1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <linux/debugfs.h>
46 #include <linux/ethtool.h>
47 
48 #include "t4vf_common.h"
49 #include "t4vf_defs.h"
50 
51 #include "../cxgb4/t4_regs.h"
52 #include "../cxgb4/t4_msg.h"
53 
54 /*
55  * Generic information about the driver.
56  */
57 #define DRV_VERSION "1.0.0"
58 #define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver"
59 
60 /*
61  * Module Parameters.
62  * ==================
63  */
64 
65 /*
66  * Default ethtool "message level" for adapters.
67  */
68 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
69 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
70 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
71 
72 static int dflt_msg_enable = DFLT_MSG_ENABLE;
73 
74 module_param(dflt_msg_enable, int, 0644);
75 MODULE_PARM_DESC(dflt_msg_enable,
76 		 "default adapter ethtool message level bitmap");
77 
78 /*
79  * The driver uses the best interrupt scheme available on a platform in the
80  * order MSI-X then MSI.  This parameter determines which of these schemes the
81  * driver may consider as follows:
82  *
83  *     msi = 2: choose from among MSI-X and MSI
84  *     msi = 1: only consider MSI interrupts
85  *
86  * Note that unlike the Physical Function driver, this Virtual Function driver
87  * does _not_ support legacy INTx interrupts (this limitation is mandated by
88  * the PCI-E SR-IOV standard).
89  */
90 #define MSI_MSIX	2
91 #define MSI_MSI		1
92 #define MSI_DEFAULT	MSI_MSIX
93 
94 static int msi = MSI_DEFAULT;
95 
96 module_param(msi, int, 0644);
97 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
98 
99 /*
100  * Fundamental constants.
101  * ======================
102  */
103 
104 enum {
105 	MAX_TXQ_ENTRIES		= 16384,
106 	MAX_RSPQ_ENTRIES	= 16384,
107 	MAX_RX_BUFFERS		= 16384,
108 
109 	MIN_TXQ_ENTRIES		= 32,
110 	MIN_RSPQ_ENTRIES	= 128,
111 	MIN_FL_ENTRIES		= 16,
112 
113 	/*
114 	 * For purposes of manipulating the Free List size we need to
115 	 * recognize that Free Lists are actually Egress Queues (the host
116 	 * produces free buffers which the hardware consumes), Egress Queues
117 	 * indices are all in units of Egress Context Units bytes, and free
118 	 * list entries are 64-bit PCI DMA addresses.  And since the state of
119 	 * the Producer Index == the Consumer Index implies an EMPTY list, we
120 	 * always have at least one Egress Unit's worth of Free List entries
121 	 * unused.  See sge.c for more details ...
122 	 */
123 	EQ_UNIT = SGE_EQ_IDXSIZE,
124 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
125 	MIN_FL_RESID = FL_PER_EQ_UNIT,
126 };
127 
128 /*
129  * Global driver state.
130  * ====================
131  */
132 
133 static struct dentry *cxgb4vf_debugfs_root;
134 
135 /*
136  * OS "Callback" functions.
137  * ========================
138  */
139 
140 /*
141  * The link status has changed on the indicated "port" (Virtual Interface).
142  */
143 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
144 {
145 	struct net_device *dev = adapter->port[pidx];
146 
147 	/*
148 	 * If the port is disabled or the current recorded "link up"
149 	 * status matches the new status, just return.
150 	 */
151 	if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
152 		return;
153 
154 	/*
155 	 * Tell the OS that the link status has changed and print a short
156 	 * informative message on the console about the event.
157 	 */
158 	if (link_ok) {
159 		const char *s;
160 		const char *fc;
161 		const struct port_info *pi = netdev_priv(dev);
162 
163 		netif_carrier_on(dev);
164 
165 		switch (pi->link_cfg.speed) {
166 		case SPEED_10000:
167 			s = "10Gbps";
168 			break;
169 
170 		case SPEED_1000:
171 			s = "1000Mbps";
172 			break;
173 
174 		case SPEED_100:
175 			s = "100Mbps";
176 			break;
177 
178 		default:
179 			s = "unknown";
180 			break;
181 		}
182 
183 		switch (pi->link_cfg.fc) {
184 		case PAUSE_RX:
185 			fc = "RX";
186 			break;
187 
188 		case PAUSE_TX:
189 			fc = "TX";
190 			break;
191 
192 		case PAUSE_RX|PAUSE_TX:
193 			fc = "RX/TX";
194 			break;
195 
196 		default:
197 			fc = "no";
198 			break;
199 		}
200 
201 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
202 	} else {
203 		netif_carrier_off(dev);
204 		netdev_info(dev, "link down\n");
205 	}
206 }
207 
208 /*
209  * Net device operations.
210  * ======================
211  */
212 
213 
214 
215 
216 /*
217  * Perform the MAC and PHY actions needed to enable a "port" (Virtual
218  * Interface).
219  */
220 static int link_start(struct net_device *dev)
221 {
222 	int ret;
223 	struct port_info *pi = netdev_priv(dev);
224 
225 	/*
226 	 * We do not set address filters and promiscuity here, the stack does
227 	 * that step explicitly. Enable vlan accel.
228 	 */
229 	ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
230 			      true);
231 	if (ret == 0) {
232 		ret = t4vf_change_mac(pi->adapter, pi->viid,
233 				      pi->xact_addr_filt, dev->dev_addr, true);
234 		if (ret >= 0) {
235 			pi->xact_addr_filt = ret;
236 			ret = 0;
237 		}
238 	}
239 
240 	/*
241 	 * We don't need to actually "start the link" itself since the
242 	 * firmware will do that for us when the first Virtual Interface
243 	 * is enabled on a port.
244 	 */
245 	if (ret == 0)
246 		ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
247 	return ret;
248 }
249 
250 /*
251  * Name the MSI-X interrupts.
252  */
253 static void name_msix_vecs(struct adapter *adapter)
254 {
255 	int namelen = sizeof(adapter->msix_info[0].desc) - 1;
256 	int pidx;
257 
258 	/*
259 	 * Firmware events.
260 	 */
261 	snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
262 		 "%s-FWeventq", adapter->name);
263 	adapter->msix_info[MSIX_FW].desc[namelen] = 0;
264 
265 	/*
266 	 * Ethernet queues.
267 	 */
268 	for_each_port(adapter, pidx) {
269 		struct net_device *dev = adapter->port[pidx];
270 		const struct port_info *pi = netdev_priv(dev);
271 		int qs, msi;
272 
273 		for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
274 			snprintf(adapter->msix_info[msi].desc, namelen,
275 				 "%s-%d", dev->name, qs);
276 			adapter->msix_info[msi].desc[namelen] = 0;
277 		}
278 	}
279 }
280 
281 /*
282  * Request all of our MSI-X resources.
283  */
284 static int request_msix_queue_irqs(struct adapter *adapter)
285 {
286 	struct sge *s = &adapter->sge;
287 	int rxq, msi, err;
288 
289 	/*
290 	 * Firmware events.
291 	 */
292 	err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
293 			  0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
294 	if (err)
295 		return err;
296 
297 	/*
298 	 * Ethernet queues.
299 	 */
300 	msi = MSIX_IQFLINT;
301 	for_each_ethrxq(s, rxq) {
302 		err = request_irq(adapter->msix_info[msi].vec,
303 				  t4vf_sge_intr_msix, 0,
304 				  adapter->msix_info[msi].desc,
305 				  &s->ethrxq[rxq].rspq);
306 		if (err)
307 			goto err_free_irqs;
308 		msi++;
309 	}
310 	return 0;
311 
312 err_free_irqs:
313 	while (--rxq >= 0)
314 		free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
315 	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
316 	return err;
317 }
318 
319 /*
320  * Free our MSI-X resources.
321  */
322 static void free_msix_queue_irqs(struct adapter *adapter)
323 {
324 	struct sge *s = &adapter->sge;
325 	int rxq, msi;
326 
327 	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
328 	msi = MSIX_IQFLINT;
329 	for_each_ethrxq(s, rxq)
330 		free_irq(adapter->msix_info[msi++].vec,
331 			 &s->ethrxq[rxq].rspq);
332 }
333 
334 /*
335  * Turn on NAPI and start up interrupts on a response queue.
336  */
337 static void qenable(struct sge_rspq *rspq)
338 {
339 	napi_enable(&rspq->napi);
340 
341 	/*
342 	 * 0-increment the Going To Sleep register to start the timer and
343 	 * enable interrupts.
344 	 */
345 	t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
346 		     CIDXINC(0) |
347 		     SEINTARM(rspq->intr_params) |
348 		     INGRESSQID(rspq->cntxt_id));
349 }
350 
351 /*
352  * Enable NAPI scheduling and interrupt generation for all Receive Queues.
353  */
354 static void enable_rx(struct adapter *adapter)
355 {
356 	int rxq;
357 	struct sge *s = &adapter->sge;
358 
359 	for_each_ethrxq(s, rxq)
360 		qenable(&s->ethrxq[rxq].rspq);
361 	qenable(&s->fw_evtq);
362 
363 	/*
364 	 * The interrupt queue doesn't use NAPI so we do the 0-increment of
365 	 * its Going To Sleep register here to get it started.
366 	 */
367 	if (adapter->flags & USING_MSI)
368 		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
369 			     CIDXINC(0) |
370 			     SEINTARM(s->intrq.intr_params) |
371 			     INGRESSQID(s->intrq.cntxt_id));
372 
373 }
374 
375 /*
376  * Wait until all NAPI handlers are descheduled.
377  */
378 static void quiesce_rx(struct adapter *adapter)
379 {
380 	struct sge *s = &adapter->sge;
381 	int rxq;
382 
383 	for_each_ethrxq(s, rxq)
384 		napi_disable(&s->ethrxq[rxq].rspq.napi);
385 	napi_disable(&s->fw_evtq.napi);
386 }
387 
388 /*
389  * Response queue handler for the firmware event queue.
390  */
391 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
392 			  const struct pkt_gl *gl)
393 {
394 	/*
395 	 * Extract response opcode and get pointer to CPL message body.
396 	 */
397 	struct adapter *adapter = rspq->adapter;
398 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
399 	void *cpl = (void *)(rsp + 1);
400 
401 	switch (opcode) {
402 	case CPL_FW6_MSG: {
403 		/*
404 		 * We've received an asynchronous message from the firmware.
405 		 */
406 		const struct cpl_fw6_msg *fw_msg = cpl;
407 		if (fw_msg->type == FW6_TYPE_CMD_RPL)
408 			t4vf_handle_fw_rpl(adapter, fw_msg->data);
409 		break;
410 	}
411 
412 	case CPL_SGE_EGR_UPDATE: {
413 		/*
414 		 * We've received an Egress Queue Status Update message.  We
415 		 * get these, if the SGE is configured to send these when the
416 		 * firmware passes certain points in processing our TX
417 		 * Ethernet Queue or if we make an explicit request for one.
418 		 * We use these updates to determine when we may need to
419 		 * restart a TX Ethernet Queue which was stopped for lack of
420 		 * free TX Queue Descriptors ...
421 		 */
422 		const struct cpl_sge_egr_update *p = cpl;
423 		unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
424 		struct sge *s = &adapter->sge;
425 		struct sge_txq *tq;
426 		struct sge_eth_txq *txq;
427 		unsigned int eq_idx;
428 
429 		/*
430 		 * Perform sanity checking on the Queue ID to make sure it
431 		 * really refers to one of our TX Ethernet Egress Queues which
432 		 * is active and matches the queue's ID.  None of these error
433 		 * conditions should ever happen so we may want to either make
434 		 * them fatal and/or conditionalized under DEBUG.
435 		 */
436 		eq_idx = EQ_IDX(s, qid);
437 		if (unlikely(eq_idx >= MAX_EGRQ)) {
438 			dev_err(adapter->pdev_dev,
439 				"Egress Update QID %d out of range\n", qid);
440 			break;
441 		}
442 		tq = s->egr_map[eq_idx];
443 		if (unlikely(tq == NULL)) {
444 			dev_err(adapter->pdev_dev,
445 				"Egress Update QID %d TXQ=NULL\n", qid);
446 			break;
447 		}
448 		txq = container_of(tq, struct sge_eth_txq, q);
449 		if (unlikely(tq->abs_id != qid)) {
450 			dev_err(adapter->pdev_dev,
451 				"Egress Update QID %d refers to TXQ %d\n",
452 				qid, tq->abs_id);
453 			break;
454 		}
455 
456 		/*
457 		 * Restart a stopped TX Queue which has less than half of its
458 		 * TX ring in use ...
