1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/module.h> 39 #include <linux/moduleparam.h> 40 #include <linux/init.h> 41 #include <linux/pci.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/netdevice.h> 44 #include <linux/etherdevice.h> 45 #include <linux/debugfs.h> 46 #include <linux/ethtool.h> 47 #include <linux/mdio.h> 48 49 #include "t4vf_common.h" 50 #include "t4vf_defs.h" 51 52 #include "../cxgb4/t4_regs.h" 53 #include "../cxgb4/t4_msg.h" 54 55 /* 56 * Generic information about the driver. 57 */ 58 #define DRV_VERSION "2.0.0-ko" 59 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver" 60 61 /* 62 * Module Parameters. 63 * ================== 64 */ 65 66 /* 67 * Default ethtool "message level" for adapters. 68 */ 69 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 70 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 71 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 72 73 /* 74 * The driver uses the best interrupt scheme available on a platform in the 75 * order MSI-X then MSI. This parameter determines which of these schemes the 76 * driver may consider as follows: 77 * 78 * msi = 2: choose from among MSI-X and MSI 79 * msi = 1: only consider MSI interrupts 80 * 81 * Note that unlike the Physical Function driver, this Virtual Function driver 82 * does _not_ support legacy INTx interrupts (this limitation is mandated by 83 * the PCI-E SR-IOV standard). 84 */ 85 #define MSI_MSIX 2 86 #define MSI_MSI 1 87 #define MSI_DEFAULT MSI_MSIX 88 89 static int msi = MSI_DEFAULT; 90 91 module_param(msi, int, 0644); 92 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI"); 93 94 /* 95 * Fundamental constants. 96 * ====================== 97 */ 98 99 enum { 100 MAX_TXQ_ENTRIES = 16384, 101 MAX_RSPQ_ENTRIES = 16384, 102 MAX_RX_BUFFERS = 16384, 103 104 MIN_TXQ_ENTRIES = 32, 105 MIN_RSPQ_ENTRIES = 128, 106 MIN_FL_ENTRIES = 16, 107 108 /* 109 * For purposes of manipulating the Free List size we need to 110 * recognize that Free Lists are actually Egress Queues (the host 111 * produces free buffers which the hardware consumes), Egress Queues 112 * indices are all in units of Egress Context Units bytes, and free 113 * list entries are 64-bit PCI DMA addresses. And since the state of 114 * the Producer Index == the Consumer Index implies an EMPTY list, we 115 * always have at least one Egress Unit's worth of Free List entries 116 * unused. See sge.c for more details ... 117 */ 118 EQ_UNIT = SGE_EQ_IDXSIZE, 119 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 120 MIN_FL_RESID = FL_PER_EQ_UNIT, 121 }; 122 123 /* 124 * Global driver state. 125 * ==================== 126 */ 127 128 static struct dentry *cxgb4vf_debugfs_root; 129 130 /* 131 * OS "Callback" functions. 132 * ======================== 133 */ 134 135 /* 136 * The link status has changed on the indicated "port" (Virtual Interface). 137 */ 138 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok) 139 { 140 struct net_device *dev = adapter->port[pidx]; 141 142 /* 143 * If the port is disabled or the current recorded "link up" 144 * status matches the new status, just return. 145 */ 146 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev)) 147 return; 148 149 /* 150 * Tell the OS that the link status has changed and print a short 151 * informative message on the console about the event. 152 */ 153 if (link_ok) { 154 const char *s; 155 const char *fc; 156 const struct port_info *pi = netdev_priv(dev); 157 158 netif_carrier_on(dev); 159 160 switch (pi->link_cfg.speed) { 161 case 40000: 162 s = "40Gbps"; 163 break; 164 165 case 10000: 166 s = "10Gbps"; 167 break; 168 169 case 1000: 170 s = "1000Mbps"; 171 break; 172 173 case 100: 174 s = "100Mbps"; 175 break; 176 177 default: 178 s = "unknown"; 179 break; 180 } 181 182 switch (pi->link_cfg.fc) { 183 case PAUSE_RX: 184 fc = "RX"; 185 break; 186 187 case PAUSE_TX: 188 fc = "TX"; 189 break; 190 191 case PAUSE_RX|PAUSE_TX: 192 fc = "RX/TX"; 193 break; 194 195 default: 196 fc = "no"; 197 break; 198 } 199 200 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc); 201 } else { 202 netif_carrier_off(dev); 203 netdev_info(dev, "link down\n"); 204 } 205 } 206 207 /* 208 * THe port module type has changed on the indicated "port" (Virtual 209 * Interface). 210 */ 211 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx) 212 { 213 static const char * const mod_str[] = { 214 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 215 }; 216 const struct net_device *dev = adapter->port[pidx]; 217 const struct port_info *pi = netdev_priv(dev); 218 219 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 220 dev_info(adapter->pdev_dev, "%s: port module unplugged\n", 221 dev->name); 222 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 223 dev_info(adapter->pdev_dev, "%s: %s port module inserted\n", 224 dev->name, mod_str[pi->mod_type]); 225 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 226 dev_info(adapter->pdev_dev, "%s: unsupported optical port " 227 "module inserted\n", dev->name); 228 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 229 dev_info(adapter->pdev_dev, "%s: unknown port module inserted," 230 "forcing TWINAX\n", dev->name); 231 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 232 dev_info(adapter->pdev_dev, "%s: transceiver module error\n", 233 dev->name); 234 else 235 dev_info(adapter->pdev_dev, "%s: unknown module type %d " 236 "inserted\n", dev->name, pi->mod_type); 237 } 238 239 /* 240 * Net device operations. 241 * ====================== 242 */ 243 244 245 246 247 /* 248 * Perform the MAC and PHY actions needed to enable a "port" (Virtual 249 * Interface). 250 */ 251 static int link_start(struct net_device *dev) 252 { 253 int ret; 254 struct port_info *pi = netdev_priv(dev); 255 256 /* 257 * We do not set address filters and promiscuity here, the stack does 258 * that step explicitly. Enable vlan accel. 259 */ 260 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1, 261 true); 262 if (ret == 0) { 263 ret = t4vf_change_mac(pi->adapter, pi->viid, 264 pi->xact_addr_filt, dev->dev_addr, true); 265 if (ret >= 0) { 266 pi->xact_addr_filt = ret; 267 ret = 0; 268 } 269 } 270 271 /* 272 * We don't need to actually "start the link" itself since the 273 * firmware will do that for us when the first Virtual Interface 274 * is enabled on a port. 275 */ 276 if (ret == 0) 277 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true); 278 return ret; 279 } 280 281 /* 282 * Name the MSI-X interrupts. 283 */ 284 static void name_msix_vecs(struct adapter *adapter) 285 { 286 int namelen = sizeof(adapter->msix_info[0].desc) - 1; 287 int pidx; 288 289 /* 290 * Firmware events. 291 */ 292 snprintf(adapter->msix_info[MSIX_FW].desc, namelen, 293 "%s-FWeventq", adapter->name); 294 adapter->msix_info[MSIX_FW].desc[namelen] = 0; 295 296 /* 297 * Ethernet queues. 298 */ 299 for_each_port(adapter, pidx) { 300 struct net_device *dev = adapter->port[pidx]; 301 const struct port_info *pi = netdev_priv(dev); 302 int qs, msi; 303 304 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) { 305 snprintf(adapter->msix_info[msi].desc, namelen, 306 "%s-%d", dev->name, qs); 307 adapter->msix_info[msi].desc[namelen] = 0; 308 } 309 } 310 } 311 312 /* 313 * Request all of our MSI-X resources. 314 */ 315 static int request_msix_queue_irqs(struct adapter *adapter) 316 { 317 struct sge *s = &adapter->sge; 318 int rxq, msi, err; 319 320 /* 321 * Firmware events. 322 */ 323 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix, 324 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq); 325 if (err) 326 return err; 327 328 /* 329 * Ethernet queues. 330 */ 331 msi = MSIX_IQFLINT; 332 for_each_ethrxq(s, rxq) { 333 err = request_irq(adapter->msix_info[msi].vec, 334 t4vf_sge_intr_msix, 0, 335 adapter->msix_info[msi].desc, 336 &s->ethrxq[rxq].rspq); 337 if (err) 338 goto err_free_irqs; 339 msi++; 340 } 341 return 0; 342 343 err_free_irqs: 344 while (--rxq >= 0) 345 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq); 346 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 347 return err; 348 } 349 350 /* 351 * Free our MSI-X resources. 352 */ 353 static void free_msix_queue_irqs(struct adapter *adapter) 354 { 355 struct sge *s = &adapter->sge; 356 int rxq, msi; 357 358 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 359 msi = MSIX_IQFLINT; 360 for_each_ethrxq(s, rxq) 361 free_irq(adapter->msix_info[msi++].vec, 362 &s->ethrxq[rxq].rspq); 363 } 364 365 /* 366 * Turn on NAPI and start up interrupts on a response queue. 367 */ 368 static void qenable(struct sge_rspq *rspq) 369 { 370 napi_enable(&rspq->napi); 371 372 /* 373 * 0-increment the Going To Sleep register to start the timer and 374 * enable interrupts. 375 */ 376 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 377 CIDXINC_V(0) | 378 SEINTARM_V(rspq->intr_params) | 379 INGRESSQID_V(rspq->cntxt_id)); 380 } 381 382 /* 383 * Enable NAPI scheduling and interrupt generation for all Receive Queues. 384 */ 385 static void enable_rx(struct adapter *adapter) 386 { 387 int rxq; 388 struct sge *s = &adapter->sge; 389 390 for_each_ethrxq(s, rxq) 391 qenable(&s->ethrxq[rxq].rspq); 392 qenable(&s->fw_evtq); 393 394 /* 395 * The interrupt queue doesn't use NAPI so we do the 0-increment of 396 * its Going To Sleep register here to get it started. 397 */ 398 if (adapter->flags & USING_MSI) 399 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 400 CIDXINC_V(0) | 401 SEINTARM_V(s->intrq.intr_params) | 402 INGRESSQID_V(s->intrq.cntxt_id)); 403 404 } 405 406 /* 407 * Wait until all NAPI handlers are descheduled. 408 */ 409 static void quiesce_rx(struct adapter *adapter) 410 { 411 struct sge *s = &adapter->sge; 412 int rxq; 413 414 for_each_ethrxq(s, rxq) 415 napi_disable(&s->ethrxq[rxq].rspq.napi); 416 napi_disable(&s->fw_evtq.napi); 417 } 418 419 /* 420 * Response queue handler for the firmware event queue. 421 */ 422 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp, 423 const struct pkt_gl *gl) 424 { 425 /* 426 * Extract response opcode and get pointer to CPL message body. 427 */ 428 struct adapter *adapter = rspq->adapter; 429 u8 opcode = ((const struct rss_header *)rsp)->opcode; 430 void *cpl = (void *)(rsp + 1); 431 432 switch (opcode) { 433 case CPL_FW6_MSG: { 434 /* 435 * We've received an asynchronous message from the firmware. 436 */ 437 const struct cpl_fw6_msg *fw_msg = cpl; 438 if (fw_msg->type == FW6_TYPE_CMD_RPL) 439 t4vf_handle_fw_rpl(adapter, fw_msg->data); 440 break; 441 } 442 443 case CPL_FW4_MSG: { 444 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 445 */ 446 const struct cpl_sge_egr_update *p = (void *)(rsp + 3); 447 opcode = CPL_OPCODE_G(ntohl(p->opcode_qid)); 448 if (opcode != CPL_SGE_EGR_UPDATE) { 449 dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 450 , opcode); 451 break; 452 } 453 cpl = (void *)p; 454 /*FALLTHROUGH*/ 455 } 456 457 case CPL_SGE_EGR_UPDATE: { 458 /* 459 * We've received an Egress Queue Status Update message. We 460 * get these, if the SGE is configured to send these when the 461 * firmware passes certain points in processing our TX 462 * Ethernet Queue or if we make an explicit request for one. 463 * We use these updates to determine when we may need to 464 * restart a TX Ethernet Queue which was stopped for lack of 465 * free TX Queue Descriptors ... 466 */ 467 const struct cpl_sge_egr_update *p = cpl; 468 unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid)); 469 struct sge *s = &adapter->sge; 470 struct sge_txq *tq; 471 struct sge_eth_txq *txq; 472 unsigned int eq_idx; 473 474 /* 475 * Perform sanity checking on the Queue ID to make sure it 476 * really refers to one of our TX Ethernet Egress Queues which 477 * is active and matches the queue's ID. None of these error 478 * conditions should ever happen so we may want to either make 479 * them fatal and/or conditionalized under DEBUG. 480 */ 481 eq_idx = EQ_IDX(s, qid); 482 if (unlikely(eq_idx >= MAX_EGRQ)) { 483 dev_err(adapter->pdev_dev, 484 "Egress Update QID %d out of range\n", qid); 485 break; 486 } 487 tq = s->egr_map[eq_idx]; 488 if (unlikely(tq == NULL)) { 489 dev_err(adapter->pdev_dev, 490 "Egress Update QID %d TXQ=NULL\n", qid); 491 break; 492 } 493 txq = container_of(tq, struct sge_eth_txq, q); 494 if (unlikely(tq->abs_id != qid)) { 495 dev_err(adapter->pdev_dev, 496 "Egress Update QID %d refers to TXQ %d\n", 497 qid, tq->abs_id); 498 break; 499 } 500 501 /* 502 * Restart a stopped TX Queue which has less than half of its 503 * TX ring in use ... 