1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <linux/debugfs.h>
46 #include <linux/ethtool.h>
47 
48 #include "t4vf_common.h"
49 #include "t4vf_defs.h"
50 
51 #include "../cxgb4/t4_regs.h"
52 #include "../cxgb4/t4_msg.h"
53 
54 /*
55  * Generic information about the driver.
56  */
57 #define DRV_VERSION "2.0.0-ko"
58 #define DRV_DESC "Chelsio T4/T5 Virtual Function (VF) Network Driver"
59 
60 /*
61  * Module Parameters.
62  * ==================
63  */
64 
65 /*
66  * Default ethtool "message level" for adapters.
67  */
68 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
69 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
70 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
71 
72 static int dflt_msg_enable = DFLT_MSG_ENABLE;
73 
74 module_param(dflt_msg_enable, int, 0644);
75 MODULE_PARM_DESC(dflt_msg_enable,
76 		 "default adapter ethtool message level bitmap");
77 
78 /*
79  * The driver uses the best interrupt scheme available on a platform in the
80  * order MSI-X then MSI.  This parameter determines which of these schemes the
81  * driver may consider as follows:
82  *
83  *     msi = 2: choose from among MSI-X and MSI
84  *     msi = 1: only consider MSI interrupts
85  *
86  * Note that unlike the Physical Function driver, this Virtual Function driver
87  * does _not_ support legacy INTx interrupts (this limitation is mandated by
88  * the PCI-E SR-IOV standard).
89  */
90 #define MSI_MSIX	2
91 #define MSI_MSI		1
92 #define MSI_DEFAULT	MSI_MSIX
93 
94 static int msi = MSI_DEFAULT;
95 
96 module_param(msi, int, 0644);
97 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
98 
99 /*
100  * Fundamental constants.
101  * ======================
102  */
103 
104 enum {
105 	MAX_TXQ_ENTRIES		= 16384,
106 	MAX_RSPQ_ENTRIES	= 16384,
107 	MAX_RX_BUFFERS		= 16384,
108 
109 	MIN_TXQ_ENTRIES		= 32,
110 	MIN_RSPQ_ENTRIES	= 128,
111 	MIN_FL_ENTRIES		= 16,
112 
113 	/*
114 	 * For purposes of manipulating the Free List size we need to
115 	 * recognize that Free Lists are actually Egress Queues (the host
116 	 * produces free buffers which the hardware consumes), Egress Queues
117 	 * indices are all in units of Egress Context Units bytes, and free
118 	 * list entries are 64-bit PCI DMA addresses.  And since the state of
119 	 * the Producer Index == the Consumer Index implies an EMPTY list, we
120 	 * always have at least one Egress Unit's worth of Free List entries
121 	 * unused.  See sge.c for more details ...
122 	 */
123 	EQ_UNIT = SGE_EQ_IDXSIZE,
124 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
125 	MIN_FL_RESID = FL_PER_EQ_UNIT,
126 };
127 
128 /*
129  * Global driver state.
130  * ====================
131  */
132 
133 static struct dentry *cxgb4vf_debugfs_root;
134 
135 /*
136  * OS "Callback" functions.
137  * ========================
138  */
139 
140 /*
141  * The link status has changed on the indicated "port" (Virtual Interface).
142  */
143 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
144 {
145 	struct net_device *dev = adapter->port[pidx];
146 
147 	/*
148 	 * If the port is disabled or the current recorded "link up"
149 	 * status matches the new status, just return.
150 	 */
151 	if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
152 		return;
153 
154 	/*
155 	 * Tell the OS that the link status has changed and print a short
156 	 * informative message on the console about the event.
157 	 */
158 	if (link_ok) {
159 		const char *s;
160 		const char *fc;
161 		const struct port_info *pi = netdev_priv(dev);
162 
163 		netif_carrier_on(dev);
164 
165 		switch (pi->link_cfg.speed) {
166 		case 40000:
167 			s = "40Gbps";
168 			break;
169 
170 		case 10000:
171 			s = "10Gbps";
172 			break;
173 
174 		case 1000:
175 			s = "1000Mbps";
176 			break;
177 
178 		case 100:
179 			s = "100Mbps";
180 			break;
181 
182 		default:
183 			s = "unknown";
184 			break;
185 		}
186 
187 		switch (pi->link_cfg.fc) {
188 		case PAUSE_RX:
189 			fc = "RX";
190 			break;
191 
192 		case PAUSE_TX:
193 			fc = "TX";
194 			break;
195 
196 		case PAUSE_RX|PAUSE_TX:
197 			fc = "RX/TX";
198 			break;
199 
200 		default:
201 			fc = "no";
202 			break;
203 		}
204 
205 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
206 	} else {
207 		netif_carrier_off(dev);
208 		netdev_info(dev, "link down\n");
209 	}
210 }
211 
212 /*
213  * Net device operations.
214  * ======================
215  */
216 
217 
218 
219 
220 /*
221  * Perform the MAC and PHY actions needed to enable a "port" (Virtual
222  * Interface).
223  */
224 static int link_start(struct net_device *dev)
225 {
226 	int ret;
227 	struct port_info *pi = netdev_priv(dev);
228 
229 	/*
230 	 * We do not set address filters and promiscuity here, the stack does
231 	 * that step explicitly. Enable vlan accel.
232 	 */
233 	ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
234 			      true);
235 	if (ret == 0) {
236 		ret = t4vf_change_mac(pi->adapter, pi->viid,
237 				      pi->xact_addr_filt, dev->dev_addr, true);
238 		if (ret >= 0) {
239 			pi->xact_addr_filt = ret;
240 			ret = 0;
241 		}
242 	}
243 
244 	/*
245 	 * We don't need to actually "start the link" itself since the
246 	 * firmware will do that for us when the first Virtual Interface
247 	 * is enabled on a port.
248 	 */
249 	if (ret == 0)
250 		ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
251 	return ret;
252 }
253 
254 /*
255  * Name the MSI-X interrupts.
256  */
257 static void name_msix_vecs(struct adapter *adapter)
258 {
259 	int namelen = sizeof(adapter->msix_info[0].desc) - 1;
260 	int pidx;
261 
262 	/*
263 	 * Firmware events.
264 	 */
265 	snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
266 		 "%s-FWeventq", adapter->name);
267 	adapter->msix_info[MSIX_FW].desc[namelen] = 0;
268 
269 	/*
270 	 * Ethernet queues.
271 	 */
272 	for_each_port(adapter, pidx) {
273 		struct net_device *dev = adapter->port[pidx];
274 		const struct port_info *pi = netdev_priv(dev);
275 		int qs, msi;
276 
277 		for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
278 			snprintf(adapter->msix_info[msi].desc, namelen,
279 				 "%s-%d", dev->name, qs);
280 			adapter->msix_info[msi].desc[namelen] = 0;
281 		}
282 	}
283 }
284 
285 /*
286  * Request all of our MSI-X resources.
287  */
288 static int request_msix_queue_irqs(struct adapter *adapter)
289 {
290 	struct sge *s = &adapter->sge;
291 	int rxq, msi, err;
292 
293 	/*
294 	 * Firmware events.
295 	 */
296 	err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
297 			  0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
298 	if (err)
299 		return err;
300 
301 	/*
302 	 * Ethernet queues.
303 	 */
304 	msi = MSIX_IQFLINT;
305 	for_each_ethrxq(s, rxq) {
306 		err = request_irq(adapter->msix_info[msi].vec,
307 				  t4vf_sge_intr_msix, 0,
308 				  adapter->msix_info[msi].desc,
309 				  &s->ethrxq[rxq].rspq);
310 		if (err)
311 			goto err_free_irqs;
312 		msi++;
313 	}
314 	return 0;
315 
316 err_free_irqs:
317 	while (--rxq >= 0)
318 		free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
319 	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
320 	return err;
321 }
322 
323 /*
324  * Free our MSI-X resources.
325  */
326 static void free_msix_queue_irqs(struct adapter *adapter)
327 {
328 	struct sge *s = &adapter->sge;
329 	int rxq, msi;
330 
331 	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
332 	msi = MSIX_IQFLINT;
333 	for_each_ethrxq(s, rxq)
334 		free_irq(adapter->msix_info[msi++].vec,
335 			 &s->ethrxq[rxq].rspq);
336 }
337 
338 /*
339  * Turn on NAPI and start up interrupts on a response queue.
340  */
341 static void qenable(struct sge_rspq *rspq)
342 {
343 	napi_enable(&rspq->napi);
344 
345 	/*
346 	 * 0-increment the Going To Sleep register to start the timer and
347 	 * enable interrupts.
348 	 */
349 	t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
350 		     CIDXINC(0) |
351 		     SEINTARM(rspq->intr_params) |
352 		     INGRESSQID(rspq->cntxt_id));
353 }
354 
355 /*
356  * Enable NAPI scheduling and interrupt generation for all Receive Queues.
357  */
358 static void enable_rx(struct adapter *adapter)
359 {
360 	int rxq;
361 	struct sge *s = &adapter->sge;
362 
363 	for_each_ethrxq(s, rxq)
364 		qenable(&s->ethrxq[rxq].rspq);
365 	qenable(&s->fw_evtq);
366 
367 	/*
368 	 * The interrupt queue doesn't use NAPI so we do the 0-increment of
369 	 * its Going To Sleep register here to get it started.
370 	 */
371 	if (adapter->flags & USING_MSI)
372 		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
373 			     CIDXINC(0) |
374 			     SEINTARM(s->intrq.intr_params) |
375 			     INGRESSQID(s->intrq.cntxt_id));
376 
377 }
378 
379 /*
380  * Wait until all NAPI handlers are descheduled.
381  */
382 static void quiesce_rx(struct adapter *adapter)
383 {
384 	struct sge *s = &adapter->sge;
385 	int rxq;
386 
387 	for_each_ethrxq(s, rxq)
388 		napi_disable(&s->ethrxq[rxq].rspq.napi);
389 	napi_disable(&s->fw_evtq.napi);
390 }
391 
392 /*
393  * Response queue handler for the firmware event queue.
394  */
395 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
396 			  const struct pkt_gl *gl)
397 {
398 	/*
399 	 * Extract response opcode and get pointer to CPL message body.
400 	 */
401 	struct adapter *adapter = rspq->adapter;
402 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
403 	void *cpl = (void *)(rsp + 1);
404 
405 	switch (opcode) {
406 	case CPL_FW6_MSG: {
407 		/*
408 		 * We've received an asynchronous message from the firmware.
409 		 */
410 		const struct cpl_fw6_msg *fw_msg = cpl;
411 		if (fw_msg->type == FW6_TYPE_CMD_RPL)
412 			t4vf_handle_fw_rpl(adapter, fw_msg->data);
413 		break;
414 	}
415 
416 	case CPL_FW4_MSG: {
417 		/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
418 		 */
419 		const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
420 		opcode = G_CPL_OPCODE(ntohl(p->opcode_qid));
421 		if (opcode != CPL_SGE_EGR_UPDATE) {
422 			dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
423 				, opcode);
424 			break;
425 		}
426 		cpl = (void *)p;
427 		/*FALLTHROUGH*/
428 	}
429 
430 	case CPL_SGE_EGR_UPDATE: {
431 		/*
432 		 * We've received an Egress Queue Status Update message.  We
433 		 * get these, if the SGE is configured to send these when the
434 		 * firmware passes certain points in processing our TX
435 		 * Ethernet Queue or if we make an explicit request for one.
436 		 * We use these updates to determine when we may need to
437 		 * restart a TX Ethernet Queue which was stopped for lack of
438 		 * free TX Queue Descriptors ...
439 		 */
440 		const struct cpl_sge_egr_update *p = cpl;
441 		unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
442 		struct sge *s = &adapter->sge;
443 		struct sge_txq *tq;
444 		struct sge_eth_txq *txq;
445 		unsigned int eq_idx;
446 
447 		/*
448 		 * Perform sanity checking on the Queue ID to make sure it
449 		 * really refers to one of our TX Ethernet Egress Queues which
450 		 * is active and matches the queue's ID.  None of these error
451 		 * conditions should ever happen so we may want to either make
452 		 * them fatal and/or conditionalized under DEBUG.
