1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/module.h> 39 #include <linux/moduleparam.h> 40 #include <linux/init.h> 41 #include <linux/pci.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/netdevice.h> 44 #include <linux/etherdevice.h> 45 #include <linux/debugfs.h> 46 #include <linux/ethtool.h> 47 #include <linux/mdio.h> 48 49 #include "t4vf_common.h" 50 #include "t4vf_defs.h" 51 52 #include "../cxgb4/t4_regs.h" 53 #include "../cxgb4/t4_msg.h" 54 55 /* 56 * Generic information about the driver. 57 */ 58 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver" 59 60 /* 61 * Module Parameters. 62 * ================== 63 */ 64 65 /* 66 * Default ethtool "message level" for adapters. 67 */ 68 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 69 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 70 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 71 72 /* 73 * The driver uses the best interrupt scheme available on a platform in the 74 * order MSI-X then MSI. This parameter determines which of these schemes the 75 * driver may consider as follows: 76 * 77 * msi = 2: choose from among MSI-X and MSI 78 * msi = 1: only consider MSI interrupts 79 * 80 * Note that unlike the Physical Function driver, this Virtual Function driver 81 * does _not_ support legacy INTx interrupts (this limitation is mandated by 82 * the PCI-E SR-IOV standard). 83 */ 84 #define MSI_MSIX 2 85 #define MSI_MSI 1 86 #define MSI_DEFAULT MSI_MSIX 87 88 static int msi = MSI_DEFAULT; 89 90 module_param(msi, int, 0644); 91 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI"); 92 93 /* 94 * Fundamental constants. 95 * ====================== 96 */ 97 98 enum { 99 MAX_TXQ_ENTRIES = 16384, 100 MAX_RSPQ_ENTRIES = 16384, 101 MAX_RX_BUFFERS = 16384, 102 103 MIN_TXQ_ENTRIES = 32, 104 MIN_RSPQ_ENTRIES = 128, 105 MIN_FL_ENTRIES = 16, 106 107 /* 108 * For purposes of manipulating the Free List size we need to 109 * recognize that Free Lists are actually Egress Queues (the host 110 * produces free buffers which the hardware consumes), Egress Queues 111 * indices are all in units of Egress Context Units bytes, and free 112 * list entries are 64-bit PCI DMA addresses. And since the state of 113 * the Producer Index == the Consumer Index implies an EMPTY list, we 114 * always have at least one Egress Unit's worth of Free List entries 115 * unused. See sge.c for more details ... 116 */ 117 EQ_UNIT = SGE_EQ_IDXSIZE, 118 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 119 MIN_FL_RESID = FL_PER_EQ_UNIT, 120 }; 121 122 /* 123 * Global driver state. 124 * ==================== 125 */ 126 127 static struct dentry *cxgb4vf_debugfs_root; 128 129 /* 130 * OS "Callback" functions. 131 * ======================== 132 */ 133 134 /* 135 * The link status has changed on the indicated "port" (Virtual Interface). 136 */ 137 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok) 138 { 139 struct net_device *dev = adapter->port[pidx]; 140 141 /* 142 * If the port is disabled or the current recorded "link up" 143 * status matches the new status, just return. 144 */ 145 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev)) 146 return; 147 148 /* 149 * Tell the OS that the link status has changed and print a short 150 * informative message on the console about the event. 151 */ 152 if (link_ok) { 153 const char *s; 154 const char *fc; 155 const struct port_info *pi = netdev_priv(dev); 156 157 netif_carrier_on(dev); 158 159 switch (pi->link_cfg.speed) { 160 case 100: 161 s = "100Mbps"; 162 break; 163 case 1000: 164 s = "1Gbps"; 165 break; 166 case 10000: 167 s = "10Gbps"; 168 break; 169 case 25000: 170 s = "25Gbps"; 171 break; 172 case 40000: 173 s = "40Gbps"; 174 break; 175 case 100000: 176 s = "100Gbps"; 177 break; 178 179 default: 180 s = "unknown"; 181 break; 182 } 183 184 switch ((int)pi->link_cfg.fc) { 185 case PAUSE_RX: 186 fc = "RX"; 187 break; 188 189 case PAUSE_TX: 190 fc = "TX"; 191 break; 192 193 case PAUSE_RX | PAUSE_TX: 194 fc = "RX/TX"; 195 break; 196 197 default: 198 fc = "no"; 199 break; 200 } 201 202 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc); 203 } else { 204 netif_carrier_off(dev); 205 netdev_info(dev, "link down\n"); 206 } 207 } 208 209 /* 210 * THe port module type has changed on the indicated "port" (Virtual 211 * Interface). 212 */ 213 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx) 214 { 215 static const char * const mod_str[] = { 216 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 217 }; 218 const struct net_device *dev = adapter->port[pidx]; 219 const struct port_info *pi = netdev_priv(dev); 220 221 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 222 dev_info(adapter->pdev_dev, "%s: port module unplugged\n", 223 dev->name); 224 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 225 dev_info(adapter->pdev_dev, "%s: %s port module inserted\n", 226 dev->name, mod_str[pi->mod_type]); 227 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 228 dev_info(adapter->pdev_dev, "%s: unsupported optical port " 229 "module inserted\n", dev->name); 230 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 231 dev_info(adapter->pdev_dev, "%s: unknown port module inserted," 232 "forcing TWINAX\n", dev->name); 233 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 234 dev_info(adapter->pdev_dev, "%s: transceiver module error\n", 235 dev->name); 236 else 237 dev_info(adapter->pdev_dev, "%s: unknown module type %d " 238 "inserted\n", dev->name, pi->mod_type); 239 } 240 241 static int cxgb4vf_set_addr_hash(struct port_info *pi) 242 { 243 struct adapter *adapter = pi->adapter; 244 u64 vec = 0; 245 bool ucast = false; 246 struct hash_mac_addr *entry; 247 248 /* Calculate the hash vector for the updated list and program it */ 249 list_for_each_entry(entry, &adapter->mac_hlist, list) { 250 ucast |= is_unicast_ether_addr(entry->addr); 251 vec |= (1ULL << hash_mac_addr(entry->addr)); 252 } 253 return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false); 254 } 255 256 /** 257 * cxgb4vf_change_mac - Update match filter for a MAC address. 