1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/module.h> 39 #include <linux/moduleparam.h> 40 #include <linux/init.h> 41 #include <linux/pci.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/netdevice.h> 44 #include <linux/etherdevice.h> 45 #include <linux/debugfs.h> 46 #include <linux/ethtool.h> 47 #include <linux/mdio.h> 48 49 #include "t4vf_common.h" 50 #include "t4vf_defs.h" 51 52 #include "../cxgb4/t4_regs.h" 53 #include "../cxgb4/t4_msg.h" 54 55 /* 56 * Generic information about the driver. 57 */ 58 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver" 59 60 /* 61 * Module Parameters. 62 * ================== 63 */ 64 65 /* 66 * Default ethtool "message level" for adapters. 67 */ 68 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 69 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 70 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 71 72 /* 73 * The driver uses the best interrupt scheme available on a platform in the 74 * order MSI-X then MSI. This parameter determines which of these schemes the 75 * driver may consider as follows: 76 * 77 * msi = 2: choose from among MSI-X and MSI 78 * msi = 1: only consider MSI interrupts 79 * 80 * Note that unlike the Physical Function driver, this Virtual Function driver 81 * does _not_ support legacy INTx interrupts (this limitation is mandated by 82 * the PCI-E SR-IOV standard). 83 */ 84 #define MSI_MSIX 2 85 #define MSI_MSI 1 86 #define MSI_DEFAULT MSI_MSIX 87 88 static int msi = MSI_DEFAULT; 89 90 module_param(msi, int, 0644); 91 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI"); 92 93 /* 94 * Fundamental constants. 95 * ====================== 96 */ 97 98 enum { 99 MAX_TXQ_ENTRIES = 16384, 100 MAX_RSPQ_ENTRIES = 16384, 101 MAX_RX_BUFFERS = 16384, 102 103 MIN_TXQ_ENTRIES = 32, 104 MIN_RSPQ_ENTRIES = 128, 105 MIN_FL_ENTRIES = 16, 106 107 /* 108 * For purposes of manipulating the Free List size we need to 109 * recognize that Free Lists are actually Egress Queues (the host 110 * produces free buffers which the hardware consumes), Egress Queues 111 * indices are all in units of Egress Context Units bytes, and free 112 * list entries are 64-bit PCI DMA addresses. And since the state of 113 * the Producer Index == the Consumer Index implies an EMPTY list, we 114 * always have at least one Egress Unit's worth of Free List entries 115 * unused. See sge.c for more details ... 116 */ 117 EQ_UNIT = SGE_EQ_IDXSIZE, 118 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 119 MIN_FL_RESID = FL_PER_EQ_UNIT, 120 }; 121 122 /* 123 * Global driver state. 124 * ==================== 125 */ 126 127 static struct dentry *cxgb4vf_debugfs_root; 128 129 /* 130 * OS "Callback" functions. 131 * ======================== 132 */ 133 134 /* 135 * The link status has changed on the indicated "port" (Virtual Interface). 136 */ 137 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok) 138 { 139 struct net_device *dev = adapter->port[pidx]; 140 141 /* 142 * If the port is disabled or the current recorded "link up" 143 * status matches the new status, just return. 144 */ 145 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev)) 146 return; 147 148 /* 149 * Tell the OS that the link status has changed and print a short 150 * informative message on the console about the event. 151 */ 152 if (link_ok) { 153 const char *s; 154 const char *fc; 155 const struct port_info *pi = netdev_priv(dev); 156 157 netif_carrier_on(dev); 158 159 switch (pi->link_cfg.speed) { 160 case 100: 161 s = "100Mbps"; 162 break; 163 case 1000: 164 s = "1Gbps"; 165 break; 166 case 10000: 167 s = "10Gbps"; 168 break; 169 case 25000: 170 s = "25Gbps"; 171 break; 172 case 40000: 173 s = "40Gbps"; 174 break; 175 case 100000: 176 s = "100Gbps"; 177 break; 178 179 default: 180 s = "unknown"; 181 break; 182 } 183 184 switch ((int)pi->link_cfg.fc) { 185 case PAUSE_RX: 186 fc = "RX"; 187 break; 188 189 case PAUSE_TX: 190 fc = "TX"; 191 break; 192 193 case PAUSE_RX | PAUSE_TX: 194 fc = "RX/TX"; 195 break; 196 197 default: 198 fc = "no"; 199 break; 200 } 201 202 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc); 203 } else { 204 netif_carrier_off(dev); 205 netdev_info(dev, "link down\n"); 206 } 207 } 208 209 /* 210 * THe port module type has changed on the indicated "port" (Virtual 211 * Interface). 212 */ 213 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx) 214 { 215 static const char * const mod_str[] = { 216 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 217 }; 218 const struct net_device *dev = adapter->port[pidx]; 219 const struct port_info *pi = netdev_priv(dev); 220 221 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 222 dev_info(adapter->pdev_dev, "%s: port module unplugged\n", 223 dev->name); 224 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 225 dev_info(adapter->pdev_dev, "%s: %s port module inserted\n", 226 dev->name, mod_str[pi->mod_type]); 227 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 228 dev_info(adapter->pdev_dev, "%s: unsupported optical port " 229 "module inserted\n", dev->name); 230 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 231 dev_info(adapter->pdev_dev, "%s: unknown port module inserted," 232 "forcing TWINAX\n", dev->name); 233 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 234 dev_info(adapter->pdev_dev, "%s: transceiver module error\n", 235 dev->name); 236 else 237 dev_info(adapter->pdev_dev, "%s: unknown module type %d " 238 "inserted\n", dev->name, pi->mod_type); 239 } 240 241 static int cxgb4vf_set_addr_hash(struct port_info *pi) 242 { 243 struct adapter *adapter = pi->adapter; 244 u64 vec = 0; 245 bool ucast = false; 246 struct hash_mac_addr *entry; 247 248 /* Calculate the hash vector for the updated list and program it */ 249 list_for_each_entry(entry, &adapter->mac_hlist, list) { 250 ucast |= is_unicast_ether_addr(entry->addr); 251 vec |= (1ULL << hash_mac_addr(entry->addr)); 252 } 253 return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false); 254 } 255 256 /** 257 * cxgb4vf_change_mac - Update match filter for a MAC address. 258 * @pi: the port_info 259 * @viid: the VI id 260 * @tcam_idx: TCAM index of existing filter for old value of MAC address, 261 * or -1 262 * @addr: the new MAC address value 263 * @persistent: whether a new MAC allocation should be persistent 264 * 265 * Modifies an MPS filter and sets it to the new MAC address if 266 * @tcam_idx >= 0, or adds the MAC address to a new filter if 267 * @tcam_idx < 0. In the latter case the address is added persistently 268 * if @persist is %true. 269 * Addresses are programmed to hash region, if tcam runs out of entries. 270 * 271 */ 272 static int cxgb4vf_change_mac(struct port_info *pi, unsigned int viid, 273 int *tcam_idx, const u8 *addr, bool persistent) 274 { 275 struct hash_mac_addr *new_entry, *entry; 276 struct adapter *adapter = pi->adapter; 277 int ret; 278 279 ret = t4vf_change_mac(adapter, viid, *tcam_idx, addr, persistent); 280 /* We ran out of TCAM entries. try programming hash region. */ 281 if (ret == -ENOMEM) { 282 /* If the MAC address to be updated is in the hash addr 283 * list, update it from the list 284 */ 285 list_for_each_entry(entry, &adapter->mac_hlist, list) { 286 if (entry->iface_mac) { 287 ether_addr_copy(entry->addr, addr); 288 goto set_hash; 289 } 290 } 291 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL); 292 if (!new_entry) 293 return -ENOMEM; 294 ether_addr_copy(new_entry->addr, addr); 295 new_entry->iface_mac = true; 296 list_add_tail(&new_entry->list, &adapter->mac_hlist); 297 set_hash: 298 ret = cxgb4vf_set_addr_hash(pi); 299 } else if (ret >= 0) { 300 *tcam_idx = ret; 301 ret = 0; 302 } 303 304 return ret; 305 } 306 307 /* 308 * Net device operations. 309 * ====================== 310 */ 311 312 313 314 315 /* 316 * Perform the MAC and PHY actions needed to enable a "port" (Virtual 317 * Interface). 318 */ 319 static int link_start(struct net_device *dev) 320 { 321 int ret; 322 struct port_info *pi = netdev_priv(dev); 323 324 /* 325 * We do not set address filters and promiscuity here, the stack does 326 * that step explicitly. Enable vlan accel. 327 */ 328 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1, 329 true); 330 if (ret == 0) 331 ret = cxgb4vf_change_mac(pi, pi->viid, 332 &pi->xact_addr_filt, 333 dev->dev_addr, true); 334 335 /* 336 * We don't need to actually "start the link" itself since the 337 * firmware will do that for us when the first Virtual Interface 338 * is enabled on a port. 339 */ 340 if (ret == 0) 341 ret = t4vf_enable_pi(pi->adapter, pi, true, true); 342 343 return ret; 344 } 345 346 /* 347 * Name the MSI-X interrupts. 348 */ 349 static void name_msix_vecs(struct adapter *adapter) 350 { 351 int namelen = sizeof(adapter->msix_info[0].desc) - 1; 352 int pidx; 353 354 /* 355 * Firmware events. 356 */ 357 snprintf(adapter->msix_info[MSIX_FW].desc, namelen, 358 "%s-FWeventq", adapter->name); 359 adapter->msix_info[MSIX_FW].desc[namelen] = 0; 360 361 /* 362 * Ethernet queues. 363 */ 364 for_each_port(adapter, pidx) { 365 struct net_device *dev = adapter->port[pidx]; 366 const struct port_info *pi = netdev_priv(dev); 367 int qs, msi; 368 369 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) { 370 snprintf(adapter->msix_info[msi].desc, namelen, 371 "%s-%d", dev->name, qs); 372 adapter->msix_info[msi].desc[namelen] = 0; 373 } 374 } 375 } 376 377 /* 378 * Request all of our MSI-X resources. 379 */ 380 static int request_msix_queue_irqs(struct adapter *adapter) 381 { 382 struct sge *s = &adapter->sge; 383 int rxq, msi, err; 384 385 /* 386 * Firmware events. 387 */ 388 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix, 389 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq); 390 if (err) 391 return err; 392 393 /* 394 * Ethernet queues. 395 */ 396 msi = MSIX_IQFLINT; 397 for_each_ethrxq(s, rxq) { 398 err = request_irq(adapter->msix_info[msi].vec, 399 t4vf_sge_intr_msix, 0, 400 adapter->msix_info[msi].desc, 401 &s->ethrxq[rxq].rspq); 402 if (err) 403 goto err_free_irqs; 404 msi++; 405 } 406 return 0; 407 408 err_free_irqs: 409 while (--rxq >= 0) 410 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq); 411 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 412 return err; 413 } 414 415 /* 416 * Free our MSI-X resources. 417 */ 418 static void free_msix_queue_irqs(struct adapter *adapter) 419 { 420 struct sge *s = &adapter->sge; 421 int rxq, msi; 422 423 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 424 msi = MSIX_IQFLINT; 425 for_each_ethrxq(s, rxq) 426 free_irq(adapter->msix_info[msi++].vec, 427 &s->ethrxq[rxq].rspq); 428 } 429 430 /* 431 * Turn on NAPI and start up interrupts on a response queue. 432 */ 433 static void qenable(struct sge_rspq *rspq) 434 { 435 napi_enable(&rspq->napi); 436 437 /* 438 * 0-increment the Going To Sleep register to start the timer and 439 * enable interrupts. 440 */ 441 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 442 CIDXINC_V(0) | 443 SEINTARM_V(rspq->intr_params) | 444 INGRESSQID_V(rspq->cntxt_id)); 445 } 446 447 /* 448 * Enable NAPI scheduling and interrupt generation for all Receive Queues. 449 */ 450 static void enable_rx(struct adapter *adapter) 451 { 452 int rxq; 453 struct sge *s = &adapter->sge; 454 455 for_each_ethrxq(s, rxq) 456 qenable(&s->ethrxq[rxq].rspq); 457 qenable(&s->fw_evtq); 458 459 /* 460 * The interrupt queue doesn't use NAPI so we do the 0-increment of 461 * its Going To Sleep register here to get it started. 462 */ 463 if (adapter->flags & CXGB4VF_USING_MSI) 464 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 465 CIDXINC_V(0) | 466 SEINTARM_V(s->intrq.intr_params) | 467 INGRESSQID_V(s->intrq.cntxt_id)); 468 469 } 470 471 /* 472 * Wait until all NAPI handlers are descheduled. 473 */ 474 static void quiesce_rx(struct adapter *adapter) 475 { 476 struct sge *s = &adapter->sge; 477 int rxq; 478 479 for_each_ethrxq(s, rxq) 480 napi_disable(&s->ethrxq[rxq].rspq.napi); 481 napi_disable(&s->fw_evtq.napi); 482 } 483 484 /* 485 * Response queue handler for the firmware event queue. 486 */ 487 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp, 488 const struct pkt_gl *gl) 489 { 490 /* 491 * Extract response opcode and get pointer to CPL message body. 492 */ 493 struct adapter *adapter = rspq->adapter; 494 u8 opcode = ((const struct rss_header *)rsp)->opcode; 495 void *cpl = (void *)(rsp + 1); 496 497 switch (opcode) { 498 case CPL_FW6_MSG: { 499 /* 500 * We've received an asynchronous message from the firmware. 501 */ 502 const struct cpl_fw6_msg *fw_msg = cpl; 503 if (fw_msg->type == FW6_TYPE_CMD_RPL) 504 t4vf_handle_fw_rpl(adapter, fw_msg->data); 505 break; 506 } 507 508 case CPL_FW4_MSG: { 509 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 510 */ 511 const struct cpl_sge_egr_update *p = (void *)(rsp + 3); 512 opcode = CPL_OPCODE_G(ntohl(p->opcode_qid)); 513 if (opcode != CPL_SGE_EGR_UPDATE) { 514 dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 515 , opcode); 516 break; 517 } 518 cpl = (void *)p; 519 } 520 fallthrough; 521 522 case CPL_SGE_EGR_UPDATE: { 523 /* 524 * We've received an Egress Queue Status Update message. We 525 * get these, if the SGE is configured to send these when the 526 * firmware passes certain points in processing our TX 527 * Ethernet Queue or if we make an explicit request for one. 528 * We use these updates to determine when we may need to 529 * restart a TX Ethernet Queue which was stopped for lack of 530 * free TX Queue Descriptors ... 