504 */ 505 txq->q.restarts++; 506 netif_tx_wake_queue(txq->txq); 507 break; 508 } 509 510 default: 511 dev_err(adapter->pdev_dev, 512 "unexpected CPL %#x on FW event queue\n", opcode); 513 } 514 515 return 0; 516 } 517 518 /* 519 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues 520 * to use and initializes them. We support multiple "Queue Sets" per port if 521 * we have MSI-X, otherwise just one queue set per port. 522 */ 523 static int setup_sge_queues(struct adapter *adapter) 524 { 525 struct sge *s = &adapter->sge; 526 int err, pidx, msix; 527 528 /* 529 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error 530 * state. 531 */ 532 bitmap_zero(s->starving_fl, MAX_EGRQ); 533 534 /* 535 * If we're using MSI interrupt mode we need to set up a "forwarded 536 * interrupt" queue which we'll set up with our MSI vector. The rest 537 * of the ingress queues will be set up to forward their interrupts to 538 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses 539 * the intrq's queue ID as the interrupt forwarding queue for the 540 * subsequent calls ... 541 */ 542 if (adapter->flags & USING_MSI) { 543 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false, 544 adapter->port[0], 0, NULL, NULL); 545 if (err) 546 goto err_free_queues; 547 } 548 549 /* 550 * Allocate our ingress queue for asynchronous firmware messages. 551 */ 552 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0], 553 MSIX_FW, NULL, fwevtq_handler); 554 if (err) 555 goto err_free_queues; 556 557 /* 558 * Allocate each "port"'s initial Queue Sets. These can be changed 559 * later on ... up to the point where any interface on the adapter is 560 * brought up at which point lots of things get nailed down 561 * permanently ... 562 */ 563 msix = MSIX_IQFLINT; 564 for_each_port(adapter, pidx) { 565 struct net_device *dev = adapter->port[pidx]; 566 struct port_info *pi = netdev_priv(dev); 567 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 568 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 569 int qs; 570 571 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 572 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false, 573 dev, msix++, 574 &rxq->fl, t4vf_ethrx_handler); 575 if (err) 576 goto err_free_queues; 577 578 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev, 579 netdev_get_tx_queue(dev, qs), 580 s->fw_evtq.cntxt_id); 581 if (err) 582 goto err_free_queues; 583 584 rxq->rspq.idx = qs; 585 memset(&rxq->stats, 0, sizeof(rxq->stats)); 586 } 587 } 588 589 /* 590 * Create the reverse mappings for the queues. 591 */ 592 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id; 593 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id; 594 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq; 595 for_each_port(adapter, pidx) { 596 struct net_device *dev = adapter->port[pidx]; 597 struct port_info *pi = netdev_priv(dev); 598 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 599 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 600 int qs; 601 602 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 603 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq; 604 EQ_MAP(s, txq->q.abs_id) = &txq->q; 605 606 /* 607 * The FW_IQ_CMD doesn't return the Absolute Queue IDs 608 * for Free Lists but since all of the Egress Queues 609 * (including Free Lists) have Relative Queue IDs 610 * which are computed as Absolute - Base Queue ID, we 611 * can synthesize the Absolute Queue IDs for the Free 612 * Lists. This is useful for debugging purposes when 613 * we want to dump Queue Contexts via the PF Driver. 614 */ 615 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base; 616 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl; 617 } 618 } 619 return 0; 620 621 err_free_queues: 622 t4vf_free_sge_resources(adapter); 623 return err; 624 } 625 626 /* 627 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive 628 * queues. We configure the RSS CPU lookup table to distribute to the number 629 * of HW receive queues, and the response queue lookup table to narrow that 630 * down to the response queues actually configured for each "port" (Virtual 631 * Interface). We always configure the RSS mapping for all ports since the 632 * mapping table has plenty of entries. 633 */ 634 static int setup_rss(struct adapter *adapter) 635 { 636 int pidx; 637 638 for_each_port(adapter, pidx) { 639 struct port_info *pi = adap2pinfo(adapter, pidx); 640 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 641 u16 rss[MAX_PORT_QSETS]; 642 int qs, err; 643 644 for (qs = 0; qs < pi->nqsets; qs++) 645 rss[qs] = rxq[qs].rspq.abs_id; 646 647 err = t4vf_config_rss_range(adapter, pi->viid, 648 0, pi->rss_size, rss, pi->nqsets); 649 if (err) 650 return err; 651 652 /* 653 * Perform Global RSS Mode-specific initialization. 654 */ 655 switch (adapter->params.rss.mode) { 656 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: 657 /* 658 * If Tunnel All Lookup isn't specified in the global 659 * RSS Configuration, then we need to specify a 660 * default Ingress Queue for any ingress packets which 661 * aren't hashed. We'll use our first ingress queue 662 * ... 663 */ 664 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) { 665 union rss_vi_config config; 666 err = t4vf_read_rss_vi_config(adapter, 667 pi->viid, 668 &config); 669 if (err) 670 return err; 671 config.basicvirtual.defaultq = 672 rxq[0].rspq.abs_id; 673 err = t4vf_write_rss_vi_config(adapter, 674 pi->viid, 675 &config); 676 if (err) 677 return err; 678 } 679 break; 680 } 681 } 682 683 return 0; 684 } 685 686 /* 687 * Bring the adapter up. Called whenever we go from no "ports" open to having 688 * one open. This function performs the actions necessary to make an adapter 689 * operational, such as completing the initialization of HW modules, and 690 * enabling interrupts. Must be called with the rtnl lock held. (Note that 691 * this is called "cxgb_up" in the PF Driver.) 692 */ 693 static int adapter_up(struct adapter *adapter) 694 { 695 int err; 696 697 /* 698 * If this is the first time we've been called, perform basic 699 * adapter setup. Once we've done this, many of our adapter 700 * parameters can no longer be changed ... 701 */ 702 if ((adapter->flags & FULL_INIT_DONE) == 0) { 703 err = setup_sge_queues(adapter); 704 if (err) 705 return err; 706 err = setup_rss(adapter); 707 if (err) { 708 t4vf_free_sge_resources(adapter); 709 return err; 710 } 711 712 if (adapter->flags & USING_MSIX) 713 name_msix_vecs(adapter); 714 adapter->flags |= FULL_INIT_DONE; 715 } 716 717 /* 718 * Acquire our interrupt resources. We only support MSI-X and MSI. 719 */ 720 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 721 if (adapter->flags & USING_MSIX) 722 err = request_msix_queue_irqs(adapter); 723 else 724 err = request_irq(adapter->pdev->irq, 725 t4vf_intr_handler(adapter), 0, 726 adapter->name, adapter); 727 if (err) { 728 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n", 729 err); 730 return err; 731 } 732 733 /* 734 * Enable NAPI ingress processing and return success. 735 */ 736 enable_rx(adapter); 737 t4vf_sge_start(adapter); 738 739 /* Initialize hash mac addr list*/ 740 INIT_LIST_HEAD(&adapter->mac_hlist); 741 return 0; 742 } 743 744 /* 745 * Bring the adapter down. Called whenever the last "port" (Virtual 746 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF 747 * Driver.) 748 */ 749 static void adapter_down(struct adapter *adapter) 750 { 751 /* 752 * Free interrupt resources. 753 */ 754 if (adapter->flags & USING_MSIX) 755 free_msix_queue_irqs(adapter); 756 else 757 free_irq(adapter->pdev->irq, adapter); 758 759 /* 760 * Wait for NAPI handlers to finish. 761 */ 762 quiesce_rx(adapter); 763 } 764 765 /* 766 * Start up a net device. 767 */ 768 static int cxgb4vf_open(struct net_device *dev) 769 { 770 int err; 771 struct port_info *pi = netdev_priv(dev); 772 struct adapter *adapter = pi->adapter; 773 774 /* 775 * If this is the first interface that we're opening on the "adapter", 776 * bring the "adapter" up now. 777 */ 778 if (adapter->open_device_map == 0) { 779 err = adapter_up(adapter); 780 if (err) 781 return err; 782 } 783 784 /* 785 * Note that this interface is up and start everything up ... 786 */ 787 err = link_start(dev); 788 if (err) 789 goto err_unwind; 790 791 netif_tx_start_all_queues(dev); 792 set_bit(pi->port_id, &adapter->open_device_map); 793 return 0; 794 795 err_unwind: 796 if (adapter->open_device_map == 0) 797 adapter_down(adapter); 798 return err; 799 } 800 801 /* 802 * Shut down a net device. This routine is called "cxgb_close" in the PF 803 * Driver ... 804 */ 805 static int cxgb4vf_stop(struct net_device *dev) 806 { 807 struct port_info *pi = netdev_priv(dev); 808 struct adapter *adapter = pi->adapter; 809 810 netif_tx_stop_all_queues(dev); 811 netif_carrier_off(dev); 812 t4vf_enable_vi(adapter, pi->viid, false, false); 813 pi->link_cfg.link_ok = 0; 814 815 clear_bit(pi->port_id, &adapter->open_device_map); 816 if (adapter->open_device_map == 0) 817 adapter_down(adapter); 818 return 0; 819 } 820 821 /* 822 * Translate our basic statistics into the standard "ifconfig" statistics. 823 */ 824 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev) 825 { 826 struct t4vf_port_stats stats; 827 struct port_info *pi = netdev2pinfo(dev); 828 struct adapter *adapter = pi->adapter; 829 struct net_device_stats *ns = &dev->stats; 830 int err; 831 832 spin_lock(&adapter->stats_lock); 833 err = t4vf_get_port_stats(adapter, pi->pidx, &stats); 834 spin_unlock(&adapter->stats_lock); 835 836 memset(ns, 0, sizeof(*ns)); 837 if (err) 838 return ns; 839 840 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes + 841 stats.tx_ucast_bytes + stats.tx_offload_bytes); 842 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames + 843 stats.tx_ucast_frames + stats.tx_offload_frames); 844 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes + 845 stats.rx_ucast_bytes); 846 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames + 847 stats.rx_ucast_frames); 848 ns->multicast = stats.rx_mcast_frames; 849 ns->tx_errors = stats.tx_drop_frames; 850 ns->rx_errors = stats.rx_err_frames; 851 852 return ns; 853 } 854 855 static inline int cxgb4vf_set_addr_hash(struct port_info *pi) 856 { 857 struct adapter *adapter = pi->adapter; 858 u64 vec = 0; 859 bool ucast = false; 860 struct hash_mac_addr *entry; 861 862 /* Calculate the hash vector for the updated list and program it */ 863 list_for_each_entry(entry, &adapter->mac_hlist, list) { 864 ucast |= is_unicast_ether_addr(entry->addr); 865 vec |= (1ULL << hash_mac_addr(entry->addr)); 866 } 867 return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false); 868 } 869 870 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr) 871 { 872 struct port_info *pi = netdev_priv(netdev); 873 struct adapter *adapter = pi->adapter; 874 int ret; 875 u64 mhash = 0; 876 u64 uhash = 0; 877 bool free = false; 878 bool ucast = is_unicast_ether_addr(mac_addr); 879 const u8 *maclist[1] = {mac_addr}; 880 struct hash_mac_addr *new_entry; 881 882 ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist, 883 NULL, ucast ? &uhash : &mhash, false); 884 if (ret < 0) 885 goto out; 886 /* if hash != 0, then add the addr to hash addr list 887 * so on the end we will calculate the hash for the 888 * list and program it 889 */ 890 if (uhash || mhash) { 891 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 892 if (!new_entry) 893 return -ENOMEM; 894 ether_addr_copy(new_entry->addr, mac_addr); 895 list_add_tail(&new_entry->list, &adapter->mac_hlist); 896 ret = cxgb4vf_set_addr_hash(pi); 897 } 898 out: 899 return ret < 0 ? ret : 0; 900 } 901 902 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 903 { 904 struct port_info *pi = netdev_priv(netdev); 905 struct adapter *adapter = pi->adapter; 906 int ret; 907 const u8 *maclist[1] = {mac_addr}; 908 struct hash_mac_addr *entry, *tmp; 909 910 /* If the MAC address to be removed is in the hash addr 911 * list, delete it from the list and update hash vector 912 */ 913 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) { 914 if (ether_addr_equal(entry->addr, mac_addr)) { 915 list_del(&entry->list); 916 kfree(entry); 917 return cxgb4vf_set_addr_hash(pi); 918 } 919 } 920 921 ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false); 922 return ret < 0 ? -EINVAL : 0; 923 } 924 925 /* 926 * Set RX properties of a port, such as promiscruity, address filters, and MTU. 927 * If @mtu is -1 it is left unchanged. 