258 * @pi: the port_info 259 * @viid: the VI id 260 * @tcam_idx: TCAM index of existing filter for old value of MAC address, 261 * or -1 262 * @addr: the new MAC address value 263 * @persist: whether a new MAC allocation should be persistent 264 * @add_smt: if true also add the address to the HW SMT 265 * 266 * Modifies an MPS filter and sets it to the new MAC address if 267 * @tcam_idx >= 0, or adds the MAC address to a new filter if 268 * @tcam_idx < 0. In the latter case the address is added persistently 269 * if @persist is %true. 270 * Addresses are programmed to hash region, if tcam runs out of entries. 271 * 272 */ 273 static int cxgb4vf_change_mac(struct port_info *pi, unsigned int viid, 274 int *tcam_idx, const u8 *addr, bool persistent) 275 { 276 struct hash_mac_addr *new_entry, *entry; 277 struct adapter *adapter = pi->adapter; 278 int ret; 279 280 ret = t4vf_change_mac(adapter, viid, *tcam_idx, addr, persistent); 281 /* We ran out of TCAM entries. try programming hash region. */ 282 if (ret == -ENOMEM) { 283 /* If the MAC address to be updated is in the hash addr 284 * list, update it from the list 285 */ 286 list_for_each_entry(entry, &adapter->mac_hlist, list) { 287 if (entry->iface_mac) { 288 ether_addr_copy(entry->addr, addr); 289 goto set_hash; 290 } 291 } 292 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL); 293 if (!new_entry) 294 return -ENOMEM; 295 ether_addr_copy(new_entry->addr, addr); 296 new_entry->iface_mac = true; 297 list_add_tail(&new_entry->list, &adapter->mac_hlist); 298 set_hash: 299 ret = cxgb4vf_set_addr_hash(pi); 300 } else if (ret >= 0) { 301 *tcam_idx = ret; 302 ret = 0; 303 } 304 305 return ret; 306 } 307 308 /* 309 * Net device operations. 310 * ====================== 311 */ 312 313 314 315 316 /* 317 * Perform the MAC and PHY actions needed to enable a "port" (Virtual 318 * Interface). 319 */ 320 static int link_start(struct net_device *dev) 321 { 322 int ret; 323 struct port_info *pi = netdev_priv(dev); 324 325 /* 326 * We do not set address filters and promiscuity here, the stack does 327 * that step explicitly. Enable vlan accel. 328 */ 329 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1, 330 true); 331 if (ret == 0) 332 ret = cxgb4vf_change_mac(pi, pi->viid, 333 &pi->xact_addr_filt, 334 dev->dev_addr, true); 335 336 /* 337 * We don't need to actually "start the link" itself since the 338 * firmware will do that for us when the first Virtual Interface 339 * is enabled on a port. 340 */ 341 if (ret == 0) 342 ret = t4vf_enable_pi(pi->adapter, pi, true, true); 343 344 return ret; 345 } 346 347 /* 348 * Name the MSI-X interrupts. 349 */ 350 static void name_msix_vecs(struct adapter *adapter) 351 { 352 int namelen = sizeof(adapter->msix_info[0].desc) - 1; 353 int pidx; 354 355 /* 356 * Firmware events. 357 */ 358 snprintf(adapter->msix_info[MSIX_FW].desc, namelen, 359 "%s-FWeventq", adapter->name); 360 adapter->msix_info[MSIX_FW].desc[namelen] = 0; 361 362 /* 363 * Ethernet queues. 364 */ 365 for_each_port(adapter, pidx) { 366 struct net_device *dev = adapter->port[pidx]; 367 const struct port_info *pi = netdev_priv(dev); 368 int qs, msi; 369 370 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) { 371 snprintf(adapter->msix_info[msi].desc, namelen, 372 "%s-%d", dev->name, qs); 373 adapter->msix_info[msi].desc[namelen] = 0; 374 } 375 } 376 } 377 378 /* 379 * Request all of our MSI-X resources. 380 */ 381 static int request_msix_queue_irqs(struct adapter *adapter) 382 { 383 struct sge *s = &adapter->sge; 384 int rxq, msi, err; 385 386 /* 387 * Firmware events. 388 */ 389 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix, 390 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq); 391 if (err) 392 return err; 393 394 /* 395 * Ethernet queues. 396 */ 397 msi = MSIX_IQFLINT; 398 for_each_ethrxq(s, rxq) { 399 err = request_irq(adapter->msix_info[msi].vec, 400 t4vf_sge_intr_msix, 0, 401 adapter->msix_info[msi].desc, 402 &s->ethrxq[rxq].rspq); 403 if (err) 404 goto err_free_irqs; 405 msi++; 406 } 407 return 0; 408 409 err_free_irqs: 410 while (--rxq >= 0) 411 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq); 412 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 413 return err; 414 } 415 416 /* 417 * Free our MSI-X resources. 418 */ 419 static void free_msix_queue_irqs(struct adapter *adapter) 420 { 421 struct sge *s = &adapter->sge; 422 int rxq, msi; 423 424 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 425 msi = MSIX_IQFLINT; 426 for_each_ethrxq(s, rxq) 427 free_irq(adapter->msix_info[msi++].vec, 428 &s->ethrxq[rxq].rspq); 429 } 430 431 /* 432 * Turn on NAPI and start up interrupts on a response queue. 