1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/module.h> 39 #include <linux/moduleparam.h> 40 #include <linux/init.h> 41 #include <linux/pci.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/netdevice.h> 44 #include <linux/etherdevice.h> 45 #include <linux/debugfs.h> 46 #include <linux/ethtool.h> 47 48 #include "t4vf_common.h" 49 #include "t4vf_defs.h" 50 51 #include "../cxgb4/t4_regs.h" 52 #include "../cxgb4/t4_msg.h" 53 54 /* 55 * Generic information about the driver. 56 */ 57 #define DRV_VERSION "1.0.0" 58 #define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver" 59 60 /* 61 * Module Parameters. 62 * ================== 63 */ 64 65 /* 66 * Default ethtool "message level" for adapters. 67 */ 68 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 69 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 70 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 71 72 static int dflt_msg_enable = DFLT_MSG_ENABLE; 73 74 module_param(dflt_msg_enable, int, 0644); 75 MODULE_PARM_DESC(dflt_msg_enable, 76 "default adapter ethtool message level bitmap"); 77 78 /* 79 * The driver uses the best interrupt scheme available on a platform in the 80 * order MSI-X then MSI. This parameter determines which of these schemes the 81 * driver may consider as follows: 82 * 83 * msi = 2: choose from among MSI-X and MSI 84 * msi = 1: only consider MSI interrupts 85 * 86 * Note that unlike the Physical Function driver, this Virtual Function driver 87 * does _not_ support legacy INTx interrupts (this limitation is mandated by 88 * the PCI-E SR-IOV standard). 89 */ 90 #define MSI_MSIX 2 91 #define MSI_MSI 1 92 #define MSI_DEFAULT MSI_MSIX 93 94 static int msi = MSI_DEFAULT; 95 96 module_param(msi, int, 0644); 97 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI"); 98 99 /* 100 * Fundamental constants. 101 * ====================== 102 */ 103 104 enum { 105 MAX_TXQ_ENTRIES = 16384, 106 MAX_RSPQ_ENTRIES = 16384, 107 MAX_RX_BUFFERS = 16384, 108 109 MIN_TXQ_ENTRIES = 32, 110 MIN_RSPQ_ENTRIES = 128, 111 MIN_FL_ENTRIES = 16, 112 113 /* 114 * For purposes of manipulating the Free List size we need to 115 * recognize that Free Lists are actually Egress Queues (the host 116 * produces free buffers which the hardware consumes), Egress Queues 117 * indices are all in units of Egress Context Units bytes, and free 118 * list entries are 64-bit PCI DMA addresses. And since the state of 119 * the Producer Index == the Consumer Index implies an EMPTY list, we 120 * always have at least one Egress Unit's worth of Free List entries 121 * unused. See sge.c for more details ... 122 */ 123 EQ_UNIT = SGE_EQ_IDXSIZE, 124 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 125 MIN_FL_RESID = FL_PER_EQ_UNIT, 126 }; 127 128 /* 129 * Global driver state. 130 * ==================== 131 */ 132 133 static struct dentry *cxgb4vf_debugfs_root; 134 135 /* 136 * OS "Callback" functions. 137 * ======================== 138 */ 139 140 /* 141 * The link status has changed on the indicated "port" (Virtual Interface). 142 */ 143 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok) 144 { 145 struct net_device *dev = adapter->port[pidx]; 146 147 /* 148 * If the port is disabled or the current recorded "link up" 149 * status matches the new status, just return. 150 */ 151 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev)) 152 return; 153 154 /* 155 * Tell the OS that the link status has changed and print a short 156 * informative message on the console about the event. 157 */ 158 if (link_ok) { 159 const char *s; 160 const char *fc; 161 const struct port_info *pi = netdev_priv(dev); 162 163 netif_carrier_on(dev); 164 165 switch (pi->link_cfg.speed) { 166 case SPEED_10000: 167 s = "10Gbps"; 168 break; 169 170 case SPEED_1000: 171 s = "1000Mbps"; 172 break; 173 174 case SPEED_100: 175 s = "100Mbps"; 176 break; 177 178 default: 179 s = "unknown"; 180 break; 181 } 182 183 switch (pi->link_cfg.fc) { 184 case PAUSE_RX: 185 fc = "RX"; 186 break; 187 188 case PAUSE_TX: 189 fc = "TX"; 190 break; 191 192 case PAUSE_RX|PAUSE_TX: 193 fc = "RX/TX"; 194 break; 195 196 default: 197 fc = "no"; 198 break; 199 } 200 201 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc); 202 } else { 203 netif_carrier_off(dev); 204 netdev_info(dev, "link down\n"); 205 } 206 } 207 208 /* 209 * Net device operations. 210 * ====================== 211 */ 212 213 214 215 216 /* 217 * Perform the MAC and PHY actions needed to enable a "port" (Virtual 218 * Interface). 219 */ 220 static int link_start(struct net_device *dev) 221 { 222 int ret; 223 struct port_info *pi = netdev_priv(dev); 224 225 /* 226 * We do not set address filters and promiscuity here, the stack does 227 * that step explicitly. Enable vlan accel. 228 */ 229 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1, 230 true); 231 if (ret == 0) { 232 ret = t4vf_change_mac(pi->adapter, pi->viid, 233 pi->xact_addr_filt, dev->dev_addr, true); 234 if (ret >= 0) { 235 pi->xact_addr_filt = ret; 236 ret = 0; 237 } 238 } 239 240 /* 241 * We don't need to actually "start the link" itself since the 242 * firmware will do that for us when the first Virtual Interface 243 * is enabled on a port. 244 */ 245 if (ret == 0) 246 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true); 247 return ret; 248 } 249 250 /* 251 * Name the MSI-X interrupts. 252 */ 253 static void name_msix_vecs(struct adapter *adapter) 254 { 255 int namelen = sizeof(adapter->msix_info[0].desc) - 1; 256 int pidx; 257 258 /* 259 * Firmware events. 260 */ 261 snprintf(adapter->msix_info[MSIX_FW].desc, namelen, 262 "%s-FWeventq", adapter->name); 263 adapter->msix_info[MSIX_FW].desc[namelen] = 0; 264 265 /* 266 * Ethernet queues. 267 */ 268 for_each_port(adapter, pidx) { 269 struct net_device *dev = adapter->port[pidx]; 270 const struct port_info *pi = netdev_priv(dev); 271 int qs, msi; 272 273 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) { 274 snprintf(adapter->msix_info[msi].desc, namelen, 275 "%s-%d", dev->name, qs); 276 adapter->msix_info[msi].desc[namelen] = 0; 277 } 278 } 279 } 280 281 /* 282 * Request all of our MSI-X resources. 283 */ 284 static int request_msix_queue_irqs(struct adapter *adapter) 285 { 286 struct sge *s = &adapter->sge; 287 int rxq, msi, err; 288 289 /* 290 * Firmware events. 291 */ 292 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix, 293 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq); 294 if (err) 295 return err; 296 297 /* 298 * Ethernet queues. 299 */ 300 msi = MSIX_IQFLINT; 301 for_each_ethrxq(s, rxq) { 302 err = request_irq(adapter->msix_info[msi].vec, 303 t4vf_sge_intr_msix, 0, 304 adapter->msix_info[msi].desc, 305 &s->ethrxq[rxq].rspq); 306 if (err) 307 goto err_free_irqs; 308 msi++; 309 } 310 return 0; 311 312 err_free_irqs: 313 while (--rxq >= 0) 314 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq); 315 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 316 return err; 317 } 318 319 /* 320 * Free our MSI-X resources. 321 */ 322 static void free_msix_queue_irqs(struct adapter *adapter) 323 { 324 struct sge *s = &adapter->sge; 325 int rxq, msi; 326 327 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 328 msi = MSIX_IQFLINT; 329 for_each_ethrxq(s, rxq) 330 free_irq(adapter->msix_info[msi++].vec, 331 &s->ethrxq[rxq].rspq); 332 } 333 334 /* 335 * Turn on NAPI and start up interrupts on a response queue. 336 */ 337 static void qenable(struct sge_rspq *rspq) 338 { 339 napi_enable(&rspq->napi); 340 341 /* 342 * 0-increment the Going To Sleep register to start the timer and 343 * enable interrupts. 344 */ 345 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 346 CIDXINC(0) | 347 SEINTARM(rspq->intr_params) | 348 INGRESSQID(rspq->cntxt_id)); 349 } 350 351 /* 352 * Enable NAPI scheduling and interrupt generation for all Receive Queues. 353 */ 354 static void enable_rx(struct adapter *adapter) 355 { 356 int rxq; 357 struct sge *s = &adapter->sge; 358 359 for_each_ethrxq(s, rxq) 360 qenable(&s->ethrxq[rxq].rspq); 361 qenable(&s->fw_evtq); 362 363 /* 364 * The interrupt queue doesn't use NAPI so we do the 0-increment of 365 * its Going To Sleep register here to get it started. 366 */ 367 if (adapter->flags & USING_MSI) 368 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 369 CIDXINC(0) | 370 SEINTARM(s->intrq.intr_params) | 371 INGRESSQID(s->intrq.cntxt_id)); 372 373 } 374 375 /* 376 * Wait until all NAPI handlers are descheduled. 377 */ 378 static void quiesce_rx(struct adapter *adapter) 379 { 380 struct sge *s = &adapter->sge; 381 int rxq; 382 383 for_each_ethrxq(s, rxq) 384 napi_disable(&s->ethrxq[rxq].rspq.napi); 385 napi_disable(&s->fw_evtq.napi); 386 } 387 388 /* 389 * Response queue handler for the firmware event queue. 390 */ 391 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp, 392 const struct pkt_gl *gl) 393 { 394 /* 395 * Extract response opcode and get pointer to CPL message body. 396 */ 397 struct adapter *adapter = rspq->adapter; 398 u8 opcode = ((const struct rss_header *)rsp)->opcode; 399 void *cpl = (void *)(rsp + 1); 400 401 switch (opcode) { 402 case CPL_FW6_MSG: { 403 /* 404 * We've received an asynchronous message from the firmware. 405 */ 406 const struct cpl_fw6_msg *fw_msg = cpl; 407 if (fw_msg->type == FW6_TYPE_CMD_RPL) 408 t4vf_handle_fw_rpl(adapter, fw_msg->data); 409 break; 410 } 411 412 case CPL_SGE_EGR_UPDATE: { 413 /* 414 * We've received an Egress Queue Status Update message. We 415 * get these, if the SGE is configured to send these when the 416 * firmware passes certain points in processing our TX 417 * Ethernet Queue or if we make an explicit request for one. 418 * We use these updates to determine when we may need to 419 * restart a TX Ethernet Queue which was stopped for lack of 420 * free TX Queue Descriptors ... 421 */ 422 const struct cpl_sge_egr_update *p = cpl; 423 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid)); 424 struct sge *s = &adapter->sge; 425 struct sge_txq *tq; 426 struct sge_eth_txq *txq; 427 unsigned int eq_idx; 428 429 /* 430 * Perform sanity checking on the Queue ID to make sure it 431 * really refers to one of our TX Ethernet Egress Queues which 432 * is active and matches the queue's ID. None of these error 433 * conditions should ever happen so we may want to either make 434 * them fatal and/or conditionalized under DEBUG. 435 */ 436 eq_idx = EQ_IDX(s, qid); 437 if (unlikely(eq_idx >= MAX_EGRQ)) { 438 dev_err(adapter->pdev_dev, 439 "Egress Update QID %d out of range\n", qid); 440 break; 441 } 442 tq = s->egr_map[eq_idx]; 443 if (unlikely(tq == NULL)) { 444 dev_err(adapter->pdev_dev, 445 "Egress Update QID %d TXQ=NULL\n", qid); 446 break; 447 } 448 txq = container_of(tq, struct sge_eth_txq, q); 449 if (unlikely(tq->abs_id != qid)) { 450 dev_err(adapter->pdev_dev, 451 "Egress Update QID %d refers to TXQ %d\n", 452 qid, tq->abs_id); 453 break; 454 } 455 456 /* 457 * Restart a stopped TX Queue which has less than half of its 458 * TX ring in use ... 