1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <linux/debugfs.h>
46 #include <linux/ethtool.h>
47 
48 #include "t4vf_common.h"
49 #include "t4vf_defs.h"
50 
51 #include "../cxgb4/t4_regs.h"
52 #include "../cxgb4/t4_msg.h"
53 
54 /*
55  * Generic information about the driver.
56  */
57 #define DRV_VERSION "2.0.0-ko"
58 #define DRV_DESC "Chelsio T4/T5 Virtual Function (VF) Network Driver"
59 
60 /*
61  * Module Parameters.
62  * ==================
63  */
64 
65 /*
66  * Default ethtool "message level" for adapters.
67  */
68 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
69 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
70 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
71 
72 static int dflt_msg_enable = DFLT_MSG_ENABLE;
73 
74 module_param(dflt_msg_enable, int, 0644);
75 MODULE_PARM_DESC(dflt_msg_enable,
76 		 "default adapter ethtool message level bitmap");
77 
78 /*
79  * The driver uses the best interrupt scheme available on a platform in the
80  * order MSI-X then MSI.  This parameter determines which of these schemes the
81  * driver may consider as follows:
82  *
83  *     msi = 2: choose from among MSI-X and MSI
84  *     msi = 1: only consider MSI interrupts
85  *
86  * Note that unlike the Physical Function driver, this Virtual Function driver
87  * does _not_ support legacy INTx interrupts (this limitation is mandated by
88  * the PCI-E SR-IOV standard).
89  */
90 #define MSI_MSIX	2
91 #define MSI_MSI		1
92 #define MSI_DEFAULT	MSI_MSIX
93 
94 static int msi = MSI_DEFAULT;
95 
96 module_param(msi, int, 0644);
97 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
98 
99 /*
100  * Fundamental constants.
101  * ======================
102  */
103 
104 enum {
105 	MAX_TXQ_ENTRIES		= 16384,
106 	MAX_RSPQ_ENTRIES	= 16384,
107 	MAX_RX_BUFFERS		= 16384,
108 
109 	MIN_TXQ_ENTRIES		= 32,
110 	MIN_RSPQ_ENTRIES	= 128,
111 	MIN_FL_ENTRIES		= 16,
112 
113 	/*
114 	 * For purposes of manipulating the Free List size we need to
115 	 * recognize that Free Lists are actually Egress Queues (the host
116 	 * produces free buffers which the hardware consumes), Egress Queues
117 	 * indices are all in units of Egress Context Units bytes, and free
118 	 * list entries are 64-bit PCI DMA addresses.  And since the state of
119 	 * the Producer Index == the Consumer Index implies an EMPTY list, we
120 	 * always have at least one Egress Unit's worth of Free List entries
121 	 * unused.  See sge.c for more details ...
122 	 */
123 	EQ_UNIT = SGE_EQ_IDXSIZE,
124 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
125 	MIN_FL_RESID = FL_PER_EQ_UNIT,
126 };
127 
128 /*
129  * Global driver state.
130  * ====================
131  */
132 
133 static struct dentry *cxgb4vf_debugfs_root;
134 
135 /*
136  * OS "Callback" functions.
137  * ========================
138  */
139 
140 /*
141  * The link status has changed on the indicated "port" (Virtual Interface).
142  */
143 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
144 {
145 	struct net_device *dev = adapter->port[pidx];
146 
147 	/*
148 	 * If the port is disabled or the current recorded "link up"
149 	 * status matches the new status, just return.
150 	 */
151 	if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
152 		return;
153 
154 	/*
155 	 * Tell the OS that the link status has changed and print a short
156 	 * informative message on the console about the event.
157 	 */
158 	if (link_ok) {
159 		const char *s;
160 		const char *fc;
161 		const struct port_info *pi = netdev_priv(dev);
162 
163 		netif_carrier_on(dev);
164 
165 		switch (pi->link_cfg.speed) {
166 		case 40000:
167 			s = "40Gbps";
168 			break;
169 
170 		case 10000:
171 			s = "10Gbps";
172 			break;
173 
174 		case 1000:
175 			s = "1000Mbps";
176 			break;
177 
178 		case 100:
179 			s = "100Mbps";
180 			break;
181 
182 		default:
183 			s = "unknown";
184 			break;
185 		}
186 
187 		switch (pi->link_cfg.fc) {
188 		case PAUSE_RX:
189 			fc = "RX";
190 			break;
191 
192 		case PAUSE_TX:
193 			fc = "TX";
194 			break;
195 
196 		case PAUSE_RX|PAUSE_TX:
197 			fc = "RX/TX";
198 			break;
199 
200 		default:
201 			fc = "no";
202 			break;
203 		}
204 
205 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
206 	} else {
207 		netif_carrier_off(dev);
208 		netdev_info(dev, "link down\n");
209 	}
210 }
211 
212 /*
213  * Net device operations.
214  * ======================
215  */
216 
217 
218 
219 
220 /*
221  * Perform the MAC and PHY actions needed to enable a "port" (Virtual
222  * Interface).
223  */
224 static int link_start(struct net_device *dev)
225 {
226 	int ret;
227 	struct port_info *pi = netdev_priv(dev);
228 
229 	/*
230 	 * We do not set address filters and promiscuity here, the stack does
231 	 * that step explicitly. Enable vlan accel.
232 	 */
233 	ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
234 			      true);
235 	if (ret == 0) {
236 		ret = t4vf_change_mac(pi->adapter, pi->viid,
237 				      pi->xact_addr_filt, dev->dev_addr, true);
238 		if (ret >= 0) {
239 			pi->xact_addr_filt = ret;
240 			ret = 0;
241 		}
242 	}
243 
244 	/*
245 	 * We don't need to actually "start the link" itself since the
246 	 * firmware will do that for us when the first Virtual Interface
247 	 * is enabled on a port.
248 	 */
249 	if (ret == 0)
250 		ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
251 	return ret;
252 }
253 
254 /*
255  * Name the MSI-X interrupts.
256  */
257 static void name_msix_vecs(struct adapter *adapter)
258 {
259 	int namelen = sizeof(adapter->msix_info[0].desc) - 1;
260 	int pidx;
261 
262 	/*
263 	 * Firmware events.
264 	 */
265 	snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
266 		 "%s-FWeventq", adapter->name);
267 	adapter->msix_info[MSIX_FW].desc[namelen] = 0;
268 
269 	/*
270 	 * Ethernet queues.
271 	 */
272 	for_each_port(adapter, pidx) {
273 		struct net_device *dev = adapter->port[pidx];
274 		const struct port_info *pi = netdev_priv(dev);
275 		int qs, msi;
276 
277 		for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
278 			snprintf(adapter->msix_info[msi].desc, namelen,
279 				 "%s-%d", dev->name, qs);
280 			adapter->msix_info[msi].desc[namelen] = 0;
281 		}
282 	}
283 }
284 
285 /*
286  * Request all of our MSI-X resources.
287  */
288 static int request_msix_queue_irqs(struct adapter *adapter)
289 {
290 	struct sge *s = &adapter->sge;
291 	int rxq, msi, err;
292 
293 	/*
294 	 * Firmware events.
295 	 */
296 	err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
297 			  0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
298 	if (err)
299 		return err;
300 
301 	/*
302 	 * Ethernet queues.
303 	 */
304 	msi = MSIX_IQFLINT;
305 	for_each_ethrxq(s, rxq) {
306 		err = request_irq(adapter->msix_info[msi].vec,
307 				  t4vf_sge_intr_msix, 0,
308 				  adapter->msix_info[msi].desc,
309 				  &s->ethrxq[rxq].rspq);
310 		if (err)
311 			goto err_free_irqs;
312 		msi++;
313 	}
314 	return 0;
315 
316 err_free_irqs:
317 	while (--rxq >= 0)
318 		free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
319 	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
320 	return err;
321 }
322 
323 /*
324  * Free our MSI-X resources.
325  */
326 static void free_msix_queue_irqs(struct adapter *adapter)
327 {
328 	struct sge *s = &adapter->sge;
329 	int rxq, msi;
330 
331 	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
332 	msi = MSIX_IQFLINT;
333 	for_each_ethrxq(s, rxq)
334 		free_irq(adapter->msix_info[msi++].vec,
335 			 &s->ethrxq[rxq].rspq);
336 }
337 
338 /*
339  * Turn on NAPI and start up interrupts on a response queue.
340  */
341 static void qenable(struct sge_rspq *rspq)
342 {
343 	napi_enable(&rspq->napi);
344 
345 	/*
346 	 * 0-increment the Going To Sleep register to start the timer and
347 	 * enable interrupts.
348 	 */
349 	t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
350 		     CIDXINC(0) |
351 		     SEINTARM(rspq->intr_params) |
352 		     INGRESSQID(rspq->cntxt_id));
353 }
354 
355 /*
356  * Enable NAPI scheduling and interrupt generation for all Receive Queues.
357  */
358 static void enable_rx(struct adapter *adapter)
359 {
360 	int rxq;
361 	struct sge *s = &adapter->sge;
362 
363 	for_each_ethrxq(s, rxq)
364 		qenable(&s->ethrxq[rxq].rspq);
365 	qenable(&s->fw_evtq);
366 
367 	/*
368 	 * The interrupt queue doesn't use NAPI so we do the 0-increment of
369 	 * its Going To Sleep register here to get it started.
370 	 */
371 	if (adapter->flags & USING_MSI)
372 		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
373 			     CIDXINC(0) |
374 			     SEINTARM(s->intrq.intr_params) |
375 			     INGRESSQID(s->intrq.cntxt_id));
376 
377 }
378 
379 /*
380  * Wait until all NAPI handlers are descheduled.
381  */
382 static void quiesce_rx(struct adapter *adapter)
383 {
384 	struct sge *s = &adapter->sge;
385 	int rxq;
386 
387 	for_each_ethrxq(s, rxq)
388 		napi_disable(&s->ethrxq[rxq].rspq.napi);
389 	napi_disable(&s->fw_evtq.napi);
390 }
391 
392 /*
393  * Response queue handler for the firmware event queue.
394  */
395 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
396 			  const struct pkt_gl *gl)
397 {
398 	/*
399 	 * Extract response opcode and get pointer to CPL message body.
400 	 */
401 	struct adapter *adapter = rspq->adapter;
402 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
403 	void *cpl = (void *)(rsp + 1);
404 
405 	switch (opcode) {
406 	case CPL_FW6_MSG: {
407 		/*
408 		 * We've received an asynchronous message from the firmware.
409 		 */
410 		const struct cpl_fw6_msg *fw_msg = cpl;
411 		if (fw_msg->type == FW6_TYPE_CMD_RPL)
412 			t4vf_handle_fw_rpl(adapter, fw_msg->data);
413 		break;
414 	}
415 
416 	case CPL_FW4_MSG: {
417 		/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
418 		 */
419 		const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
420 		opcode = G_CPL_OPCODE(ntohl(p->opcode_qid));
421 		if (opcode != CPL_SGE_EGR_UPDATE) {
422 			dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
423 				, opcode);
424 			break;
425 		}
426 		cpl = (void *)p;
427 		/*FALLTHROUGH*/
428 	}
429 
430 	case CPL_SGE_EGR_UPDATE: {
431 		/*
432 		 * We've received an Egress Queue Status Update message.  We
433 		 * get these, if the SGE is configured to send these when the
434 		 * firmware passes certain points in processing our TX
435 		 * Ethernet Queue or if we make an explicit request for one.
436 		 * We use these updates to determine when we may need to
437 		 * restart a TX Ethernet Queue which was stopped for lack of
438 		 * free TX Queue Descriptors ...
439 		 */
440 		const struct cpl_sge_egr_update *p = cpl;
441 		unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
442 		struct sge *s = &adapter->sge;
443 		struct sge_txq *tq;
444 		struct sge_eth_txq *txq;
445 		unsigned int eq_idx;
446 
447 		/*
448 		 * Perform sanity checking on the Queue ID to make sure it
449 		 * really refers to one of our TX Ethernet Egress Queues which
450 		 * is active and matches the queue's ID.  None of these error
451 		 * conditions should ever happen so we may want to either make
452 		 * them fatal and/or conditionalized under DEBUG.