453 		 */
454 		eq_idx = EQ_IDX(s, qid);
455 		if (unlikely(eq_idx >= MAX_EGRQ)) {
456 			dev_err(adapter->pdev_dev,
457 				"Egress Update QID %d out of range\n", qid);
458 			break;
459 		}
460 		tq = s->egr_map[eq_idx];
461 		if (unlikely(tq == NULL)) {
462 			dev_err(adapter->pdev_dev,
463 				"Egress Update QID %d TXQ=NULL\n", qid);
464 			break;
465 		}
466 		txq = container_of(tq, struct sge_eth_txq, q);
467 		if (unlikely(tq->abs_id != qid)) {
468 			dev_err(adapter->pdev_dev,
469 				"Egress Update QID %d refers to TXQ %d\n",
470 				qid, tq->abs_id);
471 			break;
472 		}
473 
474 		/*
475 		 * Restart a stopped TX Queue which has less than half of its
476 		 * TX ring in use ...
477 		 */
478 		txq->q.restarts++;
479 		netif_tx_wake_queue(txq->txq);
480 		break;
481 	}
482 
483 	default:
484 		dev_err(adapter->pdev_dev,
485 			"unexpected CPL %#x on FW event queue\n", opcode);
486 	}
487 
488 	return 0;
489 }
490 
491 /*
492  * Allocate SGE TX/RX response queues.  Determine how many sets of SGE queues
493  * to use and initializes them.  We support multiple "Queue Sets" per port if
494  * we have MSI-X, otherwise just one queue set per port.
495  */
496 static int setup_sge_queues(struct adapter *adapter)
497 {
498 	struct sge *s = &adapter->sge;
499 	int err, pidx, msix;
500 
501 	/*
502 	 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
503 	 * state.
504 	 */
505 	bitmap_zero(s->starving_fl, MAX_EGRQ);
506 
507 	/*
508 	 * If we're using MSI interrupt mode we need to set up a "forwarded
509 	 * interrupt" queue which we'll set up with our MSI vector.  The rest
510 	 * of the ingress queues will be set up to forward their interrupts to
511 	 * this queue ...  This must be first since t4vf_sge_alloc_rxq() uses
512 	 * the intrq's queue ID as the interrupt forwarding queue for the
513 	 * subsequent calls ...
514 	 */
515 	if (adapter->flags & USING_MSI) {
516 		err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
517 					 adapter->port[0], 0, NULL, NULL);
518 		if (err)
519 			goto err_free_queues;
520 	}
521 
522 	/*
523 	 * Allocate our ingress queue for asynchronous firmware messages.
524 	 */
525 	err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
526 				 MSIX_FW, NULL, fwevtq_handler);
527 	if (err)
528 		goto err_free_queues;
529 
530 	/*
531 	 * Allocate each "port"'s initial Queue Sets.  These can be changed
532 	 * later on ... up to the point where any interface on the adapter is
533 	 * brought up at which point lots of things get nailed down
534 	 * permanently ...
535 	 */
536 	msix = MSIX_IQFLINT;
537 	for_each_port(adapter, pidx) {
538 		struct net_device *dev = adapter->port[pidx];
539 		struct port_info *pi = netdev_priv(dev);
540 		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
541 		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
542 		int qs;
543 
544 		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
545 			err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
546 						 dev, msix++,
547 						 &rxq->fl, t4vf_ethrx_handler);
548 			if (err)
549 				goto err_free_queues;
550 
551 			err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
552 					     netdev_get_tx_queue(dev, qs),
553 					     s->fw_evtq.cntxt_id);
554 			if (err)
555 				goto err_free_queues;
556 
557 			rxq->rspq.idx = qs;
558 			memset(&rxq->stats, 0, sizeof(rxq->stats));
559 		}
560 	}
561 
562 	/*
563 	 * Create the reverse mappings for the queues.
564 	 */
565 	s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
566 	s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
567 	IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
568 	for_each_port(adapter, pidx) {
569 		struct net_device *dev = adapter->port[pidx];
570 		struct port_info *pi = netdev_priv(dev);
571 		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
572 		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
573 		int qs;
574 
575 		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
576 			IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
577 			EQ_MAP(s, txq->q.abs_id) = &txq->q;
578 
579 			/*
580 			 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
581 			 * for Free Lists but since all of the Egress Queues
582 			 * (including Free Lists) have Relative Queue IDs
583 			 * which are computed as Absolute - Base Queue ID, we
584 			 * can synthesize the Absolute Queue IDs for the Free
585 			 * Lists.  This is useful for debugging purposes when
586 			 * we want to dump Queue Contexts via the PF Driver.
587 			 */
588 			rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
589 			EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
590 		}
591 	}
592 	return 0;
593 
594 err_free_queues:
595 	t4vf_free_sge_resources(adapter);
596 	return err;
597 }
598 
599 /*
600  * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
601  * queues.  We configure the RSS CPU lookup table to distribute to the number
602  * of HW receive queues, and the response queue lookup table to narrow that
603  * down to the response queues actually configured for each "port" (Virtual
604  * Interface).  We always configure the RSS mapping for all ports since the
605  * mapping table has plenty of entries.
606  */
607 static int setup_rss(struct adapter *adapter)
608 {
609 	int pidx;
610 
611 	for_each_port(adapter, pidx) {
612 		struct port_info *pi = adap2pinfo(adapter, pidx);
613 		struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
614 		u16 rss[MAX_PORT_QSETS];
615 		int qs, err;
616 
617 		for (qs = 0; qs < pi->nqsets; qs++)
618 			rss[qs] = rxq[qs].rspq.abs_id;
619 
620 		err = t4vf_config_rss_range(adapter, pi->viid,
621 					    0, pi->rss_size, rss, pi->nqsets);
622 		if (err)
623 			return err;
624 
625 		/*
626 		 * Perform Global RSS Mode-specific initialization.
627 		 */
628 		switch (adapter->params.rss.mode) {
629 		case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
630 			/*
631 			 * If Tunnel All Lookup isn't specified in the global
632 			 * RSS Configuration, then we need to specify a
633 			 * default Ingress Queue for any ingress packets which
634 			 * aren't hashed.  We'll use our first ingress queue
635 			 * ...
636 			 */
637 			if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
638 				union rss_vi_config config;
639 				err = t4vf_read_rss_vi_config(adapter,
640 							      pi->viid,
641 							      &config);
642 				if (err)
643 					return err;
644 				config.basicvirtual.defaultq =
645 					rxq[0].rspq.abs_id;
646 				err = t4vf_write_rss_vi_config(adapter,
647 							       pi->viid,
648 							       &config);
649 				if (err)
650 					return err;
651 			}
652 			break;
653 		}
654 	}
655 
656 	return 0;
657 }
658 
659 /*
660  * Bring the adapter up.  Called whenever we go from no "ports" open to having
661  * one open.  This function performs the actions necessary to make an adapter
662  * operational, such as completing the initialization of HW modules, and
663  * enabling interrupts.  Must be called with the rtnl lock held.  (Note that
664  * this is called "cxgb_up" in the PF Driver.)
665  */
666 static int adapter_up(struct adapter *adapter)
667 {
668 	int err;
669 
670 	/*
671 	 * If this is the first time we've been called, perform basic
672 	 * adapter setup.  Once we've done this, many of our adapter
673 	 * parameters can no longer be changed ...
674 	 */
675 	if ((adapter->flags & FULL_INIT_DONE) == 0) {
676 		err = setup_sge_queues(adapter);
677 		if (err)
678 			return err;
679 		err = setup_rss(adapter);
680 		if (err) {
681 			t4vf_free_sge_resources(adapter);
682 			return err;
683 		}
684 
685 		if (adapter->flags & USING_MSIX)
686 			name_msix_vecs(adapter);
687 		adapter->flags |= FULL_INIT_DONE;
688 	}
689 
690 	/*
691 	 * Acquire our interrupt resources.  We only support MSI-X and MSI.
692 	 */
693 	BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
694 	if (adapter->flags & USING_MSIX)
695 		err = request_msix_queue_irqs(adapter);
696 	else
697 		err = request_irq(adapter->pdev->irq,
698 				  t4vf_intr_handler(adapter), 0,
699 				  adapter->name, adapter);
700 	if (err) {
701 		dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
702 			err);
703 		return err;
704 	}
705 
706 	/*
707 	 * Enable NAPI ingress processing and return success.
708 	 */
709 	enable_rx(adapter);
710 	t4vf_sge_start(adapter);
711 	return 0;
712 }
713 
714 /*
715  * Bring the adapter down.  Called whenever the last "port" (Virtual
716  * Interface) closed.  (Note that this routine is called "cxgb_down" in the PF
717  * Driver.)
718  */
719 static void adapter_down(struct adapter *adapter)
720 {
721 	/*
722 	 * Free interrupt resources.
723 	 */
724 	if (adapter->flags & USING_MSIX)
725 		free_msix_queue_irqs(adapter);
726 	else
727 		free_irq(adapter->pdev->irq, adapter);
728 
729 	/*
730 	 * Wait for NAPI handlers to finish.
731 	 */
732 	quiesce_rx(adapter);
733 }
734 
735 /*
736  * Start up a net device.
737  */
738 static int cxgb4vf_open(struct net_device *dev)
739 {
740 	int err;
741 	struct port_info *pi = netdev_priv(dev);
742 	struct adapter *adapter = pi->adapter;
743 
744 	/*
745 	 * If this is the first interface that we're opening on the "adapter",
746 	 * bring the "adapter" up now.
747 	 */
748 	if (adapter->open_device_map == 0) {
749 		err = adapter_up(adapter);
750 		if (err)
751 			return err;
752 	}
753 
754 	/*
755 	 * Note that this interface is up and start everything up ...
756 	 */
757 	netif_set_real_num_tx_queues(dev, pi->nqsets);
758 	err = netif_set_real_num_rx_queues(dev, pi->nqsets);
759 	if (err)
760 		goto err_unwind;
761 	err = link_start(dev);
762 	if (err)
763 		goto err_unwind;
764 
765 	netif_tx_start_all_queues(dev);
766 	set_bit(pi->port_id, &adapter->open_device_map);
767 	return 0;
768 
769 err_unwind:
770 	if (adapter->open_device_map == 0)
771 		adapter_down(adapter);
772 	return err;
773 }
774 
775 /*
776  * Shut down a net device.  This routine is called "cxgb_close" in the PF
777  * Driver ...
778  */
779 static int cxgb4vf_stop(struct net_device *dev)
780 {
781 	struct port_info *pi = netdev_priv(dev);
782 	struct adapter *adapter = pi->adapter;
783 
784 	netif_tx_stop_all_queues(dev);
785 	netif_carrier_off(dev);
786 	t4vf_enable_vi(adapter, pi->viid, false, false);
787 	pi->link_cfg.link_ok = 0;
788 
789 	clear_bit(pi->port_id, &adapter->open_device_map);
790 	if (adapter->open_device_map == 0)
791 		adapter_down(adapter);
792 	return 0;
793 }
794 
795 /*
796  * Translate our basic statistics into the standard "ifconfig" statistics.
797  */
798 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
799 {
800 	struct t4vf_port_stats stats;
801 	struct port_info *pi = netdev2pinfo(dev);
802 	struct adapter *adapter = pi->adapter;
803 	struct net_device_stats *ns = &dev->stats;
804 	int err;
805 
806 	spin_lock(&adapter->stats_lock);
807 	err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
808 	spin_unlock(&adapter->stats_lock);
809 
810 	memset(ns, 0, sizeof(*ns));
811 	if (err)
812 		return ns;
813 
814 	ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
815 			stats.tx_ucast_bytes + stats.tx_offload_bytes);
816 	ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
817 			  stats.tx_ucast_frames + stats.tx_offload_frames);
818 	ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
819 			stats.rx_ucast_bytes);
820 	ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
821 			  stats.rx_ucast_frames);
822 	ns->multicast = stats.rx_mcast_frames;
823 	ns->tx_errors = stats.tx_drop_frames;
824 	ns->rx_errors = stats.rx_err_frames;
825 
826 	return ns;
827 }
828 
829 /*
830  * Collect up to maxaddrs worth of a netdevice's unicast addresses, starting
831  * at a specified offset within the list, into an array of addrss pointers and
832  * return the number collected.
833  */
834 static inline unsigned int collect_netdev_uc_list_addrs(const struct net_device *dev,
835 							const u8 **addr,
836 							unsigned int offset,
837 							unsigned int maxaddrs)
838 {
839 	unsigned int index = 0;
840 	unsigned int naddr = 0;
841 	const struct netdev_hw_addr *ha;
842 
843 	for_each_dev_addr(dev, ha)
844 		if (index++ >= offset) {
845 			addr[naddr++] = ha->addr;
846 			if (naddr >= maxaddrs)
847 				break;
848 		}
849 	return naddr;
850 }
851 
852 /*
853  * Collect up to maxaddrs worth of a netdevice's multicast addresses, starting
854  * at a specified offset within the list, into an array of addrss pointers and
855  * return the number collected.