531 */ 532 const struct cpl_sge_egr_update *p = cpl; 533 unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid)); 534 struct sge *s = &adapter->sge; 535 struct sge_txq *tq; 536 struct sge_eth_txq *txq; 537 unsigned int eq_idx; 538 539 /* 540 * Perform sanity checking on the Queue ID to make sure it 541 * really refers to one of our TX Ethernet Egress Queues which 542 * is active and matches the queue's ID. None of these error 543 * conditions should ever happen so we may want to either make 544 * them fatal and/or conditionalized under DEBUG. 545 */ 546 eq_idx = EQ_IDX(s, qid); 547 if (unlikely(eq_idx >= MAX_EGRQ)) { 548 dev_err(adapter->pdev_dev, 549 "Egress Update QID %d out of range\n", qid); 550 break; 551 } 552 tq = s->egr_map[eq_idx]; 553 if (unlikely(tq == NULL)) { 554 dev_err(adapter->pdev_dev, 555 "Egress Update QID %d TXQ=NULL\n", qid); 556 break; 557 } 558 txq = container_of(tq, struct sge_eth_txq, q); 559 if (unlikely(tq->abs_id != qid)) { 560 dev_err(adapter->pdev_dev, 561 "Egress Update QID %d refers to TXQ %d\n", 562 qid, tq->abs_id); 563 break; 564 } 565 566 /* 567 * Restart a stopped TX Queue which has less than half of its 568 * TX ring in use ... 569 */ 570 txq->q.restarts++; 571 netif_tx_wake_queue(txq->txq); 572 break; 573 } 574 575 default: 576 dev_err(adapter->pdev_dev, 577 "unexpected CPL %#x on FW event queue\n", opcode); 578 } 579 580 return 0; 581 } 582 583 /* 584 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues 585 * to use and initializes them. We support multiple "Queue Sets" per port if 586 * we have MSI-X, otherwise just one queue set per port. 587 */ 588 static int setup_sge_queues(struct adapter *adapter) 589 { 590 struct sge *s = &adapter->sge; 591 int err, pidx, msix; 592 593 /* 594 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error 595 * state. 596 */ 597 bitmap_zero(s->starving_fl, MAX_EGRQ); 598 599 /* 600 * If we're using MSI interrupt mode we need to set up a "forwarded 601 * interrupt" queue which we'll set up with our MSI vector. The rest 602 * of the ingress queues will be set up to forward their interrupts to 603 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses 604 * the intrq's queue ID as the interrupt forwarding queue for the 605 * subsequent calls ... 606 */ 607 if (adapter->flags & CXGB4VF_USING_MSI) { 608 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false, 609 adapter->port[0], 0, NULL, NULL); 610 if (err) 611 goto err_free_queues; 612 } 613 614 /* 615 * Allocate our ingress queue for asynchronous firmware messages. 616 */ 617 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0], 618 MSIX_FW, NULL, fwevtq_handler); 619 if (err) 620 goto err_free_queues; 621 622 /* 623 * Allocate each "port"'s initial Queue Sets. These can be changed 624 * later on ... up to the point where any interface on the adapter is 625 * brought up at which point lots of things get nailed down 626 * permanently ... 627 */ 628 msix = MSIX_IQFLINT; 629 for_each_port(adapter, pidx) { 630 struct net_device *dev = adapter->port[pidx]; 631 struct port_info *pi = netdev_priv(dev); 632 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 633 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 634 int qs; 635 636 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 637 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false, 638 dev, msix++, 639 &rxq->fl, t4vf_ethrx_handler); 640 if (err) 641 goto err_free_queues; 642 643 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev, 644 netdev_get_tx_queue(dev, qs), 645 s->fw_evtq.cntxt_id); 646 if (err) 647 goto err_free_queues; 648 649 rxq->rspq.idx = qs; 650 memset(&rxq->stats, 0, sizeof(rxq->stats)); 651 } 652 } 653 654 /* 655 * Create the reverse mappings for the queues. 656 */ 657 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id; 658 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id; 659 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq; 660 for_each_port(adapter, pidx) { 661 struct net_device *dev = adapter->port[pidx]; 662 struct port_info *pi = netdev_priv(dev); 663 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 664 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 665 int qs; 666 667 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 668 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq; 669 EQ_MAP(s, txq->q.abs_id) = &txq->q; 670 671 /* 672 * The FW_IQ_CMD doesn't return the Absolute Queue IDs 673 * for Free Lists but since all of the Egress Queues 674 * (including Free Lists) have Relative Queue IDs 675 * which are computed as Absolute - Base Queue ID, we 676 * can synthesize the Absolute Queue IDs for the Free 677 * Lists. This is useful for debugging purposes when 678 * we want to dump Queue Contexts via the PF Driver. 679 */ 680 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base; 681 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl; 682 } 683 } 684 return 0; 685 686 err_free_queues: 687 t4vf_free_sge_resources(adapter); 688 return err; 689 } 690 691 /* 692 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive 693 * queues. We configure the RSS CPU lookup table to distribute to the number 694 * of HW receive queues, and the response queue lookup table to narrow that 695 * down to the response queues actually configured for each "port" (Virtual 696 * Interface). We always configure the RSS mapping for all ports since the 697 * mapping table has plenty of entries. 698 */ 699 static int setup_rss(struct adapter *adapter) 700 { 701 int pidx; 702 703 for_each_port(adapter, pidx) { 704 struct port_info *pi = adap2pinfo(adapter, pidx); 705 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 706 u16 rss[MAX_PORT_QSETS]; 707 int qs, err; 708 709 for (qs = 0; qs < pi->nqsets; qs++) 710 rss[qs] = rxq[qs].rspq.abs_id; 711 712 err = t4vf_config_rss_range(adapter, pi->viid, 713 0, pi->rss_size, rss, pi->nqsets); 714 if (err) 715 return err; 716 717 /* 718 * Perform Global RSS Mode-specific initialization. 719 */ 720 switch (adapter->params.rss.mode) { 721 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: 722 /* 723 * If Tunnel All Lookup isn't specified in the global 724 * RSS Configuration, then we need to specify a 725 * default Ingress Queue for any ingress packets which 726 * aren't hashed. We'll use our first ingress queue 727 * ... 728 */ 729 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) { 730 union rss_vi_config config; 731 err = t4vf_read_rss_vi_config(adapter, 732 pi->viid, 733 &config); 734 if (err) 735 return err; 736 config.basicvirtual.defaultq = 737 rxq[0].rspq.abs_id; 738 err = t4vf_write_rss_vi_config(adapter, 739 pi->viid, 740 &config); 741 if (err) 742 return err; 743 } 744 break; 745 } 746 } 747 748 return 0; 749 } 750 751 /* 752 * Bring the adapter up. Called whenever we go from no "ports" open to having 753 * one open. This function performs the actions necessary to make an adapter 754 * operational, such as completing the initialization of HW modules, and 755 * enabling interrupts. Must be called with the rtnl lock held. (Note that 756 * this is called "cxgb_up" in the PF Driver.) 757 */ 758 static int adapter_up(struct adapter *adapter) 759 { 760 int err; 761 762 /* 763 * If this is the first time we've been called, perform basic 764 * adapter setup. Once we've done this, many of our adapter 765 * parameters can no longer be changed ... 766 */ 767 if ((adapter->flags & CXGB4VF_FULL_INIT_DONE) == 0) { 768 err = setup_sge_queues(adapter); 769 if (err) 770 return err; 771 err = setup_rss(adapter); 772 if (err) { 773 t4vf_free_sge_resources(adapter); 774 return err; 775 } 776 777 if (adapter->flags & CXGB4VF_USING_MSIX) 778 name_msix_vecs(adapter); 779 780 adapter->flags |= CXGB4VF_FULL_INIT_DONE; 781 } 782 783 /* 784 * Acquire our interrupt resources. We only support MSI-X and MSI. 785 */ 786 BUG_ON((adapter->flags & 787 (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0); 788 if (adapter->flags & CXGB4VF_USING_MSIX) 789 err = request_msix_queue_irqs(adapter); 790 else 791 err = request_irq(adapter->pdev->irq, 792 t4vf_intr_handler(adapter), 0, 793 adapter->name, adapter); 794 if (err) { 795 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n", 796 err); 797 return err; 798 } 799 800 /* 801 * Enable NAPI ingress processing and return success. 802 */ 803 enable_rx(adapter); 804 t4vf_sge_start(adapter); 805 806 return 0; 807 } 808 809 /* 810 * Bring the adapter down. Called whenever the last "port" (Virtual 811 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF 812 * Driver.) 813 */ 814 static void adapter_down(struct adapter *adapter) 815 { 816 /* 817 * Free interrupt resources. 818 */ 819 if (adapter->flags & CXGB4VF_USING_MSIX) 820 free_msix_queue_irqs(adapter); 821 else 822 free_irq(adapter->pdev->irq, adapter); 823 824 /* 825 * Wait for NAPI handlers to finish. 826 */ 827 quiesce_rx(adapter); 828 } 829 830 /* 831 * Start up a net device. 832 */ 833 static int cxgb4vf_open(struct net_device *dev) 834 { 835 int err; 836 struct port_info *pi = netdev_priv(dev); 837 struct adapter *adapter = pi->adapter; 838 839 /* 840 * If we don't have a connection to the firmware there's nothing we 841 * can do. 842 */ 843 if (!(adapter->flags & CXGB4VF_FW_OK)) 844 return -ENXIO; 845 846 /* 847 * If this is the first interface that we're opening on the "adapter", 848 * bring the "adapter" up now. 849 */ 850 if (adapter->open_device_map == 0) { 851 err = adapter_up(adapter); 852 if (err) 853 return err; 854 } 855 856 /* It's possible that the basic port information could have 857 * changed since we first read it. 858 */ 859 err = t4vf_update_port_info(pi); 860 if (err < 0) 861 return err; 862 863 /* 864 * Note that this interface is up and start everything up ... 865 */ 866 err = link_start(dev); 867 if (err) 868 goto err_unwind; 869 870 pi->vlan_id = t4vf_get_vf_vlan_acl(adapter); 871 872 netif_tx_start_all_queues(dev); 873 set_bit(pi->port_id, &adapter->open_device_map); 874 return 0; 875 876 err_unwind: 877 if (adapter->open_device_map == 0) 878 adapter_down(adapter); 879 return err; 880 } 881 882 /* 883 * Shut down a net device. This routine is called "cxgb_close" in the PF 884 * Driver ... 885 */ 886 static int cxgb4vf_stop(struct net_device *dev) 887 { 888 struct port_info *pi = netdev_priv(dev); 889 struct adapter *adapter = pi->adapter; 890 891 netif_tx_stop_all_queues(dev); 892 netif_carrier_off(dev); 893 t4vf_enable_pi(adapter, pi, false, false); 894 895 clear_bit(pi->port_id, &adapter->open_device_map); 896 if (adapter->open_device_map == 0) 897 adapter_down(adapter); 898 return 0; 899 } 900 901 /* 902 * Translate our basic statistics into the standard "ifconfig" statistics. 903 */ 904 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev) 905 { 906 struct t4vf_port_stats stats; 907 struct port_info *pi = netdev2pinfo(dev); 908 struct adapter *adapter = pi->adapter; 909 struct net_device_stats *ns = &dev->stats; 910 int err; 911 912 spin_lock(&adapter->stats_lock); 913 err = t4vf_get_port_stats(adapter, pi->pidx, &stats); 914 spin_unlock(&adapter->stats_lock); 915 916 memset(ns, 0, sizeof(*ns)); 917 if (err) 918 return ns; 919 920 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes + 921 stats.tx_ucast_bytes + stats.tx_offload_bytes); 922 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames + 923 stats.tx_ucast_frames + stats.tx_offload_frames); 924 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes + 925 stats.rx_ucast_bytes); 926 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames + 927 stats.rx_ucast_frames); 928 ns->multicast = stats.rx_mcast_frames; 929 ns->tx_errors = stats.tx_drop_frames; 930 ns->rx_errors = stats.rx_err_frames; 931 932 return ns; 933 } 934 935 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr) 936 { 937 struct port_info *pi = netdev_priv(netdev); 938 struct adapter *adapter = pi->adapter; 939 int ret; 940 u64 mhash = 0; 941 u64 uhash = 0; 942 bool free = false; 943 bool ucast = is_unicast_ether_addr(mac_addr); 944 const u8 *maclist[1] = {mac_addr}; 945 struct hash_mac_addr *new_entry; 946 947 ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist, 948 NULL, ucast ? &uhash : &mhash, false); 949 if (ret < 0) 950 goto out; 951 /* if hash != 0, then add the addr to hash addr list 952 * so on the end we will calculate the hash for the 953 * list and program it 954 */ 955 if (uhash || mhash) { 956 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 957 if (!new_entry) 958 return -ENOMEM; 959 ether_addr_copy(new_entry->addr, mac_addr); 960 list_add_tail(&new_entry->list, &adapter->mac_hlist); 961 ret = cxgb4vf_set_addr_hash(pi); 962 } 963 out: 964 return ret < 0 ? ret : 0; 965 } 966 967 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 968 { 969 struct port_info *pi = netdev_priv(netdev); 970 struct adapter *adapter = pi->adapter; 971 int ret; 972 const u8 *maclist[1] = {mac_addr}; 973 struct hash_mac_addr *entry, *tmp; 974 975 /* If the MAC address to be removed is in the hash addr 976 * list, delete it from the list and update hash vector 977 */ 978 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) { 979 if (ether_addr_equal(entry->addr, mac_addr)) { 980 list_del(&entry->list); 981 kfree(entry); 982 return cxgb4vf_set_addr_hash(pi); 983 } 984 } 985 986 ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false); 987 return ret < 0 ? -EINVAL : 0; 988 } 989 990 /* 991 * Set RX properties of a port, such as promiscruity, address filters, and MTU. 992 * If @mtu is -1 it is left unchanged. 