1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/module.h> 39 #include <linux/moduleparam.h> 40 #include <linux/init.h> 41 #include <linux/pci.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/netdevice.h> 44 #include <linux/etherdevice.h> 45 #include <linux/debugfs.h> 46 #include <linux/ethtool.h> 47 #include <linux/mdio.h> 48 49 #include "t4vf_common.h" 50 #include "t4vf_defs.h" 51 52 #include "../cxgb4/t4_regs.h" 53 #include "../cxgb4/t4_msg.h" 54 55 /* 56 * Generic information about the driver. 57 */ 58 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver" 59 60 /* 61 * Module Parameters. 62 * ================== 63 */ 64 65 /* 66 * Default ethtool "message level" for adapters. 67 */ 68 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 69 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 70 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 71 72 /* 73 * The driver uses the best interrupt scheme available on a platform in the 74 * order MSI-X then MSI. This parameter determines which of these schemes the 75 * driver may consider as follows: 76 * 77 * msi = 2: choose from among MSI-X and MSI 78 * msi = 1: only consider MSI interrupts 79 * 80 * Note that unlike the Physical Function driver, this Virtual Function driver 81 * does _not_ support legacy INTx interrupts (this limitation is mandated by 82 * the PCI-E SR-IOV standard). 83 */ 84 #define MSI_MSIX 2 85 #define MSI_MSI 1 86 #define MSI_DEFAULT MSI_MSIX 87 88 static int msi = MSI_DEFAULT; 89 90 module_param(msi, int, 0644); 91 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI"); 92 93 /* 94 * Fundamental constants. 95 * ====================== 96 */ 97 98 enum { 99 MAX_TXQ_ENTRIES = 16384, 100 MAX_RSPQ_ENTRIES = 16384, 101 MAX_RX_BUFFERS = 16384, 102 103 MIN_TXQ_ENTRIES = 32, 104 MIN_RSPQ_ENTRIES = 128, 105 MIN_FL_ENTRIES = 16, 106 107 /* 108 * For purposes of manipulating the Free List size we need to 109 * recognize that Free Lists are actually Egress Queues (the host 110 * produces free buffers which the hardware consumes), Egress Queues 111 * indices are all in units of Egress Context Units bytes, and free 112 * list entries are 64-bit PCI DMA addresses. And since the state of 113 * the Producer Index == the Consumer Index implies an EMPTY list, we 114 * always have at least one Egress Unit's worth of Free List entries 115 * unused. See sge.c for more details ... 116 */ 117 EQ_UNIT = SGE_EQ_IDXSIZE, 118 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 119 MIN_FL_RESID = FL_PER_EQ_UNIT, 120 }; 121 122 /* 123 * Global driver state. 124 * ==================== 125 */ 126 127 static struct dentry *cxgb4vf_debugfs_root; 128 129 /* 130 * OS "Callback" functions. 131 * ======================== 132 */ 133 134 /* 135 * The link status has changed on the indicated "port" (Virtual Interface). 136 */ 137 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok) 138 { 139 struct net_device *dev = adapter->port[pidx]; 140 141 /* 142 * If the port is disabled or the current recorded "link up" 143 * status matches the new status, just return. 144 */ 145 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev)) 146 return; 147 148 /* 149 * Tell the OS that the link status has changed and print a short 150 * informative message on the console about the event. 151 */ 152 if (link_ok) { 153 const char *s; 154 const char *fc; 155 const struct port_info *pi = netdev_priv(dev); 156 157 netif_carrier_on(dev); 158 159 switch (pi->link_cfg.speed) { 160 case 100: 161 s = "100Mbps"; 162 break; 163 case 1000: 164 s = "1Gbps"; 165 break; 166 case 10000: 167 s = "10Gbps"; 168 break; 169 case 25000: 170 s = "25Gbps"; 171 break; 172 case 40000: 173 s = "40Gbps"; 174 break; 175 case 100000: 176 s = "100Gbps"; 177 break; 178 179 default: 180 s = "unknown"; 181 break; 182 } 183 184 switch ((int)pi->link_cfg.fc) { 185 case PAUSE_RX: 186 fc = "RX"; 187 break; 188 189 case PAUSE_TX: 190 fc = "TX"; 191 break; 192 193 case PAUSE_RX | PAUSE_TX: 194 fc = "RX/TX"; 195 break; 196 197 default: 198 fc = "no"; 199 break; 200 } 201 202 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc); 203 } else { 204 netif_carrier_off(dev); 205 netdev_info(dev, "link down\n"); 206 } 207 } 208 209 /* 210 * THe port module type has changed on the indicated "port" (Virtual 211 * Interface). 212 */ 213 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx) 214 { 215 static const char * const mod_str[] = { 216 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 217 }; 218 const struct net_device *dev = adapter->port[pidx]; 219 const struct port_info *pi = netdev_priv(dev); 220 221 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 222 dev_info(adapter->pdev_dev, "%s: port module unplugged\n", 223 dev->name); 224 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 225 dev_info(adapter->pdev_dev, "%s: %s port module inserted\n", 226 dev->name, mod_str[pi->mod_type]); 227 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 228 dev_info(adapter->pdev_dev, "%s: unsupported optical port " 229 "module inserted\n", dev->name); 230 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 231 dev_info(adapter->pdev_dev, "%s: unknown port module inserted," 232 "forcing TWINAX\n", dev->name); 233 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 234 dev_info(adapter->pdev_dev, "%s: transceiver module error\n", 235 dev->name); 236 else 237 dev_info(adapter->pdev_dev, "%s: unknown module type %d " 238 "inserted\n", dev->name, pi->mod_type); 239 } 240 241 static int cxgb4vf_set_addr_hash(struct port_info *pi) 242 { 243 struct adapter *adapter = pi->adapter; 244 u64 vec = 0; 245 bool ucast = false; 246 struct hash_mac_addr *entry; 247 248 /* Calculate the hash vector for the updated list and program it */ 249 list_for_each_entry(entry, &adapter->mac_hlist, list) { 250 ucast |= is_unicast_ether_addr(entry->addr); 251 vec |= (1ULL << hash_mac_addr(entry->addr)); 252 } 253 return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false); 254 } 255 256 /** 257 * cxgb4vf_change_mac - Update match filter for a MAC address. 258 * @pi: the port_info 259 * @viid: the VI id 260 * @tcam_idx: TCAM index of existing filter for old value of MAC address, 261 * or -1 262 * @addr: the new MAC address value 263 * @persistent: whether a new MAC allocation should be persistent 264 * 265 * Modifies an MPS filter and sets it to the new MAC address if 266 * @tcam_idx >= 0, or adds the MAC address to a new filter if 267 * @tcam_idx < 0. In the latter case the address is added persistently 268 * if @persist is %true. 269 * Addresses are programmed to hash region, if tcam runs out of entries. 270 * 271 */ 272 static int cxgb4vf_change_mac(struct port_info *pi, unsigned int viid, 273 int *tcam_idx, const u8 *addr, bool persistent) 274 { 275 struct hash_mac_addr *new_entry, *entry; 276 struct adapter *adapter = pi->adapter; 277 int ret; 278 279 ret = t4vf_change_mac(adapter, viid, *tcam_idx, addr, persistent); 280 /* We ran out of TCAM entries. try programming hash region. */ 281 if (ret == -ENOMEM) { 282 /* If the MAC address to be updated is in the hash addr 283 * list, update it from the list 284 */ 285 list_for_each_entry(entry, &adapter->mac_hlist, list) { 286 if (entry->iface_mac) { 287 ether_addr_copy(entry->addr, addr); 288 goto set_hash; 289 } 290 } 291 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL); 292 if (!new_entry) 293 return -ENOMEM; 294 ether_addr_copy(new_entry->addr, addr); 295 new_entry->iface_mac = true; 296 list_add_tail(&new_entry->list, &adapter->mac_hlist); 297 set_hash: 298 ret = cxgb4vf_set_addr_hash(pi); 299 } else if (ret >= 0) { 300 *tcam_idx = ret; 301 ret = 0; 302 } 303 304 return ret; 305 } 306 307 /* 308 * Net device operations. 309 * ====================== 310 */ 311 312 313 314 315 /* 316 * Perform the MAC and PHY actions needed to enable a "port" (Virtual 317 * Interface). 318 */ 319 static int link_start(struct net_device *dev) 320 { 321 int ret; 322 struct port_info *pi = netdev_priv(dev); 323 324 /* 325 * We do not set address filters and promiscuity here, the stack does 326 * that step explicitly. Enable vlan accel. 327 */ 328 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1, 329 true); 330 if (ret == 0) 331 ret = cxgb4vf_change_mac(pi, pi->viid, 332 &pi->xact_addr_filt, 333 dev->dev_addr, true); 334 335 /* 336 * We don't need to actually "start the link" itself since the 337 * firmware will do that for us when the first Virtual Interface 338 * is enabled on a port. 339 */ 340 if (ret == 0) 341 ret = t4vf_enable_pi(pi->adapter, pi, true, true); 342 343 return ret; 344 } 345 346 /* 347 * Name the MSI-X interrupts. 348 */ 349 static void name_msix_vecs(struct adapter *adapter) 350 { 351 int namelen = sizeof(adapter->msix_info[0].desc) - 1; 352 int pidx; 353 354 /* 355 * Firmware events. 356 */ 357 snprintf(adapter->msix_info[MSIX_FW].desc, namelen, 358 "%s-FWeventq", adapter->name); 359 adapter->msix_info[MSIX_FW].desc[namelen] = 0; 360 361 /* 362 * Ethernet queues. 363 */ 364 for_each_port(adapter, pidx) { 365 struct net_device *dev = adapter->port[pidx]; 366 const struct port_info *pi = netdev_priv(dev); 367 int qs, msi; 368 369 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) { 370 snprintf(adapter->msix_info[msi].desc, namelen, 371 "%s-%d", dev->name, qs); 372 adapter->msix_info[msi].desc[namelen] = 0; 373 } 374 } 375 } 376 377 /* 378 * Request all of our MSI-X resources. 379 */ 380 static int request_msix_queue_irqs(struct adapter *adapter) 381 { 382 struct sge *s = &adapter->sge; 383 int rxq, msi, err; 384 385 /* 386 * Firmware events. 387 */ 388 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix, 389 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq); 390 if (err) 391 return err; 392 393 /* 394 * Ethernet queues. 395 */ 396 msi = MSIX_IQFLINT; 397 for_each_ethrxq(s, rxq) { 398 err = request_irq(adapter->msix_info[msi].vec, 399 t4vf_sge_intr_msix, 0, 400 adapter->msix_info[msi].desc, 401 &s->ethrxq[rxq].rspq); 402 if (err) 403 goto err_free_irqs; 404 msi++; 405 } 406 return 0; 407 408 err_free_irqs: 409 while (--rxq >= 0) 410 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq); 411 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 412 return err; 413 } 414 415 /* 416 * Free our MSI-X resources. 417 */ 418 static void free_msix_queue_irqs(struct adapter *adapter) 419 { 420 struct sge *s = &adapter->sge; 421 int rxq, msi; 422 423 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 424 msi = MSIX_IQFLINT; 425 for_each_ethrxq(s, rxq) 426 free_irq(adapter->msix_info[msi++].vec, 427 &s->ethrxq[rxq].rspq); 428 } 429 430 /* 431 * Turn on NAPI and start up interrupts on a response queue. 432 */ 433 static void qenable(struct sge_rspq *rspq) 434 { 435 napi_enable(&rspq->napi); 436 437 /* 438 * 0-increment the Going To Sleep register to start the timer and 439 * enable interrupts. 440 */ 441 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 442 CIDXINC_V(0) | 443 SEINTARM_V(rspq->intr_params) | 444 INGRESSQID_V(rspq->cntxt_id)); 445 } 446 447 /* 448 * Enable NAPI scheduling and interrupt generation for all Receive Queues. 449 */ 450 static void enable_rx(struct adapter *adapter) 451 { 452 int rxq; 453 struct sge *s = &adapter->sge; 454 455 for_each_ethrxq(s, rxq) 456 qenable(&s->ethrxq[rxq].rspq); 457 qenable(&s->fw_evtq); 458 459 /* 460 * The interrupt queue doesn't use NAPI so we do the 0-increment of 461 * its Going To Sleep register here to get it started. 462 */ 463 if (adapter->flags & CXGB4VF_USING_MSI) 464 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 465 CIDXINC_V(0) | 466 SEINTARM_V(s->intrq.intr_params) | 467 INGRESSQID_V(s->intrq.cntxt_id)); 468 469 } 470 471 /* 472 * Wait until all NAPI handlers are descheduled. 473 */ 474 static void quiesce_rx(struct adapter *adapter) 475 { 476 struct sge *s = &adapter->sge; 477 int rxq; 478 479 for_each_ethrxq(s, rxq) 480 napi_disable(&s->ethrxq[rxq].rspq.napi); 481 napi_disable(&s->fw_evtq.napi); 482 } 483 484 /* 485 * Response queue handler for the firmware event queue. 486 */ 487 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp, 488 const struct pkt_gl *gl) 489 { 490 /* 491 * Extract response opcode and get pointer to CPL message body. 492 */ 493 struct adapter *adapter = rspq->adapter; 494 u8 opcode = ((const struct rss_header *)rsp)->opcode; 495 void *cpl = (void *)(rsp + 1); 496 497 switch (opcode) { 498 case CPL_FW6_MSG: { 499 /* 500 * We've received an asynchronous message from the firmware. 501 */ 502 const struct cpl_fw6_msg *fw_msg = cpl; 503 if (fw_msg->type == FW6_TYPE_CMD_RPL) 504 t4vf_handle_fw_rpl(adapter, fw_msg->data); 505 break; 506 } 507 508 case CPL_FW4_MSG: { 509 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 510 */ 511 const struct cpl_sge_egr_update *p = (void *)(rsp + 3); 512 opcode = CPL_OPCODE_G(ntohl(p->opcode_qid)); 513 if (opcode != CPL_SGE_EGR_UPDATE) { 514 dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 515 , opcode); 516 break; 517 } 518 cpl = (void *)p; 519 } 520 /* Fall through */ 521 522 case CPL_SGE_EGR_UPDATE: { 523 /* 524 * We've received an Egress Queue Status Update message. We 525 * get these, if the SGE is configured to send these when the 526 * firmware passes certain points in processing our TX 527 * Ethernet Queue or if we make an explicit request for one. 528 * We use these updates to determine when we may need to 529 * restart a TX Ethernet Queue which was stopped for lack of 530 * free TX Queue Descriptors ... 