856  */
857 static inline unsigned int collect_netdev_mc_list_addrs(const struct net_device *dev,
858 							const u8 **addr,
859 							unsigned int offset,
860 							unsigned int maxaddrs)
861 {
862 	unsigned int index = 0;
863 	unsigned int naddr = 0;
864 	const struct netdev_hw_addr *ha;
865 
866 	netdev_for_each_mc_addr(ha, dev)
867 		if (index++ >= offset) {
868 			addr[naddr++] = ha->addr;
869 			if (naddr >= maxaddrs)
870 				break;
871 		}
872 	return naddr;
873 }
874 
875 /*
876  * Configure the exact and hash address filters to handle a port's multicast
877  * and secondary unicast MAC addresses.
878  */
879 static int set_addr_filters(const struct net_device *dev, bool sleep)
880 {
881 	u64 mhash = 0;
882 	u64 uhash = 0;
883 	bool free = true;
884 	unsigned int offset, naddr;
885 	const u8 *addr[7];
886 	int ret;
887 	const struct port_info *pi = netdev_priv(dev);
888 
889 	/* first do the secondary unicast addresses */
890 	for (offset = 0; ; offset += naddr) {
891 		naddr = collect_netdev_uc_list_addrs(dev, addr, offset,
892 						     ARRAY_SIZE(addr));
893 		if (naddr == 0)
894 			break;
895 
896 		ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
897 					  naddr, addr, NULL, &uhash, sleep);
898 		if (ret < 0)
899 			return ret;
900 
901 		free = false;
902 	}
903 
904 	/* next set up the multicast addresses */
905 	for (offset = 0; ; offset += naddr) {
906 		naddr = collect_netdev_mc_list_addrs(dev, addr, offset,
907 						     ARRAY_SIZE(addr));
908 		if (naddr == 0)
909 			break;
910 
911 		ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
912 					  naddr, addr, NULL, &mhash, sleep);
913 		if (ret < 0)
914 			return ret;
915 		free = false;
916 	}
917 
918 	return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
919 				  uhash | mhash, sleep);
920 }
921 
922 /*
923  * Set RX properties of a port, such as promiscruity, address filters, and MTU.
924  * If @mtu is -1 it is left unchanged.
925  */
926 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
927 {
928 	int ret;
929 	struct port_info *pi = netdev_priv(dev);
930 
931 	ret = set_addr_filters(dev, sleep_ok);
932 	if (ret == 0)
933 		ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
934 				      (dev->flags & IFF_PROMISC) != 0,
935 				      (dev->flags & IFF_ALLMULTI) != 0,
936 				      1, -1, sleep_ok);
937 	return ret;
938 }
939 
940 /*
941  * Set the current receive modes on the device.
942  */
943 static void cxgb4vf_set_rxmode(struct net_device *dev)
944 {
945 	/* unfortunately we can't return errors to the stack */
946 	set_rxmode(dev, -1, false);
947 }
948 
949 /*
950  * Find the entry in the interrupt holdoff timer value array which comes
951  * closest to the specified interrupt holdoff value.
952  */
953 static int closest_timer(const struct sge *s, int us)
954 {
955 	int i, timer_idx = 0, min_delta = INT_MAX;
956 
957 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
958 		int delta = us - s->timer_val[i];
959 		if (delta < 0)
960 			delta = -delta;
961 		if (delta < min_delta) {
962 			min_delta = delta;
963 			timer_idx = i;
964 		}
965 	}
966 	return timer_idx;
967 }
968 
969 static int closest_thres(const struct sge *s, int thres)
970 {
971 	int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
972 
973 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
974 		delta = thres - s->counter_val[i];
975 		if (delta < 0)
976 			delta = -delta;
977 		if (delta < min_delta) {
978 			min_delta = delta;
979 			pktcnt_idx = i;
980 		}
981 	}
982 	return pktcnt_idx;
983 }
984 
985 /*
986  * Return a queue's interrupt hold-off time in us.  0 means no timer.
987  */
988 static unsigned int qtimer_val(const struct adapter *adapter,
989 			       const struct sge_rspq *rspq)
990 {
991 	unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
992 
993 	return timer_idx < SGE_NTIMERS
994 		? adapter->sge.timer_val[timer_idx]
995 		: 0;
996 }
997 
998 /**
999  *	set_rxq_intr_params - set a queue's interrupt holdoff parameters
1000  *	@adapter: the adapter
1001  *	@rspq: the RX response queue
1002  *	@us: the hold-off time in us, or 0 to disable timer
1003  *	@cnt: the hold-off packet count, or 0 to disable counter
1004  *
1005  *	Sets an RX response queue's interrupt hold-off time and packet count.
1006  *	At least one of the two needs to be enabled for the queue to generate
1007  *	interrupts.
1008  */
1009 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1010 			       unsigned int us, unsigned int cnt)
1011 {
1012 	unsigned int timer_idx;
1013 
1014 	/*
1015 	 * If both the interrupt holdoff timer and count are specified as
1016 	 * zero, default to a holdoff count of 1 ...
1017 	 */
1018 	if ((us | cnt) == 0)
1019 		cnt = 1;
1020 
1021 	/*
1022 	 * If an interrupt holdoff count has been specified, then find the
1023 	 * closest configured holdoff count and use that.  If the response
1024 	 * queue has already been created, then update its queue context
1025 	 * parameters ...
1026 	 */
1027 	if (cnt) {
1028 		int err;
1029 		u32 v, pktcnt_idx;
1030 
1031 		pktcnt_idx = closest_thres(&adapter->sge, cnt);
1032 		if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1033 			v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1034 			    FW_PARAMS_PARAM_X(
1035 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1036 			    FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1037 			err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1038 			if (err)
1039 				return err;
1040 		}
1041 		rspq->pktcnt_idx = pktcnt_idx;
1042 	}
1043 
1044 	/*
1045 	 * Compute the closest holdoff timer index from the supplied holdoff
1046 	 * timer value.
1047 	 */
1048 	timer_idx = (us == 0
1049 		     ? SGE_TIMER_RSTRT_CNTR
1050 		     : closest_timer(&adapter->sge, us));
1051 
1052 	/*
1053 	 * Update the response queue's interrupt coalescing parameters and
1054 	 * return success.
1055 	 */
1056 	rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1057 			     (cnt > 0 ? QINTR_CNT_EN : 0));
1058 	return 0;
1059 }
1060 
1061 /*
1062  * Return a version number to identify the type of adapter.  The scheme is:
1063  * - bits 0..9: chip version
1064  * - bits 10..15: chip revision
1065  */
1066 static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1067 {
1068 	/*
1069 	 * Chip version 4, revision 0x3f (cxgb4vf).
1070 	 */
1071 	return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1072 }
1073 
1074 /*
1075  * Execute the specified ioctl command.
1076  */
1077 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1078 {
1079 	int ret = 0;
1080 
1081 	switch (cmd) {
1082 	    /*
1083 	     * The VF Driver doesn't have access to any of the other
1084 	     * common Ethernet device ioctl()'s (like reading/writing
1085 	     * PHY registers, etc.
1086 	     */
1087 
1088 	default:
1089 		ret = -EOPNOTSUPP;
1090 		break;
1091 	}
1092 	return ret;
1093 }
1094 
1095 /*
1096  * Change the device's MTU.
1097  */
1098 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1099 {
1100 	int ret;
1101 	struct port_info *pi = netdev_priv(dev);
1102 
1103 	/* accommodate SACK */
1104 	if (new_mtu < 81)
1105 		return -EINVAL;
1106 
1107 	ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1108 			      -1, -1, -1, -1, true);
1109 	if (!ret)
1110 		dev->mtu = new_mtu;
1111 	return ret;
1112 }
1113 
1114 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1115 	netdev_features_t features)
1116 {
1117 	/*
1118 	 * Since there is no support for separate rx/tx vlan accel
1119 	 * enable/disable make sure tx flag is always in same state as rx.
1120 	 */
1121 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1122 		features |= NETIF_F_HW_VLAN_CTAG_TX;
1123 	else
1124 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1125 
1126 	return features;
1127 }
1128 
1129 static int cxgb4vf_set_features(struct net_device *dev,
1130 	netdev_features_t features)
1131 {
1132 	struct port_info *pi = netdev_priv(dev);
1133 	netdev_features_t changed = dev->features ^ features;
1134 
1135 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1136 		t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1137 				features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1138 
1139 	return 0;
1140 }
1141 
1142 /*
1143  * Change the devices MAC address.
1144  */
1145 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1146 {
1147 	int ret;
1148 	struct sockaddr *addr = _addr;
1149 	struct port_info *pi = netdev_priv(dev);
1150 
1151 	if (!is_valid_ether_addr(addr->sa_data))
1152 		return -EADDRNOTAVAIL;
1153 
1154 	ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1155 			      addr->sa_data, true);
1156 	if (ret < 0)
1157 		return ret;
1158 
1159 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1160 	pi->xact_addr_filt = ret;
1161 	return 0;
1162 }
1163 
1164 #ifdef CONFIG_NET_POLL_CONTROLLER
1165 /*
1166  * Poll all of our receive queues.  This is called outside of normal interrupt
1167  * context.
1168  */
1169 static void cxgb4vf_poll_controller(struct net_device *dev)
1170 {
1171 	struct port_info *pi = netdev_priv(dev);
1172 	struct adapter *adapter = pi->adapter;
1173 
1174 	if (adapter->flags & USING_MSIX) {
1175 		struct sge_eth_rxq *rxq;
1176 		int nqsets;
1177 
1178 		rxq = &adapter->sge.ethrxq[pi->first_qset];
1179 		for (nqsets = pi->nqsets; nqsets; nqsets--) {
1180 			t4vf_sge_intr_msix(0, &rxq->rspq);
1181 			rxq++;
1182 		}
1183 	} else
1184 		t4vf_intr_handler(adapter)(0, adapter);
1185 }
1186 #endif
1187 
1188 /*
1189  * Ethtool operations.
1190  * ===================
1191  *
1192  * Note that we don't support any ethtool operations which change the physical
1193  * state of the port to which we're linked.
1194  */
1195 
1196 /*
1197  * Return current port link settings.
1198  */
1199 static int cxgb4vf_get_settings(struct net_device *dev,
1200 				struct ethtool_cmd *cmd)
1201 {
1202 	const struct port_info *pi = netdev_priv(dev);
1203 
1204 	cmd->supported = pi->link_cfg.supported;
1205 	cmd->advertising = pi->link_cfg.advertising;
1206 	ethtool_cmd_speed_set(cmd,
1207 			      netif_carrier_ok(dev) ? pi->link_cfg.speed : -1);
1208 	cmd->duplex = DUPLEX_FULL;
1209 
1210 	cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1211 	cmd->phy_address = pi->port_id;
1212 	cmd->transceiver = XCVR_EXTERNAL;
1213 	cmd->autoneg = pi->link_cfg.autoneg;
1214 	cmd->maxtxpkt = 0;
1215 	cmd->maxrxpkt = 0;
1216 	return 0;
1217 }
1218 
1219 /*
1220  * Return our driver information.
1221  */
1222 static void cxgb4vf_get_drvinfo(struct net_device *dev,
1223 				struct ethtool_drvinfo *drvinfo)
1224 {
1225 	struct adapter *adapter = netdev2adap(dev);
1226 
1227 	strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1228 	strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
1229 	strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1230 		sizeof(drvinfo->bus_info));
1231 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1232 		 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1233 		 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1234 		 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1235 		 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1236 		 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1237 		 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1238 		 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1239 		 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1240 		 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1241 }
1242 
1243 /*
1244  * Return current adapter message level.
1245  */
1246 static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1247 {
1248 	return netdev2adap(dev)->msg_enable;
1249 }
1250 
1251 /*
1252  * Set current adapter message level.
1253  */
1254 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1255 {
1256 	netdev2adap(dev)->msg_enable = msglevel;
1257 }
1258 
1259 /*
1260  * Return the device's current Queue Set ring size parameters along with the
1261  * allowed maximum values.  Since ethtool doesn't understand the concept of
1262  * multi-queue devices, we just return the current values associated with the
1263  * first Queue Set.