993 */ 994 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 995 { 996 struct port_info *pi = netdev_priv(dev); 997 998 __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 999 __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 1000 return t4vf_set_rxmode(pi->adapter, pi->viid, -1, 1001 (dev->flags & IFF_PROMISC) != 0, 1002 (dev->flags & IFF_ALLMULTI) != 0, 1003 1, -1, sleep_ok); 1004 } 1005 1006 /* 1007 * Set the current receive modes on the device. 1008 */ 1009 static void cxgb4vf_set_rxmode(struct net_device *dev) 1010 { 1011 /* unfortunately we can't return errors to the stack */ 1012 set_rxmode(dev, -1, false); 1013 } 1014 1015 /* 1016 * Find the entry in the interrupt holdoff timer value array which comes 1017 * closest to the specified interrupt holdoff value. 1018 */ 1019 static int closest_timer(const struct sge *s, int us) 1020 { 1021 int i, timer_idx = 0, min_delta = INT_MAX; 1022 1023 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1024 int delta = us - s->timer_val[i]; 1025 if (delta < 0) 1026 delta = -delta; 1027 if (delta < min_delta) { 1028 min_delta = delta; 1029 timer_idx = i; 1030 } 1031 } 1032 return timer_idx; 1033 } 1034 1035 static int closest_thres(const struct sge *s, int thres) 1036 { 1037 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX; 1038 1039 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1040 delta = thres - s->counter_val[i]; 1041 if (delta < 0) 1042 delta = -delta; 1043 if (delta < min_delta) { 1044 min_delta = delta; 1045 pktcnt_idx = i; 1046 } 1047 } 1048 return pktcnt_idx; 1049 } 1050 1051 /* 1052 * Return a queue's interrupt hold-off time in us. 0 means no timer. 1053 */ 1054 static unsigned int qtimer_val(const struct adapter *adapter, 1055 const struct sge_rspq *rspq) 1056 { 1057 unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params); 1058 1059 return timer_idx < SGE_NTIMERS 1060 ? adapter->sge.timer_val[timer_idx] 1061 : 0; 1062 } 1063 1064 /** 1065 * set_rxq_intr_params - set a queue's interrupt holdoff parameters 1066 * @adapter: the adapter 1067 * @rspq: the RX response queue 1068 * @us: the hold-off time in us, or 0 to disable timer 1069 * @cnt: the hold-off packet count, or 0 to disable counter 1070 * 1071 * Sets an RX response queue's interrupt hold-off time and packet count. 1072 * At least one of the two needs to be enabled for the queue to generate 1073 * interrupts. 1074 */ 1075 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq, 1076 unsigned int us, unsigned int cnt) 1077 { 1078 unsigned int timer_idx; 1079 1080 /* 1081 * If both the interrupt holdoff timer and count are specified as 1082 * zero, default to a holdoff count of 1 ... 1083 */ 1084 if ((us | cnt) == 0) 1085 cnt = 1; 1086 1087 /* 1088 * If an interrupt holdoff count has been specified, then find the 1089 * closest configured holdoff count and use that. If the response 1090 * queue has already been created, then update its queue context 1091 * parameters ... 1092 */ 1093 if (cnt) { 1094 int err; 1095 u32 v, pktcnt_idx; 1096 1097 pktcnt_idx = closest_thres(&adapter->sge, cnt); 1098 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) { 1099 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1100 FW_PARAMS_PARAM_X_V( 1101 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1102 FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id); 1103 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx); 1104 if (err) 1105 return err; 1106 } 1107 rspq->pktcnt_idx = pktcnt_idx; 1108 } 1109 1110 /* 1111 * Compute the closest holdoff timer index from the supplied holdoff 1112 * timer value. 1113 */ 1114 timer_idx = (us == 0 1115 ? SGE_TIMER_RSTRT_CNTR 1116 : closest_timer(&adapter->sge, us)); 1117 1118 /* 1119 * Update the response queue's interrupt coalescing parameters and 1120 * return success. 1121 */ 1122 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 1123 QINTR_CNT_EN_V(cnt > 0)); 1124 return 0; 1125 } 1126 1127 /* 1128 * Return a version number to identify the type of adapter. The scheme is: 1129 * - bits 0..9: chip version 1130 * - bits 10..15: chip revision 1131 */ 1132 static inline unsigned int mk_adap_vers(const struct adapter *adapter) 1133 { 1134 /* 1135 * Chip version 4, revision 0x3f (cxgb4vf). 1136 */ 1137 return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10); 1138 } 1139 1140 /* 1141 * Execute the specified ioctl command. 1142 */ 1143 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1144 { 1145 int ret = 0; 1146 1147 switch (cmd) { 1148 /* 1149 * The VF Driver doesn't have access to any of the other 1150 * common Ethernet device ioctl()'s (like reading/writing 1151 * PHY registers, etc. 1152 */ 1153 1154 default: 1155 ret = -EOPNOTSUPP; 1156 break; 1157 } 1158 return ret; 1159 } 1160 1161 /* 1162 * Change the device's MTU. 1163 */ 1164 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu) 1165 { 1166 int ret; 1167 struct port_info *pi = netdev_priv(dev); 1168 1169 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu, 1170 -1, -1, -1, -1, true); 1171 if (!ret) 1172 dev->mtu = new_mtu; 1173 return ret; 1174 } 1175 1176 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev, 1177 netdev_features_t features) 1178 { 1179 /* 1180 * Since there is no support for separate rx/tx vlan accel 1181 * enable/disable make sure tx flag is always in same state as rx. 1182 */ 1183 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1184 features |= NETIF_F_HW_VLAN_CTAG_TX; 1185 else 1186 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 1187 1188 return features; 1189 } 1190 1191 static int cxgb4vf_set_features(struct net_device *dev, 1192 netdev_features_t features) 1193 { 1194 struct port_info *pi = netdev_priv(dev); 1195 netdev_features_t changed = dev->features ^ features; 1196 1197 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 1198 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, 1199 features & NETIF_F_HW_VLAN_CTAG_TX, 0); 1200 1201 return 0; 1202 } 1203 1204 /* 1205 * Change the devices MAC address. 1206 */ 1207 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr) 1208 { 1209 int ret; 1210 struct sockaddr *addr = _addr; 1211 struct port_info *pi = netdev_priv(dev); 1212 1213 if (!is_valid_ether_addr(addr->sa_data)) 1214 return -EADDRNOTAVAIL; 1215 1216 ret = cxgb4vf_change_mac(pi, pi->viid, &pi->xact_addr_filt, 1217 addr->sa_data, true); 1218 if (ret < 0) 1219 return ret; 1220 1221 eth_hw_addr_set(dev, addr->sa_data); 1222 return 0; 1223 } 1224 1225 #ifdef CONFIG_NET_POLL_CONTROLLER 1226 /* 1227 * Poll all of our receive queues. This is called outside of normal interrupt 1228 * context. 1229 */ 1230 static void cxgb4vf_poll_controller(struct net_device *dev) 1231 { 1232 struct port_info *pi = netdev_priv(dev); 1233 struct adapter *adapter = pi->adapter; 1234 1235 if (adapter->flags & CXGB4VF_USING_MSIX) { 1236 struct sge_eth_rxq *rxq; 1237 int nqsets; 1238 1239 rxq = &adapter->sge.ethrxq[pi->first_qset]; 1240 for (nqsets = pi->nqsets; nqsets; nqsets--) { 1241 t4vf_sge_intr_msix(0, &rxq->rspq); 1242 rxq++; 1243 } 1244 } else 1245 t4vf_intr_handler(adapter)(0, adapter); 1246 } 1247 #endif 1248 1249 /* 1250 * Ethtool operations. 1251 * =================== 1252 * 1253 * Note that we don't support any ethtool operations which change the physical 1254 * state of the port to which we're linked. 1255 */ 1256 1257 /** 1258 * from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool 1259 * @port_type: Firmware Port Type 1260 * @mod_type: Firmware Module Type 1261 * 1262 * Translate Firmware Port/Module type to Ethtool Port Type. 1263 */ 1264 static int from_fw_port_mod_type(enum fw_port_type port_type, 1265 enum fw_port_module_type mod_type) 1266 { 1267 if (port_type == FW_PORT_TYPE_BT_SGMII || 1268 port_type == FW_PORT_TYPE_BT_XFI || 1269 port_type == FW_PORT_TYPE_BT_XAUI) { 1270 return PORT_TP; 1271 } else if (port_type == FW_PORT_TYPE_FIBER_XFI || 1272 port_type == FW_PORT_TYPE_FIBER_XAUI) { 1273 return PORT_FIBRE; 1274 } else if (port_type == FW_PORT_TYPE_SFP || 1275 port_type == FW_PORT_TYPE_QSFP_10G || 1276 port_type == FW_PORT_TYPE_QSA || 1277 port_type == FW_PORT_TYPE_QSFP || 1278 port_type == FW_PORT_TYPE_CR4_QSFP || 1279 port_type == FW_PORT_TYPE_CR_QSFP || 1280 port_type == FW_PORT_TYPE_CR2_QSFP || 1281 port_type == FW_PORT_TYPE_SFP28) { 1282 if (mod_type == FW_PORT_MOD_TYPE_LR || 1283 mod_type == FW_PORT_MOD_TYPE_SR || 1284 mod_type == FW_PORT_MOD_TYPE_ER || 1285 mod_type == FW_PORT_MOD_TYPE_LRM) 1286 return PORT_FIBRE; 1287 else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE || 1288 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE) 1289 return PORT_DA; 1290 else 1291 return PORT_OTHER; 1292 } else if (port_type == FW_PORT_TYPE_KR4_100G || 1293 port_type == FW_PORT_TYPE_KR_SFP28 || 1294 port_type == FW_PORT_TYPE_KR_XLAUI) { 1295 return PORT_NONE; 1296 } 1297 1298 return PORT_OTHER; 1299 } 1300 1301 /** 1302 * fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask 1303 * @port_type: Firmware Port Type 1304 * @fw_caps: Firmware Port Capabilities 1305 * @link_mode_mask: ethtool Link Mode Mask 1306 * 1307 * Translate a Firmware Port Capabilities specification to an ethtool 1308 * Link Mode Mask. 1309 */ 1310 static void fw_caps_to_lmm(enum fw_port_type port_type, 1311 unsigned int fw_caps, 1312 unsigned long *link_mode_mask) 1313 { 1314 #define SET_LMM(__lmm_name) \ 1315 __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \ 1316 link_mode_mask) 1317 1318 #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \ 1319 do { \ 1320 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \ 1321 SET_LMM(__lmm_name); \ 1322 } while (0) 1323 1324 switch (port_type) { 1325 case FW_PORT_TYPE_BT_SGMII: 1326 case FW_PORT_TYPE_BT_XFI: 1327 case FW_PORT_TYPE_BT_XAUI: 1328 SET_LMM(TP); 1329 FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full); 1330 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1331 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1332 break; 1333 1334 case FW_PORT_TYPE_KX4: 1335 case FW_PORT_TYPE_KX: 1336 SET_LMM(Backplane); 1337 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1338 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1339 break; 1340 1341 case FW_PORT_TYPE_KR: 1342 SET_LMM(Backplane); 1343 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1344 break; 1345 1346 case FW_PORT_TYPE_BP_AP: 1347 SET_LMM(Backplane); 1348 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1349 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); 1350 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1351 break; 1352 1353 case FW_PORT_TYPE_BP4_AP: 1354 SET_LMM(Backplane); 1355 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1356 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); 1357 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1358 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1359 break; 1360 1361 case FW_PORT_TYPE_FIBER_XFI: 1362 case FW_PORT_TYPE_FIBER_XAUI: 1363 case FW_PORT_TYPE_SFP: 1364 case FW_PORT_TYPE_QSFP_10G: 1365 case FW_PORT_TYPE_QSA: 1366 SET_LMM(FIBRE); 1367 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1368 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1369 break; 1370 1371 case FW_PORT_TYPE_BP40_BA: 1372 case FW_PORT_TYPE_QSFP: 1373 SET_LMM(FIBRE); 1374 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1375 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1376 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); 1377 break; 1378 1379 case FW_PORT_TYPE_CR_QSFP: 1380 case FW_PORT_TYPE_SFP28: 1381 SET_LMM(FIBRE); 1382 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1383 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1384 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); 1385 break; 1386 1387 case FW_PORT_TYPE_KR_SFP28: 1388 SET_LMM(Backplane); 1389 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1390 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1391 FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full); 1392 break; 1393 1394 case FW_PORT_TYPE_KR_XLAUI: 1395 SET_LMM(Backplane); 1396 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1397 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1398 FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full); 1399 break; 1400 1401 case FW_PORT_TYPE_CR2_QSFP: 1402 SET_LMM(FIBRE); 1403 FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full); 1404 break; 1405 1406 case FW_PORT_TYPE_KR4_100G: 1407 case FW_PORT_TYPE_CR4_QSFP: 1408 SET_LMM(FIBRE); 1409 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1410 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1411 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); 1412 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); 1413 FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full); 1414 FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full); 1415 break; 1416 1417 default: 1418 break; 1419 } 1420 1421 if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) { 1422 FW_CAPS_TO_LMM(FEC_RS, FEC_RS); 1423 FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER); 1424 } else { 1425 SET_LMM(FEC_NONE); 1426 } 1427 1428 FW_CAPS_TO_LMM(ANEG, Autoneg); 1429 FW_CAPS_TO_LMM(802_3_PAUSE, Pause); 1430 FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause); 1431 1432 #undef FW_CAPS_TO_LMM 1433 #undef SET_LMM 1434 } 1435 1436 static int cxgb4vf_get_link_ksettings(struct net_device *dev, 1437 struct ethtool_link_ksettings *link_ksettings) 1438 { 1439 struct port_info *pi = netdev_priv(dev); 1440 struct ethtool_link_settings *base = &link_ksettings->base; 1441 1442 /* For the nonce, the Firmware doesn't send up Port State changes 1443 * when the Virtual Interface attached to the Port is down. So 1444 * if it's down, let's grab any changes. 