928 */ 929 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 930 { 931 struct port_info *pi = netdev_priv(dev); 932 933 __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 934 __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 935 return t4vf_set_rxmode(pi->adapter, pi->viid, -1, 936 (dev->flags & IFF_PROMISC) != 0, 937 (dev->flags & IFF_ALLMULTI) != 0, 938 1, -1, sleep_ok); 939 } 940 941 /* 942 * Set the current receive modes on the device. 943 */ 944 static void cxgb4vf_set_rxmode(struct net_device *dev) 945 { 946 /* unfortunately we can't return errors to the stack */ 947 set_rxmode(dev, -1, false); 948 } 949 950 /* 951 * Find the entry in the interrupt holdoff timer value array which comes 952 * closest to the specified interrupt holdoff value. 953 */ 954 static int closest_timer(const struct sge *s, int us) 955 { 956 int i, timer_idx = 0, min_delta = INT_MAX; 957 958 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 959 int delta = us - s->timer_val[i]; 960 if (delta < 0) 961 delta = -delta; 962 if (delta < min_delta) { 963 min_delta = delta; 964 timer_idx = i; 965 } 966 } 967 return timer_idx; 968 } 969 970 static int closest_thres(const struct sge *s, int thres) 971 { 972 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX; 973 974 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 975 delta = thres - s->counter_val[i]; 976 if (delta < 0) 977 delta = -delta; 978 if (delta < min_delta) { 979 min_delta = delta; 980 pktcnt_idx = i; 981 } 982 } 983 return pktcnt_idx; 984 } 985 986 /* 987 * Return a queue's interrupt hold-off time in us. 0 means no timer. 988 */ 989 static unsigned int qtimer_val(const struct adapter *adapter, 990 const struct sge_rspq *rspq) 991 { 992 unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params); 993 994 return timer_idx < SGE_NTIMERS 995 ? adapter->sge.timer_val[timer_idx] 996 : 0; 997 } 998 999 /** 1000 * set_rxq_intr_params - set a queue's interrupt holdoff parameters 1001 * @adapter: the adapter 1002 * @rspq: the RX response queue 1003 * @us: the hold-off time in us, or 0 to disable timer 1004 * @cnt: the hold-off packet count, or 0 to disable counter 1005 * 1006 * Sets an RX response queue's interrupt hold-off time and packet count. 1007 * At least one of the two needs to be enabled for the queue to generate 1008 * interrupts. 1009 */ 1010 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq, 1011 unsigned int us, unsigned int cnt) 1012 { 1013 unsigned int timer_idx; 1014 1015 /* 1016 * If both the interrupt holdoff timer and count are specified as 1017 * zero, default to a holdoff count of 1 ... 1018 */ 1019 if ((us | cnt) == 0) 1020 cnt = 1; 1021 1022 /* 1023 * If an interrupt holdoff count has been specified, then find the 1024 * closest configured holdoff count and use that. If the response 1025 * queue has already been created, then update its queue context 1026 * parameters ... 1027 */ 1028 if (cnt) { 1029 int err; 1030 u32 v, pktcnt_idx; 1031 1032 pktcnt_idx = closest_thres(&adapter->sge, cnt); 1033 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) { 1034 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1035 FW_PARAMS_PARAM_X_V( 1036 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1037 FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id); 1038 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx); 1039 if (err) 1040 return err; 1041 } 1042 rspq->pktcnt_idx = pktcnt_idx; 1043 } 1044 1045 /* 1046 * Compute the closest holdoff timer index from the supplied holdoff 1047 * timer value. 1048 */ 1049 timer_idx = (us == 0 1050 ? SGE_TIMER_RSTRT_CNTR 1051 : closest_timer(&adapter->sge, us)); 1052 1053 /* 1054 * Update the response queue's interrupt coalescing parameters and 1055 * return success. 1056 */ 1057 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 1058 QINTR_CNT_EN_V(cnt > 0)); 1059 return 0; 1060 } 1061 1062 /* 1063 * Return a version number to identify the type of adapter. The scheme is: 1064 * - bits 0..9: chip version 1065 * - bits 10..15: chip revision 1066 */ 1067 static inline unsigned int mk_adap_vers(const struct adapter *adapter) 1068 { 1069 /* 1070 * Chip version 4, revision 0x3f (cxgb4vf). 1071 */ 1072 return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10); 1073 } 1074 1075 /* 1076 * Execute the specified ioctl command. 1077 */ 1078 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1079 { 1080 int ret = 0; 1081 1082 switch (cmd) { 1083 /* 1084 * The VF Driver doesn't have access to any of the other 1085 * common Ethernet device ioctl()'s (like reading/writing 1086 * PHY registers, etc. 1087 */ 1088 1089 default: 1090 ret = -EOPNOTSUPP; 1091 break; 1092 } 1093 return ret; 1094 } 1095 1096 /* 1097 * Change the device's MTU. 1098 */ 1099 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu) 1100 { 1101 int ret; 1102 struct port_info *pi = netdev_priv(dev); 1103 1104 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu, 1105 -1, -1, -1, -1, true); 1106 if (!ret) 1107 dev->mtu = new_mtu; 1108 return ret; 1109 } 1110 1111 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev, 1112 netdev_features_t features) 1113 { 1114 /* 1115 * Since there is no support for separate rx/tx vlan accel 1116 * enable/disable make sure tx flag is always in same state as rx. 1117 */ 1118 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1119 features |= NETIF_F_HW_VLAN_CTAG_TX; 1120 else 1121 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 1122 1123 return features; 1124 } 1125 1126 static int cxgb4vf_set_features(struct net_device *dev, 1127 netdev_features_t features) 1128 { 1129 struct port_info *pi = netdev_priv(dev); 1130 netdev_features_t changed = dev->features ^ features; 1131 1132 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 1133 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, 1134 features & NETIF_F_HW_VLAN_CTAG_TX, 0); 1135 1136 return 0; 1137 } 1138 1139 /* 1140 * Change the devices MAC address. 1141 */ 1142 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr) 1143 { 1144 int ret; 1145 struct sockaddr *addr = _addr; 1146 struct port_info *pi = netdev_priv(dev); 1147 1148 if (!is_valid_ether_addr(addr->sa_data)) 1149 return -EADDRNOTAVAIL; 1150 1151 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt, 1152 addr->sa_data, true); 1153 if (ret < 0) 1154 return ret; 1155 1156 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 1157 pi->xact_addr_filt = ret; 1158 return 0; 1159 } 1160 1161 #ifdef CONFIG_NET_POLL_CONTROLLER 1162 /* 1163 * Poll all of our receive queues. This is called outside of normal interrupt 1164 * context. 1165 */ 1166 static void cxgb4vf_poll_controller(struct net_device *dev) 1167 { 1168 struct port_info *pi = netdev_priv(dev); 1169 struct adapter *adapter = pi->adapter; 1170 1171 if (adapter->flags & USING_MSIX) { 1172 struct sge_eth_rxq *rxq; 1173 int nqsets; 1174 1175 rxq = &adapter->sge.ethrxq[pi->first_qset]; 1176 for (nqsets = pi->nqsets; nqsets; nqsets--) { 1177 t4vf_sge_intr_msix(0, &rxq->rspq); 1178 rxq++; 1179 } 1180 } else 1181 t4vf_intr_handler(adapter)(0, adapter); 1182 } 1183 #endif 1184 1185 /* 1186 * Ethtool operations. 1187 * =================== 1188 * 1189 * Note that we don't support any ethtool operations which change the physical 1190 * state of the port to which we're linked. 1191 */ 1192 1193 /** 1194 * from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool 1195 * @port_type: Firmware Port Type 1196 * @mod_type: Firmware Module Type 1197 * 1198 * Translate Firmware Port/Module type to Ethtool Port Type. 1199 */ 1200 static int from_fw_port_mod_type(enum fw_port_type port_type, 1201 enum fw_port_module_type mod_type) 1202 { 1203 if (port_type == FW_PORT_TYPE_BT_SGMII || 1204 port_type == FW_PORT_TYPE_BT_XFI || 1205 port_type == FW_PORT_TYPE_BT_XAUI) { 1206 return PORT_TP; 1207 } else if (port_type == FW_PORT_TYPE_FIBER_XFI || 1208 port_type == FW_PORT_TYPE_FIBER_XAUI) { 1209 return PORT_FIBRE; 1210 } else if (port_type == FW_PORT_TYPE_SFP || 1211 port_type == FW_PORT_TYPE_QSFP_10G || 1212 port_type == FW_PORT_TYPE_QSA || 1213 port_type == FW_PORT_TYPE_QSFP) { 1214 if (mod_type == FW_PORT_MOD_TYPE_LR || 1215 mod_type == FW_PORT_MOD_TYPE_SR || 1216 mod_type == FW_PORT_MOD_TYPE_ER || 1217 mod_type == FW_PORT_MOD_TYPE_LRM) 1218 return PORT_FIBRE; 1219 else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE || 1220 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE) 1221 return PORT_DA; 1222 else 1223 return PORT_OTHER; 1224 } 1225 1226 return PORT_OTHER; 1227 } 1228 1229 /** 1230 * fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask 1231 * @port_type: Firmware Port Type 1232 * @fw_caps: Firmware Port Capabilities 1233 * @link_mode_mask: ethtool Link Mode Mask 1234 * 1235 * Translate a Firmware Port Capabilities specification to an ethtool 1236 * Link Mode Mask. 1237 */ 1238 static void fw_caps_to_lmm(enum fw_port_type port_type, 1239 unsigned int fw_caps, 1240 unsigned long *link_mode_mask) 1241 { 1242 #define SET_LMM(__lmm_name) __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name\ 1243 ## _BIT, link_mode_mask) 1244 1245 #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \ 1246 do { \ 1247 if (fw_caps & FW_PORT_CAP_ ## __fw_name) \ 1248 SET_LMM(__lmm_name); \ 1249 } while (0) 1250 1251 switch (port_type) { 1252 case FW_PORT_TYPE_BT_SGMII: 1253 case FW_PORT_TYPE_BT_XFI: 1254 case FW_PORT_TYPE_BT_XAUI: 1255 SET_LMM(TP); 1256 FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full); 1257 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1258 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1259 break; 1260 1261 case FW_PORT_TYPE_KX4: 1262 case FW_PORT_TYPE_KX: 1263 SET_LMM(Backplane); 1264 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1265 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1266 break; 1267 1268 case FW_PORT_TYPE_KR: 1269 SET_LMM(Backplane); 1270 SET_LMM(10000baseKR_Full); 1271 break; 1272 1273 case FW_PORT_TYPE_BP_AP: 1274 SET_LMM(Backplane); 1275 SET_LMM(10000baseR_FEC); 1276 SET_LMM(10000baseKR_Full); 1277 SET_LMM(1000baseKX_Full); 1278 break; 1279 1280 case FW_PORT_TYPE_BP4_AP: 1281 SET_LMM(Backplane); 1282 SET_LMM(10000baseR_FEC); 1283 SET_LMM(10000baseKR_Full); 1284 SET_LMM(1000baseKX_Full); 1285 SET_LMM(10000baseKX4_Full); 1286 break; 1287 1288 case FW_PORT_TYPE_FIBER_XFI: 1289 case FW_PORT_TYPE_FIBER_XAUI: 1290 case FW_PORT_TYPE_SFP: 1291 case FW_PORT_TYPE_QSFP_10G: 1292 case FW_PORT_TYPE_QSA: 1293 SET_LMM(FIBRE); 1294 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1295 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1296 break; 1297 1298 case FW_PORT_TYPE_BP40_BA: 1299 case FW_PORT_TYPE_QSFP: 1300 SET_LMM(FIBRE); 1301 SET_LMM(40000baseSR4_Full); 1302 break; 1303 1304 case FW_PORT_TYPE_CR_QSFP: 1305 case FW_PORT_TYPE_SFP28: 1306 SET_LMM(FIBRE); 1307 SET_LMM(25000baseCR_Full); 1308 break; 1309 1310 case FW_PORT_TYPE_KR4_100G: 1311 case FW_PORT_TYPE_CR4_QSFP: 1312 SET_LMM(FIBRE); 1313 SET_LMM(100000baseCR4_Full); 1314 break; 1315 1316 default: 1317 break; 1318 } 1319 1320 FW_CAPS_TO_LMM(ANEG, Autoneg); 1321 FW_CAPS_TO_LMM(802_3_PAUSE, Pause); 1322 FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause); 1323 1324 #undef FW_CAPS_TO_LMM 1325 #undef SET_LMM 1326 } 1327 1328 static int cxgb4vf_get_link_ksettings(struct net_device *dev, 1329 struct ethtool_link_ksettings 1330 *link_ksettings) 1331 { 1332 const struct port_info *pi = netdev_priv(dev); 1333 struct ethtool_link_settings *base = &link_ksettings->base; 1334 1335 ethtool_link_ksettings_zero_link_mode(link_ksettings, supported); 1336 ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising); 1337 ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising); 1338 1339 base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type); 1340 1341 if (pi->mdio_addr >= 0) { 1342 base->phy_address = pi->mdio_addr; 1343 base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII 1344 ? ETH_MDIO_SUPPORTS_C22 1345 : ETH_MDIO_SUPPORTS_C45); 1346 } else { 1347 base->phy_address = 255; 1348 base->mdio_support = 0; 1349 } 1350 1351 fw_caps_to_lmm(pi->port_type, pi->link_cfg.supported, 1352 link_ksettings->link_modes.supported); 1353 fw_caps_to_lmm(pi->port_type, pi->link_cfg.advertising, 1354 link_ksettings->link_modes.advertising); 1355 fw_caps_to_lmm(pi->port_type, pi->link_cfg.lp_advertising, 1356 link_ksettings->link_modes.lp_advertising); 1357 1358 if (netif_carrier_ok(dev)) { 1359 base->speed = pi->link_cfg.speed; 1360 base->duplex = DUPLEX_FULL; 1361 } else { 1362 base->speed = SPEED_UNKNOWN; 1363 base->duplex = DUPLEX_UNKNOWN; 1364 } 1365 1366 base->autoneg = pi->link_cfg.autoneg; 1367 if (pi->link_cfg.supported & FW_PORT_CAP_ANEG) 1368 ethtool_link_ksettings_add_link_mode(link_ksettings, 1369 supported, Autoneg); 1370 if (pi->link_cfg.autoneg) 1371 ethtool_link_ksettings_add_link_mode(link_ksettings, 1372 advertising, Autoneg); 1373 1374 return 0; 1375 } 1376 1377 /* 1378 * Return our driver information. 