1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/module.h> 39 #include <linux/moduleparam.h> 40 #include <linux/init.h> 41 #include <linux/pci.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/netdevice.h> 44 #include <linux/etherdevice.h> 45 #include <linux/debugfs.h> 46 #include <linux/ethtool.h> 47 #include <linux/mdio.h> 48 49 #include "t4vf_common.h" 50 #include "t4vf_defs.h" 51 52 #include "../cxgb4/t4_regs.h" 53 #include "../cxgb4/t4_msg.h" 54 55 /* 56 * Generic information about the driver. 57 */ 58 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver" 59 60 /* 61 * Module Parameters. 62 * ================== 63 */ 64 65 /* 66 * Default ethtool "message level" for adapters. 67 */ 68 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 69 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 70 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 71 72 /* 73 * The driver uses the best interrupt scheme available on a platform in the 74 * order MSI-X then MSI. This parameter determines which of these schemes the 75 * driver may consider as follows: 76 * 77 * msi = 2: choose from among MSI-X and MSI 78 * msi = 1: only consider MSI interrupts 79 * 80 * Note that unlike the Physical Function driver, this Virtual Function driver 81 * does _not_ support legacy INTx interrupts (this limitation is mandated by 82 * the PCI-E SR-IOV standard). 83 */ 84 #define MSI_MSIX 2 85 #define MSI_MSI 1 86 #define MSI_DEFAULT MSI_MSIX 87 88 static int msi = MSI_DEFAULT; 89 90 module_param(msi, int, 0644); 91 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI"); 92 93 /* 94 * Fundamental constants. 95 * ====================== 96 */ 97 98 enum { 99 MAX_TXQ_ENTRIES = 16384, 100 MAX_RSPQ_ENTRIES = 16384, 101 MAX_RX_BUFFERS = 16384, 102 103 MIN_TXQ_ENTRIES = 32, 104 MIN_RSPQ_ENTRIES = 128, 105 MIN_FL_ENTRIES = 16, 106 107 /* 108 * For purposes of manipulating the Free List size we need to 109 * recognize that Free Lists are actually Egress Queues (the host 110 * produces free buffers which the hardware consumes), Egress Queues 111 * indices are all in units of Egress Context Units bytes, and free 112 * list entries are 64-bit PCI DMA addresses. And since the state of 113 * the Producer Index == the Consumer Index implies an EMPTY list, we 114 * always have at least one Egress Unit's worth of Free List entries 115 * unused. See sge.c for more details ... 116 */ 117 EQ_UNIT = SGE_EQ_IDXSIZE, 118 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 119 MIN_FL_RESID = FL_PER_EQ_UNIT, 120 }; 121 122 /* 123 * Global driver state. 124 * ==================== 125 */ 126 127 static struct dentry *cxgb4vf_debugfs_root; 128 129 /* 130 * OS "Callback" functions. 131 * ======================== 132 */ 133 134 /* 135 * The link status has changed on the indicated "port" (Virtual Interface). 136 */ 137 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok) 138 { 139 struct net_device *dev = adapter->port[pidx]; 140 141 /* 142 * If the port is disabled or the current recorded "link up" 143 * status matches the new status, just return. 144 */ 145 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev)) 146 return; 147 148 /* 149 * Tell the OS that the link status has changed and print a short 150 * informative message on the console about the event. 151 */ 152 if (link_ok) { 153 const char *s; 154 const char *fc; 155 const struct port_info *pi = netdev_priv(dev); 156 157 netif_carrier_on(dev); 158 159 switch (pi->link_cfg.speed) { 160 case 100: 161 s = "100Mbps"; 162 break; 163 case 1000: 164 s = "1Gbps"; 165 break; 166 case 10000: 167 s = "10Gbps"; 168 break; 169 case 25000: 170 s = "25Gbps"; 171 break; 172 case 40000: 173 s = "40Gbps"; 174 break; 175 case 100000: 176 s = "100Gbps"; 177 break; 178 179 default: 180 s = "unknown"; 181 break; 182 } 183 184 switch ((int)pi->link_cfg.fc) { 185 case PAUSE_RX: 186 fc = "RX"; 187 break; 188 189 case PAUSE_TX: 190 fc = "TX"; 191 break; 192 193 case PAUSE_RX | PAUSE_TX: 194 fc = "RX/TX"; 195 break; 196 197 default: 198 fc = "no"; 199 break; 200 } 201 202 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc); 203 } else { 204 netif_carrier_off(dev); 205 netdev_info(dev, "link down\n"); 206 } 207 } 208 209 /* 210 * THe port module type has changed on the indicated "port" (Virtual 211 * Interface). 212 */ 213 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx) 214 { 215 static const char * const mod_str[] = { 216 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 217 }; 218 const struct net_device *dev = adapter->port[pidx]; 219 const struct port_info *pi = netdev_priv(dev); 220 221 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 222 dev_info(adapter->pdev_dev, "%s: port module unplugged\n", 223 dev->name); 224 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 225 dev_info(adapter->pdev_dev, "%s: %s port module inserted\n", 226 dev->name, mod_str[pi->mod_type]); 227 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 228 dev_info(adapter->pdev_dev, "%s: unsupported optical port " 229 "module inserted\n", dev->name); 230 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 231 dev_info(adapter->pdev_dev, "%s: unknown port module inserted," 232 "forcing TWINAX\n", dev->name); 233 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 234 dev_info(adapter->pdev_dev, "%s: transceiver module error\n", 235 dev->name); 236 else 237 dev_info(adapter->pdev_dev, "%s: unknown module type %d " 238 "inserted\n", dev->name, pi->mod_type); 239 } 240 241 static int cxgb4vf_set_addr_hash(struct port_info *pi) 242 { 243 struct adapter *adapter = pi->adapter; 244 u64 vec = 0; 245 bool ucast = false; 246 struct hash_mac_addr *entry; 247 248 /* Calculate the hash vector for the updated list and program it */ 249 list_for_each_entry(entry, &adapter->mac_hlist, list) { 250 ucast |= is_unicast_ether_addr(entry->addr); 251 vec |= (1ULL << hash_mac_addr(entry->addr)); 252 } 253 return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false); 254 } 255 256 /** 257 * cxgb4vf_change_mac - Update match filter for a MAC address. 258 * @pi: the port_info 259 * @viid: the VI id 260 * @tcam_idx: TCAM index of existing filter for old value of MAC address, 261 * or -1 262 * @addr: the new MAC address value 263 * @persistent: whether a new MAC allocation should be persistent 264 * 265 * Modifies an MPS filter and sets it to the new MAC address if 266 * @tcam_idx >= 0, or adds the MAC address to a new filter if 267 * @tcam_idx < 0. In the latter case the address is added persistently 268 * if @persist is %true. 269 * Addresses are programmed to hash region, if tcam runs out of entries. 270 * 271 */ 272 static int cxgb4vf_change_mac(struct port_info *pi, unsigned int viid, 273 int *tcam_idx, const u8 *addr, bool persistent) 274 { 275 struct hash_mac_addr *new_entry, *entry; 276 struct adapter *adapter = pi->adapter; 277 int ret; 278 279 ret = t4vf_change_mac(adapter, viid, *tcam_idx, addr, persistent); 280 /* We ran out of TCAM entries. try programming hash region. */ 281 if (ret == -ENOMEM) { 282 /* If the MAC address to be updated is in the hash addr 283 * list, update it from the list 284 */ 285 list_for_each_entry(entry, &adapter->mac_hlist, list) { 286 if (entry->iface_mac) { 287 ether_addr_copy(entry->addr, addr); 288 goto set_hash; 289 } 290 } 291 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL); 292 if (!new_entry) 293 return -ENOMEM; 294 ether_addr_copy(new_entry->addr, addr); 295 new_entry->iface_mac = true; 296 list_add_tail(&new_entry->list, &adapter->mac_hlist); 297 set_hash: 298 ret = cxgb4vf_set_addr_hash(pi); 299 } else if (ret >= 0) { 300 *tcam_idx = ret; 301 ret = 0; 302 } 303 304 return ret; 305 } 306 307 /* 308 * Net device operations. 309 * ====================== 310 */ 311 312 313 314 315 /* 316 * Perform the MAC and PHY actions needed to enable a "port" (Virtual 317 * Interface). 318 */ 319 static int link_start(struct net_device *dev) 320 { 321 int ret; 322 struct port_info *pi = netdev_priv(dev); 323 324 /* 325 * We do not set address filters and promiscuity here, the stack does 326 * that step explicitly. Enable vlan accel. 327 */ 328 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1, 329 true); 330 if (ret == 0) 331 ret = cxgb4vf_change_mac(pi, pi->viid, 332 &pi->xact_addr_filt, 333 dev->dev_addr, true); 334 335 /* 336 * We don't need to actually "start the link" itself since the 337 * firmware will do that for us when the first Virtual Interface 338 * is enabled on a port. 339 */ 340 if (ret == 0) 341 ret = t4vf_enable_pi(pi->adapter, pi, true, true); 342 343 return ret; 344 } 345 346 /* 347 * Name the MSI-X interrupts. 348 */ 349 static void name_msix_vecs(struct adapter *adapter) 350 { 351 int namelen = sizeof(adapter->msix_info[0].desc) - 1; 352 int pidx; 353 354 /* 355 * Firmware events. 356 */ 357 snprintf(adapter->msix_info[MSIX_FW].desc, namelen, 358 "%s-FWeventq", adapter->name); 359 adapter->msix_info[MSIX_FW].desc[namelen] = 0; 360 361 /* 362 * Ethernet queues. 363 */ 364 for_each_port(adapter, pidx) { 365 struct net_device *dev = adapter->port[pidx]; 366 const struct port_info *pi = netdev_priv(dev); 367 int qs, msi; 368 369 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) { 370 snprintf(adapter->msix_info[msi].desc, namelen, 371 "%s-%d", dev->name, qs); 372 adapter->msix_info[msi].desc[namelen] = 0; 373 } 374 } 375 } 376 377 /* 378 * Request all of our MSI-X resources. 379 */ 380 static int request_msix_queue_irqs(struct adapter *adapter) 381 { 382 struct sge *s = &adapter->sge; 383 int rxq, msi, err; 384 385 /* 386 * Firmware events. 387 */ 388 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix, 389 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq); 390 if (err) 391 return err; 392 393 /* 394 * Ethernet queues. 395 */ 396 msi = MSIX_IQFLINT; 397 for_each_ethrxq(s, rxq) { 398 err = request_irq(adapter->msix_info[msi].vec, 399 t4vf_sge_intr_msix, 0, 400 adapter->msix_info[msi].desc, 401 &s->ethrxq[rxq].rspq); 402 if (err) 403 goto err_free_irqs; 404 msi++; 405 } 406 return 0; 407 408 err_free_irqs: 409 while (--rxq >= 0) 410 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq); 411 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 412 return err; 413 } 414 415 /* 416 * Free our MSI-X resources. 417 */ 418 static void free_msix_queue_irqs(struct adapter *adapter) 419 { 420 struct sge *s = &adapter->sge; 421 int rxq, msi; 422 423 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 424 msi = MSIX_IQFLINT; 425 for_each_ethrxq(s, rxq) 426 free_irq(adapter->msix_info[msi++].vec, 427 &s->ethrxq[rxq].rspq); 428 } 429 430 /* 431 * Turn on NAPI and start up interrupts on a response queue. 432 */ 433 static void qenable(struct sge_rspq *rspq) 434 { 435 napi_enable(&rspq->napi); 436 437 /* 438 * 0-increment the Going To Sleep register to start the timer and 439 * enable interrupts. 440 */ 441 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 442 CIDXINC_V(0) | 443 SEINTARM_V(rspq->intr_params) | 444 INGRESSQID_V(rspq->cntxt_id)); 445 } 446 447 /* 448 * Enable NAPI scheduling and interrupt generation for all Receive Queues. 449 */ 450 static void enable_rx(struct adapter *adapter) 451 { 452 int rxq; 453 struct sge *s = &adapter->sge; 454 455 for_each_ethrxq(s, rxq) 456 qenable(&s->ethrxq[rxq].rspq); 457 qenable(&s->fw_evtq); 458 459 /* 460 * The interrupt queue doesn't use NAPI so we do the 0-increment of 461 * its Going To Sleep register here to get it started. 462 */ 463 if (adapter->flags & CXGB4VF_USING_MSI) 464 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 465 CIDXINC_V(0) | 466 SEINTARM_V(s->intrq.intr_params) | 467 INGRESSQID_V(s->intrq.cntxt_id)); 468 469 } 470 471 /* 472 * Wait until all NAPI handlers are descheduled. 473 */ 474 static void quiesce_rx(struct adapter *adapter) 475 { 476 struct sge *s = &adapter->sge; 477 int rxq; 478 479 for_each_ethrxq(s, rxq) 480 napi_disable(&s->ethrxq[rxq].rspq.napi); 481 napi_disable(&s->fw_evtq.napi); 482 } 483 484 /* 485 * Response queue handler for the firmware event queue. 486 */ 487 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp, 488 const struct pkt_gl *gl) 489 { 490 /* 491 * Extract response opcode and get pointer to CPL message body. 492 */ 493 struct adapter *adapter = rspq->adapter; 494 u8 opcode = ((const struct rss_header *)rsp)->opcode; 495 void *cpl = (void *)(rsp + 1); 496 497 switch (opcode) { 498 case CPL_FW6_MSG: { 499 /* 500 * We've received an asynchronous message from the firmware. 501 */ 502 const struct cpl_fw6_msg *fw_msg = cpl; 503 if (fw_msg->type == FW6_TYPE_CMD_RPL) 504 t4vf_handle_fw_rpl(adapter, fw_msg->data); 505 break; 506 } 507 508 case CPL_FW4_MSG: { 509 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 510 */ 511 const struct cpl_sge_egr_update *p = (void *)(rsp + 3); 512 opcode = CPL_OPCODE_G(ntohl(p->opcode_qid)); 513 if (opcode != CPL_SGE_EGR_UPDATE) { 514 dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 515 , opcode); 516 break; 517 } 518 cpl = (void *)p; 519 } 520 fallthrough; 521 522 case CPL_SGE_EGR_UPDATE: { 523 /* 524 * We've received an Egress Queue Status Update message. We 525 * get these, if the SGE is configured to send these when the 526 * firmware passes certain points in processing our TX 527 * Ethernet Queue or if we make an explicit request for one. 528 * We use these updates to determine when we may need to 529 * restart a TX Ethernet Queue which was stopped for lack of 530 * free TX Queue Descriptors ... 