1445 */ 1446 if (!netif_running(dev)) 1447 (void)t4vf_update_port_info(pi); 1448 1449 ethtool_link_ksettings_zero_link_mode(link_ksettings, supported); 1450 ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising); 1451 ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising); 1452 1453 base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type); 1454 1455 if (pi->mdio_addr >= 0) { 1456 base->phy_address = pi->mdio_addr; 1457 base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII 1458 ? ETH_MDIO_SUPPORTS_C22 1459 : ETH_MDIO_SUPPORTS_C45); 1460 } else { 1461 base->phy_address = 255; 1462 base->mdio_support = 0; 1463 } 1464 1465 fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps, 1466 link_ksettings->link_modes.supported); 1467 fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps, 1468 link_ksettings->link_modes.advertising); 1469 fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps, 1470 link_ksettings->link_modes.lp_advertising); 1471 1472 if (netif_carrier_ok(dev)) { 1473 base->speed = pi->link_cfg.speed; 1474 base->duplex = DUPLEX_FULL; 1475 } else { 1476 base->speed = SPEED_UNKNOWN; 1477 base->duplex = DUPLEX_UNKNOWN; 1478 } 1479 1480 base->autoneg = pi->link_cfg.autoneg; 1481 if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG) 1482 ethtool_link_ksettings_add_link_mode(link_ksettings, 1483 supported, Autoneg); 1484 if (pi->link_cfg.autoneg) 1485 ethtool_link_ksettings_add_link_mode(link_ksettings, 1486 advertising, Autoneg); 1487 1488 return 0; 1489 } 1490 1491 /* Translate the Firmware FEC value into the ethtool value. */ 1492 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec) 1493 { 1494 unsigned int eth_fec = 0; 1495 1496 if (fw_fec & FW_PORT_CAP32_FEC_RS) 1497 eth_fec |= ETHTOOL_FEC_RS; 1498 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 1499 eth_fec |= ETHTOOL_FEC_BASER; 1500 1501 /* if nothing is set, then FEC is off */ 1502 if (!eth_fec) 1503 eth_fec = ETHTOOL_FEC_OFF; 1504 1505 return eth_fec; 1506 } 1507 1508 /* Translate Common Code FEC value into ethtool value. */ 1509 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec) 1510 { 1511 unsigned int eth_fec = 0; 1512 1513 if (cc_fec & FEC_AUTO) 1514 eth_fec |= ETHTOOL_FEC_AUTO; 1515 if (cc_fec & FEC_RS) 1516 eth_fec |= ETHTOOL_FEC_RS; 1517 if (cc_fec & FEC_BASER_RS) 1518 eth_fec |= ETHTOOL_FEC_BASER; 1519 1520 /* if nothing is set, then FEC is off */ 1521 if (!eth_fec) 1522 eth_fec = ETHTOOL_FEC_OFF; 1523 1524 return eth_fec; 1525 } 1526 1527 static int cxgb4vf_get_fecparam(struct net_device *dev, 1528 struct ethtool_fecparam *fec) 1529 { 1530 const struct port_info *pi = netdev_priv(dev); 1531 const struct link_config *lc = &pi->link_cfg; 1532 1533 /* Translate the Firmware FEC Support into the ethtool value. We 1534 * always support IEEE 802.3 "automatic" selection of Link FEC type if 1535 * any FEC is supported. 1536 */ 1537 fec->fec = fwcap_to_eth_fec(lc->pcaps); 1538 if (fec->fec != ETHTOOL_FEC_OFF) 1539 fec->fec |= ETHTOOL_FEC_AUTO; 1540 1541 /* Translate the current internal FEC parameters into the 1542 * ethtool values. 1543 */ 1544 fec->active_fec = cc_to_eth_fec(lc->fec); 1545 return 0; 1546 } 1547 1548 /* 1549 * Return our driver information. 1550 */ 1551 static void cxgb4vf_get_drvinfo(struct net_device *dev, 1552 struct ethtool_drvinfo *drvinfo) 1553 { 1554 struct adapter *adapter = netdev2adap(dev); 1555 1556 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver)); 1557 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)), 1558 sizeof(drvinfo->bus_info)); 1559 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 1560 "%u.%u.%u.%u, TP %u.%u.%u.%u", 1561 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev), 1562 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev), 1563 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev), 1564 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev), 1565 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev), 1566 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev), 1567 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev), 1568 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev)); 1569 } 1570 1571 /* 1572 * Return current adapter message level. 1573 */ 1574 static u32 cxgb4vf_get_msglevel(struct net_device *dev) 1575 { 1576 return netdev2adap(dev)->msg_enable; 1577 } 1578 1579 /* 1580 * Set current adapter message level. 1581 */ 1582 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel) 1583 { 1584 netdev2adap(dev)->msg_enable = msglevel; 1585 } 1586 1587 /* 1588 * Return the device's current Queue Set ring size parameters along with the 1589 * allowed maximum values. Since ethtool doesn't understand the concept of 1590 * multi-queue devices, we just return the current values associated with the 1591 * first Queue Set. 1592 */ 1593 static void cxgb4vf_get_ringparam(struct net_device *dev, 1594 struct ethtool_ringparam *rp) 1595 { 1596 const struct port_info *pi = netdev_priv(dev); 1597 const struct sge *s = &pi->adapter->sge; 1598 1599 rp->rx_max_pending = MAX_RX_BUFFERS; 1600 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES; 1601 rp->rx_jumbo_max_pending = 0; 1602 rp->tx_max_pending = MAX_TXQ_ENTRIES; 1603 1604 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID; 1605 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; 1606 rp->rx_jumbo_pending = 0; 1607 rp->tx_pending = s->ethtxq[pi->first_qset].q.size; 1608 } 1609 1610 /* 1611 * Set the Queue Set ring size parameters for the device. Again, since 1612 * ethtool doesn't allow for the concept of multiple queues per device, we'll 1613 * apply these new values across all of the Queue Sets associated with the 1614 * device -- after vetting them of course! 1615 */ 1616 static int cxgb4vf_set_ringparam(struct net_device *dev, 1617 struct ethtool_ringparam *rp) 1618 { 1619 const struct port_info *pi = netdev_priv(dev); 1620 struct adapter *adapter = pi->adapter; 1621 struct sge *s = &adapter->sge; 1622 int qs; 1623 1624 if (rp->rx_pending > MAX_RX_BUFFERS || 1625 rp->rx_jumbo_pending || 1626 rp->tx_pending > MAX_TXQ_ENTRIES || 1627 rp->rx_mini_pending > MAX_RSPQ_ENTRIES || 1628 rp->rx_mini_pending < MIN_RSPQ_ENTRIES || 1629 rp->rx_pending < MIN_FL_ENTRIES || 1630 rp->tx_pending < MIN_TXQ_ENTRIES) 1631 return -EINVAL; 1632 1633 if (adapter->flags & CXGB4VF_FULL_INIT_DONE) 1634 return -EBUSY; 1635 1636 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) { 1637 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID; 1638 s->ethrxq[qs].rspq.size = rp->rx_mini_pending; 1639 s->ethtxq[qs].q.size = rp->tx_pending; 1640 } 1641 return 0; 1642 } 1643 1644 /* 1645 * Return the interrupt holdoff timer and count for the first Queue Set on the 1646 * device. Our extension ioctl() (the cxgbtool interface) allows the 1647 * interrupt holdoff timer to be read on all of the device's Queue Sets. 1648 */ 1649 static int cxgb4vf_get_coalesce(struct net_device *dev, 1650 struct ethtool_coalesce *coalesce, 1651 struct kernel_ethtool_coalesce *kernel_coal, 1652 struct netlink_ext_ack *extack) 1653 { 1654 const struct port_info *pi = netdev_priv(dev); 1655 const struct adapter *adapter = pi->adapter; 1656 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq; 1657 1658 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq); 1659 coalesce->rx_max_coalesced_frames = 1660 ((rspq->intr_params & QINTR_CNT_EN_F) 1661 ? adapter->sge.counter_val[rspq->pktcnt_idx] 1662 : 0); 1663 return 0; 1664 } 1665 1666 /* 1667 * Set the RX interrupt holdoff timer and count for the first Queue Set on the 1668 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set 1669 * the interrupt holdoff timer on any of the device's Queue Sets. 1670 */ 1671 static int cxgb4vf_set_coalesce(struct net_device *dev, 1672 struct ethtool_coalesce *coalesce, 1673 struct kernel_ethtool_coalesce *kernel_coal, 1674 struct netlink_ext_ack *extack) 1675 { 1676 const struct port_info *pi = netdev_priv(dev); 1677 struct adapter *adapter = pi->adapter; 1678 1679 return set_rxq_intr_params(adapter, 1680 &adapter->sge.ethrxq[pi->first_qset].rspq, 1681 coalesce->rx_coalesce_usecs, 1682 coalesce->rx_max_coalesced_frames); 1683 } 1684 1685 /* 1686 * Report current port link pause parameter settings. 1687 */ 1688 static void cxgb4vf_get_pauseparam(struct net_device *dev, 1689 struct ethtool_pauseparam *pauseparam) 1690 { 1691 struct port_info *pi = netdev_priv(dev); 1692 1693 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; 1694 pauseparam->rx_pause = (pi->link_cfg.advertised_fc & PAUSE_RX) != 0; 1695 pauseparam->tx_pause = (pi->link_cfg.advertised_fc & PAUSE_TX) != 0; 1696 } 1697 1698 /* 1699 * Identify the port by blinking the port's LED. 1700 */ 1701 static int cxgb4vf_phys_id(struct net_device *dev, 1702 enum ethtool_phys_id_state state) 1703 { 1704 unsigned int val; 1705 struct port_info *pi = netdev_priv(dev); 1706 1707 if (state == ETHTOOL_ID_ACTIVE) 1708 val = 0xffff; 1709 else if (state == ETHTOOL_ID_INACTIVE) 1710 val = 0; 1711 else 1712 return -EINVAL; 1713 1714 return t4vf_identify_port(pi->adapter, pi->viid, val); 1715 } 1716 1717 /* 1718 * Port stats maintained per queue of the port. 1719 */ 1720 struct queue_port_stats { 1721 u64 tso; 1722 u64 tx_csum; 1723 u64 rx_csum; 1724 u64 vlan_ex; 1725 u64 vlan_ins; 1726 u64 lro_pkts; 1727 u64 lro_merged; 1728 }; 1729 1730 /* 1731 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that 1732 * these need to match the order of statistics returned by 1733 * t4vf_get_port_stats(). 1734 */ 1735 static const char stats_strings[][ETH_GSTRING_LEN] = { 1736 /* 1737 * These must match the layout of the t4vf_port_stats structure. 1738 */ 1739 "TxBroadcastBytes ", 1740 "TxBroadcastFrames ", 1741 "TxMulticastBytes ", 1742 "TxMulticastFrames ", 1743 "TxUnicastBytes ", 1744 "TxUnicastFrames ", 1745 "TxDroppedFrames ", 1746 "TxOffloadBytes ", 1747 "TxOffloadFrames ", 1748 "RxBroadcastBytes ", 1749 "RxBroadcastFrames ", 1750 "RxMulticastBytes ", 1751 "RxMulticastFrames ", 1752 "RxUnicastBytes ", 1753 "RxUnicastFrames ", 1754 "RxErrorFrames ", 1755 1756 /* 1757 * These are accumulated per-queue statistics and must match the 1758 * order of the fields in the queue_port_stats structure. 1759 */ 1760 "TSO ", 1761 "TxCsumOffload ", 1762 "RxCsumGood ", 1763 "VLANextractions ", 1764 "VLANinsertions ", 1765 "GROPackets ", 1766 "GROMerged ", 1767 }; 1768 1769 /* 1770 * Return the number of statistics in the specified statistics set. 1771 */ 1772 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset) 1773 { 1774 switch (sset) { 1775 case ETH_SS_STATS: 1776 return ARRAY_SIZE(stats_strings); 1777 default: 1778 return -EOPNOTSUPP; 1779 } 1780 /*NOTREACHED*/ 1781 } 1782 1783 /* 1784 * Return the strings for the specified statistics set. 1785 */ 1786 static void cxgb4vf_get_strings(struct net_device *dev, 1787 u32 sset, 1788 u8 *data) 1789 { 1790 switch (sset) { 1791 case ETH_SS_STATS: 1792 memcpy(data, stats_strings, sizeof(stats_strings)); 1793 break; 1794 } 1795 } 1796 1797 /* 1798 * Small utility routine to accumulate queue statistics across the queues of 1799 * a "port". 