453 		 */
454 		eq_idx = EQ_IDX(s, qid);
455 		if (unlikely(eq_idx >= MAX_EGRQ)) {
456 			dev_err(adapter->pdev_dev,
457 				"Egress Update QID %d out of range\n", qid);
458 			break;
459 		}
460 		tq = s->egr_map[eq_idx];
461 		if (unlikely(tq == NULL)) {
462 			dev_err(adapter->pdev_dev,
463 				"Egress Update QID %d TXQ=NULL\n", qid);
464 			break;
465 		}
466 		txq = container_of(tq, struct sge_eth_txq, q);
467 		if (unlikely(tq->abs_id != qid)) {
468 			dev_err(adapter->pdev_dev,
469 				"Egress Update QID %d refers to TXQ %d\n",
470 				qid, tq->abs_id);
471 			break;
472 		}
473 
474 		/*
475 		 * Restart a stopped TX Queue which has less than half of its
476 		 * TX ring in use ...
477 		 */
478 		txq->q.restarts++;
479 		netif_tx_wake_queue(txq->txq);
480 		break;
481 	}
482 
483 	default:
484 		dev_err(adapter->pdev_dev,
485 			"unexpected CPL %#x on FW event queue\n", opcode);
486 	}
487 
488 	return 0;
489 }
490 
491 /*
492  * Allocate SGE TX/RX response queues.  Determine how many sets of SGE queues
493  * to use and initializes them.  We support multiple "Queue Sets" per port if
494  * we have MSI-X, otherwise just one queue set per port.
495  */
496 static int setup_sge_queues(struct adapter *adapter)
497 {
498 	struct sge *s = &adapter->sge;
499 	int err, pidx, msix;
500 
501 	/*
502 	 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
503 	 * state.
504 	 */
505 	bitmap_zero(s->starving_fl, MAX_EGRQ);
506 
507 	/*
508 	 * If we're using MSI interrupt mode we need to set up a "forwarded
509 	 * interrupt" queue which we'll set up with our MSI vector.  The rest
510 	 * of the ingress queues will be set up to forward their interrupts to
511 	 * this queue ...  This must be first since t4vf_sge_alloc_rxq() uses
512 	 * the intrq's queue ID as the interrupt forwarding queue for the
513 	 * subsequent calls ...
514 	 */
515 	if (adapter->flags & USING_MSI) {
516 		err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
517 					 adapter->port[0], 0, NULL, NULL);
518 		if (err)
519 			goto err_free_queues;
520 	}
521 
522 	/*
523 	 * Allocate our ingress queue for asynchronous firmware messages.
524 	 */
525 	err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
526 				 MSIX_FW, NULL, fwevtq_handler);
527 	if (err)
528 		goto err_free_queues;
529 
530 	/*
531 	 * Allocate each "port"'s initial Queue Sets.  These can be changed
532 	 * later on ... up to the point where any interface on the adapter is
533 	 * brought up at which point lots of things get nailed down
534 	 * permanently ...
535 	 */
536 	msix = MSIX_IQFLINT;
537 	for_each_port(adapter, pidx) {
538 		struct net_device *dev = adapter->port[pidx];
539 		struct port_info *pi = netdev_priv(dev);
540 		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
541 		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
542 		int qs;
543 
544 		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
545 			err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
546 						 dev, msix++,
547 						 &rxq->fl, t4vf_ethrx_handler);
548 			if (err)
549 				goto err_free_queues;
550 
551 			err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
552 					     netdev_get_tx_queue(dev, qs),
553 					     s->fw_evtq.cntxt_id);
554 			if (err)
555 				goto err_free_queues;
556 
557 			rxq->rspq.idx = qs;
558 			memset(&rxq->stats, 0, sizeof(rxq->stats));
559 		}
560 	}
561 
562 	/*
563 	 * Create the reverse mappings for the queues.
564 	 */
565 	s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
566 	s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
567 	IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
568 	for_each_port(adapter, pidx) {
569 		struct net_device *dev = adapter->port[pidx];
570 		struct port_info *pi = netdev_priv(dev);
571 		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
572 		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
573 		int qs;
574 
575 		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
576 			IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
577 			EQ_MAP(s, txq->q.abs_id) = &txq->q;
578 
579 			/*
580 			 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
581 			 * for Free Lists but since all of the Egress Queues
582 			 * (including Free Lists) have Relative Queue IDs
583 			 * which are computed as Absolute - Base Queue ID, we
584 			 * can synthesize the Absolute Queue IDs for the Free
585 			 * Lists.  This is useful for debugging purposes when
586 			 * we want to dump Queue Contexts via the PF Driver.
587 			 */
588 			rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
589 			EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
590 		}
591 	}
592 	return 0;
593 
594 err_free_queues:
595 	t4vf_free_sge_resources(adapter);
596 	return err;
597 }
598 
599 /*
600  * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
601  * queues.  We configure the RSS CPU lookup table to distribute to the number
602  * of HW receive queues, and the response queue lookup table to narrow that
603  * down to the response queues actually configured for each "port" (Virtual
604  * Interface).  We always configure the RSS mapping for all ports since the
605  * mapping table has plenty of entries.
606  */
607 static int setup_rss(struct adapter *adapter)
608 {
609 	int pidx;
610 
611 	for_each_port(adapter, pidx) {
612 		struct port_info *pi = adap2pinfo(adapter, pidx);
613 		struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
614 		u16 rss[MAX_PORT_QSETS];
615 		int qs, err;
616 
617 		for (qs = 0; qs < pi->nqsets; qs++)
618 			rss[qs] = rxq[qs].rspq.abs_id;
619 
620 		err = t4vf_config_rss_range(adapter, pi->viid,
621 					    0, pi->rss_size, rss, pi->nqsets);
622 		if (err)
623 			return err;
624 
625 		/*
626 		 * Perform Global RSS Mode-specific initialization.
627 		 */
628 		switch (adapter->params.rss.mode) {
629 		case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
630 			/*
631 			 * If Tunnel All Lookup isn't specified in the global
632 			 * RSS Configuration, then we need to specify a
633 			 * default Ingress Queue for any ingress packets which
634 			 * aren't hashed.  We'll use our first ingress queue
635 			 * ...
636 			 */
637 			if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
638 				union rss_vi_config config;
639 				err = t4vf_read_rss_vi_config(adapter,
640 							      pi->viid,
641 							      &config);
642 				if (err)
643 					return err;
644 				config.basicvirtual.defaultq =
645 					rxq[0].rspq.abs_id;
646 				err = t4vf_write_rss_vi_config(adapter,
647 							       pi->viid,
648 							       &config);
649 				if (err)
650 					return err;
651 			}
652 			break;
653 		}
654 	}
655 
656 	return 0;
657 }
658 
659 /*
660  * Bring the adapter up.  Called whenever we go from no "ports" open to having
661  * one open.  This function performs the actions necessary to make an adapter
662  * operational, such as completing the initialization of HW modules, and
663  * enabling interrupts.  Must be called with the rtnl lock held.  (Note that
664  * this is called "cxgb_up" in the PF Driver.)
665  */
666 static int adapter_up(struct adapter *adapter)
667 {
668 	int err;
669 
670 	/*
671 	 * If this is the first time we've been called, perform basic
672 	 * adapter setup.  Once we've done this, many of our adapter
673 	 * parameters can no longer be changed ...
674 	 */
675 	if ((adapter->flags & FULL_INIT_DONE) == 0) {
676 		err = setup_sge_queues(adapter);
677 		if (err)
678 			return err;
679 		err = setup_rss(adapter);
680 		if (err) {
681 			t4vf_free_sge_resources(adapter);
682 			return err;
683 		}
684 
685 		if (adapter->flags & USING_MSIX)
686 			name_msix_vecs(adapter);
687 		adapter->flags |= FULL_INIT_DONE;
688 	}
689 
690 	/*
691 	 * Acquire our interrupt resources.  We only support MSI-X and MSI.
692 	 */
693 	BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
694 	if (adapter->flags & USING_MSIX)
695 		err = request_msix_queue_irqs(adapter);
696 	else
697 		err = request_irq(adapter->pdev->irq,
698 				  t4vf_intr_handler(adapter), 0,
699 				  adapter->name, adapter);
700 	if (err) {
701 		dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
702 			err);
703 		return err;
704 	}
705 
706 	/*
707 	 * Enable NAPI ingress processing and return success.
708 	 */
709 	enable_rx(adapter);
710 	t4vf_sge_start(adapter);
711 	return 0;
712 }
713 
714 /*
715  * Bring the adapter down.  Called whenever the last "port" (Virtual
716  * Interface) closed.  (Note that this routine is called "cxgb_down" in the PF
717  * Driver.)
718  */
719 static void adapter_down(struct adapter *adapter)
720 {
721 	/*
722 	 * Free interrupt resources.
723 	 */
724 	if (adapter->flags & USING_MSIX)
725 		free_msix_queue_irqs(adapter);
726 	else
727 		free_irq(adapter->pdev->irq, adapter);
728 
729 	/*
730 	 * Wait for NAPI handlers to finish.
731 	 */
732 	quiesce_rx(adapter);
733 }
734 
735 /*
736  * Start up a net device.
737  */
738 static int cxgb4vf_open(struct net_device *dev)
739 {
740 	int err;
741 	struct port_info *pi = netdev_priv(dev);
742 	struct adapter *adapter = pi->adapter;
743 
744 	/*
745 	 * If this is the first interface that we're opening on the "adapter",
746 	 * bring the "adapter" up now.
747 	 */
748 	if (adapter->open_device_map == 0) {
749 		err = adapter_up(adapter);
750 		if (err)
751 			return err;
752 	}
753 
754 	/*
755 	 * Note that this interface is up and start everything up ...
756 	 */
757 	netif_set_real_num_tx_queues(dev, pi->nqsets);
758 	err = netif_set_real_num_rx_queues(dev, pi->nqsets);
759 	if (err)
760 		goto err_unwind;
761 	err = link_start(dev);
762 	if (err)
763 		goto err_unwind;
764 
765 	netif_tx_start_all_queues(dev);
766 	set_bit(pi->port_id, &adapter->open_device_map);
767 	return 0;
768 
769 err_unwind:
770 	if (adapter->open_device_map == 0)
771 		adapter_down(adapter);
772 	return err;
773 }
774 
775 /*
776  * Shut down a net device.  This routine is called "cxgb_close" in the PF
777  * Driver ...
778  */
779 static int cxgb4vf_stop(struct net_device *dev)
780 {
781 	struct port_info *pi = netdev_priv(dev);
782 	struct adapter *adapter = pi->adapter;
783 
784 	netif_tx_stop_all_queues(dev);
785 	netif_carrier_off(dev);
786 	t4vf_enable_vi(adapter, pi->viid, false, false);
787 	pi->link_cfg.link_ok = 0;
788 
789 	clear_bit(pi->port_id, &adapter->open_device_map);
790 	if (adapter->open_device_map == 0)
791 		adapter_down(adapter);
792 	return 0;
793 }
794 
795 /*
796  * Translate our basic statistics into the standard "ifconfig" statistics.
797  */
798 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
799 {
800 	struct t4vf_port_stats stats;
801 	struct port_info *pi = netdev2pinfo(dev);
802 	struct adapter *adapter = pi->adapter;
803 	struct net_device_stats *ns = &dev->stats;
804 	int err;
805 
806 	spin_lock(&adapter->stats_lock);
807 	err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
808 	spin_unlock(&adapter->stats_lock);
809 
810 	memset(ns, 0, sizeof(*ns));
811 	if (err)
812 		return ns;
813 
814 	ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
815 			stats.tx_ucast_bytes + stats.tx_offload_bytes);
816 	ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
817 			  stats.tx_ucast_frames + stats.tx_offload_frames);
818 	ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
819 			stats.rx_ucast_bytes);
820 	ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
821 			  stats.rx_ucast_frames);
822 	ns->multicast = stats.rx_mcast_frames;
823 	ns->tx_errors = stats.tx_drop_frames;
824 	ns->rx_errors = stats.rx_err_frames;
825 
826 	return ns;
827 }
828 
829 /*
830  * Collect up to maxaddrs worth of a netdevice's unicast addresses, starting
831  * at a specified offset within the list, into an array of addrss pointers and
832  * return the number collected.