459 */ 460 txq->q.restarts++; 461 netif_tx_wake_queue(txq->txq); 462 break; 463 } 464 465 default: 466 dev_err(adapter->pdev_dev, 467 "unexpected CPL %#x on FW event queue\n", opcode); 468 } 469 470 return 0; 471 } 472 473 /* 474 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues 475 * to use and initializes them. We support multiple "Queue Sets" per port if 476 * we have MSI-X, otherwise just one queue set per port. 477 */ 478 static int setup_sge_queues(struct adapter *adapter) 479 { 480 struct sge *s = &adapter->sge; 481 int err, pidx, msix; 482 483 /* 484 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error 485 * state. 486 */ 487 bitmap_zero(s->starving_fl, MAX_EGRQ); 488 489 /* 490 * If we're using MSI interrupt mode we need to set up a "forwarded 491 * interrupt" queue which we'll set up with our MSI vector. The rest 492 * of the ingress queues will be set up to forward their interrupts to 493 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses 494 * the intrq's queue ID as the interrupt forwarding queue for the 495 * subsequent calls ... 496 */ 497 if (adapter->flags & USING_MSI) { 498 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false, 499 adapter->port[0], 0, NULL, NULL); 500 if (err) 501 goto err_free_queues; 502 } 503 504 /* 505 * Allocate our ingress queue for asynchronous firmware messages. 506 */ 507 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0], 508 MSIX_FW, NULL, fwevtq_handler); 509 if (err) 510 goto err_free_queues; 511 512 /* 513 * Allocate each "port"'s initial Queue Sets. These can be changed 514 * later on ... up to the point where any interface on the adapter is 515 * brought up at which point lots of things get nailed down 516 * permanently ... 517 */ 518 msix = MSIX_IQFLINT; 519 for_each_port(adapter, pidx) { 520 struct net_device *dev = adapter->port[pidx]; 521 struct port_info *pi = netdev_priv(dev); 522 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 523 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 524 int qs; 525 526 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 527 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false, 528 dev, msix++, 529 &rxq->fl, t4vf_ethrx_handler); 530 if (err) 531 goto err_free_queues; 532 533 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev, 534 netdev_get_tx_queue(dev, qs), 535 s->fw_evtq.cntxt_id); 536 if (err) 537 goto err_free_queues; 538 539 rxq->rspq.idx = qs; 540 memset(&rxq->stats, 0, sizeof(rxq->stats)); 541 } 542 } 543 544 /* 545 * Create the reverse mappings for the queues. 546 */ 547 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id; 548 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id; 549 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq; 550 for_each_port(adapter, pidx) { 551 struct net_device *dev = adapter->port[pidx]; 552 struct port_info *pi = netdev_priv(dev); 553 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 554 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 555 int qs; 556 557 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 558 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq; 559 EQ_MAP(s, txq->q.abs_id) = &txq->q; 560 561 /* 562 * The FW_IQ_CMD doesn't return the Absolute Queue IDs 563 * for Free Lists but since all of the Egress Queues 564 * (including Free Lists) have Relative Queue IDs 565 * which are computed as Absolute - Base Queue ID, we 566 * can synthesize the Absolute Queue IDs for the Free 567 * Lists. This is useful for debugging purposes when 568 * we want to dump Queue Contexts via the PF Driver. 569 */ 570 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base; 571 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl; 572 } 573 } 574 return 0; 575 576 err_free_queues: 577 t4vf_free_sge_resources(adapter); 578 return err; 579 } 580 581 /* 582 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive 583 * queues. We configure the RSS CPU lookup table to distribute to the number 584 * of HW receive queues, and the response queue lookup table to narrow that 585 * down to the response queues actually configured for each "port" (Virtual 586 * Interface). We always configure the RSS mapping for all ports since the 587 * mapping table has plenty of entries. 588 */ 589 static int setup_rss(struct adapter *adapter) 590 { 591 int pidx; 592 593 for_each_port(adapter, pidx) { 594 struct port_info *pi = adap2pinfo(adapter, pidx); 595 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 596 u16 rss[MAX_PORT_QSETS]; 597 int qs, err; 598 599 for (qs = 0; qs < pi->nqsets; qs++) 600 rss[qs] = rxq[qs].rspq.abs_id; 601 602 err = t4vf_config_rss_range(adapter, pi->viid, 603 0, pi->rss_size, rss, pi->nqsets); 604 if (err) 605 return err; 606 607 /* 608 * Perform Global RSS Mode-specific initialization. 609 */ 610 switch (adapter->params.rss.mode) { 611 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: 612 /* 613 * If Tunnel All Lookup isn't specified in the global 614 * RSS Configuration, then we need to specify a 615 * default Ingress Queue for any ingress packets which 616 * aren't hashed. We'll use our first ingress queue 617 * ... 618 */ 619 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) { 620 union rss_vi_config config; 621 err = t4vf_read_rss_vi_config(adapter, 622 pi->viid, 623 &config); 624 if (err) 625 return err; 626 config.basicvirtual.defaultq = 627 rxq[0].rspq.abs_id; 628 err = t4vf_write_rss_vi_config(adapter, 629 pi->viid, 630 &config); 631 if (err) 632 return err; 633 } 634 break; 635 } 636 } 637 638 return 0; 639 } 640 641 /* 642 * Bring the adapter up. Called whenever we go from no "ports" open to having 643 * one open. This function performs the actions necessary to make an adapter 644 * operational, such as completing the initialization of HW modules, and 645 * enabling interrupts. Must be called with the rtnl lock held. (Note that 646 * this is called "cxgb_up" in the PF Driver.) 647 */ 648 static int adapter_up(struct adapter *adapter) 649 { 650 int err; 651 652 /* 653 * If this is the first time we've been called, perform basic 654 * adapter setup. Once we've done this, many of our adapter 655 * parameters can no longer be changed ... 656 */ 657 if ((adapter->flags & FULL_INIT_DONE) == 0) { 658 err = setup_sge_queues(adapter); 659 if (err) 660 return err; 661 err = setup_rss(adapter); 662 if (err) { 663 t4vf_free_sge_resources(adapter); 664 return err; 665 } 666 667 if (adapter->flags & USING_MSIX) 668 name_msix_vecs(adapter); 669 adapter->flags |= FULL_INIT_DONE; 670 } 671 672 /* 673 * Acquire our interrupt resources. We only support MSI-X and MSI. 674 */ 675 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 676 if (adapter->flags & USING_MSIX) 677 err = request_msix_queue_irqs(adapter); 678 else 679 err = request_irq(adapter->pdev->irq, 680 t4vf_intr_handler(adapter), 0, 681 adapter->name, adapter); 682 if (err) { 683 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n", 684 err); 685 return err; 686 } 687 688 /* 689 * Enable NAPI ingress processing and return success. 690 */ 691 enable_rx(adapter); 692 t4vf_sge_start(adapter); 693 return 0; 694 } 695 696 /* 697 * Bring the adapter down. Called whenever the last "port" (Virtual 698 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF 699 * Driver.) 700 */ 701 static void adapter_down(struct adapter *adapter) 702 { 703 /* 704 * Free interrupt resources. 705 */ 706 if (adapter->flags & USING_MSIX) 707 free_msix_queue_irqs(adapter); 708 else 709 free_irq(adapter->pdev->irq, adapter); 710 711 /* 712 * Wait for NAPI handlers to finish. 713 */ 714 quiesce_rx(adapter); 715 } 716 717 /* 718 * Start up a net device. 719 */ 720 static int cxgb4vf_open(struct net_device *dev) 721 { 722 int err; 723 struct port_info *pi = netdev_priv(dev); 724 struct adapter *adapter = pi->adapter; 725 726 /* 727 * If this is the first interface that we're opening on the "adapter", 728 * bring the "adapter" up now. 729 */ 730 if (adapter->open_device_map == 0) { 731 err = adapter_up(adapter); 732 if (err) 733 return err; 734 } 735 736 /* 737 * Note that this interface is up and start everything up ... 738 */ 739 netif_set_real_num_tx_queues(dev, pi->nqsets); 740 err = netif_set_real_num_rx_queues(dev, pi->nqsets); 741 if (err) 742 goto err_unwind; 743 err = link_start(dev); 744 if (err) 745 goto err_unwind; 746 747 netif_tx_start_all_queues(dev); 748 set_bit(pi->port_id, &adapter->open_device_map); 749 return 0; 750 751 err_unwind: 752 if (adapter->open_device_map == 0) 753 adapter_down(adapter); 754 return err; 755 } 756 757 /* 758 * Shut down a net device. This routine is called "cxgb_close" in the PF 759 * Driver ... 760 */ 761 static int cxgb4vf_stop(struct net_device *dev) 762 { 763 struct port_info *pi = netdev_priv(dev); 764 struct adapter *adapter = pi->adapter; 765 766 netif_tx_stop_all_queues(dev); 767 netif_carrier_off(dev); 768 t4vf_enable_vi(adapter, pi->viid, false, false); 769 pi->link_cfg.link_ok = 0; 770 771 clear_bit(pi->port_id, &adapter->open_device_map); 772 if (adapter->open_device_map == 0) 773 adapter_down(adapter); 774 return 0; 775 } 776 777 /* 778 * Translate our basic statistics into the standard "ifconfig" statistics. 779 */ 780 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev) 781 { 782 struct t4vf_port_stats stats; 783 struct port_info *pi = netdev2pinfo(dev); 784 struct adapter *adapter = pi->adapter; 785 struct net_device_stats *ns = &dev->stats; 786 int err; 787 788 spin_lock(&adapter->stats_lock); 789 err = t4vf_get_port_stats(adapter, pi->pidx, &stats); 790 spin_unlock(&adapter->stats_lock); 791 792 memset(ns, 0, sizeof(*ns)); 793 if (err) 794 return ns; 795 796 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes + 797 stats.tx_ucast_bytes + stats.tx_offload_bytes); 798 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames + 799 stats.tx_ucast_frames + stats.tx_offload_frames); 800 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes + 801 stats.rx_ucast_bytes); 802 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames + 803 stats.rx_ucast_frames); 804 ns->multicast = stats.rx_mcast_frames; 805 ns->tx_errors = stats.tx_drop_frames; 806 ns->rx_errors = stats.rx_err_frames; 807 808 return ns; 809 } 810 811 /* 812 * Collect up to maxaddrs worth of a netdevice's unicast addresses, starting 813 * at a specified offset within the list, into an array of addrss pointers and 814 * return the number collected. 