 963 * closest to the specified interrupt holdoff value. 964 */ 965 static int closest_timer(const struct sge *s, int us) 966 { 967 int i, timer_idx = 0, min_delta = INT_MAX; 968 969 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 970 int delta = us - s->timer_val[i]; 971 if (delta < 0) 972 delta = -delta; 973 if (delta < min_delta) { 974 min_delta = delta; 975 timer_idx = i; 976 } 977 } 978 return timer_idx; 979 } 980 981 static int closest_thres(const struct sge *s, int thres) 982 { 983 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX; 984 985 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 986 delta = thres - s->counter_val[i]; 987 if (delta < 0) 988 delta = -delta; 989 if (delta < min_delta) { 990 min_delta = delta; 991 pktcnt_idx = i; 992 } 993 } 994 return pktcnt_idx; 995 } 996 997 /* 998 * Return a queue's interrupt hold-off time in us. 0 means no timer. 999 */ 1000 static unsigned int qtimer_val(const struct adapter *adapter, 1001 const struct sge_rspq *rspq) 1002 { 1003 unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params); 1004 1005 return timer_idx < SGE_NTIMERS 1006 ? adapter->sge.timer_val[timer_idx] 1007 : 0; 1008 } 1009 1010 /** 1011 * set_rxq_intr_params - set a queue's interrupt holdoff parameters 1012 * @adapter: the adapter 1013 * @rspq: the RX response queue 1014 * @us: the hold-off time in us, or 0 to disable timer 1015 * @cnt: the hold-off packet count, or 0 to disable counter 1016 * 1017 * Sets an RX response queue's interrupt hold-off time and packet count. 1018 * At least one of the two needs to be enabled for the queue to generate 1019 * interrupts. 1020 */ 1021 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq, 1022 unsigned int us, unsigned int cnt) 1023 { 1024 unsigned int timer_idx; 1025 1026 /* 1027 * If both the interrupt holdoff timer and count are specified as 1028 * zero, default to a holdoff count of 1 ... 1029 */ 1030 if ((us | cnt) == 0) 1031 cnt = 1; 1032 1033 /* 1034 * If an interrupt holdoff count has been specified, then find the 1035 * closest configured holdoff count and use that. If the response 1036 * queue has already been created, then update its queue context 1037 * parameters ... 1038 */ 1039 if (cnt) { 1040 int err; 1041 u32 v, pktcnt_idx; 1042 1043 pktcnt_idx = closest_thres(&adapter->sge, cnt); 1044 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) { 1045 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1046 FW_PARAMS_PARAM_X_V( 1047 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1048 FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id); 1049 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx); 1050 if (err) 1051 return err; 1052 } 1053 rspq->pktcnt_idx = pktcnt_idx; 1054 } 1055 1056 /* 1057 * Compute the closest holdoff timer index from the supplied holdoff 1058 * timer value. 1059 */ 1060 timer_idx = (us == 0 1061 ? SGE_TIMER_RSTRT_CNTR 1062 : closest_timer(&adapter->sge, us)); 1063 1064 /* 1065 * Update the response queue's interrupt coalescing parameters and 1066 * return success. 1067 */ 1068 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 1069 QINTR_CNT_EN_V(cnt > 0)); 1070 return 0; 1071 } 1072 1073 /* 1074 * Return a version number to identify the type of adapter. The scheme is: 1075 * - bits 0..9: chip version 1076 * - bits 10..15: chip revision 1077 */ 1078 static inline unsigned int mk_adap_vers(const struct adapter *adapter) 1079 { 1080 /* 1081 * Chip version 4, revision 0x3f (cxgb4vf). 1082 */ 1083 return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10); 1084 } 1085 1086 /* 1087 * Execute the specified ioctl command. 1088 */ 1089 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1090 { 1091 int ret = 0; 1092 1093 switch (cmd) { 1094 /* 1095 * The VF Driver doesn't have access to any of the other 1096 * common Ethernet device ioctl()'s (like reading/writing 1097 * PHY registers, etc. 1098 */ 1099 1100 default: 1101 ret = -EOPNOTSUPP; 1102 break; 1103 } 1104 return ret; 1105 } 1106 1107 /* 1108 * Change the device's MTU. 1109 */ 1110 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu) 1111 { 1112 int ret; 1113 struct port_info *pi = netdev_priv(dev); 1114 1115 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu, 1116 -1, -1, -1, -1, true); 1117 if (!ret) 1118 dev->mtu = new_mtu; 1119 return ret; 1120 } 1121 1122 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev, 1123 netdev_features_t features) 1124 { 1125 /* 1126 * Since there is no support for separate rx/tx vlan accel 1127 * enable/disable make sure tx flag is always in same state as rx. 1128 */ 1129 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1130 features |= NETIF_F_HW_VLAN_CTAG_TX; 1131 else 1132 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 1133 1134 return features; 1135 } 1136 1137 static int cxgb4vf_set_features(struct net_device *dev, 1138 netdev_features_t features) 1139 { 1140 struct port_info *pi = netdev_priv(dev); 1141 netdev_features_t changed = dev->features ^ features; 1142 1143 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 1144 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, 1145 features & NETIF_F_HW_VLAN_CTAG_TX, 0); 1146 1147 return 0; 1148 } 1149 1150 /* 1151 * Change the devices MAC address. 1152 */ 1153 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr) 1154 { 1155 int ret; 1156 struct sockaddr *addr = _addr; 1157 struct port_info *pi = netdev_priv(dev); 1158 1159 if (!is_valid_ether_addr(addr->sa_data)) 1160 return -EADDRNOTAVAIL; 1161 1162 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt, 1163 addr->sa_data, true); 1164 if (ret < 0) 1165 return ret; 1166 1167 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 1168 pi->xact_addr_filt = ret; 1169 return 0; 1170 } 1171 1172 #ifdef CONFIG_NET_POLL_CONTROLLER 1173 /* 1174 * Poll all of our receive queues. This is called outside of normal interrupt 1175 * context. 1176 */ 1177 static void cxgb4vf_poll_controller(struct net_device *dev) 1178 { 1179 struct port_info *pi = netdev_priv(dev); 1180 struct adapter *adapter = pi->adapter; 1181 1182 if (adapter->flags & USING_MSIX) { 1183 struct sge_eth_rxq *rxq; 1184 int nqsets; 1185 1186 rxq = &adapter->sge.ethrxq[pi->first_qset]; 1187 for (nqsets = pi->nqsets; nqsets; nqsets--) { 1188 t4vf_sge_intr_msix(0, &rxq->rspq); 1189 rxq++; 1190 } 1191 } else 1192 t4vf_intr_handler(adapter)(0, adapter); 1193 } 1194 #endif 1195 1196 /* 1197 * Ethtool operations. 1198 * =================== 1199 * 1200 * Note that we don't support any ethtool operations which change the physical 1201 * state of the port to which we're linked. 1202 */ 1203 1204 /** 1205 * from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool 1206 * @port_type: Firmware Port Type 1207 * @mod_type: Firmware Module Type 1208 * 1209 * Translate Firmware Port/Module type to Ethtool Port Type. 1210 */ 1211 static int from_fw_port_mod_type(enum fw_port_type port_type, 1212 enum fw_port_module_type mod_type) 1213 { 1214 if (port_type == FW_PORT_TYPE_BT_SGMII || 1215 port_type == FW_PORT_TYPE_BT_XFI || 1216 port_type == FW_PORT_TYPE_BT_XAUI) { 1217 return PORT_TP; 1218 } else if (port_type == FW_PORT_TYPE_FIBER_XFI || 1219 port_type == FW_PORT_TYPE_FIBER_XAUI) { 1220 return PORT_FIBRE; 1221 } else if (port_type == FW_PORT_TYPE_SFP || 1222 port_type == FW_PORT_TYPE_QSFP_10G || 1223 port_type == FW_PORT_TYPE_QSA || 1224 port_type == FW_PORT_TYPE_QSFP || 1225 port_type == FW_PORT_TYPE_CR4_QSFP || 1226 port_type == FW_PORT_TYPE_CR_QSFP || 1227 port_type == FW_PORT_TYPE_CR2_QSFP || 1228 port_type == FW_PORT_TYPE_SFP28) { 1229 if (mod_type == FW_PORT_MOD_TYPE_LR || 1230 mod_type == FW_PORT_MOD_TYPE_SR || 1231 mod_type == FW_PORT_MOD_TYPE_ER || 1232 mod_type == FW_PORT_MOD_TYPE_LRM) 1233 return PORT_FIBRE; 1234 else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE || 1235 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE) 1236 return PORT_DA; 1237 else 1238 return PORT_OTHER; 1239 } else if (port_type == FW_PORT_TYPE_KR4_100G || 1240 port_type == FW_PORT_TYPE_KR_SFP28 || 1241 port_type == FW_PORT_TYPE_KR_XLAUI) { 1242 return PORT_NONE; 1243 } 1244 1245 return PORT_OTHER; 1246 } 1247 1248 /** 1249 * fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask 1250 * @port_type: Firmware Port Type 1251 * @fw_caps: Firmware Port Capabilities 1252 * @link_mode_mask: ethtool Link Mode Mask 1253 * 1254 * Translate a Firmware Port Capabilities specification to an ethtool 1255 * Link Mode Mask. 1256 */ 1257 static void fw_caps_to_lmm(enum fw_port_type port_type, 1258 unsigned int fw_caps, 1259 unsigned long *link_mode_mask) 1260 { 1261 #define SET_LMM(__lmm_name) \ 1262 __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \ 1263 link_mode_mask) 1264 1265 #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \ 1266 do { \ 1267 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \ 1268 SET_LMM(__lmm_name); \ 1269 } while (0) 1270 1271 switch (port_type) { 1272 case FW_PORT_TYPE_BT_SGMII: 1273 case FW_PORT_TYPE_BT_XFI: 1274 case FW_PORT_TYPE_BT_XAUI: 1275 SET_LMM(TP); 1276 FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full); 1277 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1278 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1279 break; 1280 1281 case FW_PORT_TYPE_KX4: 1282 case FW_PORT_TYPE_KX: 1283 SET_LMM(Backplane); 1284 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1285 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1286 break; 1287 1288 case FW_PORT_TYPE_KR: 1289 SET_LMM(Backplane); 1290 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1291 break; 1292 1293 case FW_PORT_TYPE_BP_AP: 1294 SET_LMM(Backplane); 1295 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1296 