833  */
834 static inline unsigned int collect_netdev_uc_list_addrs(const struct net_device *dev,
835 							const u8 **addr,
836 							unsigned int offset,
837 							unsigned int maxaddrs)
838 {
839 	unsigned int index = 0;
840 	unsigned int naddr = 0;
841 	const struct netdev_hw_addr *ha;
842 
843 	for_each_dev_addr(dev, ha)
844 		if (index++ >= offset) {
845 			addr[naddr++] = ha->addr;
846 			if (naddr >= maxaddrs)
847 				break;
848 		}
849 	return naddr;
850 }
851 
852 /*
853  * Collect up to maxaddrs worth of a netdevice's multicast addresses, starting
854  * at a specified offset within the list, into an array of addrss pointers and
855  * return the number collected.
856  */
857 static inline unsigned int collect_netdev_mc_list_addrs(const struct net_device *dev,
858 							const u8 **addr,
859 							unsigned int offset,
860 							unsigned int maxaddrs)
861 {
862 	unsigned int index = 0;
863 	unsigned int naddr = 0;
864 	const struct netdev_hw_addr *ha;
865 
866 	netdev_for_each_mc_addr(ha, dev)
867 		if (index++ >= offset) {
868 			addr[naddr++] = ha->addr;
869 			if (naddr >= maxaddrs)
870 				break;
871 		}
872 	return naddr;
873 }
874 
875 /*
876  * Configure the exact and hash address filters to handle a port's multicast
877  * and secondary unicast MAC addresses.
878  */
879 static int set_addr_filters(const struct net_device *dev, bool sleep)
880 {
881 	u64 mhash = 0;
882 	u64 uhash = 0;
883 	bool free = true;
884 	unsigned int offset, naddr;
885 	const u8 *addr[7];
886 	int ret;
887 	const struct port_info *pi = netdev_priv(dev);
888 
889 	/* first do the secondary unicast addresses */
890 	for (offset = 0; ; offset += naddr) {
891 		naddr = collect_netdev_uc_list_addrs(dev, addr, offset,
892 						     ARRAY_SIZE(addr));
893 		if (naddr == 0)
894 			break;
895 
896 		ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
897 					  naddr, addr, NULL, &uhash, sleep);
898 		if (ret < 0)
899 			return ret;
900 
901 		free = false;
902 	}
903 
904 	/* next set up the multicast addresses */
905 	for (offset = 0; ; offset += naddr) {
906 		naddr = collect_netdev_mc_list_addrs(dev, addr, offset,
907 						     ARRAY_SIZE(addr));
908 		if (naddr == 0)
909 			break;
910 
911 		ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
912 					  naddr, addr, NULL, &mhash, sleep);
913 		if (ret < 0)
914 			return ret;
915 		free = false;
916 	}
917 
918 	return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
919 				  uhash | mhash, sleep);
920 }
921 
922 /*
923  * Set RX properties of a port, such as promiscruity, address filters, and MTU.
924  * If @mtu is -1 it is left unchanged.
925  */
926 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
927 {
928 	int ret;
929 	struct port_info *pi = netdev_priv(dev);
930 
931 	ret = set_addr_filters(dev, sleep_ok);
932 	if (ret == 0)
933 		ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
934 				      (dev->flags & IFF_PROMISC) != 0,
935 				      (dev->flags & IFF_ALLMULTI) != 0,
936 				      1, -1, sleep_ok);
937 	return ret;
938 }
939 
940 /*
941  * Set the current receive modes on the device.
942  */
943 static void cxgb4vf_set_rxmode(struct net_device *dev)
944 {
945 	/* unfortunately we can't return errors to the stack */
946 	set_rxmode(dev, -1, false);
947 }
948 
949 /*
950  * Find the entry in the interrupt holdoff timer value array which comes
951  * closest to the specified interrupt holdoff value.
952  */
953 static int closest_timer(const struct sge *s, int us)
954 {
955 	int i, timer_idx = 0, min_delta = INT_MAX;
956 
957 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
958 		int delta = us - s->timer_val[i];
959 		if (delta < 0)
960 			delta = -delta;
961 		if (delta < min_delta) {
962 			min_delta = delta;
963 			timer_idx = i;
964 		}
965 	}
966 	return timer_idx;
967 }
968 
969 static int closest_thres(const struct sge *s, int thres)
970 {
971 	int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
972 
973 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
974 		delta = thres - s->counter_val[i];
975 		if (delta < 0)
976 			delta = -delta;
977 		if (delta < min_delta) {
978 			min_delta = delta;
979 			pktcnt_idx = i;
980 		}
981 	}
982 	return pktcnt_idx;
983 }
984 
985 /*
986  * Return a queue's interrupt hold-off time in us.  0 means no timer.
987  */
988 static unsigned int qtimer_val(const struct adapter *adapter,
989 			       const struct sge_rspq *rspq)
990 {
991 	unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
992 
993 	return timer_idx < SGE_NTIMERS
994 		? adapter->sge.timer_val[timer_idx]
995 		: 0;
996 }
997 
998 /**
999  *	set_rxq_intr_params - set a queue's interrupt holdoff parameters
1000  *	@adapter: the adapter
1001  *	@rspq: the RX response queue
1002  *	@us: the hold-off time in us, or 0 to disable timer
1003  *	@cnt: the hold-off packet count, or 0 to disable counter
1004  *
1005  *	Sets an RX response queue's interrupt hold-off time and packet count.
1006  *	At least one of the two needs to be enabled for the queue to generate
1007  *	interrupts.
1008  */
1009 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1010 			       unsigned int us, unsigned int cnt)
1011 {
1012 	unsigned int timer_idx;
1013 
1014 	/*
1015 	 * If both the interrupt holdoff timer and count are specified as
1016 	 * zero, default to a holdoff count of 1 ...
1017 	 */
1018 	if ((us | cnt) == 0)
1019 		cnt = 1;
1020 
1021 	/*
1022 	 * If an interrupt holdoff count has been specified, then find the
1023 	 * closest configured holdoff count and use that.  If the response
1024 	 * queue has already been created, then update its queue context
1025 	 * parameters ...
1026 	 */
1027 	if (cnt) {
1028 		int err;
1029 		u32 v, pktcnt_idx;
1030 
1031 		pktcnt_idx = closest_thres(&adapter->sge, cnt);
1032 		if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1033 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1034 			    FW_PARAMS_PARAM_X_V(
1035 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1036 			    FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id);
1037 			err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1038 			if (err)
1039 				return err;
1040 		}
1041 		rspq->pktcnt_idx = pktcnt_idx;
1042 	}
1043 
1044 	/*
1045 	 * Compute the closest holdoff timer index from the supplied holdoff
1046 	 * timer value.
1047 	 */
1048 	timer_idx = (us == 0
1049 		     ? SGE_TIMER_RSTRT_CNTR
1050 		     : closest_timer(&adapter->sge, us));
1051 
1052 	/*
1053 	 * Update the response queue's interrupt coalescing parameters and
1054 	 * return success.
1055 	 */
1056 	rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1057 			     (cnt > 0 ? QINTR_CNT_EN : 0));
1058 	return 0;
1059 }
1060 
1061 /*
1062  * Return a version number to identify the type of adapter.  The scheme is:
1063  * - bits 0..9: chip version
1064  * - bits 10..15: chip revision
1065  */
1066 static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1067 {
1068 	/*
1069 	 * Chip version 4, revision 0x3f (cxgb4vf).
1070 	 */
1071 	return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1072 }
1073 
1074 /*
1075  * Execute the specified ioctl command.
1076  */
1077 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1078 {
1079 	int ret = 0;
1080 
1081 	switch (cmd) {
1082 	    /*
1083 	     * The VF Driver doesn't have access to any of the other
1084 	     * common Ethernet device ioctl()'s (like reading/writing
1085 	     * PHY registers, etc.
1086 	     */
1087 
1088 	default:
1089 		ret = -EOPNOTSUPP;
1090 		break;
1091 	}
1092 	return ret;
1093 }
1094 
1095 /*
1096  * Change the device's MTU.
1097  */
1098 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1099 {
1100 	int ret;
1101 	struct port_info *pi = netdev_priv(dev);
1102 
1103 	/* accommodate SACK */
1104 	if (new_mtu < 81)
1105 		return -EINVAL;
1106 
1107 	ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1108 			      -1, -1, -1, -1, true);
1109 	if (!ret)
1110 		dev->mtu = new_mtu;
1111 	return ret;
1112 }
1113 
1114 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1115 	netdev_features_t features)
1116 {
1117 	/*
1118 	 * Since there is no support for separate rx/tx vlan accel
1119 	 * enable/disable make sure tx flag is always in same state as rx.
1120 	 */
1121 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1122 		features |= NETIF_F_HW_VLAN_CTAG_TX;
1123 	else
1124 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1125 
1126 	return features;
1127 }
1128 
1129 static int cxgb4vf_set_features(struct net_device *dev,
1130 	netdev_features_t features)
1131 {
1132 	struct port_info *pi = netdev_priv(dev);
1133 	netdev_features_t changed = dev->features ^ features;
1134 
1135 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1136 		t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1137 				features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1138 
1139 	return 0;
1140 }
1141 
1142 /*
1143  * Change the devices MAC address.
1144  */
1145 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1146 {
1147 	int ret;
1148 	struct sockaddr *addr = _addr;
1149 	struct port_info *pi = netdev_priv(dev);
1150 
1151 	if (!is_valid_ether_addr(addr->sa_data))
1152 		return -EADDRNOTAVAIL;
1153 
1154 	ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1155 			      addr->sa_data, true);
1156 	if (ret < 0)
1157 		return ret;
1158 
1159 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1160 	pi->xact_addr_filt = ret;
1161 	return 0;
1162 }
1163 
1164 #ifdef CONFIG_NET_POLL_CONTROLLER
1165 /*
1166  * Poll all of our receive queues.  This is called outside of normal interrupt
1167  * context.
1168  */
1169 static void cxgb4vf_poll_controller(struct net_device *dev)
1170 {
1171 	struct port_info *pi = netdev_priv(dev);
1172 	struct adapter *adapter = pi->adapter;
1173 
1174 	if (adapter->flags & USING_MSIX) {
1175 		struct sge_eth_rxq *rxq;
1176 		int nqsets;
1177 
1178 		rxq = &adapter->sge.ethrxq[pi->first_qset];
1179 		for (nqsets = pi->nqsets; nqsets; nqsets--) {
1180 			t4vf_sge_intr_msix(0, &rxq->rspq);
1181 			rxq++;
1182 		}
1183 	} else
1184 		t4vf_intr_handler(adapter)(0, adapter);
1185 }
1186 #endif
1187 
1188 /*
1189  * Ethtool operations.
1190  * ===================
1191  *
1192  * Note that we don't support any ethtool operations which change the physical
1193  * state of the port to which we're linked.
1194  */
1195 
1196 /*
1197  * Return current port link settings.
1198  */
1199 static int cxgb4vf_get_settings(struct net_device *dev,
1200 				struct ethtool_cmd *cmd)
1201 {
1202 	const struct port_info *pi = netdev_priv(dev);
1203 
1204 	cmd->supported = pi->link_cfg.supported;
1205 	cmd->advertising = pi->link_cfg.advertising;
1206 	ethtool_cmd_speed_set(cmd,
1207 			      netif_carrier_ok(dev) ? pi->link_cfg.speed : -1);
1208 	cmd->duplex = DUPLEX_FULL;
1209 
1210 	cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1211 	cmd->phy_address = pi->port_id;
1212 	cmd->transceiver = XCVR_EXTERNAL;
1213 	cmd->autoneg = pi->link_cfg.autoneg;
1214 	cmd->maxtxpkt = 0;
1215 	cmd->maxrxpkt = 0;
1216 	return 0;
1217 }
1218 
1219 /*
1220  * Return our driver information.
1221  */
1222 static void cxgb4vf_get_drvinfo(struct net_device *dev,
1223 				struct ethtool_drvinfo *drvinfo)
1224 {
1225 	struct adapter *adapter = netdev2adap(dev);
1226 
1227 	strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1228 	strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
1229 	strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1230 		sizeof(drvinfo->bus_info));
1231 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1232 		 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1233 		 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev),
1234 		 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev),
1235 		 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev),
1236 		 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev),
1237 		 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev),
1238 		 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev),
1239 		 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev),
1240 		 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev));
1241 }
1242 
1243 /*
1244  * Return current adapter message level.