459 		 */
460 		txq->q.restarts++;
461 		netif_tx_wake_queue(txq->txq);
462 		break;
463 	}
464 
465 	default:
466 		dev_err(adapter->pdev_dev,
467 			"unexpected CPL %#x on FW event queue\n", opcode);
468 	}
469 
470 	return 0;
471 }
472 
473 /*
474  * Allocate SGE TX/RX response queues.  Determine how many sets of SGE queues
475  * to use and initializes them.  We support multiple "Queue Sets" per port if
476  * we have MSI-X, otherwise just one queue set per port.
477  */
478 static int setup_sge_queues(struct adapter *adapter)
479 {
480 	struct sge *s = &adapter->sge;
481 	int err, pidx, msix;
482 
483 	/*
484 	 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
485 	 * state.
486 	 */
487 	bitmap_zero(s->starving_fl, MAX_EGRQ);
488 
489 	/*
490 	 * If we're using MSI interrupt mode we need to set up a "forwarded
491 	 * interrupt" queue which we'll set up with our MSI vector.  The rest
492 	 * of the ingress queues will be set up to forward their interrupts to
493 	 * this queue ...  This must be first since t4vf_sge_alloc_rxq() uses
494 	 * the intrq's queue ID as the interrupt forwarding queue for the
495 	 * subsequent calls ...
496 	 */
497 	if (adapter->flags & USING_MSI) {
498 		err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
499 					 adapter->port[0], 0, NULL, NULL);
500 		if (err)
501 			goto err_free_queues;
502 	}
503 
504 	/*
505 	 * Allocate our ingress queue for asynchronous firmware messages.
506 	 */
507 	err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
508 				 MSIX_FW, NULL, fwevtq_handler);
509 	if (err)
510 		goto err_free_queues;
511 
512 	/*
513 	 * Allocate each "port"'s initial Queue Sets.  These can be changed
514 	 * later on ... up to the point where any interface on the adapter is
515 	 * brought up at which point lots of things get nailed down
516 	 * permanently ...
517 	 */
518 	msix = MSIX_IQFLINT;
519 	for_each_port(adapter, pidx) {
520 		struct net_device *dev = adapter->port[pidx];
521 		struct port_info *pi = netdev_priv(dev);
522 		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
523 		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
524 		int qs;
525 
526 		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
527 			err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
528 						 dev, msix++,
529 						 &rxq->fl, t4vf_ethrx_handler);
530 			if (err)
531 				goto err_free_queues;
532 
533 			err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
534 					     netdev_get_tx_queue(dev, qs),
535 					     s->fw_evtq.cntxt_id);
536 			if (err)
537 				goto err_free_queues;
538 
539 			rxq->rspq.idx = qs;
540 			memset(&rxq->stats, 0, sizeof(rxq->stats));
541 		}
542 	}
543 
544 	/*
545 	 * Create the reverse mappings for the queues.
546 	 */
547 	s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
548 	s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
549 	IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
550 	for_each_port(adapter, pidx) {
551 		struct net_device *dev = adapter->port[pidx];
552 		struct port_info *pi = netdev_priv(dev);
553 		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
554 		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
555 		int qs;
556 
557 		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
558 			IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
559 			EQ_MAP(s, txq->q.abs_id) = &txq->q;
560 
561 			/*
562 			 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
563 			 * for Free Lists but since all of the Egress Queues
564 			 * (including Free Lists) have Relative Queue IDs
565 			 * which are computed as Absolute - Base Queue ID, we
566 			 * can synthesize the Absolute Queue IDs for the Free
567 			 * Lists.  This is useful for debugging purposes when
568 			 * we want to dump Queue Contexts via the PF Driver.
569 			 */
570 			rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
571 			EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
572 		}
573 	}
574 	return 0;
575 
576 err_free_queues:
577 	t4vf_free_sge_resources(adapter);
578 	return err;
579 }
580 
581 /*
582  * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
583  * queues.  We configure the RSS CPU lookup table to distribute to the number
584  * of HW receive queues, and the response queue lookup table to narrow that
585  * down to the response queues actually configured for each "port" (Virtual
586  * Interface).  We always configure the RSS mapping for all ports since the
587  * mapping table has plenty of entries.
588  */
589 static int setup_rss(struct adapter *adapter)
590 {
591 	int pidx;
592 
593 	for_each_port(adapter, pidx) {
594 		struct port_info *pi = adap2pinfo(adapter, pidx);
595 		struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
596 		u16 rss[MAX_PORT_QSETS];
597 		int qs, err;
598 
599 		for (qs = 0; qs < pi->nqsets; qs++)
600 			rss[qs] = rxq[qs].rspq.abs_id;
601 
602 		err = t4vf_config_rss_range(adapter, pi->viid,
603 					    0, pi->rss_size, rss, pi->nqsets);
604 		if (err)
605 			return err;
606 
607 		/*
608 		 * Perform Global RSS Mode-specific initialization.
609 		 */
610 		switch (adapter->params.rss.mode) {
611 		case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
612 			/*
613 			 * If Tunnel All Lookup isn't specified in the global
614 			 * RSS Configuration, then we need to specify a
615 			 * default Ingress Queue for any ingress packets which
616 			 * aren't hashed.  We'll use our first ingress queue
617 			 * ...
618 			 */
619 			if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
620 				union rss_vi_config config;
621 				err = t4vf_read_rss_vi_config(adapter,
622 							      pi->viid,
623 							      &config);
624 				if (err)
625 					return err;
626 				config.basicvirtual.defaultq =
627 					rxq[0].rspq.abs_id;
628 				err = t4vf_write_rss_vi_config(adapter,
629 							       pi->viid,
630 							       &config);
631 				if (err)
632 					return err;
633 			}
634 			break;
635 		}
636 	}
637 
638 	return 0;
639 }
640 
641 /*
642  * Bring the adapter up.  Called whenever we go from no "ports" open to having
643  * one open.  This function performs the actions necessary to make an adapter
644  * operational, such as completing the initialization of HW modules, and
645  * enabling interrupts.  Must be called with the rtnl lock held.  (Note that
646  * this is called "cxgb_up" in the PF Driver.)
647  */
648 static int adapter_up(struct adapter *adapter)
649 {
650 	int err;
651 
652 	/*
653 	 * If this is the first time we've been called, perform basic
654 	 * adapter setup.  Once we've done this, many of our adapter
655 	 * parameters can no longer be changed ...
656 	 */
657 	if ((adapter->flags & FULL_INIT_DONE) == 0) {
658 		err = setup_sge_queues(adapter);
659 		if (err)
660 			return err;
661 		err = setup_rss(adapter);
662 		if (err) {
663 			t4vf_free_sge_resources(adapter);
664 			return err;
665 		}
666 
667 		if (adapter->flags & USING_MSIX)
668 			name_msix_vecs(adapter);
669 		adapter->flags |= FULL_INIT_DONE;
670 	}
671 
672 	/*
673 	 * Acquire our interrupt resources.  We only support MSI-X and MSI.
674 	 */
675 	BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
676 	if (adapter->flags & USING_MSIX)
677 		err = request_msix_queue_irqs(adapter);
678 	else
679 		err = request_irq(adapter->pdev->irq,
680 				  t4vf_intr_handler(adapter), 0,
681 				  adapter->name, adapter);
682 	if (err) {
683 		dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
684 			err);
685 		return err;
686 	}
687 
688 	/*
689 	 * Enable NAPI ingress processing and return success.
690 	 */
691 	enable_rx(adapter);
692 	t4vf_sge_start(adapter);
693 	return 0;
694 }
695 
696 /*
697  * Bring the adapter down.  Called whenever the last "port" (Virtual
698  * Interface) closed.  (Note that this routine is called "cxgb_down" in the PF
699  * Driver.)
700  */
701 static void adapter_down(struct adapter *adapter)
702 {
703 	/*
704 	 * Free interrupt resources.
705 	 */
706 	if (adapter->flags & USING_MSIX)
707 		free_msix_queue_irqs(adapter);
708 	else
709 		free_irq(adapter->pdev->irq, adapter);
710 
711 	/*
712 	 * Wait for NAPI handlers to finish.
713 	 */
714 	quiesce_rx(adapter);
715 }
716 
717 /*
718  * Start up a net device.
719  */
720 static int cxgb4vf_open(struct net_device *dev)
721 {
722 	int err;
723 	struct port_info *pi = netdev_priv(dev);
724 	struct adapter *adapter = pi->adapter;
725 
726 	/*
727 	 * If this is the first interface that we're opening on the "adapter",
728 	 * bring the "adapter" up now.
729 	 */
730 	if (adapter->open_device_map == 0) {
731 		err = adapter_up(adapter);
732 		if (err)
733 			return err;
734 	}
735 
736 	/*
737 	 * Note that this interface is up and start everything up ...
738 	 */
739 	netif_set_real_num_tx_queues(dev, pi->nqsets);
740 	err = netif_set_real_num_rx_queues(dev, pi->nqsets);
741 	if (err)
742 		goto err_unwind;
743 	err = link_start(dev);
744 	if (err)
745 		goto err_unwind;
746 
747 	netif_tx_start_all_queues(dev);
748 	set_bit(pi->port_id, &adapter->open_device_map);
749 	return 0;
750 
751 err_unwind:
752 	if (adapter->open_device_map == 0)
753 		adapter_down(adapter);
754 	return err;
755 }
756 
757 /*
758  * Shut down a net device.  This routine is called "cxgb_close" in the PF
759  * Driver ...
760  */
761 static int cxgb4vf_stop(struct net_device *dev)
762 {
763 	struct port_info *pi = netdev_priv(dev);
764 	struct adapter *adapter = pi->adapter;
765 
766 	netif_tx_stop_all_queues(dev);
767 	netif_carrier_off(dev);
768 	t4vf_enable_vi(adapter, pi->viid, false, false);
769 	pi->link_cfg.link_ok = 0;
770 
771 	clear_bit(pi->port_id, &adapter->open_device_map);
772 	if (adapter->open_device_map == 0)
773 		adapter_down(adapter);
774 	return 0;
775 }
776 
777 /*
778  * Translate our basic statistics into the standard "ifconfig" statistics.
779  */
780 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
781 {
782 	struct t4vf_port_stats stats;
783 	struct port_info *pi = netdev2pinfo(dev);
784 	struct adapter *adapter = pi->adapter;
785 	struct net_device_stats *ns = &dev->stats;
786 	int err;
787 
788 	spin_lock(&adapter->stats_lock);
789 	err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
790 	spin_unlock(&adapter->stats_lock);
791 
792 	memset(ns, 0, sizeof(*ns));
793 	if (err)
794 		return ns;
795 
796 	ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
797 			stats.tx_ucast_bytes + stats.tx_offload_bytes);
798 	ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
799 			  stats.tx_ucast_frames + stats.tx_offload_frames);
800 	ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
801 			stats.rx_ucast_bytes);
802 	ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
803 			  stats.rx_ucast_frames);
804 	ns->multicast = stats.rx_mcast_frames;
805 	ns->tx_errors = stats.tx_drop_frames;
806 	ns->rx_errors = stats.rx_err_frames;
807 
808 	return ns;
809 }
810 
811 /*
812  * Collect up to maxaddrs worth of a netdevice's unicast addresses, starting
813  * at a specified offset within the list, into an array of addrss pointers and
814  * return the number collected.