531 */ 532 const struct cpl_sge_egr_update *p = cpl; 533 unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid)); 534 struct sge *s = &adapter->sge; 535 struct sge_txq *tq; 536 struct sge_eth_txq *txq; 537 unsigned int eq_idx; 538 539 /* 540 * Perform sanity checking on the Queue ID to make sure it 541 * really refers to one of our TX Ethernet Egress Queues which 542 * is active and matches the queue's ID. None of these error 543 * conditions should ever happen so we may want to either make 544 * them fatal and/or conditionalized under DEBUG. 545 */ 546 eq_idx = EQ_IDX(s, qid); 547 if (unlikely(eq_idx >= MAX_EGRQ)) { 548 dev_err(adapter->pdev_dev, 549 "Egress Update QID %d out of range\n", qid); 550 break; 551 } 552 tq = s->egr_map[eq_idx]; 553 if (unlikely(tq == NULL)) { 554 dev_err(adapter->pdev_dev, 555 "Egress Update QID %d TXQ=NULL\n", qid); 556 break; 557 } 558 txq = container_of(tq, struct sge_eth_txq, q); 559 if (unlikely(tq->abs_id != qid)) { 560 dev_err(adapter->pdev_dev, 561 "Egress Update QID %d refers to TXQ %d\n", 562 qid, tq->abs_id); 563 break; 564 } 565 566 /* 567 * Restart a stopped TX Queue which has less than half of its 568 * TX ring in use ... 569 */ 570 txq->q.restarts++; 571 netif_tx_wake_queue(txq->txq); 572 break; 573 } 574 575 default: 576 dev_err(adapter->pdev_dev, 577 "unexpected CPL %#x on FW event queue\n", opcode); 578 } 579 580 return 0; 581 } 582 583 /* 584 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues 585 * to use and initializes them. We support multiple "Queue Sets" per port if 586 * we have MSI-X, otherwise just one queue set per port. 587 */ 588 static int setup_sge_queues(struct adapter *adapter) 589 { 590 struct sge *s = &adapter->sge; 591 int err, pidx, msix; 592 593 /* 594 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error 595 * state. 596 */ 597 bitmap_zero(s->starving_fl, MAX_EGRQ); 598 599 /* 600 * If we're using MSI interrupt mode we need to set up a "forwarded 601 * interrupt" queue which we'll set up with our MSI vector. The rest 602 * of the ingress queues will be set up to forward their interrupts to 603 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses 604 * the intrq's queue ID as the interrupt forwarding queue for the 605 * subsequent calls ... 606 */ 607 if (adapter->flags & CXGB4VF_USING_MSI) { 608 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false, 609 adapter->port[0], 0, NULL, NULL); 610 if (err) 611 goto err_free_queues; 612 } 613 614 /* 615 * Allocate our ingress queue for asynchronous firmware messages. 616 */ 617 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0], 618 MSIX_FW, NULL, fwevtq_handler); 619 if (err) 620 goto err_free_queues; 621 622 /* 623 * Allocate each "port"'s initial Queue Sets. These can be changed 624 * later on ... up to the point where any interface on the adapter is 625 * brought up at which point lots of things get nailed down 626 * permanently ... 627 */ 628 msix = MSIX_IQFLINT; 629 for_each_port(adapter, pidx) { 630 struct net_device *dev = adapter->port[pidx]; 631 struct port_info *pi = netdev_priv(dev); 632 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 633 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 634 int qs; 635 636 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 637 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false, 638 dev, msix++, 639 &rxq->fl, t4vf_ethrx_handler); 640 if (err) 641 goto err_free_queues; 642 643 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev, 644 netdev_get_tx_queue(dev, qs), 645 s->fw_evtq.cntxt_id); 646 if (err) 647 goto err_free_queues; 648 649 rxq->rspq.idx = qs; 650 memset(&rxq->stats, 0, sizeof(rxq->stats)); 651 } 652 } 653 654 /* 655 * Create the reverse mappings for the queues. 656 */ 657 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id; 658 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id; 659 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq; 660 for_each_port(adapter, pidx) { 661 struct net_device *dev = adapter->port[pidx]; 662 struct port_info *pi = netdev_priv(dev); 663 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 664 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 665 int qs; 666 667 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 668 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq; 669 EQ_MAP(s, txq->q.abs_id) = &txq->q; 670 671 /* 672 * The FW_IQ_CMD doesn't return the Absolute Queue IDs 673 * for Free Lists but since all of the Egress Queues 674 * (including Free Lists) have Relative Queue IDs 675 * which are computed as Absolute - Base Queue ID, we 676 * can synthesize the Absolute Queue IDs for the Free 677 * Lists. This is useful for debugging purposes when 678 * we want to dump Queue Contexts via the PF Driver. 679 */ 680 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base; 681 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl; 682 } 683 } 684 return 0; 685 686 err_free_queues: 687 t4vf_free_sge_resources(adapter); 688 return err; 689 } 690 691 /* 692 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive 693 * queues. We configure the RSS CPU lookup table to distribute to the number 694 * of HW receive queues, and the response queue lookup table to narrow that 695 * down to the response queues actually configured for each "port" (Virtual 696 * Interface). We always configure the RSS mapping for all ports since the 697 * mapping table has plenty of entries. 698 */ 699 static int setup_rss(struct adapter *adapter) 700 { 701 int pidx; 702 703 for_each_port(adapter, pidx) { 704 struct port_info *pi = adap2pinfo(adapter, pidx); 705 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 706 u16 rss[MAX_PORT_QSETS]; 707 int qs, err; 708 709 for (qs = 0; qs < pi->nqsets; qs++) 710 rss[qs] = rxq[qs].rspq.abs_id; 711 712 err = t4vf_config_rss_range(adapter, pi->viid, 713 0, pi->rss_size, rss, pi->nqsets); 714 if (err) 715 return err; 716 717 /* 718 * Perform Global RSS Mode-specific initialization. 719 */ 720 switch (adapter->params.rss.mode) { 721 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: 722 /* 723 * If Tunnel All Lookup isn't specified in the global 724 * RSS Configuration, then we need to specify a 725 * default Ingress Queue for any ingress packets which 726 * aren't hashed. We'll use our first ingress queue 727 * ... 728 */ 729 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) { 730 union rss_vi_config config; 731 err = t4vf_read_rss_vi_config(adapter, 732 pi->viid, 733 &config); 734 if (err) 735 return err; 736 config.basicvirtual.defaultq = 737 rxq[0].rspq.abs_id; 738 err = t4vf_write_rss_vi_config(adapter, 739 pi->viid, 740 &config); 741 if (err) 742 return err; 743 } 744 break; 745 } 746 } 747 748 return 0; 749 } 750 751 /* 752 * Bring the adapter up. Called whenever we go from no "ports" open to having 753 * one open. This function performs the actions necessary to make an adapter 754 * operational, such as completing the initialization of HW modules, and 755 * enabling interrupts. Must be called with the rtnl lock held. (Note that 756 * this is called "cxgb_up" in the PF Driver.) 757 */ 758 static int adapter_up(struct adapter *adapter) 759 { 760 int err; 761 762 /* 763 * If this is the first time we've been called, perform basic 764 * adapter setup. Once we've done this, many of our adapter 765 * parameters can no longer be changed ... 766 */ 767 if ((adapter->flags & CXGB4VF_FULL_INIT_DONE) == 0) { 768 err = setup_sge_queues(adapter); 769 if (err) 770 return err; 771 err = setup_rss(adapter); 772 if (err) { 773 t4vf_free_sge_resources(adapter); 774 return err; 775 } 776 777 if (adapter->flags & CXGB4VF_USING_MSIX) 778 name_msix_vecs(adapter); 779 780 adapter->flags |= CXGB4VF_FULL_INIT_DONE; 781 } 782 783 /* 784 * Acquire our interrupt resources. We only support MSI-X and MSI. 785 */ 786 BUG_ON((adapter->flags & 787 (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0); 788 if (adapter->flags & CXGB4VF_USING_MSIX) 789 err = request_msix_queue_irqs(adapter); 790 else 791 err = request_irq(adapter->pdev->irq, 792 t4vf_intr_handler(adapter), 0, 793 adapter->name, adapter); 794 if (err) { 795 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n", 796 err); 797 return err; 798 } 799 800 /* 801 * Enable NAPI ingress processing and return success. 802 */ 803 enable_rx(adapter); 804 t4vf_sge_start(adapter); 805 806 return 0; 807 } 808 809 /* 810 * Bring the adapter down. Called whenever the last "port" (Virtual 811 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF 812 * Driver.) 813 */ 814 static void adapter_down(struct adapter *adapter) 815 { 816 /* 817 * Free interrupt resources. 818 */ 819 if (adapter->flags & CXGB4VF_USING_MSIX) 820 free_msix_queue_irqs(adapter); 821 else 822 free_irq(adapter->pdev->irq, adapter); 823 824 /* 825 * Wait for NAPI handlers to finish. 826 */ 827 quiesce_rx(adapter); 828 } 829 830 /* 831 * Start up a net device. 832 */ 833 static int cxgb4vf_open(struct net_device *dev) 834 { 835 int err; 836 struct port_info *pi = netdev_priv(dev); 837 struct adapter *adapter = pi->adapter; 838 839 /* 840 * If we don't have a connection to the firmware there's nothing we 841 * can do. 842 */ 843 if (!(adapter->flags & CXGB4VF_FW_OK)) 844 return -ENXIO; 845 846 /* 847 * If this is the first interface that we're opening on the "adapter", 848 * bring the "adapter" up now. 849 */ 850 if (adapter->open_device_map == 0) { 851 err = adapter_up(adapter); 852 if (err) 853 return err; 854 } 855 856 /* It's possible that the basic port information could have 857 * changed since we first read it. 858 */ 859 err = t4vf_update_port_info(pi); 860 if (err < 0) 861 return err; 862 863 /* 864 * Note that this interface is up and start everything up ... 865 */ 866 err = link_start(dev); 867 if (err) 868 goto err_unwind; 869 870 pi->vlan_id = t4vf_get_vf_vlan_acl(adapter); 871 872 netif_tx_start_all_queues(dev); 873 set_bit(pi->port_id, &adapter->open_device_map); 874 return 0; 875 876 err_unwind: 877 if (adapter->open_device_map == 0) 878 adapter_down(adapter); 879 return err; 880 } 881 882 /* 883 * Shut down a net device. This routine is called "cxgb_close" in the PF 884 * Driver ... 885 */ 886 static int cxgb4vf_stop(struct net_device *dev) 887 { 888 struct port_info *pi = netdev_priv(dev); 889 struct adapter *adapter = pi->adapter; 890 891 netif_tx_stop_all_queues(dev); 892 netif_carrier_off(dev); 893 t4vf_enable_pi(adapter, pi, false, false); 894 895 clear_bit(pi->port_id, &adapter->open_device_map); 896 if (adapter->open_device_map == 0) 897 adapter_down(adapter); 898 return 0; 899 } 900 901 /* 902 * Translate our basic statistics into the standard "ifconfig" statistics. 903 */ 904 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev) 905 { 906 struct t4vf_port_stats stats; 907 struct port_info *pi = netdev2pinfo(dev); 908 struct adapter *adapter = pi->adapter; 909 struct net_device_stats *ns = &dev->stats; 910 int err; 911 912 spin_lock(&adapter->stats_lock); 913 err = t4vf_get_port_stats(adapter, pi->pidx, &stats); 914 spin_unlock(&adapter->stats_lock); 915 916 memset(ns, 0, sizeof(*ns)); 917 if (err) 918 return ns; 919 920 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes + 921 stats.tx_ucast_bytes + stats.tx_offload_bytes); 922 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames + 923 stats.tx_ucast_frames + stats.tx_offload_frames); 924 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes + 925 stats.rx_ucast_bytes); 926 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames + 927 stats.rx_ucast_frames); 928 ns->multicast = stats.rx_mcast_frames; 929 ns->tx_errors = stats.tx_drop_frames; 930 ns->rx_errors = stats.rx_err_frames; 931 932 return ns; 933 } 934 935 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr) 936 { 937 struct port_info *pi = netdev_priv(netdev); 938 struct adapter *adapter = pi->adapter; 939 int ret; 940 u64 mhash = 0; 941 u64 uhash = 0; 942 bool free = false; 943 bool ucast = is_unicast_ether_addr(mac_addr); 944 const u8 *maclist[1] = {mac_addr}; 945 struct hash_mac_addr *new_entry; 946 947 ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist, 948 NULL, ucast ? &uhash : &mhash, false); 949 if (ret < 0) 950 goto out; 951 /* if hash != 0, then add the addr to hash addr list 952 * so on the end we will calculate the hash for the 953 * list and program it 954 */ 955 if (uhash || mhash) { 956 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 957 if (!new_entry) 958 return -ENOMEM; 959 ether_addr_copy(new_entry->addr, mac_addr); 960 list_add_tail(&new_entry->list, &adapter->mac_hlist); 961 ret = cxgb4vf_set_addr_hash(pi); 962 } 963 out: 964 return ret < 0 ? ret : 0; 965 } 966 967 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 968 { 969 struct port_info *pi = netdev_priv(netdev); 970 struct adapter *adapter = pi->adapter; 971 int ret; 972 const u8 *maclist[1] = {mac_addr}; 973 struct hash_mac_addr *entry, *tmp; 974 975 /* If the MAC address to be removed is in the hash addr 976 * list, delete it from the list and update hash vector 977 */ 978 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) { 979 if (ether_addr_equal(entry->addr, mac_addr)) { 980 list_del(&entry->list); 981 kfree(entry); 982 return cxgb4vf_set_addr_hash(pi); 983 } 984 } 985 986 ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false); 987 return ret < 0 ? -EINVAL : 0; 988 } 989 990 /* 991 * Set RX properties of a port, such as promiscruity, address filters, and MTU. 992 * If @mtu is -1 it is left unchanged. 