815 */ 816 static inline unsigned int collect_netdev_uc_list_addrs(const struct net_device *dev, 817 const u8 **addr, 818 unsigned int offset, 819 unsigned int maxaddrs) 820 { 821 unsigned int index = 0; 822 unsigned int naddr = 0; 823 const struct netdev_hw_addr *ha; 824 825 for_each_dev_addr(dev, ha) 826 if (index++ >= offset) { 827 addr[naddr++] = ha->addr; 828 if (naddr >= maxaddrs) 829 break; 830 } 831 return naddr; 832 } 833 834 /* 835 * Collect up to maxaddrs worth of a netdevice's multicast addresses, starting 836 * at a specified offset within the list, into an array of addrss pointers and 837 * return the number collected. 838 */ 839 static inline unsigned int collect_netdev_mc_list_addrs(const struct net_device *dev, 840 const u8 **addr, 841 unsigned int offset, 842 unsigned int maxaddrs) 843 { 844 unsigned int index = 0; 845 unsigned int naddr = 0; 846 const struct netdev_hw_addr *ha; 847 848 netdev_for_each_mc_addr(ha, dev) 849 if (index++ >= offset) { 850 addr[naddr++] = ha->addr; 851 if (naddr >= maxaddrs) 852 break; 853 } 854 return naddr; 855 } 856 857 /* 858 * Configure the exact and hash address filters to handle a port's multicast 859 * and secondary unicast MAC addresses. 860 */ 861 static int set_addr_filters(const struct net_device *dev, bool sleep) 862 { 863 u64 mhash = 0; 864 u64 uhash = 0; 865 bool free = true; 866 unsigned int offset, naddr; 867 const u8 *addr[7]; 868 int ret; 869 const struct port_info *pi = netdev_priv(dev); 870 871 /* first do the secondary unicast addresses */ 872 for (offset = 0; ; offset += naddr) { 873 naddr = collect_netdev_uc_list_addrs(dev, addr, offset, 874 ARRAY_SIZE(addr)); 875 if (naddr == 0) 876 break; 877 878 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free, 879 naddr, addr, NULL, &uhash, sleep); 880 if (ret < 0) 881 return ret; 882 883 free = false; 884 } 885 886 /* next set up the multicast addresses */ 887 for (offset = 0; ; offset += naddr) { 888 naddr = collect_netdev_mc_list_addrs(dev, addr, offset, 889 ARRAY_SIZE(addr)); 890 if (naddr == 0) 891 break; 892 893 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free, 894 naddr, addr, NULL, &mhash, sleep); 895 if (ret < 0) 896 return ret; 897 free = false; 898 } 899 900 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0, 901 uhash | mhash, sleep); 902 } 903 904 /* 905 * Set RX properties of a port, such as promiscruity, address filters, and MTU. 906 * If @mtu is -1 it is left unchanged. 907 */ 908 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 909 { 910 int ret; 911 struct port_info *pi = netdev_priv(dev); 912 913 ret = set_addr_filters(dev, sleep_ok); 914 if (ret == 0) 915 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1, 916 (dev->flags & IFF_PROMISC) != 0, 917 (dev->flags & IFF_ALLMULTI) != 0, 918 1, -1, sleep_ok); 919 return ret; 920 } 921 922 /* 923 * Set the current receive modes on the device. 924 */ 925 static void cxgb4vf_set_rxmode(struct net_device *dev) 926 { 927 /* unfortunately we can't return errors to the stack */ 928 set_rxmode(dev, -1, false); 929 } 930 931 /* 932 * Find the entry in the interrupt holdoff timer value array which comes 933 * closest to the specified interrupt holdoff value. 934 */ 935 static int closest_timer(const struct sge *s, int us) 936 { 937 int i, timer_idx = 0, min_delta = INT_MAX; 938 939 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 940 int delta = us - s->timer_val[i]; 941 if (delta < 0) 942 delta = -delta; 943 if (delta < min_delta) { 944 min_delta = delta; 945 timer_idx = i; 946 } 947 } 948 return timer_idx; 949 } 950 951 static int closest_thres(const struct sge *s, int thres) 952 { 953 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX; 954 955 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 956 delta = thres - s->counter_val[i]; 957 if (delta < 0) 958 delta = -delta; 959 if (delta < min_delta) { 960 min_delta = delta; 961 pktcnt_idx = i; 962 } 963 } 964 return pktcnt_idx; 965 } 966 967 /* 968 * Return a queue's interrupt hold-off time in us. 0 means no timer. 969 */ 970 static unsigned int qtimer_val(const struct adapter *adapter, 971 const struct sge_rspq *rspq) 972 { 973 unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params); 974 975 return timer_idx < SGE_NTIMERS 976 ? adapter->sge.timer_val[timer_idx] 977 : 0; 978 } 979 980 /** 981 * set_rxq_intr_params - set a queue's interrupt holdoff parameters 982 * @adapter: the adapter 983 * @rspq: the RX response queue 984 * @us: the hold-off time in us, or 0 to disable timer 985 * @cnt: the hold-off packet count, or 0 to disable counter 986 * 987 * Sets an RX response queue's interrupt hold-off time and packet count. 988 * At least one of the two needs to be enabled for the queue to generate 989 * interrupts. 990 */ 991 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq, 992 unsigned int us, unsigned int cnt) 993 { 994 unsigned int timer_idx; 995 996 /* 997 * If both the interrupt holdoff timer and count are specified as 998 * zero, default to a holdoff count of 1 ... 999 */ 1000 if ((us | cnt) == 0) 1001 cnt = 1; 1002 1003 /* 1004 * If an interrupt holdoff count has been specified, then find the 1005 * closest configured holdoff count and use that. If the response 1006 * queue has already been created, then update its queue context 1007 * parameters ... 1008 */ 1009 if (cnt) { 1010 int err; 1011 u32 v, pktcnt_idx; 1012 1013 pktcnt_idx = closest_thres(&adapter->sge, cnt); 1014 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) { 1015 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 1016 FW_PARAMS_PARAM_X( 1017 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1018 FW_PARAMS_PARAM_YZ(rspq->cntxt_id); 1019 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx); 1020 if (err) 1021 return err; 1022 } 1023 rspq->pktcnt_idx = pktcnt_idx; 1024 } 1025 1026 /* 1027 * Compute the closest holdoff timer index from the supplied holdoff 1028 * timer value. 1029 */ 1030 timer_idx = (us == 0 1031 ? SGE_TIMER_RSTRT_CNTR 1032 : closest_timer(&adapter->sge, us)); 1033 1034 /* 1035 * Update the response queue's interrupt coalescing parameters and 1036 * return success. 1037 */ 1038 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) | 1039 (cnt > 0 ? QINTR_CNT_EN : 0)); 1040 return 0; 1041 } 1042 1043 /* 1044 * Return a version number to identify the type of adapter. The scheme is: 1045 * - bits 0..9: chip version 1046 * - bits 10..15: chip revision 1047 */ 1048 static inline unsigned int mk_adap_vers(const struct adapter *adapter) 1049 { 1050 /* 1051 * Chip version 4, revision 0x3f (cxgb4vf). 1052 */ 1053 return 4 | (0x3f << 10); 1054 } 1055 1056 /* 1057 * Execute the specified ioctl command. 1058 */ 1059 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1060 { 1061 int ret = 0; 1062 1063 switch (cmd) { 1064 /* 1065 * The VF Driver doesn't have access to any of the other 1066 * common Ethernet device ioctl()'s (like reading/writing 1067 * PHY registers, etc. 1068 */ 1069 1070 default: 1071 ret = -EOPNOTSUPP; 1072 break; 1073 } 1074 return ret; 1075 } 1076 1077 /* 1078 * Change the device's MTU. 1079 */ 1080 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu) 1081 { 1082 int ret; 1083 struct port_info *pi = netdev_priv(dev); 1084 1085 /* accommodate SACK */ 1086 if (new_mtu < 81) 1087 return -EINVAL; 1088 1089 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu, 1090 -1, -1, -1, -1, true); 1091 if (!ret) 1092 dev->mtu = new_mtu; 1093 return ret; 1094 } 1095 1096 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev, 1097 netdev_features_t features) 1098 { 1099 /* 1100 * Since there is no support for separate rx/tx vlan accel 1101 * enable/disable make sure tx flag is always in same state as rx. 1102 */ 1103 if (features & NETIF_F_HW_VLAN_RX) 1104 features |= NETIF_F_HW_VLAN_TX; 1105 else 1106 features &= ~NETIF_F_HW_VLAN_TX; 1107 1108 return features; 1109 } 1110 1111 static int cxgb4vf_set_features(struct net_device *dev, 1112 netdev_features_t features) 1113 { 1114 struct port_info *pi = netdev_priv(dev); 1115 netdev_features_t changed = dev->features ^ features; 1116 1117 if (changed & NETIF_F_HW_VLAN_RX) 1118 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, 1119 features & NETIF_F_HW_VLAN_TX, 0); 1120 1121 return 0; 1122 } 1123 1124 /* 1125 * Change the devices MAC address. 1126 */ 1127 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr) 1128 { 1129 int ret; 1130 struct sockaddr *addr = _addr; 1131 struct port_info *pi = netdev_priv(dev); 1132 1133 if (!is_valid_ether_addr(addr->sa_data)) 1134 return -EADDRNOTAVAIL; 1135 1136 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt, 1137 addr->sa_data, true); 1138 if (ret < 0) 1139 return ret; 1140 1141 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 1142 pi->xact_addr_filt = ret; 1143 return 0; 1144 } 1145 1146 #ifdef CONFIG_NET_POLL_CONTROLLER 1147 /* 1148 * Poll all of our receive queues. This is called outside of normal interrupt 1149 * context. 1150 */ 1151 static void cxgb4vf_poll_controller(struct net_device *dev) 1152 { 1153 struct port_info *pi = netdev_priv(dev); 1154 struct adapter *adapter = pi->adapter; 1155 1156 if (adapter->flags & USING_MSIX) { 1157 struct sge_eth_rxq *rxq; 1158 int nqsets; 1159 1160 rxq = &adapter->sge.ethrxq[pi->first_qset]; 1161 for (nqsets = pi->nqsets; nqsets; nqsets--) { 1162 t4vf_sge_intr_msix(0, &rxq->rspq); 1163 rxq++; 1164 } 1165 } else 1166 t4vf_intr_handler(adapter)(0, adapter); 1167 } 1168 #endif 1169 1170 /* 1171 * Ethtool operations. 1172 * =================== 1173 * 1174 * Note that we don't support any ethtool operations which change the physical 1175 * state of the port to which we're linked. 1176 */ 1177 1178 /* 1179 * Return current port link settings. 1180 */ 1181 static int cxgb4vf_get_settings(struct net_device *dev, 1182 struct ethtool_cmd *cmd) 1183 { 1184 const struct port_info *pi = netdev_priv(dev); 1185 1186 cmd->supported = pi->link_cfg.supported; 1187 cmd->advertising = pi->link_cfg.advertising; 1188 ethtool_cmd_speed_set(cmd, 1189 netif_carrier_ok(dev) ? pi->link_cfg.speed : -1); 1190 cmd->duplex = DUPLEX_FULL; 1191 1192 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE; 1193 cmd->phy_address = pi->port_id; 1194 cmd->transceiver = XCVR_EXTERNAL; 1195 cmd->autoneg = pi->link_cfg.autoneg; 1196 cmd->maxtxpkt = 0; 1197 cmd->maxrxpkt = 0; 1198 return 0; 1199 } 1200 1201 /* 1202 * Return our driver information. 1203 */ 1204 static void cxgb4vf_get_drvinfo(struct net_device *dev, 1205 struct ethtool_drvinfo *drvinfo) 1206 { 1207 struct adapter *adapter = netdev2adap(dev); 1208 1209 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver)); 1210 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version)); 1211 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)), 1212 sizeof(drvinfo->bus_info)); 1213 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 1214 "%u.%u.%u.%u, TP %u.