1800 */ 1801 static void collect_sge_port_stats(const struct adapter *adapter, 1802 const struct port_info *pi, 1803 struct queue_port_stats *stats) 1804 { 1805 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset]; 1806 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 1807 int qs; 1808 1809 memset(stats, 0, sizeof(*stats)); 1810 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 1811 stats->tso += txq->tso; 1812 stats->tx_csum += txq->tx_cso; 1813 stats->rx_csum += rxq->stats.rx_cso; 1814 stats->vlan_ex += rxq->stats.vlan_ex; 1815 stats->vlan_ins += txq->vlan_ins; 1816 stats->lro_pkts += rxq->stats.lro_pkts; 1817 stats->lro_merged += rxq->stats.lro_merged; 1818 } 1819 } 1820 1821 /* 1822 * Return the ETH_SS_STATS statistics set. 1823 */ 1824 static void cxgb4vf_get_ethtool_stats(struct net_device *dev, 1825 struct ethtool_stats *stats, 1826 u64 *data) 1827 { 1828 struct port_info *pi = netdev2pinfo(dev); 1829 struct adapter *adapter = pi->adapter; 1830 int err = t4vf_get_port_stats(adapter, pi->pidx, 1831 (struct t4vf_port_stats *)data); 1832 if (err) 1833 memset(data, 0, sizeof(struct t4vf_port_stats)); 1834 1835 data += sizeof(struct t4vf_port_stats) / sizeof(u64); 1836 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); 1837 } 1838 1839 /* 1840 * Return the size of our register map. 1841 */ 1842 static int cxgb4vf_get_regs_len(struct net_device *dev) 1843 { 1844 return T4VF_REGMAP_SIZE; 1845 } 1846 1847 /* 1848 * Dump a block of registers, start to end inclusive, into a buffer. 1849 */ 1850 static void reg_block_dump(struct adapter *adapter, void *regbuf, 1851 unsigned int start, unsigned int end) 1852 { 1853 u32 *bp = regbuf + start - T4VF_REGMAP_START; 1854 1855 for ( ; start <= end; start += sizeof(u32)) { 1856 /* 1857 * Avoid reading the Mailbox Control register since that 1858 * can trigger a Mailbox Ownership Arbitration cycle and 1859 * interfere with communication with the firmware. 1860 */ 1861 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL) 1862 *bp++ = 0xffff; 1863 else 1864 *bp++ = t4_read_reg(adapter, start); 1865 } 1866 } 1867 1868 /* 1869 * Copy our entire register map into the provided buffer. 1870 */ 1871 static void cxgb4vf_get_regs(struct net_device *dev, 1872 struct ethtool_regs *regs, 1873 void *regbuf) 1874 { 1875 struct adapter *adapter = netdev2adap(dev); 1876 1877 regs->version = mk_adap_vers(adapter); 1878 1879 /* 1880 * Fill in register buffer with our register map. 1881 */ 1882 memset(regbuf, 0, T4VF_REGMAP_SIZE); 1883 1884 reg_block_dump(adapter, regbuf, 1885 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST, 1886 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST); 1887 reg_block_dump(adapter, regbuf, 1888 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST, 1889 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST); 1890 1891 /* T5 adds new registers in the PL Register map. 1892 */ 1893 reg_block_dump(adapter, regbuf, 1894 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST, 1895 T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip) 1896 ? PL_VF_WHOAMI_A : PL_VF_REVISION_A)); 1897 reg_block_dump(adapter, regbuf, 1898 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST, 1899 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST); 1900 1901 reg_block_dump(adapter, regbuf, 1902 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST, 1903 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST); 1904 } 1905 1906 /* 1907 * Report current Wake On LAN settings. 1908 */ 1909 static void cxgb4vf_get_wol(struct net_device *dev, 1910 struct ethtool_wolinfo *wol) 1911 { 1912 wol->supported = 0; 1913 wol->wolopts = 0; 1914 memset(&wol->sopass, 0, sizeof(wol->sopass)); 1915 } 1916 1917 /* 1918 * TCP Segmentation Offload flags which we support. 1919 */ 1920 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1921 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 1922 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 1923 1924 static const struct ethtool_ops cxgb4vf_ethtool_ops = { 1925 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | 1926 ETHTOOL_COALESCE_RX_MAX_FRAMES, 1927 .get_link_ksettings = cxgb4vf_get_link_ksettings, 1928 .get_fecparam = cxgb4vf_get_fecparam, 1929 .get_drvinfo = cxgb4vf_get_drvinfo, 1930 .get_msglevel = cxgb4vf_get_msglevel, 1931 .set_msglevel = cxgb4vf_set_msglevel, 1932 .get_ringparam = cxgb4vf_get_ringparam, 1933 .set_ringparam = cxgb4vf_set_ringparam, 1934 .get_coalesce = cxgb4vf_get_coalesce, 1935 .set_coalesce = cxgb4vf_set_coalesce, 1936 .get_pauseparam = cxgb4vf_get_pauseparam, 1937 .get_link = ethtool_op_get_link, 1938 .get_strings = cxgb4vf_get_strings, 1939 .set_phys_id = cxgb4vf_phys_id, 1940 .get_sset_count = cxgb4vf_get_sset_count, 1941 .get_ethtool_stats = cxgb4vf_get_ethtool_stats, 1942 .get_regs_len = cxgb4vf_get_regs_len, 1943 .get_regs = cxgb4vf_get_regs, 1944 .get_wol = cxgb4vf_get_wol, 1945 }; 1946 1947 /* 1948 * /sys/kernel/debug/cxgb4vf support code and data. 1949 * ================================================ 1950 */ 1951 1952 /* 1953 * Show Firmware Mailbox Command/Reply Log 1954 * 1955 * Note that we don't do any locking when dumping the Firmware Mailbox Log so 1956 * it's possible that we can catch things during a log update and therefore 1957 * see partially corrupted log entries. But i9t's probably Good Enough(tm). 1958 * If we ever decide that we want to make sure that we're dumping a coherent 1959 * log, we'd need to perform locking in the mailbox logging and in 1960 * mboxlog_open() where we'd need to grab the entire mailbox log in one go 1961 * like we do for the Firmware Device Log. But as stated above, meh ... 1962 */ 1963 static int mboxlog_show(struct seq_file *seq, void *v) 1964 { 1965 struct adapter *adapter = seq->private; 1966 struct mbox_cmd_log *log = adapter->mbox_log; 1967 struct mbox_cmd *entry; 1968 int entry_idx, i; 1969 1970 if (v == SEQ_START_TOKEN) { 1971 seq_printf(seq, 1972 "%10s %15s %5s %5s %s\n", 1973 "Seq#", "Tstamp", "Atime", "Etime", 1974 "Command/Reply"); 1975 return 0; 1976 } 1977 1978 entry_idx = log->cursor + ((uintptr_t)v - 2); 1979 if (entry_idx >= log->size) 1980 entry_idx -= log->size; 1981 entry = mbox_cmd_log_entry(log, entry_idx); 1982 1983 /* skip over unused entries */ 1984 if (entry->timestamp == 0) 1985 return 0; 1986 1987 seq_printf(seq, "%10u %15llu %5d %5d", 1988 entry->seqno, entry->timestamp, 1989 entry->access, entry->execute); 1990 for (i = 0; i < MBOX_LEN / 8; i++) { 1991 u64 flit = entry->cmd[i]; 1992 u32 hi = (u32)(flit >> 32); 1993 u32 lo = (u32)flit; 1994 1995 seq_printf(seq, " %08x %08x", hi, lo); 1996 } 1997 seq_puts(seq, "\n"); 1998 return 0; 1999 } 2000 2001 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos) 2002 { 2003 struct adapter *adapter = seq->private; 2004 struct mbox_cmd_log *log = adapter->mbox_log; 2005 2006 return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL); 2007 } 2008 2009 static void *mboxlog_start(struct seq_file *seq, loff_t *pos) 2010 { 2011 return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN; 2012 } 2013 2014 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos) 2015 { 2016 ++*pos; 2017 return mboxlog_get_idx(seq, *pos); 2018 } 2019 2020 static void mboxlog_stop(struct seq_file *seq, void *v) 2021 { 2022 } 2023 2024 static const struct seq_operations mboxlog_sops = { 2025 .start = mboxlog_start, 2026 .next = mboxlog_next, 2027 .stop = mboxlog_stop, 2028 .show = mboxlog_show 2029 }; 2030 2031 DEFINE_SEQ_ATTRIBUTE(mboxlog); 2032 /* 2033 * Show SGE Queue Set information. We display QPL Queues Sets per line. 2034 */ 2035 #define QPL 4 2036 2037 static int sge_qinfo_show(struct seq_file *seq, void *v) 2038 { 2039 struct adapter *adapter = seq->private; 2040 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2041 int qs, r = (uintptr_t)v - 1; 2042 2043 if (r) 2044 seq_putc(seq, '\n'); 2045 2046 #define S3(fmt_spec, s, v) \ 2047 do {\ 2048 seq_printf(seq, "%-12s", s); \ 2049 for (qs = 0; qs < n; ++qs) \ 2050 seq_printf(seq, " %16" fmt_spec, v); \ 2051 seq_putc(seq, '\n'); \ 2052 } while (0) 2053 #define S(s, v) S3("s", s, v) 2054 #define T(s, v) S3("u", s, txq[qs].v) 2055 #define R(s, v) S3("u", s, rxq[qs].v) 2056 2057 if (r < eth_entries) { 2058 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2059 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2060 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2061 2062 S("QType:", "Ethernet"); 2063 S("Interface:", 2064 (rxq[qs].rspq.netdev 2065 ? rxq[qs].rspq.netdev->name 2066 : "N/A")); 2067 S3("d", "Port:", 2068 (rxq[qs].rspq.netdev 2069 ? ((struct port_info *) 2070 netdev_priv(rxq[qs].rspq.netdev))->port_id 2071 : -1)); 2072 T("TxQ ID:", q.abs_id); 2073 T("TxQ size:", q.size); 2074 T("TxQ inuse:", q.in_use); 2075 T("TxQ PIdx:", q.pidx); 2076 T("TxQ CIdx:", q.cidx); 2077 R("RspQ ID:", rspq.abs_id); 2078 R("RspQ size:", rspq.size); 2079 R("RspQE size:", rspq.iqe_len); 2080 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq)); 2081 S3("u", "Intr pktcnt:", 2082 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]); 2083 R("RspQ CIdx:", rspq.cidx); 2084 R("RspQ Gen:", rspq.gen); 2085 R("FL ID:", fl.abs_id); 2086 R("FL size:", fl.size - MIN_FL_RESID); 2087 R("FL avail:", fl.avail); 2088 R("FL PIdx:", fl.pidx); 2089 R("FL CIdx:", fl.cidx); 2090 return 0; 2091 } 2092 2093 r -= eth_entries; 2094 if (r == 0) { 2095 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2096 2097 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue"); 2098 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id); 2099 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2100 qtimer_val(adapter, evtq)); 2101 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2102 adapter->sge.counter_val[evtq->pktcnt_idx]); 2103 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx); 2104 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen); 2105 } else if (r == 1) { 2106 const struct sge_rspq *intrq = &adapter->sge.intrq; 2107 2108 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue"); 2109 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id); 2110 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2111 qtimer_val(adapter, intrq)); 2112 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2113 adapter->sge.counter_val[intrq->pktcnt_idx]); 2114 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx); 2115 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen); 2116 } 2117 2118 #undef R 2119 #undef T 2120 #undef S 2121 #undef S3 2122 2123 return 0; 2124 } 2125 2126 /* 2127 * Return the number of "entries" in our "file". We group the multi-Queue 2128 * sections with QPL Queue Sets per "entry". The sections of the output are: 2129 * 2130 * Ethernet RX/TX Queue Sets 2131 * Firmware Event Queue 2132 * Forwarded Interrupt Queue (if in MSI mode) 2133 */ 2134 static int sge_queue_entries(const struct adapter *adapter) 2135 { 2136 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2137 ((adapter->flags & CXGB4VF_USING_MSI) != 0); 2138 } 2139 2140 static void *sge_queue_start(struct seq_file *seq, loff_t *pos) 2141 { 2142 int entries = sge_queue_entries(seq->private); 2143 2144 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2145 } 2146 2147 static void sge_queue_stop(struct seq_file *seq, void *v) 2148 { 2149 } 2150 2151 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos) 2152 { 2153 int entries = sge_queue_entries(seq->private); 2154 2155 ++*pos; 2156 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2157 } 2158 2159 static const struct seq_operations sge_qinfo_sops = { 2160 .start = sge_queue_start, 2161 .next = sge_queue_next, 2162 .stop = sge_queue_stop, 2163 .show = sge_qinfo_show 2164 }; 2165 2166 DEFINE_SEQ_ATTRIBUTE(sge_qinfo); 2167 2168 /* 2169 * Show SGE Queue Set statistics. We display QPL Queues Sets per line. 2170 */ 2171 #define QPL 4 2172 2173 static int sge_qstats_show(struct seq_file *seq, void *v) 2174 { 2175 struct adapter *adapter = seq->private; 2176 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2177 int qs, r = (uintptr_t)v - 1; 2178 2179 if (r) 2180 seq_putc(seq, '\n'); 2181 2182 #define S3(fmt, s, v) \ 2183 do { \ 2184 seq_printf(seq, "%-16s", s); \ 2185 for (qs = 0; qs < n; ++qs) \ 2186 seq_printf(seq, " %8" fmt, v); \ 2187 seq_putc(seq, '\n'); \ 2188 } while (0) 2189 #define S(s, v) S3("s", s, v) 2190 2191 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v) 2192 #define T(s, v) T3("lu", s, v) 2193 2194 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v) 2195 #define R(s, v) R3("lu", s, v) 2196 2197 if (r < eth_entries) { 2198 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2199 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2200 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2201 2202 S("QType:", "Ethernet"); 2203 S("Interface:", 2204 (rxq[qs].rspq.netdev 2205 ? rxq[qs].rspq.netdev->name 2206 : "N/A")); 2207 R3("u", "RspQNullInts:", rspq.unhandled_irqs); 2208 R("RxPackets:", stats.pkts); 2209 R("RxCSO:", stats.rx_cso); 2210 R("VLANxtract:", stats.vlan_ex); 2211 R("LROmerged:", stats.lro_merged); 2212 R("LROpackets:", stats.lro_pkts); 2213 R("RxDrops:", stats.rx_drops); 2214 T("TSO:", tso); 2215 T("TxCSO:", tx_cso); 2216 T("VLANins:", vlan_ins); 2217 T("TxQFull:", q.stops); 2218 T("TxQRestarts:", q.restarts); 