433 */ 434 static void qenable(struct sge_rspq *rspq) 435 { 436 napi_enable(&rspq->napi); 437 438 /* 439 * 0-increment the Going To Sleep register to start the timer and 440 * enable interrupts. 441 */ 442 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 443 CIDXINC_V(0) | 444 SEINTARM_V(rspq->intr_params) | 445 INGRESSQID_V(rspq->cntxt_id)); 446 } 447 448 /* 449 * Enable NAPI scheduling and interrupt generation for all Receive Queues. 450 */ 451 static void enable_rx(struct adapter *adapter) 452 { 453 int rxq; 454 struct sge *s = &adapter->sge; 455 456 for_each_ethrxq(s, rxq) 457 qenable(&s->ethrxq[rxq].rspq); 458 qenable(&s->fw_evtq); 459 460 /* 461 * The interrupt queue doesn't use NAPI so we do the 0-increment of 462 * its Going To Sleep register here to get it started. 463 */ 464 if (adapter->flags & CXGB4VF_USING_MSI) 465 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 466 CIDXINC_V(0) | 467 SEINTARM_V(s->intrq.intr_params) | 468 INGRESSQID_V(s->intrq.cntxt_id)); 469 470 } 471 472 /* 473 * Wait until all NAPI handlers are descheduled. 474 */ 475 static void quiesce_rx(struct adapter *adapter) 476 { 477 struct sge *s = &adapter->sge; 478 int rxq; 479 480 for_each_ethrxq(s, rxq) 481 napi_disable(&s->ethrxq[rxq].rspq.napi); 482 napi_disable(&s->fw_evtq.napi); 483 } 484 485 /* 486 * Response queue handler for the firmware event queue. 487 */ 488 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp, 489 const struct pkt_gl *gl) 490 { 491 /* 492 * Extract response opcode and get pointer to CPL message body. 493 */ 494 struct adapter *adapter = rspq->adapter; 495 u8 opcode = ((const struct rss_header *)rsp)->opcode; 496 void *cpl = (void *)(rsp + 1); 497 498 switch (opcode) { 499 case CPL_FW6_MSG: { 500 /* 501 * We've received an asynchronous message from the firmware. 502 */ 503 const struct cpl_fw6_msg *fw_msg = cpl; 504 if (fw_msg->type == FW6_TYPE_CMD_RPL) 505 t4vf_handle_fw_rpl(adapter, fw_msg->data); 506 break; 507 } 508 509 case CPL_FW4_MSG: { 510 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 511 */ 512 const struct cpl_sge_egr_update *p = (void *)(rsp + 3); 513 opcode = CPL_OPCODE_G(ntohl(p->opcode_qid)); 514 if (opcode != CPL_SGE_EGR_UPDATE) { 515 dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 516 , opcode); 517 break; 518 } 519 cpl = (void *)p; 520 } 521 /* Fall through */ 522 523 case CPL_SGE_EGR_UPDATE: { 524 /* 525 * We've received an Egress Queue Status Update message. We 526 * get these, if the SGE is configured to send these when the 527 * firmware passes certain points in processing our TX 528 * Ethernet Queue or if we make an explicit request for one. 529 * We use these updates to determine when we may need to 530 * restart a TX Ethernet Queue which was stopped for lack of 531 * free TX Queue Descriptors ... 532 */ 533 const struct cpl_sge_egr_update *p = cpl; 534 unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid)); 535 struct sge *s = &adapter->sge; 536 struct sge_txq *tq; 537 struct sge_eth_txq *txq; 538 unsigned int eq_idx; 539 540 /* 541 * Perform sanity checking on the Queue ID to make sure it 542 * really refers to one of our TX Ethernet Egress Queues which 543 * is active and matches the queue's ID. None of these error 544 * conditions should ever happen so we may want to either make 545 * them fatal and/or conditionalized under DEBUG. 546 */ 547 eq_idx = EQ_IDX(s, qid); 548 if (unlikely(eq_idx >= MAX_EGRQ)) { 549 dev_err(adapter->pdev_dev, 550 "Egress Update QID %d out of range\n", qid); 551 break; 552 } 553 tq = s->egr_map[eq_idx]; 554 if (unlikely(tq == NULL)) { 555 dev_err(adapter->pdev_dev, 556 "Egress Update QID %d TXQ=NULL\n", qid); 557 break; 558 } 559 txq = container_of(tq, struct sge_eth_txq, q); 560 if (unlikely(tq->abs_id != qid)) { 561 dev_err(adapter->pdev_dev, 562 "Egress Update QID %d refers to TXQ %d\n", 563 qid, tq->abs_id); 564 break; 565 } 566 567 /* 568 * Restart a stopped TX Queue which has less than half of its 569 * TX ring in use ... 570 */ 571 txq->q.restarts++; 572 netif_tx_wake_queue(txq->txq); 573 break; 574 } 575 576 default: 577 dev_err(adapter->pdev_dev, 578 "unexpected CPL %#x on FW event queue\n", opcode); 579 } 580 581 return 0; 582 } 583 584 /* 585 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues 586 * to use and initializes them. We support multiple "Queue Sets" per port if 587 * we have MSI-X, otherwise just one queue set per port. 588 */ 589 static int setup_sge_queues(struct adapter *adapter) 590 { 591 struct sge *s = &adapter->sge; 592 int err, pidx, msix; 593 594 /* 595 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error 596 * state. 597 */ 598 bitmap_zero(s->starving_fl, MAX_EGRQ); 599 600 /* 601 * If we're using MSI interrupt mode we need to set up a "forwarded 602 * interrupt" queue which we'll set up with our MSI vector. The rest 603 * of the ingress queues will be set up to forward their interrupts to 604 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses 605 * the intrq's queue ID as the interrupt forwarding queue for the 606 * subsequent calls ... 607 */ 608 if (adapter->flags & CXGB4VF_USING_MSI) { 609 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false, 610 adapter->port[0], 0, NULL, NULL); 611 if (err) 612 goto err_free_queues; 613 } 614 615 /* 616 * Allocate our ingress queue for asynchronous firmware messages. 