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); 1297 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1298 break; 1299 1300 case FW_PORT_TYPE_BP4_AP: 1301 SET_LMM(Backplane); 1302 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1303 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); 1304 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1305 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1306 break; 1307 1308 case FW_PORT_TYPE_FIBER_XFI: 1309 case FW_PORT_TYPE_FIBER_XAUI: 1310 case FW_PORT_TYPE_SFP: 1311 case FW_PORT_TYPE_QSFP_10G: 1312 case FW_PORT_TYPE_QSA: 1313 SET_LMM(FIBRE); 1314 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1315 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1316 break; 1317 1318 case FW_PORT_TYPE_BP40_BA: 1319 case FW_PORT_TYPE_QSFP: 1320 SET_LMM(FIBRE); 1321 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1322 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1323 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); 1324 break; 1325 1326 case FW_PORT_TYPE_CR_QSFP: 1327 case FW_PORT_TYPE_SFP28: 1328 SET_LMM(FIBRE); 1329 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1330 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1331 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); 1332 break; 1333 1334 case FW_PORT_TYPE_KR_SFP28: 1335 SET_LMM(Backplane); 1336 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1337 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1338 FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full); 1339 break; 1340 1341 case FW_PORT_TYPE_KR_XLAUI: 1342 SET_LMM(Backplane); 1343 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1344 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1345 FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full); 1346 break; 1347 1348 case FW_PORT_TYPE_CR2_QSFP: 1349 SET_LMM(FIBRE); 1350 FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full); 1351 break; 1352 1353 case FW_PORT_TYPE_KR4_100G: 1354 case FW_PORT_TYPE_CR4_QSFP: 1355 SET_LMM(FIBRE); 1356 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1357 FW_CAPS_TO_LMM(SPEED_10G, 10000baseSR_Full); 1358 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); 1359 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); 1360 FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full); 1361 FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full); 1362 break; 1363 1364 default: 1365 break; 1366 } 1367 1368 FW_CAPS_TO_LMM(ANEG, Autoneg); 1369 FW_CAPS_TO_LMM(802_3_PAUSE, Pause); 1370 FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause); 1371 1372 #undef FW_CAPS_TO_LMM 1373 #undef SET_LMM 1374 } 1375 1376 static int cxgb4vf_get_link_ksettings(struct net_device *dev, 1377 struct ethtool_link_ksettings *link_ksettings) 1378 { 1379 struct port_info *pi = netdev_priv(dev); 1380 struct ethtool_link_settings *base = &link_ksettings->base; 1381 1382 /* For the nonce, the Firmware doesn't send up Port State changes 1383 * when the Virtual Interface attached to the Port is down. So 1384 * if it's down, let's grab any changes. 1385 */ 1386 if (!netif_running(dev)) 1387 (void)t4vf_update_port_info(pi); 1388 1389 ethtool_link_ksettings_zero_link_mode(link_ksettings, supported); 1390 ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising); 1391 ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising); 1392 1393 base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type); 1394 1395 if (pi->mdio_addr >= 0) { 1396 base->phy_address = pi->mdio_addr; 1397 base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII 1398 ? ETH_MDIO_SUPPORTS_C22 1399 : ETH_MDIO_SUPPORTS_C45); 1400 } else { 1401 base->phy_address = 255; 1402 base->mdio_support = 0; 1403 } 1404 1405 fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps, 1406 link_ksettings->link_modes.supported); 1407 fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps, 1408 link_ksettings->link_modes.advertising); 1409 fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps, 1410 link_ksettings->link_modes.lp_advertising); 1411 1412 if (netif_carrier_ok(dev)) { 1413 base->speed = pi->link_cfg.speed; 1414 base->duplex = DUPLEX_FULL; 1415 } else { 1416 base->speed = SPEED_UNKNOWN; 1417 base->duplex = DUPLEX_UNKNOWN; 1418 } 1419 1420 if (pi->link_cfg.fc & PAUSE_RX) { 1421 if (pi->link_cfg.fc & PAUSE_TX) { 1422 ethtool_link_ksettings_add_link_mode(link_ksettings, 1423 advertising, 1424 Pause); 1425 } else { 1426 ethtool_link_ksettings_add_link_mode(link_ksettings, 1427 advertising, 1428 Asym_Pause); 1429 } 1430 } else if (pi->link_cfg.fc & PAUSE_TX) { 1431 ethtool_link_ksettings_add_link_mode(link_ksettings, 1432 advertising, 1433 Asym_Pause); 1434 } 1435 1436 base->autoneg = pi->link_cfg.autoneg; 1437 if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG) 1438 ethtool_link_ksettings_add_link_mode(link_ksettings, 1439 supported, Autoneg); 1440 if (pi->link_cfg.autoneg) 1441 ethtool_link_ksettings_add_link_mode(link_ksettings, 1442 advertising, Autoneg); 1443 1444 return 0; 1445 } 1446 1447 /* Translate the Firmware FEC value into the ethtool value. */ 1448 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec) 1449 { 1450 unsigned int eth_fec = 0; 1451 1452 if (fw_fec & FW_PORT_CAP32_FEC_RS) 1453 eth_fec |= ETHTOOL_FEC_RS; 1454 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 1455 eth_fec |= ETHTOOL_FEC_BASER; 1456 1457 /* if nothing is set, then FEC is off */ 1458 if (!eth_fec) 1459 eth_fec = ETHTOOL_FEC_OFF; 1460 1461 return eth_fec; 1462 } 1463 1464 /* Translate Common Code FEC value into ethtool value. */ 1465 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec) 1466 { 1467 unsigned int eth_fec = 0; 1468 1469 if (cc_fec & FEC_AUTO) 1470 eth_fec |= ETHTOOL_FEC_AUTO; 1471 if (cc_fec & FEC_RS) 1472 eth_fec |= ETHTOOL_FEC_RS; 1473 if (cc_fec & FEC_BASER_RS) 1474 eth_fec |= ETHTOOL_FEC_BASER; 1475 1476 /* if nothing is set, then FEC is off */ 1477 if (!eth_fec) 1478 eth_fec = ETHTOOL_FEC_OFF; 1479 1480 return eth_fec; 1481 } 1482 1483 static int cxgb4vf_get_fecparam(struct net_device *dev, 1484 struct ethtool_fecparam *fec) 1485 { 1486 const struct port_info *pi = netdev_priv(dev); 1487 const struct link_config *lc = &pi->link_cfg; 1488 1489 /* Translate the Firmware FEC Support into the ethtool value. We 1490 * always support IEEE 802.3 "automatic" selection of Link FEC type if 1491 * any FEC is supported. 1492 */ 1493 fec->fec = fwcap_to_eth_fec(lc->pcaps); 1494 if (fec->fec != ETHTOOL_FEC_OFF) 1495 fec->fec |= ETHTOOL_FEC_AUTO; 1496 1497 /* Translate the current internal FEC parameters into the 1498 * ethtool values. 1499 */ 1500 fec->active_fec = cc_to_eth_fec(lc->fec); 1501 return 0; 1502 } 1503 1504 /* 1505 * Return our driver information. 1506 */ 1507 static void cxgb4vf_get_drvinfo(struct net_device *dev, 1508 struct ethtool_drvinfo *drvinfo) 1509 { 1510 struct adapter *adapter = netdev2adap(dev); 1511 1512 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver)); 1513 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version)); 1514 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)), 1515 sizeof(drvinfo->bus_info)); 1516 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 1517 "%u.%u.%u.%u, TP %u.%u.%u.%u", 1518 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev), 1519 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev), 1520 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev), 1521 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev), 1522 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev), 1523 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev), 1524 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev), 1525 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev)); 1526 } 1527 1528 /* 1529 * Return current adapter message level. 1530 */ 1531 static u32 cxgb4vf_get_msglevel(struct net_device *dev) 1532 { 1533 return netdev2adap(dev)->msg_enable; 1534 } 1535 1536 /* 1537 * Set current adapter message level. 1538 */ 1539 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel) 1540 { 1541 netdev2adap(dev)->msg_enable = msglevel; 1542 } 1543 1544 /* 1545 * Return the device's current Queue Set ring size parameters along with the 1546 * allowed maximum values. Since ethtool doesn't understand the concept of 1547 * multi-queue devices, we just return the current values associated with the 1548 * first Queue Set. 1549 */ 1550 static void cxgb4vf_get_ringparam(struct net_device *dev, 1551 struct ethtool_ringparam *rp) 1552 { 1553 const struct port_info *pi = netdev_priv(dev); 1554 const struct sge *s = &pi->adapter->sge; 1555 1556 rp->rx_max_pending = MAX_RX_BUFFERS; 1557 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES; 1558 rp->rx_jumbo_max_pending = 0; 1559 rp->tx_max_pending = MAX_TXQ_ENTRIES; 1560 1561 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID; 1562 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; 1563 rp->rx_jumbo_pending = 0; 1564 rp->tx_pending = s->ethtxq[pi->first_qset].q.size; 1565 } 1566 1567 /* 1568 * Set the Queue Set ring size parameters for the device. Again, since 1569 * ethtool doesn't allow for the concept of multiple queues per device, we'll 1570 * apply these new values across all of the Queue Sets associated with the 1571 * device -- after vetting them of course! 