815  */
816 static inline unsigned int collect_netdev_uc_list_addrs(const struct net_device *dev,
817 							const u8 **addr,
818 							unsigned int offset,
819 							unsigned int maxaddrs)
820 {
821 	unsigned int index = 0;
822 	unsigned int naddr = 0;
823 	const struct netdev_hw_addr *ha;
824 
825 	for_each_dev_addr(dev, ha)
826 		if (index++ >= offset) {
827 			addr[naddr++] = ha->addr;
828 			if (naddr >= maxaddrs)
829 				break;
830 		}
831 	return naddr;
832 }
833 
834 /*
835  * Collect up to maxaddrs worth of a netdevice's multicast addresses, starting
836  * at a specified offset within the list, into an array of addrss pointers and
837  * return the number collected.
838  */
839 static inline unsigned int collect_netdev_mc_list_addrs(const struct net_device *dev,
840 							const u8 **addr,
841 							unsigned int offset,
842 							unsigned int maxaddrs)
843 {
844 	unsigned int index = 0;
845 	unsigned int naddr = 0;
846 	const struct netdev_hw_addr *ha;
847 
848 	netdev_for_each_mc_addr(ha, dev)
849 		if (index++ >= offset) {
850 			addr[naddr++] = ha->addr;
851 			if (naddr >= maxaddrs)
852 				break;
853 		}
854 	return naddr;
855 }
856 
857 /*
858  * Configure the exact and hash address filters to handle a port's multicast
859  * and secondary unicast MAC addresses.
860  */
861 static int set_addr_filters(const struct net_device *dev, bool sleep)
862 {
863 	u64 mhash = 0;
864 	u64 uhash = 0;
865 	bool free = true;
866 	unsigned int offset, naddr;
867 	const u8 *addr[7];
868 	int ret;
869 	const struct port_info *pi = netdev_priv(dev);
870 
871 	/* first do the secondary unicast addresses */
872 	for (offset = 0; ; offset += naddr) {
873 		naddr = collect_netdev_uc_list_addrs(dev, addr, offset,
874 						     ARRAY_SIZE(addr));
875 		if (naddr == 0)
876 			break;
877 
878 		ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
879 					  naddr, addr, NULL, &uhash, sleep);
880 		if (ret < 0)
881 			return ret;
882 
883 		free = false;
884 	}
885 
886 	/* next set up the multicast addresses */
887 	for (offset = 0; ; offset += naddr) {
888 		naddr = collect_netdev_mc_list_addrs(dev, addr, offset,
889 						     ARRAY_SIZE(addr));
890 		if (naddr == 0)
891 			break;
892 
893 		ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
894 					  naddr, addr, NULL, &mhash, sleep);
895 		if (ret < 0)
896 			return ret;
897 		free = false;
898 	}
899 
900 	return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
901 				  uhash | mhash, sleep);
902 }
903 
904 /*
905  * Set RX properties of a port, such as promiscruity, address filters, and MTU.
906  * If @mtu is -1 it is left unchanged.
907  */
908 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
909 {
910 	int ret;
911 	struct port_info *pi = netdev_priv(dev);
912 
913 	ret = set_addr_filters(dev, sleep_ok);
914 	if (ret == 0)
915 		ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
916 				      (dev->flags & IFF_PROMISC) != 0,
917 				      (dev->flags & IFF_ALLMULTI) != 0,
918 				      1, -1, sleep_ok);
919 	return ret;
920 }
921 
922 /*
923  * Set the current receive modes on the device.
924  */
925 static void cxgb4vf_set_rxmode(struct net_device *dev)
926 {
927 	/* unfortunately we can't return errors to the stack */
928 	set_rxmode(dev, -1, false);
929 }
930 
931 /*
932  * Find the entry in the interrupt holdoff timer value array which comes
933  * closest to the specified interrupt holdoff value.
934  */
935 static int closest_timer(const struct sge *s, int us)
936 {
937 	int i, timer_idx = 0, min_delta = INT_MAX;
938 
939 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
940 		int delta = us - s->timer_val[i];
941 		if (delta < 0)
942 			delta = -delta;
943 		if (delta < min_delta) {
944 			min_delta = delta;
945 			timer_idx = i;
946 		}
947 	}
948 	return timer_idx;
949 }
950 
951 static int closest_thres(const struct sge *s, int thres)
952 {
953 	int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
954 
955 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
956 		delta = thres - s->counter_val[i];
957 		if (delta < 0)
958 			delta = -delta;
959 		if (delta < min_delta) {
960 			min_delta = delta;
961 			pktcnt_idx = i;
962 		}
963 	}
964 	return pktcnt_idx;
965 }
966 
967 /*
968  * Return a queue's interrupt hold-off time in us.  0 means no timer.
969  */
970 static unsigned int qtimer_val(const struct adapter *adapter,
971 			       const struct sge_rspq *rspq)
972 {
973 	unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
974 
975 	return timer_idx < SGE_NTIMERS
976 		? adapter->sge.timer_val[timer_idx]
977 		: 0;
978 }
979 
980 /**
981  *	set_rxq_intr_params - set a queue's interrupt holdoff parameters
982  *	@adapter: the adapter
983  *	@rspq: the RX response queue
984  *	@us: the hold-off time in us, or 0 to disable timer
985  *	@cnt: the hold-off packet count, or 0 to disable counter
986  *
987  *	Sets an RX response queue's interrupt hold-off time and packet count.
988  *	At least one of the two needs to be enabled for the queue to generate
989  *	interrupts.
990  */
991 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
992 			       unsigned int us, unsigned int cnt)
993 {
994 	unsigned int timer_idx;
995 
996 	/*
997 	 * If both the interrupt holdoff timer and count are specified as
998 	 * zero, default to a holdoff count of 1 ...
999 	 */
1000 	if ((us | cnt) == 0)
1001 		cnt = 1;
1002 
1003 	/*
1004 	 * If an interrupt holdoff count has been specified, then find the
1005 	 * closest configured holdoff count and use that.  If the response
1006 	 * queue has already been created, then update its queue context
1007 	 * parameters ...
1008 	 */
1009 	if (cnt) {
1010 		int err;
1011 		u32 v, pktcnt_idx;
1012 
1013 		pktcnt_idx = closest_thres(&adapter->sge, cnt);
1014 		if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1015 			v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1016 			    FW_PARAMS_PARAM_X(
1017 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1018 			    FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1019 			err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1020 			if (err)
1021 				return err;
1022 		}
1023 		rspq->pktcnt_idx = pktcnt_idx;
1024 	}
1025 
1026 	/*
1027 	 * Compute the closest holdoff timer index from the supplied holdoff
1028 	 * timer value.
1029 	 */
1030 	timer_idx = (us == 0
1031 		     ? SGE_TIMER_RSTRT_CNTR
1032 		     : closest_timer(&adapter->sge, us));
1033 
1034 	/*
1035 	 * Update the response queue's interrupt coalescing parameters and
1036 	 * return success.
1037 	 */
1038 	rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1039 			     (cnt > 0 ? QINTR_CNT_EN : 0));
1040 	return 0;
1041 }
1042 
1043 /*
1044  * Return a version number to identify the type of adapter.  The scheme is:
1045  * - bits 0..9: chip version
1046  * - bits 10..15: chip revision
1047  */
1048 static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1049 {
1050 	/*
1051 	 * Chip version 4, revision 0x3f (cxgb4vf).
1052 	 */
1053 	return 4 | (0x3f << 10);
1054 }
1055 
1056 /*
1057  * Execute the specified ioctl command.
1058  */
1059 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1060 {
1061 	int ret = 0;
1062 
1063 	switch (cmd) {
1064 	    /*
1065 	     * The VF Driver doesn't have access to any of the other
1066 	     * common Ethernet device ioctl()'s (like reading/writing
1067 	     * PHY registers, etc.
1068 	     */
1069 
1070 	default:
1071 		ret = -EOPNOTSUPP;
1072 		break;
1073 	}
1074 	return ret;
1075 }
1076 
1077 /*
1078  * Change the device's MTU.
1079  */
1080 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1081 {
1082 	int ret;
1083 	struct port_info *pi = netdev_priv(dev);
1084 
1085 	/* accommodate SACK */
1086 	if (new_mtu < 81)
1087 		return -EINVAL;
1088 
1089 	ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1090 			      -1, -1, -1, -1, true);
1091 	if (!ret)
1092 		dev->mtu = new_mtu;
1093 	return ret;
1094 }
1095 
1096 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1097 	netdev_features_t features)
1098 {
1099 	/*
1100 	 * Since there is no support for separate rx/tx vlan accel
1101 	 * enable/disable make sure tx flag is always in same state as rx.
1102 	 */
1103 	if (features & NETIF_F_HW_VLAN_RX)
1104 		features |= NETIF_F_HW_VLAN_TX;
1105 	else
1106 		features &= ~NETIF_F_HW_VLAN_TX;
1107 
1108 	return features;
1109 }
1110 
1111 static int cxgb4vf_set_features(struct net_device *dev,
1112 	netdev_features_t features)
1113 {
1114 	struct port_info *pi = netdev_priv(dev);
1115 	netdev_features_t changed = dev->features ^ features;
1116 
1117 	if (changed & NETIF_F_HW_VLAN_RX)
1118 		t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1119 				features & NETIF_F_HW_VLAN_TX, 0);
1120 
1121 	return 0;
1122 }
1123 
1124 /*
1125  * Change the devices MAC address.
1126  */
1127 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1128 {
1129 	int ret;
1130 	struct sockaddr *addr = _addr;
1131 	struct port_info *pi = netdev_priv(dev);
1132 
1133 	if (!is_valid_ether_addr(addr->sa_data))
1134 		return -EADDRNOTAVAIL;
1135 
1136 	ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1137 			      addr->sa_data, true);
1138 	if (ret < 0)
1139 		return ret;
1140 
1141 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1142 	pi->xact_addr_filt = ret;
1143 	return 0;
1144 }
1145 
1146 #ifdef CONFIG_NET_POLL_CONTROLLER
1147 /*
1148  * Poll all of our receive queues.  This is called outside of normal interrupt
1149  * context.
1150  */
1151 static void cxgb4vf_poll_controller(struct net_device *dev)
1152 {
1153 	struct port_info *pi = netdev_priv(dev);
1154 	struct adapter *adapter = pi->adapter;
1155 
1156 	if (adapter->flags & USING_MSIX) {
1157 		struct sge_eth_rxq *rxq;
1158 		int nqsets;
1159 
1160 		rxq = &adapter->sge.ethrxq[pi->first_qset];
1161 		for (nqsets = pi->nqsets; nqsets; nqsets--) {
1162 			t4vf_sge_intr_msix(0, &rxq->rspq);
1163 			rxq++;
1164 		}
1165 	} else
1166 		t4vf_intr_handler(adapter)(0, adapter);
1167 }
1168 #endif
1169 
1170 /*
1171  * Ethtool operations.
1172  * ===================
1173  *
1174  * Note that we don't support any ethtool operations which change the physical
1175  * state of the port to which we're linked.
1176  */
1177 
1178 /*
1179  * Return current port link settings.
1180  */
1181 static int cxgb4vf_get_settings(struct net_device *dev,
1182 				struct ethtool_cmd *cmd)
1183 {
1184 	const struct port_info *pi = netdev_priv(dev);
1185 
1186 	cmd->supported = pi->link_cfg.supported;
1187 	cmd->advertising = pi->link_cfg.advertising;
1188 	ethtool_cmd_speed_set(cmd,
1189 			      netif_carrier_ok(dev) ? pi->link_cfg.speed : -1);
1190 	cmd->duplex = DUPLEX_FULL;
1191 
1192 	cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1193 	cmd->phy_address = pi->port_id;
1194 	cmd->transceiver = XCVR_EXTERNAL;
1195 	cmd->autoneg = pi->link_cfg.autoneg;
1196 	cmd->maxtxpkt = 0;
1197 	cmd->maxrxpkt = 0;
1198 	return 0;
1199 }
1200 
1201 /*
1202  * Return our driver information.
1203  */
1204 static void cxgb4vf_get_drvinfo(struct net_device *dev,
1205 				struct ethtool_drvinfo *drvinfo)
1206 {
1207 	struct adapter *adapter = netdev2adap(dev);
1208 
1209 	strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1210 	strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
1211 	strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1212 		sizeof(drvinfo->bus_info));
1213 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1214 		 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1215 		 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1216 		 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1217 		 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1218 		 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1219 		 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1220 		 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1221 		 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1222 		 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1223 }
1224 
1225 /*
1226  * Return current adapter message level.