531 */ 532 const struct cpl_sge_egr_update *p = cpl; 533 unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid)); 534 struct sge *s = &adapter->sge; 535 struct sge_txq *tq; 536 struct sge_eth_txq *txq; 537 unsigned int eq_idx; 538 539 /* 540 * Perform sanity checking on the Queue ID to make sure it 541 * really refers to one of our TX Ethernet Egress Queues which 542 * is active and matches the queue's ID. None of these error 543 * conditions should ever happen so we may want to either make 544 * them fatal and/or conditionalized under DEBUG. 545 */ 546 eq_idx = EQ_IDX(s, qid); 547 if (unlikely(eq_idx >= MAX_EGRQ)) { 548 dev_err(adapter->pdev_dev, 549 "Egress Update QID %d out of range\n", qid); 550 break; 551 } 552 tq = s->egr_map[eq_idx]; 553 if (unlikely(tq == NULL)) { 554 dev_err(adapter->pdev_dev, 555 "Egress Update QID %d TXQ=NULL\n", qid); 556 break; 557 } 558 txq = container_of(tq, struct sge_eth_txq, q); 559 if (unlikely(tq->abs_id != qid)) { 560 dev_err(adapter->pdev_dev, 561 "Egress Update QID %d refers to TXQ %d\n", 562 qid, tq->abs_id); 563 break; 564 } 565 566 /* 567 * Restart a stopped TX Queue which has less than half of its 568 * TX ring in use ... 569 */ 570 txq->q.restarts++; 571 netif_tx_wake_queue(txq->txq); 572 break; 573 } 574 575 default: 576 dev_err(adapter->pdev_dev, 577 "unexpected CPL %#x on FW event queue\n", opcode); 578 } 579 580 return 0; 581 } 582 583 /* 584 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues 585 * to use and initializes them. We support multiple "Queue Sets" per port if 586 * we have MSI-X, otherwise just one queue set per port. 587 */ 588 static int setup_sge_queues(struct adapter *adapter) 589 { 590 struct sge *s = &adapter->sge; 591 int err, pidx, msix; 592 593 /* 594 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error 595 * state. 596 */ 597 bitmap_zero(s->starving_fl, MAX_EGRQ); 598 599 /* 600 * If we're using MSI interrupt mode we need to set up a "forwarded 601 * interrupt" queue which we'll set up with our MSI vector. The rest 602 * of the ingress queues will be set up to forward their interrupts to 603 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses 604 * the intrq's queue ID as the interrupt forwarding queue for the 605 * subsequent calls ... 606 */ 607 if (adapter->flags & CXGB4VF_USING_MSI) { 608 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false, 609 adapter->port[0], 0, NULL, NULL); 610 if (err) 611 goto err_free_queues; 612 } 613 614 /* 615 * Allocate our ingress queue for asynchronous firmware messages. 616 */ 617 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0], 618 MSIX_FW, NULL, fwevtq_handler); 619 if (err) 620 goto err_free_queues; 621 622 /* 623 * Allocate each "port"'s initial Queue Sets. These can be changed 624 * later on ... up to the point where any interface on the adapter is 625 * brought up at which point lots of things get nailed down 626 * permanently ... 627 */ 628 msix = MSIX_IQFLINT; 629 for_each_port(adapter, pidx) { 630 struct net_device *dev = adapter->port[pidx]; 631 struct port_info *pi = netdev_priv(dev); 632 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 633 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 634 int qs; 635 636 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 637 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false, 638 dev, msix++, 639 &rxq->fl, t4vf_ethrx_handler); 640 if (err) 641 goto err_free_queues; 642 643 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev, 644 netdev_get_tx_queue(dev, qs), 645 s->fw_evtq.cntxt_id); 646 if (err) 647 goto err_free_queues; 648 649 rxq->rspq.idx = qs; 650 memset(&rxq->stats, 0, sizeof(rxq->stats)); 651 } 652 } 653 654 /* 655 * Create the reverse mappings for the queues. 656 */ 657 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id; 658 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id; 659 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq; 660 for_each_port(adapter, pidx) { 661 struct net_device *dev = adapter->port[pidx]; 662 struct port_info *pi = netdev_priv(dev); 663 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 664 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 665 int qs; 666 667 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 668 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq; 669 EQ_MAP(s, txq->q.abs_id) = &txq->q; 670 671 /* 672 * The FW_IQ_CMD doesn't return the Absolute Queue IDs 673 * for Free Lists but since all of the Egress Queues 674 * (including Free Lists) have Relative Queue IDs 675 * which are computed as Absolute - Base Queue ID, we 676 * can synthesize the Absolute Queue IDs for the Free 677 * Lists. This is useful for debugging purposes when 678 * we want to dump Queue Contexts via the PF Driver. 679 */ 680 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base; 681 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl; 682 } 683 } 684 return 0; 685 686 err_free_queues: 687 t4vf_free_sge_resources(adapter); 688 return err; 689 } 690 691 /* 692 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive 693 * queues. We configure the RSS CPU lookup table to distribute to the number 694 * of HW receive queues, and the response queue lookup table to narrow that 695 * down to the response queues actually configured for each "port" (Virtual 696 * Interface). We always configure the RSS mapping for all ports since the 697 * mapping table has plenty of entries. 698 */ 699 static int setup_rss(struct adapter *adapter) 700 { 701 int pidx; 702 703 for_each_port(adapter, pidx) { 704 struct port_info *pi = adap2pinfo(adapter, pidx); 705 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 706 u16 rss[MAX_PORT_QSETS]; 707 int qs, err; 708 709 for (qs = 0; qs < pi->nqsets; qs++) 710 rss[qs] = rxq[qs].rspq.abs_id; 711 712 err = t4vf_config_rss_range(adapter, pi->viid, 713 0, pi->rss_size, rss, pi->nqsets); 714 if (err) 715 return err; 716 717 /* 718 * Perform Global RSS Mode-specific initialization. 719 */ 720 switch (adapter->params.rss.mode) { 721 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: 722 /* 723 * If Tunnel All Lookup isn't specified in the global 724 * RSS Configuration, then we need to specify a 725 * default Ingress Queue for any ingress packets which 726 * aren't hashed. We'll use our first ingress queue 727 * ... 728 */ 729 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) { 730 union rss_vi_config config; 731 err = t4vf_read_rss_vi_config(adapter, 732 pi->viid, 733 &config); 734 if (err) 735 return err; 736 config.basicvirtual.defaultq = 737 rxq[0].rspq.abs_id; 738 err = t4vf_write_rss_vi_config(adapter, 739 pi->viid, 740 &config); 741 if (err) 742 return err; 743 } 744 break; 745 } 746 } 747 748 return 0; 749 } 750 751 /* 752 * Bring the adapter up. Called whenever we go from no "ports" open to having 753 * one open. This function performs the actions necessary to make an adapter 754 * operational, such as completing the initialization of HW modules, and 755 * enabling interrupts. Must be called with the rtnl lock held. (Note that 756 * this is called "cxgb_up" in the PF Driver.) 757 */ 758 static int adapter_up(struct adapter *adapter) 759 { 760 int err; 761 762 /* 763 * If this is the first time we've been called, perform basic 764 * adapter setup. Once we've done this, many of our adapter 765 * parameters can no longer be changed ... 766 */ 767 if ((adapter->flags & CXGB4VF_FULL_INIT_DONE) == 0) { 768 err = setup_sge_queues(adapter); 769 if (err) 770 return err; 771 err = setup_rss(adapter); 772 if (err) { 773 t4vf_free_sge_resources(adapter); 774 return err; 775 } 776 777 if (adapter->flags & CXGB4VF_USING_MSIX) 778 name_msix_vecs(adapter); 779 780 adapter->flags |= CXGB4VF_FULL_INIT_DONE; 781 } 782 783 /* 784 * Acquire our interrupt resources. We only support MSI-X and MSI. 785 */ 786 BUG_ON((adapter->flags & 787 (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0); 788 if (adapter->flags & CXGB4VF_USING_MSIX) 789 err = request_msix_queue_irqs(adapter); 790 else 791 err = request_irq(adapter->pdev->irq, 792 t4vf_intr_handler(adapter), 0, 793 adapter->name, adapter); 794 if (err) { 795 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n", 796 err); 797 return err; 798 } 799 800 /* 801 * Enable NAPI ingress processing and return success. 802 */ 803 enable_rx(adapter); 804 t4vf_sge_start(adapter); 805 806 return 0; 807 } 808 809 /* 810 * Bring the adapter down. Called whenever the last "port" (Virtual 811 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF 812 * Driver.) 813 */ 814 static void adapter_down(struct adapter *adapter) 815 { 816 /* 817 * Free interrupt resources. 818 */ 819 if (adapter->flags & CXGB4VF_USING_MSIX) 820 free_msix_queue_irqs(adapter); 821 else 822 free_irq(adapter->pdev->irq, adapter); 823 824 /* 825 * Wait for NAPI handlers to finish. 826 */ 827 quiesce_rx(adapter); 828 } 829 830 /* 831 * Start up a net device. 832 */ 833 static int cxgb4vf_open(struct net_device *dev) 834 { 835 int err; 836 struct port_info *pi = netdev_priv(dev); 837 struct adapter *adapter = pi->adapter; 838 839 /* 840 * If we don't have a connection to the firmware there's nothing we 841 * can do. 842 */ 843 if (!(adapter->flags & CXGB4VF_FW_OK)) 844 return -ENXIO; 845 846 /* 847 * If this is the first interface that we're opening on the "adapter", 848 * bring the "adapter" up now. 849 */ 850 if (adapter->open_device_map == 0) { 851 err = adapter_up(adapter); 852 if (err) 853 return err; 854 } 855 856 /* It's possible that the basic port information could have 857 * changed since we first read it. 858 */ 859 err = t4vf_update_port_info(pi); 860 if (err < 0) 861 goto err_unwind; 862 863 /* 864 * Note that this interface is up and start everything up ... 865 */ 866 err = link_start(dev); 867 if (err) 868 goto err_unwind; 869 870 pi->vlan_id = t4vf_get_vf_vlan_acl(adapter); 871 872 netif_tx_start_all_queues(dev); 873 set_bit(pi->port_id, &adapter->open_device_map); 874 return 0; 875 876 err_unwind: 877 if (adapter->open_device_map == 0) 878 adapter_down(adapter); 879 return err; 880 } 881 882 /* 883 * Shut down a net device. This routine is called "cxgb_close" in the PF 884 * Driver ... 885 */ 886 static int cxgb4vf_stop(struct net_device *dev) 887 { 888 struct port_info *pi = netdev_priv(dev); 889 struct adapter *adapter = pi->adapter; 890 891 netif_tx_stop_all_queues(dev); 892 netif_carrier_off(dev); 893 t4vf_enable_pi(adapter, pi, false, false); 894 895 clear_bit(pi->port_id, &adapter->open_device_map); 896 if (adapter->open_device_map == 0) 897 adapter_down(adapter); 898 return 0; 899 } 900 901 /* 902 * Translate our basic statistics into the standard "ifconfig" statistics. 903 */ 904 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev) 905 { 906 struct t4vf_port_stats stats; 907 struct port_info *pi = netdev2pinfo(dev); 908 struct adapter *adapter = pi->adapter; 909 struct net_device_stats *ns = &dev->stats; 910 int err; 911 912 spin_lock(&adapter->stats_lock); 913 err = t4vf_get_port_stats(adapter, pi->pidx, &stats); 914 spin_unlock(&adapter->stats_lock); 915 916 memset(ns, 0, sizeof(*ns)); 917 if (err) 918 return ns; 919 920 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes + 921 stats.tx_ucast_bytes + stats.tx_offload_bytes); 922 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames + 923 stats.tx_ucast_frames + stats.tx_offload_frames); 924 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes + 925 stats.rx_ucast_bytes); 926 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames + 927 stats.rx_ucast_frames); 928 ns->multicast = stats.rx_mcast_frames; 929 ns->tx_errors = stats.tx_drop_frames; 930 ns->rx_errors = stats.rx_err_frames; 931 932 return ns; 933 } 934 935 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr) 936 { 937 struct port_info *pi = netdev_priv(netdev); 938 struct adapter *adapter = pi->adapter; 939 int ret; 940 u64 mhash = 0; 941 u64 uhash = 0; 942 bool free = false; 943 bool ucast = is_unicast_ether_addr(mac_addr); 944 const u8 *maclist[1] = {mac_addr}; 945 struct hash_mac_addr *new_entry; 946 947 ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist, 948 NULL, ucast ? &uhash : &mhash, false); 949 if (ret < 0) 950 goto out; 951 /* if hash != 0, then add the addr to hash addr list 952 * so on the end we will calculate the hash for the 953 * list and program it 954 */ 955 if (uhash || mhash) { 956 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 957 if (!new_entry) 958 return -ENOMEM; 959 ether_addr_copy(new_entry->addr, mac_addr); 960 list_add_tail(&new_entry->list, &adapter->mac_hlist); 961 ret = cxgb4vf_set_addr_hash(pi); 962 } 963 out: 964 return ret < 0 ? ret : 0; 965 } 966 967 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 968 { 969 struct port_info *pi = netdev_priv(netdev); 970 struct adapter *adapter = pi->adapter; 971 int ret; 972 const u8 *maclist[1] = {mac_addr}; 973 struct hash_mac_addr *entry, *tmp; 974 975 /* If the MAC address to be removed is in the hash addr 976 * list, delete it from the list and update hash vector 977 */ 978 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) { 979 if (ether_addr_equal(entry->addr, mac_addr)) { 980 list_del(&entry->list); 981 kfree(entry); 982 return cxgb4vf_set_addr_hash(pi); 983 } 984 } 985 986 ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false); 987 return ret < 0 ? -EINVAL : 0; 988 } 989 990 /* 991 * Set RX properties of a port, such as promiscruity, address filters, and MTU. 992 * If @mtu is -1 it is left unchanged. 