1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/module.h> 39 #include <linux/moduleparam.h> 40 #include <linux/init.h> 41 #include <linux/pci.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/netdevice.h> 44 #include <linux/etherdevice.h> 45 #include <linux/debugfs.h> 46 #include <linux/ethtool.h> 47 #include <linux/mdio.h> 48 49 #include "t4vf_common.h" 50 #include "t4vf_defs.h" 51 52 #include "../cxgb4/t4_regs.h" 53 #include "../cxgb4/t4_msg.h" 54 55 /* 56 * Generic information about the driver. 57 */ 58 #define DRV_VERSION "2.0.0-ko" 59 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver" 60 61 /* 62 * Module Parameters. 63 * ================== 64 */ 65 66 /* 67 * Default ethtool "message level" for adapters. 68 */ 69 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 70 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 71 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 72 73 /* 74 * The driver uses the best interrupt scheme available on a platform in the 75 * order MSI-X then MSI. This parameter determines which of these schemes the 76 * driver may consider as follows: 77 * 78 * msi = 2: choose from among MSI-X and MSI 79 * msi = 1: only consider MSI interrupts 80 * 81 * Note that unlike the Physical Function driver, this Virtual Function driver 82 * does _not_ support legacy INTx interrupts (this limitation is mandated by 83 * the PCI-E SR-IOV standard). 84 */ 85 #define MSI_MSIX 2 86 #define MSI_MSI 1 87 #define MSI_DEFAULT MSI_MSIX 88 89 static int msi = MSI_DEFAULT; 90 91 module_param(msi, int, 0644); 92 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI"); 93 94 /* 95 * Fundamental constants. 96 * ====================== 97 */ 98 99 enum { 100 MAX_TXQ_ENTRIES = 16384, 101 MAX_RSPQ_ENTRIES = 16384, 102 MAX_RX_BUFFERS = 16384, 103 104 MIN_TXQ_ENTRIES = 32, 105 MIN_RSPQ_ENTRIES = 128, 106 MIN_FL_ENTRIES = 16, 107 108 /* 109 * For purposes of manipulating the Free List size we need to 110 * recognize that Free Lists are actually Egress Queues (the host 111 * produces free buffers which the hardware consumes), Egress Queues 112 * indices are all in units of Egress Context Units bytes, and free 113 * list entries are 64-bit PCI DMA addresses. And since the state of 114 * the Producer Index == the Consumer Index implies an EMPTY list, we 115 * always have at least one Egress Unit's worth of Free List entries 116 * unused. See sge.c for more details ... 117 */ 118 EQ_UNIT = SGE_EQ_IDXSIZE, 119 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 120 MIN_FL_RESID = FL_PER_EQ_UNIT, 121 }; 122 123 /* 124 * Global driver state. 125 * ==================== 126 */ 127 128 static struct dentry *cxgb4vf_debugfs_root; 129 130 /* 131 * OS "Callback" functions. 132 * ======================== 133 */ 134 135 /* 136 * The link status has changed on the indicated "port" (Virtual Interface). 137 */ 138 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok) 139 { 140 struct net_device *dev = adapter->port[pidx]; 141 142 /* 143 * If the port is disabled or the current recorded "link up" 144 * status matches the new status, just return. 145 */ 146 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev)) 147 return; 148 149 /* 150 * Tell the OS that the link status has changed and print a short 151 * informative message on the console about the event. 152 */ 153 if (link_ok) { 154 const char *s; 155 const char *fc; 156 const struct port_info *pi = netdev_priv(dev); 157 158 netif_carrier_on(dev); 159 160 switch (pi->link_cfg.speed) { 161 case 100: 162 s = "100Mbps"; 163 break; 164 case 1000: 165 s = "1Gbps"; 166 break; 167 case 10000: 168 s = "10Gbps"; 169 break; 170 case 25000: 171 s = "25Gbps"; 172 break; 173 case 40000: 174 s = "40Gbps"; 175 break; 176 case 100000: 177 s = "100Gbps"; 178 break; 179 180 default: 181 s = "unknown"; 182 break; 183 } 184 185 switch (pi->link_cfg.fc) { 186 case PAUSE_RX: 187 fc = "RX"; 188 break; 189 190 case PAUSE_TX: 191 fc = "TX"; 192 break; 193 194 case PAUSE_RX|PAUSE_TX: 195 fc = "RX/TX"; 196 break; 197 198 default: 199 fc = "no"; 200 break; 201 } 202 203 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc); 204 } else { 205 netif_carrier_off(dev); 206 netdev_info(dev, "link down\n"); 207 } 208 } 209 210 /* 211 * THe port module type has changed on the indicated "port" (Virtual 212 * Interface). 213 */ 214 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx) 215 { 216 static const char * const mod_str[] = { 217 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 218 }; 219 const struct net_device *dev = adapter->port[pidx]; 220 const struct port_info *pi = netdev_priv(dev); 221 222 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 223 dev_info(adapter->pdev_dev, "%s: port module unplugged\n", 224 dev->name); 225 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 226 dev_info(adapter->pdev_dev, "%s: %s port module inserted\n", 227 dev->name, mod_str[pi->mod_type]); 228 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 229 dev_info(adapter->pdev_dev, "%s: unsupported optical port " 230 "module inserted\n", dev->name); 231 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 232 dev_info(adapter->pdev_dev, "%s: unknown port module inserted," 233 "forcing TWINAX\n", dev->name); 234 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 235 dev_info(adapter->pdev_dev, "%s: transceiver module error\n", 236 dev->name); 237 else 238 dev_info(adapter->pdev_dev, "%s: unknown module type %d " 239 "inserted\n", dev->name, pi->mod_type); 240 } 241 242 /* 243 * Net device operations. 244 * ====================== 245 */ 246 247 248 249 250 /* 251 * Perform the MAC and PHY actions needed to enable a "port" (Virtual 252 * Interface). 253 */ 254 static int link_start(struct net_device *dev) 255 { 256 int ret; 257 struct port_info *pi = netdev_priv(dev); 258 259 /* 260 * We do not set address filters and promiscuity here, the stack does 261 * that step explicitly. Enable vlan accel. 262 */ 263 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1, 264 true); 265 if (ret == 0) { 266 ret = t4vf_change_mac(pi->adapter, pi->viid, 267 pi->xact_addr_filt, dev->dev_addr, true); 268 if (ret >= 0) { 269 pi->xact_addr_filt = ret; 270 ret = 0; 271 } 272 } 273 274 /* 275 * We don't need to actually "start the link" itself since the 276 * firmware will do that for us when the first Virtual Interface 277 * is enabled on a port. 278 */ 279 if (ret == 0) 280 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true); 281 return ret; 282 } 283 284 /* 285 * Name the MSI-X interrupts. 286 */ 287 static void name_msix_vecs(struct adapter *adapter) 288 { 289 int namelen = sizeof(adapter->msix_info[0].desc) - 1; 290 int pidx; 291 292 /* 293 * Firmware events. 294 */ 295 snprintf(adapter->msix_info[MSIX_FW].desc, namelen, 296 "%s-FWeventq", adapter->name); 297 adapter->msix_info[MSIX_FW].desc[namelen] = 0; 298 299 /* 300 * Ethernet queues. 301 */ 302 for_each_port(adapter, pidx) { 303 struct net_device *dev = adapter->port[pidx]; 304 const struct port_info *pi = netdev_priv(dev); 305 int qs, msi; 306 307 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) { 308 snprintf(adapter->msix_info[msi].desc, namelen, 309 "%s-%d", dev->name, qs); 310 adapter->msix_info[msi].desc[namelen] = 0; 311 } 312 } 313 } 314 315 /* 316 * Request all of our MSI-X resources. 317 */ 318 static int request_msix_queue_irqs(struct adapter *adapter) 319 { 320 struct sge *s = &adapter->sge; 321 int rxq, msi, err; 322 323 /* 324 * Firmware events. 325 */ 326 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix, 327 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq); 328 if (err) 329 return err; 330 331 /* 332 * Ethernet queues. 333 */ 334 msi = MSIX_IQFLINT; 335 for_each_ethrxq(s, rxq) { 336 err = request_irq(adapter->msix_info[msi].vec, 337 t4vf_sge_intr_msix, 0, 338 adapter->msix_info[msi].desc, 339 &s->ethrxq[rxq].rspq); 340 if (err) 341 goto err_free_irqs; 342 msi++; 343 } 344 return 0; 345 346 err_free_irqs: 347 while (--rxq >= 0) 348 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq); 349 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 350 return err; 351 } 352 353 /* 354 * Free our MSI-X resources. 355 */ 356 static void free_msix_queue_irqs(struct adapter *adapter) 357 { 358 struct sge *s = &adapter->sge; 359 int rxq, msi; 360 361 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 362 msi = MSIX_IQFLINT; 363 for_each_ethrxq(s, rxq) 364 free_irq(adapter->msix_info[msi++].vec, 365 &s->ethrxq[rxq].rspq); 366 } 367 368 /* 369 * Turn on NAPI and start up interrupts on a response queue. 370 */ 371 static void qenable(struct sge_rspq *rspq) 372 { 373 napi_enable(&rspq->napi); 374 375 /* 376 * 0-increment the Going To Sleep register to start the timer and 377 * enable interrupts. 378 */ 379 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 380 CIDXINC_V(0) | 381 SEINTARM_V(rspq->intr_params) | 382 INGRESSQID_V(rspq->cntxt_id)); 383 } 384 385 /* 386 * Enable NAPI scheduling and interrupt generation for all Receive Queues. 387 */ 388 static void enable_rx(struct adapter *adapter) 389 { 390 int rxq; 391 struct sge *s = &adapter->sge; 392 393 for_each_ethrxq(s, rxq) 394 qenable(&s->ethrxq[rxq].rspq); 395 qenable(&s->fw_evtq); 396 397 /* 398 * The interrupt queue doesn't use NAPI so we do the 0-increment of 399 * its Going To Sleep register here to get it started. 400 */ 401 if (adapter->flags & USING_MSI) 402 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 403 CIDXINC_V(0) | 404 SEINTARM_V(s->intrq.intr_params) | 405 INGRESSQID_V(s->intrq.cntxt_id)); 406 407 } 408 409 /* 410 * Wait until all NAPI handlers are descheduled. 411 */ 412 static void quiesce_rx(struct adapter *adapter) 413 { 414 struct sge *s = &adapter->sge; 415 int rxq; 416 417 for_each_ethrxq(s, rxq) 418 napi_disable(&s->ethrxq[rxq].rspq.napi); 419 napi_disable(&s->fw_evtq.napi); 420 } 421 422 /* 423 * Response queue handler for the firmware event queue. 424 */ 425 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp, 426 const struct pkt_gl *gl) 427 { 428 /* 429 * Extract response opcode and get pointer to CPL message body. 430 */ 431 struct adapter *adapter = rspq->adapter; 432 u8 opcode = ((const struct rss_header *)rsp)->opcode; 433 void *cpl = (void *)(rsp + 1); 434 435 switch (opcode) { 436 case CPL_FW6_MSG: { 437 /* 438 * We've received an asynchronous message from the firmware. 439 */ 440 const struct cpl_fw6_msg *fw_msg = cpl; 441 if (fw_msg->type == FW6_TYPE_CMD_RPL) 442 t4vf_handle_fw_rpl(adapter, fw_msg->data); 443 break; 444 } 445 446 case CPL_FW4_MSG: { 447 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 448 */ 449 const struct cpl_sge_egr_update *p = (void *)(rsp + 3); 450 opcode = CPL_OPCODE_G(ntohl(p->opcode_qid)); 451 if (opcode != CPL_SGE_EGR_UPDATE) { 452 dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 453 , opcode); 454 break; 455 } 456 cpl = (void *)p; 457 /*FALLTHROUGH*/ 458 } 459 460 case CPL_SGE_EGR_UPDATE: { 461 /* 462 * We've received an Egress Queue Status Update message. We 463 * get these, if the SGE is configured to send these when the 464 * firmware passes certain points in processing our TX 465 * Ethernet Queue or if we make an explicit request for one. 466 * We use these updates to determine when we may need to 467 * restart a TX Ethernet Queue which was stopped for lack of 468 * free TX Queue Descriptors ... 469 */ 470 const struct cpl_sge_egr_update *p = cpl; 471 unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid)); 472 struct sge *s = &adapter->sge; 473 struct sge_txq *tq; 474 struct sge_eth_txq *txq; 475 unsigned int eq_idx; 476 477 /* 478 * Perform sanity checking on the Queue ID to make sure it 479 * really refers to one of our TX Ethernet Egress Queues which 480 * is active and matches the queue's ID. None of these error 481 * conditions should ever happen so we may want to either make 482 * them fatal and/or conditionalized under DEBUG. 483 */ 484 eq_idx = EQ_IDX(s, qid); 485 if (unlikely(eq_idx >= MAX_EGRQ)) { 486 dev_err(adapter->pdev_dev, 487 "Egress Update QID %d out of range\n", qid); 488 break; 489 } 490 tq = s->egr_map[eq_idx]; 491 if (unlikely(tq == NULL)) { 492 dev_err(adapter->pdev_dev, 493 "Egress Update QID %d TXQ=NULL\n", qid); 494 break; 495 } 496 txq = container_of(tq, struct sge_eth_txq, q); 497 if (unlikely(tq->abs_id != qid)) { 498 dev_err(adapter->pdev_dev, 499 "Egress Update QID %d refers to TXQ %d\n", 500 qid, tq->abs_id); 501 break; 502 } 503 504 /* 505 * Restart a stopped TX Queue which has less than half of its 506 * TX ring in use ... 