2219 T("TxMapErr:", mapping_err); 2220 R("FLAllocErr:", fl.alloc_failed); 2221 R("FLLrgAlcErr:", fl.large_alloc_failed); 2222 R("FLStarving:", fl.starving); 2223 return 0; 2224 } 2225 2226 r -= eth_entries; 2227 if (r == 0) { 2228 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2229 2230 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue"); 2231 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2232 evtq->unhandled_irqs); 2233 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx); 2234 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen); 2235 } else if (r == 1) { 2236 const struct sge_rspq *intrq = &adapter->sge.intrq; 2237 2238 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue"); 2239 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2240 intrq->unhandled_irqs); 2241 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx); 2242 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen); 2243 } 2244 2245 #undef R 2246 #undef T 2247 #undef S 2248 #undef R3 2249 #undef T3 2250 #undef S3 2251 2252 return 0; 2253 } 2254 2255 /* 2256 * Return the number of "entries" in our "file". We group the multi-Queue 2257 * sections with QPL Queue Sets per "entry". The sections of the output are: 2258 * 2259 * Ethernet RX/TX Queue Sets 2260 * Firmware Event Queue 2261 * Forwarded Interrupt Queue (if in MSI mode) 2262 */ 2263 static int sge_qstats_entries(const struct adapter *adapter) 2264 { 2265 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2266 ((adapter->flags & CXGB4VF_USING_MSI) != 0); 2267 } 2268 2269 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos) 2270 { 2271 int entries = sge_qstats_entries(seq->private); 2272 2273 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2274 } 2275 2276 static void sge_qstats_stop(struct seq_file *seq, void *v) 2277 { 2278 } 2279 2280 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos) 2281 { 2282 int entries = sge_qstats_entries(seq->private); 2283 2284 (*pos)++; 2285 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2286 } 2287 2288 static const struct seq_operations sge_qstats_sops = { 2289 .start = sge_qstats_start, 2290 .next = sge_qstats_next, 2291 .stop = sge_qstats_stop, 2292 .show = sge_qstats_show 2293 }; 2294 2295 DEFINE_SEQ_ATTRIBUTE(sge_qstats); 2296 2297 /* 2298 * Show PCI-E SR-IOV Virtual Function Resource Limits. 2299 */ 2300 static int resources_show(struct seq_file *seq, void *v) 2301 { 2302 struct adapter *adapter = seq->private; 2303 struct vf_resources *vfres = &adapter->params.vfres; 2304 2305 #define S(desc, fmt, var) \ 2306 seq_printf(seq, "%-60s " fmt "\n", \ 2307 desc " (" #var "):", vfres->var) 2308 2309 S("Virtual Interfaces", "%d", nvi); 2310 S("Egress Queues", "%d", neq); 2311 S("Ethernet Control", "%d", nethctrl); 2312 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint); 2313 S("Ingress Queues", "%d", niq); 2314 S("Traffic Class", "%d", tc); 2315 S("Port Access Rights Mask", "%#x", pmask); 2316 S("MAC Address Filters", "%d", nexactf); 2317 S("Firmware Command Read Capabilities", "%#x", r_caps); 2318 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps); 2319 2320 #undef S 2321 2322 return 0; 2323 } 2324 DEFINE_SHOW_ATTRIBUTE(resources); 2325 2326 /* 2327 * Show Virtual Interfaces. 2328 */ 2329 static int interfaces_show(struct seq_file *seq, void *v) 2330 { 2331 if (v == SEQ_START_TOKEN) { 2332 seq_puts(seq, "Interface Port VIID\n"); 2333 } else { 2334 struct adapter *adapter = seq->private; 2335 int pidx = (uintptr_t)v - 2; 2336 struct net_device *dev = adapter->port[pidx]; 2337 struct port_info *pi = netdev_priv(dev); 2338 2339 seq_printf(seq, "%9s %4d %#5x\n", 2340 dev->name, pi->port_id, pi->viid); 2341 } 2342 return 0; 2343 } 2344 2345 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos) 2346 { 2347 return pos <= adapter->params.nports 2348 ? (void *)(uintptr_t)(pos + 1) 2349 : NULL; 2350 } 2351 2352 static void *interfaces_start(struct seq_file *seq, loff_t *pos) 2353 { 2354 return *pos 2355 ? interfaces_get_idx(seq->private, *pos) 2356 : SEQ_START_TOKEN; 2357 } 2358 2359 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos) 2360 { 2361 (*pos)++; 2362 return interfaces_get_idx(seq->private, *pos); 2363 } 2364 2365 static void interfaces_stop(struct seq_file *seq, void *v) 2366 { 2367 } 2368 2369 static const struct seq_operations interfaces_sops = { 2370 .start = interfaces_start, 2371 .next = interfaces_next, 2372 .stop = interfaces_stop, 2373 .show = interfaces_show 2374 }; 2375 2376 DEFINE_SEQ_ATTRIBUTE(interfaces); 2377 2378 /* 2379 * /sys/kernel/debugfs/cxgb4vf/ files list. 2380 */ 2381 struct cxgb4vf_debugfs_entry { 2382 const char *name; /* name of debugfs node */ 2383 umode_t mode; /* file system mode */ 2384 const struct file_operations *fops; 2385 }; 2386 2387 static struct cxgb4vf_debugfs_entry debugfs_files[] = { 2388 { "mboxlog", 0444, &mboxlog_fops }, 2389 { "sge_qinfo", 0444, &sge_qinfo_fops }, 2390 { "sge_qstats", 0444, &sge_qstats_fops }, 2391 { "resources", 0444, &resources_fops }, 2392 { "interfaces", 0444, &interfaces_fops }, 2393 }; 2394 2395 /* 2396 * Module and device initialization and cleanup code. 2397 * ================================================== 2398 */ 2399 2400 /* 2401 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the 2402 * directory (debugfs_root) has already been set up. 2403 */ 2404 static int setup_debugfs(struct adapter *adapter) 2405 { 2406 int i; 2407 2408 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2409 2410 /* 2411 * Debugfs support is best effort. 2412 */ 2413 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) 2414 debugfs_create_file(debugfs_files[i].name, 2415 debugfs_files[i].mode, 2416 adapter->debugfs_root, adapter, 2417 debugfs_files[i].fops); 2418 2419 return 0; 2420 } 2421 2422 /* 2423 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave 2424 * it to our caller to tear down the directory (debugfs_root). 2425 */ 2426 static void cleanup_debugfs(struct adapter *adapter) 2427 { 2428 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2429 2430 /* 2431 * Unlike our sister routine cleanup_proc(), we don't need to remove 2432 * individual entries because a call will be made to 2433 * debugfs_remove_recursive(). We just need to clean up any ancillary 2434 * persistent state. 2435 */ 2436 /* nothing to do */ 2437 } 2438 2439 /* Figure out how many Ports and Queue Sets we can support. This depends on 2440 * knowing our Virtual Function Resources and may be called a second time if 2441 * we fall back from MSI-X to MSI Interrupt Mode. 2442 */ 2443 static void size_nports_qsets(struct adapter *adapter) 2444 { 2445 struct vf_resources *vfres = &adapter->params.vfres; 2446 unsigned int ethqsets, pmask_nports; 2447 2448 /* The number of "ports" which we support is equal to the number of 2449 * Virtual Interfaces with which we've been provisioned. 2450 */ 2451 adapter->params.nports = vfres->nvi; 2452 if (adapter->params.nports > MAX_NPORTS) { 2453 dev_warn(adapter->pdev_dev, "only using %d of %d maximum" 2454 " allowed virtual interfaces\n", MAX_NPORTS, 2455 adapter->params.nports); 2456 adapter->params.nports = MAX_NPORTS; 2457 } 2458 2459 /* We may have been provisioned with more VIs than the number of 2460 * ports we're allowed to access (our Port Access Rights Mask). 2461 * This is obviously a configuration conflict but we don't want to 2462 * crash the kernel or anything silly just because of that. 2463 */ 2464 pmask_nports = hweight32(adapter->params.vfres.pmask); 2465 if (pmask_nports < adapter->params.nports) { 2466 dev_warn(adapter->pdev_dev, "only using %d of %d provisioned" 2467 " virtual interfaces; limited by Port Access Rights" 2468 " mask %#x\n", pmask_nports, adapter->params.nports, 2469 adapter->params.vfres.pmask); 2470 adapter->params.nports = pmask_nports; 2471 } 2472 2473 /* We need to reserve an Ingress Queue for the Asynchronous Firmware 2474 * Event Queue. And if we're using MSI Interrupts, we'll also need to 2475 * reserve an Ingress Queue for a Forwarded Interrupts. 2476 * 2477 * The rest of the FL/Intr-capable ingress queues will be matched up 2478 * one-for-one with Ethernet/Control egress queues in order to form 2479 * "Queue Sets" which will be aportioned between the "ports". For 2480 * each Queue Set, we'll need the ability to allocate two Egress 2481 * Contexts -- one for the Ingress Queue Free List and one for the TX 2482 * Ethernet Queue. 2483 * 2484 * Note that even if we're currently configured to use MSI-X 2485 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded 2486 * to MSI Interrupts if we can't get enough MSI-X Interrupts. If that 2487 * happens we'll need to adjust things later. 2488 */ 2489 ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI); 2490 if (vfres->nethctrl != ethqsets) 2491 ethqsets = min(vfres->nethctrl, ethqsets); 2492 if (vfres->neq < ethqsets*2) 2493 ethqsets = vfres->neq/2; 2494 if (ethqsets > MAX_ETH_QSETS) 2495 ethqsets = MAX_ETH_QSETS; 2496 adapter->sge.max_ethqsets = ethqsets; 2497 2498 if (adapter->sge.max_ethqsets < adapter->params.nports) { 2499 dev_warn(adapter->pdev_dev, "only using %d of %d available" 2500 " virtual interfaces (too few Queue Sets)\n", 2501 adapter->sge.max_ethqsets, adapter->params.nports); 2502 adapter->params.nports = adapter->sge.max_ethqsets; 2503 } 2504 } 2505 2506 /* 2507 * Perform early "adapter" initialization. This is where we discover what 2508 * adapter parameters we're going to be using and initialize basic adapter 2509 * hardware support. 2510 */ 2511 static int adap_init0(struct adapter *adapter) 2512 { 2513 struct sge_params *sge_params = &adapter->params.sge; 2514 struct sge *s = &adapter->sge; 2515 int err; 2516 u32 param, val = 0; 2517 2518 /* 2519 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux 2520 * 2.6.31 and later we can't call pci_reset_function() in order to 2521 * issue an FLR because of a self- deadlock on the device semaphore. 2522 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the 2523 * cases where they're needed -- for instance, some versions of KVM 2524 * fail to reset "Assigned Devices" when the VM reboots. Therefore we 2525 * use the firmware based reset in order to reset any per function 2526 * state. 2527 */ 2528 err = t4vf_fw_reset(adapter); 2529 if (err < 0) { 2530 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err); 2531 return err; 2532 } 2533 2534 /* 2535 * Grab basic operational parameters. These will predominantly have 2536 * been set up by the Physical Function Driver or will be hard coded 2537 * into the adapter. We just have to live with them ... Note that 2538 * we _must_ get our VPD parameters before our SGE parameters because 2539 * we need to know the adapter's core clock from the VPD in order to 2540 * properly decode the SGE Timer Values. 2541 */ 2542 err = t4vf_get_dev_params(adapter); 2543 if (err) { 2544 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2545 " device parameters: err=%d\n", err); 2546 return err; 2547 } 2548 err = t4vf_get_vpd_params(adapter); 2549 if (err) { 2550 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2551 " VPD parameters: err=%d\n", err); 2552 return err; 2553 } 2554 err = t4vf_get_sge_params(adapter); 2555 if (err) { 2556 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2557 " SGE parameters: err=%d\n", err); 2558 return err; 2559 } 2560 err = t4vf_get_rss_glb_config(adapter); 2561 if (err) { 2562 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2563 " RSS parameters: err=%d\n", err); 2564 return err; 2565 } 2566 if (adapter->params.rss.mode != 2567 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 2568 dev_err(adapter->pdev_dev, "unable to operate with global RSS" 2569 " mode %d\n", adapter->params.rss.mode); 2570 return -EINVAL; 2571 } 2572 err = t4vf_sge_init(adapter); 2573 if (err) { 2574 dev_err(adapter->pdev_dev, "unable to use adapter parameters:" 2575 " err=%d\n", err); 2576 return err; 2577 } 2578 2579 /* If we're running on newer firmware, let it know that we're 2580 * prepared to deal with encapsulated CPL messages. Older 2581 * firmware won't understand this and we'll just get 2582 * unencapsulated messages ... 2583 */ 2584 param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2585 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP); 2586 val = 1; 2587 (void) t4vf_set_params(adapter, 1, ¶m, &val); 2588 2589 /* 2590 * Retrieve our RX interrupt holdoff timer values and counter 2591 * threshold values from the SGE parameters. 