%u.%u.%u", 1215 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev), 1216 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev), 1217 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev), 1218 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev), 1219 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev), 1220 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev), 1221 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev), 1222 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev)); 1223 } 1224 1225 /* 1226 * Return current adapter message level. 1227 */ 1228 static u32 cxgb4vf_get_msglevel(struct net_device *dev) 1229 { 1230 return netdev2adap(dev)->msg_enable; 1231 } 1232 1233 /* 1234 * Set current adapter message level. 1235 */ 1236 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel) 1237 { 1238 netdev2adap(dev)->msg_enable = msglevel; 1239 } 1240 1241 /* 1242 * Return the device's current Queue Set ring size parameters along with the 1243 * allowed maximum values. Since ethtool doesn't understand the concept of 1244 * multi-queue devices, we just return the current values associated with the 1245 * first Queue Set. 1246 */ 1247 static void cxgb4vf_get_ringparam(struct net_device *dev, 1248 struct ethtool_ringparam *rp) 1249 { 1250 const struct port_info *pi = netdev_priv(dev); 1251 const struct sge *s = &pi->adapter->sge; 1252 1253 rp->rx_max_pending = MAX_RX_BUFFERS; 1254 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES; 1255 rp->rx_jumbo_max_pending = 0; 1256 rp->tx_max_pending = MAX_TXQ_ENTRIES; 1257 1258 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID; 1259 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; 1260 rp->rx_jumbo_pending = 0; 1261 rp->tx_pending = s->ethtxq[pi->first_qset].q.size; 1262 } 1263 1264 /* 1265 * Set the Queue Set ring size parameters for the device. Again, since 1266 * ethtool doesn't allow for the concept of multiple queues per device, we'll 1267 * apply these new values across all of the Queue Sets associated with the 1268 * device -- after vetting them of course! 1269 */ 1270 static int cxgb4vf_set_ringparam(struct net_device *dev, 1271 struct ethtool_ringparam *rp) 1272 { 1273 const struct port_info *pi = netdev_priv(dev); 1274 struct adapter *adapter = pi->adapter; 1275 struct sge *s = &adapter->sge; 1276 int qs; 1277 1278 if (rp->rx_pending > MAX_RX_BUFFERS || 1279 rp->rx_jumbo_pending || 1280 rp->tx_pending > MAX_TXQ_ENTRIES || 1281 rp->rx_mini_pending > MAX_RSPQ_ENTRIES || 1282 rp->rx_mini_pending < MIN_RSPQ_ENTRIES || 1283 rp->rx_pending < MIN_FL_ENTRIES || 1284 rp->tx_pending < MIN_TXQ_ENTRIES) 1285 return -EINVAL; 1286 1287 if (adapter->flags & FULL_INIT_DONE) 1288 return -EBUSY; 1289 1290 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) { 1291 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID; 1292 s->ethrxq[qs].rspq.size = rp->rx_mini_pending; 1293 s->ethtxq[qs].q.size = rp->tx_pending; 1294 } 1295 return 0; 1296 } 1297 1298 /* 1299 * Return the interrupt holdoff timer and count for the first Queue Set on the 1300 * device. Our extension ioctl() (the cxgbtool interface) allows the 1301 * interrupt holdoff timer to be read on all of the device's Queue Sets. 1302 */ 1303 static int cxgb4vf_get_coalesce(struct net_device *dev, 1304 struct ethtool_coalesce *coalesce) 1305 { 1306 const struct port_info *pi = netdev_priv(dev); 1307 const struct adapter *adapter = pi->adapter; 1308 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq; 1309 1310 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq); 1311 coalesce->rx_max_coalesced_frames = 1312 ((rspq->intr_params & QINTR_CNT_EN) 1313 ? adapter->sge.counter_val[rspq->pktcnt_idx] 1314 : 0); 1315 return 0; 1316 } 1317 1318 /* 1319 * Set the RX interrupt holdoff timer and count for the first Queue Set on the 1320 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set 1321 * the interrupt holdoff timer on any of the device's Queue Sets. 1322 */ 1323 static int cxgb4vf_set_coalesce(struct net_device *dev, 1324 struct ethtool_coalesce *coalesce) 1325 { 1326 const struct port_info *pi = netdev_priv(dev); 1327 struct adapter *adapter = pi->adapter; 1328 1329 return set_rxq_intr_params(adapter, 1330 &adapter->sge.ethrxq[pi->first_qset].rspq, 1331 coalesce->rx_coalesce_usecs, 1332 coalesce->rx_max_coalesced_frames); 1333 } 1334 1335 /* 1336 * Report current port link pause parameter settings. 1337 */ 1338 static void cxgb4vf_get_pauseparam(struct net_device *dev, 1339 struct ethtool_pauseparam *pauseparam) 1340 { 1341 struct port_info *pi = netdev_priv(dev); 1342 1343 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; 1344 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0; 1345 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0; 1346 } 1347 1348 /* 1349 * Identify the port by blinking the port's LED. 1350 */ 1351 static int cxgb4vf_phys_id(struct net_device *dev, 1352 enum ethtool_phys_id_state state) 1353 { 1354 unsigned int val; 1355 struct port_info *pi = netdev_priv(dev); 1356 1357 if (state == ETHTOOL_ID_ACTIVE) 1358 val = 0xffff; 1359 else if (state == ETHTOOL_ID_INACTIVE) 1360 val = 0; 1361 else 1362 return -EINVAL; 1363 1364 return t4vf_identify_port(pi->adapter, pi->viid, val); 1365 } 1366 1367 /* 1368 * Port stats maintained per queue of the port. 1369 */ 1370 struct queue_port_stats { 1371 u64 tso; 1372 u64 tx_csum; 1373 u64 rx_csum; 1374 u64 vlan_ex; 1375 u64 vlan_ins; 1376 u64 lro_pkts; 1377 u64 lro_merged; 1378 }; 1379 1380 /* 1381 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that 1382 * these need to match the order of statistics returned by 1383 * t4vf_get_port_stats(). 1384 */ 1385 static const char stats_strings[][ETH_GSTRING_LEN] = { 1386 /* 1387 * These must match the layout of the t4vf_port_stats structure. 1388 */ 1389 "TxBroadcastBytes ", 1390 "TxBroadcastFrames ", 1391 "TxMulticastBytes ", 1392 "TxMulticastFrames ", 1393 "TxUnicastBytes ", 1394 "TxUnicastFrames ", 1395 "TxDroppedFrames ", 1396 "TxOffloadBytes ", 1397 "TxOffloadFrames ", 1398 "RxBroadcastBytes ", 1399 "RxBroadcastFrames ", 1400 "RxMulticastBytes ", 1401 "RxMulticastFrames ", 1402 "RxUnicastBytes ", 1403 "RxUnicastFrames ", 1404 "RxErrorFrames ", 1405 1406 /* 1407 * These are accumulated per-queue statistics and must match the 1408 * order of the fields in the queue_port_stats structure. 1409 */ 1410 "TSO ", 1411 "TxCsumOffload ", 1412 "RxCsumGood ", 1413 "VLANextractions ", 1414 "VLANinsertions ", 1415 "GROPackets ", 1416 "GROMerged ", 1417 }; 1418 1419 /* 1420 * Return the number of statistics in the specified statistics set. 1421 */ 1422 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset) 1423 { 1424 switch (sset) { 1425 case ETH_SS_STATS: 1426 return ARRAY_SIZE(stats_strings); 1427 default: 1428 return -EOPNOTSUPP; 1429 } 1430 /*NOTREACHED*/ 1431 } 1432 1433 /* 1434 * Return the strings for the specified statistics set. 1435 */ 1436 static void cxgb4vf_get_strings(struct net_device *dev, 1437 u32 sset, 1438 u8 *data) 1439 { 1440 switch (sset) { 1441 case ETH_SS_STATS: 1442 memcpy(data, stats_strings, sizeof(stats_strings)); 1443 break; 1444 } 1445 } 1446 1447 /* 1448 * Small utility routine to accumulate queue statistics across the queues of 1449 * a "port". 1450 */ 1451 static void collect_sge_port_stats(const struct adapter *adapter, 1452 const struct port_info *pi, 1453 struct queue_port_stats *stats) 1454 { 1455 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset]; 1456 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 1457 int qs; 1458 1459 memset(stats, 0, sizeof(*stats)); 1460 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 1461 stats->tso += txq->tso; 1462 stats->tx_csum += txq->tx_cso; 1463 stats->rx_csum += rxq->stats.rx_cso; 1464 stats->vlan_ex += rxq->stats.vlan_ex; 1465 stats->vlan_ins += txq->vlan_ins; 1466 stats->lro_pkts += rxq->stats.lro_pkts; 1467 stats->lro_merged += rxq->stats.lro_merged; 1468 } 1469 } 1470 1471 /* 1472 * Return the ETH_SS_STATS statistics set. 1473 */ 1474 static void cxgb4vf_get_ethtool_stats(struct net_device *dev, 1475 struct ethtool_stats *stats, 1476 u64 *data) 1477 { 1478 struct port_info *pi = netdev2pinfo(dev); 1479 struct adapter *adapter = pi->adapter; 1480 int err = t4vf_get_port_stats(adapter, pi->pidx, 1481 (struct t4vf_port_stats *)data); 1482 if (err) 1483 memset(data, 0, sizeof(struct t4vf_port_stats)); 1484 1485 data += sizeof(struct t4vf_port_stats) / sizeof(u64); 1486 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); 1487 } 1488 1489 /* 1490 * Return the size of our register map. 1491 */ 1492 static int cxgb4vf_get_regs_len(struct net_device *dev) 1493 { 1494 return T4VF_REGMAP_SIZE; 1495 } 1496 1497 /* 1498 * Dump a block of registers, start to end inclusive, into a buffer. 1499 */ 1500 static void reg_block_dump(struct adapter *adapter, void *regbuf, 1501 unsigned int start, unsigned int end) 1502 { 1503 u32 *bp = regbuf + start - T4VF_REGMAP_START; 1504 1505 for ( ; start <= end; start += sizeof(u32)) { 1506 /* 1507 * Avoid reading the Mailbox Control register since that 1508 * can trigger a Mailbox Ownership Arbitration cycle and 1509 * interfere with communication with the firmware. 1510 */ 1511 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL) 1512 *bp++ = 0xffff; 1513 else 1514 *bp++ = t4_read_reg(adapter, start); 1515 } 1516 } 1517 1518 /* 1519 * Copy our entire register map into the provided buffer. 1520 */ 1521 static void cxgb4vf_get_regs(struct net_device *dev, 1522 struct ethtool_regs *regs, 1523 void *regbuf) 1524 { 1525 struct adapter *adapter = netdev2adap(dev); 1526 1527 regs->version = mk_adap_vers(adapter); 1528 1529 /* 1530 * Fill in register buffer with our register map. 1531 */ 1532 memset(regbuf, 0, T4VF_REGMAP_SIZE); 1533 1534 reg_block_dump(adapter, regbuf, 1535 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST, 1536 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST); 1537 reg_block_dump(adapter, regbuf, 1538 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST, 1539 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST); 1540 reg_block_dump(adapter, regbuf, 1541 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST, 1542 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST); 1543 reg_block_dump(adapter, regbuf, 1544 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST, 1545 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST); 1546 1547 reg_block_dump(adapter, regbuf, 1548 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST, 1549 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST); 1550 } 1551 1552 /* 1553 * Report current Wake On LAN settings. 