1264  */
1265 static void cxgb4vf_get_ringparam(struct net_device *dev,
1266 				  struct ethtool_ringparam *rp)
1267 {
1268 	const struct port_info *pi = netdev_priv(dev);
1269 	const struct sge *s = &pi->adapter->sge;
1270 
1271 	rp->rx_max_pending = MAX_RX_BUFFERS;
1272 	rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1273 	rp->rx_jumbo_max_pending = 0;
1274 	rp->tx_max_pending = MAX_TXQ_ENTRIES;
1275 
1276 	rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1277 	rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1278 	rp->rx_jumbo_pending = 0;
1279 	rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1280 }
1281 
1282 /*
1283  * Set the Queue Set ring size parameters for the device.  Again, since
1284  * ethtool doesn't allow for the concept of multiple queues per device, we'll
1285  * apply these new values across all of the Queue Sets associated with the
1286  * device -- after vetting them of course!
1287  */
1288 static int cxgb4vf_set_ringparam(struct net_device *dev,
1289 				 struct ethtool_ringparam *rp)
1290 {
1291 	const struct port_info *pi = netdev_priv(dev);
1292 	struct adapter *adapter = pi->adapter;
1293 	struct sge *s = &adapter->sge;
1294 	int qs;
1295 
1296 	if (rp->rx_pending > MAX_RX_BUFFERS ||
1297 	    rp->rx_jumbo_pending ||
1298 	    rp->tx_pending > MAX_TXQ_ENTRIES ||
1299 	    rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1300 	    rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1301 	    rp->rx_pending < MIN_FL_ENTRIES ||
1302 	    rp->tx_pending < MIN_TXQ_ENTRIES)
1303 		return -EINVAL;
1304 
1305 	if (adapter->flags & FULL_INIT_DONE)
1306 		return -EBUSY;
1307 
1308 	for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1309 		s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1310 		s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1311 		s->ethtxq[qs].q.size = rp->tx_pending;
1312 	}
1313 	return 0;
1314 }
1315 
1316 /*
1317  * Return the interrupt holdoff timer and count for the first Queue Set on the
1318  * device.  Our extension ioctl() (the cxgbtool interface) allows the
1319  * interrupt holdoff timer to be read on all of the device's Queue Sets.
1320  */
1321 static int cxgb4vf_get_coalesce(struct net_device *dev,
1322 				struct ethtool_coalesce *coalesce)
1323 {
1324 	const struct port_info *pi = netdev_priv(dev);
1325 	const struct adapter *adapter = pi->adapter;
1326 	const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1327 
1328 	coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1329 	coalesce->rx_max_coalesced_frames =
1330 		((rspq->intr_params & QINTR_CNT_EN)
1331 		 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1332 		 : 0);
1333 	return 0;
1334 }
1335 
1336 /*
1337  * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1338  * interface.  Our extension ioctl() (the cxgbtool interface) allows us to set
1339  * the interrupt holdoff timer on any of the device's Queue Sets.
1340  */
1341 static int cxgb4vf_set_coalesce(struct net_device *dev,
1342 				struct ethtool_coalesce *coalesce)
1343 {
1344 	const struct port_info *pi = netdev_priv(dev);
1345 	struct adapter *adapter = pi->adapter;
1346 
1347 	return set_rxq_intr_params(adapter,
1348 				   &adapter->sge.ethrxq[pi->first_qset].rspq,
1349 				   coalesce->rx_coalesce_usecs,
1350 				   coalesce->rx_max_coalesced_frames);
1351 }
1352 
1353 /*
1354  * Report current port link pause parameter settings.
1355  */
1356 static void cxgb4vf_get_pauseparam(struct net_device *dev,
1357 				   struct ethtool_pauseparam *pauseparam)
1358 {
1359 	struct port_info *pi = netdev_priv(dev);
1360 
1361 	pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1362 	pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1363 	pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1364 }
1365 
1366 /*
1367  * Identify the port by blinking the port's LED.
1368  */
1369 static int cxgb4vf_phys_id(struct net_device *dev,
1370 			   enum ethtool_phys_id_state state)
1371 {
1372 	unsigned int val;
1373 	struct port_info *pi = netdev_priv(dev);
1374 
1375 	if (state == ETHTOOL_ID_ACTIVE)
1376 		val = 0xffff;
1377 	else if (state == ETHTOOL_ID_INACTIVE)
1378 		val = 0;
1379 	else
1380 		return -EINVAL;
1381 
1382 	return t4vf_identify_port(pi->adapter, pi->viid, val);
1383 }
1384 
1385 /*
1386  * Port stats maintained per queue of the port.
1387  */
1388 struct queue_port_stats {
1389 	u64 tso;
1390 	u64 tx_csum;
1391 	u64 rx_csum;
1392 	u64 vlan_ex;
1393 	u64 vlan_ins;
1394 	u64 lro_pkts;
1395 	u64 lro_merged;
1396 };
1397 
1398 /*
1399  * Strings for the ETH_SS_STATS statistics set ("ethtool -S").  Note that
1400  * these need to match the order of statistics returned by
1401  * t4vf_get_port_stats().
1402  */
1403 static const char stats_strings[][ETH_GSTRING_LEN] = {
1404 	/*
1405 	 * These must match the layout of the t4vf_port_stats structure.
1406 	 */
1407 	"TxBroadcastBytes  ",
1408 	"TxBroadcastFrames ",
1409 	"TxMulticastBytes  ",
1410 	"TxMulticastFrames ",
1411 	"TxUnicastBytes    ",
1412 	"TxUnicastFrames   ",
1413 	"TxDroppedFrames   ",
1414 	"TxOffloadBytes    ",
1415 	"TxOffloadFrames   ",
1416 	"RxBroadcastBytes  ",
1417 	"RxBroadcastFrames ",
1418 	"RxMulticastBytes  ",
1419 	"RxMulticastFrames ",
1420 	"RxUnicastBytes    ",
1421 	"RxUnicastFrames   ",
1422 	"RxErrorFrames     ",
1423 
1424 	/*
1425 	 * These are accumulated per-queue statistics and must match the
1426 	 * order of the fields in the queue_port_stats structure.
1427 	 */
1428 	"TSO               ",
1429 	"TxCsumOffload     ",
1430 	"RxCsumGood        ",
1431 	"VLANextractions   ",
1432 	"VLANinsertions    ",
1433 	"GROPackets        ",
1434 	"GROMerged         ",
1435 };
1436 
1437 /*
1438  * Return the number of statistics in the specified statistics set.
1439  */
1440 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1441 {
1442 	switch (sset) {
1443 	case ETH_SS_STATS:
1444 		return ARRAY_SIZE(stats_strings);
1445 	default:
1446 		return -EOPNOTSUPP;
1447 	}
1448 	/*NOTREACHED*/
1449 }
1450 
1451 /*
1452  * Return the strings for the specified statistics set.
1453  */
1454 static void cxgb4vf_get_strings(struct net_device *dev,
1455 				u32 sset,
1456 				u8 *data)
1457 {
1458 	switch (sset) {
1459 	case ETH_SS_STATS:
1460 		memcpy(data, stats_strings, sizeof(stats_strings));
1461 		break;
1462 	}
1463 }
1464 
1465 /*
1466  * Small utility routine to accumulate queue statistics across the queues of
1467  * a "port".
1468  */
1469 static void collect_sge_port_stats(const struct adapter *adapter,
1470 				   const struct port_info *pi,
1471 				   struct queue_port_stats *stats)
1472 {
1473 	const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1474 	const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1475 	int qs;
1476 
1477 	memset(stats, 0, sizeof(*stats));
1478 	for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1479 		stats->tso += txq->tso;
1480 		stats->tx_csum += txq->tx_cso;
1481 		stats->rx_csum += rxq->stats.rx_cso;
1482 		stats->vlan_ex += rxq->stats.vlan_ex;
1483 		stats->vlan_ins += txq->vlan_ins;
1484 		stats->lro_pkts += rxq->stats.lro_pkts;
1485 		stats->lro_merged += rxq->stats.lro_merged;
1486 	}
1487 }
1488 
1489 /*
1490  * Return the ETH_SS_STATS statistics set.
1491  */
1492 static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1493 				      struct ethtool_stats *stats,
1494 				      u64 *data)
1495 {
1496 	struct port_info *pi = netdev2pinfo(dev);
1497 	struct adapter *adapter = pi->adapter;
1498 	int err = t4vf_get_port_stats(adapter, pi->pidx,
1499 				      (struct t4vf_port_stats *)data);
1500 	if (err)
1501 		memset(data, 0, sizeof(struct t4vf_port_stats));
1502 
1503 	data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1504 	collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1505 }
1506 
1507 /*
1508  * Return the size of our register map.
1509  */
1510 static int cxgb4vf_get_regs_len(struct net_device *dev)
1511 {
1512 	return T4VF_REGMAP_SIZE;
1513 }
1514 
1515 /*
1516  * Dump a block of registers, start to end inclusive, into a buffer.
1517  */
1518 static void reg_block_dump(struct adapter *adapter, void *regbuf,
1519 			   unsigned int start, unsigned int end)
1520 {
1521 	u32 *bp = regbuf + start - T4VF_REGMAP_START;
1522 
1523 	for ( ; start <= end; start += sizeof(u32)) {
1524 		/*
1525 		 * Avoid reading the Mailbox Control register since that
1526 		 * can trigger a Mailbox Ownership Arbitration cycle and
1527 		 * interfere with communication with the firmware.
1528 		 */
1529 		if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1530 			*bp++ = 0xffff;
1531 		else
1532 			*bp++ = t4_read_reg(adapter, start);
1533 	}
1534 }
1535 
1536 /*
1537  * Copy our entire register map into the provided buffer.
1538  */
1539 static void cxgb4vf_get_regs(struct net_device *dev,
1540 			     struct ethtool_regs *regs,
1541 			     void *regbuf)
1542 {
1543 	struct adapter *adapter = netdev2adap(dev);
1544 
1545 	regs->version = mk_adap_vers(adapter);
1546 
1547 	/*
1548 	 * Fill in register buffer with our register map.
1549 	 */
1550 	memset(regbuf, 0, T4VF_REGMAP_SIZE);
1551 
1552 	reg_block_dump(adapter, regbuf,
1553 		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1554 		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1555 	reg_block_dump(adapter, regbuf,
1556 		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1557 		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1558 
1559 	/* T5 adds new registers in the PL Register map.
1560 	 */
1561 	reg_block_dump(adapter, regbuf,
1562 		       T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1563 		       T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1564 		       ? A_PL_VF_WHOAMI : A_PL_VF_REVISION));
1565 	reg_block_dump(adapter, regbuf,
1566 		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1567 		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1568 
1569 	reg_block_dump(adapter, regbuf,
1570 		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1571 		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1572 }
1573 
1574 /*
1575  * Report current Wake On LAN settings.
1576  */
1577 static void cxgb4vf_get_wol(struct net_device *dev,
1578 			    struct ethtool_wolinfo *wol)
1579 {
1580 	wol->supported = 0;
1581 	wol->wolopts = 0;
1582 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1583 }
1584 
1585 /*
1586  * TCP Segmentation Offload flags which we support.
1587  */
1588 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1589 
1590 static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1591 	.get_settings		= cxgb4vf_get_settings,
1592 	.get_drvinfo		= cxgb4vf_get_drvinfo,
1593 	.get_msglevel		= cxgb4vf_get_msglevel,
1594 	.set_msglevel		= cxgb4vf_set_msglevel,
1595 	.get_ringparam		= cxgb4vf_get_ringparam,
1596 	.set_ringparam		= cxgb4vf_set_ringparam,
1597 	.get_coalesce		= cxgb4vf_get_coalesce,
1598 	.set_coalesce		= cxgb4vf_set_coalesce,
1599 	.get_pauseparam		= cxgb4vf_get_pauseparam,
1600 	.get_link		= ethtool_op_get_link,
1601 	.get_strings		= cxgb4vf_get_strings,
1602 	.set_phys_id		= cxgb4vf_phys_id,
1603 	.get_sset_count		= cxgb4vf_get_sset_count,
1604 	.get_ethtool_stats	= cxgb4vf_get_ethtool_stats,
1605 	.get_regs_len		= cxgb4vf_get_regs_len,
1606 	.get_regs		= cxgb4vf_get_regs,
1607 	.get_wol		= cxgb4vf_get_wol,
1608 };
1609 
1610 /*
1611  * /sys/kernel/debug/cxgb4vf support code and data.
1612  * ================================================
1613  */
1614 
1615 /*
1616  * Show SGE Queue Set information.  We display QPL Queues Sets per line.