993 */ 994 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 995 { 996 struct port_info *pi = netdev_priv(dev); 997 998 __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 999 __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 1000 return t4vf_set_rxmode(pi->adapter, pi->viid, -1, 1001 (dev->flags & IFF_PROMISC) != 0, 1002 (dev->flags & IFF_ALLMULTI) != 0, 1003 1, -1, sleep_ok); 1004 } 1005 1006 /* 1007 * Set the current receive modes on the device. 1008 */ 1009 static void cxgb4vf_set_rxmode(struct net_device *dev) 1010 { 1011 /* unfortunately we can't return errors to the stack */ 1012 set_rxmode(dev, -1, false); 1013 } 1014 1015 /* 1016 * Find the entry in the interrupt holdoff timer value array which comes 1017 * closest to the specified interrupt holdoff value. 1018 */ 1019 static int closest_timer(const struct sge *s, int us) 1020 { 1021 int i, timer_idx = 0, min_delta = INT_MAX; 1022 1023 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1024 int delta = us - s->timer_val[i]; 1025 if (delta < 0) 1026 delta = -delta; 1027 if (delta < min_delta) { 1028 min_delta = delta; 1029 timer_idx = i; 1030 } 1031 } 1032 return timer_idx; 1033 } 1034 1035 static int closest_thres(const struct sge *s, int thres) 1036 { 1037 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX; 1038 1039 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1040 delta = thres - s->counter_val[i]; 1041 if (delta < 0) 1042 delta = -delta; 1043 if (delta < min_delta) { 1044 min_delta = delta; 1045 pktcnt_idx = i; 1046 } 1047 } 1048 return pktcnt_idx; 1049 } 1050 1051 /* 1052 * Return a queue's interrupt hold-off time in us. 0 means no timer. 1053 */ 1054 static unsigned int qtimer_val(const struct adapter *adapter, 1055 const struct sge_rspq *rspq) 1056 { 1057 unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params); 1058 1059 return timer_idx < SGE_NTIMERS 1060 ? adapter->sge.timer_val[timer_idx] 1061 : 0; 1062 } 1063 1064 /** 1065 * set_rxq_intr_params - set a queue's interrupt holdoff parameters 1066 * @adapter: the adapter 1067 * @rspq: the RX response queue 1068 * @us: the hold-off time in us, or 0 to disable timer 1069 * @cnt: the hold-off packet count, or 0 to disable counter 1070 * 1071 * Sets an RX response queue's interrupt hold-off time and packet count. 1072 * At least one of the two needs to be enabled for the queue to generate 1073 * interrupts. 1074 */ 1075 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq, 1076 unsigned int us, unsigned int cnt) 1077 { 1078 unsigned int timer_idx; 1079 1080 /* 1081 * If both the interrupt holdoff timer and count are specified as 1082 * zero, default to a holdoff count of 1 ... 1083 */ 1084 if ((us | cnt) == 0) 1085 cnt = 1; 1086 1087 /* 1088 * If an interrupt holdoff count has been specified, then find the 1089 * closest configured holdoff count and use that. If the response 1090 * queue has already been created, then update its queue context 1091 * parameters ... 1092 */ 1093 if (cnt) { 1094 int err; 1095 u32 v, pktcnt_idx; 1096 1097 pktcnt_idx = closest_thres(&adapter->sge, cnt); 1098 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) { 1099 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1100 FW_PARAMS_PARAM_X_V( 1101 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1102 FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id); 1103 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx); 1104 if (err) 1105 return err; 1106 } 1107 rspq->pktcnt_idx = pktcnt_idx; 1108 } 1109 1110 /* 1111 * Compute the closest holdoff timer index from the supplied holdoff 1112 * timer value. 1113 */ 1114 timer_idx = (us == 0 1115 ? SGE_TIMER_RSTRT_CNTR 1116 : closest_timer(&adapter->sge, us)); 1117 1118 /* 1119 * Update the response queue's interrupt coalescing parameters and 1120 * return success. 1121 */ 1122 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 1123 QINTR_CNT_EN_V(cnt > 0)); 1124 return 0; 1125 } 1126 1127 /* 1128 * Return a version number to identify the type of adapter. The scheme is: 1129 * - bits 0..9: chip version 1130 * - bits 10..15: chip revision 1131 */ 1132 static inline unsigned int mk_adap_vers(const struct adapter *adapter) 1133 { 1134 /* 1135 * Chip version 4, revision 0x3f (cxgb4vf). 1136 */ 1137 return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10); 1138 } 1139 1140 /* 1141 * Execute the specified ioctl command. 1142 */ 1143 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1144 { 1145 int ret = 0; 1146 1147 switch (cmd) { 1148 /* 1149 * The VF Driver doesn't have access to any of the other 1150 * common Ethernet device ioctl()'s (like reading/writing 1151 * PHY registers, etc. 1152 */ 1153 1154 default: 1155 ret = -EOPNOTSUPP; 1156 break; 1157 } 1158 return ret; 1159 } 1160 1161 /* 1162 * Change the device's MTU. 1163 */ 1164 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu) 1165 { 1166 int ret; 1167 struct port_info *pi = netdev_priv(dev); 1168 1169 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu, 1170 -1, -1, -1, -1, true); 1171 if (!ret) 1172 dev->mtu = new_mtu; 1173 return ret; 1174 } 1175 1176 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev, 1177 netdev_features_t features) 1178 { 1179 /* 1180 * Since there is no support for separate rx/tx vlan accel 1181 * enable/disable make sure tx flag is always in same state as rx. 1182 */ 1183 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1184 features |= NETIF_F_HW_VLAN_CTAG_TX; 1185 else 1186 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 1187 1188 return features; 1189 } 1190 1191 static int cxgb4vf_set_features(struct net_device *dev, 1192 netdev_features_t features) 1193 { 1194 struct port_info *pi = netdev_priv(dev); 1195 netdev_features_t changed = dev->features ^ features; 1196 1197 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 1198 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, 1199 features & NETIF_F_HW_VLAN_CTAG_TX, 0); 1200 1201 return 0; 1202 } 1203 1204 /* 1205 * Change the devices MAC address. 1206 */ 1207 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr) 1208 { 1209 int ret; 1210 struct sockaddr *addr = _addr; 1211 struct port_info *pi = netdev_priv(dev); 1212 1213 if (!is_valid_ether_addr(addr->sa_data)) 1214 return -EADDRNOTAVAIL; 1215 1216 ret = cxgb4vf_change_mac(pi, pi->viid, &pi->xact_addr_filt, 1217 addr->sa_data, true); 1218 if (ret < 0) 1219 return ret; 1220 1221 eth_hw_addr_set(dev, addr->sa_data); 1222 return 0; 1223 } 1224 1225 #ifdef CONFIG_NET_POLL_CONTROLLER 1226 /* 1227 * Poll all of our receive queues. This is called outside of normal interrupt 1228 * context. 1229 */ 1230 static void cxgb4vf_poll_controller(struct net_device *dev) 1231 { 1232 struct port_info *pi = netdev_priv(dev); 1233 struct adapter *adapter = pi->adapter; 1234 1235 if (adapter->flags & CXGB4VF_USING_MSIX) { 1236 struct sge_eth_rxq *rxq; 1237 int nqsets; 1238 1239 rxq = &adapter->sge.ethrxq[pi->first_qset]; 1240 for (nqsets = pi->nqsets; nqsets; nqsets--) { 1241 t4vf_sge_intr_msix(0, &rxq->rspq); 1242 rxq++; 1243 } 1244 } else 1245 t4vf_intr_handler(adapter)(0, adapter); 1246 } 1247 #endif 1248 1249 /* 1250 * Ethtool operations. 1251 * =================== 1252 * 1253 * Note that we don't support any ethtool operations which change the physical 1254 * state of the port to which we're linked. 1255 */ 1256 1257 /** 1258 * from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool 1259 * @port_type: Firmware Port Type 1260 * @mod_type: Firmware Module Type 1261 * 1262 * Translate Firmware Port/Module type to Ethtool Port Type. 1263 */ 1264 static int from_fw_port_mod_type(enum fw_port_type port_type, 1265 enum fw_port_module_type mod_type) 1266 { 1267 if (port_type == FW_PORT_TYPE_BT_SGMII || 1268 port_type == FW_PORT_TYPE_BT_XFI || 1269 port_type == FW_PORT_TYPE_BT_XAUI) { 1270 return PORT_TP; 1271 } else if (port_type == FW_PORT_TYPE_FIBER_XFI || 1272 port_type == FW_PORT_TYPE_FIBER_XAUI) { 1273 return PORT_FIBRE; 1274 } else if (port_type == FW_PORT_TYPE_SFP || 1275 port_type == FW_PORT_TYPE_QSFP_10G || 1276 port_type == FW_PORT_TYPE_QSA || 1277 port_type == FW_PORT_TYPE_QSFP || 1278 port_type == FW_PORT_TYPE_CR4_QSFP || 1279 port_type == FW_PORT_TYPE_CR_QSFP || 1280 port_type == FW_PORT_TYPE_CR2_QSFP || 1281 port_type == FW_PORT_TYPE_SFP28) { 1282 if (mod_type == FW_PORT_MOD_TYPE_LR || 1283 mod_type == FW_PORT_MOD_TYPE_SR || 1284 mod_type == FW_PORT_MOD_TYPE_ER || 1285 mod_type == FW_PORT_MOD_TYPE_LRM) 1286 return PORT_FIBRE; 1287 else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE || 1288 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE) 1289 return PORT_DA; 1290 else 1291 return PORT_OTHER; 1292 } else if (port_type == FW_PORT_TYPE_KR4_100G || 1293 port_type == FW_PORT_TYPE_KR_SFP28 || 1294 port_type == FW_PORT_TYPE_KR_XLAUI) { 1295 return PORT_NONE; 1296 } 1297 1298 return PORT_OTHER; 1299 } 1300 1301 /** 1302 * fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask 1303 * @port_type: Firmware Port Type 1304 * @fw_caps: Firmware Port Capabilities 1305 * @link_mode_mask: ethtool Link Mode Mask 1306 * 1307 * Translate a Firmware Port Capabilities specification to an ethtool 1308 * Link Mode Mask. 1309 */ 1310 static void fw_caps_to_lmm(enum fw_port_type port_type, 1311 unsigned int fw_caps, 1312 unsigned long *link_mode_mask) 1313 { 1314 #define SET_LMM(__lmm_name) \ 1315 __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \ 1316 link_mode_mask) 1317 1318 #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \ 1319 do { \ 1320 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \ 1321 SET_LMM(__lmm_name); \ 1322 } while (0) 1323 1324 switch (port_type) { 1325 case FW_PORT_TYPE_BT_SGMII: 1326 case FW_PORT_TYPE_BT_XFI: 1327 case FW_PORT_TYPE_BT_XAUI: 1328 SET_LMM(TP); 1329 FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full); 1330 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1331 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1332 break; 1333 1334 case FW_PORT_TYPE_KX4: 1335 case FW_PORT_TYPE_KX: 1336 SET_LMM(Backplane); 1337 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1338 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1339 break; 1340 1341 case FW_PORT_TYPE_KR: 1342 SET_LMM(Backplane); 1343 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1344 break; 1345 1346 case FW_PORT_TYPE_BP_AP: 1347 SET_LMM(Backplane); 1348 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1349 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); 1350 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1351 break; 1352 1353 case FW_PORT_TYPE_BP4_AP: 1354 SET_LMM(Backplane); 1355 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1356 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); 1357 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1358 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1359 break; 1360 1361 case FW_PORT_TYPE_FIBER_XFI: 1362 case FW_PORT_TYPE_FIBER_XAUI: 1363 case FW_PORT_TYPE_SFP: 1364 case FW_PORT_TYPE_QSFP_10G: 1365 case FW_PORT_TYPE_QSA: 1366 SET_LMM(FIBRE); 1367 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1368 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1369 break; 1370 1371 case FW_PORT_TYPE_BP40_BA: 1372 case FW_PORT_TYPE_QSFP: 1373 SET_LMM(FIBRE); 1374 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1375 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1376 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); 1377 break; 1378 1379 case FW_PORT_TYPE_CR_QSFP: 1380 case FW_PORT_TYPE_SFP28: 1381 SET_LMM(FIBRE); 1382 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1383 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1384 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); 1385 break; 1386 1387 case FW_PORT_TYPE_KR_SFP28: 1388 SET_LMM(Backplane); 1389 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1390 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1391 FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full); 1392 break; 1393 1394 case FW_PORT_TYPE_KR_XLAUI: 1395 SET_LMM(Backplane); 1396 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1397 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1398 FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full); 1399 break; 1400 1401 case FW_PORT_TYPE_CR2_QSFP: 1402 SET_LMM(FIBRE); 1403 FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full); 1404 break; 1405 1406 case FW_PORT_TYPE_KR4_100G: 1407 case FW_PORT_TYPE_CR4_QSFP: 1408 SET_LMM(FIBRE); 1409 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1410 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1411 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); 1412 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); 1413 FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full); 1414 FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full); 1415 break; 1416 1417 default: 1418 break; 1419 } 1420 1421 if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) { 1422 FW_CAPS_TO_LMM(FEC_RS, FEC_RS); 1423 FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER); 1424 } else { 1425 SET_LMM(FEC_NONE); 1426 } 1427 1428 FW_CAPS_TO_LMM(ANEG, Autoneg); 1429 FW_CAPS_TO_LMM(802_3_PAUSE, Pause); 1430 FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause); 1431 1432 #undef FW_CAPS_TO_LMM 1433 #undef SET_LMM 1434 } 1435 1436 static int cxgb4vf_get_link_ksettings(struct net_device *dev, 1437 struct ethtool_link_ksettings *link_ksettings) 1438 { 1439 struct port_info *pi = netdev_priv(dev); 1440 struct ethtool_link_settings *base = &link_ksettings->base; 1441 1442 /* For the nonce, the Firmware doesn't send up Port State changes 1443 * when the Virtual Interface attached to the Port is down. So 1444 * if it's down, let's grab any changes. 