617 */ 618 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0], 619 MSIX_FW, NULL, fwevtq_handler); 620 if (err) 621 goto err_free_queues; 622 623 /* 624 * Allocate each "port"'s initial Queue Sets. These can be changed 625 * later on ... up to the point where any interface on the adapter is 626 * brought up at which point lots of things get nailed down 627 * permanently ... 628 */ 629 msix = MSIX_IQFLINT; 630 for_each_port(adapter, pidx) { 631 struct net_device *dev = adapter->port[pidx]; 632 struct port_info *pi = netdev_priv(dev); 633 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 634 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 635 int qs; 636 637 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 638 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false, 639 dev, msix++, 640 &rxq->fl, t4vf_ethrx_handler); 641 if (err) 642 goto err_free_queues; 643 644 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev, 645 netdev_get_tx_queue(dev, qs), 646 s->fw_evtq.cntxt_id); 647 if (err) 648 goto err_free_queues; 649 650 rxq->rspq.idx = qs; 651 memset(&rxq->stats, 0, sizeof(rxq->stats)); 652 } 653 } 654 655 /* 656 * Create the reverse mappings for the queues. 657 */ 658 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id; 659 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id; 660 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq; 661 for_each_port(adapter, pidx) { 662 struct net_device *dev = adapter->port[pidx]; 663 struct port_info *pi = netdev_priv(dev); 664 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 665 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 666 int qs; 667 668 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 669 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq; 670 EQ_MAP(s, txq->q.abs_id) = &txq->q; 671 672 /* 673 * The FW_IQ_CMD doesn't return the Absolute Queue IDs 674 * for Free Lists but since all of the Egress Queues 675 * (including Free Lists) have Relative Queue IDs 676 * which are computed as Absolute - Base Queue ID, we 677 * can synthesize the Absolute Queue IDs for the Free 678 * Lists. This is useful for debugging purposes when 679 * we want to dump Queue Contexts via the PF Driver. 680 */ 681 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base; 682 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl; 683 } 684 } 685 return 0; 686 687 err_free_queues: 688 t4vf_free_sge_resources(adapter); 689 return err; 690 } 691 692 /* 693 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive 694 * queues. We configure the RSS CPU lookup table to distribute to the number 695 * of HW receive queues, and the response queue lookup table to narrow that 696 * down to the response queues actually configured for each "port" (Virtual 697 * Interface). We always configure the RSS mapping for all ports since the 698 * mapping table has plenty of entries. 699 */ 700 static int setup_rss(struct adapter *adapter) 701 { 702 int pidx; 703 704 for_each_port(adapter, pidx) { 705 struct port_info *pi = adap2pinfo(adapter, pidx); 706 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 707 u16 rss[MAX_PORT_QSETS]; 708 int qs, err; 709 710 for (qs = 0; qs < pi->nqsets; qs++) 711 rss[qs] = rxq[qs].rspq.abs_id; 712 713 err = t4vf_config_rss_range(adapter, pi->viid, 714 0, pi->rss_size, rss, pi->nqsets); 715 if (err) 716 return err; 717 718 /* 719 * Perform Global RSS Mode-specific initialization. 720 */ 721 switch (adapter->params.rss.mode) { 722 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: 723 /* 724 * If Tunnel All Lookup isn't specified in the global 725 * RSS Configuration, then we need to specify a 726 * default Ingress Queue for any ingress packets which 727 * aren't hashed. We'll use our first ingress queue 728 * ... 729 */ 730 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) { 731 union rss_vi_config config; 732 err = t4vf_read_rss_vi_config(adapter, 733 pi->viid, 734 &config); 735 if (err) 736 return err; 737 config.basicvirtual.defaultq = 738 rxq[0].rspq.abs_id; 739 err = t4vf_write_rss_vi_config(adapter, 740 pi->viid, 741 &config); 742 if (err) 743 return err; 744 } 745 break; 746 } 747 } 748 749 return 0; 750 } 751 752 /* 753 * Bring the adapter up. Called whenever we go from no "ports" open to having 754 * one open. This function performs the actions necessary to make an adapter 755 * operational, such as completing the initialization of HW modules, and 756 * enabling interrupts. Must be called with the rtnl lock held. (Note that 757 * this is called "cxgb_up" in the PF Driver.) 758 */ 759 static int adapter_up(struct adapter *adapter) 760 { 761 int err; 762 763 /* 764 * If this is the first time we've been called, perform basic 765 * adapter setup. Once we've done this, many of our adapter 766 * parameters can no longer be changed ... 767 */ 768 if ((adapter->flags & CXGB4VF_FULL_INIT_DONE) == 0) { 769 err = setup_sge_queues(adapter); 770 if (err) 771 return err; 772 err = setup_rss(adapter); 773 if (err) { 774 t4vf_free_sge_resources(adapter); 775 return err; 776 } 777 778 if (adapter->flags & CXGB4VF_USING_MSIX) 779 name_msix_vecs(adapter); 780 781 adapter->flags |= CXGB4VF_FULL_INIT_DONE; 782 } 783 784 /* 785 * Acquire our interrupt resources. We only support MSI-X and MSI. 786 */ 787 BUG_ON((adapter->flags & 788 (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0); 789 if (adapter->flags & CXGB4VF_USING_MSIX) 790 err = request_msix_queue_irqs(adapter); 791 else 792 err = request_irq(adapter->pdev->irq, 793 t4vf_intr_handler(adapter), 0, 794 adapter->name, adapter); 795 if (err) { 796 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n", 797 err); 798 return err; 799 } 800 801 /* 802 * Enable NAPI ingress processing and return success. 