1617  */
1618 #define QPL	4
1619 
1620 static int sge_qinfo_show(struct seq_file *seq, void *v)
1621 {
1622 	struct adapter *adapter = seq->private;
1623 	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1624 	int qs, r = (uintptr_t)v - 1;
1625 
1626 	if (r)
1627 		seq_putc(seq, '\n');
1628 
1629 	#define S3(fmt_spec, s, v) \
1630 		do {\
1631 			seq_printf(seq, "%-12s", s); \
1632 			for (qs = 0; qs < n; ++qs) \
1633 				seq_printf(seq, " %16" fmt_spec, v); \
1634 			seq_putc(seq, '\n'); \
1635 		} while (0)
1636 	#define S(s, v)		S3("s", s, v)
1637 	#define T(s, v)		S3("u", s, txq[qs].v)
1638 	#define R(s, v)		S3("u", s, rxq[qs].v)
1639 
1640 	if (r < eth_entries) {
1641 		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1642 		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1643 		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1644 
1645 		S("QType:", "Ethernet");
1646 		S("Interface:",
1647 		  (rxq[qs].rspq.netdev
1648 		   ? rxq[qs].rspq.netdev->name
1649 		   : "N/A"));
1650 		S3("d", "Port:",
1651 		   (rxq[qs].rspq.netdev
1652 		    ? ((struct port_info *)
1653 		       netdev_priv(rxq[qs].rspq.netdev))->port_id
1654 		    : -1));
1655 		T("TxQ ID:", q.abs_id);
1656 		T("TxQ size:", q.size);
1657 		T("TxQ inuse:", q.in_use);
1658 		T("TxQ PIdx:", q.pidx);
1659 		T("TxQ CIdx:", q.cidx);
1660 		R("RspQ ID:", rspq.abs_id);
1661 		R("RspQ size:", rspq.size);
1662 		R("RspQE size:", rspq.iqe_len);
1663 		S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1664 		S3("u", "Intr pktcnt:",
1665 		   adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1666 		R("RspQ CIdx:", rspq.cidx);
1667 		R("RspQ Gen:", rspq.gen);
1668 		R("FL ID:", fl.abs_id);
1669 		R("FL size:", fl.size - MIN_FL_RESID);
1670 		R("FL avail:", fl.avail);
1671 		R("FL PIdx:", fl.pidx);
1672 		R("FL CIdx:", fl.cidx);
1673 		return 0;
1674 	}
1675 
1676 	r -= eth_entries;
1677 	if (r == 0) {
1678 		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1679 
1680 		seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1681 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1682 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1683 			   qtimer_val(adapter, evtq));
1684 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1685 			   adapter->sge.counter_val[evtq->pktcnt_idx]);
1686 		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1687 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1688 	} else if (r == 1) {
1689 		const struct sge_rspq *intrq = &adapter->sge.intrq;
1690 
1691 		seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1692 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1693 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1694 			   qtimer_val(adapter, intrq));
1695 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1696 			   adapter->sge.counter_val[intrq->pktcnt_idx]);
1697 		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1698 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1699 	}
1700 
1701 	#undef R
1702 	#undef T
1703 	#undef S
1704 	#undef S3
1705 
1706 	return 0;
1707 }
1708 
1709 /*
1710  * Return the number of "entries" in our "file".  We group the multi-Queue
1711  * sections with QPL Queue Sets per "entry".  The sections of the output are:
1712  *
1713  *     Ethernet RX/TX Queue Sets
1714  *     Firmware Event Queue
1715  *     Forwarded Interrupt Queue (if in MSI mode)
1716  */
1717 static int sge_queue_entries(const struct adapter *adapter)
1718 {
1719 	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1720 		((adapter->flags & USING_MSI) != 0);
1721 }
1722 
1723 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1724 {
1725 	int entries = sge_queue_entries(seq->private);
1726 
1727 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1728 }
1729 
1730 static void sge_queue_stop(struct seq_file *seq, void *v)
1731 {
1732 }
1733 
1734 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1735 {
1736 	int entries = sge_queue_entries(seq->private);
1737 
1738 	++*pos;
1739 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1740 }
1741 
1742 static const struct seq_operations sge_qinfo_seq_ops = {
1743 	.start = sge_queue_start,
1744 	.next  = sge_queue_next,
1745 	.stop  = sge_queue_stop,
1746 	.show  = sge_qinfo_show
1747 };
1748 
1749 static int sge_qinfo_open(struct inode *inode, struct file *file)
1750 {
1751 	int res = seq_open(file, &sge_qinfo_seq_ops);
1752 
1753 	if (!res) {
1754 		struct seq_file *seq = file->private_data;
1755 		seq->private = inode->i_private;
1756 	}
1757 	return res;
1758 }
1759 
1760 static const struct file_operations sge_qinfo_debugfs_fops = {
1761 	.owner   = THIS_MODULE,
1762 	.open    = sge_qinfo_open,
1763 	.read    = seq_read,
1764 	.llseek  = seq_lseek,
1765 	.release = seq_release,
1766 };
1767 
1768 /*
1769  * Show SGE Queue Set statistics.  We display QPL Queues Sets per line.
1770  */
1771 #define QPL	4
1772 
1773 static int sge_qstats_show(struct seq_file *seq, void *v)
1774 {
1775 	struct adapter *adapter = seq->private;
1776 	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1777 	int qs, r = (uintptr_t)v - 1;
1778 
1779 	if (r)
1780 		seq_putc(seq, '\n');
1781 
1782 	#define S3(fmt, s, v) \
1783 		do { \
1784 			seq_printf(seq, "%-16s", s); \
1785 			for (qs = 0; qs < n; ++qs) \
1786 				seq_printf(seq, " %8" fmt, v); \
1787 			seq_putc(seq, '\n'); \
1788 		} while (0)
1789 	#define S(s, v)		S3("s", s, v)
1790 
1791 	#define T3(fmt, s, v)	S3(fmt, s, txq[qs].v)
1792 	#define T(s, v)		T3("lu", s, v)
1793 
1794 	#define R3(fmt, s, v)	S3(fmt, s, rxq[qs].v)
1795 	#define R(s, v)		R3("lu", s, v)
1796 
1797 	if (r < eth_entries) {
1798 		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1799 		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1800 		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1801 
1802 		S("QType:", "Ethernet");
1803 		S("Interface:",
1804 		  (rxq[qs].rspq.netdev
1805 		   ? rxq[qs].rspq.netdev->name
1806 		   : "N/A"));
1807 		R3("u", "RspQNullInts:", rspq.unhandled_irqs);
1808 		R("RxPackets:", stats.pkts);
1809 		R("RxCSO:", stats.rx_cso);
1810 		R("VLANxtract:", stats.vlan_ex);
1811 		R("LROmerged:", stats.lro_merged);
1812 		R("LROpackets:", stats.lro_pkts);
1813 		R("RxDrops:", stats.rx_drops);
1814 		T("TSO:", tso);
1815 		T("TxCSO:", tx_cso);
1816 		T("VLANins:", vlan_ins);
1817 		T("TxQFull:", q.stops);
1818 		T("TxQRestarts:", q.restarts);
1819 		T("TxMapErr:", mapping_err);
1820 		R("FLAllocErr:", fl.alloc_failed);
1821 		R("FLLrgAlcErr:", fl.large_alloc_failed);
1822 		R("FLStarving:", fl.starving);
1823 		return 0;
1824 	}
1825 
1826 	r -= eth_entries;
1827 	if (r == 0) {
1828 		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1829 
1830 		seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
1831 		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1832 			   evtq->unhandled_irqs);
1833 		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1834 		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1835 	} else if (r == 1) {
1836 		const struct sge_rspq *intrq = &adapter->sge.intrq;
1837 
1838 		seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
1839 		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1840 			   intrq->unhandled_irqs);
1841 		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1842 		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1843 	}
1844 
1845 	#undef R
1846 	#undef T
1847 	#undef S
1848 	#undef R3
1849 	#undef T3
1850 	#undef S3
1851 
1852 	return 0;
1853 }
1854 
1855 /*
1856  * Return the number of "entries" in our "file".  We group the multi-Queue
1857  * sections with QPL Queue Sets per "entry".  The sections of the output are:
1858  *
1859  *     Ethernet RX/TX Queue Sets
1860  *     Firmware Event Queue
1861  *     Forwarded Interrupt Queue (if in MSI mode)
1862  */
1863 static int sge_qstats_entries(const struct adapter *adapter)
1864 {
1865 	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1866 		((adapter->flags & USING_MSI) != 0);
1867 }
1868 
1869 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1870 {
1871 	int entries = sge_qstats_entries(seq->private);
1872 
1873 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1874 }
1875 
1876 static void sge_qstats_stop(struct seq_file *seq, void *v)
1877 {
1878 }
1879 
1880 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1881 {
1882 	int entries = sge_qstats_entries(seq->private);
1883 
1884 	(*pos)++;
1885 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1886 }
1887 
1888 static const struct seq_operations sge_qstats_seq_ops = {
1889 	.start = sge_qstats_start,
1890 	.next  = sge_qstats_next,
1891 	.stop  = sge_qstats_stop,
1892 	.show  = sge_qstats_show
1893 };
1894 
1895 static int sge_qstats_open(struct inode *inode, struct file *file)
1896 {
1897 	int res = seq_open(file, &sge_qstats_seq_ops);
1898 
1899 	if (res == 0) {
1900 		struct seq_file *seq = file->private_data;
1901 		seq->private = inode->i_private;
1902 	}
1903 	return res;
1904 }
1905 
1906 static const struct file_operations sge_qstats_proc_fops = {
1907 	.owner   = THIS_MODULE,
1908 	.open    = sge_qstats_open,
1909 	.read    = seq_read,
1910 	.llseek  = seq_lseek,
1911 	.release = seq_release,
1912 };
1913 
1914 /*
1915  * Show PCI-E SR-IOV Virtual Function Resource Limits.
1916  */
1917 static int resources_show(struct seq_file *seq, void *v)
1918 {
1919 	struct adapter *adapter = seq->private;
1920 	struct vf_resources *vfres = &adapter->params.vfres;
1921 
1922 	#define S(desc, fmt, var) \
1923 		seq_printf(seq, "%-60s " fmt "\n", \
1924 			   desc " (" #var "):", vfres->var)
1925 
1926 	S("Virtual Interfaces", "%d", nvi);
1927 	S("Egress Queues", "%d", neq);
1928 	S("Ethernet Control", "%d", nethctrl);
1929 	S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1930 	S("Ingress Queues", "%d", niq);
1931 	S("Traffic Class", "%d", tc);
1932 	S("Port Access Rights Mask", "%#x", pmask);
1933 	S("MAC Address Filters", "%d", nexactf);
1934 	S("Firmware Command Read Capabilities", "%#x", r_caps);
1935 	S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1936 
1937 	#undef S
1938 
1939 	return 0;
1940 }
1941 
1942 static int resources_open(struct inode *inode, struct file *file)
1943 {
1944 	return single_open(file, resources_show, inode->i_private);
1945 }
1946 
1947 static const struct file_operations resources_proc_fops = {
1948 	.owner   = THIS_MODULE,
1949 	.open    = resources_open,
1950 	.read    = seq_read,
1951 	.llseek  = seq_lseek,
1952 	.release = single_release,
1953 };
1954 
1955 /*
1956  * Show Virtual Interfaces.
1957  */
1958 static int interfaces_show(struct seq_file *seq, void *v)
1959 {
1960 	if (v == SEQ_START_TOKEN) {
1961 		seq_puts(seq, "Interface  Port   VIID\n");
1962 	} else {
1963 		struct adapter *adapter = seq->private;
1964 		int pidx = (uintptr_t)v - 2;
1965 		struct net_device *dev = adapter->port[pidx];
1966 		struct port_info *pi = netdev_priv(dev);
1967 
1968 		seq_printf(seq, "%9s  %4d  %#5x\n",
1969 			   dev->name, pi->port_id, pi->viid);
1970 	}
1971 	return 0;
1972 }
1973 
1974 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1975 {
1976 	return pos <= adapter->params.nports
1977 		? (void *)(uintptr_t)(pos + 1)
1978 		: NULL;
1979 }
1980 
1981 static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1982 {
1983 	return *pos
1984 		? interfaces_get_idx(seq->private, *pos)
1985 		: SEQ_START_TOKEN;
1986 }
1987 
1988 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1989 {
1990 	(*pos)++;
1991 	return interfaces_get_idx(seq->private, *pos);
1992 }
1993 
1994 static void interfaces_stop(struct seq_file *seq, void *v)
1995 {
1996 }
1997 
1998 static const struct seq_operations interfaces_seq_ops = {
1999 	.start = interfaces_start,
2000 	.next  = interfaces_next,
2001 	.stop  = interfaces_stop,
2002 	.show  = interfaces_show
2003 };
2004 
2005 static int interfaces_open(struct inode *inode, struct file *file)
2006 {
2007 	int res = seq_open(file, &interfaces_seq_ops);
2008 
2009 	if (res == 0) {
2010 		struct seq_file *seq = file->private_data;
2011 		seq->private = inode->i_private;
2012 	}
2013 	return res;
2014 }
2015 
2016 static const struct file_operations interfaces_proc_fops = {
2017 	.owner   = THIS_MODULE,
2018 	.open    = interfaces_open,
2019 	.read    = seq_read,
2020 	.llseek  = seq_lseek,
2021 	.release = seq_release,
2022 };
2023 
2024 /*
2025  * /sys/kernel/debugfs/cxgb4vf/ files list.