1245  */
1246 static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1247 {
1248 	return netdev2adap(dev)->msg_enable;
1249 }
1250 
1251 /*
1252  * Set current adapter message level.
1253  */
1254 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1255 {
1256 	netdev2adap(dev)->msg_enable = msglevel;
1257 }
1258 
1259 /*
1260  * Return the device's current Queue Set ring size parameters along with the
1261  * allowed maximum values.  Since ethtool doesn't understand the concept of
1262  * multi-queue devices, we just return the current values associated with the
1263  * first Queue Set.
1264  */
1265 static void cxgb4vf_get_ringparam(struct net_device *dev,
1266 				  struct ethtool_ringparam *rp)
1267 {
1268 	const struct port_info *pi = netdev_priv(dev);
1269 	const struct sge *s = &pi->adapter->sge;
1270 
1271 	rp->rx_max_pending = MAX_RX_BUFFERS;
1272 	rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1273 	rp->rx_jumbo_max_pending = 0;
1274 	rp->tx_max_pending = MAX_TXQ_ENTRIES;
1275 
1276 	rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1277 	rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1278 	rp->rx_jumbo_pending = 0;
1279 	rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1280 }
1281 
1282 /*
1283  * Set the Queue Set ring size parameters for the device.  Again, since
1284  * ethtool doesn't allow for the concept of multiple queues per device, we'll
1285  * apply these new values across all of the Queue Sets associated with the
1286  * device -- after vetting them of course!
1287  */
1288 static int cxgb4vf_set_ringparam(struct net_device *dev,
1289 				 struct ethtool_ringparam *rp)
1290 {
1291 	const struct port_info *pi = netdev_priv(dev);
1292 	struct adapter *adapter = pi->adapter;
1293 	struct sge *s = &adapter->sge;
1294 	int qs;
1295 
1296 	if (rp->rx_pending > MAX_RX_BUFFERS ||
1297 	    rp->rx_jumbo_pending ||
1298 	    rp->tx_pending > MAX_TXQ_ENTRIES ||
1299 	    rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1300 	    rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1301 	    rp->rx_pending < MIN_FL_ENTRIES ||
1302 	    rp->tx_pending < MIN_TXQ_ENTRIES)
1303 		return -EINVAL;
1304 
1305 	if (adapter->flags & FULL_INIT_DONE)
1306 		return -EBUSY;
1307 
1308 	for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1309 		s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1310 		s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1311 		s->ethtxq[qs].q.size = rp->tx_pending;
1312 	}
1313 	return 0;
1314 }
1315 
1316 /*
1317  * Return the interrupt holdoff timer and count for the first Queue Set on the
1318  * device.  Our extension ioctl() (the cxgbtool interface) allows the
1319  * interrupt holdoff timer to be read on all of the device's Queue Sets.
1320  */
1321 static int cxgb4vf_get_coalesce(struct net_device *dev,
1322 				struct ethtool_coalesce *coalesce)
1323 {
1324 	const struct port_info *pi = netdev_priv(dev);
1325 	const struct adapter *adapter = pi->adapter;
1326 	const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1327 
1328 	coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1329 	coalesce->rx_max_coalesced_frames =
1330 		((rspq->intr_params & QINTR_CNT_EN)
1331 		 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1332 		 : 0);
1333 	return 0;
1334 }
1335 
1336 /*
1337  * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1338  * interface.  Our extension ioctl() (the cxgbtool interface) allows us to set
1339  * the interrupt holdoff timer on any of the device's Queue Sets.
1340  */
1341 static int cxgb4vf_set_coalesce(struct net_device *dev,
1342 				struct ethtool_coalesce *coalesce)
1343 {
1344 	const struct port_info *pi = netdev_priv(dev);
1345 	struct adapter *adapter = pi->adapter;
1346 
1347 	return set_rxq_intr_params(adapter,
1348 				   &adapter->sge.ethrxq[pi->first_qset].rspq,
1349 				   coalesce->rx_coalesce_usecs,
1350 				   coalesce->rx_max_coalesced_frames);
1351 }
1352 
1353 /*
1354  * Report current port link pause parameter settings.
1355  */
1356 static void cxgb4vf_get_pauseparam(struct net_device *dev,
1357 				   struct ethtool_pauseparam *pauseparam)
1358 {
1359 	struct port_info *pi = netdev_priv(dev);
1360 
1361 	pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1362 	pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1363 	pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1364 }
1365 
1366 /*
1367  * Identify the port by blinking the port's LED.
1368  */
1369 static int cxgb4vf_phys_id(struct net_device *dev,
1370 			   enum ethtool_phys_id_state state)
1371 {
1372 	unsigned int val;
1373 	struct port_info *pi = netdev_priv(dev);
1374 
1375 	if (state == ETHTOOL_ID_ACTIVE)
1376 		val = 0xffff;
1377 	else if (state == ETHTOOL_ID_INACTIVE)
1378 		val = 0;
1379 	else
1380 		return -EINVAL;
1381 
1382 	return t4vf_identify_port(pi->adapter, pi->viid, val);
1383 }
1384 
1385 /*
1386  * Port stats maintained per queue of the port.
1387  */
1388 struct queue_port_stats {
1389 	u64 tso;
1390 	u64 tx_csum;
1391 	u64 rx_csum;
1392 	u64 vlan_ex;
1393 	u64 vlan_ins;
1394 	u64 lro_pkts;
1395 	u64 lro_merged;
1396 };
1397 
1398 /*
1399  * Strings for the ETH_SS_STATS statistics set ("ethtool -S").  Note that
1400  * these need to match the order of statistics returned by
1401  * t4vf_get_port_stats().
1402  */
1403 static const char stats_strings[][ETH_GSTRING_LEN] = {
1404 	/*
1405 	 * These must match the layout of the t4vf_port_stats structure.
1406 	 */
1407 	"TxBroadcastBytes  ",
1408 	"TxBroadcastFrames ",
1409 	"TxMulticastBytes  ",
1410 	"TxMulticastFrames ",
1411 	"TxUnicastBytes    ",
1412 	"TxUnicastFrames   ",
1413 	"TxDroppedFrames   ",
1414 	"TxOffloadBytes    ",
1415 	"TxOffloadFrames   ",
1416 	"RxBroadcastBytes  ",
1417 	"RxBroadcastFrames ",
1418 	"RxMulticastBytes  ",
1419 	"RxMulticastFrames ",
1420 	"RxUnicastBytes    ",
1421 	"RxUnicastFrames   ",
1422 	"RxErrorFrames     ",
1423 
1424 	/*
1425 	 * These are accumulated per-queue statistics and must match the
1426 	 * order of the fields in the queue_port_stats structure.
1427 	 */
1428 	"TSO               ",
1429 	"TxCsumOffload     ",
1430 	"RxCsumGood        ",
1431 	"VLANextractions   ",
1432 	"VLANinsertions    ",
1433 	"GROPackets        ",
1434 	"GROMerged         ",
1435 };
1436 
1437 /*
1438  * Return the number of statistics in the specified statistics set.
1439  */
1440 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1441 {
1442 	switch (sset) {
1443 	case ETH_SS_STATS:
1444 		return ARRAY_SIZE(stats_strings);
1445 	default:
1446 		return -EOPNOTSUPP;
1447 	}
1448 	/*NOTREACHED*/
1449 }
1450 
1451 /*
1452  * Return the strings for the specified statistics set.
1453  */
1454 static void cxgb4vf_get_strings(struct net_device *dev,
1455 				u32 sset,
1456 				u8 *data)
1457 {
1458 	switch (sset) {
1459 	case ETH_SS_STATS:
1460 		memcpy(data, stats_strings, sizeof(stats_strings));
1461 		break;
1462 	}
1463 }
1464 
1465 /*
1466  * Small utility routine to accumulate queue statistics across the queues of
1467  * a "port".
1468  */
1469 static void collect_sge_port_stats(const struct adapter *adapter,
1470 				   const struct port_info *pi,
1471 				   struct queue_port_stats *stats)
1472 {
1473 	const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1474 	const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1475 	int qs;
1476 
1477 	memset(stats, 0, sizeof(*stats));
1478 	for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1479 		stats->tso += txq->tso;
1480 		stats->tx_csum += txq->tx_cso;
1481 		stats->rx_csum += rxq->stats.rx_cso;
1482 		stats->vlan_ex += rxq->stats.vlan_ex;
1483 		stats->vlan_ins += txq->vlan_ins;
1484 		stats->lro_pkts += rxq->stats.lro_pkts;
1485 		stats->lro_merged += rxq->stats.lro_merged;
1486 	}
1487 }
1488 
1489 /*
1490  * Return the ETH_SS_STATS statistics set.
1491  */
1492 static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1493 				      struct ethtool_stats *stats,
1494 				      u64 *data)
1495 {
1496 	struct port_info *pi = netdev2pinfo(dev);
1497 	struct adapter *adapter = pi->adapter;
1498 	int err = t4vf_get_port_stats(adapter, pi->pidx,
1499 				      (struct t4vf_port_stats *)data);
1500 	if (err)
1501 		memset(data, 0, sizeof(struct t4vf_port_stats));
1502 
1503 	data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1504 	collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1505 }
1506 
1507 /*
1508  * Return the size of our register map.
1509  */
1510 static int cxgb4vf_get_regs_len(struct net_device *dev)
1511 {
1512 	return T4VF_REGMAP_SIZE;
1513 }
1514 
1515 /*
1516  * Dump a block of registers, start to end inclusive, into a buffer.
1517  */
1518 static void reg_block_dump(struct adapter *adapter, void *regbuf,
1519 			   unsigned int start, unsigned int end)
1520 {
1521 	u32 *bp = regbuf + start - T4VF_REGMAP_START;
1522 
1523 	for ( ; start <= end; start += sizeof(u32)) {
1524 		/*
1525 		 * Avoid reading the Mailbox Control register since that
1526 		 * can trigger a Mailbox Ownership Arbitration cycle and
1527 		 * interfere with communication with the firmware.
1528 		 */
1529 		if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1530 			*bp++ = 0xffff;
1531 		else
1532 			*bp++ = t4_read_reg(adapter, start);
1533 	}
1534 }
1535 
1536 /*
1537  * Copy our entire register map into the provided buffer.
1538  */
1539 static void cxgb4vf_get_regs(struct net_device *dev,
1540 			     struct ethtool_regs *regs,
1541 			     void *regbuf)
1542 {
1543 	struct adapter *adapter = netdev2adap(dev);
1544 
1545 	regs->version = mk_adap_vers(adapter);
1546 
1547 	/*
1548 	 * Fill in register buffer with our register map.
1549 	 */
1550 	memset(regbuf, 0, T4VF_REGMAP_SIZE);
1551 
1552 	reg_block_dump(adapter, regbuf,
1553 		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1554 		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1555 	reg_block_dump(adapter, regbuf,
1556 		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1557 		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1558 
1559 	/* T5 adds new registers in the PL Register map.
1560 	 */
1561 	reg_block_dump(adapter, regbuf,
1562 		       T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1563 		       T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1564 		       ? A_PL_VF_WHOAMI : A_PL_VF_REVISION));
1565 	reg_block_dump(adapter, regbuf,
1566 		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1567 		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1568 
1569 	reg_block_dump(adapter, regbuf,
1570 		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1571 		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1572 }
1573 
1574 /*
1575  * Report current Wake On LAN settings.
1576  */
1577 static void cxgb4vf_get_wol(struct net_device *dev,
1578 			    struct ethtool_wolinfo *wol)
1579 {
1580 	wol->supported = 0;
1581 	wol->wolopts = 0;
1582 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1583 }
1584 
1585 /*
1586  * TCP Segmentation Offload flags which we support.