993 */ 994 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 995 { 996 struct port_info *pi = netdev_priv(dev); 997 998 __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 999 __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 1000 return t4vf_set_rxmode(pi->adapter, pi->viid, -1, 1001 (dev->flags & IFF_PROMISC) != 0, 1002 (dev->flags & IFF_ALLMULTI) != 0, 1003 1, -1, sleep_ok); 1004 } 1005 1006 /* 1007 * Set the current receive modes on the device. 1008 */ 1009 static void cxgb4vf_set_rxmode(struct net_device *dev) 1010 { 1011 /* unfortunately we can't return errors to the stack */ 1012 set_rxmode(dev, -1, false); 1013 } 1014 1015 /* 1016 * Find the entry in the interrupt holdoff timer value array which comes 1017 * closest to the specified interrupt holdoff value. 1018 */ 1019 static int closest_timer(const struct sge *s, int us) 1020 { 1021 int i, timer_idx = 0, min_delta = INT_MAX; 1022 1023 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1024 int delta = us - s->timer_val[i]; 1025 if (delta < 0) 1026 delta = -delta; 1027 if (delta < min_delta) { 1028 min_delta = delta; 1029 timer_idx = i; 1030 } 1031 } 1032 return timer_idx; 1033 } 1034 1035 static int closest_thres(const struct sge *s, int thres) 1036 { 1037 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX; 1038 1039 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1040 delta = thres - s->counter_val[i]; 1041 if (delta < 0) 1042 delta = -delta; 1043 if (delta < min_delta) { 1044 min_delta = delta; 1045 pktcnt_idx = i; 1046 } 1047 } 1048 return pktcnt_idx; 1049 } 1050 1051 /* 1052 * Return a queue's interrupt hold-off time in us. 0 means no timer. 1053 */ 1054 static unsigned int qtimer_val(const struct adapter *adapter, 1055 const struct sge_rspq *rspq) 1056 { 1057 unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params); 1058 1059 return timer_idx < SGE_NTIMERS 1060 ? adapter->sge.timer_val[timer_idx] 1061 : 0; 1062 } 1063 1064 /** 1065 * set_rxq_intr_params - set a queue's interrupt holdoff parameters 1066 * @adapter: the adapter 1067 * @rspq: the RX response queue 1068 * @us: the hold-off time in us, or 0 to disable timer 1069 * @cnt: the hold-off packet count, or 0 to disable counter 1070 * 1071 * Sets an RX response queue's interrupt hold-off time and packet count. 1072 * At least one of the two needs to be enabled for the queue to generate 1073 * interrupts. 1074 */ 1075 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq, 1076 unsigned int us, unsigned int cnt) 1077 { 1078 unsigned int timer_idx; 1079 1080 /* 1081 * If both the interrupt holdoff timer and count are specified as 1082 * zero, default to a holdoff count of 1 ... 1083 */ 1084 if ((us | cnt) == 0) 1085 cnt = 1; 1086 1087 /* 1088 * If an interrupt holdoff count has been specified, then find the 1089 * closest configured holdoff count and use that. If the response 1090 * queue has already been created, then update its queue context 1091 * parameters ... 1092 */ 1093 if (cnt) { 1094 int err; 1095 u32 v, pktcnt_idx; 1096 1097 pktcnt_idx = closest_thres(&adapter->sge, cnt); 1098 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) { 1099 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1100 FW_PARAMS_PARAM_X_V( 1101 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1102 FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id); 1103 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx); 1104 if (err) 1105 return err; 1106 } 1107 rspq->pktcnt_idx = pktcnt_idx; 1108 } 1109 1110 /* 1111 * Compute the closest holdoff timer index from the supplied holdoff 1112 * timer value. 1113 */ 1114 timer_idx = (us == 0 1115 ? SGE_TIMER_RSTRT_CNTR 1116 : closest_timer(&adapter->sge, us)); 1117 1118 /* 1119 * Update the response queue's interrupt coalescing parameters and 1120 * return success. 1121 */ 1122 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 1123 QINTR_CNT_EN_V(cnt > 0)); 1124 return 0; 1125 } 1126 1127 /* 1128 * Return a version number to identify the type of adapter. The scheme is: 1129 * - bits 0..9: chip version 1130 * - bits 10..15: chip revision 1131 */ 1132 static inline unsigned int mk_adap_vers(const struct adapter *adapter) 1133 { 1134 /* 1135 * Chip version 4, revision 0x3f (cxgb4vf). 1136 */ 1137 return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10); 1138 } 1139 1140 /* 1141 * Execute the specified ioctl command. 1142 */ 1143 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1144 { 1145 int ret = 0; 1146 1147 switch (cmd) { 1148 /* 1149 * The VF Driver doesn't have access to any of the other 1150 * common Ethernet device ioctl()'s (like reading/writing 1151 * PHY registers, etc. 1152 */ 1153 1154 default: 1155 ret = -EOPNOTSUPP; 1156 break; 1157 } 1158 return ret; 1159 } 1160 1161 /* 1162 * Change the device's MTU. 1163 */ 1164 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu) 1165 { 1166 int ret; 1167 struct port_info *pi = netdev_priv(dev); 1168 1169 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu, 1170 -1, -1, -1, -1, true); 1171 if (!ret) 1172 dev->mtu = new_mtu; 1173 return ret; 1174 } 1175 1176 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev, 1177 netdev_features_t features) 1178 { 1179 /* 1180 * Since there is no support for separate rx/tx vlan accel 1181 * enable/disable make sure tx flag is always in same state as rx. 1182 */ 1183 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1184 features |= NETIF_F_HW_VLAN_CTAG_TX; 1185 else 1186 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 1187 1188 return features; 1189 } 1190 1191 static int cxgb4vf_set_features(struct net_device *dev, 1192 netdev_features_t features) 1193 { 1194 struct port_info *pi = netdev_priv(dev); 1195 netdev_features_t changed = dev->features ^ features; 1196 1197 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 1198 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, 1199 features & NETIF_F_HW_VLAN_CTAG_TX, 0); 1200 1201 return 0; 1202 } 1203 1204 /* 1205 * Change the devices MAC address. 1206 */ 1207 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr) 1208 { 1209 int ret; 1210 struct sockaddr *addr = _addr; 1211 struct port_info *pi = netdev_priv(dev); 1212 1213 if (!is_valid_ether_addr(addr->sa_data)) 1214 return -EADDRNOTAVAIL; 1215 1216 ret = cxgb4vf_change_mac(pi, pi->viid, &pi->xact_addr_filt, 1217 addr->sa_data, true); 1218 if (ret < 0) 1219 return ret; 1220 1221 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 1222 return 0; 1223 } 1224 1225 #ifdef CONFIG_NET_POLL_CONTROLLER 1226 /* 1227 * Poll all of our receive queues. This is called outside of normal interrupt 1228 * context. 1229 */ 1230 static void cxgb4vf_poll_controller(struct net_device *dev) 1231 { 1232 struct port_info *pi = netdev_priv(dev); 1233 struct adapter *adapter = pi->adapter; 1234 1235 if (adapter->flags & CXGB4VF_USING_MSIX) { 1236 struct sge_eth_rxq *rxq; 1237 int nqsets; 1238 1239 rxq = &adapter->sge.ethrxq[pi->first_qset]; 1240 for (nqsets = pi->nqsets; nqsets; nqsets--) { 1241 t4vf_sge_intr_msix(0, &rxq->rspq); 1242 rxq++; 1243 } 1244 } else 1245 t4vf_intr_handler(adapter)(0, adapter); 1246 } 1247 #endif 1248 1249 /* 1250 * Ethtool operations. 1251 * =================== 1252 * 1253 * Note that we don't support any ethtool operations which change the physical 1254 * state of the port to which we're linked. 1255 */ 1256 1257 /** 1258 * from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool 1259 * @port_type: Firmware Port Type 1260 * @mod_type: Firmware Module Type 1261 * 1262 * Translate Firmware Port/Module type to Ethtool Port Type. 1263 */ 1264 static int from_fw_port_mod_type(enum fw_port_type port_type, 1265 enum fw_port_module_type mod_type) 1266 { 1267 if (port_type == FW_PORT_TYPE_BT_SGMII || 1268 port_type == FW_PORT_TYPE_BT_XFI || 1269 port_type == FW_PORT_TYPE_BT_XAUI) { 1270 return PORT_TP; 1271 } else if (port_type == FW_PORT_TYPE_FIBER_XFI || 1272 port_type == FW_PORT_TYPE_FIBER_XAUI) { 1273 return PORT_FIBRE; 1274 } else if (port_type == FW_PORT_TYPE_SFP || 1275 port_type == FW_PORT_TYPE_QSFP_10G || 1276 port_type == FW_PORT_TYPE_QSA || 1277 port_type == FW_PORT_TYPE_QSFP || 1278 port_type == FW_PORT_TYPE_CR4_QSFP || 1279 port_type == FW_PORT_TYPE_CR_QSFP || 1280 port_type == FW_PORT_TYPE_CR2_QSFP || 1281 port_type == FW_PORT_TYPE_SFP28) { 1282 if (mod_type == FW_PORT_MOD_TYPE_LR || 1283 mod_type == FW_PORT_MOD_TYPE_SR || 1284 mod_type == FW_PORT_MOD_TYPE_ER || 1285 mod_type == FW_PORT_MOD_TYPE_LRM) 1286 return PORT_FIBRE; 1287 else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE || 1288 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE) 1289 return PORT_DA; 1290 else 1291 return PORT_OTHER; 1292 } else if (port_type == FW_PORT_TYPE_KR4_100G || 1293 port_type == FW_PORT_TYPE_KR_SFP28 || 1294 port_type == FW_PORT_TYPE_KR_XLAUI) { 1295 return PORT_NONE; 1296 } 1297 1298 return PORT_OTHER; 1299 } 1300 1301 /** 1302 * fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask 1303 * @port_type: Firmware Port Type 1304 * @fw_caps: Firmware Port Capabilities 1305 * @link_mode_mask: ethtool Link Mode Mask 1306 * 1307 * Translate a Firmware Port Capabilities specification to an ethtool 1308 * Link Mode Mask. 1309 */ 1310 static void fw_caps_to_lmm(enum fw_port_type port_type, 1311 unsigned int fw_caps, 1312 unsigned long *link_mode_mask) 1313 { 1314 #define SET_LMM(__lmm_name) \ 1315 __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \ 1316 link_mode_mask) 1317 1318 #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \ 1319 do { \ 1320 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \ 1321 SET_LMM(__lmm_name); \ 1322 } while (0) 1323 1324 switch (port_type) { 1325 case FW_PORT_TYPE_BT_SGMII: 1326 case FW_PORT_TYPE_BT_XFI: 1327 case FW_PORT_TYPE_BT_XAUI: 1328 SET_LMM(TP); 1329 FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full); 1330 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1331 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1332 break; 1333 1334 case FW_PORT_TYPE_KX4: 1335 case FW_PORT_TYPE_KX: 1336 SET_LMM(Backplane); 1337 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1338 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1339 break; 1340 1341 case FW_PORT_TYPE_KR: 1342 SET_LMM(Backplane); 1343 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1344 break; 1345 1346 case FW_PORT_TYPE_BP_AP: 1347 SET_LMM(Backplane); 1348 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1349 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); 1350 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1351 break; 1352 1353 case FW_PORT_TYPE_BP4_AP: 1354 SET_LMM(Backplane); 1355 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1356 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); 1357 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1358 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1359 break; 1360 1361 case FW_PORT_TYPE_FIBER_XFI: 1362 case FW_PORT_TYPE_FIBER_XAUI: 1363 case FW_PORT_TYPE_SFP: 1364 case FW_PORT_TYPE_QSFP_10G: 1365 case FW_PORT_TYPE_QSA: 1366 SET_LMM(FIBRE); 1367 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1368 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1369 break; 1370 1371 case FW_PORT_TYPE_BP40_BA: 1372 case FW_PORT_TYPE_QSFP: 1373 SET_LMM(FIBRE); 1374 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1375 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1376 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); 1377 break; 1378 1379 case FW_PORT_TYPE_CR_QSFP: 1380 case FW_PORT_TYPE_SFP28: 1381 SET_LMM(FIBRE); 1382 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1383 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1384 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); 1385 break; 1386 1387 case FW_PORT_TYPE_KR_SFP28: 1388 SET_LMM(Backplane); 1389 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1390 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1391 FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full); 1392 break; 1393 1394 case FW_PORT_TYPE_KR_XLAUI: 1395 SET_LMM(Backplane); 1396 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1397 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1398 FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full); 1399 break; 1400 1401 case FW_PORT_TYPE_CR2_QSFP: 1402 SET_LMM(FIBRE); 1403 FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full); 1404 break; 1405 1406 case FW_PORT_TYPE_KR4_100G: 1407 case FW_PORT_TYPE_CR4_QSFP: 1408 SET_LMM(FIBRE); 1409 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1410 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1411 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); 1412 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); 1413 FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full); 1414 FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full); 1415 break; 1416 1417 default: 1418 break; 1419 } 1420 1421 if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) { 1422 FW_CAPS_TO_LMM(FEC_RS, FEC_RS); 1423 FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER); 1424 } else { 1425 SET_LMM(FEC_NONE); 1426 } 1427 1428 FW_CAPS_TO_LMM(ANEG, Autoneg); 1429 FW_CAPS_TO_LMM(802_3_PAUSE, Pause); 1430 FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause); 1431 1432 #undef FW_CAPS_TO_LMM 1433 #undef SET_LMM 1434 } 1435 1436 static int cxgb4vf_get_link_ksettings(struct net_device *dev, 1437 struct ethtool_link_ksettings *link_ksettings) 1438 { 1439 struct port_info *pi = netdev_priv(dev); 1440 struct ethtool_link_settings *base = &link_ksettings->base; 1441 1442 /* For the nonce, the Firmware doesn't send up Port State changes 1443 * when the Virtual Interface attached to the Port is down. So 1444 * if it's down, let's grab any changes. 