2592 */ 2593 s->timer_val[0] = core_ticks_to_us(adapter, 2594 TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1)); 2595 s->timer_val[1] = core_ticks_to_us(adapter, 2596 TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1)); 2597 s->timer_val[2] = core_ticks_to_us(adapter, 2598 TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3)); 2599 s->timer_val[3] = core_ticks_to_us(adapter, 2600 TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3)); 2601 s->timer_val[4] = core_ticks_to_us(adapter, 2602 TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5)); 2603 s->timer_val[5] = core_ticks_to_us(adapter, 2604 TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5)); 2605 2606 s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold); 2607 s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold); 2608 s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold); 2609 s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold); 2610 2611 /* 2612 * Grab our Virtual Interface resource allocation, extract the 2613 * features that we're interested in and do a bit of sanity testing on 2614 * what we discover. 2615 */ 2616 err = t4vf_get_vfres(adapter); 2617 if (err) { 2618 dev_err(adapter->pdev_dev, "unable to get virtual interface" 2619 " resources: err=%d\n", err); 2620 return err; 2621 } 2622 2623 /* Check for various parameter sanity issues */ 2624 if (adapter->params.vfres.pmask == 0) { 2625 dev_err(adapter->pdev_dev, "no port access configured\n" 2626 "usable!\n"); 2627 return -EINVAL; 2628 } 2629 if (adapter->params.vfres.nvi == 0) { 2630 dev_err(adapter->pdev_dev, "no virtual interfaces configured/" 2631 "usable!\n"); 2632 return -EINVAL; 2633 } 2634 2635 /* Initialize nports and max_ethqsets now that we have our Virtual 2636 * Function Resources. 2637 */ 2638 size_nports_qsets(adapter); 2639 2640 adapter->flags |= CXGB4VF_FW_OK; 2641 return 0; 2642 } 2643 2644 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx, 2645 u8 pkt_cnt_idx, unsigned int size, 2646 unsigned int iqe_size) 2647 { 2648 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 2649 (pkt_cnt_idx < SGE_NCOUNTERS ? 2650 QINTR_CNT_EN_F : 0)); 2651 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS 2652 ? pkt_cnt_idx 2653 : 0); 2654 rspq->iqe_len = iqe_size; 2655 rspq->size = size; 2656 } 2657 2658 /* 2659 * Perform default configuration of DMA queues depending on the number and 2660 * type of ports we found and the number of available CPUs. Most settings can 2661 * be modified by the admin via ethtool and cxgbtool prior to the adapter 2662 * being brought up for the first time. 2663 */ 2664 static void cfg_queues(struct adapter *adapter) 2665 { 2666 struct sge *s = &adapter->sge; 2667 int q10g, n10g, qidx, pidx, qs; 2668 size_t iqe_size; 2669 2670 /* 2671 * We should not be called till we know how many Queue Sets we can 2672 * support. In particular, this means that we need to know what kind 2673 * of interrupts we'll be using ... 2674 */ 2675 BUG_ON((adapter->flags & 2676 (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0); 2677 2678 /* 2679 * Count the number of 10GbE Virtual Interfaces that we have. 2680 */ 2681 n10g = 0; 2682 for_each_port(adapter, pidx) 2683 n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg); 2684 2685 /* 2686 * We default to 1 queue per non-10G port and up to # of cores queues 2687 * per 10G port. 2688 */ 2689 if (n10g == 0) 2690 q10g = 0; 2691 else { 2692 int n1g = (adapter->params.nports - n10g); 2693 q10g = (adapter->sge.max_ethqsets - n1g) / n10g; 2694 if (q10g > num_online_cpus()) 2695 q10g = num_online_cpus(); 2696 } 2697 2698 /* 2699 * Allocate the "Queue Sets" to the various Virtual Interfaces. 2700 * The layout will be established in setup_sge_queues() when the 2701 * adapter is brough up for the first time. 2702 */ 2703 qidx = 0; 2704 for_each_port(adapter, pidx) { 2705 struct port_info *pi = adap2pinfo(adapter, pidx); 2706 2707 pi->first_qset = qidx; 2708 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 2709 qidx += pi->nqsets; 2710 } 2711 s->ethqsets = qidx; 2712 2713 /* 2714 * The Ingress Queue Entry Size for our various Response Queues needs 2715 * to be big enough to accommodate the largest message we can receive 2716 * from the chip/firmware; which is 64 bytes ... 2717 */ 2718 iqe_size = 64; 2719 2720 /* 2721 * Set up default Queue Set parameters ... Start off with the 2722 * shortest interrupt holdoff timer. 2723 */ 2724 for (qs = 0; qs < s->max_ethqsets; qs++) { 2725 struct sge_eth_rxq *rxq = &s->ethrxq[qs]; 2726 struct sge_eth_txq *txq = &s->ethtxq[qs]; 2727 2728 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size); 2729 rxq->fl.size = 72; 2730 txq->q.size = 1024; 2731 } 2732 2733 /* 2734 * The firmware event queue is used for link state changes and 2735 * notifications of TX DMA completions. 2736 */ 2737 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size); 2738 2739 /* 2740 * The forwarded interrupt queue is used when we're in MSI interrupt 2741 * mode. In this mode all interrupts associated with RX queues will 2742 * be forwarded to a single queue which we'll associate with our MSI 2743 * interrupt vector. The messages dropped in the forwarded interrupt 2744 * queue will indicate which ingress queue needs servicing ... This 2745 * queue needs to be large enough to accommodate all of the ingress 2746 * queues which are forwarding their interrupt (+1 to prevent the PIDX 2747 * from equalling the CIDX if every ingress queue has an outstanding 2748 * interrupt). The queue doesn't need to be any larger because no 2749 * ingress queue will ever have more than one outstanding interrupt at 2750 * any time ... 2751 */ 2752 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1, 2753 iqe_size); 2754 } 2755 2756 /* 2757 * Reduce the number of Ethernet queues across all ports to at most n. 2758 * n provides at least one queue per port. 2759 */ 2760 static void reduce_ethqs(struct adapter *adapter, int n) 2761 { 2762 int i; 2763 struct port_info *pi; 2764 2765 /* 2766 * While we have too many active Ether Queue Sets, interate across the 2767 * "ports" and reduce their individual Queue Set allocations. 2768 */ 2769 BUG_ON(n < adapter->params.nports); 2770 while (n < adapter->sge.ethqsets) 2771 for_each_port(adapter, i) { 2772 pi = adap2pinfo(adapter, i); 2773 if (pi->nqsets > 1) { 2774 pi->nqsets--; 2775 adapter->sge.ethqsets--; 2776 if (adapter->sge.ethqsets <= n) 2777 break; 2778 } 2779 } 2780 2781 /* 2782 * Reassign the starting Queue Sets for each of the "ports" ... 2783 */ 2784 n = 0; 2785 for_each_port(adapter, i) { 2786 pi = adap2pinfo(adapter, i); 2787 pi->first_qset = n; 2788 n += pi->nqsets; 2789 } 2790 } 2791 2792 /* 2793 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally 2794 * we get a separate MSI-X vector for every "Queue Set" plus any extras we 2795 * need. Minimally we need one for every Virtual Interface plus those needed 2796 * for our "extras". Note that this process may lower the maximum number of 2797 * allowed Queue Sets ... 2798 */ 2799 static int enable_msix(struct adapter *adapter) 2800 { 2801 int i, want, need, nqsets; 2802 struct msix_entry entries[MSIX_ENTRIES]; 2803 struct sge *s = &adapter->sge; 2804 2805 for (i = 0; i < MSIX_ENTRIES; ++i) 2806 entries[i].entry = i; 2807 2808 /* 2809 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets" 2810 * plus those needed for our "extras" (for example, the firmware 2811 * message queue). We _need_ at least one "Queue Set" per Virtual 2812 * Interface plus those needed for our "extras". So now we get to see 2813 * if the song is right ... 2814 */ 2815 want = s->max_ethqsets + MSIX_EXTRAS; 2816 need = adapter->params.nports + MSIX_EXTRAS; 2817 2818 want = pci_enable_msix_range(adapter->pdev, entries, need, want); 2819 if (want < 0) 2820 return want; 2821 2822 nqsets = want - MSIX_EXTRAS; 2823 if (nqsets < s->max_ethqsets) { 2824 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors" 2825 " for %d Queue Sets\n", nqsets); 2826 s->max_ethqsets = nqsets; 2827 if (nqsets < s->ethqsets) 2828 reduce_ethqs(adapter, nqsets); 2829 } 2830 for (i = 0; i < want; ++i) 2831 adapter->msix_info[i].vec = entries[i].vector; 2832 2833 return 0; 2834 } 2835 2836 static const struct net_device_ops cxgb4vf_netdev_ops = { 2837 .ndo_open = cxgb4vf_open, 2838 .ndo_stop = cxgb4vf_stop, 2839 .ndo_start_xmit = t4vf_eth_xmit, 2840 .ndo_get_stats = cxgb4vf_get_stats, 2841 .ndo_set_rx_mode = cxgb4vf_set_rxmode, 2842 .ndo_set_mac_address = cxgb4vf_set_mac_addr, 2843 .ndo_validate_addr = eth_validate_addr, 2844 .ndo_eth_ioctl = cxgb4vf_do_ioctl, 2845 .ndo_change_mtu = cxgb4vf_change_mtu, 2846 .ndo_fix_features = cxgb4vf_fix_features, 2847 .ndo_set_features = cxgb4vf_set_features, 2848 #ifdef CONFIG_NET_POLL_CONTROLLER 2849 .ndo_poll_controller = cxgb4vf_poll_controller, 2850 #endif 2851 }; 2852 2853 /** 2854 * cxgb4vf_get_port_mask - Get port mask for the VF based on mac 2855 * address stored on the adapter 2856 * @adapter: The adapter 2857 * 2858 * Find the the port mask for the VF based on the index of mac 2859 * address stored in the adapter. If no mac address is stored on 2860 * the adapter for the VF, use the port mask received from the 2861 * firmware. 2862 */ 2863 static unsigned int cxgb4vf_get_port_mask(struct adapter *adapter) 2864 { 2865 unsigned int naddr = 1, pidx = 0; 2866 unsigned int pmask, rmask = 0; 2867 u8 mac[ETH_ALEN]; 2868 int err; 2869 2870 pmask = adapter->params.vfres.pmask; 2871 while (pmask) { 2872 if (pmask & 1) { 2873 err = t4vf_get_vf_mac_acl(adapter, pidx, &naddr, mac); 2874 if (!err && !is_zero_ether_addr(mac)) 2875 rmask |= (1 << pidx); 2876 } 2877 pmask >>= 1; 2878 pidx++; 2879 } 2880 if (!rmask) 2881 rmask = adapter->params.vfres.pmask; 2882 2883 return rmask; 2884 } 2885 2886 /* 2887 * "Probe" a device: initialize a device and construct all kernel and driver 2888 * state needed to manage the device. This routine is called "init_one" in 2889 * the PF Driver ... 2890 */ 2891 static int cxgb4vf_pci_probe(struct pci_dev *pdev, 2892 const struct pci_device_id *ent) 2893 { 2894 struct adapter *adapter; 2895 struct net_device *netdev; 2896 struct port_info *pi; 2897 unsigned int pmask; 2898 int pci_using_dac; 2899 int err, pidx; 2900 2901 /* 2902 * Initialize generic PCI device state. 2903 */ 2904 err = pci_enable_device(pdev); 2905 if (err) 2906 return dev_err_probe(&pdev->dev, err, "cannot enable PCI device\n"); 2907 2908 /* 2909 * Reserve PCI resources for the device. If we can't get them some 2910 * other driver may have already claimed the device ... 2911 */ 2912 err = pci_request_regions(pdev, KBUILD_MODNAME); 2913 if (err) { 2914 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 2915 goto err_disable_device; 2916 } 2917 2918 /* 2919 * Set up our DMA mask: try for 64-bit address masking first and 2920 * fall back to 32-bit if we can't get 64 bits ... 2921 */ 2922 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2923 if (err == 0) { 2924 pci_using_dac = 1; 2925 } else { 2926 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 2927 if (err != 0) { 2928 dev_err(&pdev->dev, "no usable DMA configuration\n"); 2929 goto err_release_regions; 2930 } 2931 pci_using_dac = 0; 2932 } 2933 2934 /* 2935 * Enable bus mastering for the device ... 2936 */ 2937 pci_set_master(pdev); 2938 2939 /* 2940 * Allocate our adapter data structure and attach it to the device. 2941 */ 2942 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 2943 if (!adapter) { 2944 err = -ENOMEM; 2945 goto err_release_regions; 2946 } 2947 pci_set_drvdata(pdev, adapter); 2948 adapter->pdev = pdev; 2949 adapter->pdev_dev = &pdev->dev; 2950 2951 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 2952 (sizeof(struct mbox_cmd) * 2953 T4VF_OS_LOG_MBOX_CMDS), 2954 GFP_KERNEL); 2955 if (!adapter->mbox_log) { 2956 err = -ENOMEM; 2957 goto err_free_adapter; 2958 } 2959 adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS; 2960 2961 /* 2962 * Initialize SMP data synchronization resources. 2963 */ 2964 spin_lock_init(&adapter->stats_lock); 2965 spin_lock_init(&adapter->mbox_lock); 2966 INIT_LIST_HEAD(&adapter->mlist.list); 2967 2968 /* 2969 * Map our I/O registers in BAR0. 2970 */ 2971 adapter->regs = pci_ioremap_bar(pdev, 0); 2972 if (!adapter->regs) { 2973 dev_err(&pdev->dev, "cannot map device registers\n"); 2974 err = -ENOMEM; 2975 goto err_free_adapter; 2976 } 2977 2978 /* Wait for the device to become ready before proceeding ... 2979 */ 2980 err = t4vf_prep_adapter(adapter); 2981 if (err) { 2982 dev_err(adapter->pdev_dev, "device didn't become ready:" 2983 " err=%d\n", err); 2984 goto err_unmap_bar0; 2985 } 2986 2987 /* For T5 and later we want to use the new BAR-based User Doorbells, 2988 * so we need to map BAR2 here ... 2989 */ 2990 if (!is_t4(adapter->params.chip)) { 2991 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 2992 pci_resource_len(pdev, 2)); 2993 if (!adapter->bar2) { 2994 dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n"); 2995 err = -ENOMEM; 2996 goto err_unmap_bar0; 2997 } 2998 } 2999 /* 3000 * Initialize adapter level features. 