2026  */
2027 struct cxgb4vf_debugfs_entry {
2028 	const char *name;		/* name of debugfs node */
2029 	umode_t mode;			/* file system mode */
2030 	const struct file_operations *fops;
2031 };
2032 
2033 static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2034 	{ "sge_qinfo",  S_IRUGO, &sge_qinfo_debugfs_fops },
2035 	{ "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2036 	{ "resources",  S_IRUGO, &resources_proc_fops },
2037 	{ "interfaces", S_IRUGO, &interfaces_proc_fops },
2038 };
2039 
2040 /*
2041  * Module and device initialization and cleanup code.
2042  * ==================================================
2043  */
2044 
2045 /*
2046  * Set up out /sys/kernel/debug/cxgb4vf sub-nodes.  We assume that the
2047  * directory (debugfs_root) has already been set up.
2048  */
2049 static int setup_debugfs(struct adapter *adapter)
2050 {
2051 	int i;
2052 
2053 	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2054 
2055 	/*
2056 	 * Debugfs support is best effort.
2057 	 */
2058 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2059 		(void)debugfs_create_file(debugfs_files[i].name,
2060 				  debugfs_files[i].mode,
2061 				  adapter->debugfs_root,
2062 				  (void *)adapter,
2063 				  debugfs_files[i].fops);
2064 
2065 	return 0;
2066 }
2067 
2068 /*
2069  * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above.  We leave
2070  * it to our caller to tear down the directory (debugfs_root).
2071  */
2072 static void cleanup_debugfs(struct adapter *adapter)
2073 {
2074 	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2075 
2076 	/*
2077 	 * Unlike our sister routine cleanup_proc(), we don't need to remove
2078 	 * individual entries because a call will be made to
2079 	 * debugfs_remove_recursive().  We just need to clean up any ancillary
2080 	 * persistent state.
2081 	 */
2082 	/* nothing to do */
2083 }
2084 
2085 /*
2086  * Perform early "adapter" initialization.  This is where we discover what
2087  * adapter parameters we're going to be using and initialize basic adapter
2088  * hardware support.
2089  */
2090 static int adap_init0(struct adapter *adapter)
2091 {
2092 	struct vf_resources *vfres = &adapter->params.vfres;
2093 	struct sge_params *sge_params = &adapter->params.sge;
2094 	struct sge *s = &adapter->sge;
2095 	unsigned int ethqsets;
2096 	int err;
2097 	u32 param, val = 0;
2098 	unsigned int chipid;
2099 
2100 	/*
2101 	 * Wait for the device to become ready before proceeding ...
2102 	 */
2103 	err = t4vf_wait_dev_ready(adapter);
2104 	if (err) {
2105 		dev_err(adapter->pdev_dev, "device didn't become ready:"
2106 			" err=%d\n", err);
2107 		return err;
2108 	}
2109 
2110 	/*
2111 	 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2112 	 * 2.6.31 and later we can't call pci_reset_function() in order to
2113 	 * issue an FLR because of a self- deadlock on the device semaphore.
2114 	 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2115 	 * cases where they're needed -- for instance, some versions of KVM
2116 	 * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
2117 	 * use the firmware based reset in order to reset any per function
2118 	 * state.
2119 	 */
2120 	err = t4vf_fw_reset(adapter);
2121 	if (err < 0) {
2122 		dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2123 		return err;
2124 	}
2125 
2126 	adapter->params.chip = 0;
2127 	switch (adapter->pdev->device >> 12) {
2128 	case CHELSIO_T4:
2129 		adapter->params.chip = CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
2130 		break;
2131 	case CHELSIO_T5:
2132 		chipid = G_REV(t4_read_reg(adapter, A_PL_VF_REV));
2133 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
2134 		break;
2135 	}
2136 
2137 	/*
2138 	 * Grab basic operational parameters.  These will predominantly have
2139 	 * been set up by the Physical Function Driver or will be hard coded
2140 	 * into the adapter.  We just have to live with them ...  Note that
2141 	 * we _must_ get our VPD parameters before our SGE parameters because
2142 	 * we need to know the adapter's core clock from the VPD in order to
2143 	 * properly decode the SGE Timer Values.
2144 	 */
2145 	err = t4vf_get_dev_params(adapter);
2146 	if (err) {
2147 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2148 			" device parameters: err=%d\n", err);
2149 		return err;
2150 	}
2151 	err = t4vf_get_vpd_params(adapter);
2152 	if (err) {
2153 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2154 			" VPD parameters: err=%d\n", err);
2155 		return err;
2156 	}
2157 	err = t4vf_get_sge_params(adapter);
2158 	if (err) {
2159 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2160 			" SGE parameters: err=%d\n", err);
2161 		return err;
2162 	}
2163 	err = t4vf_get_rss_glb_config(adapter);
2164 	if (err) {
2165 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2166 			" RSS parameters: err=%d\n", err);
2167 		return err;
2168 	}
2169 	if (adapter->params.rss.mode !=
2170 	    FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2171 		dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2172 			" mode %d\n", adapter->params.rss.mode);
2173 		return -EINVAL;
2174 	}
2175 	err = t4vf_sge_init(adapter);
2176 	if (err) {
2177 		dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2178 			" err=%d\n", err);
2179 		return err;
2180 	}
2181 
2182 	/* If we're running on newer firmware, let it know that we're
2183 	 * prepared to deal with encapsulated CPL messages.  Older
2184 	 * firmware won't understand this and we'll just get
2185 	 * unencapsulated messages ...
2186 	 */
2187 	param = FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) |
2188 		FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2189 	val = 1;
2190 	(void) t4vf_set_params(adapter, 1, &param, &val);
2191 
2192 	/*
2193 	 * Retrieve our RX interrupt holdoff timer values and counter
2194 	 * threshold values from the SGE parameters.
2195 	 */
2196 	s->timer_val[0] = core_ticks_to_us(adapter,
2197 		TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2198 	s->timer_val[1] = core_ticks_to_us(adapter,
2199 		TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2200 	s->timer_val[2] = core_ticks_to_us(adapter,
2201 		TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2202 	s->timer_val[3] = core_ticks_to_us(adapter,
2203 		TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2204 	s->timer_val[4] = core_ticks_to_us(adapter,
2205 		TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2206 	s->timer_val[5] = core_ticks_to_us(adapter,
2207 		TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2208 
2209 	s->counter_val[0] =
2210 		THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2211 	s->counter_val[1] =
2212 		THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2213 	s->counter_val[2] =
2214 		THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2215 	s->counter_val[3] =
2216 		THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2217 
2218 	/*
2219 	 * Grab our Virtual Interface resource allocation, extract the
2220 	 * features that we're interested in and do a bit of sanity testing on
2221 	 * what we discover.
2222 	 */
2223 	err = t4vf_get_vfres(adapter);
2224 	if (err) {
2225 		dev_err(adapter->pdev_dev, "unable to get virtual interface"
2226 			" resources: err=%d\n", err);
2227 		return err;
2228 	}
2229 
2230 	/*
2231 	 * The number of "ports" which we support is equal to the number of
2232 	 * Virtual Interfaces with which we've been provisioned.
2233 	 */
2234 	adapter->params.nports = vfres->nvi;
2235 	if (adapter->params.nports > MAX_NPORTS) {
2236 		dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2237 			 " virtual interfaces\n", MAX_NPORTS,
2238 			 adapter->params.nports);
2239 		adapter->params.nports = MAX_NPORTS;
2240 	}
2241 
2242 	/*
2243 	 * We need to reserve a number of the ingress queues with Free List
2244 	 * and Interrupt capabilities for special interrupt purposes (like
2245 	 * asynchronous firmware messages, or forwarded interrupts if we're
2246 	 * using MSI).  The rest of the FL/Intr-capable ingress queues will be
2247 	 * matched up one-for-one with Ethernet/Control egress queues in order
2248 	 * to form "Queue Sets" which will be aportioned between the "ports".
2249 	 * For each Queue Set, we'll need the ability to allocate two Egress
2250 	 * Contexts -- one for the Ingress Queue Free List and one for the TX
2251 	 * Ethernet Queue.
2252 	 */
2253 	ethqsets = vfres->niqflint - INGQ_EXTRAS;
2254 	if (vfres->nethctrl != ethqsets) {
2255 		dev_warn(adapter->pdev_dev, "unequal number of [available]"
2256 			 " ingress/egress queues (%d/%d); using minimum for"
2257 			 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2258 		ethqsets = min(vfres->nethctrl, ethqsets);
2259 	}
2260 	if (vfres->neq < ethqsets*2) {
2261 		dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2262 			 " to support Queue Sets (%d); reducing allowed Queue"
2263 			 " Sets\n", vfres->neq, ethqsets);
2264 		ethqsets = vfres->neq/2;
2265 	}
2266 	if (ethqsets > MAX_ETH_QSETS) {
2267 		dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2268 			 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2269 		ethqsets = MAX_ETH_QSETS;
2270 	}
2271 	if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2272 		dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2273 			 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2274 	}
2275 	adapter->sge.max_ethqsets = ethqsets;
2276 
2277 	/*
2278 	 * Check for various parameter sanity issues.  Most checks simply
2279 	 * result in us using fewer resources than our provissioning but we
2280 	 * do need at least  one "port" with which to work ...
2281 	 */
2282 	if (adapter->sge.max_ethqsets < adapter->params.nports) {
2283 		dev_warn(adapter->pdev_dev, "only using %d of %d available"
2284 			 " virtual interfaces (too few Queue Sets)\n",
2285 			 adapter->sge.max_ethqsets, adapter->params.nports);
2286 		adapter->params.nports = adapter->sge.max_ethqsets;
2287 	}
2288 	if (adapter->params.nports == 0) {
2289 		dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2290 			"usable!\n");
2291 		return -EINVAL;
2292 	}
2293 	return 0;
2294 }
2295 
2296 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2297 			     u8 pkt_cnt_idx, unsigned int size,
2298 			     unsigned int iqe_size)
2299 {
2300 	rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2301 			     (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2302 	rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2303 			    ? pkt_cnt_idx
2304 			    : 0);
2305 	rspq->iqe_len = iqe_size;
2306 	rspq->size = size;
2307 }
2308 
2309 /*
2310  * Perform default configuration of DMA queues depending on the number and
2311  * type of ports we found and the number of available CPUs.  Most settings can
2312  * be modified by the admin via ethtool and cxgbtool prior to the adapter
2313  * being brought up for the first time.
2314  */
2315 static void cfg_queues(struct adapter *adapter)
2316 {
2317 	struct sge *s = &adapter->sge;
2318 	int q10g, n10g, qidx, pidx, qs;
2319 	size_t iqe_size;
2320 
2321 	/*
2322 	 * We should not be called till we know how many Queue Sets we can
2323 	 * support.  In particular, this means that we need to know what kind
2324 	 * of interrupts we'll be using ...
2325 	 */
2326 	BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2327 
2328 	/*
2329 	 * Count the number of 10GbE Virtual Interfaces that we have.
2330 	 */
2331 	n10g = 0;
2332 	for_each_port(adapter, pidx)
2333 		n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2334 
2335 	/*
2336 	 * We default to 1 queue per non-10G port and up to # of cores queues
2337 	 * per 10G port.
2338 	 */
2339 	if (n10g == 0)
2340 		q10g = 0;
2341 	else {
2342 		int n1g = (adapter->params.nports - n10g);
2343 		q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2344 		if (q10g > num_online_cpus())
2345 			q10g = num_online_cpus();
2346 	}
2347 
2348 	/*
2349 	 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2350 	 * The layout will be established in setup_sge_queues() when the
2351 	 * adapter is brough up for the first time.