1379 */ 1380 static void cxgb4vf_get_drvinfo(struct net_device *dev, 1381 struct ethtool_drvinfo *drvinfo) 1382 { 1383 struct adapter *adapter = netdev2adap(dev); 1384 1385 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver)); 1386 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version)); 1387 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)), 1388 sizeof(drvinfo->bus_info)); 1389 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 1390 "%u.%u.%u.%u, TP %u.%u.%u.%u", 1391 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev), 1392 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev), 1393 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev), 1394 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev), 1395 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev), 1396 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev), 1397 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev), 1398 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev)); 1399 } 1400 1401 /* 1402 * Return current adapter message level. 1403 */ 1404 static u32 cxgb4vf_get_msglevel(struct net_device *dev) 1405 { 1406 return netdev2adap(dev)->msg_enable; 1407 } 1408 1409 /* 1410 * Set current adapter message level. 1411 */ 1412 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel) 1413 { 1414 netdev2adap(dev)->msg_enable = msglevel; 1415 } 1416 1417 /* 1418 * Return the device's current Queue Set ring size parameters along with the 1419 * allowed maximum values. Since ethtool doesn't understand the concept of 1420 * multi-queue devices, we just return the current values associated with the 1421 * first Queue Set. 1422 */ 1423 static void cxgb4vf_get_ringparam(struct net_device *dev, 1424 struct ethtool_ringparam *rp) 1425 { 1426 const struct port_info *pi = netdev_priv(dev); 1427 const struct sge *s = &pi->adapter->sge; 1428 1429 rp->rx_max_pending = MAX_RX_BUFFERS; 1430 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES; 1431 rp->rx_jumbo_max_pending = 0; 1432 rp->tx_max_pending = MAX_TXQ_ENTRIES; 1433 1434 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID; 1435 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; 1436 rp->rx_jumbo_pending = 0; 1437 rp->tx_pending = s->ethtxq[pi->first_qset].q.size; 1438 } 1439 1440 /* 1441 * Set the Queue Set ring size parameters for the device. Again, since 1442 * ethtool doesn't allow for the concept of multiple queues per device, we'll 1443 * apply these new values across all of the Queue Sets associated with the 1444 * device -- after vetting them of course! 1445 */ 1446 static int cxgb4vf_set_ringparam(struct net_device *dev, 1447 struct ethtool_ringparam *rp) 1448 { 1449 const struct port_info *pi = netdev_priv(dev); 1450 struct adapter *adapter = pi->adapter; 1451 struct sge *s = &adapter->sge; 1452 int qs; 1453 1454 if (rp->rx_pending > MAX_RX_BUFFERS || 1455 rp->rx_jumbo_pending || 1456 rp->tx_pending > MAX_TXQ_ENTRIES || 1457 rp->rx_mini_pending > MAX_RSPQ_ENTRIES || 1458 rp->rx_mini_pending < MIN_RSPQ_ENTRIES || 1459 rp->rx_pending < MIN_FL_ENTRIES || 1460 rp->tx_pending < MIN_TXQ_ENTRIES) 1461 return -EINVAL; 1462 1463 if (adapter->flags & FULL_INIT_DONE) 1464 return -EBUSY; 1465 1466 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) { 1467 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID; 1468 s->ethrxq[qs].rspq.size = rp->rx_mini_pending; 1469 s->ethtxq[qs].q.size = rp->tx_pending; 1470 } 1471 return 0; 1472 } 1473 1474 /* 1475 * Return the interrupt holdoff timer and count for the first Queue Set on the 1476 * device. Our extension ioctl() (the cxgbtool interface) allows the 1477 * interrupt holdoff timer to be read on all of the device's Queue Sets. 1478 */ 1479 static int cxgb4vf_get_coalesce(struct net_device *dev, 1480 struct ethtool_coalesce *coalesce) 1481 { 1482 const struct port_info *pi = netdev_priv(dev); 1483 const struct adapter *adapter = pi->adapter; 1484 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq; 1485 1486 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq); 1487 coalesce->rx_max_coalesced_frames = 1488 ((rspq->intr_params & QINTR_CNT_EN_F) 1489 ? adapter->sge.counter_val[rspq->pktcnt_idx] 1490 : 0); 1491 return 0; 1492 } 1493 1494 /* 1495 * Set the RX interrupt holdoff timer and count for the first Queue Set on the 1496 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set 1497 * the interrupt holdoff timer on any of the device's Queue Sets. 1498 */ 1499 static int cxgb4vf_set_coalesce(struct net_device *dev, 1500 struct ethtool_coalesce *coalesce) 1501 { 1502 const struct port_info *pi = netdev_priv(dev); 1503 struct adapter *adapter = pi->adapter; 1504 1505 return set_rxq_intr_params(adapter, 1506 &adapter->sge.ethrxq[pi->first_qset].rspq, 1507 coalesce->rx_coalesce_usecs, 1508 coalesce->rx_max_coalesced_frames); 1509 } 1510 1511 /* 1512 * Report current port link pause parameter settings. 1513 */ 1514 static void cxgb4vf_get_pauseparam(struct net_device *dev, 1515 struct ethtool_pauseparam *pauseparam) 1516 { 1517 struct port_info *pi = netdev_priv(dev); 1518 1519 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; 1520 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0; 1521 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0; 1522 } 1523 1524 /* 1525 * Identify the port by blinking the port's LED. 1526 */ 1527 static int cxgb4vf_phys_id(struct net_device *dev, 1528 enum ethtool_phys_id_state state) 1529 { 1530 unsigned int val; 1531 struct port_info *pi = netdev_priv(dev); 1532 1533 if (state == ETHTOOL_ID_ACTIVE) 1534 val = 0xffff; 1535 else if (state == ETHTOOL_ID_INACTIVE) 1536 val = 0; 1537 else 1538 return -EINVAL; 1539 1540 return t4vf_identify_port(pi->adapter, pi->viid, val); 1541 } 1542 1543 /* 1544 * Port stats maintained per queue of the port. 1545 */ 1546 struct queue_port_stats { 1547 u64 tso; 1548 u64 tx_csum; 1549 u64 rx_csum; 1550 u64 vlan_ex; 1551 u64 vlan_ins; 1552 u64 lro_pkts; 1553 u64 lro_merged; 1554 }; 1555 1556 /* 1557 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that 1558 * these need to match the order of statistics returned by 1559 * t4vf_get_port_stats(). 1560 */ 1561 static const char stats_strings[][ETH_GSTRING_LEN] = { 1562 /* 1563 * These must match the layout of the t4vf_port_stats structure. 1564 */ 1565 "TxBroadcastBytes ", 1566 "TxBroadcastFrames ", 1567 "TxMulticastBytes ", 1568 "TxMulticastFrames ", 1569 "TxUnicastBytes ", 1570 "TxUnicastFrames ", 1571 "TxDroppedFrames ", 1572 "TxOffloadBytes ", 1573 "TxOffloadFrames ", 1574 "RxBroadcastBytes ", 1575 "RxBroadcastFrames ", 1576 "RxMulticastBytes ", 1577 "RxMulticastFrames ", 1578 "RxUnicastBytes ", 1579 "RxUnicastFrames ", 1580 "RxErrorFrames ", 1581 1582 /* 1583 * These are accumulated per-queue statistics and must match the 1584 * order of the fields in the queue_port_stats structure. 1585 */ 1586 "TSO ", 1587 "TxCsumOffload ", 1588 "RxCsumGood ", 1589 "VLANextractions ", 1590 "VLANinsertions ", 1591 "GROPackets ", 1592 "GROMerged ", 1593 }; 1594 1595 /* 1596 * Return the number of statistics in the specified statistics set. 1597 */ 1598 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset) 1599 { 1600 switch (sset) { 1601 case ETH_SS_STATS: 1602 return ARRAY_SIZE(stats_strings); 1603 default: 1604 return -EOPNOTSUPP; 1605 } 1606 /*NOTREACHED*/ 1607 } 1608 1609 /* 1610 * Return the strings for the specified statistics set. 1611 */ 1612 static void cxgb4vf_get_strings(struct net_device *dev, 1613 u32 sset, 1614 u8 *data) 1615 { 1616 switch (sset) { 1617 case ETH_SS_STATS: 1618 memcpy(data, stats_strings, sizeof(stats_strings)); 1619 break; 1620 } 1621 } 1622 1623 /* 1624 * Small utility routine to accumulate queue statistics across the queues of 1625 * a "port". 1626 */ 1627 static void collect_sge_port_stats(const struct adapter *adapter, 1628 const struct port_info *pi, 1629 struct queue_port_stats *stats) 1630 { 1631 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset]; 1632 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 1633 int qs; 1634 1635 memset(stats, 0, sizeof(*stats)); 1636 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 1637 stats->tso += txq->tso; 1638 stats->tx_csum += txq->tx_cso; 1639 stats->rx_csum += rxq->stats.rx_cso; 1640 stats->vlan_ex += rxq->stats.vlan_ex; 1641 stats->vlan_ins += txq->vlan_ins; 1642 stats->lro_pkts += rxq->stats.lro_pkts; 1643 stats->lro_merged += rxq->stats.lro_merged; 1644 } 1645 } 1646 1647 /* 1648 * Return the ETH_SS_STATS statistics set. 1649 */ 1650 static void cxgb4vf_get_ethtool_stats(struct net_device *dev, 1651 struct ethtool_stats *stats, 1652 u64 *data) 1653 { 1654 struct port_info *pi = netdev2pinfo(dev); 1655 struct adapter *adapter = pi->adapter; 1656 int err = t4vf_get_port_stats(adapter, pi->pidx, 1657 (struct t4vf_port_stats *)data); 1658 if (err) 1659 memset(data, 0, sizeof(struct t4vf_port_stats)); 1660 1661 data += sizeof(struct t4vf_port_stats) / sizeof(u64); 1662 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); 1663 } 1664 1665 /* 1666 * Return the size of our register map. 1667 */ 1668 static int cxgb4vf_get_regs_len(struct net_device *dev) 1669 { 1670 return T4VF_REGMAP_SIZE; 1671 } 1672 1673 /* 1674 * Dump a block of registers, start to end inclusive, into a buffer. 1675 */ 1676 static void reg_block_dump(struct adapter *adapter, void *regbuf, 1677 unsigned int start, unsigned int end) 1678 { 1679 u32 *bp = regbuf + start - T4VF_REGMAP_START; 1680 1681 for ( ; start <= end; start += sizeof(u32)) { 1682 /* 1683 * Avoid reading the Mailbox Control register since that 1684 * can trigger a Mailbox Ownership Arbitration cycle and 1685 * interfere with communication with the firmware. 1686 */ 1687 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL) 1688 *bp++ = 0xffff; 1689 else 1690 *bp++ = t4_read_reg(adapter, start); 1691 } 1692 } 1693 1694 /* 1695 * Copy our entire register map into the provided buffer. 1696 */ 1697 static void cxgb4vf_get_regs(struct net_device *dev, 1698 struct ethtool_regs *regs, 1699 void *regbuf) 1700 { 1701 struct adapter *adapter = netdev2adap(dev); 1702 1703 regs->version = mk_adap_vers(adapter); 1704 1705 /* 1706 * Fill in register buffer with our register map. 1707 */ 1708 memset(regbuf, 0, T4VF_REGMAP_SIZE); 1709 1710 reg_block_dump(adapter, regbuf, 1711 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST, 1712 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST); 1713 reg_block_dump(adapter, regbuf, 1714 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST, 1715 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST); 1716 1717 /* T5 adds new registers in the PL Register map. 1718 */ 1719 reg_block_dump(adapter, regbuf, 1720 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST, 1721 T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip) 1722 ? PL_VF_WHOAMI_A : PL_VF_REVISION_A)); 1723 reg_block_dump(adapter, regbuf, 1724 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST, 1725 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST); 1726 1727 reg_block_dump(adapter, regbuf, 1728 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST, 1729 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST); 1730 } 1731 1732 /* 1733 * Report current Wake On LAN settings. 