1572 */ 1573 static int cxgb4vf_set_ringparam(struct net_device *dev, 1574 struct ethtool_ringparam *rp) 1575 { 1576 const struct port_info *pi = netdev_priv(dev); 1577 struct adapter *adapter = pi->adapter; 1578 struct sge *s = &adapter->sge; 1579 int qs; 1580 1581 if (rp->rx_pending > MAX_RX_BUFFERS || 1582 rp->rx_jumbo_pending || 1583 rp->tx_pending > MAX_TXQ_ENTRIES || 1584 rp->rx_mini_pending > MAX_RSPQ_ENTRIES || 1585 rp->rx_mini_pending < MIN_RSPQ_ENTRIES || 1586 rp->rx_pending < MIN_FL_ENTRIES || 1587 rp->tx_pending < MIN_TXQ_ENTRIES) 1588 return -EINVAL; 1589 1590 if (adapter->flags & FULL_INIT_DONE) 1591 return -EBUSY; 1592 1593 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) { 1594 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID; 1595 s->ethrxq[qs].rspq.size = rp->rx_mini_pending; 1596 s->ethtxq[qs].q.size = rp->tx_pending; 1597 } 1598 return 0; 1599 } 1600 1601 /* 1602 * Return the interrupt holdoff timer and count for the first Queue Set on the 1603 * device. Our extension ioctl() (the cxgbtool interface) allows the 1604 * interrupt holdoff timer to be read on all of the device's Queue Sets. 1605 */ 1606 static int cxgb4vf_get_coalesce(struct net_device *dev, 1607 struct ethtool_coalesce *coalesce) 1608 { 1609 const struct port_info *pi = netdev_priv(dev); 1610 const struct adapter *adapter = pi->adapter; 1611 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq; 1612 1613 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq); 1614 coalesce->rx_max_coalesced_frames = 1615 ((rspq->intr_params & QINTR_CNT_EN_F) 1616 ? adapter->sge.counter_val[rspq->pktcnt_idx] 1617 : 0); 1618 return 0; 1619 } 1620 1621 /* 1622 * Set the RX interrupt holdoff timer and count for the first Queue Set on the 1623 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set 1624 * the interrupt holdoff timer on any of the device's Queue Sets. 1625 */ 1626 static int cxgb4vf_set_coalesce(struct net_device *dev, 1627 struct ethtool_coalesce *coalesce) 1628 { 1629 const struct port_info *pi = netdev_priv(dev); 1630 struct adapter *adapter = pi->adapter; 1631 1632 return set_rxq_intr_params(adapter, 1633 &adapter->sge.ethrxq[pi->first_qset].rspq, 1634 coalesce->rx_coalesce_usecs, 1635 coalesce->rx_max_coalesced_frames); 1636 } 1637 1638 /* 1639 * Report current port link pause parameter settings. 1640 */ 1641 static void cxgb4vf_get_pauseparam(struct net_device *dev, 1642 struct ethtool_pauseparam *pauseparam) 1643 { 1644 struct port_info *pi = netdev_priv(dev); 1645 1646 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; 1647 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0; 1648 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0; 1649 } 1650 1651 /* 1652 * Identify the port by blinking the port's LED. 1653 */ 1654 static int cxgb4vf_phys_id(struct net_device *dev, 1655 enum ethtool_phys_id_state state) 1656 { 1657 unsigned int val; 1658 struct port_info *pi = netdev_priv(dev); 1659 1660 if (state == ETHTOOL_ID_ACTIVE) 1661 val = 0xffff; 1662 else if (state == ETHTOOL_ID_INACTIVE) 1663 val = 0; 1664 else 1665 return -EINVAL; 1666 1667 return t4vf_identify_port(pi->adapter, pi->viid, val); 1668 } 1669 1670 /* 1671 * Port stats maintained per queue of the port. 1672 */ 1673 struct queue_port_stats { 1674 u64 tso; 1675 u64 tx_csum; 1676 u64 rx_csum; 1677 u64 vlan_ex; 1678 u64 vlan_ins; 1679 u64 lro_pkts; 1680 u64 lro_merged; 1681 }; 1682 1683 /* 1684 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that 1685 * these need to match the order of statistics returned by 1686 * t4vf_get_port_stats(). 1687 */ 1688 static const char stats_strings[][ETH_GSTRING_LEN] = { 1689 /* 1690 * These must match the layout of the t4vf_port_stats structure. 1691 */ 1692 "TxBroadcastBytes ", 1693 "TxBroadcastFrames ", 1694 "TxMulticastBytes ", 1695 "TxMulticastFrames ", 1696 "TxUnicastBytes ", 1697 "TxUnicastFrames ", 1698 "TxDroppedFrames ", 1699 "TxOffloadBytes ", 1700 "TxOffloadFrames ", 1701 "RxBroadcastBytes ", 1702 "RxBroadcastFrames ", 1703 "RxMulticastBytes ", 1704 "RxMulticastFrames ", 1705 "RxUnicastBytes ", 1706 "RxUnicastFrames ", 1707 "RxErrorFrames ", 1708 1709 /* 1710 * These are accumulated per-queue statistics and must match the 1711 * order of the fields in the queue_port_stats structure. 1712 */ 1713 "TSO ", 1714 "TxCsumOffload ", 1715 "RxCsumGood ", 1716 "VLANextractions ", 1717 "VLANinsertions ", 1718 "GROPackets ", 1719 "GROMerged ", 1720 }; 1721 1722 /* 1723 * Return the number of statistics in the specified statistics set. 1724 */ 1725 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset) 1726 { 1727 switch (sset) { 1728 case ETH_SS_STATS: 1729 return ARRAY_SIZE(stats_strings); 1730 default: 1731 return -EOPNOTSUPP; 1732 } 1733 /*NOTREACHED*/ 1734 } 1735 1736 /* 1737 * Return the strings for the specified statistics set. 1738 */ 1739 static void cxgb4vf_get_strings(struct net_device *dev, 1740 u32 sset, 1741 u8 *data) 1742 { 1743 switch (sset) { 1744 case ETH_SS_STATS: 1745 memcpy(data, stats_strings, sizeof(stats_strings)); 1746 break; 1747 } 1748 } 1749 1750 /* 1751 * Small utility routine to accumulate queue statistics across the queues of 1752 * a "port". 1753 */ 1754 static void collect_sge_port_stats(const struct adapter *adapter, 1755 const struct port_info *pi, 1756 struct queue_port_stats *stats) 1757 { 1758 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset]; 1759 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 1760 int qs; 1761 1762 memset(stats, 0, sizeof(*stats)); 1763 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 1764 stats->tso += txq->tso; 1765 stats->tx_csum += txq->tx_cso; 1766 stats->rx_csum += rxq->stats.rx_cso; 1767 stats->vlan_ex += rxq->stats.vlan_ex; 1768 stats->vlan_ins += txq->vlan_ins; 1769 stats->lro_pkts += rxq->stats.lro_pkts; 1770 stats->lro_merged += rxq->stats.lro_merged; 1771 } 1772 } 1773 1774 /* 1775 * Return the ETH_SS_STATS statistics set. 1776 */ 1777 static void cxgb4vf_get_ethtool_stats(struct net_device *dev, 1778 struct ethtool_stats *stats, 1779 u64 *data) 1780 { 1781 struct port_info *pi = netdev2pinfo(dev); 1782 struct adapter *adapter = pi->adapter; 1783 int err = t4vf_get_port_stats(adapter, pi->pidx, 1784 (struct t4vf_port_stats *)data); 1785 if (err) 1786 memset(data, 0, sizeof(struct t4vf_port_stats)); 1787 1788 data += sizeof(struct t4vf_port_stats) / sizeof(u64); 1789 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); 1790 } 1791 1792 /* 1793 * Return the size of our register map. 1794 */ 1795 static int cxgb4vf_get_regs_len(struct net_device *dev) 1796 { 1797 return T4VF_REGMAP_SIZE; 1798 } 1799 1800 /* 1801 * Dump a block of registers, start to end inclusive, into a buffer. 1802 */ 1803 static void reg_block_dump(struct adapter *adapter, void *regbuf, 1804 unsigned int start, unsigned int end) 1805 { 1806 u32 *bp = regbuf + start - T4VF_REGMAP_START; 1807 1808 for ( ; start <= end; start += sizeof(u32)) { 1809 /* 1810 * Avoid reading the Mailbox Control register since that 1811 * can trigger a Mailbox Ownership Arbitration cycle and 1812 * interfere with communication with the firmware. 1813 */ 1814 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL) 1815 *bp++ = 0xffff; 1816 else 1817 *bp++ = t4_read_reg(adapter, start); 1818 } 1819 } 1820 1821 /* 1822 * Copy our entire register map into the provided buffer. 1823 */ 1824 static void cxgb4vf_get_regs(struct net_device *dev, 1825 struct ethtool_regs *regs, 1826 void *regbuf) 1827 { 1828 struct adapter *adapter = netdev2adap(dev); 1829 1830 regs->version = mk_adap_vers(adapter); 1831 1832 /* 1833 * Fill in register buffer with our register map. 1834 */ 1835 memset(regbuf, 0, T4VF_REGMAP_SIZE); 1836 1837 reg_block_dump(adapter, regbuf, 1838 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST, 1839 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST); 1840 reg_block_dump(adapter, regbuf, 1841 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST, 1842 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST); 1843 1844 /* T5 adds new registers in the PL Register map. 1845 */ 1846 reg_block_dump(adapter, regbuf, 1847 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST, 1848 T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip) 1849 ? PL_VF_WHOAMI_A : PL_VF_REVISION_A)); 1850 reg_block_dump(adapter, regbuf, 1851 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST, 1852 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST); 1853 1854 reg_block_dump(adapter, regbuf, 1855 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST, 1856 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST); 1857 } 1858 1859 /* 1860 * Report current Wake On LAN settings. 1861 */ 1862 static void cxgb4vf_get_wol(struct net_device *dev, 1863 struct ethtool_wolinfo *wol) 1864 { 1865 wol->supported = 0; 1866 wol->wolopts = 0; 1867 memset(&wol->sopass, 0, sizeof(wol->sopass)); 1868 } 1869 1870 /* 1871 * TCP Segmentation Offload flags which we support. 1872 */ 1873 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1874 1875 static const struct ethtool_ops cxgb4vf_ethtool_ops = { 1876 .get_link_ksettings = cxgb4vf_get_link_ksettings, 1877 .get_fecparam = cxgb4vf_get_fecparam, 1878 .get_drvinfo = cxgb4vf_get_drvinfo, 1879 .get_msglevel = cxgb4vf_get_msglevel, 1880 .set_msglevel = cxgb4vf_set_msglevel, 1881 .get_ringparam = cxgb4vf_get_ringparam, 1882 .set_ringparam = cxgb4vf_set_ringparam, 1883 .get_coalesce = cxgb4vf_get_coalesce, 1884 .set_coalesce = cxgb4vf_set_coalesce, 1885 .get_pauseparam = cxgb4vf_get_pauseparam, 1886 .get_link = ethtool_op_get_link, 1887 .get_strings = cxgb4vf_get_strings, 1888 .set_phys_id = cxgb4vf_phys_id, 1889 .get_sset_count = cxgb4vf_get_sset_count, 1890 .get_ethtool_stats = cxgb4vf_get_ethtool_stats, 1891 .get_regs_len = cxgb4vf_get_regs_len, 1892 .get_regs = cxgb4vf_get_regs, 1893 .get_wol = cxgb4vf_get_wol, 1894 }; 1895 1896 /* 1897 * /sys/kernel/debug/cxgb4vf support code and data. 1898 * ================================================ 1899 */ 1900 1901 /* 1902 * Show Firmware Mailbox Command/Reply Log 1903 * 1904 * Note that we don't do any locking when dumping the Firmware Mailbox Log so 1905 * it's possible that we can catch things during a log update and therefore 1906 * see partially corrupted log entries. But i9t's probably Good Enough(tm). 