1227  */
1228 static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1229 {
1230 	return netdev2adap(dev)->msg_enable;
1231 }
1232 
1233 /*
1234  * Set current adapter message level.
1235  */
1236 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1237 {
1238 	netdev2adap(dev)->msg_enable = msglevel;
1239 }
1240 
1241 /*
1242  * Return the device's current Queue Set ring size parameters along with the
1243  * allowed maximum values.  Since ethtool doesn't understand the concept of
1244  * multi-queue devices, we just return the current values associated with the
1245  * first Queue Set.
1246  */
1247 static void cxgb4vf_get_ringparam(struct net_device *dev,
1248 				  struct ethtool_ringparam *rp)
1249 {
1250 	const struct port_info *pi = netdev_priv(dev);
1251 	const struct sge *s = &pi->adapter->sge;
1252 
1253 	rp->rx_max_pending = MAX_RX_BUFFERS;
1254 	rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1255 	rp->rx_jumbo_max_pending = 0;
1256 	rp->tx_max_pending = MAX_TXQ_ENTRIES;
1257 
1258 	rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1259 	rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1260 	rp->rx_jumbo_pending = 0;
1261 	rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1262 }
1263 
1264 /*
1265  * Set the Queue Set ring size parameters for the device.  Again, since
1266  * ethtool doesn't allow for the concept of multiple queues per device, we'll
1267  * apply these new values across all of the Queue Sets associated with the
1268  * device -- after vetting them of course!
1269  */
1270 static int cxgb4vf_set_ringparam(struct net_device *dev,
1271 				 struct ethtool_ringparam *rp)
1272 {
1273 	const struct port_info *pi = netdev_priv(dev);
1274 	struct adapter *adapter = pi->adapter;
1275 	struct sge *s = &adapter->sge;
1276 	int qs;
1277 
1278 	if (rp->rx_pending > MAX_RX_BUFFERS ||
1279 	    rp->rx_jumbo_pending ||
1280 	    rp->tx_pending > MAX_TXQ_ENTRIES ||
1281 	    rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1282 	    rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1283 	    rp->rx_pending < MIN_FL_ENTRIES ||
1284 	    rp->tx_pending < MIN_TXQ_ENTRIES)
1285 		return -EINVAL;
1286 
1287 	if (adapter->flags & FULL_INIT_DONE)
1288 		return -EBUSY;
1289 
1290 	for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1291 		s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1292 		s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1293 		s->ethtxq[qs].q.size = rp->tx_pending;
1294 	}
1295 	return 0;
1296 }
1297 
1298 /*
1299  * Return the interrupt holdoff timer and count for the first Queue Set on the
1300  * device.  Our extension ioctl() (the cxgbtool interface) allows the
1301  * interrupt holdoff timer to be read on all of the device's Queue Sets.
1302  */
1303 static int cxgb4vf_get_coalesce(struct net_device *dev,
1304 				struct ethtool_coalesce *coalesce)
1305 {
1306 	const struct port_info *pi = netdev_priv(dev);
1307 	const struct adapter *adapter = pi->adapter;
1308 	const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1309 
1310 	coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1311 	coalesce->rx_max_coalesced_frames =
1312 		((rspq->intr_params & QINTR_CNT_EN)
1313 		 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1314 		 : 0);
1315 	return 0;
1316 }
1317 
1318 /*
1319  * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1320  * interface.  Our extension ioctl() (the cxgbtool interface) allows us to set
1321  * the interrupt holdoff timer on any of the device's Queue Sets.
1322  */
1323 static int cxgb4vf_set_coalesce(struct net_device *dev,
1324 				struct ethtool_coalesce *coalesce)
1325 {
1326 	const struct port_info *pi = netdev_priv(dev);
1327 	struct adapter *adapter = pi->adapter;
1328 
1329 	return set_rxq_intr_params(adapter,
1330 				   &adapter->sge.ethrxq[pi->first_qset].rspq,
1331 				   coalesce->rx_coalesce_usecs,
1332 				   coalesce->rx_max_coalesced_frames);
1333 }
1334 
1335 /*
1336  * Report current port link pause parameter settings.
1337  */
1338 static void cxgb4vf_get_pauseparam(struct net_device *dev,
1339 				   struct ethtool_pauseparam *pauseparam)
1340 {
1341 	struct port_info *pi = netdev_priv(dev);
1342 
1343 	pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1344 	pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1345 	pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1346 }
1347 
1348 /*
1349  * Identify the port by blinking the port's LED.
1350  */
1351 static int cxgb4vf_phys_id(struct net_device *dev,
1352 			   enum ethtool_phys_id_state state)
1353 {
1354 	unsigned int val;
1355 	struct port_info *pi = netdev_priv(dev);
1356 
1357 	if (state == ETHTOOL_ID_ACTIVE)
1358 		val = 0xffff;
1359 	else if (state == ETHTOOL_ID_INACTIVE)
1360 		val = 0;
1361 	else
1362 		return -EINVAL;
1363 
1364 	return t4vf_identify_port(pi->adapter, pi->viid, val);
1365 }
1366 
1367 /*
1368  * Port stats maintained per queue of the port.
1369  */
1370 struct queue_port_stats {
1371 	u64 tso;
1372 	u64 tx_csum;
1373 	u64 rx_csum;
1374 	u64 vlan_ex;
1375 	u64 vlan_ins;
1376 	u64 lro_pkts;
1377 	u64 lro_merged;
1378 };
1379 
1380 /*
1381  * Strings for the ETH_SS_STATS statistics set ("ethtool -S").  Note that
1382  * these need to match the order of statistics returned by
1383  * t4vf_get_port_stats().
1384  */
1385 static const char stats_strings[][ETH_GSTRING_LEN] = {
1386 	/*
1387 	 * These must match the layout of the t4vf_port_stats structure.
1388 	 */
1389 	"TxBroadcastBytes  ",
1390 	"TxBroadcastFrames ",
1391 	"TxMulticastBytes  ",
1392 	"TxMulticastFrames ",
1393 	"TxUnicastBytes    ",
1394 	"TxUnicastFrames   ",
1395 	"TxDroppedFrames   ",
1396 	"TxOffloadBytes    ",
1397 	"TxOffloadFrames   ",
1398 	"RxBroadcastBytes  ",
1399 	"RxBroadcastFrames ",
1400 	"RxMulticastBytes  ",
1401 	"RxMulticastFrames ",
1402 	"RxUnicastBytes    ",
1403 	"RxUnicastFrames   ",
1404 	"RxErrorFrames     ",
1405 
1406 	/*
1407 	 * These are accumulated per-queue statistics and must match the
1408 	 * order of the fields in the queue_port_stats structure.
1409 	 */
1410 	"TSO               ",
1411 	"TxCsumOffload     ",
1412 	"RxCsumGood        ",
1413 	"VLANextractions   ",
1414 	"VLANinsertions    ",
1415 	"GROPackets        ",
1416 	"GROMerged         ",
1417 };
1418 
1419 /*
1420  * Return the number of statistics in the specified statistics set.
1421  */
1422 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1423 {
1424 	switch (sset) {
1425 	case ETH_SS_STATS:
1426 		return ARRAY_SIZE(stats_strings);
1427 	default:
1428 		return -EOPNOTSUPP;
1429 	}
1430 	/*NOTREACHED*/
1431 }
1432 
1433 /*
1434  * Return the strings for the specified statistics set.
1435  */
1436 static void cxgb4vf_get_strings(struct net_device *dev,
1437 				u32 sset,
1438 				u8 *data)
1439 {
1440 	switch (sset) {
1441 	case ETH_SS_STATS:
1442 		memcpy(data, stats_strings, sizeof(stats_strings));
1443 		break;
1444 	}
1445 }
1446 
1447 /*
1448  * Small utility routine to accumulate queue statistics across the queues of
1449  * a "port".
1450  */
1451 static void collect_sge_port_stats(const struct adapter *adapter,
1452 				   const struct port_info *pi,
1453 				   struct queue_port_stats *stats)
1454 {
1455 	const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1456 	const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1457 	int qs;
1458 
1459 	memset(stats, 0, sizeof(*stats));
1460 	for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1461 		stats->tso += txq->tso;
1462 		stats->tx_csum += txq->tx_cso;
1463 		stats->rx_csum += rxq->stats.rx_cso;
1464 		stats->vlan_ex += rxq->stats.vlan_ex;
1465 		stats->vlan_ins += txq->vlan_ins;
1466 		stats->lro_pkts += rxq->stats.lro_pkts;
1467 		stats->lro_merged += rxq->stats.lro_merged;
1468 	}
1469 }
1470 
1471 /*
1472  * Return the ETH_SS_STATS statistics set.
1473  */
1474 static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1475 				      struct ethtool_stats *stats,
1476 				      u64 *data)
1477 {
1478 	struct port_info *pi = netdev2pinfo(dev);
1479 	struct adapter *adapter = pi->adapter;
1480 	int err = t4vf_get_port_stats(adapter, pi->pidx,
1481 				      (struct t4vf_port_stats *)data);
1482 	if (err)
1483 		memset(data, 0, sizeof(struct t4vf_port_stats));
1484 
1485 	data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1486 	collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1487 }
1488 
1489 /*
1490  * Return the size of our register map.
1491  */
1492 static int cxgb4vf_get_regs_len(struct net_device *dev)
1493 {
1494 	return T4VF_REGMAP_SIZE;
1495 }
1496 
1497 /*
1498  * Dump a block of registers, start to end inclusive, into a buffer.
1499  */
1500 static void reg_block_dump(struct adapter *adapter, void *regbuf,
1501 			   unsigned int start, unsigned int end)
1502 {
1503 	u32 *bp = regbuf + start - T4VF_REGMAP_START;
1504 
1505 	for ( ; start <= end; start += sizeof(u32)) {
1506 		/*
1507 		 * Avoid reading the Mailbox Control register since that
1508 		 * can trigger a Mailbox Ownership Arbitration cycle and
1509 		 * interfere with communication with the firmware.
1510 		 */
1511 		if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1512 			*bp++ = 0xffff;
1513 		else
1514 			*bp++ = t4_read_reg(adapter, start);
1515 	}
1516 }
1517 
1518 /*
1519  * Copy our entire register map into the provided buffer.
1520  */
1521 static void cxgb4vf_get_regs(struct net_device *dev,
1522 			     struct ethtool_regs *regs,
1523 			     void *regbuf)
1524 {
1525 	struct adapter *adapter = netdev2adap(dev);
1526 
1527 	regs->version = mk_adap_vers(adapter);
1528 
1529 	/*
1530 	 * Fill in register buffer with our register map.
1531 	 */
1532 	memset(regbuf, 0, T4VF_REGMAP_SIZE);
1533 
1534 	reg_block_dump(adapter, regbuf,
1535 		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1536 		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1537 	reg_block_dump(adapter, regbuf,
1538 		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1539 		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1540 	reg_block_dump(adapter, regbuf,
1541 		       T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1542 		       T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST);
1543 	reg_block_dump(adapter, regbuf,
1544 		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1545 		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1546 
1547 	reg_block_dump(adapter, regbuf,
1548 		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1549 		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1550 }
1551 
1552 /*
1553  * Report current Wake On LAN settings.
1554  */
1555 static void cxgb4vf_get_wol(struct net_device *dev,
1556 			    struct ethtool_wolinfo *wol)
1557 {
1558 	wol->supported = 0;
1559 	wol->wolopts = 0;
1560 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1561 }
1562 
1563 /*
1564  * TCP Segmentation Offload flags which we support.