1445 */ 1446 if (!netif_running(dev)) 1447 (void)t4vf_update_port_info(pi); 1448 1449 ethtool_link_ksettings_zero_link_mode(link_ksettings, supported); 1450 ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising); 1451 ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising); 1452 1453 base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type); 1454 1455 if (pi->mdio_addr >= 0) { 1456 base->phy_address = pi->mdio_addr; 1457 base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII 1458 ? ETH_MDIO_SUPPORTS_C22 1459 : ETH_MDIO_SUPPORTS_C45); 1460 } else { 1461 base->phy_address = 255; 1462 base->mdio_support = 0; 1463 } 1464 1465 fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps, 1466 link_ksettings->link_modes.supported); 1467 fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps, 1468 link_ksettings->link_modes.advertising); 1469 fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps, 1470 link_ksettings->link_modes.lp_advertising); 1471 1472 if (netif_carrier_ok(dev)) { 1473 base->speed = pi->link_cfg.speed; 1474 base->duplex = DUPLEX_FULL; 1475 } else { 1476 base->speed = SPEED_UNKNOWN; 1477 base->duplex = DUPLEX_UNKNOWN; 1478 } 1479 1480 base->autoneg = pi->link_cfg.autoneg; 1481 if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG) 1482 ethtool_link_ksettings_add_link_mode(link_ksettings, 1483 supported, Autoneg); 1484 if (pi->link_cfg.autoneg) 1485 ethtool_link_ksettings_add_link_mode(link_ksettings, 1486 advertising, Autoneg); 1487 1488 return 0; 1489 } 1490 1491 /* Translate the Firmware FEC value into the ethtool value. */ 1492 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec) 1493 { 1494 unsigned int eth_fec = 0; 1495 1496 if (fw_fec & FW_PORT_CAP32_FEC_RS) 1497 eth_fec |= ETHTOOL_FEC_RS; 1498 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 1499 eth_fec |= ETHTOOL_FEC_BASER; 1500 1501 /* if nothing is set, then FEC is off */ 1502 if (!eth_fec) 1503 eth_fec = ETHTOOL_FEC_OFF; 1504 1505 return eth_fec; 1506 } 1507 1508 /* Translate Common Code FEC value into ethtool value. */ 1509 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec) 1510 { 1511 unsigned int eth_fec = 0; 1512 1513 if (cc_fec & FEC_AUTO) 1514 eth_fec |= ETHTOOL_FEC_AUTO; 1515 if (cc_fec & FEC_RS) 1516 eth_fec |= ETHTOOL_FEC_RS; 1517 if (cc_fec & FEC_BASER_RS) 1518 eth_fec |= ETHTOOL_FEC_BASER; 1519 1520 /* if nothing is set, then FEC is off */ 1521 if (!eth_fec) 1522 eth_fec = ETHTOOL_FEC_OFF; 1523 1524 return eth_fec; 1525 } 1526 1527 static int cxgb4vf_get_fecparam(struct net_device *dev, 1528 struct ethtool_fecparam *fec) 1529 { 1530 const struct port_info *pi = netdev_priv(dev); 1531 const struct link_config *lc = &pi->link_cfg; 1532 1533 /* Translate the Firmware FEC Support into the ethtool value. We 1534 * always support IEEE 802.3 "automatic" selection of Link FEC type if 1535 * any FEC is supported. 1536 */ 1537 fec->fec = fwcap_to_eth_fec(lc->pcaps); 1538 if (fec->fec != ETHTOOL_FEC_OFF) 1539 fec->fec |= ETHTOOL_FEC_AUTO; 1540 1541 /* Translate the current internal FEC parameters into the 1542 * ethtool values. 1543 */ 1544 fec->active_fec = cc_to_eth_fec(lc->fec); 1545 return 0; 1546 } 1547 1548 /* 1549 * Return our driver information. 1550 */ 1551 static void cxgb4vf_get_drvinfo(struct net_device *dev, 1552 struct ethtool_drvinfo *drvinfo) 1553 { 1554 struct adapter *adapter = netdev2adap(dev); 1555 1556 strscpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver)); 1557 strscpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)), 1558 sizeof(drvinfo->bus_info)); 1559 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 1560 "%u.%u.%u.%u, TP %u.%u.%u.%u", 1561 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev), 1562 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev), 1563 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev), 1564 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev), 1565 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev), 1566 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev), 1567 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev), 1568 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev)); 1569 } 1570 1571 /* 1572 * Return current adapter message level. 1573 */ 1574 static u32 cxgb4vf_get_msglevel(struct net_device *dev) 1575 { 1576 return netdev2adap(dev)->msg_enable; 1577 } 1578 1579 /* 1580 * Set current adapter message level. 1581 */ 1582 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel) 1583 { 1584 netdev2adap(dev)->msg_enable = msglevel; 1585 } 1586 1587 /* 1588 * Return the device's current Queue Set ring size parameters along with the 1589 * allowed maximum values. Since ethtool doesn't understand the concept of 1590 * multi-queue devices, we just return the current values associated with the 1591 * first Queue Set. 1592 */ 1593 static void cxgb4vf_get_ringparam(struct net_device *dev, 1594 struct ethtool_ringparam *rp, 1595 struct kernel_ethtool_ringparam *kernel_rp, 1596 struct netlink_ext_ack *extack) 1597 { 1598 const struct port_info *pi = netdev_priv(dev); 1599 const struct sge *s = &pi->adapter->sge; 1600 1601 rp->rx_max_pending = MAX_RX_BUFFERS; 1602 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES; 1603 rp->rx_jumbo_max_pending = 0; 1604 rp->tx_max_pending = MAX_TXQ_ENTRIES; 1605 1606 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID; 1607 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; 1608 rp->rx_jumbo_pending = 0; 1609 rp->tx_pending = s->ethtxq[pi->first_qset].q.size; 1610 } 1611 1612 /* 1613 * Set the Queue Set ring size parameters for the device. Again, since 1614 * ethtool doesn't allow for the concept of multiple queues per device, we'll 1615 * apply these new values across all of the Queue Sets associated with the 1616 * device -- after vetting them of course! 1617 */ 1618 static int cxgb4vf_set_ringparam(struct net_device *dev, 1619 struct ethtool_ringparam *rp, 1620 struct kernel_ethtool_ringparam *kernel_rp, 1621 struct netlink_ext_ack *extack) 1622 { 1623 const struct port_info *pi = netdev_priv(dev); 1624 struct adapter *adapter = pi->adapter; 1625 struct sge *s = &adapter->sge; 1626 int qs; 1627 1628 if (rp->rx_pending > MAX_RX_BUFFERS || 1629 rp->rx_jumbo_pending || 1630 rp->tx_pending > MAX_TXQ_ENTRIES || 1631 rp->rx_mini_pending > MAX_RSPQ_ENTRIES || 1632 rp->rx_mini_pending < MIN_RSPQ_ENTRIES || 1633 rp->rx_pending < MIN_FL_ENTRIES || 1634 rp->tx_pending < MIN_TXQ_ENTRIES) 1635 return -EINVAL; 1636 1637 if (adapter->flags & CXGB4VF_FULL_INIT_DONE) 1638 return -EBUSY; 1639 1640 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) { 1641 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID; 1642 s->ethrxq[qs].rspq.size = rp->rx_mini_pending; 1643 s->ethtxq[qs].q.size = rp->tx_pending; 1644 } 1645 return 0; 1646 } 1647 1648 /* 1649 * Return the interrupt holdoff timer and count for the first Queue Set on the 1650 * device. Our extension ioctl() (the cxgbtool interface) allows the 1651 * interrupt holdoff timer to be read on all of the device's Queue Sets. 1652 */ 1653 static int cxgb4vf_get_coalesce(struct net_device *dev, 1654 struct ethtool_coalesce *coalesce, 1655 struct kernel_ethtool_coalesce *kernel_coal, 1656 struct netlink_ext_ack *extack) 1657 { 1658 const struct port_info *pi = netdev_priv(dev); 1659 const struct adapter *adapter = pi->adapter; 1660 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq; 1661 1662 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq); 1663 coalesce->rx_max_coalesced_frames = 1664 ((rspq->intr_params & QINTR_CNT_EN_F) 1665 ? adapter->sge.counter_val[rspq->pktcnt_idx] 1666 : 0); 1667 return 0; 1668 } 1669 1670 /* 1671 * Set the RX interrupt holdoff timer and count for the first Queue Set on the 1672 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set 1673 * the interrupt holdoff timer on any of the device's Queue Sets. 1674 */ 1675 static int cxgb4vf_set_coalesce(struct net_device *dev, 1676 struct ethtool_coalesce *coalesce, 1677 struct kernel_ethtool_coalesce *kernel_coal, 1678 struct netlink_ext_ack *extack) 1679 { 1680 const struct port_info *pi = netdev_priv(dev); 1681 struct adapter *adapter = pi->adapter; 1682 1683 return set_rxq_intr_params(adapter, 1684 &adapter->sge.ethrxq[pi->first_qset].rspq, 1685 coalesce->rx_coalesce_usecs, 1686 coalesce->rx_max_coalesced_frames); 1687 } 1688 1689 /* 1690 * Report current port link pause parameter settings. 1691 */ 1692 static void cxgb4vf_get_pauseparam(struct net_device *dev, 1693 struct ethtool_pauseparam *pauseparam) 1694 { 1695 struct port_info *pi = netdev_priv(dev); 1696 1697 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; 1698 pauseparam->rx_pause = (pi->link_cfg.advertised_fc & PAUSE_RX) != 0; 1699 pauseparam->tx_pause = (pi->link_cfg.advertised_fc & PAUSE_TX) != 0; 1700 } 1701 1702 /* 1703 * Identify the port by blinking the port's LED. 1704 */ 1705 static int cxgb4vf_phys_id(struct net_device *dev, 1706 enum ethtool_phys_id_state state) 1707 { 1708 unsigned int val; 1709 struct port_info *pi = netdev_priv(dev); 1710 1711 if (state == ETHTOOL_ID_ACTIVE) 1712 val = 0xffff; 1713 else if (state == ETHTOOL_ID_INACTIVE) 1714 val = 0; 1715 else 1716 return -EINVAL; 1717 1718 return t4vf_identify_port(pi->adapter, pi->viid, val); 1719 } 1720 1721 /* 1722 * Port stats maintained per queue of the port. 1723 */ 1724 struct queue_port_stats { 1725 u64 tso; 1726 u64 tx_csum; 1727 u64 rx_csum; 1728 u64 vlan_ex; 1729 u64 vlan_ins; 1730 u64 lro_pkts; 1731 u64 lro_merged; 1732 }; 1733 1734 /* 1735 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that 1736 * these need to match the order of statistics returned by 1737 * t4vf_get_port_stats(). 1738 */ 1739 static const char stats_strings[][ETH_GSTRING_LEN] = { 1740 /* 1741 * These must match the layout of the t4vf_port_stats structure. 1742 */ 1743 "TxBroadcastBytes ", 1744 "TxBroadcastFrames ", 1745 "TxMulticastBytes ", 1746 "TxMulticastFrames ", 1747 "TxUnicastBytes ", 1748 "TxUnicastFrames ", 1749 "TxDroppedFrames ", 1750 "TxOffloadBytes ", 1751 "TxOffloadFrames ", 1752 "RxBroadcastBytes ", 1753 "RxBroadcastFrames ", 1754 "RxMulticastBytes ", 1755 "RxMulticastFrames ", 1756 "RxUnicastBytes ", 1757 "RxUnicastFrames ", 1758 "RxErrorFrames ", 1759 1760 /* 1761 * These are accumulated per-queue statistics and must match the 1762 * order of the fields in the queue_port_stats structure. 1763 */ 1764 "TSO ", 1765 "TxCsumOffload ", 1766 "RxCsumGood ", 1767 "VLANextractions ", 1768 "VLANinsertions ", 1769 "GROPackets ", 1770 "GROMerged ", 1771 }; 1772 1773 /* 1774 * Return the number of statistics in the specified statistics set. 1775 */ 1776 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset) 1777 { 1778 switch (sset) { 1779 case ETH_SS_STATS: 1780 return ARRAY_SIZE(stats_strings); 1781 default: 1782 return -EOPNOTSUPP; 1783 } 1784 /*NOTREACHED*/ 1785 } 1786 1787 /* 1788 * Return the strings for the specified statistics set. 1789 */ 1790 static void cxgb4vf_get_strings(struct net_device *dev, 1791 u32 sset, 1792 u8 *data) 1793 { 1794 switch (sset) { 1795 case ETH_SS_STATS: 1796 memcpy(data, stats_strings, sizeof(stats_strings)); 1797 break; 1798 } 1799 } 1800 1801 /* 1802 * Small utility routine to accumulate queue statistics across the queues of 1803 * a "port". 