2352 	 */
2353 	qidx = 0;
2354 	for_each_port(adapter, pidx) {
2355 		struct port_info *pi = adap2pinfo(adapter, pidx);
2356 
2357 		pi->first_qset = qidx;
2358 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
2359 		qidx += pi->nqsets;
2360 	}
2361 	s->ethqsets = qidx;
2362 
2363 	/*
2364 	 * The Ingress Queue Entry Size for our various Response Queues needs
2365 	 * to be big enough to accommodate the largest message we can receive
2366 	 * from the chip/firmware; which is 64 bytes ...
2367 	 */
2368 	iqe_size = 64;
2369 
2370 	/*
2371 	 * Set up default Queue Set parameters ...  Start off with the
2372 	 * shortest interrupt holdoff timer.
2373 	 */
2374 	for (qs = 0; qs < s->max_ethqsets; qs++) {
2375 		struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2376 		struct sge_eth_txq *txq = &s->ethtxq[qs];
2377 
2378 		init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2379 		rxq->fl.size = 72;
2380 		txq->q.size = 1024;
2381 	}
2382 
2383 	/*
2384 	 * The firmware event queue is used for link state changes and
2385 	 * notifications of TX DMA completions.
2386 	 */
2387 	init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2388 
2389 	/*
2390 	 * The forwarded interrupt queue is used when we're in MSI interrupt
2391 	 * mode.  In this mode all interrupts associated with RX queues will
2392 	 * be forwarded to a single queue which we'll associate with our MSI
2393 	 * interrupt vector.  The messages dropped in the forwarded interrupt
2394 	 * queue will indicate which ingress queue needs servicing ...  This
2395 	 * queue needs to be large enough to accommodate all of the ingress
2396 	 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2397 	 * from equalling the CIDX if every ingress queue has an outstanding
2398 	 * interrupt).  The queue doesn't need to be any larger because no
2399 	 * ingress queue will ever have more than one outstanding interrupt at
2400 	 * any time ...
2401 	 */
2402 	init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2403 		  iqe_size);
2404 }
2405 
2406 /*
2407  * Reduce the number of Ethernet queues across all ports to at most n.
2408  * n provides at least one queue per port.
2409  */
2410 static void reduce_ethqs(struct adapter *adapter, int n)
2411 {
2412 	int i;
2413 	struct port_info *pi;
2414 
2415 	/*
2416 	 * While we have too many active Ether Queue Sets, interate across the
2417 	 * "ports" and reduce their individual Queue Set allocations.
2418 	 */
2419 	BUG_ON(n < adapter->params.nports);
2420 	while (n < adapter->sge.ethqsets)
2421 		for_each_port(adapter, i) {
2422 			pi = adap2pinfo(adapter, i);
2423 			if (pi->nqsets > 1) {
2424 				pi->nqsets--;
2425 				adapter->sge.ethqsets--;
2426 				if (adapter->sge.ethqsets <= n)
2427 					break;
2428 			}
2429 		}
2430 
2431 	/*
2432 	 * Reassign the starting Queue Sets for each of the "ports" ...
2433 	 */
2434 	n = 0;
2435 	for_each_port(adapter, i) {
2436 		pi = adap2pinfo(adapter, i);
2437 		pi->first_qset = n;
2438 		n += pi->nqsets;
2439 	}
2440 }
2441 
2442 /*
2443  * We need to grab enough MSI-X vectors to cover our interrupt needs.  Ideally
2444  * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2445  * need.  Minimally we need one for every Virtual Interface plus those needed
2446  * for our "extras".  Note that this process may lower the maximum number of
2447  * allowed Queue Sets ...
2448  */
2449 static int enable_msix(struct adapter *adapter)
2450 {
2451 	int i, want, need, nqsets;
2452 	struct msix_entry entries[MSIX_ENTRIES];
2453 	struct sge *s = &adapter->sge;
2454 
2455 	for (i = 0; i < MSIX_ENTRIES; ++i)
2456 		entries[i].entry = i;
2457 
2458 	/*
2459 	 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2460 	 * plus those needed for our "extras" (for example, the firmware
2461 	 * message queue).  We _need_ at least one "Queue Set" per Virtual
2462 	 * Interface plus those needed for our "extras".  So now we get to see
2463 	 * if the song is right ...
2464 	 */
2465 	want = s->max_ethqsets + MSIX_EXTRAS;
2466 	need = adapter->params.nports + MSIX_EXTRAS;
2467 
2468 	want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2469 	if (want < 0)
2470 		return want;
2471 
2472 	nqsets = want - MSIX_EXTRAS;
2473 	if (nqsets < s->max_ethqsets) {
2474 		dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2475 			 " for %d Queue Sets\n", nqsets);
2476 		s->max_ethqsets = nqsets;
2477 		if (nqsets < s->ethqsets)
2478 			reduce_ethqs(adapter, nqsets);
2479 	}
2480 	for (i = 0; i < want; ++i)
2481 		adapter->msix_info[i].vec = entries[i].vector;
2482 
2483 	return 0;
2484 }
2485 
2486 static const struct net_device_ops cxgb4vf_netdev_ops	= {
2487 	.ndo_open		= cxgb4vf_open,
2488 	.ndo_stop		= cxgb4vf_stop,
2489 	.ndo_start_xmit		= t4vf_eth_xmit,
2490 	.ndo_get_stats		= cxgb4vf_get_stats,
2491 	.ndo_set_rx_mode	= cxgb4vf_set_rxmode,
2492 	.ndo_set_mac_address	= cxgb4vf_set_mac_addr,
2493 	.ndo_validate_addr	= eth_validate_addr,
2494 	.ndo_do_ioctl		= cxgb4vf_do_ioctl,
2495 	.ndo_change_mtu		= cxgb4vf_change_mtu,
2496 	.ndo_fix_features	= cxgb4vf_fix_features,
2497 	.ndo_set_features	= cxgb4vf_set_features,
2498 #ifdef CONFIG_NET_POLL_CONTROLLER
2499 	.ndo_poll_controller	= cxgb4vf_poll_controller,
2500 #endif
2501 };
2502 
2503 /*
2504  * "Probe" a device: initialize a device and construct all kernel and driver
2505  * state needed to manage the device.  This routine is called "init_one" in
2506  * the PF Driver ...
2507  */
2508 static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2509 			     const struct pci_device_id *ent)
2510 {
2511 	int pci_using_dac;
2512 	int err, pidx;
2513 	unsigned int pmask;
2514 	struct adapter *adapter;
2515 	struct port_info *pi;
2516 	struct net_device *netdev;
2517 
2518 	/*
2519 	 * Print our driver banner the first time we're called to initialize a
2520 	 * device.
2521 	 */
2522 	pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
2523 
2524 	/*
2525 	 * Initialize generic PCI device state.
2526 	 */
2527 	err = pci_enable_device(pdev);
2528 	if (err) {
2529 		dev_err(&pdev->dev, "cannot enable PCI device\n");
2530 		return err;
2531 	}
2532 
2533 	/*
2534 	 * Reserve PCI resources for the device.  If we can't get them some
2535 	 * other driver may have already claimed the device ...
2536 	 */
2537 	err = pci_request_regions(pdev, KBUILD_MODNAME);
2538 	if (err) {
2539 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2540 		goto err_disable_device;
2541 	}
2542 
2543 	/*
2544 	 * Set up our DMA mask: try for 64-bit address masking first and
2545 	 * fall back to 32-bit if we can't get 64 bits ...
2546 	 */
2547 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2548 	if (err == 0) {
2549 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2550 		if (err) {
2551 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2552 				" coherent allocations\n");
2553 			goto err_release_regions;
2554 		}
2555 		pci_using_dac = 1;
2556 	} else {
2557 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2558 		if (err != 0) {
2559 			dev_err(&pdev->dev, "no usable DMA configuration\n");
2560 			goto err_release_regions;
2561 		}
2562 		pci_using_dac = 0;
2563 	}
2564 
2565 	/*
2566 	 * Enable bus mastering for the device ...
2567 	 */
2568 	pci_set_master(pdev);
2569 
2570 	/*
2571 	 * Allocate our adapter data structure and attach it to the device.
2572 	 */
2573 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2574 	if (!adapter) {
2575 		err = -ENOMEM;
2576 		goto err_release_regions;
2577 	}
2578 	pci_set_drvdata(pdev, adapter);
2579 	adapter->pdev = pdev;
2580 	adapter->pdev_dev = &pdev->dev;
2581 
2582 	/*
2583 	 * Initialize SMP data synchronization resources.
2584 	 */
2585 	spin_lock_init(&adapter->stats_lock);
2586 
2587 	/*
2588 	 * Map our I/O registers in BAR0.
2589 	 */
2590 	adapter->regs = pci_ioremap_bar(pdev, 0);
2591 	if (!adapter->regs) {
2592 		dev_err(&pdev->dev, "cannot map device registers\n");
2593 		err = -ENOMEM;
2594 		goto err_free_adapter;
2595 	}
2596 
2597 	/*
2598 	 * Initialize adapter level features.
2599 	 */
2600 	adapter->name = pci_name(pdev);
2601 	adapter->msg_enable = dflt_msg_enable;
2602 	err = adap_init0(adapter);
2603 	if (err)
2604 		goto err_unmap_bar;
2605 
2606 	/*
2607 	 * Allocate our "adapter ports" and stitch everything together.
2608 	 */
2609 	pmask = adapter->params.vfres.pmask;
2610 	for_each_port(adapter, pidx) {
2611 		int port_id, viid;
2612 
2613 		/*
2614 		 * We simplistically allocate our virtual interfaces
2615 		 * sequentially across the port numbers to which we have
2616 		 * access rights.  This should be configurable in some manner
2617 		 * ...
2618 		 */
2619 		if (pmask == 0)
2620 			break;
2621 		port_id = ffs(pmask) - 1;
2622 		pmask &= ~(1 << port_id);
2623 		viid = t4vf_alloc_vi(adapter, port_id);
2624 		if (viid < 0) {
2625 			dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2626 				" err=%d\n", port_id, viid);
2627 			err = viid;
2628 			goto err_free_dev;
2629 		}
2630 
2631 		/*
2632 		 * Allocate our network device and stitch things together.
2633 		 */
2634 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
2635 					   MAX_PORT_QSETS);
2636 		if (netdev == NULL) {
2637 			t4vf_free_vi(adapter, viid);
2638 			err = -ENOMEM;
2639 			goto err_free_dev;
2640 		}
2641 		adapter->port[pidx] = netdev;
2642 		SET_NETDEV_DEV(netdev, &pdev->dev);
2643 		pi = netdev_priv(netdev);
2644 		pi->adapter = adapter;
2645 		pi->pidx = pidx;
2646 		pi->port_id = port_id;
2647 		pi->viid = viid;
2648 
2649 		/*
2650 		 * Initialize the starting state of our "port" and register
2651 		 * it.
2652 		 */
2653 		pi->xact_addr_filt = -1;
2654 		netif_carrier_off(netdev);
2655 		netdev->irq = pdev->irq;
2656 
2657 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
2658 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2659 			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM;
2660 		netdev->vlan_features = NETIF_F_SG | TSO_FLAGS |
2661 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2662 			NETIF_F_HIGHDMA;
2663 		netdev->features = netdev->hw_features |
2664 				   NETIF_F_HW_VLAN_CTAG_TX;
2665 		if (pci_using_dac)
2666 			netdev->features |= NETIF_F_HIGHDMA;
2667 
2668 		netdev->priv_flags |= IFF_UNICAST_FLT;
2669 
2670 		netdev->netdev_ops = &cxgb4vf_netdev_ops;
2671 		netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
2672 
2673 		/*
2674 		 * Initialize the hardware/software state for the port.
2675 		 */
2676 		err = t4vf_port_init(adapter, pidx);
2677 		if (err) {
2678 			dev_err(&pdev->dev, "cannot initialize port %d\n",
2679 				pidx);
2680 			goto err_free_dev;
2681 		}
2682 	}
2683 
2684 	/*
2685 	 * The "card" is now ready to go.  If any errors occur during device
2686 	 * registration we do not fail the whole "card" but rather proceed
2687 	 * only with the ports we manage to register successfully.  However we
2688 	 * must register at least one net device.
2689 	 */
2690 	for_each_port(adapter, pidx) {
2691 		netdev = adapter->port[pidx];
2692 		if (netdev == NULL)
2693 			continue;
2694 
2695 		err = register_netdev(netdev);
2696 		if (err) {
2697 			dev_warn(&pdev->dev, "cannot register net device %s,"
2698 				 " skipping\n", netdev->name);
2699 			continue;
2700 		}
2701 
2702 		set_bit(pidx, &adapter->registered_device_map);
2703 	}
2704 	if (adapter->registered_device_map == 0) {
2705 		dev_err(&pdev->dev, "could not register any net devices\n");
2706 		goto err_free_dev;
2707 	}
2708 
2709 	/*
2710 	 * Set up our debugfs entries.