1734 */ 1735 static void cxgb4vf_get_wol(struct net_device *dev, 1736 struct ethtool_wolinfo *wol) 1737 { 1738 wol->supported = 0; 1739 wol->wolopts = 0; 1740 memset(&wol->sopass, 0, sizeof(wol->sopass)); 1741 } 1742 1743 /* 1744 * TCP Segmentation Offload flags which we support. 1745 */ 1746 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1747 1748 static const struct ethtool_ops cxgb4vf_ethtool_ops = { 1749 .get_link_ksettings = cxgb4vf_get_link_ksettings, 1750 .get_drvinfo = cxgb4vf_get_drvinfo, 1751 .get_msglevel = cxgb4vf_get_msglevel, 1752 .set_msglevel = cxgb4vf_set_msglevel, 1753 .get_ringparam = cxgb4vf_get_ringparam, 1754 .set_ringparam = cxgb4vf_set_ringparam, 1755 .get_coalesce = cxgb4vf_get_coalesce, 1756 .set_coalesce = cxgb4vf_set_coalesce, 1757 .get_pauseparam = cxgb4vf_get_pauseparam, 1758 .get_link = ethtool_op_get_link, 1759 .get_strings = cxgb4vf_get_strings, 1760 .set_phys_id = cxgb4vf_phys_id, 1761 .get_sset_count = cxgb4vf_get_sset_count, 1762 .get_ethtool_stats = cxgb4vf_get_ethtool_stats, 1763 .get_regs_len = cxgb4vf_get_regs_len, 1764 .get_regs = cxgb4vf_get_regs, 1765 .get_wol = cxgb4vf_get_wol, 1766 }; 1767 1768 /* 1769 * /sys/kernel/debug/cxgb4vf support code and data. 1770 * ================================================ 1771 */ 1772 1773 /* 1774 * Show Firmware Mailbox Command/Reply Log 1775 * 1776 * Note that we don't do any locking when dumping the Firmware Mailbox Log so 1777 * it's possible that we can catch things during a log update and therefore 1778 * see partially corrupted log entries. But i9t's probably Good Enough(tm). 1779 * If we ever decide that we want to make sure that we're dumping a coherent 1780 * log, we'd need to perform locking in the mailbox logging and in 1781 * mboxlog_open() where we'd need to grab the entire mailbox log in one go 1782 * like we do for the Firmware Device Log. But as stated above, meh ... 1783 */ 1784 static int mboxlog_show(struct seq_file *seq, void *v) 1785 { 1786 struct adapter *adapter = seq->private; 1787 struct mbox_cmd_log *log = adapter->mbox_log; 1788 struct mbox_cmd *entry; 1789 int entry_idx, i; 1790 1791 if (v == SEQ_START_TOKEN) { 1792 seq_printf(seq, 1793 "%10s %15s %5s %5s %s\n", 1794 "Seq#", "Tstamp", "Atime", "Etime", 1795 "Command/Reply"); 1796 return 0; 1797 } 1798 1799 entry_idx = log->cursor + ((uintptr_t)v - 2); 1800 if (entry_idx >= log->size) 1801 entry_idx -= log->size; 1802 entry = mbox_cmd_log_entry(log, entry_idx); 1803 1804 /* skip over unused entries */ 1805 if (entry->timestamp == 0) 1806 return 0; 1807 1808 seq_printf(seq, "%10u %15llu %5d %5d", 1809 entry->seqno, entry->timestamp, 1810 entry->access, entry->execute); 1811 for (i = 0; i < MBOX_LEN / 8; i++) { 1812 u64 flit = entry->cmd[i]; 1813 u32 hi = (u32)(flit >> 32); 1814 u32 lo = (u32)flit; 1815 1816 seq_printf(seq, " %08x %08x", hi, lo); 1817 } 1818 seq_puts(seq, "\n"); 1819 return 0; 1820 } 1821 1822 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos) 1823 { 1824 struct adapter *adapter = seq->private; 1825 struct mbox_cmd_log *log = adapter->mbox_log; 1826 1827 return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL); 1828 } 1829 1830 static void *mboxlog_start(struct seq_file *seq, loff_t *pos) 1831 { 1832 return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN; 1833 } 1834 1835 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos) 1836 { 1837 ++*pos; 1838 return mboxlog_get_idx(seq, *pos); 1839 } 1840 1841 static void mboxlog_stop(struct seq_file *seq, void *v) 1842 { 1843 } 1844 1845 static const struct seq_operations mboxlog_seq_ops = { 1846 .start = mboxlog_start, 1847 .next = mboxlog_next, 1848 .stop = mboxlog_stop, 1849 .show = mboxlog_show 1850 }; 1851 1852 static int mboxlog_open(struct inode *inode, struct file *file) 1853 { 1854 int res = seq_open(file, &mboxlog_seq_ops); 1855 1856 if (!res) { 1857 struct seq_file *seq = file->private_data; 1858 1859 seq->private = inode->i_private; 1860 } 1861 return res; 1862 } 1863 1864 static const struct file_operations mboxlog_fops = { 1865 .owner = THIS_MODULE, 1866 .open = mboxlog_open, 1867 .read = seq_read, 1868 .llseek = seq_lseek, 1869 .release = seq_release, 1870 }; 1871 1872 /* 1873 * Show SGE Queue Set information. We display QPL Queues Sets per line. 1874 */ 1875 #define QPL 4 1876 1877 static int sge_qinfo_show(struct seq_file *seq, void *v) 1878 { 1879 struct adapter *adapter = seq->private; 1880 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 1881 int qs, r = (uintptr_t)v - 1; 1882 1883 if (r) 1884 seq_putc(seq, '\n'); 1885 1886 #define S3(fmt_spec, s, v) \ 1887 do {\ 1888 seq_printf(seq, "%-12s", s); \ 1889 for (qs = 0; qs < n; ++qs) \ 1890 seq_printf(seq, " %16" fmt_spec, v); \ 1891 seq_putc(seq, '\n'); \ 1892 } while (0) 1893 #define S(s, v) S3("s", s, v) 1894 #define T(s, v) S3("u", s, txq[qs].v) 1895 #define R(s, v) S3("u", s, rxq[qs].v) 1896 1897 if (r < eth_entries) { 1898 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 1899 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 1900 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 1901 1902 S("QType:", "Ethernet"); 1903 S("Interface:", 1904 (rxq[qs].rspq.netdev 1905 ? rxq[qs].rspq.netdev->name 1906 : "N/A")); 1907 S3("d", "Port:", 1908 (rxq[qs].rspq.netdev 1909 ? ((struct port_info *) 1910 netdev_priv(rxq[qs].rspq.netdev))->port_id 1911 : -1)); 1912 T("TxQ ID:", q.abs_id); 1913 T("TxQ size:", q.size); 1914 T("TxQ inuse:", q.in_use); 1915 T("TxQ PIdx:", q.pidx); 1916 T("TxQ CIdx:", q.cidx); 1917 R("RspQ ID:", rspq.abs_id); 1918 R("RspQ size:", rspq.size); 1919 R("RspQE size:", rspq.iqe_len); 1920 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq)); 1921 S3("u", "Intr pktcnt:", 1922 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]); 1923 R("RspQ CIdx:", rspq.cidx); 1924 R("RspQ Gen:", rspq.gen); 1925 R("FL ID:", fl.abs_id); 1926 R("FL size:", fl.size - MIN_FL_RESID); 1927 R("FL avail:", fl.avail); 1928 R("FL PIdx:", fl.pidx); 1929 R("FL CIdx:", fl.cidx); 1930 return 0; 1931 } 1932 1933 r -= eth_entries; 1934 if (r == 0) { 1935 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 1936 1937 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue"); 1938 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id); 1939 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 1940 qtimer_val(adapter, evtq)); 1941 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 1942 adapter->sge.counter_val[evtq->pktcnt_idx]); 1943 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx); 1944 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen); 1945 } else if (r == 1) { 1946 const struct sge_rspq *intrq = &adapter->sge.intrq; 1947 1948 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue"); 1949 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id); 1950 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 1951 qtimer_val(adapter, intrq)); 1952 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 1953 adapter->sge.counter_val[intrq->pktcnt_idx]); 1954 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx); 1955 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen); 1956 } 1957 1958 #undef R 1959 #undef T 1960 #undef S 1961 #undef S3 1962 1963 return 0; 1964 } 1965 1966 /* 1967 * Return the number of "entries" in our "file". We group the multi-Queue 1968 * sections with QPL Queue Sets per "entry". The sections of the output are: 1969 * 1970 * Ethernet RX/TX Queue Sets 1971 * Firmware Event Queue 1972 * Forwarded Interrupt Queue (if in MSI mode) 1973 */ 1974 static int sge_queue_entries(const struct adapter *adapter) 1975 { 1976 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 1977 ((adapter->flags & USING_MSI) != 0); 1978 } 1979 1980 static void *sge_queue_start(struct seq_file *seq, loff_t *pos) 1981 { 1982 int entries = sge_queue_entries(seq->private); 1983 1984 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 1985 } 1986 1987 static void sge_queue_stop(struct seq_file *seq, void *v) 1988 { 1989 } 1990 1991 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos) 1992 { 1993 int entries = sge_queue_entries(seq->private); 1994 1995 ++*pos; 1996 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 1997 } 1998 1999 static const struct seq_operations sge_qinfo_seq_ops = { 2000 .start = sge_queue_start, 2001 .next = sge_queue_next, 2002 .stop = sge_queue_stop, 2003 .show = sge_qinfo_show 2004 }; 2005 2006 static int sge_qinfo_open(struct inode *inode, struct file *file) 2007 { 2008 int res = seq_open(file, &sge_qinfo_seq_ops); 2009 2010 if (!res) { 2011 struct seq_file *seq = file->private_data; 2012 seq->private = inode->i_private; 2013 } 2014 return res; 2015 } 2016 2017 static const struct file_operations sge_qinfo_debugfs_fops = { 2018 .owner = THIS_MODULE, 2019 .open = sge_qinfo_open, 2020 .read = seq_read, 2021 .llseek = seq_lseek, 2022 .release = seq_release, 2023 }; 2024 2025 /* 2026 * Show SGE Queue Set statistics. We display QPL Queues Sets per line. 2027 */ 2028 #define QPL 4 2029 2030 static int sge_qstats_show(struct seq_file *seq, void *v) 2031 { 2032 struct adapter *adapter = seq->private; 2033 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2034 int qs, r = (uintptr_t)v - 1; 2035 2036 if (r) 2037 seq_putc(seq, '\n'); 2038 2039 #define S3(fmt, s, v) \ 2040 do { \ 2041 seq_printf(seq, "%-16s", s); \ 2042 for (qs = 0; qs < n; ++qs) \ 2043 seq_printf(seq, " %8" fmt, v); \ 2044 seq_putc(seq, '\n'); \ 2045 } while (0) 2046 #define S(s, v) S3("s", s, v) 2047 2048 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v) 2049 #define T(s, v) T3("lu", s, v) 2050 2051 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v) 2052 #define R(s, v) R3("lu", s, v) 2053 2054 if (r < eth_entries) { 2055 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2056 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2057 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2058 2059 S("QType:", "Ethernet"); 2060 S("Interface:", 2061 (rxq[qs].rspq.netdev 2062 ? rxq[qs].rspq.netdev->name 2063 : "N/A")); 2064 R3("u", "RspQNullInts:", rspq.unhandled_irqs); 2065 R("RxPackets:", stats.pkts); 2066 R("RxCSO:", stats.rx_cso); 2067 R("VLANxtract:", stats.vlan_ex); 2068 R("LROmerged:", stats.lro_merged); 2069 R("LROpackets:", stats.lro_pkts); 2070 R("RxDrops:", stats.rx_drops); 2071 T("TSO:", tso); 2072 T("TxCSO:", tx_cso); 2073 T("VLANins:", vlan_ins); 2074 T("TxQFull:", q.stops); 2075 T("TxQRestarts:", q.restarts); 2076 T("TxMapErr:", mapping_err); 2077 R("FLAllocErr:", fl.alloc_failed); 2078 R("FLLrgAlcErr:", fl.large_alloc_failed); 2079 R("FLStarving:", fl.starving); 2080 return 0; 2081 } 2082 2083 r -= eth_entries; 2084 if (r == 0) { 2085 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2086 2087 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue"); 2088 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2089 evtq->unhandled_irqs); 2090 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx); 2091 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen); 2092 } else if (r == 1) { 2093 const struct sge_rspq *intrq = &adapter->sge.intrq; 2094 2095 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue"); 2096 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2097 intrq->unhandled_irqs); 2098 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx); 2099 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen); 2100 } 2101 2102 #undef R 2103 #undef T 2104 #undef S 2105 #undef R3 2106 #undef T3 2107 #undef S3 2108 2109 return 0; 2110 } 2111 2112 /* 2113 * Return the number of "entries" in our "file". We group the multi-Queue 2114 * sections with QPL Queue Sets per "entry". The sections of the output are: 2115 * 2116 * Ethernet RX/TX Queue Sets 2117 * Firmware Event Queue 2118 * Forwarded Interrupt Queue (if in MSI mode) 2119 */ 2120 static int sge_qstats_entries(const struct adapter *adapter) 2121 { 2122 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2123 ((adapter->flags & USING_MSI) != 0); 2124 } 2125 2126 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos) 2127 { 2128 int entries = sge_qstats_entries(seq->private); 2129 2130 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2131 } 2132 2133 static void sge_qstats_stop(struct seq_file *seq, void *v) 2134 { 2135 } 2136 2137 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos) 2138 { 2139 int entries = sge_qstats_entries(seq->private); 2140 2141 (*pos)++; 2142 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2143 } 2144 2145 static const struct seq_operations sge_qstats_seq_ops = { 2146 .start = sge_qstats_start, 2147 .next = sge_qstats_next, 2148 .stop = sge_qstats_stop, 2149 .show = sge_qstats_show 2150 }; 2151 2152 static int sge_qstats_open(struct inode *inode, struct file *file) 2153 { 2154 int res = seq_open(file, &sge_qstats_seq_ops); 2155 2156 if (res == 0) { 2157 struct seq_file *seq = file->private_data; 2158 seq->private = inode->i_private; 2159 } 2160 return res; 2161 } 2162 2163 static const struct file_operations sge_qstats_proc_fops = { 2164 .owner = THIS_MODULE, 2165 .open = sge_qstats_open, 2166 .read = seq_read, 2167 .llseek = seq_lseek, 2168 .release = seq_release, 2169 }; 2170 2171 /* 2172 * Show PCI-E SR-IOV Virtual Function Resource Limits. 