1907 * If we ever decide that we want to make sure that we're dumping a coherent 1908 * log, we'd need to perform locking in the mailbox logging and in 1909 * mboxlog_open() where we'd need to grab the entire mailbox log in one go 1910 * like we do for the Firmware Device Log. But as stated above, meh ... 1911 */ 1912 static int mboxlog_show(struct seq_file *seq, void *v) 1913 { 1914 struct adapter *adapter = seq->private; 1915 struct mbox_cmd_log *log = adapter->mbox_log; 1916 struct mbox_cmd *entry; 1917 int entry_idx, i; 1918 1919 if (v == SEQ_START_TOKEN) { 1920 seq_printf(seq, 1921 "%10s %15s %5s %5s %s\n", 1922 "Seq#", "Tstamp", "Atime", "Etime", 1923 "Command/Reply"); 1924 return 0; 1925 } 1926 1927 entry_idx = log->cursor + ((uintptr_t)v - 2); 1928 if (entry_idx >= log->size) 1929 entry_idx -= log->size; 1930 entry = mbox_cmd_log_entry(log, entry_idx); 1931 1932 /* skip over unused entries */ 1933 if (entry->timestamp == 0) 1934 return 0; 1935 1936 seq_printf(seq, "%10u %15llu %5d %5d", 1937 entry->seqno, entry->timestamp, 1938 entry->access, entry->execute); 1939 for (i = 0; i < MBOX_LEN / 8; i++) { 1940 u64 flit = entry->cmd[i]; 1941 u32 hi = (u32)(flit >> 32); 1942 u32 lo = (u32)flit; 1943 1944 seq_printf(seq, " %08x %08x", hi, lo); 1945 } 1946 seq_puts(seq, "\n"); 1947 return 0; 1948 } 1949 1950 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos) 1951 { 1952 struct adapter *adapter = seq->private; 1953 struct mbox_cmd_log *log = adapter->mbox_log; 1954 1955 return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL); 1956 } 1957 1958 static void *mboxlog_start(struct seq_file *seq, loff_t *pos) 1959 { 1960 return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN; 1961 } 1962 1963 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos) 1964 { 1965 ++*pos; 1966 return mboxlog_get_idx(seq, *pos); 1967 } 1968 1969 static void mboxlog_stop(struct seq_file *seq, void *v) 1970 { 1971 } 1972 1973 static const struct seq_operations mboxlog_seq_ops = { 1974 .start = mboxlog_start, 1975 .next = mboxlog_next, 1976 .stop = mboxlog_stop, 1977 .show = mboxlog_show 1978 }; 1979 1980 static int mboxlog_open(struct inode *inode, struct file *file) 1981 { 1982 int res = seq_open(file, &mboxlog_seq_ops); 1983 1984 if (!res) { 1985 struct seq_file *seq = file->private_data; 1986 1987 seq->private = inode->i_private; 1988 } 1989 return res; 1990 } 1991 1992 static const struct file_operations mboxlog_fops = { 1993 .owner = THIS_MODULE, 1994 .open = mboxlog_open, 1995 .read = seq_read, 1996 .llseek = seq_lseek, 1997 .release = seq_release, 1998 }; 1999 2000 /* 2001 * Show SGE Queue Set information. We display QPL Queues Sets per line. 2002 */ 2003 #define QPL 4 2004 2005 static int sge_qinfo_show(struct seq_file *seq, void *v) 2006 { 2007 struct adapter *adapter = seq->private; 2008 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2009 int qs, r = (uintptr_t)v - 1; 2010 2011 if (r) 2012 seq_putc(seq, '\n'); 2013 2014 #define S3(fmt_spec, s, v) \ 2015 do {\ 2016 seq_printf(seq, "%-12s", s); \ 2017 for (qs = 0; qs < n; ++qs) \ 2018 seq_printf(seq, " %16" fmt_spec, v); \ 2019 seq_putc(seq, '\n'); \ 2020 } while (0) 2021 #define S(s, v) S3("s", s, v) 2022 #define T(s, v) S3("u", s, txq[qs].v) 2023 #define R(s, v) S3("u", s, rxq[qs].v) 2024 2025 if (r < eth_entries) { 2026 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2027 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2028 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2029 2030 S("QType:", "Ethernet"); 2031 S("Interface:", 2032 (rxq[qs].rspq.netdev 2033 ? rxq[qs].rspq.netdev->name 2034 : "N/A")); 2035 S3("d", "Port:", 2036 (rxq[qs].rspq.netdev 2037 ? ((struct port_info *) 2038 netdev_priv(rxq[qs].rspq.netdev))->port_id 2039 : -1)); 2040 T("TxQ ID:", q.abs_id); 2041 T("TxQ size:", q.size); 2042 T("TxQ inuse:", q.in_use); 2043 T("TxQ PIdx:", q.pidx); 2044 T("TxQ CIdx:", q.cidx); 2045 R("RspQ ID:", rspq.abs_id); 2046 R("RspQ size:", rspq.size); 2047 R("RspQE size:", rspq.iqe_len); 2048 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq)); 2049 S3("u", "Intr pktcnt:", 2050 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]); 2051 R("RspQ CIdx:", rspq.cidx); 2052 R("RspQ Gen:", rspq.gen); 2053 R("FL ID:", fl.abs_id); 2054 R("FL size:", fl.size - MIN_FL_RESID); 2055 R("FL avail:", fl.avail); 2056 R("FL PIdx:", fl.pidx); 2057 R("FL CIdx:", fl.cidx); 2058 return 0; 2059 } 2060 2061 r -= eth_entries; 2062 if (r == 0) { 2063 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2064 2065 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue"); 2066 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id); 2067 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2068 qtimer_val(adapter, evtq)); 2069 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2070 adapter->sge.counter_val[evtq->pktcnt_idx]); 2071 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx); 2072 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen); 2073 } else if (r == 1) { 2074 const struct sge_rspq *intrq = &adapter->sge.intrq; 2075 2076 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue"); 2077 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id); 2078 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2079 qtimer_val(adapter, intrq)); 2080 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2081 adapter->sge.counter_val[intrq->pktcnt_idx]); 2082 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx); 2083 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen); 2084 } 2085 2086 #undef R 2087 #undef T 2088 #undef S 2089 #undef S3 2090 2091 return 0; 2092 } 2093 2094 /* 2095 * Return the number of "entries" in our "file". We group the multi-Queue 2096 * sections with QPL Queue Sets per "entry". The sections of the output are: 2097 * 2098 * Ethernet RX/TX Queue Sets 2099 * Firmware Event Queue 2100 * Forwarded Interrupt Queue (if in MSI mode) 2101 */ 2102 static int sge_queue_entries(const struct adapter *adapter) 2103 { 2104 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2105 ((adapter->flags & USING_MSI) != 0); 2106 } 2107 2108 static void *sge_queue_start(struct seq_file *seq, loff_t *pos) 2109 { 2110 int entries = sge_queue_entries(seq->private); 2111 2112 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2113 } 2114 2115 static void sge_queue_stop(struct seq_file *seq, void *v) 2116 { 2117 } 2118 2119 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos) 2120 { 2121 int entries = sge_queue_entries(seq->private); 2122 2123 ++*pos; 2124 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2125 } 2126 2127 static const struct seq_operations sge_qinfo_seq_ops = { 2128 .start = sge_queue_start, 2129 .next = sge_queue_next, 2130 .stop = sge_queue_stop, 2131 .show = sge_qinfo_show 2132 }; 2133 2134 static int sge_qinfo_open(struct inode *inode, struct file *file) 2135 { 2136 int res = seq_open(file, &sge_qinfo_seq_ops); 2137 2138 if (!res) { 2139 struct seq_file *seq = file->private_data; 2140 seq->private = inode->i_private; 2141 } 2142 return res; 2143 } 2144 2145 static const struct file_operations sge_qinfo_debugfs_fops = { 2146 .owner = THIS_MODULE, 2147 .open = sge_qinfo_open, 2148 .read = seq_read, 2149 .llseek = seq_lseek, 2150 .release = seq_release, 2151 }; 2152 2153 /* 2154 * Show SGE Queue Set statistics. We display QPL Queues Sets per line. 2155 */ 2156 #define QPL 4 2157 2158 static int sge_qstats_show(struct seq_file *seq, void *v) 2159 { 2160 struct adapter *adapter = seq->private; 2161 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2162 int qs, r = (uintptr_t)v - 1; 2163 2164 if (r) 2165 seq_putc(seq, '\n'); 2166 2167 #define S3(fmt, s, v) \ 2168 do { \ 2169 seq_printf(seq, "%-16s", s); \ 2170 for (qs = 0; qs < n; ++qs) \ 2171 seq_printf(seq, " %8" fmt, v); \ 2172 seq_putc(seq, '\n'); \ 2173 } while (0) 2174 #define S(s, v) S3("s", s, v) 2175 2176 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v) 2177 #define T(s, v) T3("lu", s, v) 2178 2179 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v) 2180 #define R(s, v) R3("lu", s, v) 2181 2182 if (r < eth_entries) { 2183 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2184 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2185 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2186 2187 S("QType:", "Ethernet"); 2188 S("Interface:", 2189 (rxq[qs].rspq.netdev 2190 ? rxq[qs].rspq.netdev->name 2191 : "N/A")); 2192 R3("u", "RspQNullInts:", rspq.unhandled_irqs); 2193 R("RxPackets:", stats.pkts); 2194 R("RxCSO:", stats.rx_cso); 2195 R("VLANxtract:", stats.vlan_ex); 2196 R("LROmerged:", stats.lro_merged); 2197 R("LROpackets:", stats.lro_pkts); 2198 R("RxDrops:", stats.rx_drops); 2199 T("TSO:", tso); 2200 T("TxCSO:", tx_cso); 2201 T("VLANins:", vlan_ins); 2202 T("TxQFull:", q.stops); 2203 T("TxQRestarts:", q.restarts); 2204 T("TxMapErr:", mapping_err); 2205 R("FLAllocErr:", fl.alloc_failed); 2206 R("FLLrgAlcErr:", fl.large_alloc_failed); 2207 R("FLStarving:", fl.starving); 2208 return 0; 2209 } 2210 2211 r -= eth_entries; 2212 if (r == 0) { 2213 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2214 2215 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue"); 2216 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2217 evtq->unhandled_irqs); 2218 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx); 2219 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen); 2220 } else if (r == 1) { 2221 const struct sge_rspq *intrq = &adapter->sge.intrq; 