803 */ 804 enable_rx(adapter); 805 t4vf_sge_start(adapter); 806 807 return 0; 808 } 809 810 /* 811 * Bring the adapter down. Called whenever the last "port" (Virtual 812 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF 813 * Driver.) 814 */ 815 static void adapter_down(struct adapter *adapter) 816 { 817 /* 818 * Free interrupt resources. 819 */ 820 if (adapter->flags & CXGB4VF_USING_MSIX) 821 free_msix_queue_irqs(adapter); 822 else 823 free_irq(adapter->pdev->irq, adapter); 824 825 /* 826 * Wait for NAPI handlers to finish. 827 */ 828 quiesce_rx(adapter); 829 } 830 831 /* 832 * Start up a net device. 833 */ 834 static int cxgb4vf_open(struct net_device *dev) 835 { 836 int err; 837 struct port_info *pi = netdev_priv(dev); 838 struct adapter *adapter = pi->adapter; 839 840 /* 841 * If we don't have a connection to the firmware there's nothing we 842 * can do. 843 */ 844 if (!(adapter->flags & CXGB4VF_FW_OK)) 845 return -ENXIO; 846 847 /* 848 * If this is the first interface that we're opening on the "adapter", 849 * bring the "adapter" up now. 850 */ 851 if (adapter->open_device_map == 0) { 852 err = adapter_up(adapter); 853 if (err) 854 return err; 855 } 856 857 /* It's possible that the basic port information could have 858 * changed since we first read it. 859 */ 860 err = t4vf_update_port_info(pi); 861 if (err < 0) 862 return err; 863 864 /* 865 * Note that this interface is up and start everything up ... 866 */ 867 err = link_start(dev); 868 if (err) 869 goto err_unwind; 870 871 pi->vlan_id = t4vf_get_vf_vlan_acl(adapter); 872 873 netif_tx_start_all_queues(dev); 874 set_bit(pi->port_id, &adapter->open_device_map); 875 return 0; 876 877 err_unwind: 878 if (adapter->open_device_map == 0) 879 adapter_down(adapter); 880 return err; 881 } 882 883 /* 884 * Shut down a net device. This routine is called "cxgb_close" in the PF 885 * Driver ... 886 */ 887 static int cxgb4vf_stop(struct net_device *dev) 888 { 889 struct port_info *pi = netdev_priv(dev); 890 struct adapter *adapter = pi->adapter; 891 892 netif_tx_stop_all_queues(dev); 893 netif_carrier_off(dev); 894 t4vf_enable_pi(adapter, pi, false, false); 895 896 clear_bit(pi->port_id, &adapter->open_device_map); 897 if (adapter->open_device_map == 0) 898 adapter_down(adapter); 899 return 0; 900 } 901 902 /* 903 * Translate our basic statistics into the standard "ifconfig" statistics. 904 */ 905 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev) 906 { 907 struct t4vf_port_stats stats; 908 struct port_info *pi = netdev2pinfo(dev); 909 struct adapter *adapter = pi->adapter; 910 struct net_device_stats *ns = &dev->stats; 911 int err; 912 913 spin_lock(&adapter->stats_lock); 914 err = t4vf_get_port_stats(adapter, pi->pidx, &stats); 915 spin_unlock(&adapter->stats_lock); 916 917 memset(ns, 0, sizeof(*ns)); 918 if (err) 919 return ns; 920 921 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes + 922 stats.tx_ucast_bytes + stats.tx_offload_bytes); 923 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames + 924 stats.tx_ucast_frames + stats.tx_offload_frames); 925 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes + 926 stats.rx_ucast_bytes); 927 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames + 928 stats.rx_ucast_frames); 929 ns->multicast = stats.rx_mcast_frames; 930 ns->tx_errors = stats.tx_drop_frames; 931 ns->rx_errors = stats.rx_err_frames; 932 933 return ns; 934 } 935 936 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr) 937 { 938 struct port_info *pi = netdev_priv(netdev); 939 struct adapter *adapter = pi->adapter; 940 int ret; 941 u64 mhash = 0; 942 u64 uhash = 0; 943 bool free = false; 944 bool ucast = is_unicast_ether_addr(mac_addr); 945 const u8 *maclist[1] = {mac_addr}; 946 struct hash_mac_addr *new_entry; 947 948 ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist, 949 NULL, ucast ? &uhash : &mhash, false); 950 if (ret < 0) 951 goto out; 952 /* if hash != 0, then add the addr to hash addr list 953 * so on the end we will calculate the hash for the 954 * list and program it 955 */ 956 if (uhash || mhash) { 957 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 958 if (!new_entry) 959 return -ENOMEM; 960 ether_addr_copy(new_entry->addr, mac_addr); 961 list_add_tail(&new_entry->list, &adapter->mac_hlist); 962 ret = cxgb4vf_set_addr_hash(pi); 963 } 964 out: 965 return ret < 0 ? ret : 0; 966 } 967 968 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 969 { 970 struct port_info *pi = netdev_priv(netdev); 971 struct adapter *adapter = pi->adapter; 972 int ret; 973 const u8 *maclist[1] = {mac_addr}; 974 struct hash_mac_addr *entry, *tmp; 975 976 /* If the MAC address to be removed is in the hash addr 977 * list, delete it from the list and update hash vector 978 */ 979 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) { 980 if (ether_addr_equal(entry->addr, mac_addr)) { 981 list_del(&entry->list); 982 kfree(entry); 983 return cxgb4vf_set_addr_hash(pi); 984 } 985 } 986 987 ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false); 988 return ret < 0 ? -EINVAL : 0; 989 } 990 991 /* 992 * Set RX properties of a port, such as promiscruity, address filters, and MTU. 993 * If @mtu is -1 it is left unchanged. 