1804 */ 1805 static void collect_sge_port_stats(const struct adapter *adapter, 1806 const struct port_info *pi, 1807 struct queue_port_stats *stats) 1808 { 1809 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset]; 1810 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 1811 int qs; 1812 1813 memset(stats, 0, sizeof(*stats)); 1814 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 1815 stats->tso += txq->tso; 1816 stats->tx_csum += txq->tx_cso; 1817 stats->rx_csum += rxq->stats.rx_cso; 1818 stats->vlan_ex += rxq->stats.vlan_ex; 1819 stats->vlan_ins += txq->vlan_ins; 1820 stats->lro_pkts += rxq->stats.lro_pkts; 1821 stats->lro_merged += rxq->stats.lro_merged; 1822 } 1823 } 1824 1825 /* 1826 * Return the ETH_SS_STATS statistics set. 1827 */ 1828 static void cxgb4vf_get_ethtool_stats(struct net_device *dev, 1829 struct ethtool_stats *stats, 1830 u64 *data) 1831 { 1832 struct port_info *pi = netdev2pinfo(dev); 1833 struct adapter *adapter = pi->adapter; 1834 int err = t4vf_get_port_stats(adapter, pi->pidx, 1835 (struct t4vf_port_stats *)data); 1836 if (err) 1837 memset(data, 0, sizeof(struct t4vf_port_stats)); 1838 1839 data += sizeof(struct t4vf_port_stats) / sizeof(u64); 1840 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); 1841 } 1842 1843 /* 1844 * Return the size of our register map. 1845 */ 1846 static int cxgb4vf_get_regs_len(struct net_device *dev) 1847 { 1848 return T4VF_REGMAP_SIZE; 1849 } 1850 1851 /* 1852 * Dump a block of registers, start to end inclusive, into a buffer. 1853 */ 1854 static void reg_block_dump(struct adapter *adapter, void *regbuf, 1855 unsigned int start, unsigned int end) 1856 { 1857 u32 *bp = regbuf + start - T4VF_REGMAP_START; 1858 1859 for ( ; start <= end; start += sizeof(u32)) { 1860 /* 1861 * Avoid reading the Mailbox Control register since that 1862 * can trigger a Mailbox Ownership Arbitration cycle and 1863 * interfere with communication with the firmware. 1864 */ 1865 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL) 1866 *bp++ = 0xffff; 1867 else 1868 *bp++ = t4_read_reg(adapter, start); 1869 } 1870 } 1871 1872 /* 1873 * Copy our entire register map into the provided buffer. 1874 */ 1875 static void cxgb4vf_get_regs(struct net_device *dev, 1876 struct ethtool_regs *regs, 1877 void *regbuf) 1878 { 1879 struct adapter *adapter = netdev2adap(dev); 1880 1881 regs->version = mk_adap_vers(adapter); 1882 1883 /* 1884 * Fill in register buffer with our register map. 1885 */ 1886 memset(regbuf, 0, T4VF_REGMAP_SIZE); 1887 1888 reg_block_dump(adapter, regbuf, 1889 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST, 1890 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST); 1891 reg_block_dump(adapter, regbuf, 1892 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST, 1893 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST); 1894 1895 /* T5 adds new registers in the PL Register map. 1896 */ 1897 reg_block_dump(adapter, regbuf, 1898 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST, 1899 T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip) 1900 ? PL_VF_WHOAMI_A : PL_VF_REVISION_A)); 1901 reg_block_dump(adapter, regbuf, 1902 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST, 1903 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST); 1904 1905 reg_block_dump(adapter, regbuf, 1906 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST, 1907 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST); 1908 } 1909 1910 /* 1911 * Report current Wake On LAN settings. 1912 */ 1913 static void cxgb4vf_get_wol(struct net_device *dev, 1914 struct ethtool_wolinfo *wol) 1915 { 1916 wol->supported = 0; 1917 wol->wolopts = 0; 1918 memset(&wol->sopass, 0, sizeof(wol->sopass)); 1919 } 1920 1921 /* 1922 * TCP Segmentation Offload flags which we support. 1923 */ 1924 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1925 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 1926 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 1927 1928 static const struct ethtool_ops cxgb4vf_ethtool_ops = { 1929 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | 1930 ETHTOOL_COALESCE_RX_MAX_FRAMES, 1931 .get_link_ksettings = cxgb4vf_get_link_ksettings, 1932 .get_fecparam = cxgb4vf_get_fecparam, 1933 .get_drvinfo = cxgb4vf_get_drvinfo, 1934 .get_msglevel = cxgb4vf_get_msglevel, 1935 .set_msglevel = cxgb4vf_set_msglevel, 1936 .get_ringparam = cxgb4vf_get_ringparam, 1937 .set_ringparam = cxgb4vf_set_ringparam, 1938 .get_coalesce = cxgb4vf_get_coalesce, 1939 .set_coalesce = cxgb4vf_set_coalesce, 1940 .get_pauseparam = cxgb4vf_get_pauseparam, 1941 .get_link = ethtool_op_get_link, 1942 .get_strings = cxgb4vf_get_strings, 1943 .set_phys_id = cxgb4vf_phys_id, 1944 .get_sset_count = cxgb4vf_get_sset_count, 1945 .get_ethtool_stats = cxgb4vf_get_ethtool_stats, 1946 .get_regs_len = cxgb4vf_get_regs_len, 1947 .get_regs = cxgb4vf_get_regs, 1948 .get_wol = cxgb4vf_get_wol, 1949 }; 1950 1951 /* 1952 * /sys/kernel/debug/cxgb4vf support code and data. 1953 * ================================================ 1954 */ 1955 1956 /* 1957 * Show Firmware Mailbox Command/Reply Log 1958 * 1959 * Note that we don't do any locking when dumping the Firmware Mailbox Log so 1960 * it's possible that we can catch things during a log update and therefore 1961 * see partially corrupted log entries. But i9t's probably Good Enough(tm). 1962 * If we ever decide that we want to make sure that we're dumping a coherent 1963 * log, we'd need to perform locking in the mailbox logging and in 1964 * mboxlog_open() where we'd need to grab the entire mailbox log in one go 1965 * like we do for the Firmware Device Log. But as stated above, meh ... 1966 */ 1967 static int mboxlog_show(struct seq_file *seq, void *v) 1968 { 1969 struct adapter *adapter = seq->private; 1970 struct mbox_cmd_log *log = adapter->mbox_log; 1971 struct mbox_cmd *entry; 1972 int entry_idx, i; 1973 1974 if (v == SEQ_START_TOKEN) { 1975 seq_printf(seq, 1976 "%10s %15s %5s %5s %s\n", 1977 "Seq#", "Tstamp", "Atime", "Etime", 1978 "Command/Reply"); 1979 return 0; 1980 } 1981 1982 entry_idx = log->cursor + ((uintptr_t)v - 2); 1983 if (entry_idx >= log->size) 1984 entry_idx -= log->size; 1985 entry = mbox_cmd_log_entry(log, entry_idx); 1986 1987 /* skip over unused entries */ 1988 if (entry->timestamp == 0) 1989 return 0; 1990 1991 seq_printf(seq, "%10u %15llu %5d %5d", 1992 entry->seqno, entry->timestamp, 1993 entry->access, entry->execute); 1994 for (i = 0; i < MBOX_LEN / 8; i++) { 1995 u64 flit = entry->cmd[i]; 1996 u32 hi = (u32)(flit >> 32); 1997 u32 lo = (u32)flit; 1998 1999 seq_printf(seq, " %08x %08x", hi, lo); 2000 } 2001 seq_puts(seq, "\n"); 2002 return 0; 2003 } 2004 2005 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos) 2006 { 2007 struct adapter *adapter = seq->private; 2008 struct mbox_cmd_log *log = adapter->mbox_log; 2009 2010 return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL); 2011 } 2012 2013 static void *mboxlog_start(struct seq_file *seq, loff_t *pos) 2014 { 2015 return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN; 2016 } 2017 2018 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos) 2019 { 2020 ++*pos; 2021 return mboxlog_get_idx(seq, *pos); 2022 } 2023 2024 static void mboxlog_stop(struct seq_file *seq, void *v) 2025 { 2026 } 2027 2028 static const struct seq_operations mboxlog_sops = { 2029 .start = mboxlog_start, 2030 .next = mboxlog_next, 2031 .stop = mboxlog_stop, 2032 .show = mboxlog_show 2033 }; 2034 2035 DEFINE_SEQ_ATTRIBUTE(mboxlog); 2036 /* 2037 * Show SGE Queue Set information. We display QPL Queues Sets per line. 2038 */ 2039 #define QPL 4 2040 2041 static int sge_qinfo_show(struct seq_file *seq, void *v) 2042 { 2043 struct adapter *adapter = seq->private; 2044 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2045 int qs, r = (uintptr_t)v - 1; 2046 2047 if (r) 2048 seq_putc(seq, '\n'); 2049 2050 #define S3(fmt_spec, s, v) \ 2051 do {\ 2052 seq_printf(seq, "%-12s", s); \ 2053 for (qs = 0; qs < n; ++qs) \ 2054 seq_printf(seq, " %16" fmt_spec, v); \ 2055 seq_putc(seq, '\n'); \ 2056 } while (0) 2057 #define S(s, v) S3("s", s, v) 2058 #define T(s, v) S3("u", s, txq[qs].v) 2059 #define R(s, v) S3("u", s, rxq[qs].v) 2060 2061 if (r < eth_entries) { 2062 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2063 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2064 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2065 2066 S("QType:", "Ethernet"); 2067 S("Interface:", 2068 (rxq[qs].rspq.netdev 2069 ? rxq[qs].rspq.netdev->name 2070 : "N/A")); 2071 S3("d", "Port:", 2072 (rxq[qs].rspq.netdev 2073 ? ((struct port_info *) 2074 netdev_priv(rxq[qs].rspq.netdev))->port_id 2075 : -1)); 2076 T("TxQ ID:", q.abs_id); 2077 T("TxQ size:", q.size); 2078 T("TxQ inuse:", q.in_use); 2079 T("TxQ PIdx:", q.pidx); 2080 T("TxQ CIdx:", q.cidx); 2081 R("RspQ ID:", rspq.abs_id); 2082 R("RspQ size:", rspq.size); 2083 R("RspQE size:", rspq.iqe_len); 2084 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq)); 2085 S3("u", "Intr pktcnt:", 2086 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]); 2087 R("RspQ CIdx:", rspq.cidx); 2088 R("RspQ Gen:", rspq.gen); 2089 R("FL ID:", fl.abs_id); 2090 R("FL size:", fl.size - MIN_FL_RESID); 2091 R("FL avail:", fl.avail); 2092 R("FL PIdx:", fl.pidx); 2093 R("FL CIdx:", fl.cidx); 2094 return 0; 2095 } 2096 2097 r -= eth_entries; 2098 if (r == 0) { 2099 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2100 2101 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue"); 2102 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id); 2103 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2104 qtimer_val(adapter, evtq)); 2105 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2106 adapter->sge.counter_val[evtq->pktcnt_idx]); 2107 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx); 2108 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen); 2109 } else if (r == 1) { 2110 const struct sge_rspq *intrq = &adapter->sge.intrq; 2111 2112 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue"); 2113 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id); 2114 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2115 qtimer_val(adapter, intrq)); 2116 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2117 adapter->sge.counter_val[intrq->pktcnt_idx]); 2118 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx); 2119 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen); 2120 } 2121 2122 #undef R 2123 #undef T 2124 #undef S 2125 #undef S3 2126 2127 return 0; 2128 } 2129 2130 /* 2131 * Return the number of "entries" in our "file". We group the multi-Queue 2132 * sections with QPL Queue Sets per "entry". The sections of the output are: 2133 * 2134 * Ethernet RX/TX Queue Sets 2135 * Firmware Event Queue 2136 * Forwarded Interrupt Queue (if in MSI mode) 2137 */ 2138 static int sge_queue_entries(const struct adapter *adapter) 2139 { 2140 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2141 ((adapter->flags & CXGB4VF_USING_MSI) != 0); 2142 } 2143 2144 static void *sge_queue_start(struct seq_file *seq, loff_t *pos) 2145 { 2146 int entries = sge_queue_entries(seq->private); 2147 2148 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2149 } 2150 2151 static void sge_queue_stop(struct seq_file *seq, void *v) 2152 { 2153 } 2154 2155 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos) 2156 { 2157 int entries = sge_queue_entries(seq->private); 2158 2159 ++*pos; 2160 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2161 } 2162 2163 static const struct seq_operations sge_qinfo_sops = { 2164 .start = sge_queue_start, 2165 .next = sge_queue_next, 2166 .stop = sge_queue_stop, 2167 .show = sge_qinfo_show 2168 }; 2169 2170 DEFINE_SEQ_ATTRIBUTE(sge_qinfo); 2171 2172 /* 2173 * Show SGE Queue Set statistics. We display QPL Queues Sets per line. 2174 */ 2175 #define QPL 4 2176 2177 static int sge_qstats_show(struct seq_file *seq, void *v) 2178 { 2179 struct adapter *adapter = seq->private; 2180 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2181 int qs, r = (uintptr_t)v - 1; 2182 2183 if (r) 2184 seq_putc(seq, '\n'); 2185 2186 #define S3(fmt, s, v) \ 2187 do { \ 2188 seq_printf(seq, "%-16s", s); \ 2189 for (qs = 0; qs < n; ++qs) \ 2190 seq_printf(seq, " %8" fmt, v); \ 2191 seq_putc(seq, '\n'); \ 2192 } while (0) 2193 #define S(s, v) S3("s", s, v) 2194 2195 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v) 2196 #define T(s, v) T3("lu", s, v) 2197 2198 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v) 2199 #define R(s, v) R3("lu", s, v) 2200 2201 if (r < eth_entries) { 2202 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2203 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2204 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2205 2206 S("QType:", "Ethernet"); 2207 S("Interface:", 2208 (rxq[qs].rspq.netdev 2209 ? rxq[qs].rspq.netdev->name 2210 : "N/A")); 2211 R3("u", "RspQNullInts:", rspq.unhandled_irqs); 2212 R("RxPackets:", stats.pkts); 2213 R("RxCSO:", stats.rx_cso); 2214 R("VLANxtract:", stats.vlan_ex); 