2222 2223 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue"); 2224 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2225 intrq->unhandled_irqs); 2226 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx); 2227 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen); 2228 } 2229 2230 #undef R 2231 #undef T 2232 #undef S 2233 #undef R3 2234 #undef T3 2235 #undef S3 2236 2237 return 0; 2238 } 2239 2240 /* 2241 * Return the number of "entries" in our "file". We group the multi-Queue 2242 * sections with QPL Queue Sets per "entry". The sections of the output are: 2243 * 2244 * Ethernet RX/TX Queue Sets 2245 * Firmware Event Queue 2246 * Forwarded Interrupt Queue (if in MSI mode) 2247 */ 2248 static int sge_qstats_entries(const struct adapter *adapter) 2249 { 2250 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2251 ((adapter->flags & USING_MSI) != 0); 2252 } 2253 2254 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos) 2255 { 2256 int entries = sge_qstats_entries(seq->private); 2257 2258 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2259 } 2260 2261 static void sge_qstats_stop(struct seq_file *seq, void *v) 2262 { 2263 } 2264 2265 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos) 2266 { 2267 int entries = sge_qstats_entries(seq->private); 2268 2269 (*pos)++; 2270 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2271 } 2272 2273 static const struct seq_operations sge_qstats_seq_ops = { 2274 .start = sge_qstats_start, 2275 .next = sge_qstats_next, 2276 .stop = sge_qstats_stop, 2277 .show = sge_qstats_show 2278 }; 2279 2280 static int sge_qstats_open(struct inode *inode, struct file *file) 2281 { 2282 int res = seq_open(file, &sge_qstats_seq_ops); 2283 2284 if (res == 0) { 2285 struct seq_file *seq = file->private_data; 2286 seq->private = inode->i_private; 2287 } 2288 return res; 2289 } 2290 2291 static const struct file_operations sge_qstats_proc_fops = { 2292 .owner = THIS_MODULE, 2293 .open = sge_qstats_open, 2294 .read = seq_read, 2295 .llseek = seq_lseek, 2296 .release = seq_release, 2297 }; 2298 2299 /* 2300 * Show PCI-E SR-IOV Virtual Function Resource Limits. 2301 */ 2302 static int resources_show(struct seq_file *seq, void *v) 2303 { 2304 struct adapter *adapter = seq->private; 2305 struct vf_resources *vfres = &adapter->params.vfres; 2306 2307 #define S(desc, fmt, var) \ 2308 seq_printf(seq, "%-60s " fmt "\n", \ 2309 desc " (" #var "):", vfres->var) 2310 2311 S("Virtual Interfaces", "%d", nvi); 2312 S("Egress Queues", "%d", neq); 2313 S("Ethernet Control", "%d", nethctrl); 2314 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint); 2315 S("Ingress Queues", "%d", niq); 2316 S("Traffic Class", "%d", tc); 2317 S("Port Access Rights Mask", "%#x", pmask); 2318 S("MAC Address Filters", "%d", nexactf); 2319 S("Firmware Command Read Capabilities", "%#x", r_caps); 2320 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps); 2321 2322 #undef S 2323 2324 return 0; 2325 } 2326 DEFINE_SHOW_ATTRIBUTE(resources); 2327 2328 /* 2329 * Show Virtual Interfaces. 2330 */ 2331 static int interfaces_show(struct seq_file *seq, void *v) 2332 { 2333 if (v == SEQ_START_TOKEN) { 2334 seq_puts(seq, "Interface Port VIID\n"); 2335 } else { 2336 struct adapter *adapter = seq->private; 2337 int pidx = (uintptr_t)v - 2; 2338 struct net_device *dev = adapter->port[pidx]; 2339 struct port_info *pi = netdev_priv(dev); 2340 2341 seq_printf(seq, "%9s %4d %#5x\n", 2342 dev->name, pi->port_id, pi->viid); 2343 } 2344 return 0; 2345 } 2346 2347 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos) 2348 { 2349 return pos <= adapter->params.nports 2350 ? (void *)(uintptr_t)(pos + 1) 2351 : NULL; 2352 } 2353 2354 static void *interfaces_start(struct seq_file *seq, loff_t *pos) 2355 { 2356 return *pos 2357 ? interfaces_get_idx(seq->private, *pos) 2358 : SEQ_START_TOKEN; 2359 } 2360 2361 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos) 2362 { 2363 (*pos)++; 2364 return interfaces_get_idx(seq->private, *pos); 2365 } 2366 2367 static void interfaces_stop(struct seq_file *seq, void *v) 2368 { 2369 } 2370 2371 static const struct seq_operations interfaces_seq_ops = { 2372 .start = interfaces_start, 2373 .next = interfaces_next, 2374 .stop = interfaces_stop, 2375 .show = interfaces_show 2376 }; 2377 2378 static int interfaces_open(struct inode *inode, struct file *file) 2379 { 2380 int res = seq_open(file, &interfaces_seq_ops); 2381 2382 if (res == 0) { 2383 struct seq_file *seq = file->private_data; 2384 seq->private = inode->i_private; 2385 } 2386 return res; 2387 } 2388 2389 static const struct file_operations interfaces_proc_fops = { 2390 .owner = THIS_MODULE, 2391 .open = interfaces_open, 2392 .read = seq_read, 2393 .llseek = seq_lseek, 2394 .release = seq_release, 2395 }; 2396 2397 /* 2398 * /sys/kernel/debugfs/cxgb4vf/ files list. 2399 */ 2400 struct cxgb4vf_debugfs_entry { 2401 const char *name; /* name of debugfs node */ 2402 umode_t mode; /* file system mode */ 2403 const struct file_operations *fops; 2404 }; 2405 2406 static struct cxgb4vf_debugfs_entry debugfs_files[] = { 2407 { "mboxlog", 0444, &mboxlog_fops }, 2408 { "sge_qinfo", 0444, &sge_qinfo_debugfs_fops }, 2409 { "sge_qstats", 0444, &sge_qstats_proc_fops }, 2410 { "resources", 0444, &resources_fops }, 2411 { "interfaces", 0444, &interfaces_proc_fops }, 2412 }; 2413 2414 /* 2415 * Module and device initialization and cleanup code. 2416 * ================================================== 2417 */ 2418 2419 /* 2420 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the 2421 * directory (debugfs_root) has already been set up. 2422 */ 2423 static int setup_debugfs(struct adapter *adapter) 2424 { 2425 int i; 2426 2427 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2428 2429 /* 2430 * Debugfs support is best effort. 2431 */ 2432 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) 2433 (void)debugfs_create_file(debugfs_files[i].name, 2434 debugfs_files[i].mode, 2435 adapter->debugfs_root, 2436 (void *)adapter, 2437 debugfs_files[i].fops); 2438 2439 return 0; 2440 } 2441 2442 /* 2443 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave 2444 * it to our caller to tear down the directory (debugfs_root). 2445 */ 2446 static void cleanup_debugfs(struct adapter *adapter) 2447 { 2448 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2449 2450 /* 2451 * Unlike our sister routine cleanup_proc(), we don't need to remove 2452 * individual entries because a call will be made to 2453 * debugfs_remove_recursive(). We just need to clean up any ancillary 2454 * persistent state. 2455 */ 2456 /* nothing to do */ 2457 } 2458 2459 /* Figure out how many Ports and Queue Sets we can support. This depends on 2460 * knowing our Virtual Function Resources and may be called a second time if 2461 * we fall back from MSI-X to MSI Interrupt Mode. 2462 */ 2463 static void size_nports_qsets(struct adapter *adapter) 2464 { 2465 struct vf_resources *vfres = &adapter->params.vfres; 2466 unsigned int ethqsets, pmask_nports; 2467 2468 /* The number of "ports" which we support is equal to the number of 2469 * Virtual Interfaces with which we've been provisioned. 2470 */ 2471 adapter->params.nports = vfres->nvi; 2472 if (adapter->params.nports > MAX_NPORTS) { 2473 dev_warn(adapter->pdev_dev, "only using %d of %d maximum" 2474 " allowed virtual interfaces\n", MAX_NPORTS, 2475 adapter->params.nports); 2476 adapter->params.nports = MAX_NPORTS; 2477 } 2478 2479 /* We may have been provisioned with more VIs than the number of 2480 * ports we're allowed to access (our Port Access Rights Mask). 2481 * This is obviously a configuration conflict but we don't want to 2482 * crash the kernel or anything silly just because of that. 2483 */ 2484 pmask_nports = hweight32(adapter->params.vfres.pmask); 2485 if (pmask_nports < adapter->params.nports) { 2486 dev_warn(adapter->pdev_dev, "only using %d of %d provisioned" 2487 " virtual interfaces; limited by Port Access Rights" 2488 " mask %#x\n", pmask_nports, adapter->params.nports, 2489 adapter->params.vfres.pmask); 2490 adapter->params.nports = pmask_nports; 2491 } 2492 2493 /* We need to reserve an Ingress Queue for the Asynchronous Firmware 2494 * Event Queue. And if we're using MSI Interrupts, we'll also need to 2495 * reserve an Ingress Queue for a Forwarded Interrupts. 2496 * 2497 * The rest of the FL/Intr-capable ingress queues will be matched up 2498 * one-for-one with Ethernet/Control egress queues in order to form 2499 * "Queue Sets" which will be aportioned between the "ports". For 2500 * each Queue Set, we'll need the ability to allocate two Egress 2501 * Contexts -- one for the Ingress Queue Free List and one for the TX 2502 * Ethernet Queue. 2503 * 2504 * Note that even if we're currently configured to use MSI-X 2505 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded 2506 * to MSI Interrupts if we can't get enough MSI-X Interrupts. If that 2507 * happens we'll need to adjust things later. 2508 */ 2509 ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI); 2510 if (vfres->nethctrl != ethqsets) 2511 ethqsets = min(vfres->nethctrl, ethqsets); 2512 if (vfres->neq < ethqsets*2) 2513 ethqsets = vfres->neq/2; 2514 if (ethqsets > MAX_ETH_QSETS) 2515 ethqsets = MAX_ETH_QSETS; 2516 adapter->sge.max_ethqsets = ethqsets; 2517 2518 if (adapter->sge.max_ethqsets < adapter->params.nports) { 2519 dev_warn(adapter->pdev_dev, "only using %d of %d available" 2520 " virtual interfaces (too few Queue Sets)\n", 2521 adapter->sge.max_ethqsets, adapter->params.nports); 2522 adapter->params.nports = adapter->sge.max_ethqsets; 2523 } 2524 } 2525 2526 /* 2527 * Perform early "adapter" initialization. This is where we discover what 2528 * adapter parameters we're going to be using and initialize basic adapter 2529 * hardware support. 