994 */ 995 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 996 { 997 struct port_info *pi = netdev_priv(dev); 998 999 __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 1000 __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 1001 return t4vf_set_rxmode(pi->adapter, pi->viid, -1, 1002 (dev->flags & IFF_PROMISC) != 0, 1003 (dev->flags & IFF_ALLMULTI) != 0, 1004 1, -1, sleep_ok); 1005 } 1006 1007 /* 1008 * Set the current receive modes on the device. 1009 */ 1010 static void cxgb4vf_set_rxmode(struct net_device *dev) 1011 { 1012 /* unfortunately we can't return errors to the stack */ 1013 set_rxmode(dev, -1, false); 1014 } 1015 1016 /* 1017 * Find the entry in the interrupt holdoff timer value array which comes 1018 * closest to the specified interrupt holdoff value. 1019 */ 1020 static int closest_timer(const struct sge *s, int us) 1021 { 1022 int i, timer_idx = 0, min_delta = INT_MAX; 1023 1024 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1025 int delta = us - s->timer_val[i]; 1026 if (delta < 0) 1027 delta = -delta; 1028 if (delta < min_delta) { 1029 min_delta = delta; 1030 timer_idx = i; 1031 } 1032 } 1033 return timer_idx; 1034 } 1035 1036 static int closest_thres(const struct sge *s, int thres) 1037 { 1038 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX; 1039 1040 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1041 delta = thres - s->counter_val[i]; 1042 if (delta < 0) 1043 delta = -delta; 1044 if (delta < min_delta) { 1045 min_delta = delta; 1046 pktcnt_idx = i; 1047 } 1048 } 1049 return pktcnt_idx; 1050 } 1051 1052 /* 1053 * Return a queue's interrupt hold-off time in us. 0 means no timer. 1054 */ 1055 static unsigned int qtimer_val(const struct adapter *adapter, 1056 const struct sge_rspq *rspq) 1057 { 1058 unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params); 1059 1060 return timer_idx < SGE_NTIMERS 1061 ? adapter->sge.timer_val[timer_idx] 1062 : 0; 1063 } 1064 1065 /** 1066 * set_rxq_intr_params - set a queue's interrupt holdoff parameters 1067 * @adapter: the adapter 1068 * @rspq: the RX response queue 1069 * @us: the hold-off time in us, or 0 to disable timer 1070 * @cnt: the hold-off packet count, or 0 to disable counter 1071 * 1072 * Sets an RX response queue's interrupt hold-off time and packet count. 1073 * At least one of the two needs to be enabled for the queue to generate 1074 * interrupts. 1075 */ 1076 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq, 1077 unsigned int us, unsigned int cnt) 1078 { 1079 unsigned int timer_idx; 1080 1081 /* 1082 * If both the interrupt holdoff timer and count are specified as 1083 * zero, default to a holdoff count of 1 ... 1084 */ 1085 if ((us | cnt) == 0) 1086 cnt = 1; 1087 1088 /* 1089 * If an interrupt holdoff count has been specified, then find the 1090 * closest configured holdoff count and use that. If the response 1091 * queue has already been created, then update its queue context 1092 * parameters ... 1093 */ 1094 if (cnt) { 1095 int err; 1096 u32 v, pktcnt_idx; 1097 1098 pktcnt_idx = closest_thres(&adapter->sge, cnt); 1099 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) { 1100 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1101 FW_PARAMS_PARAM_X_V( 1102 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1103 FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id); 1104 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx); 1105 if (err) 1106 return err; 1107 } 1108 rspq->pktcnt_idx = pktcnt_idx; 1109 } 1110 1111 /* 1112 * Compute the closest holdoff timer index from the supplied holdoff 1113 * timer value. 1114 */ 1115 timer_idx = (us == 0 1116 ? SGE_TIMER_RSTRT_CNTR 1117 : closest_timer(&adapter->sge, us)); 1118 1119 /* 1120 * Update the response queue's interrupt coalescing parameters and 1121 * return success. 1122 */ 1123 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 1124 QINTR_CNT_EN_V(cnt > 0)); 1125 return 0; 1126 } 1127 1128 /* 1129 * Return a version number to identify the type of adapter. The scheme is: 1130 * - bits 0..9: chip version 1131 * - bits 10..15: chip revision 1132 */ 1133 static inline unsigned int mk_adap_vers(const struct adapter *adapter) 1134 { 1135 /* 1136 * Chip version 4, revision 0x3f (cxgb4vf). 1137 */ 1138 return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10); 1139 } 1140 1141 /* 1142 * Execute the specified ioctl command. 