507 */ 508 txq->q.restarts++; 509 netif_tx_wake_queue(txq->txq); 510 break; 511 } 512 513 default: 514 dev_err(adapter->pdev_dev, 515 "unexpected CPL %#x on FW event queue\n", opcode); 516 } 517 518 return 0; 519 } 520 521 /* 522 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues 523 * to use and initializes them. We support multiple "Queue Sets" per port if 524 * we have MSI-X, otherwise just one queue set per port. 525 */ 526 static int setup_sge_queues(struct adapter *adapter) 527 { 528 struct sge *s = &adapter->sge; 529 int err, pidx, msix; 530 531 /* 532 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error 533 * state. 534 */ 535 bitmap_zero(s->starving_fl, MAX_EGRQ); 536 537 /* 538 * If we're using MSI interrupt mode we need to set up a "forwarded 539 * interrupt" queue which we'll set up with our MSI vector. The rest 540 * of the ingress queues will be set up to forward their interrupts to 541 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses 542 * the intrq's queue ID as the interrupt forwarding queue for the 543 * subsequent calls ... 544 */ 545 if (adapter->flags & USING_MSI) { 546 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false, 547 adapter->port[0], 0, NULL, NULL); 548 if (err) 549 goto err_free_queues; 550 } 551 552 /* 553 * Allocate our ingress queue for asynchronous firmware messages. 554 */ 555 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0], 556 MSIX_FW, NULL, fwevtq_handler); 557 if (err) 558 goto err_free_queues; 559 560 /* 561 * Allocate each "port"'s initial Queue Sets. These can be changed 562 * later on ... up to the point where any interface on the adapter is 563 * brought up at which point lots of things get nailed down 564 * permanently ... 565 */ 566 msix = MSIX_IQFLINT; 567 for_each_port(adapter, pidx) { 568 struct net_device *dev = adapter->port[pidx]; 569 struct port_info *pi = netdev_priv(dev); 570 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 571 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 572 int qs; 573 574 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 575 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false, 576 dev, msix++, 577 &rxq->fl, t4vf_ethrx_handler); 578 if (err) 579 goto err_free_queues; 580 581 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev, 582 netdev_get_tx_queue(dev, qs), 583 s->fw_evtq.cntxt_id); 584 if (err) 585 goto err_free_queues; 586 587 rxq->rspq.idx = qs; 588 memset(&rxq->stats, 0, sizeof(rxq->stats)); 589 } 590 } 591 592 /* 593 * Create the reverse mappings for the queues. 594 */ 595 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id; 596 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id; 597 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq; 598 for_each_port(adapter, pidx) { 599 struct net_device *dev = adapter->port[pidx]; 600 struct port_info *pi = netdev_priv(dev); 601 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 602 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 603 int qs; 604 605 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 606 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq; 607 EQ_MAP(s, txq->q.abs_id) = &txq->q; 608 609 /* 610 * The FW_IQ_CMD doesn't return the Absolute Queue IDs 611 * for Free Lists but since all of the Egress Queues 612 * (including Free Lists) have Relative Queue IDs 613 * which are computed as Absolute - Base Queue ID, we 614 * can synthesize the Absolute Queue IDs for the Free 615 * Lists. This is useful for debugging purposes when 616 * we want to dump Queue Contexts via the PF Driver. 617 */ 618 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base; 619 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl; 620 } 621 } 622 return 0; 623 624 err_free_queues: 625 t4vf_free_sge_resources(adapter); 626 return err; 627 } 628 629 /* 630 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive 631 * queues. We configure the RSS CPU lookup table to distribute to the number 632 * of HW receive queues, and the response queue lookup table to narrow that 633 * down to the response queues actually configured for each "port" (Virtual 634 * Interface). We always configure the RSS mapping for all ports since the 635 * mapping table has plenty of entries. 636 */ 637 static int setup_rss(struct adapter *adapter) 638 { 639 int pidx; 640 641 for_each_port(adapter, pidx) { 642 struct port_info *pi = adap2pinfo(adapter, pidx); 643 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 644 u16 rss[MAX_PORT_QSETS]; 645 int qs, err; 646 647 for (qs = 0; qs < pi->nqsets; qs++) 648 rss[qs] = rxq[qs].rspq.abs_id; 649 650 err = t4vf_config_rss_range(adapter, pi->viid, 651 0, pi->rss_size, rss, pi->nqsets); 652 if (err) 653 return err; 654 655 /* 656 * Perform Global RSS Mode-specific initialization. 657 */ 658 switch (adapter->params.rss.mode) { 659 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: 660 /* 661 * If Tunnel All Lookup isn't specified in the global 662 * RSS Configuration, then we need to specify a 663 * default Ingress Queue for any ingress packets which 664 * aren't hashed. We'll use our first ingress queue 665 * ... 666 */ 667 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) { 668 union rss_vi_config config; 669 err = t4vf_read_rss_vi_config(adapter, 670 pi->viid, 671 &config); 672 if (err) 673 return err; 674 config.basicvirtual.defaultq = 675 rxq[0].rspq.abs_id; 676 err = t4vf_write_rss_vi_config(adapter, 677 pi->viid, 678 &config); 679 if (err) 680 return err; 681 } 682 break; 683 } 684 } 685 686 return 0; 687 } 688 689 /* 690 * Bring the adapter up. Called whenever we go from no "ports" open to having 691 * one open. This function performs the actions necessary to make an adapter 692 * operational, such as completing the initialization of HW modules, and 693 * enabling interrupts. Must be called with the rtnl lock held. (Note that 694 * this is called "cxgb_up" in the PF Driver.) 695 */ 696 static int adapter_up(struct adapter *adapter) 697 { 698 int err; 699 700 /* 701 * If this is the first time we've been called, perform basic 702 * adapter setup. Once we've done this, many of our adapter 703 * parameters can no longer be changed ... 704 */ 705 if ((adapter->flags & FULL_INIT_DONE) == 0) { 706 err = setup_sge_queues(adapter); 707 if (err) 708 return err; 709 err = setup_rss(adapter); 710 if (err) { 711 t4vf_free_sge_resources(adapter); 712 return err; 713 } 714 715 if (adapter->flags & USING_MSIX) 716 name_msix_vecs(adapter); 717 adapter->flags |= FULL_INIT_DONE; 718 } 719 720 /* 721 * Acquire our interrupt resources. We only support MSI-X and MSI. 722 */ 723 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 724 if (adapter->flags & USING_MSIX) 725 err = request_msix_queue_irqs(adapter); 726 else 727 err = request_irq(adapter->pdev->irq, 728 t4vf_intr_handler(adapter), 0, 729 adapter->name, adapter); 730 if (err) { 731 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n", 732 err); 733 return err; 734 } 735 736 /* 737 * Enable NAPI ingress processing and return success. 738 */ 739 enable_rx(adapter); 740 t4vf_sge_start(adapter); 741 742 /* Initialize hash mac addr list*/ 743 INIT_LIST_HEAD(&adapter->mac_hlist); 744 return 0; 745 } 746 747 /* 748 * Bring the adapter down. Called whenever the last "port" (Virtual 749 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF 750 * Driver.) 751 */ 752 static void adapter_down(struct adapter *adapter) 753 { 754 /* 755 * Free interrupt resources. 756 */ 757 if (adapter->flags & USING_MSIX) 758 free_msix_queue_irqs(adapter); 759 else 760 free_irq(adapter->pdev->irq, adapter); 761 762 /* 763 * Wait for NAPI handlers to finish. 764 */ 765 quiesce_rx(adapter); 766 } 767 768 /* 769 * Start up a net device. 770 */ 771 static int cxgb4vf_open(struct net_device *dev) 772 { 773 int err; 774 struct port_info *pi = netdev_priv(dev); 775 struct adapter *adapter = pi->adapter; 776 777 /* 778 * If this is the first interface that we're opening on the "adapter", 779 * bring the "adapter" up now. 780 */ 781 if (adapter->open_device_map == 0) { 782 err = adapter_up(adapter); 783 if (err) 784 return err; 785 } 786 787 /* 788 * Note that this interface is up and start everything up ... 789 */ 790 err = link_start(dev); 791 if (err) 792 goto err_unwind; 793 794 netif_tx_start_all_queues(dev); 795 set_bit(pi->port_id, &adapter->open_device_map); 796 return 0; 797 798 err_unwind: 799 if (adapter->open_device_map == 0) 800 adapter_down(adapter); 801 return err; 802 } 803 804 /* 805 * Shut down a net device. This routine is called "cxgb_close" in the PF 806 * Driver ... 807 */ 808 static int cxgb4vf_stop(struct net_device *dev) 809 { 810 struct port_info *pi = netdev_priv(dev); 811 struct adapter *adapter = pi->adapter; 812 813 netif_tx_stop_all_queues(dev); 814 netif_carrier_off(dev); 815 t4vf_enable_vi(adapter, pi->viid, false, false); 816 pi->link_cfg.link_ok = 0; 817 818 clear_bit(pi->port_id, &adapter->open_device_map); 819 if (adapter->open_device_map == 0) 820 adapter_down(adapter); 821 return 0; 822 } 823 824 /* 825 * Translate our basic statistics into the standard "ifconfig" statistics. 826 */ 827 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev) 828 { 829 struct t4vf_port_stats stats; 830 struct port_info *pi = netdev2pinfo(dev); 831 struct adapter *adapter = pi->adapter; 832 struct net_device_stats *ns = &dev->stats; 833 int err; 834 835 spin_lock(&adapter->stats_lock); 836 err = t4vf_get_port_stats(adapter, pi->pidx, &stats); 837 spin_unlock(&adapter->stats_lock); 838 839 memset(ns, 0, sizeof(*ns)); 840 if (err) 841 return ns; 842 843 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes + 844 stats.tx_ucast_bytes + stats.tx_offload_bytes); 845 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames + 846 stats.tx_ucast_frames + stats.tx_offload_frames); 847 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes + 848 stats.rx_ucast_bytes); 849 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames + 850 stats.rx_ucast_frames); 851 ns->multicast = stats.rx_mcast_frames; 852 ns->tx_errors = stats.tx_drop_frames; 853 ns->rx_errors = stats.rx_err_frames; 854 855 return ns; 856 } 857 858 static inline int cxgb4vf_set_addr_hash(struct port_info *pi) 859 { 860 struct adapter *adapter = pi->adapter; 861 u64 vec = 0; 862 bool ucast = false; 863 struct hash_mac_addr *entry; 864 865 /* Calculate the hash vector for the updated list and program it */ 866 list_for_each_entry(entry, &adapter->mac_hlist, list) { 867 ucast |= is_unicast_ether_addr(entry->addr); 868 vec |= (1ULL << hash_mac_addr(entry->addr)); 869 } 870 return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false); 871 } 872 873 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr) 874 { 875 struct port_info *pi = netdev_priv(netdev); 876 struct adapter *adapter = pi->adapter; 877 int ret; 878 u64 mhash = 0; 879 u64 uhash = 0; 880 bool free = false; 881 bool ucast = is_unicast_ether_addr(mac_addr); 882 const u8 *maclist[1] = {mac_addr}; 883 struct hash_mac_addr *new_entry; 884 885 ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist, 886 NULL, ucast ? &uhash : &mhash, false); 887 if (ret < 0) 888 goto out; 889 /* if hash != 0, then add the addr to hash addr list 890 * so on the end we will calculate the hash for the 891 * list and program it 892 */ 893 if (uhash || mhash) { 894 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 895 if (!new_entry) 896 return -ENOMEM; 897 ether_addr_copy(new_entry->addr, mac_addr); 898 list_add_tail(&new_entry->list, &adapter->mac_hlist); 899 ret = cxgb4vf_set_addr_hash(pi); 900 } 901 out: 902 return ret < 0 ? ret : 0; 903 } 904 905 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 906 { 907 struct port_info *pi = netdev_priv(netdev); 908 struct adapter *adapter = pi->adapter; 909 int ret; 910 const u8 *maclist[1] = {mac_addr}; 911 struct hash_mac_addr *entry, *tmp; 912 913 /* If the MAC address to be removed is in the hash addr 914 * list, delete it from the list and update hash vector 915 */ 916 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) { 917 if (ether_addr_equal(entry->addr, mac_addr)) { 918 list_del(&entry->list); 919 kfree(entry); 920 return cxgb4vf_set_addr_hash(pi); 921 } 922 } 923 924 ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false); 925 return ret < 0 ? -EINVAL : 0; 926 } 927 928 /* 929 * Set RX properties of a port, such as promiscruity, address filters, and MTU. 930 * If @mtu is -1 it is left unchanged. 