2215 R("LROmerged:", stats.lro_merged); 2216 R("LROpackets:", stats.lro_pkts); 2217 R("RxDrops:", stats.rx_drops); 2218 T("TSO:", tso); 2219 T("TxCSO:", tx_cso); 2220 T("VLANins:", vlan_ins); 2221 T("TxQFull:", q.stops); 2222 T("TxQRestarts:", q.restarts); 2223 T("TxMapErr:", mapping_err); 2224 R("FLAllocErr:", fl.alloc_failed); 2225 R("FLLrgAlcErr:", fl.large_alloc_failed); 2226 R("FLStarving:", fl.starving); 2227 return 0; 2228 } 2229 2230 r -= eth_entries; 2231 if (r == 0) { 2232 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2233 2234 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue"); 2235 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2236 evtq->unhandled_irqs); 2237 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx); 2238 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen); 2239 } else if (r == 1) { 2240 const struct sge_rspq *intrq = &adapter->sge.intrq; 2241 2242 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue"); 2243 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2244 intrq->unhandled_irqs); 2245 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx); 2246 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen); 2247 } 2248 2249 #undef R 2250 #undef T 2251 #undef S 2252 #undef R3 2253 #undef T3 2254 #undef S3 2255 2256 return 0; 2257 } 2258 2259 /* 2260 * Return the number of "entries" in our "file". We group the multi-Queue 2261 * sections with QPL Queue Sets per "entry". The sections of the output are: 2262 * 2263 * Ethernet RX/TX Queue Sets 2264 * Firmware Event Queue 2265 * Forwarded Interrupt Queue (if in MSI mode) 2266 */ 2267 static int sge_qstats_entries(const struct adapter *adapter) 2268 { 2269 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2270 ((adapter->flags & CXGB4VF_USING_MSI) != 0); 2271 } 2272 2273 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos) 2274 { 2275 int entries = sge_qstats_entries(seq->private); 2276 2277 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2278 } 2279 2280 static void sge_qstats_stop(struct seq_file *seq, void *v) 2281 { 2282 } 2283 2284 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos) 2285 { 2286 int entries = sge_qstats_entries(seq->private); 2287 2288 (*pos)++; 2289 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2290 } 2291 2292 static const struct seq_operations sge_qstats_sops = { 2293 .start = sge_qstats_start, 2294 .next = sge_qstats_next, 2295 .stop = sge_qstats_stop, 2296 .show = sge_qstats_show 2297 }; 2298 2299 DEFINE_SEQ_ATTRIBUTE(sge_qstats); 2300 2301 /* 2302 * Show PCI-E SR-IOV Virtual Function Resource Limits. 2303 */ 2304 static int resources_show(struct seq_file *seq, void *v) 2305 { 2306 struct adapter *adapter = seq->private; 2307 struct vf_resources *vfres = &adapter->params.vfres; 2308 2309 #define S(desc, fmt, var) \ 2310 seq_printf(seq, "%-60s " fmt "\n", \ 2311 desc " (" #var "):", vfres->var) 2312 2313 S("Virtual Interfaces", "%d", nvi); 2314 S("Egress Queues", "%d", neq); 2315 S("Ethernet Control", "%d", nethctrl); 2316 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint); 2317 S("Ingress Queues", "%d", niq); 2318 S("Traffic Class", "%d", tc); 2319 S("Port Access Rights Mask", "%#x", pmask); 2320 S("MAC Address Filters", "%d", nexactf); 2321 S("Firmware Command Read Capabilities", "%#x", r_caps); 2322 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps); 2323 2324 #undef S 2325 2326 return 0; 2327 } 2328 DEFINE_SHOW_ATTRIBUTE(resources); 2329 2330 /* 2331 * Show Virtual Interfaces. 2332 */ 2333 static int interfaces_show(struct seq_file *seq, void *v) 2334 { 2335 if (v == SEQ_START_TOKEN) { 2336 seq_puts(seq, "Interface Port VIID\n"); 2337 } else { 2338 struct adapter *adapter = seq->private; 2339 int pidx = (uintptr_t)v - 2; 2340 struct net_device *dev = adapter->port[pidx]; 2341 struct port_info *pi = netdev_priv(dev); 2342 2343 seq_printf(seq, "%9s %4d %#5x\n", 2344 dev->name, pi->port_id, pi->viid); 2345 } 2346 return 0; 2347 } 2348 2349 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos) 2350 { 2351 return pos <= adapter->params.nports 2352 ? (void *)(uintptr_t)(pos + 1) 2353 : NULL; 2354 } 2355 2356 static void *interfaces_start(struct seq_file *seq, loff_t *pos) 2357 { 2358 return *pos 2359 ? interfaces_get_idx(seq->private, *pos) 2360 : SEQ_START_TOKEN; 2361 } 2362 2363 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos) 2364 { 2365 (*pos)++; 2366 return interfaces_get_idx(seq->private, *pos); 2367 } 2368 2369 static void interfaces_stop(struct seq_file *seq, void *v) 2370 { 2371 } 2372 2373 static const struct seq_operations interfaces_sops = { 2374 .start = interfaces_start, 2375 .next = interfaces_next, 2376 .stop = interfaces_stop, 2377 .show = interfaces_show 2378 }; 2379 2380 DEFINE_SEQ_ATTRIBUTE(interfaces); 2381 2382 /* 2383 * /sys/kernel/debugfs/cxgb4vf/ files list. 2384 */ 2385 struct cxgb4vf_debugfs_entry { 2386 const char *name; /* name of debugfs node */ 2387 umode_t mode; /* file system mode */ 2388 const struct file_operations *fops; 2389 }; 2390 2391 static struct cxgb4vf_debugfs_entry debugfs_files[] = { 2392 { "mboxlog", 0444, &mboxlog_fops }, 2393 { "sge_qinfo", 0444, &sge_qinfo_fops }, 2394 { "sge_qstats", 0444, &sge_qstats_fops }, 2395 { "resources", 0444, &resources_fops }, 2396 { "interfaces", 0444, &interfaces_fops }, 2397 }; 2398 2399 /* 2400 * Module and device initialization and cleanup code. 2401 * ================================================== 2402 */ 2403 2404 /* 2405 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the 2406 * directory (debugfs_root) has already been set up. 2407 */ 2408 static int setup_debugfs(struct adapter *adapter) 2409 { 2410 int i; 2411 2412 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2413 2414 /* 2415 * Debugfs support is best effort. 2416 */ 2417 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) 2418 debugfs_create_file(debugfs_files[i].name, 2419 debugfs_files[i].mode, 2420 adapter->debugfs_root, adapter, 2421 debugfs_files[i].fops); 2422 2423 return 0; 2424 } 2425 2426 /* 2427 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave 2428 * it to our caller to tear down the directory (debugfs_root). 2429 */ 2430 static void cleanup_debugfs(struct adapter *adapter) 2431 { 2432 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2433 2434 /* 2435 * Unlike our sister routine cleanup_proc(), we don't need to remove 2436 * individual entries because a call will be made to 2437 * debugfs_remove_recursive(). We just need to clean up any ancillary 2438 * persistent state. 2439 */ 2440 /* nothing to do */ 2441 } 2442 2443 /* Figure out how many Ports and Queue Sets we can support. This depends on 2444 * knowing our Virtual Function Resources and may be called a second time if 2445 * we fall back from MSI-X to MSI Interrupt Mode. 2446 */ 2447 static void size_nports_qsets(struct adapter *adapter) 2448 { 2449 struct vf_resources *vfres = &adapter->params.vfres; 2450 unsigned int ethqsets, pmask_nports; 2451 2452 /* The number of "ports" which we support is equal to the number of 2453 * Virtual Interfaces with which we've been provisioned. 2454 */ 2455 adapter->params.nports = vfres->nvi; 2456 if (adapter->params.nports > MAX_NPORTS) { 2457 dev_warn(adapter->pdev_dev, "only using %d of %d maximum" 2458 " allowed virtual interfaces\n", MAX_NPORTS, 2459 adapter->params.nports); 2460 adapter->params.nports = MAX_NPORTS; 2461 } 2462 2463 /* We may have been provisioned with more VIs than the number of 2464 * ports we're allowed to access (our Port Access Rights Mask). 2465 * This is obviously a configuration conflict but we don't want to 2466 * crash the kernel or anything silly just because of that. 2467 */ 2468 pmask_nports = hweight32(adapter->params.vfres.pmask); 2469 if (pmask_nports < adapter->params.nports) { 2470 dev_warn(adapter->pdev_dev, "only using %d of %d provisioned" 2471 " virtual interfaces; limited by Port Access Rights" 2472 " mask %#x\n", pmask_nports, adapter->params.nports, 2473 adapter->params.vfres.pmask); 2474 adapter->params.nports = pmask_nports; 2475 } 2476 2477 /* We need to reserve an Ingress Queue for the Asynchronous Firmware 2478 * Event Queue. And if we're using MSI Interrupts, we'll also need to 2479 * reserve an Ingress Queue for a Forwarded Interrupts. 2480 * 2481 * The rest of the FL/Intr-capable ingress queues will be matched up 2482 * one-for-one with Ethernet/Control egress queues in order to form 2483 * "Queue Sets" which will be aportioned between the "ports". For 2484 * each Queue Set, we'll need the ability to allocate two Egress 2485 * Contexts -- one for the Ingress Queue Free List and one for the TX 2486 * Ethernet Queue. 2487 * 2488 * Note that even if we're currently configured to use MSI-X 2489 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded 2490 * to MSI Interrupts if we can't get enough MSI-X Interrupts. If that 2491 * happens we'll need to adjust things later. 2492 */ 2493 ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI); 2494 if (vfres->nethctrl != ethqsets) 2495 ethqsets = min(vfres->nethctrl, ethqsets); 2496 if (vfres->neq < ethqsets*2) 2497 ethqsets = vfres->neq/2; 2498 if (ethqsets > MAX_ETH_QSETS) 2499 ethqsets = MAX_ETH_QSETS; 2500 adapter->sge.max_ethqsets = ethqsets; 2501 2502 if (adapter->sge.max_ethqsets < adapter->params.nports) { 2503 dev_warn(adapter->pdev_dev, "only using %d of %d available" 2504 " virtual interfaces (too few Queue Sets)\n", 2505 adapter->sge.max_ethqsets, adapter->params.nports); 2506 adapter->params.nports = adapter->sge.max_ethqsets; 2507 } 2508 } 2509 2510 /* 2511 * Perform early "adapter" initialization. This is where we discover what 2512 * adapter parameters we're going to be using and initialize basic adapter 2513 * hardware support. 2514 */ 2515 static int adap_init0(struct adapter *adapter) 2516 { 2517 struct sge_params *sge_params = &adapter->params.sge; 2518 struct sge *s = &adapter->sge; 2519 int err; 2520 u32 param, val = 0; 2521 2522 /* 2523 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux 2524 * 2.6.31 and later we can't call pci_reset_function() in order to 2525 * issue an FLR because of a self- deadlock on the device semaphore. 2526 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the 2527 * cases where they're needed -- for instance, some versions of KVM 2528 * fail to reset "Assigned Devices" when the VM reboots. Therefore we 2529 * use the firmware based reset in order to reset any per function 2530 * state. 2531 */ 2532 err = t4vf_fw_reset(adapter); 2533 if (err < 0) { 2534 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err); 2535 return err; 2536 } 2537 2538 /* 2539 * Grab basic operational parameters. These will predominantly have 2540 * been set up by the Physical Function Driver or will be hard coded 2541 * into the adapter. We just have to live with them ... Note that 2542 * we _must_ get our VPD parameters before our SGE parameters because 2543 * we need to know the adapter's core clock from the VPD in order to 2544 * properly decode the SGE Timer Values. 2545 */ 2546 err = t4vf_get_dev_params(adapter); 2547 if (err) { 2548 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2549 " device parameters: err=%d\n", err); 2550 return err; 2551 } 2552 err = t4vf_get_vpd_params(adapter); 2553 if (err) { 2554 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2555 " VPD parameters: err=%d\n", err); 2556 return err; 2557 } 2558 err = t4vf_get_sge_params(adapter); 2559 if (err) { 2560 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2561 " SGE parameters: err=%d\n", err); 2562 return err; 2563 } 2564 err = t4vf_get_rss_glb_config(adapter); 2565 if (err) { 2566 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2567 " RSS parameters: err=%d\n", err); 2568 return err; 2569 } 2570 if (adapter->params.rss.mode != 2571 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 2572 dev_err(adapter->pdev_dev, "unable to operate with global RSS" 2573 " mode %d\n", adapter->params.rss.mode); 2574 return -EINVAL; 2575 } 2576 err = t4vf_sge_init(adapter); 2577 if (err) { 2578 dev_err(adapter->pdev_dev, "unable to use adapter parameters:" 2579 " err=%d\n", err); 2580 return err; 2581 } 2582 2583 /* If we're running on newer firmware, let it know that we're 2584 * prepared to deal with encapsulated CPL messages. Older 2585 * firmware won't understand this and we'll just get 2586 * unencapsulated messages ... 2587 */ 2588 param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2589 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP); 2590 val = 1; 2591 (void) t4vf_set_params(adapter, 1, ¶m, &val); 2592 2593 /* 2594 * Retrieve our RX interrupt holdoff timer values and counter 2595 * threshold values from the SGE parameters. 