1565  */
1566 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1567 
1568 static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1569 	.get_settings		= cxgb4vf_get_settings,
1570 	.get_drvinfo		= cxgb4vf_get_drvinfo,
1571 	.get_msglevel		= cxgb4vf_get_msglevel,
1572 	.set_msglevel		= cxgb4vf_set_msglevel,
1573 	.get_ringparam		= cxgb4vf_get_ringparam,
1574 	.set_ringparam		= cxgb4vf_set_ringparam,
1575 	.get_coalesce		= cxgb4vf_get_coalesce,
1576 	.set_coalesce		= cxgb4vf_set_coalesce,
1577 	.get_pauseparam		= cxgb4vf_get_pauseparam,
1578 	.get_link		= ethtool_op_get_link,
1579 	.get_strings		= cxgb4vf_get_strings,
1580 	.set_phys_id		= cxgb4vf_phys_id,
1581 	.get_sset_count		= cxgb4vf_get_sset_count,
1582 	.get_ethtool_stats	= cxgb4vf_get_ethtool_stats,
1583 	.get_regs_len		= cxgb4vf_get_regs_len,
1584 	.get_regs		= cxgb4vf_get_regs,
1585 	.get_wol		= cxgb4vf_get_wol,
1586 };
1587 
1588 /*
1589  * /sys/kernel/debug/cxgb4vf support code and data.
1590  * ================================================
1591  */
1592 
1593 /*
1594  * Show SGE Queue Set information.  We display QPL Queues Sets per line.
1595  */
1596 #define QPL	4
1597 
1598 static int sge_qinfo_show(struct seq_file *seq, void *v)
1599 {
1600 	struct adapter *adapter = seq->private;
1601 	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1602 	int qs, r = (uintptr_t)v - 1;
1603 
1604 	if (r)
1605 		seq_putc(seq, '\n');
1606 
1607 	#define S3(fmt_spec, s, v) \
1608 		do {\
1609 			seq_printf(seq, "%-12s", s); \
1610 			for (qs = 0; qs < n; ++qs) \
1611 				seq_printf(seq, " %16" fmt_spec, v); \
1612 			seq_putc(seq, '\n'); \
1613 		} while (0)
1614 	#define S(s, v)		S3("s", s, v)
1615 	#define T(s, v)		S3("u", s, txq[qs].v)
1616 	#define R(s, v)		S3("u", s, rxq[qs].v)
1617 
1618 	if (r < eth_entries) {
1619 		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1620 		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1621 		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1622 
1623 		S("QType:", "Ethernet");
1624 		S("Interface:",
1625 		  (rxq[qs].rspq.netdev
1626 		   ? rxq[qs].rspq.netdev->name
1627 		   : "N/A"));
1628 		S3("d", "Port:",
1629 		   (rxq[qs].rspq.netdev
1630 		    ? ((struct port_info *)
1631 		       netdev_priv(rxq[qs].rspq.netdev))->port_id
1632 		    : -1));
1633 		T("TxQ ID:", q.abs_id);
1634 		T("TxQ size:", q.size);
1635 		T("TxQ inuse:", q.in_use);
1636 		T("TxQ PIdx:", q.pidx);
1637 		T("TxQ CIdx:", q.cidx);
1638 		R("RspQ ID:", rspq.abs_id);
1639 		R("RspQ size:", rspq.size);
1640 		R("RspQE size:", rspq.iqe_len);
1641 		S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1642 		S3("u", "Intr pktcnt:",
1643 		   adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1644 		R("RspQ CIdx:", rspq.cidx);
1645 		R("RspQ Gen:", rspq.gen);
1646 		R("FL ID:", fl.abs_id);
1647 		R("FL size:", fl.size - MIN_FL_RESID);
1648 		R("FL avail:", fl.avail);
1649 		R("FL PIdx:", fl.pidx);
1650 		R("FL CIdx:", fl.cidx);
1651 		return 0;
1652 	}
1653 
1654 	r -= eth_entries;
1655 	if (r == 0) {
1656 		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1657 
1658 		seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1659 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1660 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1661 			   qtimer_val(adapter, evtq));
1662 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1663 			   adapter->sge.counter_val[evtq->pktcnt_idx]);
1664 		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1665 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1666 	} else if (r == 1) {
1667 		const struct sge_rspq *intrq = &adapter->sge.intrq;
1668 
1669 		seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1670 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1671 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1672 			   qtimer_val(adapter, intrq));
1673 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1674 			   adapter->sge.counter_val[intrq->pktcnt_idx]);
1675 		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1676 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1677 	}
1678 
1679 	#undef R
1680 	#undef T
1681 	#undef S
1682 	#undef S3
1683 
1684 	return 0;
1685 }
1686 
1687 /*
1688  * Return the number of "entries" in our "file".  We group the multi-Queue
1689  * sections with QPL Queue Sets per "entry".  The sections of the output are:
1690  *
1691  *     Ethernet RX/TX Queue Sets
1692  *     Firmware Event Queue
1693  *     Forwarded Interrupt Queue (if in MSI mode)
1694  */
1695 static int sge_queue_entries(const struct adapter *adapter)
1696 {
1697 	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1698 		((adapter->flags & USING_MSI) != 0);
1699 }
1700 
1701 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1702 {
1703 	int entries = sge_queue_entries(seq->private);
1704 
1705 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1706 }
1707 
1708 static void sge_queue_stop(struct seq_file *seq, void *v)
1709 {
1710 }
1711 
1712 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1713 {
1714 	int entries = sge_queue_entries(seq->private);
1715 
1716 	++*pos;
1717 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1718 }
1719 
1720 static const struct seq_operations sge_qinfo_seq_ops = {
1721 	.start = sge_queue_start,
1722 	.next  = sge_queue_next,
1723 	.stop  = sge_queue_stop,
1724 	.show  = sge_qinfo_show
1725 };
1726 
1727 static int sge_qinfo_open(struct inode *inode, struct file *file)
1728 {
1729 	int res = seq_open(file, &sge_qinfo_seq_ops);
1730 
1731 	if (!res) {
1732 		struct seq_file *seq = file->private_data;
1733 		seq->private = inode->i_private;
1734 	}
1735 	return res;
1736 }
1737 
1738 static const struct file_operations sge_qinfo_debugfs_fops = {
1739 	.owner   = THIS_MODULE,
1740 	.open    = sge_qinfo_open,
1741 	.read    = seq_read,
1742 	.llseek  = seq_lseek,
1743 	.release = seq_release,
1744 };
1745 
1746 /*
1747  * Show SGE Queue Set statistics.  We display QPL Queues Sets per line.
1748  */
1749 #define QPL	4
1750 
1751 static int sge_qstats_show(struct seq_file *seq, void *v)
1752 {
1753 	struct adapter *adapter = seq->private;
1754 	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1755 	int qs, r = (uintptr_t)v - 1;
1756 
1757 	if (r)
1758 		seq_putc(seq, '\n');
1759 
1760 	#define S3(fmt, s, v) \
1761 		do { \
1762 			seq_printf(seq, "%-16s", s); \
1763 			for (qs = 0; qs < n; ++qs) \
1764 				seq_printf(seq, " %8" fmt, v); \
1765 			seq_putc(seq, '\n'); \
1766 		} while (0)
1767 	#define S(s, v)		S3("s", s, v)
1768 
1769 	#define T3(fmt, s, v)	S3(fmt, s, txq[qs].v)
1770 	#define T(s, v)		T3("lu", s, v)
1771 
1772 	#define R3(fmt, s, v)	S3(fmt, s, rxq[qs].v)
1773 	#define R(s, v)		R3("lu", s, v)
1774 
1775 	if (r < eth_entries) {
1776 		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1777 		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1778 		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1779 
1780 		S("QType:", "Ethernet");
1781 		S("Interface:",
1782 		  (rxq[qs].rspq.netdev
1783 		   ? rxq[qs].rspq.netdev->name
1784 		   : "N/A"));
1785 		R3("u", "RspQNullInts:", rspq.unhandled_irqs);
1786 		R("RxPackets:", stats.pkts);
1787 		R("RxCSO:", stats.rx_cso);
1788 		R("VLANxtract:", stats.vlan_ex);
1789 		R("LROmerged:", stats.lro_merged);
1790 		R("LROpackets:", stats.lro_pkts);
1791 		R("RxDrops:", stats.rx_drops);
1792 		T("TSO:", tso);
1793 		T("TxCSO:", tx_cso);
1794 		T("VLANins:", vlan_ins);
1795 		T("TxQFull:", q.stops);
1796 		T("TxQRestarts:", q.restarts);
1797 		T("TxMapErr:", mapping_err);
1798 		R("FLAllocErr:", fl.alloc_failed);
1799 		R("FLLrgAlcErr:", fl.large_alloc_failed);
1800 		R("FLStarving:", fl.starving);
1801 		return 0;
1802 	}
1803 
1804 	r -= eth_entries;
1805 	if (r == 0) {
1806 		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1807 
1808 		seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
1809 		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1810 			   evtq->unhandled_irqs);
1811 		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1812 		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1813 	} else if (r == 1) {
1814 		const struct sge_rspq *intrq = &adapter->sge.intrq;
1815 
1816 		seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
1817 		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1818 			   intrq->unhandled_irqs);
1819 		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1820 		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1821 	}
1822 
1823 	#undef R
1824 	#undef T
1825 	#undef S
1826 	#undef R3
1827 	#undef T3
1828 	#undef S3
1829 
1830 	return 0;
1831 }
1832 
1833 /*
1834  * Return the number of "entries" in our "file".  We group the multi-Queue
1835  * sections with QPL Queue Sets per "entry".  The sections of the output are:
1836  *
1837  *     Ethernet RX/TX Queue Sets
1838  *     Firmware Event Queue
1839  *     Forwarded Interrupt Queue (if in MSI mode)
1840  */
1841 static int sge_qstats_entries(const struct adapter *adapter)
1842 {
1843 	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1844 		((adapter->flags & USING_MSI) != 0);
1845 }
1846 
1847 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1848 {
1849 	int entries = sge_qstats_entries(seq->private);
1850 
1851 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1852 }
1853 
1854 static void sge_qstats_stop(struct seq_file *seq, void *v)
1855 {
1856 }
1857 
1858 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1859 {
1860 	int entries = sge_qstats_entries(seq->private);
1861 
1862 	(*pos)++;
1863 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1864 }
1865 
1866 static const struct seq_operations sge_qstats_seq_ops = {
1867 	.start = sge_qstats_start,
1868 	.next  = sge_qstats_next,
1869 	.stop  = sge_qstats_stop,
1870 	.show  = sge_qstats_show
1871 };
1872 
1873 static int sge_qstats_open(struct inode *inode, struct file *file)
1874 {
1875 	int res = seq_open(file, &sge_qstats_seq_ops);
1876 
1877 	if (res == 0) {
1878 		struct seq_file *seq = file->private_data;
1879 		seq->private = inode->i_private;
1880 	}
1881 	return res;
1882 }
1883 
1884 static const struct file_operations sge_qstats_proc_fops = {
1885 	.owner   = THIS_MODULE,
1886 	.open    = sge_qstats_open,
1887 	.read    = seq_read,
1888 	.llseek  = seq_lseek,
1889 	.release = seq_release,
1890 };
1891 
1892 /*
1893  * Show PCI-E SR-IOV Virtual Function Resource Limits.
1894  */
1895 static int resources_show(struct seq_file *seq, void *v)
1896 {
1897 	struct adapter *adapter = seq->private;
1898 	struct vf_resources *vfres = &adapter->params.vfres;
1899 
1900 	#define S(desc, fmt, var) \
1901 		seq_printf(seq, "%-60s " fmt "\n", \
1902 			   desc " (" #var "):", vfres->var)
1903 
1904 	S("Virtual Interfaces", "%d", nvi);
1905 	S("Egress Queues", "%d", neq);
1906 	S("Ethernet Control", "%d", nethctrl);
1907 	S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1908 	S("Ingress Queues", "%d", niq);
1909 	S("Traffic Class", "%d", tc);
1910 	S("Port Access Rights Mask", "%#x", pmask);
1911 	S("MAC Address Filters", "%d", nexactf);
1912 	S("Firmware Command Read Capabilities", "%#x", r_caps);
1913 	S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1914 
1915 	#undef S
1916 
1917 	return 0;
1918 }
1919 
1920 static int resources_open(struct inode *inode, struct file *file)
1921 {
1922 	return single_open(file, resources_show, inode->i_private);
1923 }
1924 
1925 static const struct file_operations resources_proc_fops = {
1926 	.owner   = THIS_MODULE,
1927 	.open    = resources_open,
1928 	.read    = seq_read,
1929 	.llseek  = seq_lseek,
1930 	.release = single_release,
1931 };
1932 
1933 /*
1934  * Show Virtual Interfaces.