2530 */ 2531 static int adap_init0(struct adapter *adapter) 2532 { 2533 struct sge_params *sge_params = &adapter->params.sge; 2534 struct sge *s = &adapter->sge; 2535 int err; 2536 u32 param, val = 0; 2537 2538 /* 2539 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux 2540 * 2.6.31 and later we can't call pci_reset_function() in order to 2541 * issue an FLR because of a self- deadlock on the device semaphore. 2542 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the 2543 * cases where they're needed -- for instance, some versions of KVM 2544 * fail to reset "Assigned Devices" when the VM reboots. Therefore we 2545 * use the firmware based reset in order to reset any per function 2546 * state. 2547 */ 2548 err = t4vf_fw_reset(adapter); 2549 if (err < 0) { 2550 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err); 2551 return err; 2552 } 2553 2554 /* 2555 * Grab basic operational parameters. These will predominantly have 2556 * been set up by the Physical Function Driver or will be hard coded 2557 * into the adapter. We just have to live with them ... Note that 2558 * we _must_ get our VPD parameters before our SGE parameters because 2559 * we need to know the adapter's core clock from the VPD in order to 2560 * properly decode the SGE Timer Values. 2561 */ 2562 err = t4vf_get_dev_params(adapter); 2563 if (err) { 2564 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2565 " device parameters: err=%d\n", err); 2566 return err; 2567 } 2568 err = t4vf_get_vpd_params(adapter); 2569 if (err) { 2570 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2571 " VPD parameters: err=%d\n", err); 2572 return err; 2573 } 2574 err = t4vf_get_sge_params(adapter); 2575 if (err) { 2576 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2577 " SGE parameters: err=%d\n", err); 2578 return err; 2579 } 2580 err = t4vf_get_rss_glb_config(adapter); 2581 if (err) { 2582 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2583 " RSS parameters: err=%d\n", err); 2584 return err; 2585 } 2586 if (adapter->params.rss.mode != 2587 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 2588 dev_err(adapter->pdev_dev, "unable to operate with global RSS" 2589 " mode %d\n", adapter->params.rss.mode); 2590 return -EINVAL; 2591 } 2592 err = t4vf_sge_init(adapter); 2593 if (err) { 2594 dev_err(adapter->pdev_dev, "unable to use adapter parameters:" 2595 " err=%d\n", err); 2596 return err; 2597 } 2598 2599 /* If we're running on newer firmware, let it know that we're 2600 * prepared to deal with encapsulated CPL messages. Older 2601 * firmware won't understand this and we'll just get 2602 * unencapsulated messages ... 2603 */ 2604 param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2605 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP); 2606 val = 1; 2607 (void) t4vf_set_params(adapter, 1, ¶m, &val); 2608 2609 /* 2610 * Retrieve our RX interrupt holdoff timer values and counter 2611 * threshold values from the SGE parameters. 2612 */ 2613 s->timer_val[0] = core_ticks_to_us(adapter, 2614 TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1)); 2615 s->timer_val[1] = core_ticks_to_us(adapter, 2616 TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1)); 2617 s->timer_val[2] = core_ticks_to_us(adapter, 2618 TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3)); 2619 s->timer_val[3] = core_ticks_to_us(adapter, 2620 TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3)); 2621 s->timer_val[4] = core_ticks_to_us(adapter, 2622 TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5)); 2623 s->timer_val[5] = core_ticks_to_us(adapter, 2624 TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5)); 2625 2626 s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold); 2627 s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold); 2628 s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold); 2629 s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold); 2630 2631 /* 2632 * Grab our Virtual Interface resource allocation, extract the 2633 * features that we're interested in and do a bit of sanity testing on 2634 * what we discover. 2635 */ 2636 err = t4vf_get_vfres(adapter); 2637 if (err) { 2638 dev_err(adapter->pdev_dev, "unable to get virtual interface" 2639 " resources: err=%d\n", err); 2640 return err; 2641 } 2642 2643 /* Check for various parameter sanity issues */ 2644 if (adapter->params.vfres.pmask == 0) { 2645 dev_err(adapter->pdev_dev, "no port access configured\n" 2646 "usable!\n"); 2647 return -EINVAL; 2648 } 2649 if (adapter->params.vfres.nvi == 0) { 2650 dev_err(adapter->pdev_dev, "no virtual interfaces configured/" 2651 "usable!\n"); 2652 return -EINVAL; 2653 } 2654 2655 /* Initialize nports and max_ethqsets now that we have our Virtual 2656 * Function Resources. 2657 */ 2658 size_nports_qsets(adapter); 2659 2660 return 0; 2661 } 2662 2663 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx, 2664 u8 pkt_cnt_idx, unsigned int size, 2665 unsigned int iqe_size) 2666 { 2667 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 2668 (pkt_cnt_idx < SGE_NCOUNTERS ? 2669 QINTR_CNT_EN_F : 0)); 2670 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS 2671 ? pkt_cnt_idx 2672 : 0); 2673 rspq->iqe_len = iqe_size; 2674 rspq->size = size; 2675 } 2676 2677 /* 2678 * Perform default configuration of DMA queues depending on the number and 2679 * type of ports we found and the number of available CPUs. Most settings can 2680 * be modified by the admin via ethtool and cxgbtool prior to the adapter 2681 * being brought up for the first time. 2682 */ 2683 static void cfg_queues(struct adapter *adapter) 2684 { 2685 struct sge *s = &adapter->sge; 2686 int q10g, n10g, qidx, pidx, qs; 2687 size_t iqe_size; 2688 2689 /* 2690 * We should not be called till we know how many Queue Sets we can 2691 * support. In particular, this means that we need to know what kind 2692 * of interrupts we'll be using ... 2693 */ 2694 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 2695 2696 /* 2697 * Count the number of 10GbE Virtual Interfaces that we have. 2698 */ 2699 n10g = 0; 2700 for_each_port(adapter, pidx) 2701 n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg); 2702 2703 /* 2704 * We default to 1 queue per non-10G port and up to # of cores queues 2705 * per 10G port. 2706 */ 2707 if (n10g == 0) 2708 q10g = 0; 2709 else { 2710 int n1g = (adapter->params.nports - n10g); 2711 q10g = (adapter->sge.max_ethqsets - n1g) / n10g; 2712 if (q10g > num_online_cpus()) 2713 q10g = num_online_cpus(); 2714 } 2715 2716 /* 2717 * Allocate the "Queue Sets" to the various Virtual Interfaces. 2718 * The layout will be established in setup_sge_queues() when the 2719 * adapter is brough up for the first time. 2720 */ 2721 qidx = 0; 2722 for_each_port(adapter, pidx) { 2723 struct port_info *pi = adap2pinfo(adapter, pidx); 2724 2725 pi->first_qset = qidx; 2726 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 2727 qidx += pi->nqsets; 2728 } 2729 s->ethqsets = qidx; 2730 2731 /* 2732 * The Ingress Queue Entry Size for our various Response Queues needs 2733 * to be big enough to accommodate the largest message we can receive 2734 * from the chip/firmware; which is 64 bytes ... 2735 */ 2736 iqe_size = 64; 2737 2738 /* 2739 * Set up default Queue Set parameters ... Start off with the 2740 * shortest interrupt holdoff timer. 2741 */ 2742 for (qs = 0; qs < s->max_ethqsets; qs++) { 2743 struct sge_eth_rxq *rxq = &s->ethrxq[qs]; 2744 struct sge_eth_txq *txq = &s->ethtxq[qs]; 2745 2746 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size); 2747 rxq->fl.size = 72; 2748 txq->q.size = 1024; 2749 } 2750 2751 /* 2752 * The firmware event queue is used for link state changes and 2753 * notifications of TX DMA completions. 2754 */ 2755 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size); 2756 2757 /* 2758 * The forwarded interrupt queue is used when we're in MSI interrupt 2759 * mode. In this mode all interrupts associated with RX queues will 2760 * be forwarded to a single queue which we'll associate with our MSI 2761 * interrupt vector. The messages dropped in the forwarded interrupt 2762 * queue will indicate which ingress queue needs servicing ... This 2763 * queue needs to be large enough to accommodate all of the ingress 2764 * queues which are forwarding their interrupt (+1 to prevent the PIDX 2765 * from equalling the CIDX if every ingress queue has an outstanding 2766 * interrupt). The queue doesn't need to be any larger because no 2767 * ingress queue will ever have more than one outstanding interrupt at 2768 * any time ... 2769 */ 2770 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1, 2771 iqe_size); 2772 } 2773 2774 /* 2775 * Reduce the number of Ethernet queues across all ports to at most n. 2776 * n provides at least one queue per port. 2777 */ 2778 static void reduce_ethqs(struct adapter *adapter, int n) 2779 { 2780 int i; 2781 struct port_info *pi; 2782 2783 /* 2784 * While we have too many active Ether Queue Sets, interate across the 2785 * "ports" and reduce their individual Queue Set allocations. 2786 */ 2787 BUG_ON(n < adapter->params.nports); 2788 while (n < adapter->sge.ethqsets) 2789 for_each_port(adapter, i) { 2790 pi = adap2pinfo(adapter, i); 2791 if (pi->nqsets > 1) { 2792 pi->nqsets--; 2793 adapter->sge.ethqsets--; 2794 if (adapter->sge.ethqsets <= n) 2795 break; 2796 } 2797 } 2798 2799 /* 2800 * Reassign the starting Queue Sets for each of the "ports" ... 