2173 */ 2174 static int resources_show(struct seq_file *seq, void *v) 2175 { 2176 struct adapter *adapter = seq->private; 2177 struct vf_resources *vfres = &adapter->params.vfres; 2178 2179 #define S(desc, fmt, var) \ 2180 seq_printf(seq, "%-60s " fmt "\n", \ 2181 desc " (" #var "):", vfres->var) 2182 2183 S("Virtual Interfaces", "%d", nvi); 2184 S("Egress Queues", "%d", neq); 2185 S("Ethernet Control", "%d", nethctrl); 2186 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint); 2187 S("Ingress Queues", "%d", niq); 2188 S("Traffic Class", "%d", tc); 2189 S("Port Access Rights Mask", "%#x", pmask); 2190 S("MAC Address Filters", "%d", nexactf); 2191 S("Firmware Command Read Capabilities", "%#x", r_caps); 2192 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps); 2193 2194 #undef S 2195 2196 return 0; 2197 } 2198 2199 static int resources_open(struct inode *inode, struct file *file) 2200 { 2201 return single_open(file, resources_show, inode->i_private); 2202 } 2203 2204 static const struct file_operations resources_proc_fops = { 2205 .owner = THIS_MODULE, 2206 .open = resources_open, 2207 .read = seq_read, 2208 .llseek = seq_lseek, 2209 .release = single_release, 2210 }; 2211 2212 /* 2213 * Show Virtual Interfaces. 2214 */ 2215 static int interfaces_show(struct seq_file *seq, void *v) 2216 { 2217 if (v == SEQ_START_TOKEN) { 2218 seq_puts(seq, "Interface Port VIID\n"); 2219 } else { 2220 struct adapter *adapter = seq->private; 2221 int pidx = (uintptr_t)v - 2; 2222 struct net_device *dev = adapter->port[pidx]; 2223 struct port_info *pi = netdev_priv(dev); 2224 2225 seq_printf(seq, "%9s %4d %#5x\n", 2226 dev->name, pi->port_id, pi->viid); 2227 } 2228 return 0; 2229 } 2230 2231 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos) 2232 { 2233 return pos <= adapter->params.nports 2234 ? (void *)(uintptr_t)(pos + 1) 2235 : NULL; 2236 } 2237 2238 static void *interfaces_start(struct seq_file *seq, loff_t *pos) 2239 { 2240 return *pos 2241 ? interfaces_get_idx(seq->private, *pos) 2242 : SEQ_START_TOKEN; 2243 } 2244 2245 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos) 2246 { 2247 (*pos)++; 2248 return interfaces_get_idx(seq->private, *pos); 2249 } 2250 2251 static void interfaces_stop(struct seq_file *seq, void *v) 2252 { 2253 } 2254 2255 static const struct seq_operations interfaces_seq_ops = { 2256 .start = interfaces_start, 2257 .next = interfaces_next, 2258 .stop = interfaces_stop, 2259 .show = interfaces_show 2260 }; 2261 2262 static int interfaces_open(struct inode *inode, struct file *file) 2263 { 2264 int res = seq_open(file, &interfaces_seq_ops); 2265 2266 if (res == 0) { 2267 struct seq_file *seq = file->private_data; 2268 seq->private = inode->i_private; 2269 } 2270 return res; 2271 } 2272 2273 static const struct file_operations interfaces_proc_fops = { 2274 .owner = THIS_MODULE, 2275 .open = interfaces_open, 2276 .read = seq_read, 2277 .llseek = seq_lseek, 2278 .release = seq_release, 2279 }; 2280 2281 /* 2282 * /sys/kernel/debugfs/cxgb4vf/ files list. 2283 */ 2284 struct cxgb4vf_debugfs_entry { 2285 const char *name; /* name of debugfs node */ 2286 umode_t mode; /* file system mode */ 2287 const struct file_operations *fops; 2288 }; 2289 2290 static struct cxgb4vf_debugfs_entry debugfs_files[] = { 2291 { "mboxlog", S_IRUGO, &mboxlog_fops }, 2292 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops }, 2293 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops }, 2294 { "resources", S_IRUGO, &resources_proc_fops }, 2295 { "interfaces", S_IRUGO, &interfaces_proc_fops }, 2296 }; 2297 2298 /* 2299 * Module and device initialization and cleanup code. 2300 * ================================================== 2301 */ 2302 2303 /* 2304 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the 2305 * directory (debugfs_root) has already been set up. 2306 */ 2307 static int setup_debugfs(struct adapter *adapter) 2308 { 2309 int i; 2310 2311 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2312 2313 /* 2314 * Debugfs support is best effort. 2315 */ 2316 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) 2317 (void)debugfs_create_file(debugfs_files[i].name, 2318 debugfs_files[i].mode, 2319 adapter->debugfs_root, 2320 (void *)adapter, 2321 debugfs_files[i].fops); 2322 2323 return 0; 2324 } 2325 2326 /* 2327 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave 2328 * it to our caller to tear down the directory (debugfs_root). 2329 */ 2330 static void cleanup_debugfs(struct adapter *adapter) 2331 { 2332 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2333 2334 /* 2335 * Unlike our sister routine cleanup_proc(), we don't need to remove 2336 * individual entries because a call will be made to 2337 * debugfs_remove_recursive(). We just need to clean up any ancillary 2338 * persistent state. 2339 */ 2340 /* nothing to do */ 2341 } 2342 2343 /* Figure out how many Ports and Queue Sets we can support. This depends on 2344 * knowing our Virtual Function Resources and may be called a second time if 2345 * we fall back from MSI-X to MSI Interrupt Mode. 2346 */ 2347 static void size_nports_qsets(struct adapter *adapter) 2348 { 2349 struct vf_resources *vfres = &adapter->params.vfres; 2350 unsigned int ethqsets, pmask_nports; 2351 2352 /* The number of "ports" which we support is equal to the number of 2353 * Virtual Interfaces with which we've been provisioned. 2354 */ 2355 adapter->params.nports = vfres->nvi; 2356 if (adapter->params.nports > MAX_NPORTS) { 2357 dev_warn(adapter->pdev_dev, "only using %d of %d maximum" 2358 " allowed virtual interfaces\n", MAX_NPORTS, 2359 adapter->params.nports); 2360 adapter->params.nports = MAX_NPORTS; 2361 } 2362 2363 /* We may have been provisioned with more VIs than the number of 2364 * ports we're allowed to access (our Port Access Rights Mask). 2365 * This is obviously a configuration conflict but we don't want to 2366 * crash the kernel or anything silly just because of that. 2367 */ 2368 pmask_nports = hweight32(adapter->params.vfres.pmask); 2369 if (pmask_nports < adapter->params.nports) { 2370 dev_warn(adapter->pdev_dev, "only using %d of %d provisioned" 2371 " virtual interfaces; limited by Port Access Rights" 2372 " mask %#x\n", pmask_nports, adapter->params.nports, 2373 adapter->params.vfres.pmask); 2374 adapter->params.nports = pmask_nports; 2375 } 2376 2377 /* We need to reserve an Ingress Queue for the Asynchronous Firmware 2378 * Event Queue. And if we're using MSI Interrupts, we'll also need to 2379 * reserve an Ingress Queue for a Forwarded Interrupts. 2380 * 2381 * The rest of the FL/Intr-capable ingress queues will be matched up 2382 * one-for-one with Ethernet/Control egress queues in order to form 2383 * "Queue Sets" which will be aportioned between the "ports". For 2384 * each Queue Set, we'll need the ability to allocate two Egress 2385 * Contexts -- one for the Ingress Queue Free List and one for the TX 2386 * Ethernet Queue. 2387 * 2388 * Note that even if we're currently configured to use MSI-X 2389 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded 2390 * to MSI Interrupts if we can't get enough MSI-X Interrupts. If that 2391 * happens we'll need to adjust things later. 2392 */ 2393 ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI); 2394 if (vfres->nethctrl != ethqsets) 2395 ethqsets = min(vfres->nethctrl, ethqsets); 2396 if (vfres->neq < ethqsets*2) 2397 ethqsets = vfres->neq/2; 2398 if (ethqsets > MAX_ETH_QSETS) 2399 ethqsets = MAX_ETH_QSETS; 2400 adapter->sge.max_ethqsets = ethqsets; 2401 2402 if (adapter->sge.max_ethqsets < adapter->params.nports) { 2403 dev_warn(adapter->pdev_dev, "only using %d of %d available" 2404 " virtual interfaces (too few Queue Sets)\n", 2405 adapter->sge.max_ethqsets, adapter->params.nports); 2406 adapter->params.nports = adapter->sge.max_ethqsets; 2407 } 2408 } 2409 2410 /* 2411 * Perform early "adapter" initialization. This is where we discover what 2412 * adapter parameters we're going to be using and initialize basic adapter 2413 * hardware support. 2414 */ 2415 static int adap_init0(struct adapter *adapter) 2416 { 2417 struct sge_params *sge_params = &adapter->params.sge; 2418 struct sge *s = &adapter->sge; 2419 int err; 2420 u32 param, val = 0; 2421 2422 /* 2423 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux 2424 * 2.6.31 and later we can't call pci_reset_function() in order to 2425 * issue an FLR because of a self- deadlock on the device semaphore. 2426 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the 2427 * cases where they're needed -- for instance, some versions of KVM 2428 * fail to reset "Assigned Devices" when the VM reboots. Therefore we 2429 * use the firmware based reset in order to reset any per function 2430 * state. 2431 */ 2432 err = t4vf_fw_reset(adapter); 2433 if (err < 0) { 2434 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err); 2435 return err; 2436 } 2437 2438 /* 2439 * Grab basic operational parameters. These will predominantly have 2440 * been set up by the Physical Function Driver or will be hard coded 2441 * into the adapter. We just have to live with them ... Note that 2442 * we _must_ get our VPD parameters before our SGE parameters because 2443 * we need to know the adapter's core clock from the VPD in order to 2444 * properly decode the SGE Timer Values. 2445 */ 2446 err = t4vf_get_dev_params(adapter); 2447 if (err) { 2448 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2449 " device parameters: err=%d\n", err); 2450 return err; 2451 } 2452 err = t4vf_get_vpd_params(adapter); 2453 if (err) { 2454 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2455 " VPD parameters: err=%d\n", err); 2456 return err; 2457 } 2458 err = t4vf_get_sge_params(adapter); 2459 if (err) { 2460 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2461 " SGE parameters: err=%d\n", err); 2462 return err; 2463 } 2464 err = t4vf_get_rss_glb_config(adapter); 2465 if (err) { 2466 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2467 " RSS parameters: err=%d\n", err); 2468 return err; 2469 } 2470 if (adapter->params.rss.mode != 2471 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 2472 dev_err(adapter->pdev_dev, "unable to operate with global RSS" 2473 " mode %d\n", adapter->params.rss.mode); 2474 return -EINVAL; 2475 } 2476 err = t4vf_sge_init(adapter); 2477 if (err) { 2478 dev_err(adapter->pdev_dev, "unable to use adapter parameters:" 2479 " err=%d\n", err); 2480 return err; 2481 } 2482 2483 /* If we're running on newer firmware, let it know that we're 2484 * prepared to deal with encapsulated CPL messages. Older 2485 * firmware won't understand this and we'll just get 2486 * unencapsulated messages ... 2487 */ 2488 param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2489 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP); 2490 val = 1; 2491 (void) t4vf_set_params(adapter, 1, ¶m, &val); 2492 2493 /* 2494 * Retrieve our RX interrupt holdoff timer values and counter 2495 * threshold values from the SGE parameters. 