1554 */ 1555 static void cxgb4vf_get_wol(struct net_device *dev, 1556 struct ethtool_wolinfo *wol) 1557 { 1558 wol->supported = 0; 1559 wol->wolopts = 0; 1560 memset(&wol->sopass, 0, sizeof(wol->sopass)); 1561 } 1562 1563 /* 1564 * TCP Segmentation Offload flags which we support. 1565 */ 1566 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1567 1568 static const struct ethtool_ops cxgb4vf_ethtool_ops = { 1569 .get_settings = cxgb4vf_get_settings, 1570 .get_drvinfo = cxgb4vf_get_drvinfo, 1571 .get_msglevel = cxgb4vf_get_msglevel, 1572 .set_msglevel = cxgb4vf_set_msglevel, 1573 .get_ringparam = cxgb4vf_get_ringparam, 1574 .set_ringparam = cxgb4vf_set_ringparam, 1575 .get_coalesce = cxgb4vf_get_coalesce, 1576 .set_coalesce = cxgb4vf_set_coalesce, 1577 .get_pauseparam = cxgb4vf_get_pauseparam, 1578 .get_link = ethtool_op_get_link, 1579 .get_strings = cxgb4vf_get_strings, 1580 .set_phys_id = cxgb4vf_phys_id, 1581 .get_sset_count = cxgb4vf_get_sset_count, 1582 .get_ethtool_stats = cxgb4vf_get_ethtool_stats, 1583 .get_regs_len = cxgb4vf_get_regs_len, 1584 .get_regs = cxgb4vf_get_regs, 1585 .get_wol = cxgb4vf_get_wol, 1586 }; 1587 1588 /* 1589 * /sys/kernel/debug/cxgb4vf support code and data. 1590 * ================================================ 1591 */ 1592 1593 /* 1594 * Show SGE Queue Set information. We display QPL Queues Sets per line. 1595 */ 1596 #define QPL 4 1597 1598 static int sge_qinfo_show(struct seq_file *seq, void *v) 1599 { 1600 struct adapter *adapter = seq->private; 1601 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 1602 int qs, r = (uintptr_t)v - 1; 1603 1604 if (r) 1605 seq_putc(seq, '\n'); 1606 1607 #define S3(fmt_spec, s, v) \ 1608 do {\ 1609 seq_printf(seq, "%-12s", s); \ 1610 for (qs = 0; qs < n; ++qs) \ 1611 seq_printf(seq, " %16" fmt_spec, v); \ 1612 seq_putc(seq, '\n'); \ 1613 } while (0) 1614 #define S(s, v) S3("s", s, v) 1615 #define T(s, v) S3("u", s, txq[qs].v) 1616 #define R(s, v) S3("u", s, rxq[qs].v) 1617 1618 if (r < eth_entries) { 1619 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 1620 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 1621 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 1622 1623 S("QType:", "Ethernet"); 1624 S("Interface:", 1625 (rxq[qs].rspq.netdev 1626 ? rxq[qs].rspq.netdev->name 1627 : "N/A")); 1628 S3("d", "Port:", 1629 (rxq[qs].rspq.netdev 1630 ? ((struct port_info *) 1631 netdev_priv(rxq[qs].rspq.netdev))->port_id 1632 : -1)); 1633 T("TxQ ID:", q.abs_id); 1634 T("TxQ size:", q.size); 1635 T("TxQ inuse:", q.in_use); 1636 T("TxQ PIdx:", q.pidx); 1637 T("TxQ CIdx:", q.cidx); 1638 R("RspQ ID:", rspq.abs_id); 1639 R("RspQ size:", rspq.size); 1640 R("RspQE size:", rspq.iqe_len); 1641 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq)); 1642 S3("u", "Intr pktcnt:", 1643 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]); 1644 R("RspQ CIdx:", rspq.cidx); 1645 R("RspQ Gen:", rspq.gen); 1646 R("FL ID:", fl.abs_id); 1647 R("FL size:", fl.size - MIN_FL_RESID); 1648 R("FL avail:", fl.avail); 1649 R("FL PIdx:", fl.pidx); 1650 R("FL CIdx:", fl.cidx); 1651 return 0; 1652 } 1653 1654 r -= eth_entries; 1655 if (r == 0) { 1656 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 1657 1658 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue"); 1659 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id); 1660 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 1661 qtimer_val(adapter, evtq)); 1662 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 1663 adapter->sge.counter_val[evtq->pktcnt_idx]); 1664 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx); 1665 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen); 1666 } else if (r == 1) { 1667 const struct sge_rspq *intrq = &adapter->sge.intrq; 1668 1669 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue"); 1670 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id); 1671 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 1672 qtimer_val(adapter, intrq)); 1673 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 1674 adapter->sge.counter_val[intrq->pktcnt_idx]); 1675 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx); 1676 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen); 1677 } 1678 1679 #undef R 1680 #undef T 1681 #undef S 1682 #undef S3 1683 1684 return 0; 1685 } 1686 1687 /* 1688 * Return the number of "entries" in our "file". We group the multi-Queue 1689 * sections with QPL Queue Sets per "entry". The sections of the output are: 1690 * 1691 * Ethernet RX/TX Queue Sets 1692 * Firmware Event Queue 1693 * Forwarded Interrupt Queue (if in MSI mode) 1694 */ 1695 static int sge_queue_entries(const struct adapter *adapter) 1696 { 1697 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 1698 ((adapter->flags & USING_MSI) != 0); 1699 } 1700 1701 static void *sge_queue_start(struct seq_file *seq, loff_t *pos) 1702 { 1703 int entries = sge_queue_entries(seq->private); 1704 1705 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 1706 } 1707 1708 static void sge_queue_stop(struct seq_file *seq, void *v) 1709 { 1710 } 1711 1712 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos) 1713 { 1714 int entries = sge_queue_entries(seq->private); 1715 1716 ++*pos; 1717 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 1718 } 1719 1720 static const struct seq_operations sge_qinfo_seq_ops = { 1721 .start = sge_queue_start, 1722 .next = sge_queue_next, 1723 .stop = sge_queue_stop, 1724 .show = sge_qinfo_show 1725 }; 1726 1727 static int sge_qinfo_open(struct inode *inode, struct file *file) 1728 { 1729 int res = seq_open(file, &sge_qinfo_seq_ops); 1730 1731 if (!res) { 1732 struct seq_file *seq = file->private_data; 1733 seq->private = inode->i_private; 1734 } 1735 return res; 1736 } 1737 1738 static const struct file_operations sge_qinfo_debugfs_fops = { 1739 .owner = THIS_MODULE, 1740 .open = sge_qinfo_open, 1741 .read = seq_read, 1742 .llseek = seq_lseek, 1743 .release = seq_release, 1744 }; 1745 1746 /* 1747 * Show SGE Queue Set statistics. We display QPL Queues Sets per line. 1748 */ 1749 #define QPL 4 1750 1751 static int sge_qstats_show(struct seq_file *seq, void *v) 1752 { 1753 struct adapter *adapter = seq->private; 1754 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 1755 int qs, r = (uintptr_t)v - 1; 1756 1757 if (r) 1758 seq_putc(seq, '\n'); 1759 1760 #define S3(fmt, s, v) \ 1761 do { \ 1762 seq_printf(seq, "%-16s", s); \ 1763 for (qs = 0; qs < n; ++qs) \ 1764 seq_printf(seq, " %8" fmt, v); \ 1765 seq_putc(seq, '\n'); \ 1766 } while (0) 1767 #define S(s, v) S3("s", s, v) 1768 1769 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v) 1770 #define T(s, v) T3("lu", s, v) 1771 1772 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v) 1773 #define R(s, v) R3("lu", s, v) 1774 1775 if (r < eth_entries) { 1776 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 1777 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 1778 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 1779 1780 S("QType:", "Ethernet"); 1781 S("Interface:", 1782 (rxq[qs].rspq.netdev 1783 ? rxq[qs].rspq.netdev->name 1784 : "N/A")); 1785 R3("u", "RspQNullInts:", rspq.unhandled_irqs); 1786 R("RxPackets:", stats.pkts); 1787 R("RxCSO:", stats.rx_cso); 1788 R("VLANxtract:", stats.vlan_ex); 1789 R("LROmerged:", stats.lro_merged); 1790 R("LROpackets:", stats.lro_pkts); 1791 R("RxDrops:", stats.rx_drops); 1792 T("TSO:", tso); 1793 T("TxCSO:", tx_cso); 1794 T("VLANins:", vlan_ins); 1795 T("TxQFull:", q.stops); 1796 T("TxQRestarts:", q.restarts); 1797 T("TxMapErr:", mapping_err); 1798 R("FLAllocErr:", fl.alloc_failed); 1799 R("FLLrgAlcErr:", fl.large_alloc_failed); 1800 R("FLStarving:", fl.starving); 1801 return 0; 1802 } 1803 1804 r -= eth_entries; 1805 if (r == 0) { 1806 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 1807 1808 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue"); 1809 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 1810 evtq->unhandled_irqs); 1811 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx); 1812 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen); 1813 } else if (r == 1) { 1814 const struct sge_rspq *intrq = &adapter->sge.intrq; 1815 1816 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue"); 1817 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 1818 intrq->unhandled_irqs); 1819 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx); 1820 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen); 1821 } 1822 1823 #undef R 1824 #undef T 1825 #undef S 1826 #undef R3 1827 #undef T3 1828 #undef S3 1829 1830 return 0; 1831 } 1832 1833 /* 1834 * Return the number of "entries" in our "file". We group the multi-Queue 1835 * sections with QPL Queue Sets per "entry". The sections of the output are: 1836 * 1837 * Ethernet RX/TX Queue Sets 1838 * Firmware Event Queue 1839 * Forwarded Interrupt Queue (if in MSI mode) 1840 */ 1841 static int sge_qstats_entries(const struct adapter *adapter) 1842 { 1843 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 1844 ((adapter->flags & USING_MSI) != 0); 1845 } 1846 1847 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos) 1848 { 1849 int entries = sge_qstats_entries(seq->private); 1850 1851 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 1852 } 1853 1854 static void sge_qstats_stop(struct seq_file *seq, void *v) 1855 { 1856 } 1857 1858 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos) 1859 { 1860 int entries = sge_qstats_entries(seq->private); 1861 1862 (*pos)++; 1863 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 1864 } 1865 1866 static const struct seq_operations sge_qstats_seq_ops = { 1867 .start = sge_qstats_start, 1868 .next = sge_qstats_next, 1869 .stop = sge_qstats_stop, 1870 .show = sge_qstats_show 1871 }; 1872 1873 static int sge_qstats_open(struct inode *inode, struct file *file) 1874 { 1875 int res = seq_open(file, &sge_qstats_seq_ops); 1876 1877 if (res == 0) { 1878 struct seq_file *seq = file->private_data; 1879 seq->private = inode->i_private; 1880 } 1881 return res; 1882 } 1883 1884 static const struct file_operations sge_qstats_proc_fops = { 1885 .owner = THIS_MODULE, 1886 .open = sge_qstats_open, 1887 .read = seq_read, 1888 .llseek = seq_lseek, 1889 .release = seq_release, 1890 }; 1891 1892 /* 1893 * Show PCI-E SR-IOV Virtual Function Resource Limits. 