2801 */ 2802 n = 0; 2803 for_each_port(adapter, i) { 2804 pi = adap2pinfo(adapter, i); 2805 pi->first_qset = n; 2806 n += pi->nqsets; 2807 } 2808 } 2809 2810 /* 2811 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally 2812 * we get a separate MSI-X vector for every "Queue Set" plus any extras we 2813 * need. Minimally we need one for every Virtual Interface plus those needed 2814 * for our "extras". Note that this process may lower the maximum number of 2815 * allowed Queue Sets ... 2816 */ 2817 static int enable_msix(struct adapter *adapter) 2818 { 2819 int i, want, need, nqsets; 2820 struct msix_entry entries[MSIX_ENTRIES]; 2821 struct sge *s = &adapter->sge; 2822 2823 for (i = 0; i < MSIX_ENTRIES; ++i) 2824 entries[i].entry = i; 2825 2826 /* 2827 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets" 2828 * plus those needed for our "extras" (for example, the firmware 2829 * message queue). We _need_ at least one "Queue Set" per Virtual 2830 * Interface plus those needed for our "extras". So now we get to see 2831 * if the song is right ... 2832 */ 2833 want = s->max_ethqsets + MSIX_EXTRAS; 2834 need = adapter->params.nports + MSIX_EXTRAS; 2835 2836 want = pci_enable_msix_range(adapter->pdev, entries, need, want); 2837 if (want < 0) 2838 return want; 2839 2840 nqsets = want - MSIX_EXTRAS; 2841 if (nqsets < s->max_ethqsets) { 2842 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors" 2843 " for %d Queue Sets\n", nqsets); 2844 s->max_ethqsets = nqsets; 2845 if (nqsets < s->ethqsets) 2846 reduce_ethqs(adapter, nqsets); 2847 } 2848 for (i = 0; i < want; ++i) 2849 adapter->msix_info[i].vec = entries[i].vector; 2850 2851 return 0; 2852 } 2853 2854 static const struct net_device_ops cxgb4vf_netdev_ops = { 2855 .ndo_open = cxgb4vf_open, 2856 .ndo_stop = cxgb4vf_stop, 2857 .ndo_start_xmit = t4vf_eth_xmit, 2858 .ndo_get_stats = cxgb4vf_get_stats, 2859 .ndo_set_rx_mode = cxgb4vf_set_rxmode, 2860 .ndo_set_mac_address = cxgb4vf_set_mac_addr, 2861 .ndo_validate_addr = eth_validate_addr, 2862 .ndo_do_ioctl = cxgb4vf_do_ioctl, 2863 .ndo_change_mtu = cxgb4vf_change_mtu, 2864 .ndo_fix_features = cxgb4vf_fix_features, 2865 .ndo_set_features = cxgb4vf_set_features, 2866 #ifdef CONFIG_NET_POLL_CONTROLLER 2867 .ndo_poll_controller = cxgb4vf_poll_controller, 2868 #endif 2869 }; 2870 2871 /* 2872 * "Probe" a device: initialize a device and construct all kernel and driver 2873 * state needed to manage the device. This routine is called "init_one" in 2874 * the PF Driver ... 2875 */ 2876 static int cxgb4vf_pci_probe(struct pci_dev *pdev, 2877 const struct pci_device_id *ent) 2878 { 2879 int pci_using_dac; 2880 int err, pidx; 2881 unsigned int pmask; 2882 struct adapter *adapter; 2883 struct port_info *pi; 2884 struct net_device *netdev; 2885 unsigned int pf; 2886 2887 /* 2888 * Print our driver banner the first time we're called to initialize a 2889 * device. 2890 */ 2891 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION); 2892 2893 /* 2894 * Initialize generic PCI device state. 2895 */ 2896 err = pci_enable_device(pdev); 2897 if (err) { 2898 dev_err(&pdev->dev, "cannot enable PCI device\n"); 2899 return err; 2900 } 2901 2902 /* 2903 * Reserve PCI resources for the device. If we can't get them some 2904 * other driver may have already claimed the device ... 2905 */ 2906 err = pci_request_regions(pdev, KBUILD_MODNAME); 2907 if (err) { 2908 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 2909 goto err_disable_device; 2910 } 2911 2912 /* 2913 * Set up our DMA mask: try for 64-bit address masking first and 2914 * fall back to 32-bit if we can't get 64 bits ... 2915 */ 2916 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 2917 if (err == 0) { 2918 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 2919 if (err) { 2920 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for" 2921 " coherent allocations\n"); 2922 goto err_release_regions; 2923 } 2924 pci_using_dac = 1; 2925 } else { 2926 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2927 if (err != 0) { 2928 dev_err(&pdev->dev, "no usable DMA configuration\n"); 2929 goto err_release_regions; 2930 } 2931 pci_using_dac = 0; 2932 } 2933 2934 /* 2935 * Enable bus mastering for the device ... 2936 */ 2937 pci_set_master(pdev); 2938 2939 /* 2940 * Allocate our adapter data structure and attach it to the device. 2941 */ 2942 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 2943 if (!adapter) { 2944 err = -ENOMEM; 2945 goto err_release_regions; 2946 } 2947 pci_set_drvdata(pdev, adapter); 2948 adapter->pdev = pdev; 2949 adapter->pdev_dev = &pdev->dev; 2950 2951 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 2952 (sizeof(struct mbox_cmd) * 2953 T4VF_OS_LOG_MBOX_CMDS), 2954 GFP_KERNEL); 2955 if (!adapter->mbox_log) { 2956 err = -ENOMEM; 2957 goto err_free_adapter; 2958 } 2959 adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS; 2960 2961 /* 2962 * Initialize SMP data synchronization resources. 2963 */ 2964 spin_lock_init(&adapter->stats_lock); 2965 spin_lock_init(&adapter->mbox_lock); 2966 INIT_LIST_HEAD(&adapter->mlist.list); 2967 2968 /* 2969 * Map our I/O registers in BAR0. 2970 */ 2971 adapter->regs = pci_ioremap_bar(pdev, 0); 2972 if (!adapter->regs) { 2973 dev_err(&pdev->dev, "cannot map device registers\n"); 2974 err = -ENOMEM; 2975 goto err_free_adapter; 2976 } 2977 2978 /* Wait for the device to become ready before proceeding ... 2979 */ 2980 err = t4vf_prep_adapter(adapter); 2981 if (err) { 2982 dev_err(adapter->pdev_dev, "device didn't become ready:" 2983 " err=%d\n", err); 2984 goto err_unmap_bar0; 2985 } 2986 2987 /* For T5 and later we want to use the new BAR-based User Doorbells, 2988 * so we need to map BAR2 here ... 2989 */ 2990 if (!is_t4(adapter->params.chip)) { 2991 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 2992 pci_resource_len(pdev, 2)); 2993 if (!adapter->bar2) { 2994 dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n"); 2995 err = -ENOMEM; 2996 goto err_unmap_bar0; 2997 } 2998 } 2999 /* 3000 * Initialize adapter level features. 3001 */ 3002 adapter->name = pci_name(pdev); 3003 adapter->msg_enable = DFLT_MSG_ENABLE; 3004 3005 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 3006 * Ingress Packet Data to Free List Buffers in order to allow for 3007 * chipset performance optimizations between the Root Complex and 3008 * Memory Controllers. (Messages to the associated Ingress Queue 3009 * notifying new Packet Placement in the Free Lists Buffers will be 3010 * send without the Relaxed Ordering Attribute thus guaranteeing that 3011 * all preceding PCIe Transaction Layer Packets will be processed 3012 * first.) But some Root Complexes have various issues with Upstream 3013 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 3014 * The PCIe devices which under the Root Complexes will be cleared the 3015 * Relaxed Ordering bit in the configuration space, So we check our 3016 * PCIe configuration space to see if it's flagged with advice against 3017 * using Relaxed Ordering. 3018 */ 3019 if (!pcie_relaxed_ordering_enabled(pdev)) 3020 adapter->flags |= ROOT_NO_RELAXED_ORDERING; 3021 3022 err = adap_init0(adapter); 3023 if (err) 3024 goto err_unmap_bar; 3025 3026 /* Initialize hash mac addr list */ 3027 INIT_LIST_HEAD(&adapter->mac_hlist); 3028 3029 /* 3030 * Allocate our "adapter ports" and stitch everything together. 3031 */ 3032 pmask = adapter->params.vfres.pmask; 3033 pf = t4vf_get_pf_from_vf(adapter); 3034 for_each_port(adapter, pidx) { 3035 int port_id, viid; 3036 u8 mac[ETH_ALEN]; 3037 unsigned int naddr = 1; 3038 3039 /* 3040 * We simplistically allocate our virtual interfaces 3041 * sequentially across the port numbers to which we have 3042 * access rights. This should be configurable in some manner 3043 * ... 3044 */ 3045 if (pmask == 0) 3046 break; 3047 port_id = ffs(pmask) - 1; 3048 pmask &= ~(1 << port_id); 3049 viid = t4vf_alloc_vi(adapter, port_id); 3050 if (viid < 0) { 3051 dev_err(&pdev->dev, "cannot allocate VI for port %d:" 3052 " err=%d\n", port_id, viid); 3053 err = viid; 3054 goto err_free_dev; 3055 } 3056 3057 /* 3058 * Allocate our network device and stitch things together. 3059 */ 3060 netdev = alloc_etherdev_mq(sizeof(struct port_info), 3061 MAX_PORT_QSETS); 3062 if (netdev == NULL) { 3063 t4vf_free_vi(adapter, viid); 3064 err = -ENOMEM; 3065 goto err_free_dev; 3066 } 3067 adapter->port[pidx] = netdev; 3068 SET_NETDEV_DEV(netdev, &pdev->dev); 3069 pi = netdev_priv(netdev); 3070 pi->adapter = adapter; 3071 pi->pidx = pidx; 3072 pi->port_id = port_id; 3073 pi->viid = viid; 3074 3075 /* 3076 * Initialize the starting state of our "port" and register 3077 * it. 3078 */ 3079 pi->xact_addr_filt = -1; 3080 netif_carrier_off(netdev); 3081 netdev->irq = pdev->irq; 3082 3083 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 3084 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3085 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM; 3086 netdev->vlan_features = NETIF_F_SG | TSO_FLAGS | 3087 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3088 NETIF_F_HIGHDMA; 3089 netdev->features = netdev->hw_features | 3090 NETIF_F_HW_VLAN_CTAG_TX; 3091 if (pci_using_dac) 3092 netdev->features |= NETIF_F_HIGHDMA; 3093 3094 netdev->priv_flags |= IFF_UNICAST_FLT; 3095 netdev->min_mtu = 81; 3096 netdev->max_mtu = ETH_MAX_MTU; 3097 3098 netdev->netdev_ops = &cxgb4vf_netdev_ops; 3099 netdev->ethtool_ops = &cxgb4vf_ethtool_ops; 3100 netdev->dev_port = pi->port_id; 3101 3102 /* 3103 * Initialize the hardware/software state for the port. 3104 */ 3105 err = t4vf_port_init(adapter, pidx); 3106 if (err) { 3107 dev_err(&pdev->dev, "cannot initialize port %d\n", 3108 pidx); 3109 goto err_free_dev; 3110 } 3111 3112 err = t4vf_get_vf_mac_acl(adapter, pf, &naddr, mac); 3113 if (err) { 3114 dev_err(&pdev->dev, 3115 "unable to determine MAC ACL address, " 3116 "continuing anyway.. (status %d)\n", err); 3117 } else if (naddr && adapter->params.vfres.nvi == 1) { 3118 struct sockaddr addr; 3119 3120 ether_addr_copy(addr.sa_data, mac); 3121 err = cxgb4vf_set_mac_addr(netdev, &addr); 3122 if (err) { 3123 dev_err(&pdev->dev, 3124 "unable to set MAC address %pM\n", 3125 mac); 3126 goto err_free_dev; 3127 } 3128 dev_info(&pdev->dev, 3129 "Using assigned MAC ACL: %pM\n", mac); 3130 } 3131 } 3132 3133 /* See what interrupts we'll be using. If we've been configured to 3134 * use MSI-X interrupts, try to enable them but fall back to using 3135 * MSI interrupts if we can't enable MSI-X interrupts. If we can't 3136 * get MSI interrupts we bail with the error. 