1587  */
1588 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1589 
1590 static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1591 	.get_settings		= cxgb4vf_get_settings,
1592 	.get_drvinfo		= cxgb4vf_get_drvinfo,
1593 	.get_msglevel		= cxgb4vf_get_msglevel,
1594 	.set_msglevel		= cxgb4vf_set_msglevel,
1595 	.get_ringparam		= cxgb4vf_get_ringparam,
1596 	.set_ringparam		= cxgb4vf_set_ringparam,
1597 	.get_coalesce		= cxgb4vf_get_coalesce,
1598 	.set_coalesce		= cxgb4vf_set_coalesce,
1599 	.get_pauseparam		= cxgb4vf_get_pauseparam,
1600 	.get_link		= ethtool_op_get_link,
1601 	.get_strings		= cxgb4vf_get_strings,
1602 	.set_phys_id		= cxgb4vf_phys_id,
1603 	.get_sset_count		= cxgb4vf_get_sset_count,
1604 	.get_ethtool_stats	= cxgb4vf_get_ethtool_stats,
1605 	.get_regs_len		= cxgb4vf_get_regs_len,
1606 	.get_regs		= cxgb4vf_get_regs,
1607 	.get_wol		= cxgb4vf_get_wol,
1608 };
1609 
1610 /*
1611  * /sys/kernel/debug/cxgb4vf support code and data.
1612  * ================================================
1613  */
1614 
1615 /*
1616  * Show SGE Queue Set information.  We display QPL Queues Sets per line.
1617  */
1618 #define QPL	4
1619 
1620 static int sge_qinfo_show(struct seq_file *seq, void *v)
1621 {
1622 	struct adapter *adapter = seq->private;
1623 	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1624 	int qs, r = (uintptr_t)v - 1;
1625 
1626 	if (r)
1627 		seq_putc(seq, '\n');
1628 
1629 	#define S3(fmt_spec, s, v) \
1630 		do {\
1631 			seq_printf(seq, "%-12s", s); \
1632 			for (qs = 0; qs < n; ++qs) \
1633 				seq_printf(seq, " %16" fmt_spec, v); \
1634 			seq_putc(seq, '\n'); \
1635 		} while (0)
1636 	#define S(s, v)		S3("s", s, v)
1637 	#define T(s, v)		S3("u", s, txq[qs].v)
1638 	#define R(s, v)		S3("u", s, rxq[qs].v)
1639 
1640 	if (r < eth_entries) {
1641 		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1642 		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1643 		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1644 
1645 		S("QType:", "Ethernet");
1646 		S("Interface:",
1647 		  (rxq[qs].rspq.netdev
1648 		   ? rxq[qs].rspq.netdev->name
1649 		   : "N/A"));
1650 		S3("d", "Port:",
1651 		   (rxq[qs].rspq.netdev
1652 		    ? ((struct port_info *)
1653 		       netdev_priv(rxq[qs].rspq.netdev))->port_id
1654 		    : -1));
1655 		T("TxQ ID:", q.abs_id);
1656 		T("TxQ size:", q.size);
1657 		T("TxQ inuse:", q.in_use);
1658 		T("TxQ PIdx:", q.pidx);
1659 		T("TxQ CIdx:", q.cidx);
1660 		R("RspQ ID:", rspq.abs_id);
1661 		R("RspQ size:", rspq.size);
1662 		R("RspQE size:", rspq.iqe_len);
1663 		S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1664 		S3("u", "Intr pktcnt:",
1665 		   adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1666 		R("RspQ CIdx:", rspq.cidx);
1667 		R("RspQ Gen:", rspq.gen);
1668 		R("FL ID:", fl.abs_id);
1669 		R("FL size:", fl.size - MIN_FL_RESID);
1670 		R("FL avail:", fl.avail);
1671 		R("FL PIdx:", fl.pidx);
1672 		R("FL CIdx:", fl.cidx);
1673 		return 0;
1674 	}
1675 
1676 	r -= eth_entries;
1677 	if (r == 0) {
1678 		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1679 
1680 		seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1681 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1682 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1683 			   qtimer_val(adapter, evtq));
1684 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1685 			   adapter->sge.counter_val[evtq->pktcnt_idx]);
1686 		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1687 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1688 	} else if (r == 1) {
1689 		const struct sge_rspq *intrq = &adapter->sge.intrq;
1690 
1691 		seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1692 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1693 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1694 			   qtimer_val(adapter, intrq));
1695 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1696 			   adapter->sge.counter_val[intrq->pktcnt_idx]);
1697 		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1698 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1699 	}
1700 
1701 	#undef R
1702 	#undef T
1703 	#undef S
1704 	#undef S3
1705 
1706 	return 0;
1707 }
1708 
1709 /*
1710  * Return the number of "entries" in our "file".  We group the multi-Queue
1711  * sections with QPL Queue Sets per "entry".  The sections of the output are:
1712  *
1713  *     Ethernet RX/TX Queue Sets
1714  *     Firmware Event Queue
1715  *     Forwarded Interrupt Queue (if in MSI mode)
1716  */
1717 static int sge_queue_entries(const struct adapter *adapter)
1718 {
1719 	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1720 		((adapter->flags & USING_MSI) != 0);
1721 }
1722 
1723 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1724 {
1725 	int entries = sge_queue_entries(seq->private);
1726 
1727 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1728 }
1729 
1730 static void sge_queue_stop(struct seq_file *seq, void *v)
1731 {
1732 }
1733 
1734 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1735 {
1736 	int entries = sge_queue_entries(seq->private);
1737 
1738 	++*pos;
1739 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1740 }
1741 
1742 static const struct seq_operations sge_qinfo_seq_ops = {
1743 	.start = sge_queue_start,
1744 	.next  = sge_queue_next,
1745 	.stop  = sge_queue_stop,
1746 	.show  = sge_qinfo_show
1747 };
1748 
1749 static int sge_qinfo_open(struct inode *inode, struct file *file)
1750 {
1751 	int res = seq_open(file, &sge_qinfo_seq_ops);
1752 
1753 	if (!res) {
1754 		struct seq_file *seq = file->private_data;
1755 		seq->private = inode->i_private;
1756 	}
1757 	return res;
1758 }
1759 
1760 static const struct file_operations sge_qinfo_debugfs_fops = {
1761 	.owner   = THIS_MODULE,
1762 	.open    = sge_qinfo_open,
1763 	.read    = seq_read,
1764 	.llseek  = seq_lseek,
1765 	.release = seq_release,
1766 };
1767 
1768 /*
1769  * Show SGE Queue Set statistics.  We display QPL Queues Sets per line.
1770  */
1771 #define QPL	4
1772 
1773 static int sge_qstats_show(struct seq_file *seq, void *v)
1774 {
1775 	struct adapter *adapter = seq->private;
1776 	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1777 	int qs, r = (uintptr_t)v - 1;
1778 
1779 	if (r)
1780 		seq_putc(seq, '\n');
1781 
1782 	#define S3(fmt, s, v) \
1783 		do { \
1784 			seq_printf(seq, "%-16s", s); \
1785 			for (qs = 0; qs < n; ++qs) \
1786 				seq_printf(seq, " %8" fmt, v); \
1787 			seq_putc(seq, '\n'); \
1788 		} while (0)
1789 	#define S(s, v)		S3("s", s, v)
1790 
1791 	#define T3(fmt, s, v)	S3(fmt, s, txq[qs].v)
1792 	#define T(s, v)		T3("lu", s, v)
1793 
1794 	#define R3(fmt, s, v)	S3(fmt, s, rxq[qs].v)
1795 	#define R(s, v)		R3("lu", s, v)
1796 
1797 	if (r < eth_entries) {
1798 		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1799 		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1800 		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1801 
1802 		S("QType:", "Ethernet");
1803 		S("Interface:",
1804 		  (rxq[qs].rspq.netdev
1805 		   ? rxq[qs].rspq.netdev->name
1806 		   : "N/A"));
1807 		R3("u", "RspQNullInts:", rspq.unhandled_irqs);
1808 		R("RxPackets:", stats.pkts);
1809 		R("RxCSO:", stats.rx_cso);
1810 		R("VLANxtract:", stats.vlan_ex);
1811 		R("LROmerged:", stats.lro_merged);
1812 		R("LROpackets:", stats.lro_pkts);
1813 		R("RxDrops:", stats.rx_drops);
1814 		T("TSO:", tso);
1815 		T("TxCSO:", tx_cso);
1816 		T("VLANins:", vlan_ins);
1817 		T("TxQFull:", q.stops);
1818 		T("TxQRestarts:", q.restarts);
1819 		T("TxMapErr:", mapping_err);
1820 		R("FLAllocErr:", fl.alloc_failed);
1821 		R("FLLrgAlcErr:", fl.large_alloc_failed);
1822 		R("FLStarving:", fl.starving);
1823 		return 0;
1824 	}
1825 
1826 	r -= eth_entries;
1827 	if (r == 0) {
1828 		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1829 
1830 		seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
1831 		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1832 			   evtq->unhandled_irqs);
1833 		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1834 		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1835 	} else if (r == 1) {
1836 		const struct sge_rspq *intrq = &adapter->sge.intrq;
1837 
1838 		seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
1839 		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1840 			   intrq->unhandled_irqs);
1841 		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1842 		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1843 	}
1844 
1845 	#undef R
1846 	#undef T
1847 	#undef S
1848 	#undef R3
1849 	#undef T3
1850 	#undef S3
1851 
1852 	return 0;
1853 }
1854 
1855 /*
1856  * Return the number of "entries" in our "file".  We group the multi-Queue
1857  * sections with QPL Queue Sets per "entry".  The sections of the output are:
1858  *
1859  *     Ethernet RX/TX Queue Sets
1860  *     Firmware Event Queue
1861  *     Forwarded Interrupt Queue (if in MSI mode)
1862  */
1863 static int sge_qstats_entries(const struct adapter *adapter)
1864 {
1865 	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1866 		((adapter->flags & USING_MSI) != 0);
1867 }
1868 
1869 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1870 {
1871 	int entries = sge_qstats_entries(seq->private);
1872 
1873 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1874 }
1875 
1876 static void sge_qstats_stop(struct seq_file *seq, void *v)
1877 {
1878 }
1879 
1880 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1881 {
1882 	int entries = sge_qstats_entries(seq->private);
1883 
1884 	(*pos)++;
1885 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1886 }
1887 
1888 static const struct seq_operations sge_qstats_seq_ops = {
1889 	.start = sge_qstats_start,
1890 	.next  = sge_qstats_next,
1891 	.stop  = sge_qstats_stop,
1892 	.show  = sge_qstats_show
1893 };
1894 
1895 static int sge_qstats_open(struct inode *inode, struct file *file)
1896 {
1897 	int res = seq_open(file, &sge_qstats_seq_ops);
1898 
1899 	if (res == 0) {
1900 		struct seq_file *seq = file->private_data;
1901 		seq->private = inode->i_private;
1902 	}
1903 	return res;
1904 }
1905 
1906 static const struct file_operations sge_qstats_proc_fops = {
1907 	.owner   = THIS_MODULE,
1908 	.open    = sge_qstats_open,
1909 	.read    = seq_read,
1910 	.llseek  = seq_lseek,
1911 	.release = seq_release,
1912 };
1913 
1914 /*
1915  * Show PCI-E SR-IOV Virtual Function Resource Limits.
1916  */
1917 static int resources_show(struct seq_file *seq, void *v)
1918 {
1919 	struct adapter *adapter = seq->private;
1920 	struct vf_resources *vfres = &adapter->params.vfres;
1921 
1922 	#define S(desc, fmt, var) \
1923 		seq_printf(seq, "%-60s " fmt "\n", \
1924 			   desc " (" #var "):", vfres->var)
1925 
1926 	S("Virtual Interfaces", "%d", nvi);
1927 	S("Egress Queues", "%d", neq);
1928 	S("Ethernet Control", "%d", nethctrl);
1929 	S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1930 	S("Ingress Queues", "%d", niq);
1931 	S("Traffic Class", "%d", tc);
1932 	S("Port Access Rights Mask", "%#x", pmask);
1933 	S("MAC Address Filters", "%d", nexactf);
1934 	S("Firmware Command Read Capabilities", "%#x", r_caps);
1935 	S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1936 
1937 	#undef S
1938 
1939 	return 0;
1940 }
1941 
1942 static int resources_open(struct inode *inode, struct file *file)
1943 {
1944 	return single_open(file, resources_show, inode->i_private);
1945 }
1946 
1947 static const struct file_operations resources_proc_fops = {
1948 	.owner   = THIS_MODULE,
1949 	.open    = resources_open,
1950 	.read    = seq_read,
1951 	.llseek  = seq_lseek,
1952 	.release = single_release,
1953 };
1954 
1955 /*
1956  * Show Virtual Interfaces.