931 */ 932 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 933 { 934 struct port_info *pi = netdev_priv(dev); 935 936 __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 937 __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 938 return t4vf_set_rxmode(pi->adapter, pi->viid, -1, 939 (dev->flags & IFF_PROMISC) != 0, 940 (dev->flags & IFF_ALLMULTI) != 0, 941 1, -1, sleep_ok); 942 } 943 944 /* 945 * Set the current receive modes on the device. 946 */ 947 static void cxgb4vf_set_rxmode(struct net_device *dev) 948 { 949 /* unfortunately we can't return errors to the stack */ 950 set_rxmode(dev, -1, false); 951 } 952 953 /* 954 * Find the entry in the interrupt holdoff timer value array which comes 955 * closest to the specified interrupt holdoff value. 956 */ 957 static int closest_timer(const struct sge *s, int us) 958 { 959 int i, timer_idx = 0, min_delta = INT_MAX; 960 961 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 962 int delta = us - s->timer_val[i]; 963 if (delta < 0) 964 delta = -delta; 965 if (delta < min_delta) { 966 min_delta = delta; 967 timer_idx = i; 968 } 969 } 970 return timer_idx; 971 } 972 973 static int closest_thres(const struct sge *s, int thres) 974 { 975 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX; 976 977 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 978 delta = thres - s->counter_val[i]; 979 if (delta < 0) 980 delta = -delta; 981 if (delta < min_delta) { 982 min_delta = delta; 983 pktcnt_idx = i; 984 } 985 } 986 return pktcnt_idx; 987 } 988 989 /* 990 * Return a queue's interrupt hold-off time in us. 0 means no timer. 991 */ 992 static unsigned int qtimer_val(const struct adapter *adapter, 993 const struct sge_rspq *rspq) 994 { 995 unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params); 996 997 return timer_idx < SGE_NTIMERS 998 ? adapter->sge.timer_val[timer_idx] 999 : 0; 1000 } 1001 1002 /** 1003 * set_rxq_intr_params - set a queue's interrupt holdoff parameters 1004 * @adapter: the adapter 1005 * @rspq: the RX response queue 1006 * @us: the hold-off time in us, or 0 to disable timer 1007 * @cnt: the hold-off packet count, or 0 to disable counter 1008 * 1009 * Sets an RX response queue's interrupt hold-off time and packet count. 1010 * At least one of the two needs to be enabled for the queue to generate 1011 * interrupts. 1012 */ 1013 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq, 1014 unsigned int us, unsigned int cnt) 1015 { 1016 unsigned int timer_idx; 1017 1018 /* 1019 * If both the interrupt holdoff timer and count are specified as 1020 * zero, default to a holdoff count of 1 ... 1021 */ 1022 if ((us | cnt) == 0) 1023 cnt = 1; 1024 1025 /* 1026 * If an interrupt holdoff count has been specified, then find the 1027 * closest configured holdoff count and use that. If the response 1028 * queue has already been created, then update its queue context 1029 * parameters ... 1030 */ 1031 if (cnt) { 1032 int err; 1033 u32 v, pktcnt_idx; 1034 1035 pktcnt_idx = closest_thres(&adapter->sge, cnt); 1036 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) { 1037 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1038 FW_PARAMS_PARAM_X_V( 1039 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1040 FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id); 1041 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx); 1042 if (err) 1043 return err; 1044 } 1045 rspq->pktcnt_idx = pktcnt_idx; 1046 } 1047 1048 /* 1049 * Compute the closest holdoff timer index from the supplied holdoff 1050 * timer value. 1051 */ 1052 timer_idx = (us == 0 1053 ? SGE_TIMER_RSTRT_CNTR 1054 : closest_timer(&adapter->sge, us)); 1055 1056 /* 1057 * Update the response queue's interrupt coalescing parameters and 1058 * return success. 1059 */ 1060 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 1061 QINTR_CNT_EN_V(cnt > 0)); 1062 return 0; 1063 } 1064 1065 /* 1066 * Return a version number to identify the type of adapter. The scheme is: 1067 * - bits 0..9: chip version 1068 * - bits 10..15: chip revision 1069 */ 1070 static inline unsigned int mk_adap_vers(const struct adapter *adapter) 1071 { 1072 /* 1073 * Chip version 4, revision 0x3f (cxgb4vf). 1074 */ 1075 return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10); 1076 } 1077 1078 /* 1079 * Execute the specified ioctl command. 1080 */ 1081 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1082 { 1083 int ret = 0; 1084 1085 switch (cmd) { 1086 /* 1087 * The VF Driver doesn't have access to any of the other 1088 * common Ethernet device ioctl()'s (like reading/writing 1089 * PHY registers, etc. 1090 */ 1091 1092 default: 1093 ret = -EOPNOTSUPP; 1094 break; 1095 } 1096 return ret; 1097 } 1098 1099 /* 1100 * Change the device's MTU. 1101 */ 1102 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu) 1103 { 1104 int ret; 1105 struct port_info *pi = netdev_priv(dev); 1106 1107 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu, 1108 -1, -1, -1, -1, true); 1109 if (!ret) 1110 dev->mtu = new_mtu; 1111 return ret; 1112 } 1113 1114 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev, 1115 netdev_features_t features) 1116 { 1117 /* 1118 * Since there is no support for separate rx/tx vlan accel 1119 * enable/disable make sure tx flag is always in same state as rx. 1120 */ 1121 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1122 features |= NETIF_F_HW_VLAN_CTAG_TX; 1123 else 1124 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 1125 1126 return features; 1127 } 1128 1129 static int cxgb4vf_set_features(struct net_device *dev, 1130 netdev_features_t features) 1131 { 1132 struct port_info *pi = netdev_priv(dev); 1133 netdev_features_t changed = dev->features ^ features; 1134 1135 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 1136 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, 1137 features & NETIF_F_HW_VLAN_CTAG_TX, 0); 1138 1139 return 0; 1140 } 1141 1142 /* 1143 * Change the devices MAC address. 1144 */ 1145 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr) 1146 { 1147 int ret; 1148 struct sockaddr *addr = _addr; 1149 struct port_info *pi = netdev_priv(dev); 1150 1151 if (!is_valid_ether_addr(addr->sa_data)) 1152 return -EADDRNOTAVAIL; 1153 1154 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt, 1155 addr->sa_data, true); 1156 if (ret < 0) 1157 return ret; 1158 1159 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 1160 pi->xact_addr_filt = ret; 1161 return 0; 1162 } 1163 1164 #ifdef CONFIG_NET_POLL_CONTROLLER 1165 /* 1166 * Poll all of our receive queues. This is called outside of normal interrupt 1167 * context. 1168 */ 1169 static void cxgb4vf_poll_controller(struct net_device *dev) 1170 { 1171 struct port_info *pi = netdev_priv(dev); 1172 struct adapter *adapter = pi->adapter; 1173 1174 if (adapter->flags & USING_MSIX) { 1175 struct sge_eth_rxq *rxq; 1176 int nqsets; 1177 1178 rxq = &adapter->sge.ethrxq[pi->first_qset]; 1179 for (nqsets = pi->nqsets; nqsets; nqsets--) { 1180 t4vf_sge_intr_msix(0, &rxq->rspq); 1181 rxq++; 1182 } 1183 } else 1184 t4vf_intr_handler(adapter)(0, adapter); 1185 } 1186 #endif 1187 1188 /* 1189 * Ethtool operations. 1190 * =================== 1191 * 1192 * Note that we don't support any ethtool operations which change the physical 1193 * state of the port to which we're linked. 1194 */ 1195 1196 /** 1197 * from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool 1198 * @port_type: Firmware Port Type 1199 * @mod_type: Firmware Module Type 1200 * 1201 * Translate Firmware Port/Module type to Ethtool Port Type. 1202 */ 1203 static int from_fw_port_mod_type(enum fw_port_type port_type, 1204 enum fw_port_module_type mod_type) 1205 { 1206 if (port_type == FW_PORT_TYPE_BT_SGMII || 1207 port_type == FW_PORT_TYPE_BT_XFI || 1208 port_type == FW_PORT_TYPE_BT_XAUI) { 1209 return PORT_TP; 1210 } else if (port_type == FW_PORT_TYPE_FIBER_XFI || 1211 port_type == FW_PORT_TYPE_FIBER_XAUI) { 1212 return PORT_FIBRE; 1213 } else if (port_type == FW_PORT_TYPE_SFP || 1214 port_type == FW_PORT_TYPE_QSFP_10G || 1215 port_type == FW_PORT_TYPE_QSA || 1216 port_type == FW_PORT_TYPE_QSFP) { 1217 if (mod_type == FW_PORT_MOD_TYPE_LR || 1218 mod_type == FW_PORT_MOD_TYPE_SR || 1219 mod_type == FW_PORT_MOD_TYPE_ER || 1220 mod_type == FW_PORT_MOD_TYPE_LRM) 1221 return PORT_FIBRE; 1222 else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE || 1223 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE) 1224 return PORT_DA; 1225 else 1226 return PORT_OTHER; 1227 } 1228 1229 return PORT_OTHER; 1230 } 1231 1232 /** 1233 * fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask 1234 * @port_type: Firmware Port Type 1235 * @fw_caps: Firmware Port Capabilities 1236 * @link_mode_mask: ethtool Link Mode Mask 1237 * 1238 * Translate a Firmware Port Capabilities specification to an ethtool 1239 * Link Mode Mask. 1240 */ 1241 static void fw_caps_to_lmm(enum fw_port_type port_type, 1242 unsigned int fw_caps, 1243 unsigned long *link_mode_mask) 1244 { 1245 #define SET_LMM(__lmm_name) __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name\ 1246 ## _BIT, link_mode_mask) 1247 1248 #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \ 1249 do { \ 1250 if (fw_caps & FW_PORT_CAP_ ## __fw_name) \ 1251 SET_LMM(__lmm_name); \ 1252 } while (0) 1253 1254 switch (port_type) { 1255 case FW_PORT_TYPE_BT_SGMII: 1256 case FW_PORT_TYPE_BT_XFI: 1257 case FW_PORT_TYPE_BT_XAUI: 1258 SET_LMM(TP); 1259 FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full); 1260 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1261 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1262 break; 1263 1264 case FW_PORT_TYPE_KX4: 1265 case FW_PORT_TYPE_KX: 1266 SET_LMM(Backplane); 1267 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1268 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1269 break; 1270 1271 case FW_PORT_TYPE_KR: 1272 SET_LMM(Backplane); 1273 SET_LMM(10000baseKR_Full); 1274 break; 1275 1276 case FW_PORT_TYPE_BP_AP: 1277 SET_LMM(Backplane); 1278 SET_LMM(10000baseR_FEC); 1279 SET_LMM(10000baseKR_Full); 1280 SET_LMM(1000baseKX_Full); 1281 break; 1282 1283 case FW_PORT_TYPE_BP4_AP: 1284 SET_LMM(Backplane); 1285 SET_LMM(10000baseR_FEC); 1286 SET_LMM(10000baseKR_Full); 1287 SET_LMM(1000baseKX_Full); 1288 SET_LMM(10000baseKX4_Full); 1289 break; 1290 1291 case FW_PORT_TYPE_FIBER_XFI: 1292 case FW_PORT_TYPE_FIBER_XAUI: 1293 case FW_PORT_TYPE_SFP: 1294 case FW_PORT_TYPE_QSFP_10G: 1295 case FW_PORT_TYPE_QSA: 1296 SET_LMM(FIBRE); 1297 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1298 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1299 break; 1300 1301 case FW_PORT_TYPE_BP40_BA: 1302 case FW_PORT_TYPE_QSFP: 1303 SET_LMM(FIBRE); 1304 SET_LMM(40000baseSR4_Full); 1305 break; 1306 1307 case FW_PORT_TYPE_CR_QSFP: 1308 case FW_PORT_TYPE_SFP28: 1309 SET_LMM(FIBRE); 1310 SET_LMM(25000baseCR_Full); 1311 break; 1312 1313 case FW_PORT_TYPE_KR4_100G: 1314 case FW_PORT_TYPE_CR4_QSFP: 1315 SET_LMM(FIBRE); 1316 SET_LMM(100000baseCR4_Full); 1317 break; 1318 1319 default: 1320 break; 1321 } 1322 1323 FW_CAPS_TO_LMM(ANEG, Autoneg); 1324 FW_CAPS_TO_LMM(802_3_PAUSE, Pause); 1325 FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause); 1326 1327 #undef FW_CAPS_TO_LMM 1328 #undef SET_LMM 1329 } 1330 1331 static int cxgb4vf_get_link_ksettings(struct net_device *dev, 1332 struct ethtool_link_ksettings 1333 *link_ksettings) 1334 { 1335 const struct port_info *pi = netdev_priv(dev); 1336 struct ethtool_link_settings *base = &link_ksettings->base; 1337 1338 ethtool_link_ksettings_zero_link_mode(link_ksettings, supported); 1339 ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising); 1340 ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising); 1341 1342 base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type); 1343 1344 if (pi->mdio_addr >= 0) { 1345 base->phy_address = pi->mdio_addr; 1346 base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII 1347 ? ETH_MDIO_SUPPORTS_C22 1348 : ETH_MDIO_SUPPORTS_C45); 1349 } else { 1350 base->phy_address = 255; 1351 base->mdio_support = 0; 1352 } 1353 1354 fw_caps_to_lmm(pi->port_type, pi->link_cfg.supported, 1355 link_ksettings->link_modes.supported); 1356 fw_caps_to_lmm(pi->port_type, pi->link_cfg.advertising, 1357 link_ksettings->link_modes.advertising); 1358 fw_caps_to_lmm(pi->port_type, pi->link_cfg.lp_advertising, 1359 link_ksettings->link_modes.lp_advertising); 1360 1361 if (netif_carrier_ok(dev)) { 1362 base->speed = pi->link_cfg.speed; 1363 base->duplex = DUPLEX_FULL; 1364 } else { 1365 base->speed = SPEED_UNKNOWN; 1366 base->duplex = DUPLEX_UNKNOWN; 1367 } 1368 1369 base->autoneg = pi->link_cfg.autoneg; 1370 if (pi->link_cfg.supported & FW_PORT_CAP_ANEG) 1371 ethtool_link_ksettings_add_link_mode(link_ksettings, 1372 supported, Autoneg); 1373 if (pi->link_cfg.autoneg) 1374 ethtool_link_ksettings_add_link_mode(link_ksettings, 1375 advertising, Autoneg); 1376 1377 return 0; 1378 } 1379 1380 /* 1381 * Return our driver information. 