3137 */ 3138 if (msi == MSI_MSIX && enable_msix(adapter) == 0) 3139 adapter->flags |= USING_MSIX; 3140 else { 3141 if (msi == MSI_MSIX) { 3142 dev_info(adapter->pdev_dev, 3143 "Unable to use MSI-X Interrupts; falling " 3144 "back to MSI Interrupts\n"); 3145 3146 /* We're going to need a Forwarded Interrupt Queue so 3147 * that may cut into how many Queue Sets we can 3148 * support. 3149 */ 3150 msi = MSI_MSI; 3151 size_nports_qsets(adapter); 3152 } 3153 err = pci_enable_msi(pdev); 3154 if (err) { 3155 dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;" 3156 " err=%d\n", err); 3157 goto err_free_dev; 3158 } 3159 adapter->flags |= USING_MSI; 3160 } 3161 3162 /* Now that we know how many "ports" we have and what interrupt 3163 * mechanism we're going to use, we can configure our queue resources. 3164 */ 3165 cfg_queues(adapter); 3166 3167 /* 3168 * The "card" is now ready to go. If any errors occur during device 3169 * registration we do not fail the whole "card" but rather proceed 3170 * only with the ports we manage to register successfully. However we 3171 * must register at least one net device. 3172 */ 3173 for_each_port(adapter, pidx) { 3174 struct port_info *pi = netdev_priv(adapter->port[pidx]); 3175 netdev = adapter->port[pidx]; 3176 if (netdev == NULL) 3177 continue; 3178 3179 netif_set_real_num_tx_queues(netdev, pi->nqsets); 3180 netif_set_real_num_rx_queues(netdev, pi->nqsets); 3181 3182 err = register_netdev(netdev); 3183 if (err) { 3184 dev_warn(&pdev->dev, "cannot register net device %s," 3185 " skipping\n", netdev->name); 3186 continue; 3187 } 3188 3189 set_bit(pidx, &adapter->registered_device_map); 3190 } 3191 if (adapter->registered_device_map == 0) { 3192 dev_err(&pdev->dev, "could not register any net devices\n"); 3193 goto err_disable_interrupts; 3194 } 3195 3196 /* 3197 * Set up our debugfs entries. 3198 */ 3199 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) { 3200 adapter->debugfs_root = 3201 debugfs_create_dir(pci_name(pdev), 3202 cxgb4vf_debugfs_root); 3203 if (IS_ERR_OR_NULL(adapter->debugfs_root)) 3204 dev_warn(&pdev->dev, "could not create debugfs" 3205 " directory"); 3206 else 3207 setup_debugfs(adapter); 3208 } 3209 3210 /* 3211 * Print a short notice on the existence and configuration of the new 3212 * VF network device ... 3213 */ 3214 for_each_port(adapter, pidx) { 3215 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n", 3216 adapter->port[pidx]->name, 3217 (adapter->flags & USING_MSIX) ? "MSI-X" : 3218 (adapter->flags & USING_MSI) ? "MSI" : ""); 3219 } 3220 3221 /* 3222 * Return success! 3223 */ 3224 return 0; 3225 3226 /* 3227 * Error recovery and exit code. Unwind state that's been created 3228 * so far and return the error. 3229 */ 3230 err_disable_interrupts: 3231 if (adapter->flags & USING_MSIX) { 3232 pci_disable_msix(adapter->pdev); 3233 adapter->flags &= ~USING_MSIX; 3234 } else if (adapter->flags & USING_MSI) { 3235 pci_disable_msi(adapter->pdev); 3236 adapter->flags &= ~USING_MSI; 3237 } 3238 3239 err_free_dev: 3240 for_each_port(adapter, pidx) { 3241 netdev = adapter->port[pidx]; 3242 if (netdev == NULL) 3243 continue; 3244 pi = netdev_priv(netdev); 3245 t4vf_free_vi(adapter, pi->viid); 3246 if (test_bit(pidx, &adapter->registered_device_map)) 3247 unregister_netdev(netdev); 3248 free_netdev(netdev); 3249 } 3250 3251 err_unmap_bar: 3252 if (!is_t4(adapter->params.chip)) 3253 iounmap(adapter->bar2); 3254 3255 err_unmap_bar0: 3256 iounmap(adapter->regs); 3257 3258 err_free_adapter: 3259 kfree(adapter->mbox_log); 3260 kfree(adapter); 3261 3262 err_release_regions: 3263 pci_release_regions(pdev); 3264 pci_clear_master(pdev); 3265 3266 err_disable_device: 3267 pci_disable_device(pdev); 3268 3269 return err; 3270 } 3271 3272 /* 3273 * "Remove" a device: tear down all kernel and driver state created in the 3274 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note 3275 * that this is called "remove_one" in the PF Driver.) 3276 */ 3277 static void cxgb4vf_pci_remove(struct pci_dev *pdev) 3278 { 3279 struct adapter *adapter = pci_get_drvdata(pdev); 3280 struct hash_mac_addr *entry, *tmp; 3281 3282 /* 3283 * Tear down driver state associated with device. 3284 */ 3285 if (adapter) { 3286 int pidx; 3287 3288 /* 3289 * Stop all of our activity. Unregister network port, 3290 * disable interrupts, etc. 3291 */ 3292 for_each_port(adapter, pidx) 3293 if (test_bit(pidx, &adapter->registered_device_map)) 3294 unregister_netdev(adapter->port[pidx]); 3295 t4vf_sge_stop(adapter); 3296 if (adapter->flags & USING_MSIX) { 3297 pci_disable_msix(adapter->pdev); 3298 adapter->flags &= ~USING_MSIX; 3299 } else if (adapter->flags & USING_MSI) { 3300 pci_disable_msi(adapter->pdev); 3301 adapter->flags &= ~USING_MSI; 3302 } 3303 3304 /* 3305 * Tear down our debugfs entries. 3306 */ 3307 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) { 3308 cleanup_debugfs(adapter); 3309 debugfs_remove_recursive(adapter->debugfs_root); 3310 } 3311 3312 /* 3313 * Free all of the various resources which we've acquired ... 3314 */ 3315 t4vf_free_sge_resources(adapter); 3316 for_each_port(adapter, pidx) { 3317 struct net_device *netdev = adapter->port[pidx]; 3318 struct port_info *pi; 3319 3320 if (netdev == NULL) 3321 continue; 3322 3323 pi = netdev_priv(netdev); 3324 t4vf_free_vi(adapter, pi->viid); 3325 free_netdev(netdev); 3326 } 3327 iounmap(adapter->regs); 3328 if (!is_t4(adapter->params.chip)) 3329 iounmap(adapter->bar2); 3330 kfree(adapter->mbox_log); 3331 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 3332 list) { 3333 list_del(&entry->list); 3334 kfree(entry); 3335 } 3336 kfree(adapter); 3337 } 3338 3339 /* 3340 * Disable the device and release its PCI resources. 3341 */ 3342 pci_disable_device(pdev); 3343 pci_clear_master(pdev); 3344 pci_release_regions(pdev); 3345 } 3346 3347 /* 3348 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt 3349 * delivery. 3350 */ 3351 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev) 3352 { 3353 struct adapter *adapter; 3354 int pidx; 3355 3356 adapter = pci_get_drvdata(pdev); 3357 if (!adapter) 3358 return; 3359 3360 /* Disable all Virtual Interfaces. This will shut down the 3361 * delivery of all ingress packets into the chip for these 3362 * Virtual Interfaces. 3363 */ 3364 for_each_port(adapter, pidx) 3365 if (test_bit(pidx, &adapter->registered_device_map)) 3366 unregister_netdev(adapter->port[pidx]); 3367 3368 /* Free up all Queues which will prevent further DMA and 3369 * Interrupts allowing various internal pathways to drain. 3370 */ 3371 t4vf_sge_stop(adapter); 3372 if (adapter->flags & USING_MSIX) { 3373 pci_disable_msix(adapter->pdev); 3374 adapter->flags &= ~USING_MSIX; 3375 } else if (adapter->flags & USING_MSI) { 3376 pci_disable_msi(adapter->pdev); 3377 adapter->flags &= ~USING_MSI; 3378 } 3379 3380 /* 3381 * Free up all Queues which will prevent further DMA and 3382 * Interrupts allowing various internal pathways to drain. 3383 */ 3384 t4vf_free_sge_resources(adapter); 3385 pci_set_drvdata(pdev, NULL); 3386 } 3387 3388 /* Macros needed to support the PCI Device ID Table ... 3389 */ 3390 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 3391 static const struct pci_device_id cxgb4vf_pci_tbl[] = { 3392 #define CH_PCI_DEVICE_ID_FUNCTION 0x8 3393 3394 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 3395 { PCI_VDEVICE(CHELSIO, (devid)), 0 } 3396 3397 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } } 3398 3399 #include "../cxgb4/t4_pci_id_tbl.h" 3400 3401 MODULE_DESCRIPTION(DRV_DESC); 3402 MODULE_AUTHOR("Chelsio Communications"); 3403 MODULE_LICENSE("Dual BSD/GPL"); 3404 MODULE_VERSION(DRV_VERSION); 3405 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl); 3406 3407 static struct pci_driver cxgb4vf_driver = { 3408 .name = KBUILD_MODNAME, 3409 .id_table = cxgb4vf_pci_tbl, 3410 .probe = cxgb4vf_pci_probe, 3411 .remove = cxgb4vf_pci_remove, 3412 .shutdown = cxgb4vf_pci_shutdown, 3413 }; 3414 3415 /* 3416 * Initialize global driver state. 3417 */ 3418 static int __init cxgb4vf_module_init(void) 3419 { 3420 int ret; 3421 3422 /* 3423 * Vet our module parameters. 3424 */ 3425 if (msi != MSI_MSIX && msi != MSI_MSI) { 3426 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n", 3427 msi, MSI_MSIX, MSI_MSI); 3428 return -EINVAL; 3429 } 3430 3431 /* Debugfs support is optional, just warn if this fails */ 3432 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 3433 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) 3434 pr_warn("could not create debugfs entry, continuing\n"); 3435 3436 ret = pci_register_driver(&cxgb4vf_driver); 3437 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) 3438 debugfs_remove(cxgb4vf_debugfs_root); 3439 return ret; 3440 } 3441 3442 /* 3443 * Tear down global driver state. 3444 */ 3445 static void __exit cxgb4vf_module_exit(void) 3446 { 3447 pci_unregister_driver(&cxgb4vf_driver); 3448 debugfs_remove(cxgb4vf_debugfs_root); 3449 } 3450 3451 module_init(cxgb4vf_module_init); 3452 module_exit(cxgb4vf_module_exit); 3453