1957  */
1958 static int interfaces_show(struct seq_file *seq, void *v)
1959 {
1960 	if (v == SEQ_START_TOKEN) {
1961 		seq_puts(seq, "Interface  Port   VIID\n");
1962 	} else {
1963 		struct adapter *adapter = seq->private;
1964 		int pidx = (uintptr_t)v - 2;
1965 		struct net_device *dev = adapter->port[pidx];
1966 		struct port_info *pi = netdev_priv(dev);
1967 
1968 		seq_printf(seq, "%9s  %4d  %#5x\n",
1969 			   dev->name, pi->port_id, pi->viid);
1970 	}
1971 	return 0;
1972 }
1973 
1974 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1975 {
1976 	return pos <= adapter->params.nports
1977 		? (void *)(uintptr_t)(pos + 1)
1978 		: NULL;
1979 }
1980 
1981 static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1982 {
1983 	return *pos
1984 		? interfaces_get_idx(seq->private, *pos)
1985 		: SEQ_START_TOKEN;
1986 }
1987 
1988 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1989 {
1990 	(*pos)++;
1991 	return interfaces_get_idx(seq->private, *pos);
1992 }
1993 
1994 static void interfaces_stop(struct seq_file *seq, void *v)
1995 {
1996 }
1997 
1998 static const struct seq_operations interfaces_seq_ops = {
1999 	.start = interfaces_start,
2000 	.next  = interfaces_next,
2001 	.stop  = interfaces_stop,
2002 	.show  = interfaces_show
2003 };
2004 
2005 static int interfaces_open(struct inode *inode, struct file *file)
2006 {
2007 	int res = seq_open(file, &interfaces_seq_ops);
2008 
2009 	if (res == 0) {
2010 		struct seq_file *seq = file->private_data;
2011 		seq->private = inode->i_private;
2012 	}
2013 	return res;
2014 }
2015 
2016 static const struct file_operations interfaces_proc_fops = {
2017 	.owner   = THIS_MODULE,
2018 	.open    = interfaces_open,
2019 	.read    = seq_read,
2020 	.llseek  = seq_lseek,
2021 	.release = seq_release,
2022 };
2023 
2024 /*
2025  * /sys/kernel/debugfs/cxgb4vf/ files list.
2026  */
2027 struct cxgb4vf_debugfs_entry {
2028 	const char *name;		/* name of debugfs node */
2029 	umode_t mode;			/* file system mode */
2030 	const struct file_operations *fops;
2031 };
2032 
2033 static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2034 	{ "sge_qinfo",  S_IRUGO, &sge_qinfo_debugfs_fops },
2035 	{ "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2036 	{ "resources",  S_IRUGO, &resources_proc_fops },
2037 	{ "interfaces", S_IRUGO, &interfaces_proc_fops },
2038 };
2039 
2040 /*
2041  * Module and device initialization and cleanup code.
2042  * ==================================================
2043  */
2044 
2045 /*
2046  * Set up out /sys/kernel/debug/cxgb4vf sub-nodes.  We assume that the
2047  * directory (debugfs_root) has already been set up.
2048  */
2049 static int setup_debugfs(struct adapter *adapter)
2050 {
2051 	int i;
2052 
2053 	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2054 
2055 	/*
2056 	 * Debugfs support is best effort.
2057 	 */
2058 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2059 		(void)debugfs_create_file(debugfs_files[i].name,
2060 				  debugfs_files[i].mode,
2061 				  adapter->debugfs_root,
2062 				  (void *)adapter,
2063 				  debugfs_files[i].fops);
2064 
2065 	return 0;
2066 }
2067 
2068 /*
2069  * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above.  We leave
2070  * it to our caller to tear down the directory (debugfs_root).
2071  */
2072 static void cleanup_debugfs(struct adapter *adapter)
2073 {
2074 	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2075 
2076 	/*
2077 	 * Unlike our sister routine cleanup_proc(), we don't need to remove
2078 	 * individual entries because a call will be made to
2079 	 * debugfs_remove_recursive().  We just need to clean up any ancillary
2080 	 * persistent state.
2081 	 */
2082 	/* nothing to do */
2083 }
2084 
2085 /*
2086  * Perform early "adapter" initialization.  This is where we discover what
2087  * adapter parameters we're going to be using and initialize basic adapter
2088  * hardware support.
2089  */
2090 static int adap_init0(struct adapter *adapter)
2091 {
2092 	struct vf_resources *vfres = &adapter->params.vfres;
2093 	struct sge_params *sge_params = &adapter->params.sge;
2094 	struct sge *s = &adapter->sge;
2095 	unsigned int ethqsets;
2096 	int err;
2097 	u32 param, val = 0;
2098 
2099 	/*
2100 	 * Wait for the device to become ready before proceeding ...
2101 	 */
2102 	err = t4vf_wait_dev_ready(adapter);
2103 	if (err) {
2104 		dev_err(adapter->pdev_dev, "device didn't become ready:"
2105 			" err=%d\n", err);
2106 		return err;
2107 	}
2108 
2109 	/*
2110 	 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2111 	 * 2.6.31 and later we can't call pci_reset_function() in order to
2112 	 * issue an FLR because of a self- deadlock on the device semaphore.
2113 	 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2114 	 * cases where they're needed -- for instance, some versions of KVM
2115 	 * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
2116 	 * use the firmware based reset in order to reset any per function
2117 	 * state.
2118 	 */
2119 	err = t4vf_fw_reset(adapter);
2120 	if (err < 0) {
2121 		dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2122 		return err;
2123 	}
2124 
2125 	/*
2126 	 * Grab basic operational parameters.  These will predominantly have
2127 	 * been set up by the Physical Function Driver or will be hard coded
2128 	 * into the adapter.  We just have to live with them ...  Note that
2129 	 * we _must_ get our VPD parameters before our SGE parameters because
2130 	 * we need to know the adapter's core clock from the VPD in order to
2131 	 * properly decode the SGE Timer Values.
2132 	 */
2133 	err = t4vf_get_dev_params(adapter);
2134 	if (err) {
2135 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2136 			" device parameters: err=%d\n", err);
2137 		return err;
2138 	}
2139 	err = t4vf_get_vpd_params(adapter);
2140 	if (err) {
2141 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2142 			" VPD parameters: err=%d\n", err);
2143 		return err;
2144 	}
2145 	err = t4vf_get_sge_params(adapter);
2146 	if (err) {
2147 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2148 			" SGE parameters: err=%d\n", err);
2149 		return err;
2150 	}
2151 	err = t4vf_get_rss_glb_config(adapter);
2152 	if (err) {
2153 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2154 			" RSS parameters: err=%d\n", err);
2155 		return err;
2156 	}
2157 	if (adapter->params.rss.mode !=
2158 	    FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2159 		dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2160 			" mode %d\n", adapter->params.rss.mode);
2161 		return -EINVAL;
2162 	}
2163 	err = t4vf_sge_init(adapter);
2164 	if (err) {
2165 		dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2166 			" err=%d\n", err);
2167 		return err;
2168 	}
2169 
2170 	/* If we're running on newer firmware, let it know that we're
2171 	 * prepared to deal with encapsulated CPL messages.  Older
2172 	 * firmware won't understand this and we'll just get
2173 	 * unencapsulated messages ...
2174 	 */
2175 	param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2176 		FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2177 	val = 1;
2178 	(void) t4vf_set_params(adapter, 1, &param, &val);
2179 
2180 	/*
2181 	 * Retrieve our RX interrupt holdoff timer values and counter
2182 	 * threshold values from the SGE parameters.
2183 	 */
2184 	s->timer_val[0] = core_ticks_to_us(adapter,
2185 		TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2186 	s->timer_val[1] = core_ticks_to_us(adapter,
2187 		TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2188 	s->timer_val[2] = core_ticks_to_us(adapter,
2189 		TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2190 	s->timer_val[3] = core_ticks_to_us(adapter,
2191 		TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2192 	s->timer_val[4] = core_ticks_to_us(adapter,
2193 		TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2194 	s->timer_val[5] = core_ticks_to_us(adapter,
2195 		TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2196 
2197 	s->counter_val[0] =
2198 		THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2199 	s->counter_val[1] =
2200 		THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2201 	s->counter_val[2] =
2202 		THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2203 	s->counter_val[3] =
2204 		THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2205 
2206 	/*
2207 	 * Grab our Virtual Interface resource allocation, extract the
2208 	 * features that we're interested in and do a bit of sanity testing on
2209 	 * what we discover.
2210 	 */
2211 	err = t4vf_get_vfres(adapter);
2212 	if (err) {
2213 		dev_err(adapter->pdev_dev, "unable to get virtual interface"
2214 			" resources: err=%d\n", err);
2215 		return err;
2216 	}
2217 
2218 	/*
2219 	 * The number of "ports" which we support is equal to the number of
2220 	 * Virtual Interfaces with which we've been provisioned.
2221 	 */
2222 	adapter->params.nports = vfres->nvi;
2223 	if (adapter->params.nports > MAX_NPORTS) {
2224 		dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2225 			 " virtual interfaces\n", MAX_NPORTS,
2226 			 adapter->params.nports);
2227 		adapter->params.nports = MAX_NPORTS;
2228 	}
2229 
2230 	/*
2231 	 * We need to reserve a number of the ingress queues with Free List
2232 	 * and Interrupt capabilities for special interrupt purposes (like
2233 	 * asynchronous firmware messages, or forwarded interrupts if we're
2234 	 * using MSI).  The rest of the FL/Intr-capable ingress queues will be
2235 	 * matched up one-for-one with Ethernet/Control egress queues in order
2236 	 * to form "Queue Sets" which will be aportioned between the "ports".
2237 	 * For each Queue Set, we'll need the ability to allocate two Egress
2238 	 * Contexts -- one for the Ingress Queue Free List and one for the TX
2239 	 * Ethernet Queue.
2240 	 */
2241 	ethqsets = vfres->niqflint - INGQ_EXTRAS;
2242 	if (vfres->nethctrl != ethqsets) {
2243 		dev_warn(adapter->pdev_dev, "unequal number of [available]"
2244 			 " ingress/egress queues (%d/%d); using minimum for"
2245 			 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2246 		ethqsets = min(vfres->nethctrl, ethqsets);
2247 	}
2248 	if (vfres->neq < ethqsets*2) {
2249 		dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2250 			 " to support Queue Sets (%d); reducing allowed Queue"
2251 			 " Sets\n", vfres->neq, ethqsets);
2252 		ethqsets = vfres->neq/2;
2253 	}
2254 	if (ethqsets > MAX_ETH_QSETS) {
2255 		dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2256 			 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2257 		ethqsets = MAX_ETH_QSETS;
2258 	}
2259 	if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2260 		dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2261 			 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2262 	}
2263 	adapter->sge.max_ethqsets = ethqsets;
2264 
2265 	/*
2266 	 * Check for various parameter sanity issues.  Most checks simply
2267 	 * result in us using fewer resources than our provissioning but we
2268 	 * do need at least  one "port" with which to work ...
2269 	 */
2270 	if (adapter->sge.max_ethqsets < adapter->params.nports) {
2271 		dev_warn(adapter->pdev_dev, "only using %d of %d available"
2272 			 " virtual interfaces (too few Queue Sets)\n",
2273 			 adapter->sge.max_ethqsets, adapter->params.nports);
2274 		adapter->params.nports = adapter->sge.max_ethqsets;
2275 	}
2276 	if (adapter->params.nports == 0) {
2277 		dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2278 			"usable!\n");
2279 		return -EINVAL;
2280 	}
2281 	return 0;
2282 }
2283 
2284 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2285 			     u8 pkt_cnt_idx, unsigned int size,
2286 			     unsigned int iqe_size)
2287 {
2288 	rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2289 			     (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2290 	rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2291 			    ? pkt_cnt_idx
2292 			    : 0);
2293 	rspq->iqe_len = iqe_size;
2294 	rspq->size = size;
2295 }
2296 
2297 /*
2298  * Perform default configuration of DMA queues depending on the number and
2299  * type of ports we found and the number of available CPUs.  Most settings can
2300  * be modified by the admin via ethtool and cxgbtool prior to the adapter
2301  * being brought up for the first time.