1143 */ 1144 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1145 { 1146 int ret = 0; 1147 1148 switch (cmd) { 1149 /* 1150 * The VF Driver doesn't have access to any of the other 1151 * common Ethernet device ioctl()'s (like reading/writing 1152 * PHY registers, etc. 1153 */ 1154 1155 default: 1156 ret = -EOPNOTSUPP; 1157 break; 1158 } 1159 return ret; 1160 } 1161 1162 /* 1163 * Change the device's MTU. 1164 */ 1165 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu) 1166 { 1167 int ret; 1168 struct port_info *pi = netdev_priv(dev); 1169 1170 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu, 1171 -1, -1, -1, -1, true); 1172 if (!ret) 1173 dev->mtu = new_mtu; 1174 return ret; 1175 } 1176 1177 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev, 1178 netdev_features_t features) 1179 { 1180 /* 1181 * Since there is no support for separate rx/tx vlan accel 1182 * enable/disable make sure tx flag is always in same state as rx. 1183 */ 1184 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1185 features |= NETIF_F_HW_VLAN_CTAG_TX; 1186 else 1187 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 1188 1189 return features; 1190 } 1191 1192 static int cxgb4vf_set_features(struct net_device *dev, 1193 netdev_features_t features) 1194 { 1195 struct port_info *pi = netdev_priv(dev); 1196 netdev_features_t changed = dev->features ^ features; 1197 1198 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 1199 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, 1200 features & NETIF_F_HW_VLAN_CTAG_TX, 0); 1201 1202 return 0; 1203 } 1204 1205 /* 1206 * Change the devices MAC address. 1207 */ 1208 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr) 1209 { 1210 int ret; 1211 struct sockaddr *addr = _addr; 1212 struct port_info *pi = netdev_priv(dev); 1213 1214 if (!is_valid_ether_addr(addr->sa_data)) 1215 return -EADDRNOTAVAIL; 1216 1217 ret = cxgb4vf_change_mac(pi, pi->viid, &pi->xact_addr_filt, 1218 addr->sa_data, true); 1219 if (ret < 0) 1220 return ret; 1221 1222 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 1223 return 0; 1224 } 1225 1226 #ifdef CONFIG_NET_POLL_CONTROLLER 1227 /* 1228 * Poll all of our receive queues. This is called outside of normal interrupt 1229 * context. 1230 */ 1231 static void cxgb4vf_poll_controller(struct net_device *dev) 1232 { 1233 struct port_info *pi = netdev_priv(dev); 1234 struct adapter *adapter = pi->adapter; 1235 1236 if (adapter->flags & CXGB4VF_USING_MSIX) { 1237 struct sge_eth_rxq *rxq; 1238 int nqsets; 1239 1240 rxq = &adapter->sge.ethrxq[pi->first_qset]; 1241 for (nqsets = pi->nqsets; nqsets; nqsets--) { 1242 t4vf_sge_intr_msix(0, &rxq->rspq); 1243 rxq++; 1244 } 1245 } else 1246 t4vf_intr_handler(adapter)(0, adapter); 1247 } 1248 #endif 1249 1250 /* 1251 * Ethtool operations. 1252 * =================== 1253 * 1254 * Note that we don't support any ethtool operations which change the physical 1255 * state of the port to which we're linked. 1256 */ 1257 1258 /** 1259 * from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool 1260 * @port_type: Firmware Port Type 1261 * @mod_type: Firmware Module Type 1262 * 1263 * Translate Firmware Port/Module type to Ethtool Port Type. 1264 */ 1265 static int from_fw_port_mod_type(enum fw_port_type port_type, 1266 enum fw_port_module_type mod_type) 1267 { 1268 if (port_type == FW_PORT_TYPE_BT_SGMII || 1269 port_type == FW_PORT_TYPE_BT_XFI || 1270 port_type == FW_PORT_TYPE_BT_XAUI) { 1271 return PORT_TP; 1272 } else if (port_type == FW_PORT_TYPE_FIBER_XFI || 1273 port_type == FW_PORT_TYPE_FIBER_XAUI) { 1274 return PORT_FIBRE; 1275 } else if (port_type == FW_PORT_TYPE_SFP || 1276 port_type == FW_PORT_TYPE_QSFP_10G || 1277 port_type == FW_PORT_TYPE_QSA || 1278 port_type == FW_PORT_TYPE_QSFP || 1279 port_type == FW_PORT_TYPE_CR4_QSFP || 1280 port_type == FW_PORT_TYPE_CR_QSFP || 1281 port_type == FW_PORT_TYPE_CR2_QSFP || 1282 port_type == FW_PORT_TYPE_SFP28) { 1283 if (mod_type == FW_PORT_MOD_TYPE_LR || 1284 mod_type == FW_PORT_MOD_TYPE_SR || 1285 mod_type == FW_PORT_MOD_TYPE_ER || 1286 mod_type == FW_PORT_MOD_TYPE_LRM) 1287 return PORT_FIBRE; 1288 else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE || 1289 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE) 1290 return PORT_DA; 1291 else 1292 return PORT_OTHER; 1293 } else if (port_type == FW_PORT_TYPE_KR4_100G || 1294 port_type == FW_PORT_TYPE_KR_SFP28 || 1295 port_type == FW_PORT_TYPE_KR_XLAUI) { 1296 return PORT_NONE; 1297 } 1298 1299 return PORT_OTHER; 1300 } 1301 1302 /** 1303 * fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask 1304 * @port_type: Firmware Port Type 1305 * @fw_caps: Firmware Port Capabilities 1306 * @link_mode_mask: ethtool Link Mode Mask 1307 * 1308 * Translate a Firmware Port Capabilities specification to an ethtool 1309 * Link Mode Mask. 1310 */ 1311 static void fw_caps_to_lmm(enum fw_port_type port_type, 1312 unsigned int fw_caps, 1313 unsigned long *link_mode_mask) 1314 { 1315 #define SET_LMM(__lmm_name) \ 1316 __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \ 1317 link_mode_mask) 1318 1319 #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \ 1320 do { \ 1321 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \ 1322 SET_LMM(__lmm_name); \ 1323 } while (0) 1324 1325 switch (port_type) { 1326 case FW_PORT_TYPE_BT_SGMII: 1327 case FW_PORT_TYPE_BT_XFI: 1328 case FW_PORT_TYPE_BT_XAUI: 1329 SET_LMM(TP); 1330 FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full); 1331 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1332 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1333 break; 1334 1335 case FW_PORT_TYPE_KX4: 1336 case FW_PORT_TYPE_KX: 1337 SET_LMM(Backplane); 1338 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1339 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1340 break; 1341 1342 case FW_PORT_TYPE_KR: 1343 SET_LMM(Backplane); 1344 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1345 break; 1346 1347 case FW_PORT_TYPE_BP_AP: 1348 SET_LMM(Backplane); 1349 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1350 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); 1351 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1352 