1445 */ 1446 if (!netif_running(dev)) 1447 (void)t4vf_update_port_info(pi); 1448 1449 ethtool_link_ksettings_zero_link_mode(link_ksettings, supported); 1450 ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising); 1451 ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising); 1452 1453 base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type); 1454 1455 if (pi->mdio_addr >= 0) { 1456 base->phy_address = pi->mdio_addr; 1457 base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII 1458 ? ETH_MDIO_SUPPORTS_C22 1459 : ETH_MDIO_SUPPORTS_C45); 1460 } else { 1461 base->phy_address = 255; 1462 base->mdio_support = 0; 1463 } 1464 1465 fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps, 1466 link_ksettings->link_modes.supported); 1467 fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps, 1468 link_ksettings->link_modes.advertising); 1469 fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps, 1470 link_ksettings->link_modes.lp_advertising); 1471 1472 if (netif_carrier_ok(dev)) { 1473 base->speed = pi->link_cfg.speed; 1474 base->duplex = DUPLEX_FULL; 1475 } else { 1476 base->speed = SPEED_UNKNOWN; 1477 base->duplex = DUPLEX_UNKNOWN; 1478 } 1479 1480 base->autoneg = pi->link_cfg.autoneg; 1481 if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG) 1482 ethtool_link_ksettings_add_link_mode(link_ksettings, 1483 supported, Autoneg); 1484 if (pi->link_cfg.autoneg) 1485 ethtool_link_ksettings_add_link_mode(link_ksettings, 1486 advertising, Autoneg); 1487 1488 return 0; 1489 } 1490 1491 /* Translate the Firmware FEC value into the ethtool value. */ 1492 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec) 1493 { 1494 unsigned int eth_fec = 0; 1495 1496 if (fw_fec & FW_PORT_CAP32_FEC_RS) 1497 eth_fec |= ETHTOOL_FEC_RS; 1498 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 1499 eth_fec |= ETHTOOL_FEC_BASER; 1500 1501 /* if nothing is set, then FEC is off */ 1502 if (!eth_fec) 1503 eth_fec = ETHTOOL_FEC_OFF; 1504 1505 return eth_fec; 1506 } 1507 1508 /* Translate Common Code FEC value into ethtool value. */ 1509 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec) 1510 { 1511 unsigned int eth_fec = 0; 1512 1513 if (cc_fec & FEC_AUTO) 1514 eth_fec |= ETHTOOL_FEC_AUTO; 1515 if (cc_fec & FEC_RS) 1516 eth_fec |= ETHTOOL_FEC_RS; 1517 if (cc_fec & FEC_BASER_RS) 1518 eth_fec |= ETHTOOL_FEC_BASER; 1519 1520 /* if nothing is set, then FEC is off */ 1521 if (!eth_fec) 1522 eth_fec = ETHTOOL_FEC_OFF; 1523 1524 return eth_fec; 1525 } 1526 1527 static int cxgb4vf_get_fecparam(struct net_device *dev, 1528 struct ethtool_fecparam *fec) 1529 { 1530 const struct port_info *pi = netdev_priv(dev); 1531 const struct link_config *lc = &pi->link_cfg; 1532 1533 /* Translate the Firmware FEC Support into the ethtool value. We 1534 * always support IEEE 802.3 "automatic" selection of Link FEC type if 1535 * any FEC is supported. 1536 */ 1537 fec->fec = fwcap_to_eth_fec(lc->pcaps); 1538 if (fec->fec != ETHTOOL_FEC_OFF) 1539 fec->fec |= ETHTOOL_FEC_AUTO; 1540 1541 /* Translate the current internal FEC parameters into the 1542 * ethtool values. 1543 */ 1544 fec->active_fec = cc_to_eth_fec(lc->fec); 1545 return 0; 1546 } 1547 1548 /* 1549 * Return our driver information. 1550 */ 1551 static void cxgb4vf_get_drvinfo(struct net_device *dev, 1552 struct ethtool_drvinfo *drvinfo) 1553 { 1554 struct adapter *adapter = netdev2adap(dev); 1555 1556 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver)); 1557 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)), 1558 sizeof(drvinfo->bus_info)); 1559 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 1560 "%u.%u.%u.%u, TP %u.%u.%u.%u", 1561 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev), 1562 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev), 1563 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev), 1564 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev), 1565 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev), 1566 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev), 1567 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev), 1568 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev)); 1569 } 1570 1571 /* 1572 * Return current adapter message level. 1573 */ 1574 static u32 cxgb4vf_get_msglevel(struct net_device *dev) 1575 { 1576 return netdev2adap(dev)->msg_enable; 1577 } 1578 1579 /* 1580 * Set current adapter message level. 1581 */ 1582 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel) 1583 { 1584 netdev2adap(dev)->msg_enable = msglevel; 1585 } 1586 1587 /* 1588 * Return the device's current Queue Set ring size parameters along with the 1589 * allowed maximum values. Since ethtool doesn't understand the concept of 1590 * multi-queue devices, we just return the current values associated with the 1591 * first Queue Set. 1592 */ 1593 static void cxgb4vf_get_ringparam(struct net_device *dev, 1594 struct ethtool_ringparam *rp) 1595 { 1596 const struct port_info *pi = netdev_priv(dev); 1597 const struct sge *s = &pi->adapter->sge; 1598 1599 rp->rx_max_pending = MAX_RX_BUFFERS; 1600 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES; 1601 rp->rx_jumbo_max_pending = 0; 1602 rp->tx_max_pending = MAX_TXQ_ENTRIES; 1603 1604 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID; 1605 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; 1606 rp->rx_jumbo_pending = 0; 1607 rp->tx_pending = s->ethtxq[pi->first_qset].q.size; 1608 } 1609 1610 /* 1611 * Set the Queue Set ring size parameters for the device. Again, since 1612 * ethtool doesn't allow for the concept of multiple queues per device, we'll 1613 * apply these new values across all of the Queue Sets associated with the 1614 * device -- after vetting them of course! 1615 */ 1616 static int cxgb4vf_set_ringparam(struct net_device *dev, 1617 struct ethtool_ringparam *rp) 1618 { 1619 const struct port_info *pi = netdev_priv(dev); 1620 struct adapter *adapter = pi->adapter; 1621 struct sge *s = &adapter->sge; 1622 int qs; 1623 1624 if (rp->rx_pending > MAX_RX_BUFFERS || 1625 rp->rx_jumbo_pending || 1626 rp->tx_pending > MAX_TXQ_ENTRIES || 1627 rp->rx_mini_pending > MAX_RSPQ_ENTRIES || 1628 rp->rx_mini_pending < MIN_RSPQ_ENTRIES || 1629 rp->rx_pending < MIN_FL_ENTRIES || 1630 rp->tx_pending < MIN_TXQ_ENTRIES) 1631 return -EINVAL; 1632 1633 if (adapter->flags & CXGB4VF_FULL_INIT_DONE) 1634 return -EBUSY; 1635 1636 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) { 1637 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID; 1638 s->ethrxq[qs].rspq.size = rp->rx_mini_pending; 1639 s->ethtxq[qs].q.size = rp->tx_pending; 1640 } 1641 return 0; 1642 } 1643 1644 /* 1645 * Return the interrupt holdoff timer and count for the first Queue Set on the 1646 * device. Our extension ioctl() (the cxgbtool interface) allows the 1647 * interrupt holdoff timer to be read on all of the device's Queue Sets. 1648 */ 1649 static int cxgb4vf_get_coalesce(struct net_device *dev, 1650 struct ethtool_coalesce *coalesce) 1651 { 1652 const struct port_info *pi = netdev_priv(dev); 1653 const struct adapter *adapter = pi->adapter; 1654 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq; 1655 1656 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq); 1657 coalesce->rx_max_coalesced_frames = 1658 ((rspq->intr_params & QINTR_CNT_EN_F) 1659 ? adapter->sge.counter_val[rspq->pktcnt_idx] 1660 : 0); 1661 return 0; 1662 } 1663 1664 /* 1665 * Set the RX interrupt holdoff timer and count for the first Queue Set on the 1666 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set 1667 * the interrupt holdoff timer on any of the device's Queue Sets. 1668 */ 1669 static int cxgb4vf_set_coalesce(struct net_device *dev, 1670 struct ethtool_coalesce *coalesce) 1671 { 1672 const struct port_info *pi = netdev_priv(dev); 1673 struct adapter *adapter = pi->adapter; 1674 1675 return set_rxq_intr_params(adapter, 1676 &adapter->sge.ethrxq[pi->first_qset].rspq, 1677 coalesce->rx_coalesce_usecs, 1678 coalesce->rx_max_coalesced_frames); 1679 } 1680 1681 /* 1682 * Report current port link pause parameter settings. 1683 */ 1684 static void cxgb4vf_get_pauseparam(struct net_device *dev, 1685 struct ethtool_pauseparam *pauseparam) 1686 { 1687 struct port_info *pi = netdev_priv(dev); 1688 1689 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; 1690 pauseparam->rx_pause = (pi->link_cfg.advertised_fc & PAUSE_RX) != 0; 1691 pauseparam->tx_pause = (pi->link_cfg.advertised_fc & PAUSE_TX) != 0; 1692 } 1693 1694 /* 1695 * Identify the port by blinking the port's LED. 1696 */ 1697 static int cxgb4vf_phys_id(struct net_device *dev, 1698 enum ethtool_phys_id_state state) 1699 { 1700 unsigned int val; 1701 struct port_info *pi = netdev_priv(dev); 1702 1703 if (state == ETHTOOL_ID_ACTIVE) 1704 val = 0xffff; 1705 else if (state == ETHTOOL_ID_INACTIVE) 1706 val = 0; 1707 else 1708 return -EINVAL; 1709 1710 return t4vf_identify_port(pi->adapter, pi->viid, val); 1711 } 1712 1713 /* 1714 * Port stats maintained per queue of the port. 1715 */ 1716 struct queue_port_stats { 1717 u64 tso; 1718 u64 tx_csum; 1719 u64 rx_csum; 1720 u64 vlan_ex; 1721 u64 vlan_ins; 1722 u64 lro_pkts; 1723 u64 lro_merged; 1724 }; 1725 1726 /* 1727 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that 1728 * these need to match the order of statistics returned by 1729 * t4vf_get_port_stats(). 1730 */ 1731 static const char stats_strings[][ETH_GSTRING_LEN] = { 1732 /* 1733 * These must match the layout of the t4vf_port_stats structure. 1734 */ 1735 "TxBroadcastBytes ", 1736 "TxBroadcastFrames ", 1737 "TxMulticastBytes ", 1738 "TxMulticastFrames ", 1739 "TxUnicastBytes ", 1740 "TxUnicastFrames ", 1741 "TxDroppedFrames ", 1742 "TxOffloadBytes ", 1743 "TxOffloadFrames ", 1744 "RxBroadcastBytes ", 1745 "RxBroadcastFrames ", 1746 "RxMulticastBytes ", 1747 "RxMulticastFrames ", 1748 "RxUnicastBytes ", 1749 "RxUnicastFrames ", 1750 "RxErrorFrames ", 1751 1752 /* 1753 * These are accumulated per-queue statistics and must match the 1754 * order of the fields in the queue_port_stats structure. 1755 */ 1756 "TSO ", 1757 "TxCsumOffload ", 1758 "RxCsumGood ", 1759 "VLANextractions ", 1760 "VLANinsertions ", 1761 "GROPackets ", 1762 "GROMerged ", 1763 }; 1764 1765 /* 1766 * Return the number of statistics in the specified statistics set. 1767 */ 1768 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset) 1769 { 1770 switch (sset) { 1771 case ETH_SS_STATS: 1772 return ARRAY_SIZE(stats_strings); 1773 default: 1774 return -EOPNOTSUPP; 1775 } 1776 /*NOTREACHED*/ 1777 } 1778 1779 /* 1780 * Return the strings for the specified statistics set. 1781 */ 1782 static void cxgb4vf_get_strings(struct net_device *dev, 1783 u32 sset, 1784 u8 *data) 1785 { 1786 switch (sset) { 1787 case ETH_SS_STATS: 1788 memcpy(data, stats_strings, sizeof(stats_strings)); 1789 break; 1790 } 1791 } 1792 1793 /* 1794 * Small utility routine to accumulate queue statistics across the queues of 1795 * a "port". 1796 */ 1797 static void collect_sge_port_stats(const struct adapter *adapter, 1798 const struct port_info *pi, 1799 struct queue_port_stats *stats) 1800 { 1801 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset]; 1802 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 1803 int qs; 1804 1805 memset(stats, 0, sizeof(*stats)); 1806 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 1807 stats->tso += txq->tso; 1808 stats->tx_csum += txq->tx_cso; 1809 stats->rx_csum += rxq->stats.rx_cso; 1810 stats->vlan_ex += rxq->stats.vlan_ex; 1811 stats->vlan_ins += txq->vlan_ins; 1812 stats->lro_pkts += rxq->stats.lro_pkts; 1813 stats->lro_merged += rxq->stats.lro_merged; 1814 } 1815 } 1816 1817 /* 1818 * Return the ETH_SS_STATS statistics set. 1819 */ 1820 static void cxgb4vf_get_ethtool_stats(struct net_device *dev, 1821 struct ethtool_stats *stats, 1822 u64 *data) 1823 { 1824 struct port_info *pi = netdev2pinfo(dev); 1825 struct adapter *adapter = pi->adapter; 1826 int err = t4vf_get_port_stats(adapter, pi->pidx, 1827 (struct t4vf_port_stats *)data); 1828 if (err) 1829 memset(data, 0, sizeof(struct t4vf_port_stats)); 1830 1831 data += sizeof(struct t4vf_port_stats) / sizeof(u64); 1832 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); 1833 } 1834 1835 /* 1836 * Return the size of our register map. 1837 */ 1838 static int cxgb4vf_get_regs_len(struct net_device *dev) 1839 { 1840 return T4VF_REGMAP_SIZE; 1841 } 1842 1843 /* 1844 * Dump a block of registers, start to end inclusive, into a buffer. 