2302  */
2303 static void cfg_queues(struct adapter *adapter)
2304 {
2305 	struct sge *s = &adapter->sge;
2306 	int q10g, n10g, qidx, pidx, qs;
2307 	size_t iqe_size;
2308 
2309 	/*
2310 	 * We should not be called till we know how many Queue Sets we can
2311 	 * support.  In particular, this means that we need to know what kind
2312 	 * of interrupts we'll be using ...
2313 	 */
2314 	BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2315 
2316 	/*
2317 	 * Count the number of 10GbE Virtual Interfaces that we have.
2318 	 */
2319 	n10g = 0;
2320 	for_each_port(adapter, pidx)
2321 		n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2322 
2323 	/*
2324 	 * We default to 1 queue per non-10G port and up to # of cores queues
2325 	 * per 10G port.
2326 	 */
2327 	if (n10g == 0)
2328 		q10g = 0;
2329 	else {
2330 		int n1g = (adapter->params.nports - n10g);
2331 		q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2332 		if (q10g > num_online_cpus())
2333 			q10g = num_online_cpus();
2334 	}
2335 
2336 	/*
2337 	 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2338 	 * The layout will be established in setup_sge_queues() when the
2339 	 * adapter is brough up for the first time.
2340 	 */
2341 	qidx = 0;
2342 	for_each_port(adapter, pidx) {
2343 		struct port_info *pi = adap2pinfo(adapter, pidx);
2344 
2345 		pi->first_qset = qidx;
2346 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
2347 		qidx += pi->nqsets;
2348 	}
2349 	s->ethqsets = qidx;
2350 
2351 	/*
2352 	 * The Ingress Queue Entry Size for our various Response Queues needs
2353 	 * to be big enough to accommodate the largest message we can receive
2354 	 * from the chip/firmware; which is 64 bytes ...
2355 	 */
2356 	iqe_size = 64;
2357 
2358 	/*
2359 	 * Set up default Queue Set parameters ...  Start off with the
2360 	 * shortest interrupt holdoff timer.
2361 	 */
2362 	for (qs = 0; qs < s->max_ethqsets; qs++) {
2363 		struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2364 		struct sge_eth_txq *txq = &s->ethtxq[qs];
2365 
2366 		init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2367 		rxq->fl.size = 72;
2368 		txq->q.size = 1024;
2369 	}
2370 
2371 	/*
2372 	 * The firmware event queue is used for link state changes and
2373 	 * notifications of TX DMA completions.
2374 	 */
2375 	init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2376 
2377 	/*
2378 	 * The forwarded interrupt queue is used when we're in MSI interrupt
2379 	 * mode.  In this mode all interrupts associated with RX queues will
2380 	 * be forwarded to a single queue which we'll associate with our MSI
2381 	 * interrupt vector.  The messages dropped in the forwarded interrupt
2382 	 * queue will indicate which ingress queue needs servicing ...  This
2383 	 * queue needs to be large enough to accommodate all of the ingress
2384 	 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2385 	 * from equalling the CIDX if every ingress queue has an outstanding
2386 	 * interrupt).  The queue doesn't need to be any larger because no
2387 	 * ingress queue will ever have more than one outstanding interrupt at
2388 	 * any time ...
2389 	 */
2390 	init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2391 		  iqe_size);
2392 }
2393 
2394 /*
2395  * Reduce the number of Ethernet queues across all ports to at most n.
2396  * n provides at least one queue per port.
2397  */
2398 static void reduce_ethqs(struct adapter *adapter, int n)
2399 {
2400 	int i;
2401 	struct port_info *pi;
2402 
2403 	/*
2404 	 * While we have too many active Ether Queue Sets, interate across the
2405 	 * "ports" and reduce their individual Queue Set allocations.
2406 	 */
2407 	BUG_ON(n < adapter->params.nports);
2408 	while (n < adapter->sge.ethqsets)
2409 		for_each_port(adapter, i) {
2410 			pi = adap2pinfo(adapter, i);
2411 			if (pi->nqsets > 1) {
2412 				pi->nqsets--;
2413 				adapter->sge.ethqsets--;
2414 				if (adapter->sge.ethqsets <= n)
2415 					break;
2416 			}
2417 		}
2418 
2419 	/*
2420 	 * Reassign the starting Queue Sets for each of the "ports" ...
2421 	 */
2422 	n = 0;
2423 	for_each_port(adapter, i) {
2424 		pi = adap2pinfo(adapter, i);
2425 		pi->first_qset = n;
2426 		n += pi->nqsets;
2427 	}
2428 }
2429 
2430 /*
2431  * We need to grab enough MSI-X vectors to cover our interrupt needs.  Ideally
2432  * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2433  * need.  Minimally we need one for every Virtual Interface plus those needed
2434  * for our "extras".  Note that this process may lower the maximum number of
2435  * allowed Queue Sets ...
2436  */
2437 static int enable_msix(struct adapter *adapter)
2438 {
2439 	int i, want, need, nqsets;
2440 	struct msix_entry entries[MSIX_ENTRIES];
2441 	struct sge *s = &adapter->sge;
2442 
2443 	for (i = 0; i < MSIX_ENTRIES; ++i)
2444 		entries[i].entry = i;
2445 
2446 	/*
2447 	 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2448 	 * plus those needed for our "extras" (for example, the firmware
2449 	 * message queue).  We _need_ at least one "Queue Set" per Virtual
2450 	 * Interface plus those needed for our "extras".  So now we get to see
2451 	 * if the song is right ...
2452 	 */
2453 	want = s->max_ethqsets + MSIX_EXTRAS;
2454 	need = adapter->params.nports + MSIX_EXTRAS;
2455 
2456 	want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2457 	if (want < 0)
2458 		return want;
2459 
2460 	nqsets = want - MSIX_EXTRAS;
2461 	if (nqsets < s->max_ethqsets) {
2462 		dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2463 			 " for %d Queue Sets\n", nqsets);
2464 		s->max_ethqsets = nqsets;
2465 		if (nqsets < s->ethqsets)
2466 			reduce_ethqs(adapter, nqsets);
2467 	}
2468 	for (i = 0; i < want; ++i)
2469 		adapter->msix_info[i].vec = entries[i].vector;
2470 
2471 	return 0;
2472 }
2473 
2474 static const struct net_device_ops cxgb4vf_netdev_ops	= {
2475 	.ndo_open		= cxgb4vf_open,
2476 	.ndo_stop		= cxgb4vf_stop,
2477 	.ndo_start_xmit		= t4vf_eth_xmit,
2478 	.ndo_get_stats		= cxgb4vf_get_stats,
2479 	.ndo_set_rx_mode	= cxgb4vf_set_rxmode,
2480 	.ndo_set_mac_address	= cxgb4vf_set_mac_addr,
2481 	.ndo_validate_addr	= eth_validate_addr,
2482 	.ndo_do_ioctl		= cxgb4vf_do_ioctl,
2483 	.ndo_change_mtu		= cxgb4vf_change_mtu,
2484 	.ndo_fix_features	= cxgb4vf_fix_features,
2485 	.ndo_set_features	= cxgb4vf_set_features,
2486 #ifdef CONFIG_NET_POLL_CONTROLLER
2487 	.ndo_poll_controller	= cxgb4vf_poll_controller,
2488 #endif
2489 };
2490 
2491 /*
2492  * "Probe" a device: initialize a device and construct all kernel and driver
2493  * state needed to manage the device.  This routine is called "init_one" in
2494  * the PF Driver ...
2495  */
2496 static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2497 			     const struct pci_device_id *ent)
2498 {
2499 	int pci_using_dac;
2500 	int err, pidx;
2501 	unsigned int pmask;
2502 	struct adapter *adapter;
2503 	struct port_info *pi;
2504 	struct net_device *netdev;
2505 
2506 	/*
2507 	 * Print our driver banner the first time we're called to initialize a
2508 	 * device.
2509 	 */
2510 	pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
2511 
2512 	/*
2513 	 * Initialize generic PCI device state.
2514 	 */
2515 	err = pci_enable_device(pdev);
2516 	if (err) {
2517 		dev_err(&pdev->dev, "cannot enable PCI device\n");
2518 		return err;
2519 	}
2520 
2521 	/*
2522 	 * Reserve PCI resources for the device.  If we can't get them some
2523 	 * other driver may have already claimed the device ...
2524 	 */
2525 	err = pci_request_regions(pdev, KBUILD_MODNAME);
2526 	if (err) {
2527 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2528 		goto err_disable_device;
2529 	}
2530 
2531 	/*
2532 	 * Set up our DMA mask: try for 64-bit address masking first and
2533 	 * fall back to 32-bit if we can't get 64 bits ...
2534 	 */
2535 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2536 	if (err == 0) {
2537 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2538 		if (err) {
2539 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2540 				" coherent allocations\n");
2541 			goto err_release_regions;
2542 		}
2543 		pci_using_dac = 1;
2544 	} else {
2545 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2546 		if (err != 0) {
2547 			dev_err(&pdev->dev, "no usable DMA configuration\n");
2548 			goto err_release_regions;
2549 		}
2550 		pci_using_dac = 0;
2551 	}
2552 
2553 	/*
2554 	 * Enable bus mastering for the device ...
2555 	 */
2556 	pci_set_master(pdev);
2557 
2558 	/*
2559 	 * Allocate our adapter data structure and attach it to the device.
2560 	 */
2561 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2562 	if (!adapter) {
2563 		err = -ENOMEM;
2564 		goto err_release_regions;
2565 	}
2566 	pci_set_drvdata(pdev, adapter);
2567 	adapter->pdev = pdev;
2568 	adapter->pdev_dev = &pdev->dev;
2569 
2570 	/*
2571 	 * Initialize SMP data synchronization resources.
2572 	 */
2573 	spin_lock_init(&adapter->stats_lock);
2574 
2575 	/*
2576 	 * Map our I/O registers in BAR0.
2577 	 */
2578 	adapter->regs = pci_ioremap_bar(pdev, 0);
2579 	if (!adapter->regs) {
2580 		dev_err(&pdev->dev, "cannot map device registers\n");
2581 		err = -ENOMEM;
2582 		goto err_free_adapter;
2583 	}
2584 
2585 	/* Wait for the device to become ready before proceeding ...
2586 	 */
2587 	err = t4vf_prep_adapter(adapter);
2588 	if (err) {
2589 		dev_err(adapter->pdev_dev, "device didn't become ready:"
2590 			" err=%d\n", err);
2591 		goto err_unmap_bar0;
2592 	}
2593 
2594 	/* For T5 and later we want to use the new BAR-based User Doorbells,
2595 	 * so we need to map BAR2 here ...
2596 	 */
2597 	if (!is_t4(adapter->params.chip)) {
2598 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
2599 					   pci_resource_len(pdev, 2));
2600 		if (!adapter->bar2) {
2601 			dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n");
2602 			err = -ENOMEM;
2603 			goto err_unmap_bar0;
2604 		}
2605 	}
2606 	/*
2607 	 * Initialize adapter level features.
2608 	 */
2609 	adapter->name = pci_name(pdev);
2610 	adapter->msg_enable = dflt_msg_enable;
2611 	err = adap_init0(adapter);
2612 	if (err)
2613 		goto err_unmap_bar;
2614 
2615 	/*
2616 	 * Allocate our "adapter ports" and stitch everything together.
2617 	 */
2618 	pmask = adapter->params.vfres.pmask;
2619 	for_each_port(adapter, pidx) {
2620 		int port_id, viid;
2621 
2622 		/*
2623 		 * We simplistically allocate our virtual interfaces
2624 		 * sequentially across the port numbers to which we have
2625 		 * access rights.  This should be configurable in some manner
2626 		 * ...
2627 		 */
2628 		if (pmask == 0)
2629 			break;
2630 		port_id = ffs(pmask) - 1;
2631 		pmask &= ~(1 << port_id);
2632 		viid = t4vf_alloc_vi(adapter, port_id);
2633 		if (viid < 0) {
2634 			dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2635 				" err=%d\n", port_id, viid);
2636 			err = viid;
2637 			goto err_free_dev;
2638 		}
2639 
2640 		/*
2641 		 * Allocate our network device and stitch things together.