2596 */ 2597 s->timer_val[0] = core_ticks_to_us(adapter, 2598 TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1)); 2599 s->timer_val[1] = core_ticks_to_us(adapter, 2600 TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1)); 2601 s->timer_val[2] = core_ticks_to_us(adapter, 2602 TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3)); 2603 s->timer_val[3] = core_ticks_to_us(adapter, 2604 TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3)); 2605 s->timer_val[4] = core_ticks_to_us(adapter, 2606 TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5)); 2607 s->timer_val[5] = core_ticks_to_us(adapter, 2608 TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5)); 2609 2610 s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold); 2611 s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold); 2612 s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold); 2613 s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold); 2614 2615 /* 2616 * Grab our Virtual Interface resource allocation, extract the 2617 * features that we're interested in and do a bit of sanity testing on 2618 * what we discover. 2619 */ 2620 err = t4vf_get_vfres(adapter); 2621 if (err) { 2622 dev_err(adapter->pdev_dev, "unable to get virtual interface" 2623 " resources: err=%d\n", err); 2624 return err; 2625 } 2626 2627 /* Check for various parameter sanity issues */ 2628 if (adapter->params.vfres.pmask == 0) { 2629 dev_err(adapter->pdev_dev, "no port access configured\n" 2630 "usable!\n"); 2631 return -EINVAL; 2632 } 2633 if (adapter->params.vfres.nvi == 0) { 2634 dev_err(adapter->pdev_dev, "no virtual interfaces configured/" 2635 "usable!\n"); 2636 return -EINVAL; 2637 } 2638 2639 /* Initialize nports and max_ethqsets now that we have our Virtual 2640 * Function Resources. 2641 */ 2642 size_nports_qsets(adapter); 2643 2644 adapter->flags |= CXGB4VF_FW_OK; 2645 return 0; 2646 } 2647 2648 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx, 2649 u8 pkt_cnt_idx, unsigned int size, 2650 unsigned int iqe_size) 2651 { 2652 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 2653 (pkt_cnt_idx < SGE_NCOUNTERS ? 2654 QINTR_CNT_EN_F : 0)); 2655 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS 2656 ? pkt_cnt_idx 2657 : 0); 2658 rspq->iqe_len = iqe_size; 2659 rspq->size = size; 2660 } 2661 2662 /* 2663 * Perform default configuration of DMA queues depending on the number and 2664 * type of ports we found and the number of available CPUs. Most settings can 2665 * be modified by the admin via ethtool and cxgbtool prior to the adapter 2666 * being brought up for the first time. 2667 */ 2668 static void cfg_queues(struct adapter *adapter) 2669 { 2670 struct sge *s = &adapter->sge; 2671 int q10g, n10g, qidx, pidx, qs; 2672 size_t iqe_size; 2673 2674 /* 2675 * We should not be called till we know how many Queue Sets we can 2676 * support. In particular, this means that we need to know what kind 2677 * of interrupts we'll be using ... 2678 */ 2679 BUG_ON((adapter->flags & 2680 (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0); 2681 2682 /* 2683 * Count the number of 10GbE Virtual Interfaces that we have. 2684 */ 2685 n10g = 0; 2686 for_each_port(adapter, pidx) 2687 n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg); 2688 2689 /* 2690 * We default to 1 queue per non-10G port and up to # of cores queues 2691 * per 10G port. 2692 */ 2693 if (n10g == 0) 2694 q10g = 0; 2695 else { 2696 int n1g = (adapter->params.nports - n10g); 2697 q10g = (adapter->sge.max_ethqsets - n1g) / n10g; 2698 if (q10g > num_online_cpus()) 2699 q10g = num_online_cpus(); 2700 } 2701 2702 /* 2703 * Allocate the "Queue Sets" to the various Virtual Interfaces. 2704 * The layout will be established in setup_sge_queues() when the 2705 * adapter is brough up for the first time. 2706 */ 2707 qidx = 0; 2708 for_each_port(adapter, pidx) { 2709 struct port_info *pi = adap2pinfo(adapter, pidx); 2710 2711 pi->first_qset = qidx; 2712 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 2713 qidx += pi->nqsets; 2714 } 2715 s->ethqsets = qidx; 2716 2717 /* 2718 * The Ingress Queue Entry Size for our various Response Queues needs 2719 * to be big enough to accommodate the largest message we can receive 2720 * from the chip/firmware; which is 64 bytes ... 2721 */ 2722 iqe_size = 64; 2723 2724 /* 2725 * Set up default Queue Set parameters ... Start off with the 2726 * shortest interrupt holdoff timer. 2727 */ 2728 for (qs = 0; qs < s->max_ethqsets; qs++) { 2729 struct sge_eth_rxq *rxq = &s->ethrxq[qs]; 2730 struct sge_eth_txq *txq = &s->ethtxq[qs]; 2731 2732 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size); 2733 rxq->fl.size = 72; 2734 txq->q.size = 1024; 2735 } 2736 2737 /* 2738 * The firmware event queue is used for link state changes and 2739 * notifications of TX DMA completions. 2740 */ 2741 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size); 2742 2743 /* 2744 * The forwarded interrupt queue is used when we're in MSI interrupt 2745 * mode. In this mode all interrupts associated with RX queues will 2746 * be forwarded to a single queue which we'll associate with our MSI 2747 * interrupt vector. The messages dropped in the forwarded interrupt 2748 * queue will indicate which ingress queue needs servicing ... This 2749 * queue needs to be large enough to accommodate all of the ingress 2750 * queues which are forwarding their interrupt (+1 to prevent the PIDX 2751 * from equalling the CIDX if every ingress queue has an outstanding 2752 * interrupt). The queue doesn't need to be any larger because no 2753 * ingress queue will ever have more than one outstanding interrupt at 2754 * any time ... 2755 */ 2756 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1, 2757 iqe_size); 2758 } 2759 2760 /* 2761 * Reduce the number of Ethernet queues across all ports to at most n. 2762 * n provides at least one queue per port. 2763 */ 2764 static void reduce_ethqs(struct adapter *adapter, int n) 2765 { 2766 int i; 2767 struct port_info *pi; 2768 2769 /* 2770 * While we have too many active Ether Queue Sets, interate across the 2771 * "ports" and reduce their individual Queue Set allocations. 2772 */ 2773 BUG_ON(n < adapter->params.nports); 2774 while (n < adapter->sge.ethqsets) 2775 for_each_port(adapter, i) { 2776 pi = adap2pinfo(adapter, i); 2777 if (pi->nqsets > 1) { 2778 pi->nqsets--; 2779 adapter->sge.ethqsets--; 2780 if (adapter->sge.ethqsets <= n) 2781 break; 2782 } 2783 } 2784 2785 /* 2786 * Reassign the starting Queue Sets for each of the "ports" ... 2787 */ 2788 n = 0; 2789 for_each_port(adapter, i) { 2790 pi = adap2pinfo(adapter, i); 2791 pi->first_qset = n; 2792 n += pi->nqsets; 2793 } 2794 } 2795 2796 /* 2797 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally 2798 * we get a separate MSI-X vector for every "Queue Set" plus any extras we 2799 * need. Minimally we need one for every Virtual Interface plus those needed 2800 * for our "extras". Note that this process may lower the maximum number of 2801 * allowed Queue Sets ... 2802 */ 2803 static int enable_msix(struct adapter *adapter) 2804 { 2805 int i, want, need, nqsets; 2806 struct msix_entry entries[MSIX_ENTRIES]; 2807 struct sge *s = &adapter->sge; 2808 2809 for (i = 0; i < MSIX_ENTRIES; ++i) 2810 entries[i].entry = i; 2811 2812 /* 2813 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets" 2814 * plus those needed for our "extras" (for example, the firmware 2815 * message queue). We _need_ at least one "Queue Set" per Virtual 2816 * Interface plus those needed for our "extras". So now we get to see 2817 * if the song is right ... 2818 */ 2819 want = s->max_ethqsets + MSIX_EXTRAS; 2820 need = adapter->params.nports + MSIX_EXTRAS; 2821 2822 want = pci_enable_msix_range(adapter->pdev, entries, need, want); 2823 if (want < 0) 2824 return want; 2825 2826 nqsets = want - MSIX_EXTRAS; 2827 if (nqsets < s->max_ethqsets) { 2828 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors" 2829 " for %d Queue Sets\n", nqsets); 2830 s->max_ethqsets = nqsets; 2831 if (nqsets < s->ethqsets) 2832 reduce_ethqs(adapter, nqsets); 2833 } 2834 for (i = 0; i < want; ++i) 2835 adapter->msix_info[i].vec = entries[i].vector; 2836 2837 return 0; 2838 } 2839 2840 static const struct net_device_ops cxgb4vf_netdev_ops = { 2841 .ndo_open = cxgb4vf_open, 2842 .ndo_stop = cxgb4vf_stop, 2843 .ndo_start_xmit = t4vf_eth_xmit, 2844 .ndo_get_stats = cxgb4vf_get_stats, 2845 .ndo_set_rx_mode = cxgb4vf_set_rxmode, 2846 .ndo_set_mac_address = cxgb4vf_set_mac_addr, 2847 .ndo_validate_addr = eth_validate_addr, 2848 .ndo_eth_ioctl = cxgb4vf_do_ioctl, 2849 .ndo_change_mtu = cxgb4vf_change_mtu, 2850 .ndo_fix_features = cxgb4vf_fix_features, 2851 .ndo_set_features = cxgb4vf_set_features, 2852 #ifdef CONFIG_NET_POLL_CONTROLLER 2853 .ndo_poll_controller = cxgb4vf_poll_controller, 2854 #endif 2855 }; 2856 2857 /** 2858 * cxgb4vf_get_port_mask - Get port mask for the VF based on mac 2859 * address stored on the adapter 2860 * @adapter: The adapter 2861 * 2862 * Find the port mask for the VF based on the index of mac 2863 * address stored in the adapter. If no mac address is stored on 2864 * the adapter for the VF, use the port mask received from the 2865 * firmware. 2866 */ 2867 static unsigned int cxgb4vf_get_port_mask(struct adapter *adapter) 2868 { 2869 unsigned int naddr = 1, pidx = 0; 2870 unsigned int pmask, rmask = 0; 2871 u8 mac[ETH_ALEN]; 2872 int err; 2873 2874 pmask = adapter->params.vfres.pmask; 2875 while (pmask) { 2876 if (pmask & 1) { 2877 err = t4vf_get_vf_mac_acl(adapter, pidx, &naddr, mac); 2878 if (!err && !is_zero_ether_addr(mac)) 2879 rmask |= (1 << pidx); 2880 } 2881 pmask >>= 1; 2882 pidx++; 2883 } 2884 if (!rmask) 2885 rmask = adapter->params.vfres.pmask; 2886 2887 return rmask; 2888 } 2889 2890 /* 2891 * "Probe" a device: initialize a device and construct all kernel and driver 2892 * state needed to manage the device. This routine is called "init_one" in 2893 * the PF Driver ... 2894 */ 2895 static int cxgb4vf_pci_probe(struct pci_dev *pdev, 2896 const struct pci_device_id *ent) 2897 { 2898 struct adapter *adapter; 2899 struct net_device *netdev; 2900 struct port_info *pi; 2901 unsigned int pmask; 2902 int err, pidx; 2903 2904 /* 2905 * Initialize generic PCI device state. 2906 */ 2907 err = pci_enable_device(pdev); 2908 if (err) 2909 return dev_err_probe(&pdev->dev, err, "cannot enable PCI device\n"); 2910 2911 /* 2912 * Reserve PCI resources for the device. If we can't get them some 2913 * other driver may have already claimed the device ... 2914 */ 2915 err = pci_request_regions(pdev, KBUILD_MODNAME); 2916 if (err) { 2917 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 2918 goto err_disable_device; 2919 } 2920 2921 /* 2922 * Set up our DMA mask 2923 */ 2924 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2925 if (err) { 2926 dev_err(&pdev->dev, "no usable DMA configuration\n"); 2927 goto err_release_regions; 2928 } 2929 2930 /* 2931 * Enable bus mastering for the device ... 2932 */ 2933 pci_set_master(pdev); 2934 2935 /* 2936 * Allocate our adapter data structure and attach it to the device. 2937 */ 2938 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 2939 if (!adapter) { 2940 err = -ENOMEM; 2941 goto err_release_regions; 2942 } 2943 pci_set_drvdata(pdev, adapter); 2944 adapter->pdev = pdev; 2945 adapter->pdev_dev = &pdev->dev; 2946 2947 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 2948 (sizeof(struct mbox_cmd) * 2949 T4VF_OS_LOG_MBOX_CMDS), 2950 GFP_KERNEL); 2951 if (!adapter->mbox_log) { 2952 err = -ENOMEM; 2953 goto err_free_adapter; 2954 } 2955 adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS; 2956 2957 /* 2958 * Initialize SMP data synchronization resources. 2959 */ 2960 spin_lock_init(&adapter->stats_lock); 2961 spin_lock_init(&adapter->mbox_lock); 2962 INIT_LIST_HEAD(&adapter->mlist.list); 2963 2964 /* 2965 * Map our I/O registers in BAR0. 2966 */ 2967 adapter->regs = pci_ioremap_bar(pdev, 0); 2968 if (!adapter->regs) { 2969 dev_err(&pdev->dev, "cannot map device registers\n"); 2970 err = -ENOMEM; 2971 goto err_free_adapter; 2972 } 2973 2974 /* Wait for the device to become ready before proceeding ... 2975 */ 2976 err = t4vf_prep_adapter(adapter); 2977 if (err) { 2978 dev_err(adapter->pdev_dev, "device didn't become ready:" 2979 " err=%d\n", err); 2980 goto err_unmap_bar0; 2981 } 2982 2983 /* For T5 and later we want to use the new BAR-based User Doorbells, 2984 * so we need to map BAR2 here ... 2985 */ 2986 if (!is_t4(adapter->params.chip)) { 2987 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 2988 pci_resource_len(pdev, 2)); 2989 if (!adapter->bar2) { 2990 dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n"); 2991 err = -ENOMEM; 2992 goto err_unmap_bar0; 2993 } 2994 } 2995 /* 2996 * Initialize adapter level features. 