2496 */ 2497 s->timer_val[0] = core_ticks_to_us(adapter, 2498 TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1)); 2499 s->timer_val[1] = core_ticks_to_us(adapter, 2500 TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1)); 2501 s->timer_val[2] = core_ticks_to_us(adapter, 2502 TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3)); 2503 s->timer_val[3] = core_ticks_to_us(adapter, 2504 TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3)); 2505 s->timer_val[4] = core_ticks_to_us(adapter, 2506 TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5)); 2507 s->timer_val[5] = core_ticks_to_us(adapter, 2508 TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5)); 2509 2510 s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold); 2511 s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold); 2512 s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold); 2513 s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold); 2514 2515 /* 2516 * Grab our Virtual Interface resource allocation, extract the 2517 * features that we're interested in and do a bit of sanity testing on 2518 * what we discover. 2519 */ 2520 err = t4vf_get_vfres(adapter); 2521 if (err) { 2522 dev_err(adapter->pdev_dev, "unable to get virtual interface" 2523 " resources: err=%d\n", err); 2524 return err; 2525 } 2526 2527 /* Check for various parameter sanity issues */ 2528 if (adapter->params.vfres.pmask == 0) { 2529 dev_err(adapter->pdev_dev, "no port access configured\n" 2530 "usable!\n"); 2531 return -EINVAL; 2532 } 2533 if (adapter->params.vfres.nvi == 0) { 2534 dev_err(adapter->pdev_dev, "no virtual interfaces configured/" 2535 "usable!\n"); 2536 return -EINVAL; 2537 } 2538 2539 /* Initialize nports and max_ethqsets now that we have our Virtual 2540 * Function Resources. 2541 */ 2542 size_nports_qsets(adapter); 2543 2544 return 0; 2545 } 2546 2547 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx, 2548 u8 pkt_cnt_idx, unsigned int size, 2549 unsigned int iqe_size) 2550 { 2551 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 2552 (pkt_cnt_idx < SGE_NCOUNTERS ? 2553 QINTR_CNT_EN_F : 0)); 2554 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS 2555 ? pkt_cnt_idx 2556 : 0); 2557 rspq->iqe_len = iqe_size; 2558 rspq->size = size; 2559 } 2560 2561 /* 2562 * Perform default configuration of DMA queues depending on the number and 2563 * type of ports we found and the number of available CPUs. Most settings can 2564 * be modified by the admin via ethtool and cxgbtool prior to the adapter 2565 * being brought up for the first time. 2566 */ 2567 static void cfg_queues(struct adapter *adapter) 2568 { 2569 struct sge *s = &adapter->sge; 2570 int q10g, n10g, qidx, pidx, qs; 2571 size_t iqe_size; 2572 2573 /* 2574 * We should not be called till we know how many Queue Sets we can 2575 * support. In particular, this means that we need to know what kind 2576 * of interrupts we'll be using ... 2577 */ 2578 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 2579 2580 /* 2581 * Count the number of 10GbE Virtual Interfaces that we have. 2582 */ 2583 n10g = 0; 2584 for_each_port(adapter, pidx) 2585 n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg); 2586 2587 /* 2588 * We default to 1 queue per non-10G port and up to # of cores queues 2589 * per 10G port. 2590 */ 2591 if (n10g == 0) 2592 q10g = 0; 2593 else { 2594 int n1g = (adapter->params.nports - n10g); 2595 q10g = (adapter->sge.max_ethqsets - n1g) / n10g; 2596 if (q10g > num_online_cpus()) 2597 q10g = num_online_cpus(); 2598 } 2599 2600 /* 2601 * Allocate the "Queue Sets" to the various Virtual Interfaces. 2602 * The layout will be established in setup_sge_queues() when the 2603 * adapter is brough up for the first time. 2604 */ 2605 qidx = 0; 2606 for_each_port(adapter, pidx) { 2607 struct port_info *pi = adap2pinfo(adapter, pidx); 2608 2609 pi->first_qset = qidx; 2610 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 2611 qidx += pi->nqsets; 2612 } 2613 s->ethqsets = qidx; 2614 2615 /* 2616 * The Ingress Queue Entry Size for our various Response Queues needs 2617 * to be big enough to accommodate the largest message we can receive 2618 * from the chip/firmware; which is 64 bytes ... 2619 */ 2620 iqe_size = 64; 2621 2622 /* 2623 * Set up default Queue Set parameters ... Start off with the 2624 * shortest interrupt holdoff timer. 2625 */ 2626 for (qs = 0; qs < s->max_ethqsets; qs++) { 2627 struct sge_eth_rxq *rxq = &s->ethrxq[qs]; 2628 struct sge_eth_txq *txq = &s->ethtxq[qs]; 2629 2630 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size); 2631 rxq->fl.size = 72; 2632 txq->q.size = 1024; 2633 } 2634 2635 /* 2636 * The firmware event queue is used for link state changes and 2637 * notifications of TX DMA completions. 2638 */ 2639 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size); 2640 2641 /* 2642 * The forwarded interrupt queue is used when we're in MSI interrupt 2643 * mode. In this mode all interrupts associated with RX queues will 2644 * be forwarded to a single queue which we'll associate with our MSI 2645 * interrupt vector. The messages dropped in the forwarded interrupt 2646 * queue will indicate which ingress queue needs servicing ... This 2647 * queue needs to be large enough to accommodate all of the ingress 2648 * queues which are forwarding their interrupt (+1 to prevent the PIDX 2649 * from equalling the CIDX if every ingress queue has an outstanding 2650 * interrupt). The queue doesn't need to be any larger because no 2651 * ingress queue will ever have more than one outstanding interrupt at 2652 * any time ... 2653 */ 2654 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1, 2655 iqe_size); 2656 } 2657 2658 /* 2659 * Reduce the number of Ethernet queues across all ports to at most n. 2660 * n provides at least one queue per port. 2661 */ 2662 static void reduce_ethqs(struct adapter *adapter, int n) 2663 { 2664 int i; 2665 struct port_info *pi; 2666 2667 /* 2668 * While we have too many active Ether Queue Sets, interate across the 2669 * "ports" and reduce their individual Queue Set allocations. 2670 */ 2671 BUG_ON(n < adapter->params.nports); 2672 while (n < adapter->sge.ethqsets) 2673 for_each_port(adapter, i) { 2674 pi = adap2pinfo(adapter, i); 2675 if (pi->nqsets > 1) { 2676 pi->nqsets--; 2677 adapter->sge.ethqsets--; 2678 if (adapter->sge.ethqsets <= n) 2679 break; 2680 } 2681 } 2682 2683 /* 2684 * Reassign the starting Queue Sets for each of the "ports" ... 2685 */ 2686 n = 0; 2687 for_each_port(adapter, i) { 2688 pi = adap2pinfo(adapter, i); 2689 pi->first_qset = n; 2690 n += pi->nqsets; 2691 } 2692 } 2693 2694 /* 2695 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally 2696 * we get a separate MSI-X vector for every "Queue Set" plus any extras we 2697 * need. Minimally we need one for every Virtual Interface plus those needed 2698 * for our "extras". Note that this process may lower the maximum number of 2699 * allowed Queue Sets ... 2700 */ 2701 static int enable_msix(struct adapter *adapter) 2702 { 2703 int i, want, need, nqsets; 2704 struct msix_entry entries[MSIX_ENTRIES]; 2705 struct sge *s = &adapter->sge; 2706 2707 for (i = 0; i < MSIX_ENTRIES; ++i) 2708 entries[i].entry = i; 2709 2710 /* 2711 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets" 2712 * plus those needed for our "extras" (for example, the firmware 2713 * message queue). We _need_ at least one "Queue Set" per Virtual 2714 * Interface plus those needed for our "extras". So now we get to see 2715 * if the song is right ... 2716 */ 2717 want = s->max_ethqsets + MSIX_EXTRAS; 2718 need = adapter->params.nports + MSIX_EXTRAS; 2719 2720 want = pci_enable_msix_range(adapter->pdev, entries, need, want); 2721 if (want < 0) 2722 return want; 2723 2724 nqsets = want - MSIX_EXTRAS; 2725 if (nqsets < s->max_ethqsets) { 2726 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors" 2727 " for %d Queue Sets\n", nqsets); 2728 s->max_ethqsets = nqsets; 2729 if (nqsets < s->ethqsets) 2730 reduce_ethqs(adapter, nqsets); 2731 } 2732 for (i = 0; i < want; ++i) 2733 adapter->msix_info[i].vec = entries[i].vector; 2734 2735 return 0; 2736 } 2737 2738 static const struct net_device_ops cxgb4vf_netdev_ops = { 2739 .ndo_open = cxgb4vf_open, 2740 .ndo_stop = cxgb4vf_stop, 2741 .ndo_start_xmit = t4vf_eth_xmit, 2742 .ndo_get_stats = cxgb4vf_get_stats, 2743 .ndo_set_rx_mode = cxgb4vf_set_rxmode, 2744 .ndo_set_mac_address = cxgb4vf_set_mac_addr, 2745 .ndo_validate_addr = eth_validate_addr, 2746 .ndo_do_ioctl = cxgb4vf_do_ioctl, 2747 .ndo_change_mtu = cxgb4vf_change_mtu, 2748 .ndo_fix_features = cxgb4vf_fix_features, 2749 .ndo_set_features = cxgb4vf_set_features, 2750 #ifdef CONFIG_NET_POLL_CONTROLLER 2751 .ndo_poll_controller = cxgb4vf_poll_controller, 2752 #endif 2753 }; 2754 2755 /* 2756 * "Probe" a device: initialize a device and construct all kernel and driver 2757 * state needed to manage the device. This routine is called "init_one" in 2758 * the PF Driver ... 2759 */ 2760 static int cxgb4vf_pci_probe(struct pci_dev *pdev, 2761 const struct pci_device_id *ent) 2762 { 2763 int pci_using_dac; 2764 int err, pidx; 2765 unsigned int pmask; 2766 struct adapter *adapter; 2767 struct port_info *pi; 2768 struct net_device *netdev; 2769 unsigned int pf; 2770 2771 /* 2772 * Print our driver banner the first time we're called to initialize a 2773 * device. 2774 */ 2775 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION); 2776 2777 /* 2778 * Initialize generic PCI device state. 2779 */ 2780 err = pci_enable_device(pdev); 2781 if (err) { 2782 dev_err(&pdev->dev, "cannot enable PCI device\n"); 2783 return err; 2784 } 2785 2786 /* 2787 * Reserve PCI resources for the device. If we can't get them some 2788 * other driver may have already claimed the device ... 2789 */ 2790 err = pci_request_regions(pdev, KBUILD_MODNAME); 2791 if (err) { 2792 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 2793 goto err_disable_device; 2794 } 2795 2796 /* 2797 * Set up our DMA mask: try for 64-bit address masking first and 2798 * fall back to 32-bit if we can't get 64 bits ... 2799 */ 2800 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 2801 if (err == 0) { 2802 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 2803 if (err) { 2804 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for" 2805 " coherent allocations\n"); 2806 goto err_release_regions; 2807 } 2808 pci_using_dac = 1; 2809 } else { 2810 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2811 if (err != 0) { 2812 dev_err(&pdev->dev, "no usable DMA configuration\n"); 2813 goto err_release_regions; 2814 } 2815 pci_using_dac = 0; 2816 } 2817 2818 /* 2819 * Enable bus mastering for the device ... 2820 */ 2821 pci_set_master(pdev); 2822 2823 /* 2824 * Allocate our adapter data structure and attach it to the device. 2825 */ 2826 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 2827 if (!adapter) { 2828 err = -ENOMEM; 2829 goto err_release_regions; 2830 } 2831 pci_set_drvdata(pdev, adapter); 2832 adapter->pdev = pdev; 2833 adapter->pdev_dev = &pdev->dev; 2834 2835 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 2836 (sizeof(struct mbox_cmd) * 2837 T4VF_OS_LOG_MBOX_CMDS), 2838 GFP_KERNEL); 2839 if (!adapter->mbox_log) { 2840 err = -ENOMEM; 2841 goto err_free_adapter; 2842 } 2843 adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS; 2844 2845 /* 2846 * Initialize SMP data synchronization resources. 2847 */ 2848 spin_lock_init(&adapter->stats_lock); 2849 spin_lock_init(&adapter->mbox_lock); 2850 INIT_LIST_HEAD(&adapter->mlist.list); 2851 2852 /* 2853 * Map our I/O registers in BAR0. 2854 */ 2855 adapter->regs = pci_ioremap_bar(pdev, 0); 2856 if (!adapter->regs) { 2857 dev_err(&pdev->dev, "cannot map device registers\n"); 2858 err = -ENOMEM; 2859 goto err_free_adapter; 2860 } 2861 2862 /* Wait for the device to become ready before proceeding ... 2863 */ 2864 err = t4vf_prep_adapter(adapter); 2865 if (err) { 2866 dev_err(adapter->pdev_dev, "device didn't become ready:" 2867 " err=%d\n", err); 2868 goto err_unmap_bar0; 2869 } 2870 2871 /* For T5 and later we want to use the new BAR-based User Doorbells, 2872 * so we need to map BAR2 here ... 2873 */ 2874 if (!is_t4(adapter->params.chip)) { 2875 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 2876 pci_resource_len(pdev, 2)); 2877 if (!adapter->bar2) { 2878 dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n"); 2879 err = -ENOMEM; 2880 goto err_unmap_bar0; 2881 } 2882 } 2883 /* 2884 * Initialize adapter level features. 