1382 */ 1383 static void cxgb4vf_get_drvinfo(struct net_device *dev, 1384 struct ethtool_drvinfo *drvinfo) 1385 { 1386 struct adapter *adapter = netdev2adap(dev); 1387 1388 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver)); 1389 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version)); 1390 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)), 1391 sizeof(drvinfo->bus_info)); 1392 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 1393 "%u.%u.%u.%u, TP %u.%u.%u.%u", 1394 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev), 1395 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev), 1396 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev), 1397 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev), 1398 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev), 1399 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev), 1400 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev), 1401 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev)); 1402 } 1403 1404 /* 1405 * Return current adapter message level. 1406 */ 1407 static u32 cxgb4vf_get_msglevel(struct net_device *dev) 1408 { 1409 return netdev2adap(dev)->msg_enable; 1410 } 1411 1412 /* 1413 * Set current adapter message level. 1414 */ 1415 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel) 1416 { 1417 netdev2adap(dev)->msg_enable = msglevel; 1418 } 1419 1420 /* 1421 * Return the device's current Queue Set ring size parameters along with the 1422 * allowed maximum values. Since ethtool doesn't understand the concept of 1423 * multi-queue devices, we just return the current values associated with the 1424 * first Queue Set. 1425 */ 1426 static void cxgb4vf_get_ringparam(struct net_device *dev, 1427 struct ethtool_ringparam *rp) 1428 { 1429 const struct port_info *pi = netdev_priv(dev); 1430 const struct sge *s = &pi->adapter->sge; 1431 1432 rp->rx_max_pending = MAX_RX_BUFFERS; 1433 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES; 1434 rp->rx_jumbo_max_pending = 0; 1435 rp->tx_max_pending = MAX_TXQ_ENTRIES; 1436 1437 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID; 1438 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; 1439 rp->rx_jumbo_pending = 0; 1440 rp->tx_pending = s->ethtxq[pi->first_qset].q.size; 1441 } 1442 1443 /* 1444 * Set the Queue Set ring size parameters for the device. Again, since 1445 * ethtool doesn't allow for the concept of multiple queues per device, we'll 1446 * apply these new values across all of the Queue Sets associated with the 1447 * device -- after vetting them of course! 1448 */ 1449 static int cxgb4vf_set_ringparam(struct net_device *dev, 1450 struct ethtool_ringparam *rp) 1451 { 1452 const struct port_info *pi = netdev_priv(dev); 1453 struct adapter *adapter = pi->adapter; 1454 struct sge *s = &adapter->sge; 1455 int qs; 1456 1457 if (rp->rx_pending > MAX_RX_BUFFERS || 1458 rp->rx_jumbo_pending || 1459 rp->tx_pending > MAX_TXQ_ENTRIES || 1460 rp->rx_mini_pending > MAX_RSPQ_ENTRIES || 1461 rp->rx_mini_pending < MIN_RSPQ_ENTRIES || 1462 rp->rx_pending < MIN_FL_ENTRIES || 1463 rp->tx_pending < MIN_TXQ_ENTRIES) 1464 return -EINVAL; 1465 1466 if (adapter->flags & FULL_INIT_DONE) 1467 return -EBUSY; 1468 1469 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) { 1470 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID; 1471 s->ethrxq[qs].rspq.size = rp->rx_mini_pending; 1472 s->ethtxq[qs].q.size = rp->tx_pending; 1473 } 1474 return 0; 1475 } 1476 1477 /* 1478 * Return the interrupt holdoff timer and count for the first Queue Set on the 1479 * device. Our extension ioctl() (the cxgbtool interface) allows the 1480 * interrupt holdoff timer to be read on all of the device's Queue Sets. 1481 */ 1482 static int cxgb4vf_get_coalesce(struct net_device *dev, 1483 struct ethtool_coalesce *coalesce) 1484 { 1485 const struct port_info *pi = netdev_priv(dev); 1486 const struct adapter *adapter = pi->adapter; 1487 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq; 1488 1489 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq); 1490 coalesce->rx_max_coalesced_frames = 1491 ((rspq->intr_params & QINTR_CNT_EN_F) 1492 ? adapter->sge.counter_val[rspq->pktcnt_idx] 1493 : 0); 1494 return 0; 1495 } 1496 1497 /* 1498 * Set the RX interrupt holdoff timer and count for the first Queue Set on the 1499 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set 1500 * the interrupt holdoff timer on any of the device's Queue Sets. 1501 */ 1502 static int cxgb4vf_set_coalesce(struct net_device *dev, 1503 struct ethtool_coalesce *coalesce) 1504 { 1505 const struct port_info *pi = netdev_priv(dev); 1506 struct adapter *adapter = pi->adapter; 1507 1508 return set_rxq_intr_params(adapter, 1509 &adapter->sge.ethrxq[pi->first_qset].rspq, 1510 coalesce->rx_coalesce_usecs, 1511 coalesce->rx_max_coalesced_frames); 1512 } 1513 1514 /* 1515 * Report current port link pause parameter settings. 1516 */ 1517 static void cxgb4vf_get_pauseparam(struct net_device *dev, 1518 struct ethtool_pauseparam *pauseparam) 1519 { 1520 struct port_info *pi = netdev_priv(dev); 1521 1522 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; 1523 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0; 1524 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0; 1525 } 1526 1527 /* 1528 * Identify the port by blinking the port's LED. 1529 */ 1530 static int cxgb4vf_phys_id(struct net_device *dev, 1531 enum ethtool_phys_id_state state) 1532 { 1533 unsigned int val; 1534 struct port_info *pi = netdev_priv(dev); 1535 1536 if (state == ETHTOOL_ID_ACTIVE) 1537 val = 0xffff; 1538 else if (state == ETHTOOL_ID_INACTIVE) 1539 val = 0; 1540 else 1541 return -EINVAL; 1542 1543 return t4vf_identify_port(pi->adapter, pi->viid, val); 1544 } 1545 1546 /* 1547 * Port stats maintained per queue of the port. 1548 */ 1549 struct queue_port_stats { 1550 u64 tso; 1551 u64 tx_csum; 1552 u64 rx_csum; 1553 u64 vlan_ex; 1554 u64 vlan_ins; 1555 u64 lro_pkts; 1556 u64 lro_merged; 1557 }; 1558 1559 /* 1560 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that 1561 * these need to match the order of statistics returned by 1562 * t4vf_get_port_stats(). 1563 */ 1564 static const char stats_strings[][ETH_GSTRING_LEN] = { 1565 /* 1566 * These must match the layout of the t4vf_port_stats structure. 1567 */ 1568 "TxBroadcastBytes ", 1569 "TxBroadcastFrames ", 1570 "TxMulticastBytes ", 1571 "TxMulticastFrames ", 1572 "TxUnicastBytes ", 1573 "TxUnicastFrames ", 1574 "TxDroppedFrames ", 1575 "TxOffloadBytes ", 1576 "TxOffloadFrames ", 1577 "RxBroadcastBytes ", 1578 "RxBroadcastFrames ", 1579 "RxMulticastBytes ", 1580 "RxMulticastFrames ", 1581 "RxUnicastBytes ", 1582 "RxUnicastFrames ", 1583 "RxErrorFrames ", 1584 1585 /* 1586 * These are accumulated per-queue statistics and must match the 1587 * order of the fields in the queue_port_stats structure. 1588 */ 1589 "TSO ", 1590 "TxCsumOffload ", 1591 "RxCsumGood ", 1592 "VLANextractions ", 1593 "VLANinsertions ", 1594 "GROPackets ", 1595 "GROMerged ", 1596 }; 1597 1598 /* 1599 * Return the number of statistics in the specified statistics set. 1600 */ 1601 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset) 1602 { 1603 switch (sset) { 1604 case ETH_SS_STATS: 1605 return ARRAY_SIZE(stats_strings); 1606 default: 1607 return -EOPNOTSUPP; 1608 } 1609 /*NOTREACHED*/ 1610 } 1611 1612 /* 1613 * Return the strings for the specified statistics set. 1614 */ 1615 static void cxgb4vf_get_strings(struct net_device *dev, 1616 u32 sset, 1617 u8 *data) 1618 { 1619 switch (sset) { 1620 case ETH_SS_STATS: 1621 memcpy(data, stats_strings, sizeof(stats_strings)); 1622 break; 1623 } 1624 } 1625 1626 /* 1627 * Small utility routine to accumulate queue statistics across the queues of 1628 * a "port". 1629 */ 1630 static void collect_sge_port_stats(const struct adapter *adapter, 1631 const struct port_info *pi, 1632 struct queue_port_stats *stats) 1633 { 1634 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset]; 1635 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 1636 int qs; 1637 1638 memset(stats, 0, sizeof(*stats)); 1639 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 1640 stats->tso += txq->tso; 1641 stats->tx_csum += txq->tx_cso; 1642 stats->rx_csum += rxq->stats.rx_cso; 1643 stats->vlan_ex += rxq->stats.vlan_ex; 1644 stats->vlan_ins += txq->vlan_ins; 1645 stats->lro_pkts += rxq->stats.lro_pkts; 1646 stats->lro_merged += rxq->stats.lro_merged; 1647 } 1648 } 1649 1650 /* 1651 * Return the ETH_SS_STATS statistics set. 1652 */ 1653 static void cxgb4vf_get_ethtool_stats(struct net_device *dev, 1654 struct ethtool_stats *stats, 1655 u64 *data) 1656 { 1657 struct port_info *pi = netdev2pinfo(dev); 1658 struct adapter *adapter = pi->adapter; 1659 int err = t4vf_get_port_stats(adapter, pi->pidx, 1660 (struct t4vf_port_stats *)data); 1661 if (err) 1662 memset(data, 0, sizeof(struct t4vf_port_stats)); 1663 1664 data += sizeof(struct t4vf_port_stats) / sizeof(u64); 1665 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); 1666 } 1667 1668 /* 1669 * Return the size of our register map. 1670 */ 1671 static int cxgb4vf_get_regs_len(struct net_device *dev) 1672 { 1673 return T4VF_REGMAP_SIZE; 1674 } 1675 1676 /* 1677 * Dump a block of registers, start to end inclusive, into a buffer. 1678 */ 1679 static void reg_block_dump(struct adapter *adapter, void *regbuf, 1680 unsigned int start, unsigned int end) 1681 { 1682 u32 *bp = regbuf + start - T4VF_REGMAP_START; 1683 1684 for ( ; start <= end; start += sizeof(u32)) { 1685 /* 1686 * Avoid reading the Mailbox Control register since that 1687 * can trigger a Mailbox Ownership Arbitration cycle and 1688 * interfere with communication with the firmware. 1689 */ 1690 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL) 1691 *bp++ = 0xffff; 1692 else 1693 *bp++ = t4_read_reg(adapter, start); 1694 } 1695 } 1696 1697 /* 1698 * Copy our entire register map into the provided buffer. 1699 */ 1700 static void cxgb4vf_get_regs(struct net_device *dev, 1701 struct ethtool_regs *regs, 1702 void *regbuf) 1703 { 1704 struct adapter *adapter = netdev2adap(dev); 1705 1706 regs->version = mk_adap_vers(adapter); 1707 1708 /* 1709 * Fill in register buffer with our register map. 1710 */ 1711 memset(regbuf, 0, T4VF_REGMAP_SIZE); 1712 1713 reg_block_dump(adapter, regbuf, 1714 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST, 1715 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST); 1716 reg_block_dump(adapter, regbuf, 1717 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST, 1718 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST); 1719 1720 /* T5 adds new registers in the PL Register map. 1721 */ 1722 reg_block_dump(adapter, regbuf, 1723 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST, 1724 T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip) 1725 ? PL_VF_WHOAMI_A : PL_VF_REVISION_A)); 1726 reg_block_dump(adapter, regbuf, 1727 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST, 1728 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST); 1729 1730 reg_block_dump(adapter, regbuf, 1731 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST, 1732 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST); 1733 } 1734 1735 /* 1736 * Report current Wake On LAN settings. 