1894 */ 1895 static int resources_show(struct seq_file *seq, void *v) 1896 { 1897 struct adapter *adapter = seq->private; 1898 struct vf_resources *vfres = &adapter->params.vfres; 1899 1900 #define S(desc, fmt, var) \ 1901 seq_printf(seq, "%-60s " fmt "\n", \ 1902 desc " (" #var "):", vfres->var) 1903 1904 S("Virtual Interfaces", "%d", nvi); 1905 S("Egress Queues", "%d", neq); 1906 S("Ethernet Control", "%d", nethctrl); 1907 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint); 1908 S("Ingress Queues", "%d", niq); 1909 S("Traffic Class", "%d", tc); 1910 S("Port Access Rights Mask", "%#x", pmask); 1911 S("MAC Address Filters", "%d", nexactf); 1912 S("Firmware Command Read Capabilities", "%#x", r_caps); 1913 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps); 1914 1915 #undef S 1916 1917 return 0; 1918 } 1919 1920 static int resources_open(struct inode *inode, struct file *file) 1921 { 1922 return single_open(file, resources_show, inode->i_private); 1923 } 1924 1925 static const struct file_operations resources_proc_fops = { 1926 .owner = THIS_MODULE, 1927 .open = resources_open, 1928 .read = seq_read, 1929 .llseek = seq_lseek, 1930 .release = single_release, 1931 }; 1932 1933 /* 1934 * Show Virtual Interfaces. 1935 */ 1936 static int interfaces_show(struct seq_file *seq, void *v) 1937 { 1938 if (v == SEQ_START_TOKEN) { 1939 seq_puts(seq, "Interface Port VIID\n"); 1940 } else { 1941 struct adapter *adapter = seq->private; 1942 int pidx = (uintptr_t)v - 2; 1943 struct net_device *dev = adapter->port[pidx]; 1944 struct port_info *pi = netdev_priv(dev); 1945 1946 seq_printf(seq, "%9s %4d %#5x\n", 1947 dev->name, pi->port_id, pi->viid); 1948 } 1949 return 0; 1950 } 1951 1952 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos) 1953 { 1954 return pos <= adapter->params.nports 1955 ? (void *)(uintptr_t)(pos + 1) 1956 : NULL; 1957 } 1958 1959 static void *interfaces_start(struct seq_file *seq, loff_t *pos) 1960 { 1961 return *pos 1962 ? interfaces_get_idx(seq->private, *pos) 1963 : SEQ_START_TOKEN; 1964 } 1965 1966 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos) 1967 { 1968 (*pos)++; 1969 return interfaces_get_idx(seq->private, *pos); 1970 } 1971 1972 static void interfaces_stop(struct seq_file *seq, void *v) 1973 { 1974 } 1975 1976 static const struct seq_operations interfaces_seq_ops = { 1977 .start = interfaces_start, 1978 .next = interfaces_next, 1979 .stop = interfaces_stop, 1980 .show = interfaces_show 1981 }; 1982 1983 static int interfaces_open(struct inode *inode, struct file *file) 1984 { 1985 int res = seq_open(file, &interfaces_seq_ops); 1986 1987 if (res == 0) { 1988 struct seq_file *seq = file->private_data; 1989 seq->private = inode->i_private; 1990 } 1991 return res; 1992 } 1993 1994 static const struct file_operations interfaces_proc_fops = { 1995 .owner = THIS_MODULE, 1996 .open = interfaces_open, 1997 .read = seq_read, 1998 .llseek = seq_lseek, 1999 .release = seq_release, 2000 }; 2001 2002 /* 2003 * /sys/kernel/debugfs/cxgb4vf/ files list. 2004 */ 2005 struct cxgb4vf_debugfs_entry { 2006 const char *name; /* name of debugfs node */ 2007 umode_t mode; /* file system mode */ 2008 const struct file_operations *fops; 2009 }; 2010 2011 static struct cxgb4vf_debugfs_entry debugfs_files[] = { 2012 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops }, 2013 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops }, 2014 { "resources", S_IRUGO, &resources_proc_fops }, 2015 { "interfaces", S_IRUGO, &interfaces_proc_fops }, 2016 }; 2017 2018 /* 2019 * Module and device initialization and cleanup code. 2020 * ================================================== 2021 */ 2022 2023 /* 2024 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the 2025 * directory (debugfs_root) has already been set up. 2026 */ 2027 static int setup_debugfs(struct adapter *adapter) 2028 { 2029 int i; 2030 2031 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2032 2033 /* 2034 * Debugfs support is best effort. 2035 */ 2036 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) 2037 (void)debugfs_create_file(debugfs_files[i].name, 2038 debugfs_files[i].mode, 2039 adapter->debugfs_root, 2040 (void *)adapter, 2041 debugfs_files[i].fops); 2042 2043 return 0; 2044 } 2045 2046 /* 2047 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave 2048 * it to our caller to tear down the directory (debugfs_root). 2049 */ 2050 static void cleanup_debugfs(struct adapter *adapter) 2051 { 2052 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2053 2054 /* 2055 * Unlike our sister routine cleanup_proc(), we don't need to remove 2056 * individual entries because a call will be made to 2057 * debugfs_remove_recursive(). We just need to clean up any ancillary 2058 * persistent state. 2059 */ 2060 /* nothing to do */ 2061 } 2062 2063 /* 2064 * Perform early "adapter" initialization. This is where we discover what 2065 * adapter parameters we're going to be using and initialize basic adapter 2066 * hardware support. 2067 */ 2068 static int adap_init0(struct adapter *adapter) 2069 { 2070 struct vf_resources *vfres = &adapter->params.vfres; 2071 struct sge_params *sge_params = &adapter->params.sge; 2072 struct sge *s = &adapter->sge; 2073 unsigned int ethqsets; 2074 int err; 2075 2076 /* 2077 * Wait for the device to become ready before proceeding ... 2078 */ 2079 err = t4vf_wait_dev_ready(adapter); 2080 if (err) { 2081 dev_err(adapter->pdev_dev, "device didn't become ready:" 2082 " err=%d\n", err); 2083 return err; 2084 } 2085 2086 /* 2087 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux 2088 * 2.6.31 and later we can't call pci_reset_function() in order to 2089 * issue an FLR because of a self- deadlock on the device semaphore. 2090 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the 2091 * cases where they're needed -- for instance, some versions of KVM 2092 * fail to reset "Assigned Devices" when the VM reboots. Therefore we 2093 * use the firmware based reset in order to reset any per function 2094 * state. 2095 */ 2096 err = t4vf_fw_reset(adapter); 2097 if (err < 0) { 2098 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err); 2099 return err; 2100 } 2101 2102 /* 2103 * Grab basic operational parameters. These will predominantly have 2104 * been set up by the Physical Function Driver or will be hard coded 2105 * into the adapter. We just have to live with them ... Note that 2106 * we _must_ get our VPD parameters before our SGE parameters because 2107 * we need to know the adapter's core clock from the VPD in order to 2108 * properly decode the SGE Timer Values. 2109 */ 2110 err = t4vf_get_dev_params(adapter); 2111 if (err) { 2112 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2113 " device parameters: err=%d\n", err); 2114 return err; 2115 } 2116 err = t4vf_get_vpd_params(adapter); 2117 if (err) { 2118 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2119 " VPD parameters: err=%d\n", err); 2120 return err; 2121 } 2122 err = t4vf_get_sge_params(adapter); 2123 if (err) { 2124 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2125 " SGE parameters: err=%d\n", err); 2126 return err; 2127 } 2128 err = t4vf_get_rss_glb_config(adapter); 2129 if (err) { 2130 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2131 " RSS parameters: err=%d\n", err); 2132 return err; 2133 } 2134 if (adapter->params.rss.mode != 2135 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 2136 dev_err(adapter->pdev_dev, "unable to operate with global RSS" 2137 " mode %d\n", adapter->params.rss.mode); 2138 return -EINVAL; 2139 } 2140 err = t4vf_sge_init(adapter); 2141 if (err) { 2142 dev_err(adapter->pdev_dev, "unable to use adapter parameters:" 2143 " err=%d\n", err); 2144 return err; 2145 } 2146 2147 /* 2148 * Retrieve our RX interrupt holdoff timer values and counter 2149 * threshold values from the SGE parameters. 2150 */ 2151 s->timer_val[0] = core_ticks_to_us(adapter, 2152 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1)); 2153 s->timer_val[1] = core_ticks_to_us(adapter, 2154 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1)); 2155 s->timer_val[2] = core_ticks_to_us(adapter, 2156 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3)); 2157 s->timer_val[3] = core_ticks_to_us(adapter, 2158 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3)); 2159 s->timer_val[4] = core_ticks_to_us(adapter, 2160 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5)); 2161 s->timer_val[5] = core_ticks_to_us(adapter, 2162 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5)); 2163 2164 s->counter_val[0] = 2165 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold); 2166 s->counter_val[1] = 2167 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold); 2168 s->counter_val[2] = 2169 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold); 2170 s->counter_val[3] = 2171 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold); 2172 2173 /* 2174 * Grab our Virtual Interface resource allocation, extract the 2175 * features that we're interested in and do a bit of sanity testing on 2176 * what we discover. 2177 */ 2178 err = t4vf_get_vfres(adapter); 2179 if (err) { 2180 dev_err(adapter->pdev_dev, "unable to get virtual interface" 2181 " resources: err=%d\n", err); 2182 return err; 2183 } 2184 2185 /* 2186 * The number of "ports" which we support is equal to the number of 2187 * Virtual Interfaces with which we've been provisioned. 2188 */ 2189 adapter->params.nports = vfres->nvi; 2190 if (adapter->params.nports > MAX_NPORTS) { 2191 dev_warn(adapter->pdev_dev, "only using %d of %d allowed" 2192 " virtual interfaces\n", MAX_NPORTS, 2193 adapter->params.nports); 2194 adapter->params.nports = MAX_NPORTS; 2195 } 2196 2197 /* 2198 * We need to reserve a number of the ingress queues with Free List 2199 * and Interrupt capabilities for special interrupt purposes (like 2200 * asynchronous firmware messages, or forwarded interrupts if we're 2201 * using MSI). The rest of the FL/Intr-capable ingress queues will be 2202 * matched up one-for-one with Ethernet/Control egress queues in order 2203 * to form "Queue Sets" which will be aportioned between the "ports". 2204 * For each Queue Set, we'll need the ability to allocate two Egress 2205 * Contexts -- one for the Ingress Queue Free List and one for the TX 2206 * Ethernet Queue. 2207 */ 2208 ethqsets = vfres->niqflint - INGQ_EXTRAS; 2209 if (vfres->nethctrl != ethqsets) { 2210 dev_warn(adapter->pdev_dev, "unequal number of [available]" 2211 " ingress/egress queues (%d/%d); using minimum for" 2212 " number of Queue Sets\n", ethqsets, vfres->nethctrl); 2213 ethqsets = min(vfres->nethctrl, ethqsets); 2214 } 2215 if (vfres->neq < ethqsets*2) { 2216 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)" 2217 " to support Queue Sets (%d); reducing allowed Queue" 2218 " Sets\n", vfres->neq, ethqsets); 2219 ethqsets = vfres->neq/2; 2220 } 2221 if (ethqsets > MAX_ETH_QSETS) { 2222 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue" 2223 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets); 2224 ethqsets = MAX_ETH_QSETS; 2225 } 2226 if (vfres->niq != 0 || vfres->neq > ethqsets*2) { 2227 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)" 2228 " ignored\n", vfres->niq, vfres->neq - ethqsets*2); 2229 } 2230 adapter->sge.max_ethqsets = ethqsets; 2231 2232 /* 2233 * Check for various parameter sanity issues. Most checks simply 2234 * result in us using fewer resources than our provissioning but we 2235 * do need at least one "port" with which to work ... 