1845 */ 1846 static void reg_block_dump(struct adapter *adapter, void *regbuf, 1847 unsigned int start, unsigned int end) 1848 { 1849 u32 *bp = regbuf + start - T4VF_REGMAP_START; 1850 1851 for ( ; start <= end; start += sizeof(u32)) { 1852 /* 1853 * Avoid reading the Mailbox Control register since that 1854 * can trigger a Mailbox Ownership Arbitration cycle and 1855 * interfere with communication with the firmware. 1856 */ 1857 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL) 1858 *bp++ = 0xffff; 1859 else 1860 *bp++ = t4_read_reg(adapter, start); 1861 } 1862 } 1863 1864 /* 1865 * Copy our entire register map into the provided buffer. 1866 */ 1867 static void cxgb4vf_get_regs(struct net_device *dev, 1868 struct ethtool_regs *regs, 1869 void *regbuf) 1870 { 1871 struct adapter *adapter = netdev2adap(dev); 1872 1873 regs->version = mk_adap_vers(adapter); 1874 1875 /* 1876 * Fill in register buffer with our register map. 1877 */ 1878 memset(regbuf, 0, T4VF_REGMAP_SIZE); 1879 1880 reg_block_dump(adapter, regbuf, 1881 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST, 1882 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST); 1883 reg_block_dump(adapter, regbuf, 1884 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST, 1885 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST); 1886 1887 /* T5 adds new registers in the PL Register map. 1888 */ 1889 reg_block_dump(adapter, regbuf, 1890 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST, 1891 T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip) 1892 ? PL_VF_WHOAMI_A : PL_VF_REVISION_A)); 1893 reg_block_dump(adapter, regbuf, 1894 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST, 1895 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST); 1896 1897 reg_block_dump(adapter, regbuf, 1898 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST, 1899 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST); 1900 } 1901 1902 /* 1903 * Report current Wake On LAN settings. 1904 */ 1905 static void cxgb4vf_get_wol(struct net_device *dev, 1906 struct ethtool_wolinfo *wol) 1907 { 1908 wol->supported = 0; 1909 wol->wolopts = 0; 1910 memset(&wol->sopass, 0, sizeof(wol->sopass)); 1911 } 1912 1913 /* 1914 * TCP Segmentation Offload flags which we support. 1915 */ 1916 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1917 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 1918 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 1919 1920 static const struct ethtool_ops cxgb4vf_ethtool_ops = { 1921 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | 1922 ETHTOOL_COALESCE_RX_MAX_FRAMES, 1923 .get_link_ksettings = cxgb4vf_get_link_ksettings, 1924 .get_fecparam = cxgb4vf_get_fecparam, 1925 .get_drvinfo = cxgb4vf_get_drvinfo, 1926 .get_msglevel = cxgb4vf_get_msglevel, 1927 .set_msglevel = cxgb4vf_set_msglevel, 1928 .get_ringparam = cxgb4vf_get_ringparam, 1929 .set_ringparam = cxgb4vf_set_ringparam, 1930 .get_coalesce = cxgb4vf_get_coalesce, 1931 .set_coalesce = cxgb4vf_set_coalesce, 1932 .get_pauseparam = cxgb4vf_get_pauseparam, 1933 .get_link = ethtool_op_get_link, 1934 .get_strings = cxgb4vf_get_strings, 1935 .set_phys_id = cxgb4vf_phys_id, 1936 .get_sset_count = cxgb4vf_get_sset_count, 1937 .get_ethtool_stats = cxgb4vf_get_ethtool_stats, 1938 .get_regs_len = cxgb4vf_get_regs_len, 1939 .get_regs = cxgb4vf_get_regs, 1940 .get_wol = cxgb4vf_get_wol, 1941 }; 1942 1943 /* 1944 * /sys/kernel/debug/cxgb4vf support code and data. 1945 * ================================================ 1946 */ 1947 1948 /* 1949 * Show Firmware Mailbox Command/Reply Log 1950 * 1951 * Note that we don't do any locking when dumping the Firmware Mailbox Log so 1952 * it's possible that we can catch things during a log update and therefore 1953 * see partially corrupted log entries. But i9t's probably Good Enough(tm). 1954 * If we ever decide that we want to make sure that we're dumping a coherent 1955 * log, we'd need to perform locking in the mailbox logging and in 1956 * mboxlog_open() where we'd need to grab the entire mailbox log in one go 1957 * like we do for the Firmware Device Log. But as stated above, meh ... 1958 */ 1959 static int mboxlog_show(struct seq_file *seq, void *v) 1960 { 1961 struct adapter *adapter = seq->private; 1962 struct mbox_cmd_log *log = adapter->mbox_log; 1963 struct mbox_cmd *entry; 1964 int entry_idx, i; 1965 1966 if (v == SEQ_START_TOKEN) { 1967 seq_printf(seq, 1968 "%10s %15s %5s %5s %s\n", 1969 "Seq#", "Tstamp", "Atime", "Etime", 1970 "Command/Reply"); 1971 return 0; 1972 } 1973 1974 entry_idx = log->cursor + ((uintptr_t)v - 2); 1975 if (entry_idx >= log->size) 1976 entry_idx -= log->size; 1977 entry = mbox_cmd_log_entry(log, entry_idx); 1978 1979 /* skip over unused entries */ 1980 if (entry->timestamp == 0) 1981 return 0; 1982 1983 seq_printf(seq, "%10u %15llu %5d %5d", 1984 entry->seqno, entry->timestamp, 1985 entry->access, entry->execute); 1986 for (i = 0; i < MBOX_LEN / 8; i++) { 1987 u64 flit = entry->cmd[i]; 1988 u32 hi = (u32)(flit >> 32); 1989 u32 lo = (u32)flit; 1990 1991 seq_printf(seq, " %08x %08x", hi, lo); 1992 } 1993 seq_puts(seq, "\n"); 1994 return 0; 1995 } 1996 1997 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos) 1998 { 1999 struct adapter *adapter = seq->private; 2000 struct mbox_cmd_log *log = adapter->mbox_log; 2001 2002 return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL); 2003 } 2004 2005 static void *mboxlog_start(struct seq_file *seq, loff_t *pos) 2006 { 2007 return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN; 2008 } 2009 2010 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos) 2011 { 2012 ++*pos; 2013 return mboxlog_get_idx(seq, *pos); 2014 } 2015 2016 static void mboxlog_stop(struct seq_file *seq, void *v) 2017 { 2018 } 2019 2020 static const struct seq_operations mboxlog_seq_ops = { 2021 .start = mboxlog_start, 2022 .next = mboxlog_next, 2023 .stop = mboxlog_stop, 2024 .show = mboxlog_show 2025 }; 2026 2027 static int mboxlog_open(struct inode *inode, struct file *file) 2028 { 2029 int res = seq_open(file, &mboxlog_seq_ops); 2030 2031 if (!res) { 2032 struct seq_file *seq = file->private_data; 2033 2034 seq->private = inode->i_private; 2035 } 2036 return res; 2037 } 2038 2039 static const struct file_operations mboxlog_fops = { 2040 .owner = THIS_MODULE, 2041 .open = mboxlog_open, 2042 .read = seq_read, 2043 .llseek = seq_lseek, 2044 .release = seq_release, 2045 }; 2046 2047 /* 2048 * Show SGE Queue Set information. We display QPL Queues Sets per line. 2049 */ 2050 #define QPL 4 2051 2052 static int sge_qinfo_show(struct seq_file *seq, void *v) 2053 { 2054 struct adapter *adapter = seq->private; 2055 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2056 int qs, r = (uintptr_t)v - 1; 2057 2058 if (r) 2059 seq_putc(seq, '\n'); 2060 2061 #define S3(fmt_spec, s, v) \ 2062 do {\ 2063 seq_printf(seq, "%-12s", s); \ 2064 for (qs = 0; qs < n; ++qs) \ 2065 seq_printf(seq, " %16" fmt_spec, v); \ 2066 seq_putc(seq, '\n'); \ 2067 } while (0) 2068 #define S(s, v) S3("s", s, v) 2069 #define T(s, v) S3("u", s, txq[qs].v) 2070 #define R(s, v) S3("u", s, rxq[qs].v) 2071 2072 if (r < eth_entries) { 2073 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2074 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2075 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2076 2077 S("QType:", "Ethernet"); 2078 S("Interface:", 2079 (rxq[qs].rspq.netdev 2080 ? rxq[qs].rspq.netdev->name 2081 : "N/A")); 2082 S3("d", "Port:", 2083 (rxq[qs].rspq.netdev 2084 ? ((struct port_info *) 2085 netdev_priv(rxq[qs].rspq.netdev))->port_id 2086 : -1)); 2087 T("TxQ ID:", q.abs_id); 2088 T("TxQ size:", q.size); 2089 T("TxQ inuse:", q.in_use); 2090 T("TxQ PIdx:", q.pidx); 2091 T("TxQ CIdx:", q.cidx); 2092 R("RspQ ID:", rspq.abs_id); 2093 R("RspQ size:", rspq.size); 2094 R("RspQE size:", rspq.iqe_len); 2095 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq)); 2096 S3("u", "Intr pktcnt:", 2097 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]); 2098 R("RspQ CIdx:", rspq.cidx); 2099 R("RspQ Gen:", rspq.gen); 2100 R("FL ID:", fl.abs_id); 2101 R("FL size:", fl.size - MIN_FL_RESID); 2102 R("FL avail:", fl.avail); 2103 R("FL PIdx:", fl.pidx); 2104 R("FL CIdx:", fl.cidx); 2105 return 0; 2106 } 2107 2108 r -= eth_entries; 2109 if (r == 0) { 2110 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2111 2112 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue"); 2113 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id); 2114 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2115 qtimer_val(adapter, evtq)); 2116 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2117 adapter->sge.counter_val[evtq->pktcnt_idx]); 2118 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx); 2119 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen); 2120 } else if (r == 1) { 2121 const struct sge_rspq *intrq = &adapter->sge.intrq; 2122 2123 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue"); 2124 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id); 2125 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2126 qtimer_val(adapter, intrq)); 2127 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2128 adapter->sge.counter_val[intrq->pktcnt_idx]); 2129 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx); 2130 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen); 2131 } 2132 2133 #undef R 2134 #undef T 2135 #undef S 2136 #undef S3 2137 2138 return 0; 2139 } 2140 2141 /* 2142 * Return the number of "entries" in our "file". We group the multi-Queue 2143 * sections with QPL Queue Sets per "entry". The sections of the output are: 2144 * 2145 * Ethernet RX/TX Queue Sets 2146 * Firmware Event Queue 2147 * Forwarded Interrupt Queue (if in MSI mode) 2148 */ 2149 static int sge_queue_entries(const struct adapter *adapter) 2150 { 2151 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2152 ((adapter->flags & CXGB4VF_USING_MSI) != 0); 2153 } 2154 2155 static void *sge_queue_start(struct seq_file *seq, loff_t *pos) 2156 { 2157 int entries = sge_queue_entries(seq->private); 2158 2159 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2160 } 2161 2162 static void sge_queue_stop(struct seq_file *seq, void *v) 2163 { 2164 } 2165 2166 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos) 2167 { 2168 int entries = sge_queue_entries(seq->private); 2169 2170 ++*pos; 2171 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2172 } 2173 2174 static const struct seq_operations sge_qinfo_seq_ops = { 2175 .start = sge_queue_start, 2176 .next = sge_queue_next, 2177 .stop = sge_queue_stop, 2178 .show = sge_qinfo_show 2179 }; 2180 2181 static int sge_qinfo_open(struct inode *inode, struct file *file) 2182 { 2183 int res = seq_open(file, &sge_qinfo_seq_ops); 2184 2185 if (!res) { 2186 struct seq_file *seq = file->private_data; 2187 seq->private = inode->i_private; 2188 } 2189 return res; 2190 } 2191 2192 static const struct file_operations sge_qinfo_debugfs_fops = { 2193 .owner = THIS_MODULE, 2194 .open = sge_qinfo_open, 2195 .read = seq_read, 2196 .llseek = seq_lseek, 2197 .release = seq_release, 2198 }; 2199 2200 /* 2201 * Show SGE Queue Set statistics. We display QPL Queues Sets per line. 2202 */ 2203 #define QPL 4 2204 2205 static int sge_qstats_show(struct seq_file *seq, void *v) 2206 { 2207 struct adapter *adapter = seq->private; 2208 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2209 int qs, r = (uintptr_t)v - 1; 2210 2211 if (r) 2212 seq_putc(seq, '\n'); 2213 2214 #define S3(fmt, s, v) \ 2215 do { \ 2216 seq_printf(seq, "%-16s", s); \ 2217 for (qs = 0; qs < n; ++qs) \ 2218 seq_printf(seq, " %8" fmt, v); \ 2219 seq_putc(seq, '\n'); \ 2220 } while (0) 2221 #define S(s, v) S3("s", s, v) 2222 2223 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v) 2224 #define T(s, v) T3("lu", s, v) 2225 2226 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v) 2227 #define R(s, v) R3("lu", s, v) 2228 2229 if (r < eth_entries) { 2230 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2231 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2232 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2233 2234 S("QType:", "Ethernet"); 2235 S("Interface:", 2236 (rxq[qs].rspq.netdev 2237 ? rxq[qs].rspq.netdev->name 2238 : "N/A")); 2239 R3("u", "RspQNullInts:", rspq.unhandled_irqs); 2240 R("RxPackets:", stats.pkts); 2241 R("RxCSO:", stats.rx_cso); 2242 R("VLANxtract:", stats.vlan_ex); 2243 R("LROmerged:", stats.lro_merged); 2244 R("LROpackets:", stats.lro_pkts); 2245 R("RxDrops:", stats.rx_drops); 2246 T("TSO:", tso); 2247 T("TxCSO:", tx_cso); 2248 T("VLANins:", vlan_ins); 2249 T("TxQFull:", q.stops); 2250 T("TxQRestarts:", q.restarts); 2251 T("TxMapErr:", mapping_err); 2252 R("FLAllocErr:", fl.alloc_failed); 2253 R("FLLrgAlcErr:", fl.large_alloc_failed); 2254 R("FLStarving:", fl.starving); 2255 return 0; 2256 } 2257 2258 r -= eth_entries; 2259 if (r == 0) { 2260 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2261 2262 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue"); 2263 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2264 evtq->unhandled_irqs); 