1737 */ 1738 static void cxgb4vf_get_wol(struct net_device *dev, 1739 struct ethtool_wolinfo *wol) 1740 { 1741 wol->supported = 0; 1742 wol->wolopts = 0; 1743 memset(&wol->sopass, 0, sizeof(wol->sopass)); 1744 } 1745 1746 /* 1747 * TCP Segmentation Offload flags which we support. 1748 */ 1749 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1750 1751 static const struct ethtool_ops cxgb4vf_ethtool_ops = { 1752 .get_link_ksettings = cxgb4vf_get_link_ksettings, 1753 .get_drvinfo = cxgb4vf_get_drvinfo, 1754 .get_msglevel = cxgb4vf_get_msglevel, 1755 .set_msglevel = cxgb4vf_set_msglevel, 1756 .get_ringparam = cxgb4vf_get_ringparam, 1757 .set_ringparam = cxgb4vf_set_ringparam, 1758 .get_coalesce = cxgb4vf_get_coalesce, 1759 .set_coalesce = cxgb4vf_set_coalesce, 1760 .get_pauseparam = cxgb4vf_get_pauseparam, 1761 .get_link = ethtool_op_get_link, 1762 .get_strings = cxgb4vf_get_strings, 1763 .set_phys_id = cxgb4vf_phys_id, 1764 .get_sset_count = cxgb4vf_get_sset_count, 1765 .get_ethtool_stats = cxgb4vf_get_ethtool_stats, 1766 .get_regs_len = cxgb4vf_get_regs_len, 1767 .get_regs = cxgb4vf_get_regs, 1768 .get_wol = cxgb4vf_get_wol, 1769 }; 1770 1771 /* 1772 * /sys/kernel/debug/cxgb4vf support code and data. 1773 * ================================================ 1774 */ 1775 1776 /* 1777 * Show Firmware Mailbox Command/Reply Log 1778 * 1779 * Note that we don't do any locking when dumping the Firmware Mailbox Log so 1780 * it's possible that we can catch things during a log update and therefore 1781 * see partially corrupted log entries. But i9t's probably Good Enough(tm). 1782 * If we ever decide that we want to make sure that we're dumping a coherent 1783 * log, we'd need to perform locking in the mailbox logging and in 1784 * mboxlog_open() where we'd need to grab the entire mailbox log in one go 1785 * like we do for the Firmware Device Log. But as stated above, meh ... 1786 */ 1787 static int mboxlog_show(struct seq_file *seq, void *v) 1788 { 1789 struct adapter *adapter = seq->private; 1790 struct mbox_cmd_log *log = adapter->mbox_log; 1791 struct mbox_cmd *entry; 1792 int entry_idx, i; 1793 1794 if (v == SEQ_START_TOKEN) { 1795 seq_printf(seq, 1796 "%10s %15s %5s %5s %s\n", 1797 "Seq#", "Tstamp", "Atime", "Etime", 1798 "Command/Reply"); 1799 return 0; 1800 } 1801 1802 entry_idx = log->cursor + ((uintptr_t)v - 2); 1803 if (entry_idx >= log->size) 1804 entry_idx -= log->size; 1805 entry = mbox_cmd_log_entry(log, entry_idx); 1806 1807 /* skip over unused entries */ 1808 if (entry->timestamp == 0) 1809 return 0; 1810 1811 seq_printf(seq, "%10u %15llu %5d %5d", 1812 entry->seqno, entry->timestamp, 1813 entry->access, entry->execute); 1814 for (i = 0; i < MBOX_LEN / 8; i++) { 1815 u64 flit = entry->cmd[i]; 1816 u32 hi = (u32)(flit >> 32); 1817 u32 lo = (u32)flit; 1818 1819 seq_printf(seq, " %08x %08x", hi, lo); 1820 } 1821 seq_puts(seq, "\n"); 1822 return 0; 1823 } 1824 1825 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos) 1826 { 1827 struct adapter *adapter = seq->private; 1828 struct mbox_cmd_log *log = adapter->mbox_log; 1829 1830 return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL); 1831 } 1832 1833 static void *mboxlog_start(struct seq_file *seq, loff_t *pos) 1834 { 1835 return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN; 1836 } 1837 1838 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos) 1839 { 1840 ++*pos; 1841 return mboxlog_get_idx(seq, *pos); 1842 } 1843 1844 static void mboxlog_stop(struct seq_file *seq, void *v) 1845 { 1846 } 1847 1848 static const struct seq_operations mboxlog_seq_ops = { 1849 .start = mboxlog_start, 1850 .next = mboxlog_next, 1851 .stop = mboxlog_stop, 1852 .show = mboxlog_show 1853 }; 1854 1855 static int mboxlog_open(struct inode *inode, struct file *file) 1856 { 1857 int res = seq_open(file, &mboxlog_seq_ops); 1858 1859 if (!res) { 1860 struct seq_file *seq = file->private_data; 1861 1862 seq->private = inode->i_private; 1863 } 1864 return res; 1865 } 1866 1867 static const struct file_operations mboxlog_fops = { 1868 .owner = THIS_MODULE, 1869 .open = mboxlog_open, 1870 .read = seq_read, 1871 .llseek = seq_lseek, 1872 .release = seq_release, 1873 }; 1874 1875 /* 1876 * Show SGE Queue Set information. We display QPL Queues Sets per line. 1877 */ 1878 #define QPL 4 1879 1880 static int sge_qinfo_show(struct seq_file *seq, void *v) 1881 { 1882 struct adapter *adapter = seq->private; 1883 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 1884 int qs, r = (uintptr_t)v - 1; 1885 1886 if (r) 1887 seq_putc(seq, '\n'); 1888 1889 #define S3(fmt_spec, s, v) \ 1890 do {\ 1891 seq_printf(seq, "%-12s", s); \ 1892 for (qs = 0; qs < n; ++qs) \ 1893 seq_printf(seq, " %16" fmt_spec, v); \ 1894 seq_putc(seq, '\n'); \ 1895 } while (0) 1896 #define S(s, v) S3("s", s, v) 1897 #define T(s, v) S3("u", s, txq[qs].v) 1898 #define R(s, v) S3("u", s, rxq[qs].v) 1899 1900 if (r < eth_entries) { 1901 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 1902 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 1903 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 1904 1905 S("QType:", "Ethernet"); 1906 S("Interface:", 1907 (rxq[qs].rspq.netdev 1908 ? rxq[qs].rspq.netdev->name 1909 : "N/A")); 1910 S3("d", "Port:", 1911 (rxq[qs].rspq.netdev 1912 ? ((struct port_info *) 1913 netdev_priv(rxq[qs].rspq.netdev))->port_id 1914 : -1)); 1915 T("TxQ ID:", q.abs_id); 1916 T("TxQ size:", q.size); 1917 T("TxQ inuse:", q.in_use); 1918 T("TxQ PIdx:", q.pidx); 1919 T("TxQ CIdx:", q.cidx); 1920 R("RspQ ID:", rspq.abs_id); 1921 R("RspQ size:", rspq.size); 1922 R("RspQE size:", rspq.iqe_len); 1923 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq)); 1924 S3("u", "Intr pktcnt:", 1925 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]); 1926 R("RspQ CIdx:", rspq.cidx); 1927 R("RspQ Gen:", rspq.gen); 1928 R("FL ID:", fl.abs_id); 1929 R("FL size:", fl.size - MIN_FL_RESID); 1930 R("FL avail:", fl.avail); 1931 R("FL PIdx:", fl.pidx); 1932 R("FL CIdx:", fl.cidx); 1933 return 0; 1934 } 1935 1936 r -= eth_entries; 1937 if (r == 0) { 1938 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 1939 1940 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue"); 1941 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id); 1942 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 1943 qtimer_val(adapter, evtq)); 1944 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 1945 adapter->sge.counter_val[evtq->pktcnt_idx]); 1946 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx); 1947 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen); 1948 } else if (r == 1) { 1949 const struct sge_rspq *intrq = &adapter->sge.intrq; 1950 1951 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue"); 1952 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id); 1953 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 1954 qtimer_val(adapter, intrq)); 1955 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 1956 adapter->sge.counter_val[intrq->pktcnt_idx]); 1957 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx); 1958 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen); 1959 } 1960 1961 #undef R 1962 #undef T 1963 #undef S 1964 #undef S3 1965 1966 return 0; 1967 } 1968 1969 /* 1970 * Return the number of "entries" in our "file". We group the multi-Queue 1971 * sections with QPL Queue Sets per "entry". The sections of the output are: 1972 * 1973 * Ethernet RX/TX Queue Sets 1974 * Firmware Event Queue 1975 * Forwarded Interrupt Queue (if in MSI mode) 1976 */ 1977 static int sge_queue_entries(const struct adapter *adapter) 1978 { 1979 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 1980 ((adapter->flags & USING_MSI) != 0); 1981 } 1982 1983 static void *sge_queue_start(struct seq_file *seq, loff_t *pos) 1984 { 1985 int entries = sge_queue_entries(seq->private); 1986 1987 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 1988 } 1989 1990 static void sge_queue_stop(struct seq_file *seq, void *v) 1991 { 1992 } 1993 1994 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos) 1995 { 1996 int entries = sge_queue_entries(seq->private); 1997 1998 ++*pos; 1999 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2000 } 2001 2002 static const struct seq_operations sge_qinfo_seq_ops = { 2003 .start = sge_queue_start, 2004 .next = sge_queue_next, 2005 .stop = sge_queue_stop, 2006 .show = sge_qinfo_show 2007 }; 2008 2009 static int sge_qinfo_open(struct inode *inode, struct file *file) 2010 { 2011 int res = seq_open(file, &sge_qinfo_seq_ops); 2012 2013 if (!res) { 2014 struct seq_file *seq = file->private_data; 2015 seq->private = inode->i_private; 2016 } 2017 return res; 2018 } 2019 2020 static const struct file_operations sge_qinfo_debugfs_fops = { 2021 .owner = THIS_MODULE, 2022 .open = sge_qinfo_open, 2023 .read = seq_read, 2024 .llseek = seq_lseek, 2025 .release = seq_release, 2026 }; 2027 2028 /* 2029 * Show SGE Queue Set statistics. We display QPL Queues Sets per line. 2030 */ 2031 #define QPL 4 2032 2033 static int sge_qstats_show(struct seq_file *seq, void *v) 2034 { 2035 struct adapter *adapter = seq->private; 2036 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2037 int qs, r = (uintptr_t)v - 1; 2038 2039 if (r) 2040 seq_putc(seq, '\n'); 2041 2042 #define S3(fmt, s, v) \ 2043 do { \ 2044 seq_printf(seq, "%-16s", s); \ 2045 for (qs = 0; qs < n; ++qs) \ 2046 seq_printf(seq, " %8" fmt, v); \ 2047 seq_putc(seq, '\n'); \ 2048 } while (0) 2049 #define S(s, v) S3("s", s, v) 2050 2051 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v) 2052 #define T(s, v) T3("lu", s, v) 2053 2054 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v) 2055 #define R(s, v) R3("lu", s, v) 2056 2057 if (r < eth_entries) { 2058 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2059 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2060 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2061 2062 S("QType:", "Ethernet"); 2063 S("Interface:", 2064 (rxq[qs].rspq.netdev 2065 ? rxq[qs].rspq.netdev->name 2066 : "N/A")); 2067 R3("u", "RspQNullInts:", rspq.unhandled_irqs); 2068 R("RxPackets:", stats.pkts); 2069 R("RxCSO:", stats.rx_cso); 2070 R("VLANxtract:", stats.vlan_ex); 2071 R("LROmerged:", stats.lro_merged); 2072 R("LROpackets:", stats.lro_pkts); 2073 R("RxDrops:", stats.rx_drops); 2074 T("TSO:", tso); 2075 T("TxCSO:", tx_cso); 2076 T("VLANins:", vlan_ins); 2077 T("TxQFull:", q.stops); 2078 T("TxQRestarts:", q.restarts); 2079 T("TxMapErr:", mapping_err); 2080 R("FLAllocErr:", fl.alloc_failed); 2081 R("FLLrgAlcErr:", fl.large_alloc_failed); 2082 R("FLStarving:", fl.starving); 2083 return 0; 2084 } 2085 2086 r -= eth_entries; 2087 if (r == 0) { 2088 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2089 2090 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue"); 2091 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2092 evtq->unhandled_irqs); 2093 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx); 2094 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen); 2095 } else if (r == 1) { 2096 const struct sge_rspq *intrq = &adapter->sge.intrq; 2097 2098 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue"); 2099 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2100 intrq->unhandled_irqs); 2101 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx); 2102 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen); 2103 } 2104 2105 #undef R 2106 #undef T 2107 #undef S 2108 #undef R3 2109 #undef T3 2110 #undef S3 2111 2112 return 0; 2113 } 2114 2115 /* 2116 * Return the number of "entries" in our "file". We group the multi-Queue 2117 * sections with QPL Queue Sets per "entry". The sections of the output are: 2118 * 2119 * Ethernet RX/TX Queue Sets 2120 * Firmware Event Queue 2121 * Forwarded Interrupt Queue (if in MSI mode) 2122 */ 2123 static int sge_qstats_entries(const struct adapter *adapter) 2124 { 2125 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2126 ((adapter->flags & USING_MSI) != 0); 2127 } 2128 2129 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos) 2130 { 2131 int entries = sge_qstats_entries(seq->private); 2132 2133 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2134 } 2135 2136 static void sge_qstats_stop(struct seq_file *seq, void *v) 2137 { 2138 } 2139 2140 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos) 2141 { 2142 int entries = sge_qstats_entries(seq->private); 2143 2144 (*pos)++; 2145 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2146 } 2147 2148 static const struct seq_operations sge_qstats_seq_ops = { 2149 .start = sge_qstats_start, 2150 .next = sge_qstats_next, 2151 .stop = sge_qstats_stop, 2152 .show = sge_qstats_show 2153 }; 2154 2155 static int sge_qstats_open(struct inode *inode, struct file *file) 2156 { 2157 int res = seq_open(file, &sge_qstats_seq_ops); 2158 2159 if (res == 0) { 2160 struct seq_file *seq = file->private_data; 2161 seq->private = inode->i_private; 2162 } 2163 return res; 2164 } 2165 2166 static const struct file_operations sge_qstats_proc_fops = { 2167 .owner = THIS_MODULE, 2168 .open = sge_qstats_open, 2169 .read = seq_read, 2170 .llseek = seq_lseek, 2171 .release = seq_release, 2172 }; 2173 2174 /* 2175 * Show PCI-E SR-IOV Virtual Function Resource Limits. 