2236 */ 2237 if (adapter->sge.max_ethqsets < adapter->params.nports) { 2238 dev_warn(adapter->pdev_dev, "only using %d of %d available" 2239 " virtual interfaces (too few Queue Sets)\n", 2240 adapter->sge.max_ethqsets, adapter->params.nports); 2241 adapter->params.nports = adapter->sge.max_ethqsets; 2242 } 2243 if (adapter->params.nports == 0) { 2244 dev_err(adapter->pdev_dev, "no virtual interfaces configured/" 2245 "usable!\n"); 2246 return -EINVAL; 2247 } 2248 return 0; 2249 } 2250 2251 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx, 2252 u8 pkt_cnt_idx, unsigned int size, 2253 unsigned int iqe_size) 2254 { 2255 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) | 2256 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0)); 2257 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS 2258 ? pkt_cnt_idx 2259 : 0); 2260 rspq->iqe_len = iqe_size; 2261 rspq->size = size; 2262 } 2263 2264 /* 2265 * Perform default configuration of DMA queues depending on the number and 2266 * type of ports we found and the number of available CPUs. Most settings can 2267 * be modified by the admin via ethtool and cxgbtool prior to the adapter 2268 * being brought up for the first time. 2269 */ 2270 static void cfg_queues(struct adapter *adapter) 2271 { 2272 struct sge *s = &adapter->sge; 2273 int q10g, n10g, qidx, pidx, qs; 2274 size_t iqe_size; 2275 2276 /* 2277 * We should not be called till we know how many Queue Sets we can 2278 * support. In particular, this means that we need to know what kind 2279 * of interrupts we'll be using ... 2280 */ 2281 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 2282 2283 /* 2284 * Count the number of 10GbE Virtual Interfaces that we have. 2285 */ 2286 n10g = 0; 2287 for_each_port(adapter, pidx) 2288 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg); 2289 2290 /* 2291 * We default to 1 queue per non-10G port and up to # of cores queues 2292 * per 10G port. 2293 */ 2294 if (n10g == 0) 2295 q10g = 0; 2296 else { 2297 int n1g = (adapter->params.nports - n10g); 2298 q10g = (adapter->sge.max_ethqsets - n1g) / n10g; 2299 if (q10g > num_online_cpus()) 2300 q10g = num_online_cpus(); 2301 } 2302 2303 /* 2304 * Allocate the "Queue Sets" to the various Virtual Interfaces. 2305 * The layout will be established in setup_sge_queues() when the 2306 * adapter is brough up for the first time. 2307 */ 2308 qidx = 0; 2309 for_each_port(adapter, pidx) { 2310 struct port_info *pi = adap2pinfo(adapter, pidx); 2311 2312 pi->first_qset = qidx; 2313 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1; 2314 qidx += pi->nqsets; 2315 } 2316 s->ethqsets = qidx; 2317 2318 /* 2319 * The Ingress Queue Entry Size for our various Response Queues needs 2320 * to be big enough to accommodate the largest message we can receive 2321 * from the chip/firmware; which is 64 bytes ... 2322 */ 2323 iqe_size = 64; 2324 2325 /* 2326 * Set up default Queue Set parameters ... Start off with the 2327 * shortest interrupt holdoff timer. 2328 */ 2329 for (qs = 0; qs < s->max_ethqsets; qs++) { 2330 struct sge_eth_rxq *rxq = &s->ethrxq[qs]; 2331 struct sge_eth_txq *txq = &s->ethtxq[qs]; 2332 2333 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size); 2334 rxq->fl.size = 72; 2335 txq->q.size = 1024; 2336 } 2337 2338 /* 2339 * The firmware event queue is used for link state changes and 2340 * notifications of TX DMA completions. 2341 */ 2342 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size); 2343 2344 /* 2345 * The forwarded interrupt queue is used when we're in MSI interrupt 2346 * mode. In this mode all interrupts associated with RX queues will 2347 * be forwarded to a single queue which we'll associate with our MSI 2348 * interrupt vector. The messages dropped in the forwarded interrupt 2349 * queue will indicate which ingress queue needs servicing ... This 2350 * queue needs to be large enough to accommodate all of the ingress 2351 * queues which are forwarding their interrupt (+1 to prevent the PIDX 2352 * from equalling the CIDX if every ingress queue has an outstanding 2353 * interrupt). The queue doesn't need to be any larger because no 2354 * ingress queue will ever have more than one outstanding interrupt at 2355 * any time ... 2356 */ 2357 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1, 2358 iqe_size); 2359 } 2360 2361 /* 2362 * Reduce the number of Ethernet queues across all ports to at most n. 2363 * n provides at least one queue per port. 2364 */ 2365 static void reduce_ethqs(struct adapter *adapter, int n) 2366 { 2367 int i; 2368 struct port_info *pi; 2369 2370 /* 2371 * While we have too many active Ether Queue Sets, interate across the 2372 * "ports" and reduce their individual Queue Set allocations. 2373 */ 2374 BUG_ON(n < adapter->params.nports); 2375 while (n < adapter->sge.ethqsets) 2376 for_each_port(adapter, i) { 2377 pi = adap2pinfo(adapter, i); 2378 if (pi->nqsets > 1) { 2379 pi->nqsets--; 2380 adapter->sge.ethqsets--; 2381 if (adapter->sge.ethqsets <= n) 2382 break; 2383 } 2384 } 2385 2386 /* 2387 * Reassign the starting Queue Sets for each of the "ports" ... 2388 */ 2389 n = 0; 2390 for_each_port(adapter, i) { 2391 pi = adap2pinfo(adapter, i); 2392 pi->first_qset = n; 2393 n += pi->nqsets; 2394 } 2395 } 2396 2397 /* 2398 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally 2399 * we get a separate MSI-X vector for every "Queue Set" plus any extras we 2400 * need. Minimally we need one for every Virtual Interface plus those needed 2401 * for our "extras". Note that this process may lower the maximum number of 2402 * allowed Queue Sets ... 2403 */ 2404 static int enable_msix(struct adapter *adapter) 2405 { 2406 int i, err, want, need; 2407 struct msix_entry entries[MSIX_ENTRIES]; 2408 struct sge *s = &adapter->sge; 2409 2410 for (i = 0; i < MSIX_ENTRIES; ++i) 2411 entries[i].entry = i; 2412 2413 /* 2414 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets" 2415 * plus those needed for our "extras" (for example, the firmware 2416 * message queue). We _need_ at least one "Queue Set" per Virtual 2417 * Interface plus those needed for our "extras". So now we get to see 2418 * if the song is right ... 2419 */ 2420 want = s->max_ethqsets + MSIX_EXTRAS; 2421 need = adapter->params.nports + MSIX_EXTRAS; 2422 while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need) 2423 want = err; 2424 2425 if (err == 0) { 2426 int nqsets = want - MSIX_EXTRAS; 2427 if (nqsets < s->max_ethqsets) { 2428 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors" 2429 " for %d Queue Sets\n", nqsets); 2430 s->max_ethqsets = nqsets; 2431 if (nqsets < s->ethqsets) 2432 reduce_ethqs(adapter, nqsets); 2433 } 2434 for (i = 0; i < want; ++i) 2435 adapter->msix_info[i].vec = entries[i].vector; 2436 } else if (err > 0) { 2437 pci_disable_msix(adapter->pdev); 2438 dev_info(adapter->pdev_dev, "only %d MSI-X vectors left," 2439 " not using MSI-X\n", err); 2440 } 2441 return err; 2442 } 2443 2444 static const struct net_device_ops cxgb4vf_netdev_ops = { 2445 .ndo_open = cxgb4vf_open, 2446 .ndo_stop = cxgb4vf_stop, 2447 .ndo_start_xmit = t4vf_eth_xmit, 2448 .ndo_get_stats = cxgb4vf_get_stats, 2449 .ndo_set_rx_mode = cxgb4vf_set_rxmode, 2450 .ndo_set_mac_address = cxgb4vf_set_mac_addr, 2451 .ndo_validate_addr = eth_validate_addr, 2452 .ndo_do_ioctl = cxgb4vf_do_ioctl, 2453 .ndo_change_mtu = cxgb4vf_change_mtu, 2454 .ndo_fix_features = cxgb4vf_fix_features, 2455 .ndo_set_features = cxgb4vf_set_features, 2456 #ifdef CONFIG_NET_POLL_CONTROLLER 2457 .ndo_poll_controller = cxgb4vf_poll_controller, 2458 #endif 2459 }; 2460 2461 /* 2462 * "Probe" a device: initialize a device and construct all kernel and driver 2463 * state needed to manage the device. This routine is called "init_one" in 2464 * the PF Driver ... 2465 */ 2466 static int cxgb4vf_pci_probe(struct pci_dev *pdev, 2467 const struct pci_device_id *ent) 2468 { 2469 int pci_using_dac; 2470 int err, pidx; 2471 unsigned int pmask; 2472 struct adapter *adapter; 2473 struct port_info *pi; 2474 struct net_device *netdev; 2475 2476 /* 2477 * Print our driver banner the first time we're called to initialize a 2478 * device. 2479 */ 2480 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION); 2481 2482 /* 2483 * Initialize generic PCI device state. 2484 */ 2485 err = pci_enable_device(pdev); 2486 if (err) { 2487 dev_err(&pdev->dev, "cannot enable PCI device\n"); 2488 return err; 2489 } 2490 2491 /* 2492 * Reserve PCI resources for the device. If we can't get them some 2493 * other driver may have already claimed the device ... 2494 */ 2495 err = pci_request_regions(pdev, KBUILD_MODNAME); 2496 if (err) { 2497 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 2498 goto err_disable_device; 2499 } 2500 2501 /* 2502 * Set up our DMA mask: try for 64-bit address masking first and 2503 * fall back to 32-bit if we can't get 64 bits ... 2504 */ 2505 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 2506 if (err == 0) { 2507 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 2508 if (err) { 2509 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for" 2510 " coherent allocations\n"); 2511 goto err_release_regions; 2512 } 2513 pci_using_dac = 1; 2514 } else { 2515 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2516 if (err != 0) { 2517 dev_err(&pdev->dev, "no usable DMA configuration\n"); 2518 goto err_release_regions; 2519 } 2520 pci_using_dac = 0; 2521 } 2522 2523 /* 2524 * Enable bus mastering for the device ... 2525 */ 2526 pci_set_master(pdev); 2527 2528 /* 2529 * Allocate our adapter data structure and attach it to the device. 2530 */ 2531 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 2532 if (!adapter) { 2533 err = -ENOMEM; 2534 goto err_release_regions; 2535 } 2536 pci_set_drvdata(pdev, adapter); 2537 adapter->pdev = pdev; 2538 adapter->pdev_dev = &pdev->dev; 2539 2540 /* 2541 * Initialize SMP data synchronization resources. 2542 */ 2543 spin_lock_init(&adapter->stats_lock); 2544 2545 /* 2546 * Map our I/O registers in BAR0. 2547 */ 2548 adapter->regs = pci_ioremap_bar(pdev, 0); 2549 if (!adapter->regs) { 2550 dev_err(&pdev->dev, "cannot map device registers\n"); 2551 err = -ENOMEM; 2552 goto err_free_adapter; 2553 } 2554 2555 /* 2556 * Initialize adapter level features. 2557 */ 2558 adapter->name = pci_name(pdev); 2559 adapter->msg_enable = dflt_msg_enable; 2560 err = adap_init0(adapter); 2561 if (err) 2562 goto err_unmap_bar; 2563 2564 /* 2565 * Allocate our "adapter ports" and stitch everything together. 