3001 */ 3002 adapter->name = pci_name(pdev); 3003 adapter->msg_enable = DFLT_MSG_ENABLE; 3004 3005 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 3006 * Ingress Packet Data to Free List Buffers in order to allow for 3007 * chipset performance optimizations between the Root Complex and 3008 * Memory Controllers. (Messages to the associated Ingress Queue 3009 * notifying new Packet Placement in the Free Lists Buffers will be 3010 * send without the Relaxed Ordering Attribute thus guaranteeing that 3011 * all preceding PCIe Transaction Layer Packets will be processed 3012 * first.) But some Root Complexes have various issues with Upstream 3013 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 3014 * The PCIe devices which under the Root Complexes will be cleared the 3015 * Relaxed Ordering bit in the configuration space, So we check our 3016 * PCIe configuration space to see if it's flagged with advice against 3017 * using Relaxed Ordering. 3018 */ 3019 if (!pcie_relaxed_ordering_enabled(pdev)) 3020 adapter->flags |= CXGB4VF_ROOT_NO_RELAXED_ORDERING; 3021 3022 err = adap_init0(adapter); 3023 if (err) 3024 dev_err(&pdev->dev, 3025 "Adapter initialization failed, error %d. Continuing in debug mode\n", 3026 err); 3027 3028 /* Initialize hash mac addr list */ 3029 INIT_LIST_HEAD(&adapter->mac_hlist); 3030 3031 /* 3032 * Allocate our "adapter ports" and stitch everything together. 3033 */ 3034 pmask = cxgb4vf_get_port_mask(adapter); 3035 for_each_port(adapter, pidx) { 3036 int port_id, viid; 3037 u8 mac[ETH_ALEN]; 3038 unsigned int naddr = 1; 3039 3040 /* 3041 * We simplistically allocate our virtual interfaces 3042 * sequentially across the port numbers to which we have 3043 * access rights. This should be configurable in some manner 3044 * ... 3045 */ 3046 if (pmask == 0) 3047 break; 3048 port_id = ffs(pmask) - 1; 3049 pmask &= ~(1 << port_id); 3050 3051 /* 3052 * Allocate our network device and stitch things together. 3053 */ 3054 netdev = alloc_etherdev_mq(sizeof(struct port_info), 3055 MAX_PORT_QSETS); 3056 if (netdev == NULL) { 3057 err = -ENOMEM; 3058 goto err_free_dev; 3059 } 3060 adapter->port[pidx] = netdev; 3061 SET_NETDEV_DEV(netdev, &pdev->dev); 3062 pi = netdev_priv(netdev); 3063 pi->adapter = adapter; 3064 pi->pidx = pidx; 3065 pi->port_id = port_id; 3066 3067 /* 3068 * Initialize the starting state of our "port" and register 3069 * it. 3070 */ 3071 pi->xact_addr_filt = -1; 3072 netdev->irq = pdev->irq; 3073 3074 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | NETIF_F_GRO | 3075 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM | 3076 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 3077 netdev->features = netdev->hw_features; 3078 if (pci_using_dac) 3079 netdev->features |= NETIF_F_HIGHDMA; 3080 netdev->vlan_features = netdev->features & VLAN_FEAT; 3081 3082 netdev->priv_flags |= IFF_UNICAST_FLT; 3083 netdev->min_mtu = 81; 3084 netdev->max_mtu = ETH_MAX_MTU; 3085 3086 netdev->netdev_ops = &cxgb4vf_netdev_ops; 3087 netdev->ethtool_ops = &cxgb4vf_ethtool_ops; 3088 netdev->dev_port = pi->port_id; 3089 3090 /* 3091 * If we haven't been able to contact the firmware, there's 3092 * nothing else we can do for this "port" ... 3093 */ 3094 if (!(adapter->flags & CXGB4VF_FW_OK)) 3095 continue; 3096 3097 viid = t4vf_alloc_vi(adapter, port_id); 3098 if (viid < 0) { 3099 dev_err(&pdev->dev, 3100 "cannot allocate VI for port %d: err=%d\n", 3101 port_id, viid); 3102 err = viid; 3103 goto err_free_dev; 3104 } 3105 pi->viid = viid; 3106 3107 /* 3108 * Initialize the hardware/software state for the port. 3109 */ 3110 err = t4vf_port_init(adapter, pidx); 3111 if (err) { 3112 dev_err(&pdev->dev, "cannot initialize port %d\n", 3113 pidx); 3114 goto err_free_dev; 3115 } 3116 3117 err = t4vf_get_vf_mac_acl(adapter, port_id, &naddr, mac); 3118 if (err) { 3119 dev_err(&pdev->dev, 3120 "unable to determine MAC ACL address, " 3121 "continuing anyway.. (status %d)\n", err); 3122 } else if (naddr && adapter->params.vfres.nvi == 1) { 3123 struct sockaddr addr; 3124 3125 ether_addr_copy(addr.sa_data, mac); 3126 err = cxgb4vf_set_mac_addr(netdev, &addr); 3127 if (err) { 3128 dev_err(&pdev->dev, 3129 "unable to set MAC address %pM\n", 3130 mac); 3131 goto err_free_dev; 3132 } 3133 dev_info(&pdev->dev, 3134 "Using assigned MAC ACL: %pM\n", mac); 3135 } 3136 } 3137 3138 /* See what interrupts we'll be using. If we've been configured to 3139 * use MSI-X interrupts, try to enable them but fall back to using 3140 * MSI interrupts if we can't enable MSI-X interrupts. If we can't 3141 * get MSI interrupts we bail with the error. 3142 */ 3143 if (msi == MSI_MSIX && enable_msix(adapter) == 0) 3144 adapter->flags |= CXGB4VF_USING_MSIX; 3145 else { 3146 if (msi == MSI_MSIX) { 3147 dev_info(adapter->pdev_dev, 3148 "Unable to use MSI-X Interrupts; falling " 3149 "back to MSI Interrupts\n"); 3150 3151 /* We're going to need a Forwarded Interrupt Queue so 3152 * that may cut into how many Queue Sets we can 3153 * support. 3154 */ 3155 msi = MSI_MSI; 3156 size_nports_qsets(adapter); 3157 } 3158 err = pci_enable_msi(pdev); 3159 if (err) { 3160 dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;" 3161 " err=%d\n", err); 3162 goto err_free_dev; 3163 } 3164 adapter->flags |= CXGB4VF_USING_MSI; 3165 } 3166 3167 /* Now that we know how many "ports" we have and what interrupt 3168 * mechanism we're going to use, we can configure our queue resources. 3169 */ 3170 cfg_queues(adapter); 3171 3172 /* 3173 * The "card" is now ready to go. If any errors occur during device 3174 * registration we do not fail the whole "card" but rather proceed 3175 * only with the ports we manage to register successfully. However we 3176 * must register at least one net device. 3177 */ 3178 for_each_port(adapter, pidx) { 3179 struct port_info *pi = netdev_priv(adapter->port[pidx]); 3180 netdev = adapter->port[pidx]; 3181 if (netdev == NULL) 3182 continue; 3183 3184 netif_set_real_num_tx_queues(netdev, pi->nqsets); 3185 netif_set_real_num_rx_queues(netdev, pi->nqsets); 3186 3187 err = register_netdev(netdev); 3188 if (err) { 3189 dev_warn(&pdev->dev, "cannot register net device %s," 3190 " skipping\n", netdev->name); 3191 continue; 3192 } 3193 3194 netif_carrier_off(netdev); 3195 set_bit(pidx, &adapter->registered_device_map); 3196 } 3197 if (adapter->registered_device_map == 0) { 3198 dev_err(&pdev->dev, "could not register any net devices\n"); 3199 goto err_disable_interrupts; 3200 } 3201 3202 /* 3203 * Set up our debugfs entries. 3204 */ 3205 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) { 3206 adapter->debugfs_root = 3207 debugfs_create_dir(pci_name(pdev), 3208 cxgb4vf_debugfs_root); 3209 setup_debugfs(adapter); 3210 } 3211 3212 /* 3213 * Print a short notice on the existence and configuration of the new 3214 * VF network device ... 3215 */ 3216 for_each_port(adapter, pidx) { 3217 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n", 3218 adapter->port[pidx]->name, 3219 (adapter->flags & CXGB4VF_USING_MSIX) ? "MSI-X" : 3220 (adapter->flags & CXGB4VF_USING_MSI) ? "MSI" : ""); 3221 } 3222 3223 /* 3224 * Return success! 3225 */ 3226 return 0; 3227 3228 /* 3229 * Error recovery and exit code. Unwind state that's been created 3230 * so far and return the error. 3231 */ 3232 err_disable_interrupts: 3233 if (adapter->flags & CXGB4VF_USING_MSIX) { 3234 pci_disable_msix(adapter->pdev); 3235 adapter->flags &= ~CXGB4VF_USING_MSIX; 3236 } else if (adapter->flags & CXGB4VF_USING_MSI) { 3237 pci_disable_msi(adapter->pdev); 3238 adapter->flags &= ~CXGB4VF_USING_MSI; 3239 } 3240 3241 err_free_dev: 3242 for_each_port(adapter, pidx) { 3243 netdev = adapter->port[pidx]; 3244 if (netdev == NULL) 3245 continue; 3246 pi = netdev_priv(netdev); 3247 if (pi->viid) 3248 t4vf_free_vi(adapter, pi->viid); 3249 if (test_bit(pidx, &adapter->registered_device_map)) 3250 unregister_netdev(netdev); 3251 free_netdev(netdev); 3252 } 3253 3254 if (!is_t4(adapter->params.chip)) 3255 iounmap(adapter->bar2); 3256 3257 err_unmap_bar0: 3258 iounmap(adapter->regs); 3259 3260 err_free_adapter: 3261 kfree(adapter->mbox_log); 3262 kfree(adapter); 3263 3264 err_release_regions: 3265 pci_release_regions(pdev); 3266 pci_clear_master(pdev); 3267 3268 err_disable_device: 3269 pci_disable_device(pdev); 3270 3271 return err; 3272 } 3273 3274 /* 3275 * "Remove" a device: tear down all kernel and driver state created in the 3276 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note 3277 * that this is called "remove_one" in the PF Driver.) 3278 */ 3279 static void cxgb4vf_pci_remove(struct pci_dev *pdev) 3280 { 3281 struct adapter *adapter = pci_get_drvdata(pdev); 3282 struct hash_mac_addr *entry, *tmp; 3283 3284 /* 3285 * Tear down driver state associated with device. 3286 */ 3287 if (adapter) { 3288 int pidx; 3289 3290 /* 3291 * Stop all of our activity. Unregister network port, 3292 * disable interrupts, etc. 3293 */ 3294 for_each_port(adapter, pidx) 3295 if (test_bit(pidx, &adapter->registered_device_map)) 3296 unregister_netdev(adapter->port[pidx]); 3297 t4vf_sge_stop(adapter); 3298 if (adapter->flags & CXGB4VF_USING_MSIX) { 3299 pci_disable_msix(adapter->pdev); 3300 adapter->flags &= ~CXGB4VF_USING_MSIX; 3301 } else if (adapter->flags & CXGB4VF_USING_MSI) { 3302 pci_disable_msi(adapter->pdev); 3303 adapter->flags &= ~CXGB4VF_USING_MSI; 3304 } 3305 3306 /* 3307 * Tear down our debugfs entries. 3308 */ 3309 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) { 3310 cleanup_debugfs(adapter); 3311 debugfs_remove_recursive(adapter->debugfs_root); 3312 } 3313 3314 /* 3315 * Free all of the various resources which we've acquired ... 3316 */ 3317 t4vf_free_sge_resources(adapter); 3318 for_each_port(adapter, pidx) { 3319 struct net_device *netdev = adapter->port[pidx]; 3320 struct port_info *pi; 3321 3322 if (netdev == NULL) 3323 continue; 3324 3325 pi = netdev_priv(netdev); 3326 if (pi->viid) 3327 t4vf_free_vi(adapter, pi->viid); 3328 free_netdev(netdev); 3329 } 3330 iounmap(adapter->regs); 3331 if (!is_t4(adapter->params.chip)) 3332 iounmap(adapter->bar2); 3333 kfree(adapter->mbox_log); 3334 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 3335 list) { 3336 list_del(&entry->list); 3337 kfree(entry); 3338 } 3339 kfree(adapter); 3340 } 3341 3342 /* 3343 * Disable the device and release its PCI resources. 3344 */ 3345 pci_disable_device(pdev); 3346 pci_clear_master(pdev); 3347 pci_release_regions(pdev); 3348 } 3349 3350 /* 3351 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt 3352 * delivery. 3353 */ 3354 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev) 3355 { 3356 struct adapter *adapter; 3357 int pidx; 3358 3359 adapter = pci_get_drvdata(pdev); 3360 if (!adapter) 3361 return; 3362 3363 /* Disable all Virtual Interfaces. This will shut down the 3364 * delivery of all ingress packets into the chip for these 3365 * Virtual Interfaces. 3366 */ 3367 for_each_port(adapter, pidx) 3368 if (test_bit(pidx, &adapter->registered_device_map)) 3369 unregister_netdev(adapter->port[pidx]); 3370 3371 /* Free up all Queues which will prevent further DMA and 3372 * Interrupts allowing various internal pathways to drain. 3373 */ 3374 t4vf_sge_stop(adapter); 3375 if (adapter->flags & CXGB4VF_USING_MSIX) { 3376 pci_disable_msix(adapter->pdev); 3377 adapter->flags &= ~CXGB4VF_USING_MSIX; 3378 } else if (adapter->flags & CXGB4VF_USING_MSI) { 3379 pci_disable_msi(adapter->pdev); 3380 adapter->flags &= ~CXGB4VF_USING_MSI; 3381 } 3382 3383 /* 3384 * Free up all Queues which will prevent further DMA and 3385 * Interrupts allowing various internal pathways to drain. 3386 */ 3387 t4vf_free_sge_resources(adapter); 3388 pci_set_drvdata(pdev, NULL); 3389 } 3390 3391 /* Macros needed to support the PCI Device ID Table ... 3392 */ 3393 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 3394 static const struct pci_device_id cxgb4vf_pci_tbl[] = { 3395 #define CH_PCI_DEVICE_ID_FUNCTION 0x8 3396 3397 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 3398 { PCI_VDEVICE(CHELSIO, (devid)), 0 } 3399 3400 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } } 3401 3402 #include "../cxgb4/t4_pci_id_tbl.h" 3403 3404 MODULE_DESCRIPTION(DRV_DESC); 3405 MODULE_AUTHOR("Chelsio Communications"); 3406 MODULE_LICENSE("Dual BSD/GPL"); 3407 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl); 3408 3409 static struct pci_driver cxgb4vf_driver = { 3410 .name = KBUILD_MODNAME, 3411 .id_table = cxgb4vf_pci_tbl, 3412 .probe = cxgb4vf_pci_probe, 3413 .remove = cxgb4vf_pci_remove, 3414 .shutdown = cxgb4vf_pci_shutdown, 3415 }; 3416 3417 /* 3418 * Initialize global driver state. 3419 */ 3420 static int __init cxgb4vf_module_init(void) 3421 { 3422 int ret; 3423 3424 /* 3425 * Vet our module parameters. 3426 */ 3427 if (msi != MSI_MSIX && msi != MSI_MSI) { 3428 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n", 3429 msi, MSI_MSIX, MSI_MSI); 3430 return -EINVAL; 3431 } 3432 3433 /* Debugfs support is optional, debugfs will warn if this fails */ 3434 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 3435 3436 ret = pci_register_driver(&cxgb4vf_driver); 3437 if (ret < 0) 3438 debugfs_remove(cxgb4vf_debugfs_root); 3439 return ret; 3440 } 3441 3442 /* 3443 * Tear down global driver state. 3444 */ 3445 static void __exit cxgb4vf_module_exit(void) 3446 { 3447 pci_unregister_driver(&cxgb4vf_driver); 3448 debugfs_remove(cxgb4vf_debugfs_root); 3449 } 3450 3451 module_init(cxgb4vf_module_init); 3452 module_exit(cxgb4vf_module_exit); 3453