2176 */ 2177 static int resources_show(struct seq_file *seq, void *v) 2178 { 2179 struct adapter *adapter = seq->private; 2180 struct vf_resources *vfres = &adapter->params.vfres; 2181 2182 #define S(desc, fmt, var) \ 2183 seq_printf(seq, "%-60s " fmt "\n", \ 2184 desc " (" #var "):", vfres->var) 2185 2186 S("Virtual Interfaces", "%d", nvi); 2187 S("Egress Queues", "%d", neq); 2188 S("Ethernet Control", "%d", nethctrl); 2189 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint); 2190 S("Ingress Queues", "%d", niq); 2191 S("Traffic Class", "%d", tc); 2192 S("Port Access Rights Mask", "%#x", pmask); 2193 S("MAC Address Filters", "%d", nexactf); 2194 S("Firmware Command Read Capabilities", "%#x", r_caps); 2195 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps); 2196 2197 #undef S 2198 2199 return 0; 2200 } 2201 2202 static int resources_open(struct inode *inode, struct file *file) 2203 { 2204 return single_open(file, resources_show, inode->i_private); 2205 } 2206 2207 static const struct file_operations resources_proc_fops = { 2208 .owner = THIS_MODULE, 2209 .open = resources_open, 2210 .read = seq_read, 2211 .llseek = seq_lseek, 2212 .release = single_release, 2213 }; 2214 2215 /* 2216 * Show Virtual Interfaces. 2217 */ 2218 static int interfaces_show(struct seq_file *seq, void *v) 2219 { 2220 if (v == SEQ_START_TOKEN) { 2221 seq_puts(seq, "Interface Port VIID\n"); 2222 } else { 2223 struct adapter *adapter = seq->private; 2224 int pidx = (uintptr_t)v - 2; 2225 struct net_device *dev = adapter->port[pidx]; 2226 struct port_info *pi = netdev_priv(dev); 2227 2228 seq_printf(seq, "%9s %4d %#5x\n", 2229 dev->name, pi->port_id, pi->viid); 2230 } 2231 return 0; 2232 } 2233 2234 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos) 2235 { 2236 return pos <= adapter->params.nports 2237 ? (void *)(uintptr_t)(pos + 1) 2238 : NULL; 2239 } 2240 2241 static void *interfaces_start(struct seq_file *seq, loff_t *pos) 2242 { 2243 return *pos 2244 ? interfaces_get_idx(seq->private, *pos) 2245 : SEQ_START_TOKEN; 2246 } 2247 2248 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos) 2249 { 2250 (*pos)++; 2251 return interfaces_get_idx(seq->private, *pos); 2252 } 2253 2254 static void interfaces_stop(struct seq_file *seq, void *v) 2255 { 2256 } 2257 2258 static const struct seq_operations interfaces_seq_ops = { 2259 .start = interfaces_start, 2260 .next = interfaces_next, 2261 .stop = interfaces_stop, 2262 .show = interfaces_show 2263 }; 2264 2265 static int interfaces_open(struct inode *inode, struct file *file) 2266 { 2267 int res = seq_open(file, &interfaces_seq_ops); 2268 2269 if (res == 0) { 2270 struct seq_file *seq = file->private_data; 2271 seq->private = inode->i_private; 2272 } 2273 return res; 2274 } 2275 2276 static const struct file_operations interfaces_proc_fops = { 2277 .owner = THIS_MODULE, 2278 .open = interfaces_open, 2279 .read = seq_read, 2280 .llseek = seq_lseek, 2281 .release = seq_release, 2282 }; 2283 2284 /* 2285 * /sys/kernel/debugfs/cxgb4vf/ files list. 2286 */ 2287 struct cxgb4vf_debugfs_entry { 2288 const char *name; /* name of debugfs node */ 2289 umode_t mode; /* file system mode */ 2290 const struct file_operations *fops; 2291 }; 2292 2293 static struct cxgb4vf_debugfs_entry debugfs_files[] = { 2294 { "mboxlog", S_IRUGO, &mboxlog_fops }, 2295 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops }, 2296 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops }, 2297 { "resources", S_IRUGO, &resources_proc_fops }, 2298 { "interfaces", S_IRUGO, &interfaces_proc_fops }, 2299 }; 2300 2301 /* 2302 * Module and device initialization and cleanup code. 2303 * ================================================== 2304 */ 2305 2306 /* 2307 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the 2308 * directory (debugfs_root) has already been set up. 2309 */ 2310 static int setup_debugfs(struct adapter *adapter) 2311 { 2312 int i; 2313 2314 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2315 2316 /* 2317 * Debugfs support is best effort. 2318 */ 2319 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) 2320 (void)debugfs_create_file(debugfs_files[i].name, 2321 debugfs_files[i].mode, 2322 adapter->debugfs_root, 2323 (void *)adapter, 2324 debugfs_files[i].fops); 2325 2326 return 0; 2327 } 2328 2329 /* 2330 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave 2331 * it to our caller to tear down the directory (debugfs_root). 2332 */ 2333 static void cleanup_debugfs(struct adapter *adapter) 2334 { 2335 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2336 2337 /* 2338 * Unlike our sister routine cleanup_proc(), we don't need to remove 2339 * individual entries because a call will be made to 2340 * debugfs_remove_recursive(). We just need to clean up any ancillary 2341 * persistent state. 2342 */ 2343 /* nothing to do */ 2344 } 2345 2346 /* Figure out how many Ports and Queue Sets we can support. This depends on 2347 * knowing our Virtual Function Resources and may be called a second time if 2348 * we fall back from MSI-X to MSI Interrupt Mode. 2349 */ 2350 static void size_nports_qsets(struct adapter *adapter) 2351 { 2352 struct vf_resources *vfres = &adapter->params.vfres; 2353 unsigned int ethqsets, pmask_nports; 2354 2355 /* The number of "ports" which we support is equal to the number of 2356 * Virtual Interfaces with which we've been provisioned. 2357 */ 2358 adapter->params.nports = vfres->nvi; 2359 if (adapter->params.nports > MAX_NPORTS) { 2360 dev_warn(adapter->pdev_dev, "only using %d of %d maximum" 2361 " allowed virtual interfaces\n", MAX_NPORTS, 2362 adapter->params.nports); 2363 adapter->params.nports = MAX_NPORTS; 2364 } 2365 2366 /* We may have been provisioned with more VIs than the number of 2367 * ports we're allowed to access (our Port Access Rights Mask). 2368 * This is obviously a configuration conflict but we don't want to 2369 * crash the kernel or anything silly just because of that. 2370 */ 2371 pmask_nports = hweight32(adapter->params.vfres.pmask); 2372 if (pmask_nports < adapter->params.nports) { 2373 dev_warn(adapter->pdev_dev, "only using %d of %d provisioned" 2374 " virtual interfaces; limited by Port Access Rights" 2375 " mask %#x\n", pmask_nports, adapter->params.nports, 2376 adapter->params.vfres.pmask); 2377 adapter->params.nports = pmask_nports; 2378 } 2379 2380 /* We need to reserve an Ingress Queue for the Asynchronous Firmware 2381 * Event Queue. And if we're using MSI Interrupts, we'll also need to 2382 * reserve an Ingress Queue for a Forwarded Interrupts. 2383 * 2384 * The rest of the FL/Intr-capable ingress queues will be matched up 2385 * one-for-one with Ethernet/Control egress queues in order to form 2386 * "Queue Sets" which will be aportioned between the "ports". For 2387 * each Queue Set, we'll need the ability to allocate two Egress 2388 * Contexts -- one for the Ingress Queue Free List and one for the TX 2389 * Ethernet Queue. 2390 * 2391 * Note that even if we're currently configured to use MSI-X 2392 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded 2393 * to MSI Interrupts if we can't get enough MSI-X Interrupts. If that 2394 * happens we'll need to adjust things later. 2395 */ 2396 ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI); 2397 if (vfres->nethctrl != ethqsets) 2398 ethqsets = min(vfres->nethctrl, ethqsets); 2399 if (vfres->neq < ethqsets*2) 2400 ethqsets = vfres->neq/2; 2401 if (ethqsets > MAX_ETH_QSETS) 2402 ethqsets = MAX_ETH_QSETS; 2403 adapter->sge.max_ethqsets = ethqsets; 2404 2405 if (adapter->sge.max_ethqsets < adapter->params.nports) { 2406 dev_warn(adapter->pdev_dev, "only using %d of %d available" 2407 " virtual interfaces (too few Queue Sets)\n", 2408 adapter->sge.max_ethqsets, adapter->params.nports); 2409 adapter->params.nports = adapter->sge.max_ethqsets; 2410 } 2411 } 2412 2413 /* 2414 * Perform early "adapter" initialization. This is where we discover what 2415 * adapter parameters we're going to be using and initialize basic adapter 2416 * hardware support. 2417 */ 2418 static int adap_init0(struct adapter *adapter) 2419 { 2420 struct sge_params *sge_params = &adapter->params.sge; 2421 struct sge *s = &adapter->sge; 2422 int err; 2423 u32 param, val = 0; 2424 2425 /* 2426 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux 2427 * 2.6.31 and later we can't call pci_reset_function() in order to 2428 * issue an FLR because of a self- deadlock on the device semaphore. 2429 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the 2430 * cases where they're needed -- for instance, some versions of KVM 2431 * fail to reset "Assigned Devices" when the VM reboots. Therefore we 2432 * use the firmware based reset in order to reset any per function 2433 * state. 2434 */ 2435 err = t4vf_fw_reset(adapter); 2436 if (err < 0) { 2437 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err); 2438 return err; 2439 } 2440 2441 /* 2442 * Grab basic operational parameters. These will predominantly have 2443 * been set up by the Physical Function Driver or will be hard coded 2444 * into the adapter. We just have to live with them ... Note that 2445 * we _must_ get our VPD parameters before our SGE parameters because 2446 * we need to know the adapter's core clock from the VPD in order to 2447 * properly decode the SGE Timer Values. 2448 */ 2449 err = t4vf_get_dev_params(adapter); 2450 if (err) { 2451 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2452 " device parameters: err=%d\n", err); 2453 return err; 2454 } 2455 err = t4vf_get_vpd_params(adapter); 2456 if (err) { 2457 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2458 " VPD parameters: err=%d\n", err); 2459 return err; 2460 } 2461 err = t4vf_get_sge_params(adapter); 2462 if (err) { 2463 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2464 " SGE parameters: err=%d\n", err); 2465 return err; 2466 } 2467 err = t4vf_get_rss_glb_config(adapter); 2468 if (err) { 2469 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2470 " RSS parameters: err=%d\n", err); 2471 return err; 2472 } 2473 if (adapter->params.rss.mode != 2474 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 2475 dev_err(adapter->pdev_dev, "unable to operate with global RSS" 2476 " mode %d\n", adapter->params.rss.mode); 2477 return -EINVAL; 2478 } 2479 err = t4vf_sge_init(adapter); 2480 if (err) { 2481 dev_err(adapter->pdev_dev, "unable to use adapter parameters:" 2482 " err=%d\n", err); 2483 return err; 2484 } 2485 2486 /* If we're running on newer firmware, let it know that we're 2487 * prepared to deal with encapsulated CPL messages. Older 2488 * firmware won't understand this and we'll just get 2489 * unencapsulated messages ... 2490 */ 2491 param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2492 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP); 2493 val = 1; 2494 (void) t4vf_set_params(adapter, 1, ¶m, &val); 2495 2496 /* 2497 * Retrieve our RX interrupt holdoff timer values and counter 2498 * threshold values from the SGE parameters. 