2566 */ 2567 pmask = adapter->params.vfres.pmask; 2568 for_each_port(adapter, pidx) { 2569 int port_id, viid; 2570 2571 /* 2572 * We simplistically allocate our virtual interfaces 2573 * sequentially across the port numbers to which we have 2574 * access rights. This should be configurable in some manner 2575 * ... 2576 */ 2577 if (pmask == 0) 2578 break; 2579 port_id = ffs(pmask) - 1; 2580 pmask &= ~(1 << port_id); 2581 viid = t4vf_alloc_vi(adapter, port_id); 2582 if (viid < 0) { 2583 dev_err(&pdev->dev, "cannot allocate VI for port %d:" 2584 " err=%d\n", port_id, viid); 2585 err = viid; 2586 goto err_free_dev; 2587 } 2588 2589 /* 2590 * Allocate our network device and stitch things together. 2591 */ 2592 netdev = alloc_etherdev_mq(sizeof(struct port_info), 2593 MAX_PORT_QSETS); 2594 if (netdev == NULL) { 2595 t4vf_free_vi(adapter, viid); 2596 err = -ENOMEM; 2597 goto err_free_dev; 2598 } 2599 adapter->port[pidx] = netdev; 2600 SET_NETDEV_DEV(netdev, &pdev->dev); 2601 pi = netdev_priv(netdev); 2602 pi->adapter = adapter; 2603 pi->pidx = pidx; 2604 pi->port_id = port_id; 2605 pi->viid = viid; 2606 2607 /* 2608 * Initialize the starting state of our "port" and register 2609 * it. 2610 */ 2611 pi->xact_addr_filt = -1; 2612 netif_carrier_off(netdev); 2613 netdev->irq = pdev->irq; 2614 2615 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 2616 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2617 NETIF_F_HW_VLAN_RX | NETIF_F_RXCSUM; 2618 netdev->vlan_features = NETIF_F_SG | TSO_FLAGS | 2619 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2620 NETIF_F_HIGHDMA; 2621 netdev->features = netdev->hw_features | NETIF_F_HW_VLAN_TX; 2622 if (pci_using_dac) 2623 netdev->features |= NETIF_F_HIGHDMA; 2624 2625 netdev->priv_flags |= IFF_UNICAST_FLT; 2626 2627 netdev->netdev_ops = &cxgb4vf_netdev_ops; 2628 SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops); 2629 2630 /* 2631 * Initialize the hardware/software state for the port. 2632 */ 2633 err = t4vf_port_init(adapter, pidx); 2634 if (err) { 2635 dev_err(&pdev->dev, "cannot initialize port %d\n", 2636 pidx); 2637 goto err_free_dev; 2638 } 2639 } 2640 2641 /* 2642 * The "card" is now ready to go. If any errors occur during device 2643 * registration we do not fail the whole "card" but rather proceed 2644 * only with the ports we manage to register successfully. However we 2645 * must register at least one net device. 2646 */ 2647 for_each_port(adapter, pidx) { 2648 netdev = adapter->port[pidx]; 2649 if (netdev == NULL) 2650 continue; 2651 2652 err = register_netdev(netdev); 2653 if (err) { 2654 dev_warn(&pdev->dev, "cannot register net device %s," 2655 " skipping\n", netdev->name); 2656 continue; 2657 } 2658 2659 set_bit(pidx, &adapter->registered_device_map); 2660 } 2661 if (adapter->registered_device_map == 0) { 2662 dev_err(&pdev->dev, "could not register any net devices\n"); 2663 goto err_free_dev; 2664 } 2665 2666 /* 2667 * Set up our debugfs entries. 2668 */ 2669 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) { 2670 adapter->debugfs_root = 2671 debugfs_create_dir(pci_name(pdev), 2672 cxgb4vf_debugfs_root); 2673 if (IS_ERR_OR_NULL(adapter->debugfs_root)) 2674 dev_warn(&pdev->dev, "could not create debugfs" 2675 " directory"); 2676 else 2677 setup_debugfs(adapter); 2678 } 2679 2680 /* 2681 * See what interrupts we'll be using. If we've been configured to 2682 * use MSI-X interrupts, try to enable them but fall back to using 2683 * MSI interrupts if we can't enable MSI-X interrupts. If we can't 2684 * get MSI interrupts we bail with the error. 2685 */ 2686 if (msi == MSI_MSIX && enable_msix(adapter) == 0) 2687 adapter->flags |= USING_MSIX; 2688 else { 2689 err = pci_enable_msi(pdev); 2690 if (err) { 2691 dev_err(&pdev->dev, "Unable to allocate %s interrupts;" 2692 " err=%d\n", 2693 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err); 2694 goto err_free_debugfs; 2695 } 2696 adapter->flags |= USING_MSI; 2697 } 2698 2699 /* 2700 * Now that we know how many "ports" we have and what their types are, 2701 * and how many Queue Sets we can support, we can configure our queue 2702 * resources. 2703 */ 2704 cfg_queues(adapter); 2705 2706 /* 2707 * Print a short notice on the existence and configuration of the new 2708 * VF network device ... 2709 */ 2710 for_each_port(adapter, pidx) { 2711 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n", 2712 adapter->port[pidx]->name, 2713 (adapter->flags & USING_MSIX) ? "MSI-X" : 2714 (adapter->flags & USING_MSI) ? "MSI" : ""); 2715 } 2716 2717 /* 2718 * Return success! 2719 */ 2720 return 0; 2721 2722 /* 2723 * Error recovery and exit code. Unwind state that's been created 2724 * so far and return the error. 2725 */ 2726 2727 err_free_debugfs: 2728 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) { 2729 cleanup_debugfs(adapter); 2730 debugfs_remove_recursive(adapter->debugfs_root); 2731 } 2732 2733 err_free_dev: 2734 for_each_port(adapter, pidx) { 2735 netdev = adapter->port[pidx]; 2736 if (netdev == NULL) 2737 continue; 2738 pi = netdev_priv(netdev); 2739 t4vf_free_vi(adapter, pi->viid); 2740 if (test_bit(pidx, &adapter->registered_device_map)) 2741 unregister_netdev(netdev); 2742 free_netdev(netdev); 2743 } 2744 2745 err_unmap_bar: 2746 iounmap(adapter->regs); 2747 2748 err_free_adapter: 2749 kfree(adapter); 2750 pci_set_drvdata(pdev, NULL); 2751 2752 err_release_regions: 2753 pci_release_regions(pdev); 2754 pci_set_drvdata(pdev, NULL); 2755 pci_clear_master(pdev); 2756 2757 err_disable_device: 2758 pci_disable_device(pdev); 2759 2760 return err; 2761 } 2762 2763 /* 2764 * "Remove" a device: tear down all kernel and driver state created in the 2765 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note 2766 * that this is called "remove_one" in the PF Driver.) 2767 */ 2768 static void cxgb4vf_pci_remove(struct pci_dev *pdev) 2769 { 2770 struct adapter *adapter = pci_get_drvdata(pdev); 2771 2772 /* 2773 * Tear down driver state associated with device. 2774 */ 2775 if (adapter) { 2776 int pidx; 2777 2778 /* 2779 * Stop all of our activity. Unregister network port, 2780 * disable interrupts, etc. 2781 */ 2782 for_each_port(adapter, pidx) 2783 if (test_bit(pidx, &adapter->registered_device_map)) 2784 unregister_netdev(adapter->port[pidx]); 2785 t4vf_sge_stop(adapter); 2786 if (adapter->flags & USING_MSIX) { 2787 pci_disable_msix(adapter->pdev); 2788 adapter->flags &= ~USING_MSIX; 2789 } else if (adapter->flags & USING_MSI) { 2790 pci_disable_msi(adapter->pdev); 2791 adapter->flags &= ~USING_MSI; 2792 } 2793 2794 /* 2795 * Tear down our debugfs entries. 2796 */ 2797 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) { 2798 cleanup_debugfs(adapter); 2799 debugfs_remove_recursive(adapter->debugfs_root); 2800 } 2801 2802 /* 2803 * Free all of the various resources which we've acquired ... 2804 */ 2805 t4vf_free_sge_resources(adapter); 2806 for_each_port(adapter, pidx) { 2807 struct net_device *netdev = adapter->port[pidx]; 2808 struct port_info *pi; 2809 2810 if (netdev == NULL) 2811 continue; 2812 2813 pi = netdev_priv(netdev); 2814 t4vf_free_vi(adapter, pi->viid); 2815 free_netdev(netdev); 2816 } 2817 iounmap(adapter->regs); 2818 kfree(adapter); 2819 pci_set_drvdata(pdev, NULL); 2820 } 2821 2822 /* 2823 * Disable the device and release its PCI resources. 2824 */ 2825 pci_disable_device(pdev); 2826 pci_clear_master(pdev); 2827 pci_release_regions(pdev); 2828 } 2829 2830 /* 2831 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt 2832 * delivery. 2833 */ 2834 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev) 2835 { 2836 struct adapter *adapter; 2837 int pidx; 2838 2839 adapter = pci_get_drvdata(pdev); 2840 if (!adapter) 2841 return; 2842 2843 /* 2844 * Disable all Virtual Interfaces. This will shut down the 2845 * delivery of all ingress packets into the chip for these 2846 * Virtual Interfaces. 2847 */ 2848 for_each_port(adapter, pidx) { 2849 struct net_device *netdev; 2850 struct port_info *pi; 2851 2852 if (!test_bit(pidx, &adapter->registered_device_map)) 2853 continue; 2854 2855 netdev = adapter->port[pidx]; 2856 if (!netdev) 2857 continue; 2858 2859 pi = netdev_priv(netdev); 2860 t4vf_enable_vi(adapter, pi->viid, false, false); 2861 } 2862 2863 /* 2864 * Free up all Queues which will prevent further DMA and 2865 * Interrupts allowing various internal pathways to drain. 2866 */ 2867 t4vf_free_sge_resources(adapter); 2868 } 2869 2870 /* 2871 * PCI Device registration data structures. 2872 */ 2873 #define CH_DEVICE(devid, idx) \ 2874 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx } 2875 2876 static struct pci_device_id cxgb4vf_pci_tbl[] = { 2877 CH_DEVICE(0xb000, 0), /* PE10K FPGA */ 2878 CH_DEVICE(0x4800, 0), /* T440-dbg */ 2879 CH_DEVICE(0x4801, 0), /* T420-cr */ 2880 CH_DEVICE(0x4802, 0), /* T422-cr */ 2881 CH_DEVICE(0x4803, 0), /* T440-cr */ 2882 CH_DEVICE(0x4804, 0), /* T420-bch */ 2883 CH_DEVICE(0x4805, 0), /* T440-bch */ 2884 CH_DEVICE(0x4806, 0), /* T460-ch */ 2885 CH_DEVICE(0x4807, 0), /* T420-so */ 2886 CH_DEVICE(0x4808, 0), /* T420-cx */ 2887 CH_DEVICE(0x4809, 0), /* T420-bt */ 2888 CH_DEVICE(0x480a, 0), /* T404-bt */ 2889 CH_DEVICE(0x480d, 0), /* T480-cr */ 2890 CH_DEVICE(0x480e, 0), /* T440-lp-cr */ 2891 { 0, } 2892 }; 2893 2894 MODULE_DESCRIPTION(DRV_DESC); 2895 MODULE_AUTHOR("Chelsio Communications"); 2896 MODULE_LICENSE("Dual BSD/GPL"); 2897 MODULE_VERSION(DRV_VERSION); 2898 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl); 2899 2900 static struct pci_driver cxgb4vf_driver = { 2901 .name = KBUILD_MODNAME, 2902 .id_table = cxgb4vf_pci_tbl, 2903 .probe = cxgb4vf_pci_probe, 2904 .remove = cxgb4vf_pci_remove, 2905 .shutdown = cxgb4vf_pci_shutdown, 2906 }; 2907 2908 /* 2909 * Initialize global driver state. 2910 */ 2911 static int __init cxgb4vf_module_init(void) 2912 { 2913 int ret; 2914 2915 /* 2916 * Vet our module parameters. 2917 */ 2918 if (msi != MSI_MSIX && msi != MSI_MSI) { 2919 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n", 2920 msi, MSI_MSIX, MSI_MSI); 2921 return -EINVAL; 2922 } 2923 2924 /* Debugfs support is optional, just warn if this fails */ 2925 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 2926 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) 2927 pr_warn("could not create debugfs entry, continuing\n"); 2928 2929 ret = pci_register_driver(&cxgb4vf_driver); 2930 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) 2931 debugfs_remove(cxgb4vf_debugfs_root); 2932 return ret; 2933 } 2934 2935 /* 2936 * Tear down global driver state. 2937 */ 2938 static void __exit cxgb4vf_module_exit(void) 2939 { 2940 pci_unregister_driver(&cxgb4vf_driver); 2941 debugfs_remove(cxgb4vf_debugfs_root); 2942 } 2943 2944 module_init(cxgb4vf_module_init); 2945 module_exit(cxgb4vf_module_exit); 2946