2265 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx); 2266 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen); 2267 } else if (r == 1) { 2268 const struct sge_rspq *intrq = &adapter->sge.intrq; 2269 2270 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue"); 2271 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2272 intrq->unhandled_irqs); 2273 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx); 2274 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen); 2275 } 2276 2277 #undef R 2278 #undef T 2279 #undef S 2280 #undef R3 2281 #undef T3 2282 #undef S3 2283 2284 return 0; 2285 } 2286 2287 /* 2288 * Return the number of "entries" in our "file". We group the multi-Queue 2289 * sections with QPL Queue Sets per "entry". The sections of the output are: 2290 * 2291 * Ethernet RX/TX Queue Sets 2292 * Firmware Event Queue 2293 * Forwarded Interrupt Queue (if in MSI mode) 2294 */ 2295 static int sge_qstats_entries(const struct adapter *adapter) 2296 { 2297 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2298 ((adapter->flags & CXGB4VF_USING_MSI) != 0); 2299 } 2300 2301 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos) 2302 { 2303 int entries = sge_qstats_entries(seq->private); 2304 2305 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2306 } 2307 2308 static void sge_qstats_stop(struct seq_file *seq, void *v) 2309 { 2310 } 2311 2312 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos) 2313 { 2314 int entries = sge_qstats_entries(seq->private); 2315 2316 (*pos)++; 2317 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2318 } 2319 2320 static const struct seq_operations sge_qstats_seq_ops = { 2321 .start = sge_qstats_start, 2322 .next = sge_qstats_next, 2323 .stop = sge_qstats_stop, 2324 .show = sge_qstats_show 2325 }; 2326 2327 static int sge_qstats_open(struct inode *inode, struct file *file) 2328 { 2329 int res = seq_open(file, &sge_qstats_seq_ops); 2330 2331 if (res == 0) { 2332 struct seq_file *seq = file->private_data; 2333 seq->private = inode->i_private; 2334 } 2335 return res; 2336 } 2337 2338 static const struct file_operations sge_qstats_proc_fops = { 2339 .owner = THIS_MODULE, 2340 .open = sge_qstats_open, 2341 .read = seq_read, 2342 .llseek = seq_lseek, 2343 .release = seq_release, 2344 }; 2345 2346 /* 2347 * Show PCI-E SR-IOV Virtual Function Resource Limits. 2348 */ 2349 static int resources_show(struct seq_file *seq, void *v) 2350 { 2351 struct adapter *adapter = seq->private; 2352 struct vf_resources *vfres = &adapter->params.vfres; 2353 2354 #define S(desc, fmt, var) \ 2355 seq_printf(seq, "%-60s " fmt "\n", \ 2356 desc " (" #var "):", vfres->var) 2357 2358 S("Virtual Interfaces", "%d", nvi); 2359 S("Egress Queues", "%d", neq); 2360 S("Ethernet Control", "%d", nethctrl); 2361 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint); 2362 S("Ingress Queues", "%d", niq); 2363 S("Traffic Class", "%d", tc); 2364 S("Port Access Rights Mask", "%#x", pmask); 2365 S("MAC Address Filters", "%d", nexactf); 2366 S("Firmware Command Read Capabilities", "%#x", r_caps); 2367 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps); 2368 2369 #undef S 2370 2371 return 0; 2372 } 2373 DEFINE_SHOW_ATTRIBUTE(resources); 2374 2375 /* 2376 * Show Virtual Interfaces. 2377 */ 2378 static int interfaces_show(struct seq_file *seq, void *v) 2379 { 2380 if (v == SEQ_START_TOKEN) { 2381 seq_puts(seq, "Interface Port VIID\n"); 2382 } else { 2383 struct adapter *adapter = seq->private; 2384 int pidx = (uintptr_t)v - 2; 2385 struct net_device *dev = adapter->port[pidx]; 2386 struct port_info *pi = netdev_priv(dev); 2387 2388 seq_printf(seq, "%9s %4d %#5x\n", 2389 dev->name, pi->port_id, pi->viid); 2390 } 2391 return 0; 2392 } 2393 2394 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos) 2395 { 2396 return pos <= adapter->params.nports 2397 ? (void *)(uintptr_t)(pos + 1) 2398 : NULL; 2399 } 2400 2401 static void *interfaces_start(struct seq_file *seq, loff_t *pos) 2402 { 2403 return *pos 2404 ? interfaces_get_idx(seq->private, *pos) 2405 : SEQ_START_TOKEN; 2406 } 2407 2408 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos) 2409 { 2410 (*pos)++; 2411 return interfaces_get_idx(seq->private, *pos); 2412 } 2413 2414 static void interfaces_stop(struct seq_file *seq, void *v) 2415 { 2416 } 2417 2418 static const struct seq_operations interfaces_seq_ops = { 2419 .start = interfaces_start, 2420 .next = interfaces_next, 2421 .stop = interfaces_stop, 2422 .show = interfaces_show 2423 }; 2424 2425 static int interfaces_open(struct inode *inode, struct file *file) 2426 { 2427 int res = seq_open(file, &interfaces_seq_ops); 2428 2429 if (res == 0) { 2430 struct seq_file *seq = file->private_data; 2431 seq->private = inode->i_private; 2432 } 2433 return res; 2434 } 2435 2436 static const struct file_operations interfaces_proc_fops = { 2437 .owner = THIS_MODULE, 2438 .open = interfaces_open, 2439 .read = seq_read, 2440 .llseek = seq_lseek, 2441 .release = seq_release, 2442 }; 2443 2444 /* 2445 * /sys/kernel/debugfs/cxgb4vf/ files list. 2446 */ 2447 struct cxgb4vf_debugfs_entry { 2448 const char *name; /* name of debugfs node */ 2449 umode_t mode; /* file system mode */ 2450 const struct file_operations *fops; 2451 }; 2452 2453 static struct cxgb4vf_debugfs_entry debugfs_files[] = { 2454 { "mboxlog", 0444, &mboxlog_fops }, 2455 { "sge_qinfo", 0444, &sge_qinfo_debugfs_fops }, 2456 { "sge_qstats", 0444, &sge_qstats_proc_fops }, 2457 { "resources", 0444, &resources_fops }, 2458 { "interfaces", 0444, &interfaces_proc_fops }, 2459 }; 2460 2461 /* 2462 * Module and device initialization and cleanup code. 2463 * ================================================== 2464 */ 2465 2466 /* 2467 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the 2468 * directory (debugfs_root) has already been set up. 2469 */ 2470 static int setup_debugfs(struct adapter *adapter) 2471 { 2472 int i; 2473 2474 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2475 2476 /* 2477 * Debugfs support is best effort. 2478 */ 2479 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) 2480 debugfs_create_file(debugfs_files[i].name, 2481 debugfs_files[i].mode, 2482 adapter->debugfs_root, adapter, 2483 debugfs_files[i].fops); 2484 2485 return 0; 2486 } 2487 2488 /* 2489 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave 2490 * it to our caller to tear down the directory (debugfs_root). 2491 */ 2492 static void cleanup_debugfs(struct adapter *adapter) 2493 { 2494 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2495 2496 /* 2497 * Unlike our sister routine cleanup_proc(), we don't need to remove 2498 * individual entries because a call will be made to 2499 * debugfs_remove_recursive(). We just need to clean up any ancillary 2500 * persistent state. 2501 */ 2502 /* nothing to do */ 2503 } 2504 2505 /* Figure out how many Ports and Queue Sets we can support. This depends on 2506 * knowing our Virtual Function Resources and may be called a second time if 2507 * we fall back from MSI-X to MSI Interrupt Mode. 2508 */ 2509 static void size_nports_qsets(struct adapter *adapter) 2510 { 2511 struct vf_resources *vfres = &adapter->params.vfres; 2512 unsigned int ethqsets, pmask_nports; 2513 2514 /* The number of "ports" which we support is equal to the number of 2515 * Virtual Interfaces with which we've been provisioned. 2516 */ 2517 adapter->params.nports = vfres->nvi; 2518 if (adapter->params.nports > MAX_NPORTS) { 2519 dev_warn(adapter->pdev_dev, "only using %d of %d maximum" 2520 " allowed virtual interfaces\n", MAX_NPORTS, 2521 adapter->params.nports); 2522 adapter->params.nports = MAX_NPORTS; 2523 } 2524 2525 /* We may have been provisioned with more VIs than the number of 2526 * ports we're allowed to access (our Port Access Rights Mask). 2527 * This is obviously a configuration conflict but we don't want to 2528 * crash the kernel or anything silly just because of that. 2529 */ 2530 pmask_nports = hweight32(adapter->params.vfres.pmask); 2531 if (pmask_nports < adapter->params.nports) { 2532 dev_warn(adapter->pdev_dev, "only using %d of %d provisioned" 2533 " virtual interfaces; limited by Port Access Rights" 2534 " mask %#x\n", pmask_nports, adapter->params.nports, 2535 adapter->params.vfres.pmask); 2536 adapter->params.nports = pmask_nports; 2537 } 2538 2539 /* We need to reserve an Ingress Queue for the Asynchronous Firmware 2540 * Event Queue. And if we're using MSI Interrupts, we'll also need to 2541 * reserve an Ingress Queue for a Forwarded Interrupts. 2542 * 2543 * The rest of the FL/Intr-capable ingress queues will be matched up 2544 * one-for-one with Ethernet/Control egress queues in order to form 2545 * "Queue Sets" which will be aportioned between the "ports". For 2546 * each Queue Set, we'll need the ability to allocate two Egress 2547 * Contexts -- one for the Ingress Queue Free List and one for the TX 2548 * Ethernet Queue. 2549 * 2550 * Note that even if we're currently configured to use MSI-X 2551 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded 2552 * to MSI Interrupts if we can't get enough MSI-X Interrupts. If that 2553 * happens we'll need to adjust things later. 2554 */ 2555 ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI); 2556 if (vfres->nethctrl != ethqsets) 2557 ethqsets = min(vfres->nethctrl, ethqsets); 2558 if (vfres->neq < ethqsets*2) 2559 ethqsets = vfres->neq/2; 2560 if (ethqsets > MAX_ETH_QSETS) 2561 ethqsets = MAX_ETH_QSETS; 2562 adapter->sge.max_ethqsets = ethqsets; 2563 2564 if (adapter->sge.max_ethqsets < adapter->params.nports) { 2565 dev_warn(adapter->pdev_dev, "only using %d of %d available" 2566 " virtual interfaces (too few Queue Sets)\n", 2567 adapter->sge.max_ethqsets, adapter->params.nports); 2568 adapter->params.nports = adapter->sge.max_ethqsets; 2569 } 2570 } 2571 2572 /* 2573 * Perform early "adapter" initialization. This is where we discover what 2574 * adapter parameters we're going to be using and initialize basic adapter 2575 * hardware support. 2576 */ 2577 static int adap_init0(struct adapter *adapter) 2578 { 2579 struct sge_params *sge_params = &adapter->params.sge; 2580 struct sge *s = &adapter->sge; 2581 int err; 2582 u32 param, val = 0; 2583 2584 /* 2585 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux 2586 * 2.6.31 and later we can't call pci_reset_function() in order to 2587 * issue an FLR because of a self- deadlock on the device semaphore. 2588 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the 2589 * cases where they're needed -- for instance, some versions of KVM 2590 * fail to reset "Assigned Devices" when the VM reboots. Therefore we 2591 * use the firmware based reset in order to reset any per function 2592 * state. 2593 */ 2594 err = t4vf_fw_reset(adapter); 2595 if (err < 0) { 2596 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err); 2597 return err; 2598 } 2599 2600 /* 2601 * Grab basic operational parameters. These will predominantly have 2602 * been set up by the Physical Function Driver or will be hard coded 2603 * into the adapter. We just have to live with them ... Note that 2604 * we _must_ get our VPD parameters before our SGE parameters because 2605 * we need to know the adapter's core clock from the VPD in order to 2606 * properly decode the SGE Timer Values. 2607 */ 2608 err = t4vf_get_dev_params(adapter); 2609 if (err) { 2610 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2611 " device parameters: err=%d\n", err); 2612 return err; 2613 } 2614 err = t4vf_get_vpd_params(adapter); 2615 if (err) { 2616 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2617 " VPD parameters: err=%d\n", err); 2618 return err; 2619 } 2620 err = t4vf_get_sge_params(adapter); 2621 if (err) { 2622 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2623 " SGE parameters: err=%d\n", err); 2624 return err; 2625 } 2626 err = t4vf_get_rss_glb_config(adapter); 2627 if (err) { 2628 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2629 " RSS parameters: err=%d\n", err); 2630 return err; 2631 } 2632 if (adapter->params.rss.mode != 2633 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 2634 dev_err(adapter->pdev_dev, "unable to operate with global RSS" 2635 " mode %d\n", adapter->params.rss.mode); 2636 return -EINVAL; 2637 } 2638 err = t4vf_sge_init(adapter); 2639 if (err) { 2640 dev_err(adapter->pdev_dev, "unable to use adapter parameters:" 2641 " err=%d\n", err); 2642 return err; 2643 } 2644 2645 /* If we're running on newer firmware, let it know that we're 2646 * prepared to deal with encapsulated CPL messages. Older 2647 * firmware won't understand this and we'll just get 2648 * unencapsulated messages ... 2649 */ 2650 param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2651 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP); 2652 val = 1; 2653 (void) t4vf_set_params(adapter, 1, ¶m, &val); 2654 2655 /* 2656 * Retrieve our RX interrupt holdoff timer values and counter 2657 * threshold values from the SGE parameters. 