2499 */ 2500 s->timer_val[0] = core_ticks_to_us(adapter, 2501 TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1)); 2502 s->timer_val[1] = core_ticks_to_us(adapter, 2503 TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1)); 2504 s->timer_val[2] = core_ticks_to_us(adapter, 2505 TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3)); 2506 s->timer_val[3] = core_ticks_to_us(adapter, 2507 TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3)); 2508 s->timer_val[4] = core_ticks_to_us(adapter, 2509 TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5)); 2510 s->timer_val[5] = core_ticks_to_us(adapter, 2511 TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5)); 2512 2513 s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold); 2514 s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold); 2515 s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold); 2516 s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold); 2517 2518 /* 2519 * Grab our Virtual Interface resource allocation, extract the 2520 * features that we're interested in and do a bit of sanity testing on 2521 * what we discover. 2522 */ 2523 err = t4vf_get_vfres(adapter); 2524 if (err) { 2525 dev_err(adapter->pdev_dev, "unable to get virtual interface" 2526 " resources: err=%d\n", err); 2527 return err; 2528 } 2529 2530 /* Check for various parameter sanity issues */ 2531 if (adapter->params.vfres.pmask == 0) { 2532 dev_err(adapter->pdev_dev, "no port access configured\n" 2533 "usable!\n"); 2534 return -EINVAL; 2535 } 2536 if (adapter->params.vfres.nvi == 0) { 2537 dev_err(adapter->pdev_dev, "no virtual interfaces configured/" 2538 "usable!\n"); 2539 return -EINVAL; 2540 } 2541 2542 /* Initialize nports and max_ethqsets now that we have our Virtual 2543 * Function Resources. 2544 */ 2545 size_nports_qsets(adapter); 2546 2547 return 0; 2548 } 2549 2550 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx, 2551 u8 pkt_cnt_idx, unsigned int size, 2552 unsigned int iqe_size) 2553 { 2554 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 2555 (pkt_cnt_idx < SGE_NCOUNTERS ? 2556 QINTR_CNT_EN_F : 0)); 2557 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS 2558 ? pkt_cnt_idx 2559 : 0); 2560 rspq->iqe_len = iqe_size; 2561 rspq->size = size; 2562 } 2563 2564 /* 2565 * Perform default configuration of DMA queues depending on the number and 2566 * type of ports we found and the number of available CPUs. Most settings can 2567 * be modified by the admin via ethtool and cxgbtool prior to the adapter 2568 * being brought up for the first time. 2569 */ 2570 static void cfg_queues(struct adapter *adapter) 2571 { 2572 struct sge *s = &adapter->sge; 2573 int q10g, n10g, qidx, pidx, qs; 2574 size_t iqe_size; 2575 2576 /* 2577 * We should not be called till we know how many Queue Sets we can 2578 * support. In particular, this means that we need to know what kind 2579 * of interrupts we'll be using ... 2580 */ 2581 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 2582 2583 /* 2584 * Count the number of 10GbE Virtual Interfaces that we have. 2585 */ 2586 n10g = 0; 2587 for_each_port(adapter, pidx) 2588 n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg); 2589 2590 /* 2591 * We default to 1 queue per non-10G port and up to # of cores queues 2592 * per 10G port. 2593 */ 2594 if (n10g == 0) 2595 q10g = 0; 2596 else { 2597 int n1g = (adapter->params.nports - n10g); 2598 q10g = (adapter->sge.max_ethqsets - n1g) / n10g; 2599 if (q10g > num_online_cpus()) 2600 q10g = num_online_cpus(); 2601 } 2602 2603 /* 2604 * Allocate the "Queue Sets" to the various Virtual Interfaces. 2605 * The layout will be established in setup_sge_queues() when the 2606 * adapter is brough up for the first time. 2607 */ 2608 qidx = 0; 2609 for_each_port(adapter, pidx) { 2610 struct port_info *pi = adap2pinfo(adapter, pidx); 2611 2612 pi->first_qset = qidx; 2613 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 2614 qidx += pi->nqsets; 2615 } 2616 s->ethqsets = qidx; 2617 2618 /* 2619 * The Ingress Queue Entry Size for our various Response Queues needs 2620 * to be big enough to accommodate the largest message we can receive 2621 * from the chip/firmware; which is 64 bytes ... 2622 */ 2623 iqe_size = 64; 2624 2625 /* 2626 * Set up default Queue Set parameters ... Start off with the 2627 * shortest interrupt holdoff timer. 2628 */ 2629 for (qs = 0; qs < s->max_ethqsets; qs++) { 2630 struct sge_eth_rxq *rxq = &s->ethrxq[qs]; 2631 struct sge_eth_txq *txq = &s->ethtxq[qs]; 2632 2633 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size); 2634 rxq->fl.size = 72; 2635 txq->q.size = 1024; 2636 } 2637 2638 /* 2639 * The firmware event queue is used for link state changes and 2640 * notifications of TX DMA completions. 2641 */ 2642 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size); 2643 2644 /* 2645 * The forwarded interrupt queue is used when we're in MSI interrupt 2646 * mode. In this mode all interrupts associated with RX queues will 2647 * be forwarded to a single queue which we'll associate with our MSI 2648 * interrupt vector. The messages dropped in the forwarded interrupt 2649 * queue will indicate which ingress queue needs servicing ... This 2650 * queue needs to be large enough to accommodate all of the ingress 2651 * queues which are forwarding their interrupt (+1 to prevent the PIDX 2652 * from equalling the CIDX if every ingress queue has an outstanding 2653 * interrupt). The queue doesn't need to be any larger because no 2654 * ingress queue will ever have more than one outstanding interrupt at 2655 * any time ... 2656 */ 2657 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1, 2658 iqe_size); 2659 } 2660 2661 /* 2662 * Reduce the number of Ethernet queues across all ports to at most n. 2663 * n provides at least one queue per port. 2664 */ 2665 static void reduce_ethqs(struct adapter *adapter, int n) 2666 { 2667 int i; 2668 struct port_info *pi; 2669 2670 /* 2671 * While we have too many active Ether Queue Sets, interate across the 2672 * "ports" and reduce their individual Queue Set allocations. 2673 */ 2674 BUG_ON(n < adapter->params.nports); 2675 while (n < adapter->sge.ethqsets) 2676 for_each_port(adapter, i) { 2677 pi = adap2pinfo(adapter, i); 2678 if (pi->nqsets > 1) { 2679 pi->nqsets--; 2680 adapter->sge.ethqsets--; 2681 if (adapter->sge.ethqsets <= n) 2682 break; 2683 } 2684 } 2685 2686 /* 2687 * Reassign the starting Queue Sets for each of the "ports" ... 2688 */ 2689 n = 0; 2690 for_each_port(adapter, i) { 2691 pi = adap2pinfo(adapter, i); 2692 pi->first_qset = n; 2693 n += pi->nqsets; 2694 } 2695 } 2696 2697 /* 2698 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally 2699 * we get a separate MSI-X vector for every "Queue Set" plus any extras we 2700 * need. Minimally we need one for every Virtual Interface plus those needed 2701 * for our "extras". Note that this process may lower the maximum number of 2702 * allowed Queue Sets ... 2703 */ 2704 static int enable_msix(struct adapter *adapter) 2705 { 2706 int i, want, need, nqsets; 2707 struct msix_entry entries[MSIX_ENTRIES]; 2708 struct sge *s = &adapter->sge; 2709 2710 for (i = 0; i < MSIX_ENTRIES; ++i) 2711 entries[i].entry = i; 2712 2713 /* 2714 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets" 2715 * plus those needed for our "extras" (for example, the firmware 2716 * message queue). We _need_ at least one "Queue Set" per Virtual 2717 * Interface plus those needed for our "extras". So now we get to see 2718 * if the song is right ... 2719 */ 2720 want = s->max_ethqsets + MSIX_EXTRAS; 2721 need = adapter->params.nports + MSIX_EXTRAS; 2722 2723 want = pci_enable_msix_range(adapter->pdev, entries, need, want); 2724 if (want < 0) 2725 return want; 2726 2727 nqsets = want - MSIX_EXTRAS; 2728 if (nqsets < s->max_ethqsets) { 2729 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors" 2730 " for %d Queue Sets\n", nqsets); 2731 s->max_ethqsets = nqsets; 2732 if (nqsets < s->ethqsets) 2733 reduce_ethqs(adapter, nqsets); 2734 } 2735 for (i = 0; i < want; ++i) 2736 adapter->msix_info[i].vec = entries[i].vector; 2737 2738 return 0; 2739 } 2740 2741 static const struct net_device_ops cxgb4vf_netdev_ops = { 2742 .ndo_open = cxgb4vf_open, 2743 .ndo_stop = cxgb4vf_stop, 2744 .ndo_start_xmit = t4vf_eth_xmit, 2745 .ndo_get_stats = cxgb4vf_get_stats, 2746 .ndo_set_rx_mode = cxgb4vf_set_rxmode, 2747 .ndo_set_mac_address = cxgb4vf_set_mac_addr, 2748 .ndo_validate_addr = eth_validate_addr, 2749 .ndo_do_ioctl = cxgb4vf_do_ioctl, 2750 .ndo_change_mtu = cxgb4vf_change_mtu, 2751 .ndo_fix_features = cxgb4vf_fix_features, 2752 .ndo_set_features = cxgb4vf_set_features, 2753 #ifdef CONFIG_NET_POLL_CONTROLLER 2754 .ndo_poll_controller = cxgb4vf_poll_controller, 2755 #endif 2756 }; 2757 2758 /* 2759 * "Probe" a device: initialize a device and construct all kernel and driver 2760 * state needed to manage the device. This routine is called "init_one" in 2761 * the PF Driver ... 2762 */ 2763 static int cxgb4vf_pci_probe(struct pci_dev *pdev, 2764 const struct pci_device_id *ent) 2765 { 2766 int pci_using_dac; 2767 int err, pidx; 2768 unsigned int pmask; 2769 struct adapter *adapter; 2770 struct port_info *pi; 2771 struct net_device *netdev; 2772 unsigned int pf; 2773 2774 /* 2775 * Print our driver banner the first time we're called to initialize a 2776 * device. 2777 */ 2778 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION); 2779 2780 /* 2781 * Initialize generic PCI device state. 2782 */ 2783 err = pci_enable_device(pdev); 2784 if (err) { 2785 dev_err(&pdev->dev, "cannot enable PCI device\n"); 2786 return err; 2787 } 2788 2789 /* 2790 * Reserve PCI resources for the device. If we can't get them some 2791 * other driver may have already claimed the device ... 2792 */ 2793 err = pci_request_regions(pdev, KBUILD_MODNAME); 2794 if (err) { 2795 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 2796 goto err_disable_device; 2797 } 2798 2799 /* 2800 * Set up our DMA mask: try for 64-bit address masking first and 2801 * fall back to 32-bit if we can't get 64 bits ... 2802 */ 2803 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 2804 if (err == 0) { 2805 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 2806 if (err) { 2807 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for" 2808 " coherent allocations\n"); 2809 goto err_release_regions; 2810 } 2811 pci_using_dac = 1; 2812 } else { 2813 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2814 if (err != 0) { 2815 dev_err(&pdev->dev, "no usable DMA configuration\n"); 2816 goto err_release_regions; 2817 } 2818 pci_using_dac = 0; 2819 } 2820 2821 /* 2822 * Enable bus mastering for the device ... 2823 */ 2824 pci_set_master(pdev); 2825 2826 /* 2827 * Allocate our adapter data structure and attach it to the device. 2828 */ 2829 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 2830 if (!adapter) { 2831 err = -ENOMEM; 2832 goto err_release_regions; 2833 } 2834 pci_set_drvdata(pdev, adapter); 2835 adapter->pdev = pdev; 2836 adapter->pdev_dev = &pdev->dev; 2837 2838 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 2839 (sizeof(struct mbox_cmd) * 2840 T4VF_OS_LOG_MBOX_CMDS), 2841 GFP_KERNEL); 2842 if (!adapter->mbox_log) { 2843 err = -ENOMEM; 2844 goto err_free_adapter; 2845 } 2846 adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS; 2847 2848 /* 2849 * Initialize SMP data synchronization resources. 2850 */ 2851 spin_lock_init(&adapter->stats_lock); 2852 spin_lock_init(&adapter->mbox_lock); 2853 INIT_LIST_HEAD(&adapter->mlist.list); 2854 2855 /* 2856 * Map our I/O registers in BAR0. 2857 */ 2858 adapter->regs = pci_ioremap_bar(pdev, 0); 2859 if (!adapter->regs) { 2860 dev_err(&pdev->dev, "cannot map device registers\n"); 2861 err = -ENOMEM; 2862 goto err_free_adapter; 2863 } 2864 2865 /* Wait for the device to become ready before proceeding ... 2866 */ 2867 err = t4vf_prep_adapter(adapter); 2868 if (err) { 2869 dev_err(adapter->pdev_dev, "device didn't become ready:" 2870 " err=%d\n", err); 2871 goto err_unmap_bar0; 2872 } 2873 2874 /* For T5 and later we want to use the new BAR-based User Doorbells, 2875 * so we need to map BAR2 here ... 2876 */ 2877 if (!is_t4(adapter->params.chip)) { 2878 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 2879 pci_resource_len(pdev, 2)); 2880 if (!adapter->bar2) { 2881 dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n"); 2882 err = -ENOMEM; 2883 goto err_unmap_bar0; 2884 } 2885 } 2886 /* 2887 * Initialize adapter level features. 