1935  */
1936 static int interfaces_show(struct seq_file *seq, void *v)
1937 {
1938 	if (v == SEQ_START_TOKEN) {
1939 		seq_puts(seq, "Interface  Port   VIID\n");
1940 	} else {
1941 		struct adapter *adapter = seq->private;
1942 		int pidx = (uintptr_t)v - 2;
1943 		struct net_device *dev = adapter->port[pidx];
1944 		struct port_info *pi = netdev_priv(dev);
1945 
1946 		seq_printf(seq, "%9s  %4d  %#5x\n",
1947 			   dev->name, pi->port_id, pi->viid);
1948 	}
1949 	return 0;
1950 }
1951 
1952 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1953 {
1954 	return pos <= adapter->params.nports
1955 		? (void *)(uintptr_t)(pos + 1)
1956 		: NULL;
1957 }
1958 
1959 static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1960 {
1961 	return *pos
1962 		? interfaces_get_idx(seq->private, *pos)
1963 		: SEQ_START_TOKEN;
1964 }
1965 
1966 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1967 {
1968 	(*pos)++;
1969 	return interfaces_get_idx(seq->private, *pos);
1970 }
1971 
1972 static void interfaces_stop(struct seq_file *seq, void *v)
1973 {
1974 }
1975 
1976 static const struct seq_operations interfaces_seq_ops = {
1977 	.start = interfaces_start,
1978 	.next  = interfaces_next,
1979 	.stop  = interfaces_stop,
1980 	.show  = interfaces_show
1981 };
1982 
1983 static int interfaces_open(struct inode *inode, struct file *file)
1984 {
1985 	int res = seq_open(file, &interfaces_seq_ops);
1986 
1987 	if (res == 0) {
1988 		struct seq_file *seq = file->private_data;
1989 		seq->private = inode->i_private;
1990 	}
1991 	return res;
1992 }
1993 
1994 static const struct file_operations interfaces_proc_fops = {
1995 	.owner   = THIS_MODULE,
1996 	.open    = interfaces_open,
1997 	.read    = seq_read,
1998 	.llseek  = seq_lseek,
1999 	.release = seq_release,
2000 };
2001 
2002 /*
2003  * /sys/kernel/debugfs/cxgb4vf/ files list.
2004  */
2005 struct cxgb4vf_debugfs_entry {
2006 	const char *name;		/* name of debugfs node */
2007 	umode_t mode;			/* file system mode */
2008 	const struct file_operations *fops;
2009 };
2010 
2011 static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2012 	{ "sge_qinfo",  S_IRUGO, &sge_qinfo_debugfs_fops },
2013 	{ "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2014 	{ "resources",  S_IRUGO, &resources_proc_fops },
2015 	{ "interfaces", S_IRUGO, &interfaces_proc_fops },
2016 };
2017 
2018 /*
2019  * Module and device initialization and cleanup code.
2020  * ==================================================
2021  */
2022 
2023 /*
2024  * Set up out /sys/kernel/debug/cxgb4vf sub-nodes.  We assume that the
2025  * directory (debugfs_root) has already been set up.
2026  */
2027 static int setup_debugfs(struct adapter *adapter)
2028 {
2029 	int i;
2030 
2031 	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2032 
2033 	/*
2034 	 * Debugfs support is best effort.
2035 	 */
2036 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2037 		(void)debugfs_create_file(debugfs_files[i].name,
2038 				  debugfs_files[i].mode,
2039 				  adapter->debugfs_root,
2040 				  (void *)adapter,
2041 				  debugfs_files[i].fops);
2042 
2043 	return 0;
2044 }
2045 
2046 /*
2047  * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above.  We leave
2048  * it to our caller to tear down the directory (debugfs_root).
2049  */
2050 static void cleanup_debugfs(struct adapter *adapter)
2051 {
2052 	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2053 
2054 	/*
2055 	 * Unlike our sister routine cleanup_proc(), we don't need to remove
2056 	 * individual entries because a call will be made to
2057 	 * debugfs_remove_recursive().  We just need to clean up any ancillary
2058 	 * persistent state.
2059 	 */
2060 	/* nothing to do */
2061 }
2062 
2063 /*
2064  * Perform early "adapter" initialization.  This is where we discover what
2065  * adapter parameters we're going to be using and initialize basic adapter
2066  * hardware support.
2067  */
2068 static int adap_init0(struct adapter *adapter)
2069 {
2070 	struct vf_resources *vfres = &adapter->params.vfres;
2071 	struct sge_params *sge_params = &adapter->params.sge;
2072 	struct sge *s = &adapter->sge;
2073 	unsigned int ethqsets;
2074 	int err;
2075 
2076 	/*
2077 	 * Wait for the device to become ready before proceeding ...
2078 	 */
2079 	err = t4vf_wait_dev_ready(adapter);
2080 	if (err) {
2081 		dev_err(adapter->pdev_dev, "device didn't become ready:"
2082 			" err=%d\n", err);
2083 		return err;
2084 	}
2085 
2086 	/*
2087 	 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2088 	 * 2.6.31 and later we can't call pci_reset_function() in order to
2089 	 * issue an FLR because of a self- deadlock on the device semaphore.
2090 	 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2091 	 * cases where they're needed -- for instance, some versions of KVM
2092 	 * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
2093 	 * use the firmware based reset in order to reset any per function
2094 	 * state.
2095 	 */
2096 	err = t4vf_fw_reset(adapter);
2097 	if (err < 0) {
2098 		dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2099 		return err;
2100 	}
2101 
2102 	/*
2103 	 * Grab basic operational parameters.  These will predominantly have
2104 	 * been set up by the Physical Function Driver or will be hard coded
2105 	 * into the adapter.  We just have to live with them ...  Note that
2106 	 * we _must_ get our VPD parameters before our SGE parameters because
2107 	 * we need to know the adapter's core clock from the VPD in order to
2108 	 * properly decode the SGE Timer Values.
2109 	 */
2110 	err = t4vf_get_dev_params(adapter);
2111 	if (err) {
2112 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2113 			" device parameters: err=%d\n", err);
2114 		return err;
2115 	}
2116 	err = t4vf_get_vpd_params(adapter);
2117 	if (err) {
2118 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2119 			" VPD parameters: err=%d\n", err);
2120 		return err;
2121 	}
2122 	err = t4vf_get_sge_params(adapter);
2123 	if (err) {
2124 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2125 			" SGE parameters: err=%d\n", err);
2126 		return err;
2127 	}
2128 	err = t4vf_get_rss_glb_config(adapter);
2129 	if (err) {
2130 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2131 			" RSS parameters: err=%d\n", err);
2132 		return err;
2133 	}
2134 	if (adapter->params.rss.mode !=
2135 	    FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2136 		dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2137 			" mode %d\n", adapter->params.rss.mode);
2138 		return -EINVAL;
2139 	}
2140 	err = t4vf_sge_init(adapter);
2141 	if (err) {
2142 		dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2143 			" err=%d\n", err);
2144 		return err;
2145 	}
2146 
2147 	/*
2148 	 * Retrieve our RX interrupt holdoff timer values and counter
2149 	 * threshold values from the SGE parameters.
2150 	 */
2151 	s->timer_val[0] = core_ticks_to_us(adapter,
2152 		TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2153 	s->timer_val[1] = core_ticks_to_us(adapter,
2154 		TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2155 	s->timer_val[2] = core_ticks_to_us(adapter,
2156 		TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2157 	s->timer_val[3] = core_ticks_to_us(adapter,
2158 		TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2159 	s->timer_val[4] = core_ticks_to_us(adapter,
2160 		TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2161 	s->timer_val[5] = core_ticks_to_us(adapter,
2162 		TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2163 
2164 	s->counter_val[0] =
2165 		THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2166 	s->counter_val[1] =
2167 		THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2168 	s->counter_val[2] =
2169 		THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2170 	s->counter_val[3] =
2171 		THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2172 
2173 	/*
2174 	 * Grab our Virtual Interface resource allocation, extract the
2175 	 * features that we're interested in and do a bit of sanity testing on
2176 	 * what we discover.
2177 	 */
2178 	err = t4vf_get_vfres(adapter);
2179 	if (err) {
2180 		dev_err(adapter->pdev_dev, "unable to get virtual interface"
2181 			" resources: err=%d\n", err);
2182 		return err;
2183 	}
2184 
2185 	/*
2186 	 * The number of "ports" which we support is equal to the number of
2187 	 * Virtual Interfaces with which we've been provisioned.
2188 	 */
2189 	adapter->params.nports = vfres->nvi;
2190 	if (adapter->params.nports > MAX_NPORTS) {
2191 		dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2192 			 " virtual interfaces\n", MAX_NPORTS,
2193 			 adapter->params.nports);
2194 		adapter->params.nports = MAX_NPORTS;
2195 	}
2196 
2197 	/*
2198 	 * We need to reserve a number of the ingress queues with Free List
2199 	 * and Interrupt capabilities for special interrupt purposes (like
2200 	 * asynchronous firmware messages, or forwarded interrupts if we're
2201 	 * using MSI).  The rest of the FL/Intr-capable ingress queues will be
2202 	 * matched up one-for-one with Ethernet/Control egress queues in order
2203 	 * to form "Queue Sets" which will be aportioned between the "ports".
2204 	 * For each Queue Set, we'll need the ability to allocate two Egress
2205 	 * Contexts -- one for the Ingress Queue Free List and one for the TX
2206 	 * Ethernet Queue.
2207 	 */
2208 	ethqsets = vfres->niqflint - INGQ_EXTRAS;
2209 	if (vfres->nethctrl != ethqsets) {
2210 		dev_warn(adapter->pdev_dev, "unequal number of [available]"
2211 			 " ingress/egress queues (%d/%d); using minimum for"
2212 			 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2213 		ethqsets = min(vfres->nethctrl, ethqsets);
2214 	}
2215 	if (vfres->neq < ethqsets*2) {
2216 		dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2217 			 " to support Queue Sets (%d); reducing allowed Queue"
2218 			 " Sets\n", vfres->neq, ethqsets);
2219 		ethqsets = vfres->neq/2;
2220 	}
2221 	if (ethqsets > MAX_ETH_QSETS) {
2222 		dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2223 			 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2224 		ethqsets = MAX_ETH_QSETS;
2225 	}
2226 	if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2227 		dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2228 			 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2229 	}
2230 	adapter->sge.max_ethqsets = ethqsets;
2231 
2232 	/*
2233 	 * Check for various parameter sanity issues.  Most checks simply
2234 	 * result in us using fewer resources than our provissioning but we
2235 	 * do need at least  one "port" with which to work ...
2236 	 */
2237 	if (adapter->sge.max_ethqsets < adapter->params.nports) {
2238 		dev_warn(adapter->pdev_dev, "only using %d of %d available"
2239 			 " virtual interfaces (too few Queue Sets)\n",
2240 			 adapter->sge.max_ethqsets, adapter->params.nports);
2241 		adapter->params.nports = adapter->sge.max_ethqsets;
2242 	}
2243 	if (adapter->params.nports == 0) {
2244 		dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2245 			"usable!\n");
2246 		return -EINVAL;
2247 	}
2248 	return 0;
2249 }
2250 
2251 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2252 			     u8 pkt_cnt_idx, unsigned int size,
2253 			     unsigned int iqe_size)
2254 {
2255 	rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2256 			     (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2257 	rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2258 			    ? pkt_cnt_idx
2259 			    : 0);
2260 	rspq->iqe_len = iqe_size;
2261 	rspq->size = size;
2262 }
2263 
2264 /*
2265  * Perform default configuration of DMA queues depending on the number and
2266  * type of ports we found and the number of available CPUs.  Most settings can
2267  * be modified by the admin via ethtool and cxgbtool prior to the adapter
2268  * being brought up for the first time.