2711 	 */
2712 	if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
2713 		adapter->debugfs_root =
2714 			debugfs_create_dir(pci_name(pdev),
2715 					   cxgb4vf_debugfs_root);
2716 		if (IS_ERR_OR_NULL(adapter->debugfs_root))
2717 			dev_warn(&pdev->dev, "could not create debugfs"
2718 				 " directory");
2719 		else
2720 			setup_debugfs(adapter);
2721 	}
2722 
2723 	/*
2724 	 * See what interrupts we'll be using.  If we've been configured to
2725 	 * use MSI-X interrupts, try to enable them but fall back to using
2726 	 * MSI interrupts if we can't enable MSI-X interrupts.  If we can't
2727 	 * get MSI interrupts we bail with the error.
2728 	 */
2729 	if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2730 		adapter->flags |= USING_MSIX;
2731 	else {
2732 		err = pci_enable_msi(pdev);
2733 		if (err) {
2734 			dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2735 				" err=%d\n",
2736 				msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2737 			goto err_free_debugfs;
2738 		}
2739 		adapter->flags |= USING_MSI;
2740 	}
2741 
2742 	/*
2743 	 * Now that we know how many "ports" we have and what their types are,
2744 	 * and how many Queue Sets we can support, we can configure our queue
2745 	 * resources.
2746 	 */
2747 	cfg_queues(adapter);
2748 
2749 	/*
2750 	 * Print a short notice on the existence and configuration of the new
2751 	 * VF network device ...
2752 	 */
2753 	for_each_port(adapter, pidx) {
2754 		dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2755 			 adapter->port[pidx]->name,
2756 			 (adapter->flags & USING_MSIX) ? "MSI-X" :
2757 			 (adapter->flags & USING_MSI)  ? "MSI" : "");
2758 	}
2759 
2760 	/*
2761 	 * Return success!
2762 	 */
2763 	return 0;
2764 
2765 	/*
2766 	 * Error recovery and exit code.  Unwind state that's been created
2767 	 * so far and return the error.
2768 	 */
2769 
2770 err_free_debugfs:
2771 	if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2772 		cleanup_debugfs(adapter);
2773 		debugfs_remove_recursive(adapter->debugfs_root);
2774 	}
2775 
2776 err_free_dev:
2777 	for_each_port(adapter, pidx) {
2778 		netdev = adapter->port[pidx];
2779 		if (netdev == NULL)
2780 			continue;
2781 		pi = netdev_priv(netdev);
2782 		t4vf_free_vi(adapter, pi->viid);
2783 		if (test_bit(pidx, &adapter->registered_device_map))
2784 			unregister_netdev(netdev);
2785 		free_netdev(netdev);
2786 	}
2787 
2788 err_unmap_bar:
2789 	iounmap(adapter->regs);
2790 
2791 err_free_adapter:
2792 	kfree(adapter);
2793 
2794 err_release_regions:
2795 	pci_release_regions(pdev);
2796 	pci_clear_master(pdev);
2797 
2798 err_disable_device:
2799 	pci_disable_device(pdev);
2800 
2801 	return err;
2802 }
2803 
2804 /*
2805  * "Remove" a device: tear down all kernel and driver state created in the
2806  * "probe" routine and quiesce the device (disable interrupts, etc.).  (Note
2807  * that this is called "remove_one" in the PF Driver.)
2808  */
2809 static void cxgb4vf_pci_remove(struct pci_dev *pdev)
2810 {
2811 	struct adapter *adapter = pci_get_drvdata(pdev);
2812 
2813 	/*
2814 	 * Tear down driver state associated with device.
2815 	 */
2816 	if (adapter) {
2817 		int pidx;
2818 
2819 		/*
2820 		 * Stop all of our activity.  Unregister network port,
2821 		 * disable interrupts, etc.
2822 		 */
2823 		for_each_port(adapter, pidx)
2824 			if (test_bit(pidx, &adapter->registered_device_map))
2825 				unregister_netdev(adapter->port[pidx]);
2826 		t4vf_sge_stop(adapter);
2827 		if (adapter->flags & USING_MSIX) {
2828 			pci_disable_msix(adapter->pdev);
2829 			adapter->flags &= ~USING_MSIX;
2830 		} else if (adapter->flags & USING_MSI) {
2831 			pci_disable_msi(adapter->pdev);
2832 			adapter->flags &= ~USING_MSI;
2833 		}
2834 
2835 		/*
2836 		 * Tear down our debugfs entries.
2837 		 */
2838 		if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2839 			cleanup_debugfs(adapter);
2840 			debugfs_remove_recursive(adapter->debugfs_root);
2841 		}
2842 
2843 		/*
2844 		 * Free all of the various resources which we've acquired ...
2845 		 */
2846 		t4vf_free_sge_resources(adapter);
2847 		for_each_port(adapter, pidx) {
2848 			struct net_device *netdev = adapter->port[pidx];
2849 			struct port_info *pi;
2850 
2851 			if (netdev == NULL)
2852 				continue;
2853 
2854 			pi = netdev_priv(netdev);
2855 			t4vf_free_vi(adapter, pi->viid);
2856 			free_netdev(netdev);
2857 		}
2858 		iounmap(adapter->regs);
2859 		kfree(adapter);
2860 	}
2861 
2862 	/*
2863 	 * Disable the device and release its PCI resources.
2864 	 */
2865 	pci_disable_device(pdev);
2866 	pci_clear_master(pdev);
2867 	pci_release_regions(pdev);
2868 }
2869 
2870 /*
2871  * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
2872  * delivery.
2873  */
2874 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
2875 {
2876 	struct adapter *adapter;
2877 	int pidx;
2878 
2879 	adapter = pci_get_drvdata(pdev);
2880 	if (!adapter)
2881 		return;
2882 
2883 	/* Disable all Virtual Interfaces.  This will shut down the
2884 	 * delivery of all ingress packets into the chip for these
2885 	 * Virtual Interfaces.
2886 	 */
2887 	for_each_port(adapter, pidx)
2888 		if (test_bit(pidx, &adapter->registered_device_map))
2889 			unregister_netdev(adapter->port[pidx]);
2890 
2891 	/* Free up all Queues which will prevent further DMA and
2892 	 * Interrupts allowing various internal pathways to drain.
2893 	 */
2894 	t4vf_sge_stop(adapter);
2895 	if (adapter->flags & USING_MSIX) {
2896 		pci_disable_msix(adapter->pdev);
2897 		adapter->flags &= ~USING_MSIX;
2898 	} else if (adapter->flags & USING_MSI) {
2899 		pci_disable_msi(adapter->pdev);
2900 		adapter->flags &= ~USING_MSI;
2901 	}
2902 
2903 	/*
2904 	 * Free up all Queues which will prevent further DMA and
2905 	 * Interrupts allowing various internal pathways to drain.
2906 	 */
2907 	t4vf_free_sge_resources(adapter);
2908 	pci_set_drvdata(pdev, NULL);
2909 }
2910 
2911 /*
2912  * PCI Device registration data structures.
2913  */
2914 #define CH_DEVICE(devid) \
2915 	{ PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }
2916 
2917 static const struct pci_device_id cxgb4vf_pci_tbl[] = {
2918 	CH_DEVICE(0xb000),	/* PE10K FPGA */
2919 	CH_DEVICE(0x4801),	/* T420-cr */
2920 	CH_DEVICE(0x4802),	/* T422-cr */
2921 	CH_DEVICE(0x4803),	/* T440-cr */
2922 	CH_DEVICE(0x4804),	/* T420-bch */
2923 	CH_DEVICE(0x4805),	/* T440-bch */
2924 	CH_DEVICE(0x4806),	/* T460-ch */
2925 	CH_DEVICE(0x4807),	/* T420-so */
2926 	CH_DEVICE(0x4808),	/* T420-cx */
2927 	CH_DEVICE(0x4809),	/* T420-bt */
2928 	CH_DEVICE(0x480a),	/* T404-bt */
2929 	CH_DEVICE(0x480d),	/* T480-cr */
2930 	CH_DEVICE(0x480e),	/* T440-lp-cr */
2931 	CH_DEVICE(0x4880),
2932 	CH_DEVICE(0x4881),
2933 	CH_DEVICE(0x4882),
2934 	CH_DEVICE(0x4883),
2935 	CH_DEVICE(0x4884),
2936 	CH_DEVICE(0x4885),
2937 	CH_DEVICE(0x4886),
2938 	CH_DEVICE(0x4887),
2939 	CH_DEVICE(0x4888),
2940 	CH_DEVICE(0x5801),	/* T520-cr */
2941 	CH_DEVICE(0x5802),	/* T522-cr */
2942 	CH_DEVICE(0x5803),	/* T540-cr */
2943 	CH_DEVICE(0x5804),	/* T520-bch */
2944 	CH_DEVICE(0x5805),	/* T540-bch */
2945 	CH_DEVICE(0x5806),	/* T540-ch */
2946 	CH_DEVICE(0x5807),	/* T520-so */
2947 	CH_DEVICE(0x5808),	/* T520-cx */
2948 	CH_DEVICE(0x5809),	/* T520-bt */
2949 	CH_DEVICE(0x580a),	/* T504-bt */
2950 	CH_DEVICE(0x580b),	/* T520-sr */
2951 	CH_DEVICE(0x580c),	/* T504-bt */
2952 	CH_DEVICE(0x580d),	/* T580-cr */
2953 	CH_DEVICE(0x580e),	/* T540-lp-cr */
2954 	CH_DEVICE(0x580f),	/* Amsterdam */
2955 	CH_DEVICE(0x5810),	/* T580-lp-cr */
2956 	CH_DEVICE(0x5811),	/* T520-lp-cr */
2957 	CH_DEVICE(0x5812),	/* T560-cr */
2958 	CH_DEVICE(0x5813),	/* T580-cr */
2959 	CH_DEVICE(0x5814),	/* T580-so-cr */
2960 	CH_DEVICE(0x5815),	/* T502-bt */
2961 	CH_DEVICE(0x5880),
2962 	CH_DEVICE(0x5881),
2963 	CH_DEVICE(0x5882),
2964 	CH_DEVICE(0x5883),
2965 	CH_DEVICE(0x5884),
2966 	CH_DEVICE(0x5885),
2967 	CH_DEVICE(0x5886),
2968 	CH_DEVICE(0x5887),
2969 	CH_DEVICE(0x5888),
2970 	{ 0, }
2971 };
2972 
2973 MODULE_DESCRIPTION(DRV_DESC);
2974 MODULE_AUTHOR("Chelsio Communications");
2975 MODULE_LICENSE("Dual BSD/GPL");
2976 MODULE_VERSION(DRV_VERSION);
2977 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2978 
2979 static struct pci_driver cxgb4vf_driver = {
2980 	.name		= KBUILD_MODNAME,
2981 	.id_table	= cxgb4vf_pci_tbl,
2982 	.probe		= cxgb4vf_pci_probe,
2983 	.remove		= cxgb4vf_pci_remove,
2984 	.shutdown	= cxgb4vf_pci_shutdown,
2985 };
2986 
2987 /*
2988  * Initialize global driver state.
2989  */
2990 static int __init cxgb4vf_module_init(void)
2991 {
2992 	int ret;
2993 
2994 	/*
2995 	 * Vet our module parameters.
2996 	 */
2997 	if (msi != MSI_MSIX && msi != MSI_MSI) {
2998 		pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
2999 			msi, MSI_MSIX, MSI_MSI);
3000 		return -EINVAL;
3001 	}
3002 
3003 	/* Debugfs support is optional, just warn if this fails */
3004 	cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3005 	if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3006 		pr_warn("could not create debugfs entry, continuing\n");
3007 
3008 	ret = pci_register_driver(&cxgb4vf_driver);
3009 	if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3010 		debugfs_remove(cxgb4vf_debugfs_root);
3011 	return ret;
3012 }
3013 
3014 /*
3015  * Tear down global driver state.
3016  */
3017 static void __exit cxgb4vf_module_exit(void)
3018 {
3019 	pci_unregister_driver(&cxgb4vf_driver);
3020 	debugfs_remove(cxgb4vf_debugfs_root);
3021 }
3022 
3023 module_init(cxgb4vf_module_init);
3024 module_exit(cxgb4vf_module_exit);
3025