2997 */ 2998 adapter->name = pci_name(pdev); 2999 adapter->msg_enable = DFLT_MSG_ENABLE; 3000 3001 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 3002 * Ingress Packet Data to Free List Buffers in order to allow for 3003 * chipset performance optimizations between the Root Complex and 3004 * Memory Controllers. (Messages to the associated Ingress Queue 3005 * notifying new Packet Placement in the Free Lists Buffers will be 3006 * send without the Relaxed Ordering Attribute thus guaranteeing that 3007 * all preceding PCIe Transaction Layer Packets will be processed 3008 * first.) But some Root Complexes have various issues with Upstream 3009 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 3010 * The PCIe devices which under the Root Complexes will be cleared the 3011 * Relaxed Ordering bit in the configuration space, So we check our 3012 * PCIe configuration space to see if it's flagged with advice against 3013 * using Relaxed Ordering. 3014 */ 3015 if (!pcie_relaxed_ordering_enabled(pdev)) 3016 adapter->flags |= CXGB4VF_ROOT_NO_RELAXED_ORDERING; 3017 3018 err = adap_init0(adapter); 3019 if (err) 3020 dev_err(&pdev->dev, 3021 "Adapter initialization failed, error %d. Continuing in debug mode\n", 3022 err); 3023 3024 /* Initialize hash mac addr list */ 3025 INIT_LIST_HEAD(&adapter->mac_hlist); 3026 3027 /* 3028 * Allocate our "adapter ports" and stitch everything together. 3029 */ 3030 pmask = cxgb4vf_get_port_mask(adapter); 3031 for_each_port(adapter, pidx) { 3032 int port_id, viid; 3033 u8 mac[ETH_ALEN]; 3034 unsigned int naddr = 1; 3035 3036 /* 3037 * We simplistically allocate our virtual interfaces 3038 * sequentially across the port numbers to which we have 3039 * access rights. This should be configurable in some manner 3040 * ... 3041 */ 3042 if (pmask == 0) 3043 break; 3044 port_id = ffs(pmask) - 1; 3045 pmask &= ~(1 << port_id); 3046 3047 /* 3048 * Allocate our network device and stitch things together. 3049 */ 3050 netdev = alloc_etherdev_mq(sizeof(struct port_info), 3051 MAX_PORT_QSETS); 3052 if (netdev == NULL) { 3053 err = -ENOMEM; 3054 goto err_free_dev; 3055 } 3056 adapter->port[pidx] = netdev; 3057 SET_NETDEV_DEV(netdev, &pdev->dev); 3058 pi = netdev_priv(netdev); 3059 pi->adapter = adapter; 3060 pi->pidx = pidx; 3061 pi->port_id = port_id; 3062 3063 /* 3064 * Initialize the starting state of our "port" and register 3065 * it. 3066 */ 3067 pi->xact_addr_filt = -1; 3068 netdev->irq = pdev->irq; 3069 3070 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | NETIF_F_GRO | 3071 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM | 3072 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 3073 netdev->features = netdev->hw_features | NETIF_F_HIGHDMA; 3074 netdev->vlan_features = netdev->features & VLAN_FEAT; 3075 3076 netdev->priv_flags |= IFF_UNICAST_FLT; 3077 netdev->min_mtu = 81; 3078 netdev->max_mtu = ETH_MAX_MTU; 3079 3080 netdev->netdev_ops = &cxgb4vf_netdev_ops; 3081 netdev->ethtool_ops = &cxgb4vf_ethtool_ops; 3082 netdev->dev_port = pi->port_id; 3083 3084 /* 3085 * If we haven't been able to contact the firmware, there's 3086 * nothing else we can do for this "port" ... 3087 */ 3088 if (!(adapter->flags & CXGB4VF_FW_OK)) 3089 continue; 3090 3091 viid = t4vf_alloc_vi(adapter, port_id); 3092 if (viid < 0) { 3093 dev_err(&pdev->dev, 3094 "cannot allocate VI for port %d: err=%d\n", 3095 port_id, viid); 3096 err = viid; 3097 goto err_free_dev; 3098 } 3099 pi->viid = viid; 3100 3101 /* 3102 * Initialize the hardware/software state for the port. 3103 */ 3104 err = t4vf_port_init(adapter, pidx); 3105 if (err) { 3106 dev_err(&pdev->dev, "cannot initialize port %d\n", 3107 pidx); 3108 goto err_free_dev; 3109 } 3110 3111 err = t4vf_get_vf_mac_acl(adapter, port_id, &naddr, mac); 3112 if (err) { 3113 dev_err(&pdev->dev, 3114 "unable to determine MAC ACL address, " 3115 "continuing anyway.. (status %d)\n", err); 3116 } else if (naddr && adapter->params.vfres.nvi == 1) { 3117 struct sockaddr addr; 3118 3119 ether_addr_copy(addr.sa_data, mac); 3120 err = cxgb4vf_set_mac_addr(netdev, &addr); 3121 if (err) { 3122 dev_err(&pdev->dev, 3123 "unable to set MAC address %pM\n", 3124 mac); 3125 goto err_free_dev; 3126 } 3127 dev_info(&pdev->dev, 3128 "Using assigned MAC ACL: %pM\n", mac); 3129 } 3130 } 3131 3132 /* See what interrupts we'll be using. If we've been configured to 3133 * use MSI-X interrupts, try to enable them but fall back to using 3134 * MSI interrupts if we can't enable MSI-X interrupts. If we can't 3135 * get MSI interrupts we bail with the error. 3136 */ 3137 if (msi == MSI_MSIX && enable_msix(adapter) == 0) 3138 adapter->flags |= CXGB4VF_USING_MSIX; 3139 else { 3140 if (msi == MSI_MSIX) { 3141 dev_info(adapter->pdev_dev, 3142 "Unable to use MSI-X Interrupts; falling " 3143 "back to MSI Interrupts\n"); 3144 3145 /* We're going to need a Forwarded Interrupt Queue so 3146 * that may cut into how many Queue Sets we can 3147 * support. 3148 */ 3149 msi = MSI_MSI; 3150 size_nports_qsets(adapter); 3151 } 3152 err = pci_enable_msi(pdev); 3153 if (err) { 3154 dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;" 3155 " err=%d\n", err); 3156 goto err_free_dev; 3157 } 3158 adapter->flags |= CXGB4VF_USING_MSI; 3159 } 3160 3161 /* Now that we know how many "ports" we have and what interrupt 3162 * mechanism we're going to use, we can configure our queue resources. 3163 */ 3164 cfg_queues(adapter); 3165 3166 /* 3167 * The "card" is now ready to go. If any errors occur during device 3168 * registration we do not fail the whole "card" but rather proceed 3169 * only with the ports we manage to register successfully. However we 3170 * must register at least one net device. 3171 */ 3172 for_each_port(adapter, pidx) { 3173 struct port_info *pi = netdev_priv(adapter->port[pidx]); 3174 netdev = adapter->port[pidx]; 3175 if (netdev == NULL) 3176 continue; 3177 3178 netif_set_real_num_tx_queues(netdev, pi->nqsets); 3179 netif_set_real_num_rx_queues(netdev, pi->nqsets); 3180 3181 err = register_netdev(netdev); 3182 if (err) { 3183 dev_warn(&pdev->dev, "cannot register net device %s," 3184 " skipping\n", netdev->name); 3185 continue; 3186 } 3187 3188 netif_carrier_off(netdev); 3189 set_bit(pidx, &adapter->registered_device_map); 3190 } 3191 if (adapter->registered_device_map == 0) { 3192 dev_err(&pdev->dev, "could not register any net devices\n"); 3193 err = -EINVAL; 3194 goto err_disable_interrupts; 3195 } 3196 3197 /* 3198 * Set up our debugfs entries. 3199 */ 3200 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) { 3201 adapter->debugfs_root = 3202 debugfs_create_dir(pci_name(pdev), 3203 cxgb4vf_debugfs_root); 3204 setup_debugfs(adapter); 3205 } 3206 3207 /* 3208 * Print a short notice on the existence and configuration of the new 3209 * VF network device ... 3210 */ 3211 for_each_port(adapter, pidx) { 3212 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n", 3213 adapter->port[pidx]->name, 3214 (adapter->flags & CXGB4VF_USING_MSIX) ? "MSI-X" : 3215 (adapter->flags & CXGB4VF_USING_MSI) ? "MSI" : ""); 3216 } 3217 3218 /* 3219 * Return success! 3220 */ 3221 return 0; 3222 3223 /* 3224 * Error recovery and exit code. Unwind state that's been created 3225 * so far and return the error. 3226 */ 3227 err_disable_interrupts: 3228 if (adapter->flags & CXGB4VF_USING_MSIX) { 3229 pci_disable_msix(adapter->pdev); 3230 adapter->flags &= ~CXGB4VF_USING_MSIX; 3231 } else if (adapter->flags & CXGB4VF_USING_MSI) { 3232 pci_disable_msi(adapter->pdev); 3233 adapter->flags &= ~CXGB4VF_USING_MSI; 3234 } 3235 3236 err_free_dev: 3237 for_each_port(adapter, pidx) { 3238 netdev = adapter->port[pidx]; 3239 if (netdev == NULL) 3240 continue; 3241 pi = netdev_priv(netdev); 3242 if (pi->viid) 3243 t4vf_free_vi(adapter, pi->viid); 3244 if (test_bit(pidx, &adapter->registered_device_map)) 3245 unregister_netdev(netdev); 3246 free_netdev(netdev); 3247 } 3248 3249 if (!is_t4(adapter->params.chip)) 3250 iounmap(adapter->bar2); 3251 3252 err_unmap_bar0: 3253 iounmap(adapter->regs); 3254 3255 err_free_adapter: 3256 kfree(adapter->mbox_log); 3257 kfree(adapter); 3258 3259 err_release_regions: 3260 pci_release_regions(pdev); 3261 pci_clear_master(pdev); 3262 3263 err_disable_device: 3264 pci_disable_device(pdev); 3265 3266 return err; 3267 } 3268 3269 /* 3270 * "Remove" a device: tear down all kernel and driver state created in the 3271 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note 3272 * that this is called "remove_one" in the PF Driver.) 3273 */ 3274 static void cxgb4vf_pci_remove(struct pci_dev *pdev) 3275 { 3276 struct adapter *adapter = pci_get_drvdata(pdev); 3277 struct hash_mac_addr *entry, *tmp; 3278 3279 /* 3280 * Tear down driver state associated with device. 3281 */ 3282 if (adapter) { 3283 int pidx; 3284 3285 /* 3286 * Stop all of our activity. Unregister network port, 3287 * disable interrupts, etc. 3288 */ 3289 for_each_port(adapter, pidx) 3290 if (test_bit(pidx, &adapter->registered_device_map)) 3291 unregister_netdev(adapter->port[pidx]); 3292 t4vf_sge_stop(adapter); 3293 if (adapter->flags & CXGB4VF_USING_MSIX) { 3294 pci_disable_msix(adapter->pdev); 3295 adapter->flags &= ~CXGB4VF_USING_MSIX; 3296 } else if (adapter->flags & CXGB4VF_USING_MSI) { 3297 pci_disable_msi(adapter->pdev); 3298 adapter->flags &= ~CXGB4VF_USING_MSI; 3299 } 3300 3301 /* 3302 * Tear down our debugfs entries. 3303 */ 3304 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) { 3305 cleanup_debugfs(adapter); 3306 debugfs_remove_recursive(adapter->debugfs_root); 3307 } 3308 3309 /* 3310 * Free all of the various resources which we've acquired ... 3311 */ 3312 t4vf_free_sge_resources(adapter); 3313 for_each_port(adapter, pidx) { 3314 struct net_device *netdev = adapter->port[pidx]; 3315 struct port_info *pi; 3316 3317 if (netdev == NULL) 3318 continue; 3319 3320 pi = netdev_priv(netdev); 3321 if (pi->viid) 3322 t4vf_free_vi(adapter, pi->viid); 3323 free_netdev(netdev); 3324 } 3325 iounmap(adapter->regs); 3326 if (!is_t4(adapter->params.chip)) 3327 iounmap(adapter->bar2); 3328 kfree(adapter->mbox_log); 3329 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 3330 list) { 3331 list_del(&entry->list); 3332 kfree(entry); 3333 } 3334 kfree(adapter); 3335 } 3336 3337 /* 3338 * Disable the device and release its PCI resources. 3339 */ 3340 pci_disable_device(pdev); 3341 pci_clear_master(pdev); 3342 pci_release_regions(pdev); 3343 } 3344 3345 /* 3346 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt 3347 * delivery. 3348 */ 3349 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev) 3350 { 3351 struct adapter *adapter; 3352 int pidx; 3353 3354 adapter = pci_get_drvdata(pdev); 3355 if (!adapter) 3356 return; 3357 3358 /* Disable all Virtual Interfaces. This will shut down the 3359 * delivery of all ingress packets into the chip for these 3360 * Virtual Interfaces. 3361 */ 3362 for_each_port(adapter, pidx) 3363 if (test_bit(pidx, &adapter->registered_device_map)) 3364 unregister_netdev(adapter->port[pidx]); 3365 3366 /* Free up all Queues which will prevent further DMA and 3367 * Interrupts allowing various internal pathways to drain. 3368 */ 3369 t4vf_sge_stop(adapter); 3370 if (adapter->flags & CXGB4VF_USING_MSIX) { 3371 pci_disable_msix(adapter->pdev); 3372 adapter->flags &= ~CXGB4VF_USING_MSIX; 3373 } else if (adapter->flags & CXGB4VF_USING_MSI) { 3374 pci_disable_msi(adapter->pdev); 3375 adapter->flags &= ~CXGB4VF_USING_MSI; 3376 } 3377 3378 /* 3379 * Free up all Queues which will prevent further DMA and 3380 * Interrupts allowing various internal pathways to drain. 3381 */ 3382 t4vf_free_sge_resources(adapter); 3383 pci_set_drvdata(pdev, NULL); 3384 } 3385 3386 /* Macros needed to support the PCI Device ID Table ... 3387 */ 3388 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 3389 static const struct pci_device_id cxgb4vf_pci_tbl[] = { 3390 #define CH_PCI_DEVICE_ID_FUNCTION 0x8 3391 3392 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 3393 { PCI_VDEVICE(CHELSIO, (devid)), 0 } 3394 3395 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } } 3396 3397 #include "../cxgb4/t4_pci_id_tbl.h" 3398 3399 MODULE_DESCRIPTION(DRV_DESC); 3400 MODULE_AUTHOR("Chelsio Communications"); 3401 MODULE_LICENSE("Dual BSD/GPL"); 3402 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl); 3403 3404 static struct pci_driver cxgb4vf_driver = { 3405 .name = KBUILD_MODNAME, 3406 .id_table = cxgb4vf_pci_tbl, 3407 .probe = cxgb4vf_pci_probe, 3408 .remove = cxgb4vf_pci_remove, 3409 .shutdown = cxgb4vf_pci_shutdown, 3410 }; 3411 3412 /* 3413 * Initialize global driver state. 3414 */ 3415 static int __init cxgb4vf_module_init(void) 3416 { 3417 int ret; 3418 3419 /* 3420 * Vet our module parameters. 3421 */ 3422 if (msi != MSI_MSIX && msi != MSI_MSI) { 3423 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n", 3424 msi, MSI_MSIX, MSI_MSI); 3425 return -EINVAL; 3426 } 3427 3428 /* Debugfs support is optional, debugfs will warn if this fails */ 3429 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 3430 3431 ret = pci_register_driver(&cxgb4vf_driver); 3432 if (ret < 0) 3433 debugfs_remove(cxgb4vf_debugfs_root); 3434 return ret; 3435 } 3436 3437 /* 3438 * Tear down global driver state. 3439 */ 3440 static void __exit cxgb4vf_module_exit(void) 3441 { 3442 pci_unregister_driver(&cxgb4vf_driver); 3443 debugfs_remove(cxgb4vf_debugfs_root); 3444 } 3445 3446 module_init(cxgb4vf_module_init); 3447 module_exit(cxgb4vf_module_exit); 3448