2269  */
2270 static void cfg_queues(struct adapter *adapter)
2271 {
2272 	struct sge *s = &adapter->sge;
2273 	int q10g, n10g, qidx, pidx, qs;
2274 	size_t iqe_size;
2275 
2276 	/*
2277 	 * We should not be called till we know how many Queue Sets we can
2278 	 * support.  In particular, this means that we need to know what kind
2279 	 * of interrupts we'll be using ...
2280 	 */
2281 	BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2282 
2283 	/*
2284 	 * Count the number of 10GbE Virtual Interfaces that we have.
2285 	 */
2286 	n10g = 0;
2287 	for_each_port(adapter, pidx)
2288 		n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2289 
2290 	/*
2291 	 * We default to 1 queue per non-10G port and up to # of cores queues
2292 	 * per 10G port.
2293 	 */
2294 	if (n10g == 0)
2295 		q10g = 0;
2296 	else {
2297 		int n1g = (adapter->params.nports - n10g);
2298 		q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2299 		if (q10g > num_online_cpus())
2300 			q10g = num_online_cpus();
2301 	}
2302 
2303 	/*
2304 	 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2305 	 * The layout will be established in setup_sge_queues() when the
2306 	 * adapter is brough up for the first time.
2307 	 */
2308 	qidx = 0;
2309 	for_each_port(adapter, pidx) {
2310 		struct port_info *pi = adap2pinfo(adapter, pidx);
2311 
2312 		pi->first_qset = qidx;
2313 		pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2314 		qidx += pi->nqsets;
2315 	}
2316 	s->ethqsets = qidx;
2317 
2318 	/*
2319 	 * The Ingress Queue Entry Size for our various Response Queues needs
2320 	 * to be big enough to accommodate the largest message we can receive
2321 	 * from the chip/firmware; which is 64 bytes ...
2322 	 */
2323 	iqe_size = 64;
2324 
2325 	/*
2326 	 * Set up default Queue Set parameters ...  Start off with the
2327 	 * shortest interrupt holdoff timer.
2328 	 */
2329 	for (qs = 0; qs < s->max_ethqsets; qs++) {
2330 		struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2331 		struct sge_eth_txq *txq = &s->ethtxq[qs];
2332 
2333 		init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2334 		rxq->fl.size = 72;
2335 		txq->q.size = 1024;
2336 	}
2337 
2338 	/*
2339 	 * The firmware event queue is used for link state changes and
2340 	 * notifications of TX DMA completions.
2341 	 */
2342 	init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2343 
2344 	/*
2345 	 * The forwarded interrupt queue is used when we're in MSI interrupt
2346 	 * mode.  In this mode all interrupts associated with RX queues will
2347 	 * be forwarded to a single queue which we'll associate with our MSI
2348 	 * interrupt vector.  The messages dropped in the forwarded interrupt
2349 	 * queue will indicate which ingress queue needs servicing ...  This
2350 	 * queue needs to be large enough to accommodate all of the ingress
2351 	 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2352 	 * from equalling the CIDX if every ingress queue has an outstanding
2353 	 * interrupt).  The queue doesn't need to be any larger because no
2354 	 * ingress queue will ever have more than one outstanding interrupt at
2355 	 * any time ...
2356 	 */
2357 	init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2358 		  iqe_size);
2359 }
2360 
2361 /*
2362  * Reduce the number of Ethernet queues across all ports to at most n.
2363  * n provides at least one queue per port.
2364  */
2365 static void reduce_ethqs(struct adapter *adapter, int n)
2366 {
2367 	int i;
2368 	struct port_info *pi;
2369 
2370 	/*
2371 	 * While we have too many active Ether Queue Sets, interate across the
2372 	 * "ports" and reduce their individual Queue Set allocations.
2373 	 */
2374 	BUG_ON(n < adapter->params.nports);
2375 	while (n < adapter->sge.ethqsets)
2376 		for_each_port(adapter, i) {
2377 			pi = adap2pinfo(adapter, i);
2378 			if (pi->nqsets > 1) {
2379 				pi->nqsets--;
2380 				adapter->sge.ethqsets--;
2381 				if (adapter->sge.ethqsets <= n)
2382 					break;
2383 			}
2384 		}
2385 
2386 	/*
2387 	 * Reassign the starting Queue Sets for each of the "ports" ...
2388 	 */
2389 	n = 0;
2390 	for_each_port(adapter, i) {
2391 		pi = adap2pinfo(adapter, i);
2392 		pi->first_qset = n;
2393 		n += pi->nqsets;
2394 	}
2395 }
2396 
2397 /*
2398  * We need to grab enough MSI-X vectors to cover our interrupt needs.  Ideally
2399  * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2400  * need.  Minimally we need one for every Virtual Interface plus those needed
2401  * for our "extras".  Note that this process may lower the maximum number of
2402  * allowed Queue Sets ...
2403  */
2404 static int enable_msix(struct adapter *adapter)
2405 {
2406 	int i, err, want, need;
2407 	struct msix_entry entries[MSIX_ENTRIES];
2408 	struct sge *s = &adapter->sge;
2409 
2410 	for (i = 0; i < MSIX_ENTRIES; ++i)
2411 		entries[i].entry = i;
2412 
2413 	/*
2414 	 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2415 	 * plus those needed for our "extras" (for example, the firmware
2416 	 * message queue).  We _need_ at least one "Queue Set" per Virtual
2417 	 * Interface plus those needed for our "extras".  So now we get to see
2418 	 * if the song is right ...
2419 	 */
2420 	want = s->max_ethqsets + MSIX_EXTRAS;
2421 	need = adapter->params.nports + MSIX_EXTRAS;
2422 	while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need)
2423 		want = err;
2424 
2425 	if (err == 0) {
2426 		int nqsets = want - MSIX_EXTRAS;
2427 		if (nqsets < s->max_ethqsets) {
2428 			dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2429 				 " for %d Queue Sets\n", nqsets);
2430 			s->max_ethqsets = nqsets;
2431 			if (nqsets < s->ethqsets)
2432 				reduce_ethqs(adapter, nqsets);
2433 		}
2434 		for (i = 0; i < want; ++i)
2435 			adapter->msix_info[i].vec = entries[i].vector;
2436 	} else if (err > 0) {
2437 		pci_disable_msix(adapter->pdev);
2438 		dev_info(adapter->pdev_dev, "only %d MSI-X vectors left,"
2439 			 " not using MSI-X\n", err);
2440 	}
2441 	return err;
2442 }
2443 
2444 static const struct net_device_ops cxgb4vf_netdev_ops	= {
2445 	.ndo_open		= cxgb4vf_open,
2446 	.ndo_stop		= cxgb4vf_stop,
2447 	.ndo_start_xmit		= t4vf_eth_xmit,
2448 	.ndo_get_stats		= cxgb4vf_get_stats,
2449 	.ndo_set_rx_mode	= cxgb4vf_set_rxmode,
2450 	.ndo_set_mac_address	= cxgb4vf_set_mac_addr,
2451 	.ndo_validate_addr	= eth_validate_addr,
2452 	.ndo_do_ioctl		= cxgb4vf_do_ioctl,
2453 	.ndo_change_mtu		= cxgb4vf_change_mtu,
2454 	.ndo_fix_features	= cxgb4vf_fix_features,
2455 	.ndo_set_features	= cxgb4vf_set_features,
2456 #ifdef CONFIG_NET_POLL_CONTROLLER
2457 	.ndo_poll_controller	= cxgb4vf_poll_controller,
2458 #endif
2459 };
2460 
2461 /*
2462  * "Probe" a device: initialize a device and construct all kernel and driver
2463  * state needed to manage the device.  This routine is called "init_one" in
2464  * the PF Driver ...
2465  */
2466 static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2467 			     const struct pci_device_id *ent)
2468 {
2469 	int pci_using_dac;
2470 	int err, pidx;
2471 	unsigned int pmask;
2472 	struct adapter *adapter;
2473 	struct port_info *pi;
2474 	struct net_device *netdev;
2475 
2476 	/*
2477 	 * Print our driver banner the first time we're called to initialize a
2478 	 * device.
2479 	 */
2480 	pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
2481 
2482 	/*
2483 	 * Initialize generic PCI device state.
2484 	 */
2485 	err = pci_enable_device(pdev);
2486 	if (err) {
2487 		dev_err(&pdev->dev, "cannot enable PCI device\n");
2488 		return err;
2489 	}
2490 
2491 	/*
2492 	 * Reserve PCI resources for the device.  If we can't get them some
2493 	 * other driver may have already claimed the device ...
2494 	 */
2495 	err = pci_request_regions(pdev, KBUILD_MODNAME);
2496 	if (err) {
2497 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2498 		goto err_disable_device;
2499 	}
2500 
2501 	/*
2502 	 * Set up our DMA mask: try for 64-bit address masking first and
2503 	 * fall back to 32-bit if we can't get 64 bits ...
2504 	 */
2505 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2506 	if (err == 0) {
2507 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2508 		if (err) {
2509 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2510 				" coherent allocations\n");
2511 			goto err_release_regions;
2512 		}
2513 		pci_using_dac = 1;
2514 	} else {
2515 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2516 		if (err != 0) {
2517 			dev_err(&pdev->dev, "no usable DMA configuration\n");
2518 			goto err_release_regions;
2519 		}
2520 		pci_using_dac = 0;
2521 	}
2522 
2523 	/*
2524 	 * Enable bus mastering for the device ...
2525 	 */
2526 	pci_set_master(pdev);
2527 
2528 	/*
2529 	 * Allocate our adapter data structure and attach it to the device.
2530 	 */
2531 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2532 	if (!adapter) {
2533 		err = -ENOMEM;
2534 		goto err_release_regions;
2535 	}
2536 	pci_set_drvdata(pdev, adapter);
2537 	adapter->pdev = pdev;
2538 	adapter->pdev_dev = &pdev->dev;
2539 
2540 	/*
2541 	 * Initialize SMP data synchronization resources.
2542 	 */
2543 	spin_lock_init(&adapter->stats_lock);
2544 
2545 	/*
2546 	 * Map our I/O registers in BAR0.
2547 	 */
2548 	adapter->regs = pci_ioremap_bar(pdev, 0);
2549 	if (!adapter->regs) {
2550 		dev_err(&pdev->dev, "cannot map device registers\n");
2551 		err = -ENOMEM;
2552 		goto err_free_adapter;
2553 	}
2554 
2555 	/*
2556 	 * Initialize adapter level features.
2557 	 */
2558 	adapter->name = pci_name(pdev);
2559 	adapter->msg_enable = dflt_msg_enable;
2560 	err = adap_init0(adapter);
2561 	if (err)
2562 		goto err_unmap_bar;
2563 
2564 	/*
2565 	 * Allocate our "adapter ports" and stitch everything together.
2566 	 */
2567 	pmask = adapter->params.vfres.pmask;
2568 	for_each_port(adapter, pidx) {
2569 		int port_id, viid;
2570 
2571 		/*
2572 		 * We simplistically allocate our virtual interfaces
2573 		 * sequentially across the port numbers to which we have
2574 		 * access rights.  This should be configurable in some manner
2575 		 * ...
2576 		 */
2577 		if (pmask == 0)
2578 			break;
2579 		port_id = ffs(pmask) - 1;
2580 		pmask &= ~(1 << port_id);
2581 		viid = t4vf_alloc_vi(adapter, port_id);
2582 		if (viid < 0) {
2583 			dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2584 				" err=%d\n", port_id, viid);
2585 			err = viid;
2586 			goto err_free_dev;
2587 		}
2588 
2589 		/*
2590 		 * Allocate our network device and stitch things together.
2591 		 */
2592 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
2593 					   MAX_PORT_QSETS);
2594 		if (netdev == NULL) {
2595 			t4vf_free_vi(adapter, viid);
2596 			err = -ENOMEM;
2597 			goto err_free_dev;
2598 		}
2599 		adapter->port[pidx] = netdev;
2600 		SET_NETDEV_DEV(netdev, &pdev->dev);
2601 		pi = netdev_priv(netdev);
2602 		pi->adapter = adapter;
2603 		pi->pidx = pidx;
2604 		pi->port_id = port_id;
2605 		pi->viid = viid;
2606 
2607 		/*
2608 		 * Initialize the starting state of our "port" and register
2609 		 * it.