2888 */ 2889 adapter->name = pci_name(pdev); 2890 adapter->msg_enable = DFLT_MSG_ENABLE; 2891 err = adap_init0(adapter); 2892 if (err) 2893 goto err_unmap_bar; 2894 2895 /* 2896 * Allocate our "adapter ports" and stitch everything together. 2897 */ 2898 pmask = adapter->params.vfres.pmask; 2899 pf = t4vf_get_pf_from_vf(adapter); 2900 for_each_port(adapter, pidx) { 2901 int port_id, viid; 2902 u8 mac[ETH_ALEN]; 2903 unsigned int naddr = 1; 2904 2905 /* 2906 * We simplistically allocate our virtual interfaces 2907 * sequentially across the port numbers to which we have 2908 * access rights. This should be configurable in some manner 2909 * ... 2910 */ 2911 if (pmask == 0) 2912 break; 2913 port_id = ffs(pmask) - 1; 2914 pmask &= ~(1 << port_id); 2915 viid = t4vf_alloc_vi(adapter, port_id); 2916 if (viid < 0) { 2917 dev_err(&pdev->dev, "cannot allocate VI for port %d:" 2918 " err=%d\n", port_id, viid); 2919 err = viid; 2920 goto err_free_dev; 2921 } 2922 2923 /* 2924 * Allocate our network device and stitch things together. 2925 */ 2926 netdev = alloc_etherdev_mq(sizeof(struct port_info), 2927 MAX_PORT_QSETS); 2928 if (netdev == NULL) { 2929 t4vf_free_vi(adapter, viid); 2930 err = -ENOMEM; 2931 goto err_free_dev; 2932 } 2933 adapter->port[pidx] = netdev; 2934 SET_NETDEV_DEV(netdev, &pdev->dev); 2935 pi = netdev_priv(netdev); 2936 pi->adapter = adapter; 2937 pi->pidx = pidx; 2938 pi->port_id = port_id; 2939 pi->viid = viid; 2940 2941 /* 2942 * Initialize the starting state of our "port" and register 2943 * it. 2944 */ 2945 pi->xact_addr_filt = -1; 2946 netif_carrier_off(netdev); 2947 netdev->irq = pdev->irq; 2948 2949 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 2950 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2951 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM; 2952 netdev->vlan_features = NETIF_F_SG | TSO_FLAGS | 2953 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2954 NETIF_F_HIGHDMA; 2955 netdev->features = netdev->hw_features | 2956 NETIF_F_HW_VLAN_CTAG_TX; 2957 if (pci_using_dac) 2958 netdev->features |= NETIF_F_HIGHDMA; 2959 2960 netdev->priv_flags |= IFF_UNICAST_FLT; 2961 netdev->min_mtu = 81; 2962 netdev->max_mtu = ETH_MAX_MTU; 2963 2964 netdev->netdev_ops = &cxgb4vf_netdev_ops; 2965 netdev->ethtool_ops = &cxgb4vf_ethtool_ops; 2966 netdev->dev_port = pi->port_id; 2967 2968 /* 2969 * Initialize the hardware/software state for the port. 2970 */ 2971 err = t4vf_port_init(adapter, pidx); 2972 if (err) { 2973 dev_err(&pdev->dev, "cannot initialize port %d\n", 2974 pidx); 2975 goto err_free_dev; 2976 } 2977 2978 err = t4vf_get_vf_mac_acl(adapter, pf, &naddr, mac); 2979 if (err) { 2980 dev_err(&pdev->dev, 2981 "unable to determine MAC ACL address, " 2982 "continuing anyway.. (status %d)\n", err); 2983 } else if (naddr && adapter->params.vfres.nvi == 1) { 2984 struct sockaddr addr; 2985 2986 ether_addr_copy(addr.sa_data, mac); 2987 err = cxgb4vf_set_mac_addr(netdev, &addr); 2988 if (err) { 2989 dev_err(&pdev->dev, 2990 "unable to set MAC address %pM\n", 2991 mac); 2992 goto err_free_dev; 2993 } 2994 dev_info(&pdev->dev, 2995 "Using assigned MAC ACL: %pM\n", mac); 2996 } 2997 } 2998 2999 /* See what interrupts we'll be using. If we've been configured to 3000 * use MSI-X interrupts, try to enable them but fall back to using 3001 * MSI interrupts if we can't enable MSI-X interrupts. If we can't 3002 * get MSI interrupts we bail with the error. 3003 */ 3004 if (msi == MSI_MSIX && enable_msix(adapter) == 0) 3005 adapter->flags |= USING_MSIX; 3006 else { 3007 if (msi == MSI_MSIX) { 3008 dev_info(adapter->pdev_dev, 3009 "Unable to use MSI-X Interrupts; falling " 3010 "back to MSI Interrupts\n"); 3011 3012 /* We're going to need a Forwarded Interrupt Queue so 3013 * that may cut into how many Queue Sets we can 3014 * support. 3015 */ 3016 msi = MSI_MSI; 3017 size_nports_qsets(adapter); 3018 } 3019 err = pci_enable_msi(pdev); 3020 if (err) { 3021 dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;" 3022 " err=%d\n", err); 3023 goto err_free_dev; 3024 } 3025 adapter->flags |= USING_MSI; 3026 } 3027 3028 /* Now that we know how many "ports" we have and what interrupt 3029 * mechanism we're going to use, we can configure our queue resources. 3030 */ 3031 cfg_queues(adapter); 3032 3033 /* 3034 * The "card" is now ready to go. If any errors occur during device 3035 * registration we do not fail the whole "card" but rather proceed 3036 * only with the ports we manage to register successfully. However we 3037 * must register at least one net device. 3038 */ 3039 for_each_port(adapter, pidx) { 3040 struct port_info *pi = netdev_priv(adapter->port[pidx]); 3041 netdev = adapter->port[pidx]; 3042 if (netdev == NULL) 3043 continue; 3044 3045 netif_set_real_num_tx_queues(netdev, pi->nqsets); 3046 netif_set_real_num_rx_queues(netdev, pi->nqsets); 3047 3048 err = register_netdev(netdev); 3049 if (err) { 3050 dev_warn(&pdev->dev, "cannot register net device %s," 3051 " skipping\n", netdev->name); 3052 continue; 3053 } 3054 3055 set_bit(pidx, &adapter->registered_device_map); 3056 } 3057 if (adapter->registered_device_map == 0) { 3058 dev_err(&pdev->dev, "could not register any net devices\n"); 3059 goto err_disable_interrupts; 3060 } 3061 3062 /* 3063 * Set up our debugfs entries. 3064 */ 3065 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) { 3066 adapter->debugfs_root = 3067 debugfs_create_dir(pci_name(pdev), 3068 cxgb4vf_debugfs_root); 3069 if (IS_ERR_OR_NULL(adapter->debugfs_root)) 3070 dev_warn(&pdev->dev, "could not create debugfs" 3071 " directory"); 3072 else 3073 setup_debugfs(adapter); 3074 } 3075 3076 /* 3077 * Print a short notice on the existence and configuration of the new 3078 * VF network device ... 3079 */ 3080 for_each_port(adapter, pidx) { 3081 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n", 3082 adapter->port[pidx]->name, 3083 (adapter->flags & USING_MSIX) ? "MSI-X" : 3084 (adapter->flags & USING_MSI) ? "MSI" : ""); 3085 } 3086 3087 /* 3088 * Return success! 3089 */ 3090 return 0; 3091 3092 /* 3093 * Error recovery and exit code. Unwind state that's been created 3094 * so far and return the error. 3095 */ 3096 err_disable_interrupts: 3097 if (adapter->flags & USING_MSIX) { 3098 pci_disable_msix(adapter->pdev); 3099 adapter->flags &= ~USING_MSIX; 3100 } else if (adapter->flags & USING_MSI) { 3101 pci_disable_msi(adapter->pdev); 3102 adapter->flags &= ~USING_MSI; 3103 } 3104 3105 err_free_dev: 3106 for_each_port(adapter, pidx) { 3107 netdev = adapter->port[pidx]; 3108 if (netdev == NULL) 3109 continue; 3110 pi = netdev_priv(netdev); 3111 t4vf_free_vi(adapter, pi->viid); 3112 if (test_bit(pidx, &adapter->registered_device_map)) 3113 unregister_netdev(netdev); 3114 free_netdev(netdev); 3115 } 3116 3117 err_unmap_bar: 3118 if (!is_t4(adapter->params.chip)) 3119 iounmap(adapter->bar2); 3120 3121 err_unmap_bar0: 3122 iounmap(adapter->regs); 3123 3124 err_free_adapter: 3125 kfree(adapter->mbox_log); 3126 kfree(adapter); 3127 3128 err_release_regions: 3129 pci_release_regions(pdev); 3130 pci_clear_master(pdev); 3131 3132 err_disable_device: 3133 pci_disable_device(pdev); 3134 3135 return err; 3136 } 3137 3138 /* 3139 * "Remove" a device: tear down all kernel and driver state created in the 3140 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note 3141 * that this is called "remove_one" in the PF Driver.) 3142 */ 3143 static void cxgb4vf_pci_remove(struct pci_dev *pdev) 3144 { 3145 struct adapter *adapter = pci_get_drvdata(pdev); 3146 3147 /* 3148 * Tear down driver state associated with device. 3149 */ 3150 if (adapter) { 3151 int pidx; 3152 3153 /* 3154 * Stop all of our activity. Unregister network port, 3155 * disable interrupts, etc. 3156 */ 3157 for_each_port(adapter, pidx) 3158 if (test_bit(pidx, &adapter->registered_device_map)) 3159 unregister_netdev(adapter->port[pidx]); 3160 t4vf_sge_stop(adapter); 3161 if (adapter->flags & USING_MSIX) { 3162 pci_disable_msix(adapter->pdev); 3163 adapter->flags &= ~USING_MSIX; 3164 } else if (adapter->flags & USING_MSI) { 3165 pci_disable_msi(adapter->pdev); 3166 adapter->flags &= ~USING_MSI; 3167 } 3168 3169 /* 3170 * Tear down our debugfs entries. 3171 */ 3172 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) { 3173 cleanup_debugfs(adapter); 3174 debugfs_remove_recursive(adapter->debugfs_root); 3175 } 3176 3177 /* 3178 * Free all of the various resources which we've acquired ... 3179 */ 3180 t4vf_free_sge_resources(adapter); 3181 for_each_port(adapter, pidx) { 3182 struct net_device *netdev = adapter->port[pidx]; 3183 struct port_info *pi; 3184 3185 if (netdev == NULL) 3186 continue; 3187 3188 pi = netdev_priv(netdev); 3189 t4vf_free_vi(adapter, pi->viid); 3190 free_netdev(netdev); 3191 } 3192 iounmap(adapter->regs); 3193 if (!is_t4(adapter->params.chip)) 3194 iounmap(adapter->bar2); 3195 kfree(adapter->mbox_log); 3196 kfree(adapter); 3197 } 3198 3199 /* 3200 * Disable the device and release its PCI resources. 3201 */ 3202 pci_disable_device(pdev); 3203 pci_clear_master(pdev); 3204 pci_release_regions(pdev); 3205 } 3206 3207 /* 3208 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt 3209 * delivery. 3210 */ 3211 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev) 3212 { 3213 struct adapter *adapter; 3214 int pidx; 3215 3216 adapter = pci_get_drvdata(pdev); 3217 if (!adapter) 3218 return; 3219 3220 /* Disable all Virtual Interfaces. This will shut down the 3221 * delivery of all ingress packets into the chip for these 3222 * Virtual Interfaces. 3223 */ 3224 for_each_port(adapter, pidx) 3225 if (test_bit(pidx, &adapter->registered_device_map)) 3226 unregister_netdev(adapter->port[pidx]); 3227 3228 /* Free up all Queues which will prevent further DMA and 3229 * Interrupts allowing various internal pathways to drain. 3230 */ 3231 t4vf_sge_stop(adapter); 3232 if (adapter->flags & USING_MSIX) { 3233 pci_disable_msix(adapter->pdev); 3234 adapter->flags &= ~USING_MSIX; 3235 } else if (adapter->flags & USING_MSI) { 3236 pci_disable_msi(adapter->pdev); 3237 adapter->flags &= ~USING_MSI; 3238 } 3239 3240 /* 3241 * Free up all Queues which will prevent further DMA and 3242 * Interrupts allowing various internal pathways to drain. 3243 */ 3244 t4vf_free_sge_resources(adapter); 3245 pci_set_drvdata(pdev, NULL); 3246 } 3247 3248 /* Macros needed to support the PCI Device ID Table ... 3249 */ 3250 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 3251 static const struct pci_device_id cxgb4vf_pci_tbl[] = { 3252 #define CH_PCI_DEVICE_ID_FUNCTION 0x8 3253 3254 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 3255 { PCI_VDEVICE(CHELSIO, (devid)), 0 } 3256 3257 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } } 3258 3259 #include "../cxgb4/t4_pci_id_tbl.h" 3260 3261 MODULE_DESCRIPTION(DRV_DESC); 3262 MODULE_AUTHOR("Chelsio Communications"); 3263 MODULE_LICENSE("Dual BSD/GPL"); 3264 MODULE_VERSION(DRV_VERSION); 3265 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl); 3266 3267 static struct pci_driver cxgb4vf_driver = { 3268 .name = KBUILD_MODNAME, 3269 .id_table = cxgb4vf_pci_tbl, 3270 .probe = cxgb4vf_pci_probe, 3271 .remove = cxgb4vf_pci_remove, 3272 .shutdown = cxgb4vf_pci_shutdown, 3273 }; 3274 3275 /* 3276 * Initialize global driver state. 3277 */ 3278 static int __init cxgb4vf_module_init(void) 3279 { 3280 int ret; 3281 3282 /* 3283 * Vet our module parameters. 3284 */ 3285 if (msi != MSI_MSIX && msi != MSI_MSI) { 3286 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n", 3287 msi, MSI_MSIX, MSI_MSI); 3288 return -EINVAL; 3289 } 3290 3291 /* Debugfs support is optional, just warn if this fails */ 3292 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 3293 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) 3294 pr_warn("could not create debugfs entry, continuing\n"); 3295 3296 ret = pci_register_driver(&cxgb4vf_driver); 3297 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) 3298 debugfs_remove(cxgb4vf_debugfs_root); 3299 return ret; 3300 } 3301 3302 /* 3303 * Tear down global driver state. 3304 */ 3305 static void __exit cxgb4vf_module_exit(void) 3306 { 3307 pci_unregister_driver(&cxgb4vf_driver); 3308 debugfs_remove(cxgb4vf_debugfs_root); 3309 } 3310 3311 module_init(cxgb4vf_module_init); 3312 module_exit(cxgb4vf_module_exit); 3313