2885 */ 2886 adapter->name = pci_name(pdev); 2887 adapter->msg_enable = DFLT_MSG_ENABLE; 2888 err = adap_init0(adapter); 2889 if (err) 2890 goto err_unmap_bar; 2891 2892 /* 2893 * Allocate our "adapter ports" and stitch everything together. 2894 */ 2895 pmask = adapter->params.vfres.pmask; 2896 pf = t4vf_get_pf_from_vf(adapter); 2897 for_each_port(adapter, pidx) { 2898 int port_id, viid; 2899 u8 mac[ETH_ALEN]; 2900 unsigned int naddr = 1; 2901 2902 /* 2903 * We simplistically allocate our virtual interfaces 2904 * sequentially across the port numbers to which we have 2905 * access rights. This should be configurable in some manner 2906 * ... 2907 */ 2908 if (pmask == 0) 2909 break; 2910 port_id = ffs(pmask) - 1; 2911 pmask &= ~(1 << port_id); 2912 viid = t4vf_alloc_vi(adapter, port_id); 2913 if (viid < 0) { 2914 dev_err(&pdev->dev, "cannot allocate VI for port %d:" 2915 " err=%d\n", port_id, viid); 2916 err = viid; 2917 goto err_free_dev; 2918 } 2919 2920 /* 2921 * Allocate our network device and stitch things together. 2922 */ 2923 netdev = alloc_etherdev_mq(sizeof(struct port_info), 2924 MAX_PORT_QSETS); 2925 if (netdev == NULL) { 2926 t4vf_free_vi(adapter, viid); 2927 err = -ENOMEM; 2928 goto err_free_dev; 2929 } 2930 adapter->port[pidx] = netdev; 2931 SET_NETDEV_DEV(netdev, &pdev->dev); 2932 pi = netdev_priv(netdev); 2933 pi->adapter = adapter; 2934 pi->pidx = pidx; 2935 pi->port_id = port_id; 2936 pi->viid = viid; 2937 2938 /* 2939 * Initialize the starting state of our "port" and register 2940 * it. 2941 */ 2942 pi->xact_addr_filt = -1; 2943 netif_carrier_off(netdev); 2944 netdev->irq = pdev->irq; 2945 2946 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 2947 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2948 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM; 2949 netdev->vlan_features = NETIF_F_SG | TSO_FLAGS | 2950 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2951 NETIF_F_HIGHDMA; 2952 netdev->features = netdev->hw_features | 2953 NETIF_F_HW_VLAN_CTAG_TX; 2954 if (pci_using_dac) 2955 netdev->features |= NETIF_F_HIGHDMA; 2956 2957 netdev->priv_flags |= IFF_UNICAST_FLT; 2958 netdev->min_mtu = 81; 2959 netdev->max_mtu = ETH_MAX_MTU; 2960 2961 netdev->netdev_ops = &cxgb4vf_netdev_ops; 2962 netdev->ethtool_ops = &cxgb4vf_ethtool_ops; 2963 netdev->dev_port = pi->port_id; 2964 2965 /* 2966 * Initialize the hardware/software state for the port. 2967 */ 2968 err = t4vf_port_init(adapter, pidx); 2969 if (err) { 2970 dev_err(&pdev->dev, "cannot initialize port %d\n", 2971 pidx); 2972 goto err_free_dev; 2973 } 2974 2975 err = t4vf_get_vf_mac_acl(adapter, pf, &naddr, mac); 2976 if (err) { 2977 dev_err(&pdev->dev, 2978 "unable to determine MAC ACL address, " 2979 "continuing anyway.. (status %d)\n", err); 2980 } else if (naddr && adapter->params.vfres.nvi == 1) { 2981 struct sockaddr addr; 2982 2983 ether_addr_copy(addr.sa_data, mac); 2984 err = cxgb4vf_set_mac_addr(netdev, &addr); 2985 if (err) { 2986 dev_err(&pdev->dev, 2987 "unable to set MAC address %pM\n", 2988 mac); 2989 goto err_free_dev; 2990 } 2991 dev_info(&pdev->dev, 2992 "Using assigned MAC ACL: %pM\n", mac); 2993 } 2994 } 2995 2996 /* See what interrupts we'll be using. If we've been configured to 2997 * use MSI-X interrupts, try to enable them but fall back to using 2998 * MSI interrupts if we can't enable MSI-X interrupts. If we can't 2999 * get MSI interrupts we bail with the error. 3000 */ 3001 if (msi == MSI_MSIX && enable_msix(adapter) == 0) 3002 adapter->flags |= USING_MSIX; 3003 else { 3004 if (msi == MSI_MSIX) { 3005 dev_info(adapter->pdev_dev, 3006 "Unable to use MSI-X Interrupts; falling " 3007 "back to MSI Interrupts\n"); 3008 3009 /* We're going to need a Forwarded Interrupt Queue so 3010 * that may cut into how many Queue Sets we can 3011 * support. 3012 */ 3013 msi = MSI_MSI; 3014 size_nports_qsets(adapter); 3015 } 3016 err = pci_enable_msi(pdev); 3017 if (err) { 3018 dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;" 3019 " err=%d\n", err); 3020 goto err_free_dev; 3021 } 3022 adapter->flags |= USING_MSI; 3023 } 3024 3025 /* Now that we know how many "ports" we have and what interrupt 3026 * mechanism we're going to use, we can configure our queue resources. 3027 */ 3028 cfg_queues(adapter); 3029 3030 /* 3031 * The "card" is now ready to go. If any errors occur during device 3032 * registration we do not fail the whole "card" but rather proceed 3033 * only with the ports we manage to register successfully. However we 3034 * must register at least one net device. 3035 */ 3036 for_each_port(adapter, pidx) { 3037 struct port_info *pi = netdev_priv(adapter->port[pidx]); 3038 netdev = adapter->port[pidx]; 3039 if (netdev == NULL) 3040 continue; 3041 3042 netif_set_real_num_tx_queues(netdev, pi->nqsets); 3043 netif_set_real_num_rx_queues(netdev, pi->nqsets); 3044 3045 err = register_netdev(netdev); 3046 if (err) { 3047 dev_warn(&pdev->dev, "cannot register net device %s," 3048 " skipping\n", netdev->name); 3049 continue; 3050 } 3051 3052 set_bit(pidx, &adapter->registered_device_map); 3053 } 3054 if (adapter->registered_device_map == 0) { 3055 dev_err(&pdev->dev, "could not register any net devices\n"); 3056 goto err_disable_interrupts; 3057 } 3058 3059 /* 3060 * Set up our debugfs entries. 3061 */ 3062 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) { 3063 adapter->debugfs_root = 3064 debugfs_create_dir(pci_name(pdev), 3065 cxgb4vf_debugfs_root); 3066 if (IS_ERR_OR_NULL(adapter->debugfs_root)) 3067 dev_warn(&pdev->dev, "could not create debugfs" 3068 " directory"); 3069 else 3070 setup_debugfs(adapter); 3071 } 3072 3073 /* 3074 * Print a short notice on the existence and configuration of the new 3075 * VF network device ... 3076 */ 3077 for_each_port(adapter, pidx) { 3078 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n", 3079 adapter->port[pidx]->name, 3080 (adapter->flags & USING_MSIX) ? "MSI-X" : 3081 (adapter->flags & USING_MSI) ? "MSI" : ""); 3082 } 3083 3084 /* 3085 * Return success! 3086 */ 3087 return 0; 3088 3089 /* 3090 * Error recovery and exit code. Unwind state that's been created 3091 * so far and return the error. 3092 */ 3093 err_disable_interrupts: 3094 if (adapter->flags & USING_MSIX) { 3095 pci_disable_msix(adapter->pdev); 3096 adapter->flags &= ~USING_MSIX; 3097 } else if (adapter->flags & USING_MSI) { 3098 pci_disable_msi(adapter->pdev); 3099 adapter->flags &= ~USING_MSI; 3100 } 3101 3102 err_free_dev: 3103 for_each_port(adapter, pidx) { 3104 netdev = adapter->port[pidx]; 3105 if (netdev == NULL) 3106 continue; 3107 pi = netdev_priv(netdev); 3108 t4vf_free_vi(adapter, pi->viid); 3109 if (test_bit(pidx, &adapter->registered_device_map)) 3110 unregister_netdev(netdev); 3111 free_netdev(netdev); 3112 } 3113 3114 err_unmap_bar: 3115 if (!is_t4(adapter->params.chip)) 3116 iounmap(adapter->bar2); 3117 3118 err_unmap_bar0: 3119 iounmap(adapter->regs); 3120 3121 err_free_adapter: 3122 kfree(adapter->mbox_log); 3123 kfree(adapter); 3124 3125 err_release_regions: 3126 pci_release_regions(pdev); 3127 pci_clear_master(pdev); 3128 3129 err_disable_device: 3130 pci_disable_device(pdev); 3131 3132 return err; 3133 } 3134 3135 /* 3136 * "Remove" a device: tear down all kernel and driver state created in the 3137 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note 3138 * that this is called "remove_one" in the PF Driver.) 3139 */ 3140 static void cxgb4vf_pci_remove(struct pci_dev *pdev) 3141 { 3142 struct adapter *adapter = pci_get_drvdata(pdev); 3143 3144 /* 3145 * Tear down driver state associated with device. 3146 */ 3147 if (adapter) { 3148 int pidx; 3149 3150 /* 3151 * Stop all of our activity. Unregister network port, 3152 * disable interrupts, etc. 3153 */ 3154 for_each_port(adapter, pidx) 3155 if (test_bit(pidx, &adapter->registered_device_map)) 3156 unregister_netdev(adapter->port[pidx]); 3157 t4vf_sge_stop(adapter); 3158 if (adapter->flags & USING_MSIX) { 3159 pci_disable_msix(adapter->pdev); 3160 adapter->flags &= ~USING_MSIX; 3161 } else if (adapter->flags & USING_MSI) { 3162 pci_disable_msi(adapter->pdev); 3163 adapter->flags &= ~USING_MSI; 3164 } 3165 3166 /* 3167 * Tear down our debugfs entries. 3168 */ 3169 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) { 3170 cleanup_debugfs(adapter); 3171 debugfs_remove_recursive(adapter->debugfs_root); 3172 } 3173 3174 /* 3175 * Free all of the various resources which we've acquired ... 3176 */ 3177 t4vf_free_sge_resources(adapter); 3178 for_each_port(adapter, pidx) { 3179 struct net_device *netdev = adapter->port[pidx]; 3180 struct port_info *pi; 3181 3182 if (netdev == NULL) 3183 continue; 3184 3185 pi = netdev_priv(netdev); 3186 t4vf_free_vi(adapter, pi->viid); 3187 free_netdev(netdev); 3188 } 3189 iounmap(adapter->regs); 3190 if (!is_t4(adapter->params.chip)) 3191 iounmap(adapter->bar2); 3192 kfree(adapter->mbox_log); 3193 kfree(adapter); 3194 } 3195 3196 /* 3197 * Disable the device and release its PCI resources. 3198 */ 3199 pci_disable_device(pdev); 3200 pci_clear_master(pdev); 3201 pci_release_regions(pdev); 3202 } 3203 3204 /* 3205 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt 3206 * delivery. 3207 */ 3208 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev) 3209 { 3210 struct adapter *adapter; 3211 int pidx; 3212 3213 adapter = pci_get_drvdata(pdev); 3214 if (!adapter) 3215 return; 3216 3217 /* Disable all Virtual Interfaces. This will shut down the 3218 * delivery of all ingress packets into the chip for these 3219 * Virtual Interfaces. 3220 */ 3221 for_each_port(adapter, pidx) 3222 if (test_bit(pidx, &adapter->registered_device_map)) 3223 unregister_netdev(adapter->port[pidx]); 3224 3225 /* Free up all Queues which will prevent further DMA and 3226 * Interrupts allowing various internal pathways to drain. 3227 */ 3228 t4vf_sge_stop(adapter); 3229 if (adapter->flags & USING_MSIX) { 3230 pci_disable_msix(adapter->pdev); 3231 adapter->flags &= ~USING_MSIX; 3232 } else if (adapter->flags & USING_MSI) { 3233 pci_disable_msi(adapter->pdev); 3234 adapter->flags &= ~USING_MSI; 3235 } 3236 3237 /* 3238 * Free up all Queues which will prevent further DMA and 3239 * Interrupts allowing various internal pathways to drain. 3240 */ 3241 t4vf_free_sge_resources(adapter); 3242 pci_set_drvdata(pdev, NULL); 3243 } 3244 3245 /* Macros needed to support the PCI Device ID Table ... 3246 */ 3247 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 3248 static const struct pci_device_id cxgb4vf_pci_tbl[] = { 3249 #define CH_PCI_DEVICE_ID_FUNCTION 0x8 3250 3251 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 3252 { PCI_VDEVICE(CHELSIO, (devid)), 0 } 3253 3254 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } } 3255 3256 #include "../cxgb4/t4_pci_id_tbl.h" 3257 3258 MODULE_DESCRIPTION(DRV_DESC); 3259 MODULE_AUTHOR("Chelsio Communications"); 3260 MODULE_LICENSE("Dual BSD/GPL"); 3261 MODULE_VERSION(DRV_VERSION); 3262 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl); 3263 3264 static struct pci_driver cxgb4vf_driver = { 3265 .name = KBUILD_MODNAME, 3266 .id_table = cxgb4vf_pci_tbl, 3267 .probe = cxgb4vf_pci_probe, 3268 .remove = cxgb4vf_pci_remove, 3269 .shutdown = cxgb4vf_pci_shutdown, 3270 }; 3271 3272 /* 3273 * Initialize global driver state. 3274 */ 3275 static int __init cxgb4vf_module_init(void) 3276 { 3277 int ret; 3278 3279 /* 3280 * Vet our module parameters. 3281 */ 3282 if (msi != MSI_MSIX && msi != MSI_MSI) { 3283 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n", 3284 msi, MSI_MSIX, MSI_MSI); 3285 return -EINVAL; 3286 } 3287 3288 /* Debugfs support is optional, just warn if this fails */ 3289 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 3290 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) 3291 pr_warn("could not create debugfs entry, continuing\n"); 3292 3293 ret = pci_register_driver(&cxgb4vf_driver); 3294 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) 3295 debugfs_remove(cxgb4vf_debugfs_root); 3296 return ret; 3297 } 3298 3299 /* 3300 * Tear down global driver state. 3301 */ 3302 static void __exit cxgb4vf_module_exit(void) 3303 { 3304 pci_unregister_driver(&cxgb4vf_driver); 3305 debugfs_remove(cxgb4vf_debugfs_root); 3306 } 3307 3308 module_init(cxgb4vf_module_init); 3309 module_exit(cxgb4vf_module_exit); 3310