2658 */ 2659 s->timer_val[0] = core_ticks_to_us(adapter, 2660 TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1)); 2661 s->timer_val[1] = core_ticks_to_us(adapter, 2662 TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1)); 2663 s->timer_val[2] = core_ticks_to_us(adapter, 2664 TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3)); 2665 s->timer_val[3] = core_ticks_to_us(adapter, 2666 TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3)); 2667 s->timer_val[4] = core_ticks_to_us(adapter, 2668 TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5)); 2669 s->timer_val[5] = core_ticks_to_us(adapter, 2670 TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5)); 2671 2672 s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold); 2673 s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold); 2674 s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold); 2675 s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold); 2676 2677 /* 2678 * Grab our Virtual Interface resource allocation, extract the 2679 * features that we're interested in and do a bit of sanity testing on 2680 * what we discover. 2681 */ 2682 err = t4vf_get_vfres(adapter); 2683 if (err) { 2684 dev_err(adapter->pdev_dev, "unable to get virtual interface" 2685 " resources: err=%d\n", err); 2686 return err; 2687 } 2688 2689 /* Check for various parameter sanity issues */ 2690 if (adapter->params.vfres.pmask == 0) { 2691 dev_err(adapter->pdev_dev, "no port access configured\n" 2692 "usable!\n"); 2693 return -EINVAL; 2694 } 2695 if (adapter->params.vfres.nvi == 0) { 2696 dev_err(adapter->pdev_dev, "no virtual interfaces configured/" 2697 "usable!\n"); 2698 return -EINVAL; 2699 } 2700 2701 /* Initialize nports and max_ethqsets now that we have our Virtual 2702 * Function Resources. 2703 */ 2704 size_nports_qsets(adapter); 2705 2706 adapter->flags |= CXGB4VF_FW_OK; 2707 return 0; 2708 } 2709 2710 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx, 2711 u8 pkt_cnt_idx, unsigned int size, 2712 unsigned int iqe_size) 2713 { 2714 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 2715 (pkt_cnt_idx < SGE_NCOUNTERS ? 2716 QINTR_CNT_EN_F : 0)); 2717 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS 2718 ? pkt_cnt_idx 2719 : 0); 2720 rspq->iqe_len = iqe_size; 2721 rspq->size = size; 2722 } 2723 2724 /* 2725 * Perform default configuration of DMA queues depending on the number and 2726 * type of ports we found and the number of available CPUs. Most settings can 2727 * be modified by the admin via ethtool and cxgbtool prior to the adapter 2728 * being brought up for the first time. 2729 */ 2730 static void cfg_queues(struct adapter *adapter) 2731 { 2732 struct sge *s = &adapter->sge; 2733 int q10g, n10g, qidx, pidx, qs; 2734 size_t iqe_size; 2735 2736 /* 2737 * We should not be called till we know how many Queue Sets we can 2738 * support. In particular, this means that we need to know what kind 2739 * of interrupts we'll be using ... 2740 */ 2741 BUG_ON((adapter->flags & 2742 (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0); 2743 2744 /* 2745 * Count the number of 10GbE Virtual Interfaces that we have. 2746 */ 2747 n10g = 0; 2748 for_each_port(adapter, pidx) 2749 n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg); 2750 2751 /* 2752 * We default to 1 queue per non-10G port and up to # of cores queues 2753 * per 10G port. 2754 */ 2755 if (n10g == 0) 2756 q10g = 0; 2757 else { 2758 int n1g = (adapter->params.nports - n10g); 2759 q10g = (adapter->sge.max_ethqsets - n1g) / n10g; 2760 if (q10g > num_online_cpus()) 2761 q10g = num_online_cpus(); 2762 } 2763 2764 /* 2765 * Allocate the "Queue Sets" to the various Virtual Interfaces. 2766 * The layout will be established in setup_sge_queues() when the 2767 * adapter is brough up for the first time. 2768 */ 2769 qidx = 0; 2770 for_each_port(adapter, pidx) { 2771 struct port_info *pi = adap2pinfo(adapter, pidx); 2772 2773 pi->first_qset = qidx; 2774 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 2775 qidx += pi->nqsets; 2776 } 2777 s->ethqsets = qidx; 2778 2779 /* 2780 * The Ingress Queue Entry Size for our various Response Queues needs 2781 * to be big enough to accommodate the largest message we can receive 2782 * from the chip/firmware; which is 64 bytes ... 2783 */ 2784 iqe_size = 64; 2785 2786 /* 2787 * Set up default Queue Set parameters ... Start off with the 2788 * shortest interrupt holdoff timer. 2789 */ 2790 for (qs = 0; qs < s->max_ethqsets; qs++) { 2791 struct sge_eth_rxq *rxq = &s->ethrxq[qs]; 2792 struct sge_eth_txq *txq = &s->ethtxq[qs]; 2793 2794 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size); 2795 rxq->fl.size = 72; 2796 txq->q.size = 1024; 2797 } 2798 2799 /* 2800 * The firmware event queue is used for link state changes and 2801 * notifications of TX DMA completions. 2802 */ 2803 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size); 2804 2805 /* 2806 * The forwarded interrupt queue is used when we're in MSI interrupt 2807 * mode. In this mode all interrupts associated with RX queues will 2808 * be forwarded to a single queue which we'll associate with our MSI 2809 * interrupt vector. The messages dropped in the forwarded interrupt 2810 * queue will indicate which ingress queue needs servicing ... This 2811 * queue needs to be large enough to accommodate all of the ingress 2812 * queues which are forwarding their interrupt (+1 to prevent the PIDX 2813 * from equalling the CIDX if every ingress queue has an outstanding 2814 * interrupt). The queue doesn't need to be any larger because no 2815 * ingress queue will ever have more than one outstanding interrupt at 2816 * any time ... 2817 */ 2818 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1, 2819 iqe_size); 2820 } 2821 2822 /* 2823 * Reduce the number of Ethernet queues across all ports to at most n. 2824 * n provides at least one queue per port. 2825 */ 2826 static void reduce_ethqs(struct adapter *adapter, int n) 2827 { 2828 int i; 2829 struct port_info *pi; 2830 2831 /* 2832 * While we have too many active Ether Queue Sets, interate across the 2833 * "ports" and reduce their individual Queue Set allocations. 2834 */ 2835 BUG_ON(n < adapter->params.nports); 2836 while (n < adapter->sge.ethqsets) 2837 for_each_port(adapter, i) { 2838 pi = adap2pinfo(adapter, i); 2839 if (pi->nqsets > 1) { 2840 pi->nqsets--; 2841 adapter->sge.ethqsets--; 2842 if (adapter->sge.ethqsets <= n) 2843 break; 2844 } 2845 } 2846 2847 /* 2848 * Reassign the starting Queue Sets for each of the "ports" ... 2849 */ 2850 n = 0; 2851 for_each_port(adapter, i) { 2852 pi = adap2pinfo(adapter, i); 2853 pi->first_qset = n; 2854 n += pi->nqsets; 2855 } 2856 } 2857 2858 /* 2859 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally 2860 * we get a separate MSI-X vector for every "Queue Set" plus any extras we 2861 * need. Minimally we need one for every Virtual Interface plus those needed 2862 * for our "extras". Note that this process may lower the maximum number of 2863 * allowed Queue Sets ... 2864 */ 2865 static int enable_msix(struct adapter *adapter) 2866 { 2867 int i, want, need, nqsets; 2868 struct msix_entry entries[MSIX_ENTRIES]; 2869 struct sge *s = &adapter->sge; 2870 2871 for (i = 0; i < MSIX_ENTRIES; ++i) 2872 entries[i].entry = i; 2873 2874 /* 2875 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets" 2876 * plus those needed for our "extras" (for example, the firmware 2877 * message queue). We _need_ at least one "Queue Set" per Virtual 2878 * Interface plus those needed for our "extras". So now we get to see 2879 * if the song is right ... 2880 */ 2881 want = s->max_ethqsets + MSIX_EXTRAS; 2882 need = adapter->params.nports + MSIX_EXTRAS; 2883 2884 want = pci_enable_msix_range(adapter->pdev, entries, need, want); 2885 if (want < 0) 2886 return want; 2887 2888 nqsets = want - MSIX_EXTRAS; 2889 if (nqsets < s->max_ethqsets) { 2890 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors" 2891 " for %d Queue Sets\n", nqsets); 2892 s->max_ethqsets = nqsets; 2893 if (nqsets < s->ethqsets) 2894 reduce_ethqs(adapter, nqsets); 2895 } 2896 for (i = 0; i < want; ++i) 2897 adapter->msix_info[i].vec = entries[i].vector; 2898 2899 return 0; 2900 } 2901 2902 static const struct net_device_ops cxgb4vf_netdev_ops = { 2903 .ndo_open = cxgb4vf_open, 2904 .ndo_stop = cxgb4vf_stop, 2905 .ndo_start_xmit = t4vf_eth_xmit, 2906 .ndo_get_stats = cxgb4vf_get_stats, 2907 .ndo_set_rx_mode = cxgb4vf_set_rxmode, 2908 .ndo_set_mac_address = cxgb4vf_set_mac_addr, 2909 .ndo_validate_addr = eth_validate_addr, 2910 .ndo_do_ioctl = cxgb4vf_do_ioctl, 2911 .ndo_change_mtu = cxgb4vf_change_mtu, 2912 .ndo_fix_features = cxgb4vf_fix_features, 2913 .ndo_set_features = cxgb4vf_set_features, 2914 #ifdef CONFIG_NET_POLL_CONTROLLER 2915 .ndo_poll_controller = cxgb4vf_poll_controller, 2916 #endif 2917 }; 2918 2919 /** 2920 * cxgb4vf_get_port_mask - Get port mask for the VF based on mac 2921 * address stored on the adapter 2922 * @adapter: The adapter 2923 * 2924 * Find the the port mask for the VF based on the index of mac 2925 * address stored in the adapter. If no mac address is stored on 2926 * the adapter for the VF, use the port mask received from the 2927 * firmware. 2928 */ 2929 static unsigned int cxgb4vf_get_port_mask(struct adapter *adapter) 2930 { 2931 unsigned int naddr = 1, pidx = 0; 2932 unsigned int pmask, rmask = 0; 2933 u8 mac[ETH_ALEN]; 2934 int err; 2935 2936 pmask = adapter->params.vfres.pmask; 2937 while (pmask) { 2938 if (pmask & 1) { 2939 err = t4vf_get_vf_mac_acl(adapter, pidx, &naddr, mac); 2940 if (!err && !is_zero_ether_addr(mac)) 2941 rmask |= (1 << pidx); 2942 } 2943 pmask >>= 1; 2944 pidx++; 2945 } 2946 if (!rmask) 2947 rmask = adapter->params.vfres.pmask; 2948 2949 return rmask; 2950 } 2951 2952 /* 2953 * "Probe" a device: initialize a device and construct all kernel and driver 2954 * state needed to manage the device. This routine is called "init_one" in 2955 * the PF Driver ... 2956 */ 2957 static int cxgb4vf_pci_probe(struct pci_dev *pdev, 2958 const struct pci_device_id *ent) 2959 { 2960 struct adapter *adapter; 2961 struct net_device *netdev; 2962 struct port_info *pi; 2963 unsigned int pmask; 2964 int pci_using_dac; 2965 int err, pidx; 2966 2967 /* 2968 * Initialize generic PCI device state. 2969 */ 2970 err = pci_enable_device(pdev); 2971 if (err) { 2972 dev_err(&pdev->dev, "cannot enable PCI device\n"); 2973 return err; 2974 } 2975 2976 /* 2977 * Reserve PCI resources for the device. If we can't get them some 2978 * other driver may have already claimed the device ... 2979 */ 2980 err = pci_request_regions(pdev, KBUILD_MODNAME); 2981 if (err) { 2982 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 2983 goto err_disable_device; 2984 } 2985 2986 /* 2987 * Set up our DMA mask: try for 64-bit address masking first and 2988 * fall back to 32-bit if we can't get 64 bits ... 2989 */ 2990 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 2991 if (err == 0) { 2992 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 2993 if (err) { 2994 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for" 2995 " coherent allocations\n"); 2996 goto err_release_regions; 2997 } 2998 pci_using_dac = 1; 2999 } else { 3000 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 3001 if (err != 0) { 3002 dev_err(&pdev->dev, "no usable DMA configuration\n"); 3003 goto err_release_regions; 3004 } 3005 pci_using_dac = 0; 3006 } 3007 3008 /* 3009 * Enable bus mastering for the device ... 3010 */ 3011 pci_set_master(pdev); 3012 3013 /* 3014 * Allocate our adapter data structure and attach it to the device. 3015 */ 3016 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 3017 if (!adapter) { 3018 err = -ENOMEM; 3019 goto err_release_regions; 3020 } 3021 pci_set_drvdata(pdev, adapter); 3022 adapter->pdev = pdev; 3023 adapter->pdev_dev = &pdev->dev; 3024 3025 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 3026 (sizeof(struct mbox_cmd) * 3027 T4VF_OS_LOG_MBOX_CMDS), 3028 GFP_KERNEL); 3029 if (!adapter->mbox_log) { 3030 err = -ENOMEM; 3031 goto err_free_adapter; 3032 } 3033 adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS; 3034 3035 /* 3036 * Initialize SMP data synchronization resources. 3037 */ 3038 spin_lock_init(&adapter->stats_lock); 3039 spin_lock_init(&adapter->mbox_lock); 3040 INIT_LIST_HEAD(&adapter->mlist.list); 3041 3042 /* 3043 * Map our I/O registers in BAR0. 3044 */ 3045 adapter->regs = pci_ioremap_bar(pdev, 0); 3046 if (!adapter->regs) { 3047 dev_err(&pdev->dev, "cannot map device registers\n"); 3048 err = -ENOMEM; 3049 goto err_free_adapter; 3050 } 3051 3052 /* Wait for the device to become ready before proceeding ... 3053 */ 3054 err = t4vf_prep_adapter(adapter); 3055 if (err) { 3056 dev_err(adapter->pdev_dev, "device didn't become ready:" 3057 " err=%d\n", err); 3058 goto err_unmap_bar0; 3059 } 3060 3061 /* For T5 and later we want to use the new BAR-based User Doorbells, 3062 * so we need to map BAR2 here ... 3063 */ 3064 if (!is_t4(adapter->params.chip)) { 3065 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 3066 pci_resource_len(pdev, 2)); 3067 if (!adapter->bar2) { 3068 dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n"); 3069 err = -ENOMEM; 3070 goto err_unmap_bar0; 3071 } 3072 } 3073 /* 3074 * Initialize adapter level features. 