2610 		 */
2611 		pi->xact_addr_filt = -1;
2612 		netif_carrier_off(netdev);
2613 		netdev->irq = pdev->irq;
2614 
2615 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
2616 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2617 			NETIF_F_HW_VLAN_RX | NETIF_F_RXCSUM;
2618 		netdev->vlan_features = NETIF_F_SG | TSO_FLAGS |
2619 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2620 			NETIF_F_HIGHDMA;
2621 		netdev->features = netdev->hw_features | NETIF_F_HW_VLAN_TX;
2622 		if (pci_using_dac)
2623 			netdev->features |= NETIF_F_HIGHDMA;
2624 
2625 		netdev->priv_flags |= IFF_UNICAST_FLT;
2626 
2627 		netdev->netdev_ops = &cxgb4vf_netdev_ops;
2628 		SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops);
2629 
2630 		/*
2631 		 * Initialize the hardware/software state for the port.
2632 		 */
2633 		err = t4vf_port_init(adapter, pidx);
2634 		if (err) {
2635 			dev_err(&pdev->dev, "cannot initialize port %d\n",
2636 				pidx);
2637 			goto err_free_dev;
2638 		}
2639 	}
2640 
2641 	/*
2642 	 * The "card" is now ready to go.  If any errors occur during device
2643 	 * registration we do not fail the whole "card" but rather proceed
2644 	 * only with the ports we manage to register successfully.  However we
2645 	 * must register at least one net device.
2646 	 */
2647 	for_each_port(adapter, pidx) {
2648 		netdev = adapter->port[pidx];
2649 		if (netdev == NULL)
2650 			continue;
2651 
2652 		err = register_netdev(netdev);
2653 		if (err) {
2654 			dev_warn(&pdev->dev, "cannot register net device %s,"
2655 				 " skipping\n", netdev->name);
2656 			continue;
2657 		}
2658 
2659 		set_bit(pidx, &adapter->registered_device_map);
2660 	}
2661 	if (adapter->registered_device_map == 0) {
2662 		dev_err(&pdev->dev, "could not register any net devices\n");
2663 		goto err_free_dev;
2664 	}
2665 
2666 	/*
2667 	 * Set up our debugfs entries.
2668 	 */
2669 	if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
2670 		adapter->debugfs_root =
2671 			debugfs_create_dir(pci_name(pdev),
2672 					   cxgb4vf_debugfs_root);
2673 		if (IS_ERR_OR_NULL(adapter->debugfs_root))
2674 			dev_warn(&pdev->dev, "could not create debugfs"
2675 				 " directory");
2676 		else
2677 			setup_debugfs(adapter);
2678 	}
2679 
2680 	/*
2681 	 * See what interrupts we'll be using.  If we've been configured to
2682 	 * use MSI-X interrupts, try to enable them but fall back to using
2683 	 * MSI interrupts if we can't enable MSI-X interrupts.  If we can't
2684 	 * get MSI interrupts we bail with the error.
2685 	 */
2686 	if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2687 		adapter->flags |= USING_MSIX;
2688 	else {
2689 		err = pci_enable_msi(pdev);
2690 		if (err) {
2691 			dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2692 				" err=%d\n",
2693 				msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2694 			goto err_free_debugfs;
2695 		}
2696 		adapter->flags |= USING_MSI;
2697 	}
2698 
2699 	/*
2700 	 * Now that we know how many "ports" we have and what their types are,
2701 	 * and how many Queue Sets we can support, we can configure our queue
2702 	 * resources.
2703 	 */
2704 	cfg_queues(adapter);
2705 
2706 	/*
2707 	 * Print a short notice on the existence and configuration of the new
2708 	 * VF network device ...
2709 	 */
2710 	for_each_port(adapter, pidx) {
2711 		dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2712 			 adapter->port[pidx]->name,
2713 			 (adapter->flags & USING_MSIX) ? "MSI-X" :
2714 			 (adapter->flags & USING_MSI)  ? "MSI" : "");
2715 	}
2716 
2717 	/*
2718 	 * Return success!
2719 	 */
2720 	return 0;
2721 
2722 	/*
2723 	 * Error recovery and exit code.  Unwind state that's been created
2724 	 * so far and return the error.
2725 	 */
2726 
2727 err_free_debugfs:
2728 	if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2729 		cleanup_debugfs(adapter);
2730 		debugfs_remove_recursive(adapter->debugfs_root);
2731 	}
2732 
2733 err_free_dev:
2734 	for_each_port(adapter, pidx) {
2735 		netdev = adapter->port[pidx];
2736 		if (netdev == NULL)
2737 			continue;
2738 		pi = netdev_priv(netdev);
2739 		t4vf_free_vi(adapter, pi->viid);
2740 		if (test_bit(pidx, &adapter->registered_device_map))
2741 			unregister_netdev(netdev);
2742 		free_netdev(netdev);
2743 	}
2744 
2745 err_unmap_bar:
2746 	iounmap(adapter->regs);
2747 
2748 err_free_adapter:
2749 	kfree(adapter);
2750 	pci_set_drvdata(pdev, NULL);
2751 
2752 err_release_regions:
2753 	pci_release_regions(pdev);
2754 	pci_set_drvdata(pdev, NULL);
2755 	pci_clear_master(pdev);
2756 
2757 err_disable_device:
2758 	pci_disable_device(pdev);
2759 
2760 	return err;
2761 }
2762 
2763 /*
2764  * "Remove" a device: tear down all kernel and driver state created in the
2765  * "probe" routine and quiesce the device (disable interrupts, etc.).  (Note
2766  * that this is called "remove_one" in the PF Driver.)
2767  */
2768 static void cxgb4vf_pci_remove(struct pci_dev *pdev)
2769 {
2770 	struct adapter *adapter = pci_get_drvdata(pdev);
2771 
2772 	/*
2773 	 * Tear down driver state associated with device.
2774 	 */
2775 	if (adapter) {
2776 		int pidx;
2777 
2778 		/*
2779 		 * Stop all of our activity.  Unregister network port,
2780 		 * disable interrupts, etc.
2781 		 */
2782 		for_each_port(adapter, pidx)
2783 			if (test_bit(pidx, &adapter->registered_device_map))
2784 				unregister_netdev(adapter->port[pidx]);
2785 		t4vf_sge_stop(adapter);
2786 		if (adapter->flags & USING_MSIX) {
2787 			pci_disable_msix(adapter->pdev);
2788 			adapter->flags &= ~USING_MSIX;
2789 		} else if (adapter->flags & USING_MSI) {
2790 			pci_disable_msi(adapter->pdev);
2791 			adapter->flags &= ~USING_MSI;
2792 		}
2793 
2794 		/*
2795 		 * Tear down our debugfs entries.
2796 		 */
2797 		if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2798 			cleanup_debugfs(adapter);
2799 			debugfs_remove_recursive(adapter->debugfs_root);
2800 		}
2801 
2802 		/*
2803 		 * Free all of the various resources which we've acquired ...
2804 		 */
2805 		t4vf_free_sge_resources(adapter);
2806 		for_each_port(adapter, pidx) {
2807 			struct net_device *netdev = adapter->port[pidx];
2808 			struct port_info *pi;
2809 
2810 			if (netdev == NULL)
2811 				continue;
2812 
2813 			pi = netdev_priv(netdev);
2814 			t4vf_free_vi(adapter, pi->viid);
2815 			free_netdev(netdev);
2816 		}
2817 		iounmap(adapter->regs);
2818 		kfree(adapter);
2819 		pci_set_drvdata(pdev, NULL);
2820 	}
2821 
2822 	/*
2823 	 * Disable the device and release its PCI resources.
2824 	 */
2825 	pci_disable_device(pdev);
2826 	pci_clear_master(pdev);
2827 	pci_release_regions(pdev);
2828 }
2829 
2830 /*
2831  * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
2832  * delivery.
2833  */
2834 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
2835 {
2836 	struct adapter *adapter;
2837 	int pidx;
2838 
2839 	adapter = pci_get_drvdata(pdev);
2840 	if (!adapter)
2841 		return;
2842 
2843 	/*
2844 	 * Disable all Virtual Interfaces.  This will shut down the
2845 	 * delivery of all ingress packets into the chip for these
2846 	 * Virtual Interfaces.
2847 	 */
2848 	for_each_port(adapter, pidx) {
2849 		struct net_device *netdev;
2850 		struct port_info *pi;
2851 
2852 		if (!test_bit(pidx, &adapter->registered_device_map))
2853 			continue;
2854 
2855 		netdev = adapter->port[pidx];
2856 		if (!netdev)
2857 			continue;
2858 
2859 		pi = netdev_priv(netdev);
2860 		t4vf_enable_vi(adapter, pi->viid, false, false);
2861 	}
2862 
2863 	/*
2864 	 * Free up all Queues which will prevent further DMA and
2865 	 * Interrupts allowing various internal pathways to drain.
2866 	 */
2867 	t4vf_free_sge_resources(adapter);
2868 }
2869 
2870 /*
2871  * PCI Device registration data structures.
2872  */
2873 #define CH_DEVICE(devid, idx) \
2874 	{ PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2875 
2876 static struct pci_device_id cxgb4vf_pci_tbl[] = {
2877 	CH_DEVICE(0xb000, 0),	/* PE10K FPGA */
2878 	CH_DEVICE(0x4800, 0),	/* T440-dbg */
2879 	CH_DEVICE(0x4801, 0),	/* T420-cr */
2880 	CH_DEVICE(0x4802, 0),	/* T422-cr */
2881 	CH_DEVICE(0x4803, 0),	/* T440-cr */
2882 	CH_DEVICE(0x4804, 0),	/* T420-bch */
2883 	CH_DEVICE(0x4805, 0),   /* T440-bch */
2884 	CH_DEVICE(0x4806, 0),	/* T460-ch */
2885 	CH_DEVICE(0x4807, 0),	/* T420-so */
2886 	CH_DEVICE(0x4808, 0),	/* T420-cx */
2887 	CH_DEVICE(0x4809, 0),	/* T420-bt */
2888 	CH_DEVICE(0x480a, 0),   /* T404-bt */
2889 	CH_DEVICE(0x480d, 0),   /* T480-cr */
2890 	CH_DEVICE(0x480e, 0),   /* T440-lp-cr */
2891 	{ 0, }
2892 };
2893 
2894 MODULE_DESCRIPTION(DRV_DESC);
2895 MODULE_AUTHOR("Chelsio Communications");
2896 MODULE_LICENSE("Dual BSD/GPL");
2897 MODULE_VERSION(DRV_VERSION);
2898 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2899 
2900 static struct pci_driver cxgb4vf_driver = {
2901 	.name		= KBUILD_MODNAME,
2902 	.id_table	= cxgb4vf_pci_tbl,
2903 	.probe		= cxgb4vf_pci_probe,
2904 	.remove		= cxgb4vf_pci_remove,
2905 	.shutdown	= cxgb4vf_pci_shutdown,
2906 };
2907 
2908 /*
2909  * Initialize global driver state.
2910  */
2911 static int __init cxgb4vf_module_init(void)
2912 {
2913 	int ret;
2914 
2915 	/*
2916 	 * Vet our module parameters.
2917 	 */
2918 	if (msi != MSI_MSIX && msi != MSI_MSI) {
2919 		pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
2920 			msi, MSI_MSIX, MSI_MSI);
2921 		return -EINVAL;
2922 	}
2923 
2924 	/* Debugfs support is optional, just warn if this fails */
2925 	cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
2926 	if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
2927 		pr_warn("could not create debugfs entry, continuing\n");
2928 
2929 	ret = pci_register_driver(&cxgb4vf_driver);
2930 	if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
2931 		debugfs_remove(cxgb4vf_debugfs_root);
2932 	return ret;
2933 }
2934 
2935 /*
2936  * Tear down global driver state.
2937  */
2938 static void __exit cxgb4vf_module_exit(void)
2939 {
2940 	pci_unregister_driver(&cxgb4vf_driver);
2941 	debugfs_remove(cxgb4vf_debugfs_root);
2942 }
2943 
2944 module_init(cxgb4vf_module_init);
2945 module_exit(cxgb4vf_module_exit);
2946