2642 		 */
2643 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
2644 					   MAX_PORT_QSETS);
2645 		if (netdev == NULL) {
2646 			t4vf_free_vi(adapter, viid);
2647 			err = -ENOMEM;
2648 			goto err_free_dev;
2649 		}
2650 		adapter->port[pidx] = netdev;
2651 		SET_NETDEV_DEV(netdev, &pdev->dev);
2652 		pi = netdev_priv(netdev);
2653 		pi->adapter = adapter;
2654 		pi->pidx = pidx;
2655 		pi->port_id = port_id;
2656 		pi->viid = viid;
2657 
2658 		/*
2659 		 * Initialize the starting state of our "port" and register
2660 		 * it.
2661 		 */
2662 		pi->xact_addr_filt = -1;
2663 		netif_carrier_off(netdev);
2664 		netdev->irq = pdev->irq;
2665 
2666 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
2667 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2668 			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM;
2669 		netdev->vlan_features = NETIF_F_SG | TSO_FLAGS |
2670 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2671 			NETIF_F_HIGHDMA;
2672 		netdev->features = netdev->hw_features |
2673 				   NETIF_F_HW_VLAN_CTAG_TX;
2674 		if (pci_using_dac)
2675 			netdev->features |= NETIF_F_HIGHDMA;
2676 
2677 		netdev->priv_flags |= IFF_UNICAST_FLT;
2678 
2679 		netdev->netdev_ops = &cxgb4vf_netdev_ops;
2680 		netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
2681 
2682 		/*
2683 		 * Initialize the hardware/software state for the port.
2684 		 */
2685 		err = t4vf_port_init(adapter, pidx);
2686 		if (err) {
2687 			dev_err(&pdev->dev, "cannot initialize port %d\n",
2688 				pidx);
2689 			goto err_free_dev;
2690 		}
2691 	}
2692 
2693 	/*
2694 	 * The "card" is now ready to go.  If any errors occur during device
2695 	 * registration we do not fail the whole "card" but rather proceed
2696 	 * only with the ports we manage to register successfully.  However we
2697 	 * must register at least one net device.
2698 	 */
2699 	for_each_port(adapter, pidx) {
2700 		netdev = adapter->port[pidx];
2701 		if (netdev == NULL)
2702 			continue;
2703 
2704 		err = register_netdev(netdev);
2705 		if (err) {
2706 			dev_warn(&pdev->dev, "cannot register net device %s,"
2707 				 " skipping\n", netdev->name);
2708 			continue;
2709 		}
2710 
2711 		set_bit(pidx, &adapter->registered_device_map);
2712 	}
2713 	if (adapter->registered_device_map == 0) {
2714 		dev_err(&pdev->dev, "could not register any net devices\n");
2715 		goto err_free_dev;
2716 	}
2717 
2718 	/*
2719 	 * Set up our debugfs entries.
2720 	 */
2721 	if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
2722 		adapter->debugfs_root =
2723 			debugfs_create_dir(pci_name(pdev),
2724 					   cxgb4vf_debugfs_root);
2725 		if (IS_ERR_OR_NULL(adapter->debugfs_root))
2726 			dev_warn(&pdev->dev, "could not create debugfs"
2727 				 " directory");
2728 		else
2729 			setup_debugfs(adapter);
2730 	}
2731 
2732 	/*
2733 	 * See what interrupts we'll be using.  If we've been configured to
2734 	 * use MSI-X interrupts, try to enable them but fall back to using
2735 	 * MSI interrupts if we can't enable MSI-X interrupts.  If we can't
2736 	 * get MSI interrupts we bail with the error.
2737 	 */
2738 	if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2739 		adapter->flags |= USING_MSIX;
2740 	else {
2741 		err = pci_enable_msi(pdev);
2742 		if (err) {
2743 			dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2744 				" err=%d\n",
2745 				msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2746 			goto err_free_debugfs;
2747 		}
2748 		adapter->flags |= USING_MSI;
2749 	}
2750 
2751 	/*
2752 	 * Now that we know how many "ports" we have and what their types are,
2753 	 * and how many Queue Sets we can support, we can configure our queue
2754 	 * resources.
2755 	 */
2756 	cfg_queues(adapter);
2757 
2758 	/*
2759 	 * Print a short notice on the existence and configuration of the new
2760 	 * VF network device ...
2761 	 */
2762 	for_each_port(adapter, pidx) {
2763 		dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2764 			 adapter->port[pidx]->name,
2765 			 (adapter->flags & USING_MSIX) ? "MSI-X" :
2766 			 (adapter->flags & USING_MSI)  ? "MSI" : "");
2767 	}
2768 
2769 	/*
2770 	 * Return success!
2771 	 */
2772 	return 0;
2773 
2774 	/*
2775 	 * Error recovery and exit code.  Unwind state that's been created
2776 	 * so far and return the error.
2777 	 */
2778 
2779 err_free_debugfs:
2780 	if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2781 		cleanup_debugfs(adapter);
2782 		debugfs_remove_recursive(adapter->debugfs_root);
2783 	}
2784 
2785 err_free_dev:
2786 	for_each_port(adapter, pidx) {
2787 		netdev = adapter->port[pidx];
2788 		if (netdev == NULL)
2789 			continue;
2790 		pi = netdev_priv(netdev);
2791 		t4vf_free_vi(adapter, pi->viid);
2792 		if (test_bit(pidx, &adapter->registered_device_map))
2793 			unregister_netdev(netdev);
2794 		free_netdev(netdev);
2795 	}
2796 
2797 err_unmap_bar:
2798 	if (!is_t4(adapter->params.chip))
2799 		iounmap(adapter->bar2);
2800 
2801 err_unmap_bar0:
2802 	iounmap(adapter->regs);
2803 
2804 err_free_adapter:
2805 	kfree(adapter);
2806 
2807 err_release_regions:
2808 	pci_release_regions(pdev);
2809 	pci_clear_master(pdev);
2810 
2811 err_disable_device:
2812 	pci_disable_device(pdev);
2813 
2814 	return err;
2815 }
2816 
2817 /*
2818  * "Remove" a device: tear down all kernel and driver state created in the
2819  * "probe" routine and quiesce the device (disable interrupts, etc.).  (Note
2820  * that this is called "remove_one" in the PF Driver.)
2821  */
2822 static void cxgb4vf_pci_remove(struct pci_dev *pdev)
2823 {
2824 	struct adapter *adapter = pci_get_drvdata(pdev);
2825 
2826 	/*
2827 	 * Tear down driver state associated with device.
2828 	 */
2829 	if (adapter) {
2830 		int pidx;
2831 
2832 		/*
2833 		 * Stop all of our activity.  Unregister network port,
2834 		 * disable interrupts, etc.
2835 		 */
2836 		for_each_port(adapter, pidx)
2837 			if (test_bit(pidx, &adapter->registered_device_map))
2838 				unregister_netdev(adapter->port[pidx]);
2839 		t4vf_sge_stop(adapter);
2840 		if (adapter->flags & USING_MSIX) {
2841 			pci_disable_msix(adapter->pdev);
2842 			adapter->flags &= ~USING_MSIX;
2843 		} else if (adapter->flags & USING_MSI) {
2844 			pci_disable_msi(adapter->pdev);
2845 			adapter->flags &= ~USING_MSI;
2846 		}
2847 
2848 		/*
2849 		 * Tear down our debugfs entries.
2850 		 */
2851 		if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2852 			cleanup_debugfs(adapter);
2853 			debugfs_remove_recursive(adapter->debugfs_root);
2854 		}
2855 
2856 		/*
2857 		 * Free all of the various resources which we've acquired ...
2858 		 */
2859 		t4vf_free_sge_resources(adapter);
2860 		for_each_port(adapter, pidx) {
2861 			struct net_device *netdev = adapter->port[pidx];
2862 			struct port_info *pi;
2863 
2864 			if (netdev == NULL)
2865 				continue;
2866 
2867 			pi = netdev_priv(netdev);
2868 			t4vf_free_vi(adapter, pi->viid);
2869 			free_netdev(netdev);
2870 		}
2871 		iounmap(adapter->regs);
2872 		if (!is_t4(adapter->params.chip))
2873 			iounmap(adapter->bar2);
2874 		kfree(adapter);
2875 	}
2876 
2877 	/*
2878 	 * Disable the device and release its PCI resources.
2879 	 */
2880 	pci_disable_device(pdev);
2881 	pci_clear_master(pdev);
2882 	pci_release_regions(pdev);
2883 }
2884 
2885 /*
2886  * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
2887  * delivery.
2888  */
2889 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
2890 {
2891 	struct adapter *adapter;
2892 	int pidx;
2893 
2894 	adapter = pci_get_drvdata(pdev);
2895 	if (!adapter)
2896 		return;
2897 
2898 	/* Disable all Virtual Interfaces.  This will shut down the
2899 	 * delivery of all ingress packets into the chip for these
2900 	 * Virtual Interfaces.
2901 	 */
2902 	for_each_port(adapter, pidx)
2903 		if (test_bit(pidx, &adapter->registered_device_map))
2904 			unregister_netdev(adapter->port[pidx]);
2905 
2906 	/* Free up all Queues which will prevent further DMA and
2907 	 * Interrupts allowing various internal pathways to drain.
2908 	 */
2909 	t4vf_sge_stop(adapter);
2910 	if (adapter->flags & USING_MSIX) {
2911 		pci_disable_msix(adapter->pdev);
2912 		adapter->flags &= ~USING_MSIX;
2913 	} else if (adapter->flags & USING_MSI) {
2914 		pci_disable_msi(adapter->pdev);
2915 		adapter->flags &= ~USING_MSI;
2916 	}
2917 
2918 	/*
2919 	 * Free up all Queues which will prevent further DMA and
2920 	 * Interrupts allowing various internal pathways to drain.
2921 	 */
2922 	t4vf_free_sge_resources(adapter);
2923 	pci_set_drvdata(pdev, NULL);
2924 }
2925 
2926 /* Macros needed to support the PCI Device ID Table ...
2927  */
2928 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
2929 	static struct pci_device_id cxgb4vf_pci_tbl[] = {
2930 #define CH_PCI_DEVICE_ID_FUNCTION	0x8
2931 
2932 #define CH_PCI_ID_TABLE_ENTRY(devid) \
2933 		{ PCI_VDEVICE(CHELSIO, (devid)), 0 }
2934 
2935 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
2936 
2937 #include "../cxgb4/t4_pci_id_tbl.h"
2938 
2939 MODULE_DESCRIPTION(DRV_DESC);
2940 MODULE_AUTHOR("Chelsio Communications");
2941 MODULE_LICENSE("Dual BSD/GPL");
2942 MODULE_VERSION(DRV_VERSION);
2943 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2944 
2945 static struct pci_driver cxgb4vf_driver = {
2946 	.name		= KBUILD_MODNAME,
2947 	.id_table	= cxgb4vf_pci_tbl,
2948 	.probe		= cxgb4vf_pci_probe,
2949 	.remove		= cxgb4vf_pci_remove,
2950 	.shutdown	= cxgb4vf_pci_shutdown,
2951 };
2952 
2953 /*
2954  * Initialize global driver state.
2955  */
2956 static int __init cxgb4vf_module_init(void)
2957 {
2958 	int ret;
2959 
2960 	/*
2961 	 * Vet our module parameters.
2962 	 */
2963 	if (msi != MSI_MSIX && msi != MSI_MSI) {
2964 		pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
2965 			msi, MSI_MSIX, MSI_MSI);
2966 		return -EINVAL;
2967 	}
2968 
2969 	/* Debugfs support is optional, just warn if this fails */
2970 	cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
2971 	if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
2972 		pr_warn("could not create debugfs entry, continuing\n");
2973 
2974 	ret = pci_register_driver(&cxgb4vf_driver);
2975 	if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
2976 		debugfs_remove(cxgb4vf_debugfs_root);
2977 	return ret;
2978 }
2979 
2980 /*
2981  * Tear down global driver state.
2982  */
2983 static void __exit cxgb4vf_module_exit(void)
2984 {
2985 	pci_unregister_driver(&cxgb4vf_driver);
2986 	debugfs_remove(cxgb4vf_debugfs_root);
2987 }
2988 
2989 module_init(cxgb4vf_module_init);
2990 module_exit(cxgb4vf_module_exit);
2991