3075 */ 3076 adapter->name = pci_name(pdev); 3077 adapter->msg_enable = DFLT_MSG_ENABLE; 3078 3079 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 3080 * Ingress Packet Data to Free List Buffers in order to allow for 3081 * chipset performance optimizations between the Root Complex and 3082 * Memory Controllers. (Messages to the associated Ingress Queue 3083 * notifying new Packet Placement in the Free Lists Buffers will be 3084 * send without the Relaxed Ordering Attribute thus guaranteeing that 3085 * all preceding PCIe Transaction Layer Packets will be processed 3086 * first.) But some Root Complexes have various issues with Upstream 3087 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 3088 * The PCIe devices which under the Root Complexes will be cleared the 3089 * Relaxed Ordering bit in the configuration space, So we check our 3090 * PCIe configuration space to see if it's flagged with advice against 3091 * using Relaxed Ordering. 3092 */ 3093 if (!pcie_relaxed_ordering_enabled(pdev)) 3094 adapter->flags |= CXGB4VF_ROOT_NO_RELAXED_ORDERING; 3095 3096 err = adap_init0(adapter); 3097 if (err) 3098 dev_err(&pdev->dev, 3099 "Adapter initialization failed, error %d. Continuing in debug mode\n", 3100 err); 3101 3102 /* Initialize hash mac addr list */ 3103 INIT_LIST_HEAD(&adapter->mac_hlist); 3104 3105 /* 3106 * Allocate our "adapter ports" and stitch everything together. 3107 */ 3108 pmask = cxgb4vf_get_port_mask(adapter); 3109 for_each_port(adapter, pidx) { 3110 int port_id, viid; 3111 u8 mac[ETH_ALEN]; 3112 unsigned int naddr = 1; 3113 3114 /* 3115 * We simplistically allocate our virtual interfaces 3116 * sequentially across the port numbers to which we have 3117 * access rights. This should be configurable in some manner 3118 * ... 3119 */ 3120 if (pmask == 0) 3121 break; 3122 port_id = ffs(pmask) - 1; 3123 pmask &= ~(1 << port_id); 3124 3125 /* 3126 * Allocate our network device and stitch things together. 3127 */ 3128 netdev = alloc_etherdev_mq(sizeof(struct port_info), 3129 MAX_PORT_QSETS); 3130 if (netdev == NULL) { 3131 err = -ENOMEM; 3132 goto err_free_dev; 3133 } 3134 adapter->port[pidx] = netdev; 3135 SET_NETDEV_DEV(netdev, &pdev->dev); 3136 pi = netdev_priv(netdev); 3137 pi->adapter = adapter; 3138 pi->pidx = pidx; 3139 pi->port_id = port_id; 3140 3141 /* 3142 * Initialize the starting state of our "port" and register 3143 * it. 3144 */ 3145 pi->xact_addr_filt = -1; 3146 netdev->irq = pdev->irq; 3147 3148 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | NETIF_F_GRO | 3149 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM | 3150 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 3151 netdev->features = netdev->hw_features; 3152 if (pci_using_dac) 3153 netdev->features |= NETIF_F_HIGHDMA; 3154 netdev->vlan_features = netdev->features & VLAN_FEAT; 3155 3156 netdev->priv_flags |= IFF_UNICAST_FLT; 3157 netdev->min_mtu = 81; 3158 netdev->max_mtu = ETH_MAX_MTU; 3159 3160 netdev->netdev_ops = &cxgb4vf_netdev_ops; 3161 netdev->ethtool_ops = &cxgb4vf_ethtool_ops; 3162 netdev->dev_port = pi->port_id; 3163 3164 /* 3165 * If we haven't been able to contact the firmware, there's 3166 * nothing else we can do for this "port" ... 3167 */ 3168 if (!(adapter->flags & CXGB4VF_FW_OK)) 3169 continue; 3170 3171 viid = t4vf_alloc_vi(adapter, port_id); 3172 if (viid < 0) { 3173 dev_err(&pdev->dev, 3174 "cannot allocate VI for port %d: err=%d\n", 3175 port_id, viid); 3176 err = viid; 3177 goto err_free_dev; 3178 } 3179 pi->viid = viid; 3180 3181 /* 3182 * Initialize the hardware/software state for the port. 3183 */ 3184 err = t4vf_port_init(adapter, pidx); 3185 if (err) { 3186 dev_err(&pdev->dev, "cannot initialize port %d\n", 3187 pidx); 3188 goto err_free_dev; 3189 } 3190 3191 err = t4vf_get_vf_mac_acl(adapter, port_id, &naddr, mac); 3192 if (err) { 3193 dev_err(&pdev->dev, 3194 "unable to determine MAC ACL address, " 3195 "continuing anyway.. (status %d)\n", err); 3196 } else if (naddr && adapter->params.vfres.nvi == 1) { 3197 struct sockaddr addr; 3198 3199 ether_addr_copy(addr.sa_data, mac); 3200 err = cxgb4vf_set_mac_addr(netdev, &addr); 3201 if (err) { 3202 dev_err(&pdev->dev, 3203 "unable to set MAC address %pM\n", 3204 mac); 3205 goto err_free_dev; 3206 } 3207 dev_info(&pdev->dev, 3208 "Using assigned MAC ACL: %pM\n", mac); 3209 } 3210 } 3211 3212 /* See what interrupts we'll be using. If we've been configured to 3213 * use MSI-X interrupts, try to enable them but fall back to using 3214 * MSI interrupts if we can't enable MSI-X interrupts. If we can't 3215 * get MSI interrupts we bail with the error. 3216 */ 3217 if (msi == MSI_MSIX && enable_msix(adapter) == 0) 3218 adapter->flags |= CXGB4VF_USING_MSIX; 3219 else { 3220 if (msi == MSI_MSIX) { 3221 dev_info(adapter->pdev_dev, 3222 "Unable to use MSI-X Interrupts; falling " 3223 "back to MSI Interrupts\n"); 3224 3225 /* We're going to need a Forwarded Interrupt Queue so 3226 * that may cut into how many Queue Sets we can 3227 * support. 3228 */ 3229 msi = MSI_MSI; 3230 size_nports_qsets(adapter); 3231 } 3232 err = pci_enable_msi(pdev); 3233 if (err) { 3234 dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;" 3235 " err=%d\n", err); 3236 goto err_free_dev; 3237 } 3238 adapter->flags |= CXGB4VF_USING_MSI; 3239 } 3240 3241 /* Now that we know how many "ports" we have and what interrupt 3242 * mechanism we're going to use, we can configure our queue resources. 3243 */ 3244 cfg_queues(adapter); 3245 3246 /* 3247 * The "card" is now ready to go. If any errors occur during device 3248 * registration we do not fail the whole "card" but rather proceed 3249 * only with the ports we manage to register successfully. However we 3250 * must register at least one net device. 3251 */ 3252 for_each_port(adapter, pidx) { 3253 struct port_info *pi = netdev_priv(adapter->port[pidx]); 3254 netdev = adapter->port[pidx]; 3255 if (netdev == NULL) 3256 continue; 3257 3258 netif_set_real_num_tx_queues(netdev, pi->nqsets); 3259 netif_set_real_num_rx_queues(netdev, pi->nqsets); 3260 3261 err = register_netdev(netdev); 3262 if (err) { 3263 dev_warn(&pdev->dev, "cannot register net device %s," 3264 " skipping\n", netdev->name); 3265 continue; 3266 } 3267 3268 netif_carrier_off(netdev); 3269 set_bit(pidx, &adapter->registered_device_map); 3270 } 3271 if (adapter->registered_device_map == 0) { 3272 dev_err(&pdev->dev, "could not register any net devices\n"); 3273 goto err_disable_interrupts; 3274 } 3275 3276 /* 3277 * Set up our debugfs entries. 3278 */ 3279 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) { 3280 adapter->debugfs_root = 3281 debugfs_create_dir(pci_name(pdev), 3282 cxgb4vf_debugfs_root); 3283 setup_debugfs(adapter); 3284 } 3285 3286 /* 3287 * Print a short notice on the existence and configuration of the new 3288 * VF network device ... 3289 */ 3290 for_each_port(adapter, pidx) { 3291 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n", 3292 adapter->port[pidx]->name, 3293 (adapter->flags & CXGB4VF_USING_MSIX) ? "MSI-X" : 3294 (adapter->flags & CXGB4VF_USING_MSI) ? "MSI" : ""); 3295 } 3296 3297 /* 3298 * Return success! 3299 */ 3300 return 0; 3301 3302 /* 3303 * Error recovery and exit code. Unwind state that's been created 3304 * so far and return the error. 3305 */ 3306 err_disable_interrupts: 3307 if (adapter->flags & CXGB4VF_USING_MSIX) { 3308 pci_disable_msix(adapter->pdev); 3309 adapter->flags &= ~CXGB4VF_USING_MSIX; 3310 } else if (adapter->flags & CXGB4VF_USING_MSI) { 3311 pci_disable_msi(adapter->pdev); 3312 adapter->flags &= ~CXGB4VF_USING_MSI; 3313 } 3314 3315 err_free_dev: 3316 for_each_port(adapter, pidx) { 3317 netdev = adapter->port[pidx]; 3318 if (netdev == NULL) 3319 continue; 3320 pi = netdev_priv(netdev); 3321 if (pi->viid) 3322 t4vf_free_vi(adapter, pi->viid); 3323 if (test_bit(pidx, &adapter->registered_device_map)) 3324 unregister_netdev(netdev); 3325 free_netdev(netdev); 3326 } 3327 3328 if (!is_t4(adapter->params.chip)) 3329 iounmap(adapter->bar2); 3330 3331 err_unmap_bar0: 3332 iounmap(adapter->regs); 3333 3334 err_free_adapter: 3335 kfree(adapter->mbox_log); 3336 kfree(adapter); 3337 3338 err_release_regions: 3339 pci_release_regions(pdev); 3340 pci_clear_master(pdev); 3341 3342 err_disable_device: 3343 pci_disable_device(pdev); 3344 3345 return err; 3346 } 3347 3348 /* 3349 * "Remove" a device: tear down all kernel and driver state created in the 3350 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note 3351 * that this is called "remove_one" in the PF Driver.) 3352 */ 3353 static void cxgb4vf_pci_remove(struct pci_dev *pdev) 3354 { 3355 struct adapter *adapter = pci_get_drvdata(pdev); 3356 struct hash_mac_addr *entry, *tmp; 3357 3358 /* 3359 * Tear down driver state associated with device. 3360 */ 3361 if (adapter) { 3362 int pidx; 3363 3364 /* 3365 * Stop all of our activity. Unregister network port, 3366 * disable interrupts, etc. 3367 */ 3368 for_each_port(adapter, pidx) 3369 if (test_bit(pidx, &adapter->registered_device_map)) 3370 unregister_netdev(adapter->port[pidx]); 3371 t4vf_sge_stop(adapter); 3372 if (adapter->flags & CXGB4VF_USING_MSIX) { 3373 pci_disable_msix(adapter->pdev); 3374 adapter->flags &= ~CXGB4VF_USING_MSIX; 3375 } else if (adapter->flags & CXGB4VF_USING_MSI) { 3376 pci_disable_msi(adapter->pdev); 3377 adapter->flags &= ~CXGB4VF_USING_MSI; 3378 } 3379 3380 /* 3381 * Tear down our debugfs entries. 3382 */ 3383 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) { 3384 cleanup_debugfs(adapter); 3385 debugfs_remove_recursive(adapter->debugfs_root); 3386 } 3387 3388 /* 3389 * Free all of the various resources which we've acquired ... 3390 */ 3391 t4vf_free_sge_resources(adapter); 3392 for_each_port(adapter, pidx) { 3393 struct net_device *netdev = adapter->port[pidx]; 3394 struct port_info *pi; 3395 3396 if (netdev == NULL) 3397 continue; 3398 3399 pi = netdev_priv(netdev); 3400 if (pi->viid) 3401 t4vf_free_vi(adapter, pi->viid); 3402 free_netdev(netdev); 3403 } 3404 iounmap(adapter->regs); 3405 if (!is_t4(adapter->params.chip)) 3406 iounmap(adapter->bar2); 3407 kfree(adapter->mbox_log); 3408 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 3409 list) { 3410 list_del(&entry->list); 3411 kfree(entry); 3412 } 3413 kfree(adapter); 3414 } 3415 3416 /* 3417 * Disable the device and release its PCI resources. 3418 */ 3419 pci_disable_device(pdev); 3420 pci_clear_master(pdev); 3421 pci_release_regions(pdev); 3422 } 3423 3424 /* 3425 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt 3426 * delivery. 3427 */ 3428 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev) 3429 { 3430 struct adapter *adapter; 3431 int pidx; 3432 3433 adapter = pci_get_drvdata(pdev); 3434 if (!adapter) 3435 return; 3436 3437 /* Disable all Virtual Interfaces. This will shut down the 3438 * delivery of all ingress packets into the chip for these 3439 * Virtual Interfaces. 3440 */ 3441 for_each_port(adapter, pidx) 3442 if (test_bit(pidx, &adapter->registered_device_map)) 3443 unregister_netdev(adapter->port[pidx]); 3444 3445 /* Free up all Queues which will prevent further DMA and 3446 * Interrupts allowing various internal pathways to drain. 3447 */ 3448 t4vf_sge_stop(adapter); 3449 if (adapter->flags & CXGB4VF_USING_MSIX) { 3450 pci_disable_msix(adapter->pdev); 3451 adapter->flags &= ~CXGB4VF_USING_MSIX; 3452 } else if (adapter->flags & CXGB4VF_USING_MSI) { 3453 pci_disable_msi(adapter->pdev); 3454 adapter->flags &= ~CXGB4VF_USING_MSI; 3455 } 3456 3457 /* 3458 * Free up all Queues which will prevent further DMA and 3459 * Interrupts allowing various internal pathways to drain. 3460 */ 3461 t4vf_free_sge_resources(adapter); 3462 pci_set_drvdata(pdev, NULL); 3463 } 3464 3465 /* Macros needed to support the PCI Device ID Table ... 3466 */ 3467 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 3468 static const struct pci_device_id cxgb4vf_pci_tbl[] = { 3469 #define CH_PCI_DEVICE_ID_FUNCTION 0x8 3470 3471 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 3472 { PCI_VDEVICE(CHELSIO, (devid)), 0 } 3473 3474 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } } 3475 3476 #include "../cxgb4/t4_pci_id_tbl.h" 3477 3478 MODULE_DESCRIPTION(DRV_DESC); 3479 MODULE_AUTHOR("Chelsio Communications"); 3480 MODULE_LICENSE("Dual BSD/GPL"); 3481 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl); 3482 3483 static struct pci_driver cxgb4vf_driver = { 3484 .name = KBUILD_MODNAME, 3485 .id_table = cxgb4vf_pci_tbl, 3486 .probe = cxgb4vf_pci_probe, 3487 .remove = cxgb4vf_pci_remove, 3488 .shutdown = cxgb4vf_pci_shutdown, 3489 }; 3490 3491 /* 3492 * Initialize global driver state. 3493 */ 3494 static int __init cxgb4vf_module_init(void) 3495 { 3496 int ret; 3497 3498 /* 3499 * Vet our module parameters. 3500 */ 3501 if (msi != MSI_MSIX && msi != MSI_MSI) { 3502 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n", 3503 msi, MSI_MSIX, MSI_MSI); 3504 return -EINVAL; 3505 } 3506 3507 /* Debugfs support is optional, debugfs will warn if this fails */ 3508 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 3509 3510 ret = pci_register_driver(&cxgb4vf_driver); 3511 if (ret < 0) 3512 debugfs_remove(cxgb4vf_debugfs_root); 3513 return ret; 3514 } 3515 3516 /* 3517 * Tear down global driver state. 3518 */ 3519 static void __exit cxgb4vf_module_exit(void) 3520 { 3521 pci_unregister_driver(&cxgb4vf_driver); 3522 debugfs_remove(cxgb4vf_debugfs_root); 3523 } 3524 3525 module_init(cxgb4vf_module_init); 3526 module_exit(cxgb4vf_module_exit); 3527