break; 1353 1354 case FW_PORT_TYPE_BP4_AP: 1355 SET_LMM(Backplane); 1356 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1357 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); 1358 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1359 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1360 break; 1361 1362 case FW_PORT_TYPE_FIBER_XFI: 1363 case FW_PORT_TYPE_FIBER_XAUI: 1364 case FW_PORT_TYPE_SFP: 1365 case FW_PORT_TYPE_QSFP_10G: 1366 case FW_PORT_TYPE_QSA: 1367 SET_LMM(FIBRE); 1368 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1369 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1370 break; 1371 1372 case FW_PORT_TYPE_BP40_BA: 1373 case FW_PORT_TYPE_QSFP: 1374 SET_LMM(FIBRE); 1375 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1376 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1377 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); 1378 break; 1379 1380 case FW_PORT_TYPE_CR_QSFP: 1381 case FW_PORT_TYPE_SFP28: 1382 SET_LMM(FIBRE); 1383 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1384 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1385 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); 1386 break; 1387 1388 case FW_PORT_TYPE_KR_SFP28: 1389 SET_LMM(Backplane); 1390 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1391 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1392 FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full); 1393 break; 1394 1395 case FW_PORT_TYPE_KR_XLAUI: 1396 SET_LMM(Backplane); 1397 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1398 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1399 FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full); 1400 break; 1401 1402 case FW_PORT_TYPE_CR2_QSFP: 1403 SET_LMM(FIBRE); 1404 FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full); 1405 break; 1406 1407 case FW_PORT_TYPE_KR4_100G: 1408 case FW_PORT_TYPE_CR4_QSFP: 1409 SET_LMM(FIBRE); 1410 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1411 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1412 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); 1413 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); 1414 FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full); 1415 FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full); 1416 break; 1417 1418 default: 1419 break; 1420 } 1421 1422 if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) { 1423 FW_CAPS_TO_LMM(FEC_RS, FEC_RS); 1424 FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER); 1425 } else { 1426 SET_LMM(FEC_NONE); 1427 } 1428 1429 FW_CAPS_TO_LMM(ANEG, Autoneg); 1430 FW_CAPS_TO_LMM(802_3_PAUSE, Pause); 1431 FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause); 1432 1433 #undef FW_CAPS_TO_LMM 1434 #undef SET_LMM 1435 } 1436 1437 static int cxgb4vf_get_link_ksettings(struct net_device *dev, 1438 struct ethtool_link_ksettings *link_ksettings) 1439 { 1440 struct port_info *pi = netdev_priv(dev); 1441 struct ethtool_link_settings *base = &link_ksettings->base; 1442 1443 /* For the nonce, the Firmware doesn't send up Port State changes 1444 * when the Virtual Interface attached to the Port is down. So 1445 * if it's down, let's grab any changes. 1446 */ 1447 if (!netif_running(dev)) 1448 (void)t4vf_update_port_info(pi); 1449 1450 ethtool_link_ksettings_zero_link_mode(link_ksettings, supported); 1451 ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising); 1452 ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising); 1453 1454 base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type); 1455 1456 if (pi->mdio_addr >= 0) { 1457 base->phy_address = pi->mdio_addr; 1458 base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII 1459 ? ETH_MDIO_SUPPORTS_C22 1460 : ETH_MDIO_SUPPORTS_C45); 1461 } else { 1462 base->phy_address = 255; 1463 base->mdio_support = 0; 1464 } 1465 1466 fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps, 1467 link_ksettings->link_modes.supported); 1468 fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps, 1469 link_ksettings->link_modes.advertising); 1470 fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps, 1471 link_ksettings->link_modes.lp_advertising); 1472 1473 if (netif_carrier_ok(dev)) { 1474 base->speed = pi->link_cfg.speed; 1475 base->duplex = DUPLEX_FULL; 1476 } else { 1477 base->speed = SPEED_UNKNOWN; 1478 base->duplex = DUPLEX_UNKNOWN; 1479 } 1480 1481 base->autoneg = pi->link_cfg.autoneg; 1482 if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG) 1483 ethtool_link_ksettings_add_link_mode(link_ksettings, 1484 supported, Autoneg); 1485 if (pi->link_cfg.autoneg) 1486 ethtool_link_ksettings_add_link_mode(link_ksettings, 1487 advertising, Autoneg); 1488 1489 return 0; 1490 } 1491 1492 /* Translate the Firmware FEC value into the ethtool value. */ 1493 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec) 1494 { 1495 unsigned int eth_fec = 0; 1496 1497 if (fw_fec & FW_PORT_CAP32_FEC_RS) 1498 eth_fec |= ETHTOOL_FEC_RS; 1499 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 1500 eth_fec |= ETHTOOL_FEC_BASER; 1501 1502 /* if nothing is set, then FEC is off */ 1503 if (!eth_fec) 1504 eth_fec = ETHTOOL_FEC_OFF; 1505 1506 return eth_fec; 1507 } 1508 1509 /* Translate Common Code FEC value into ethtool value. */ 1510 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec) 1511 { 1512 unsigned int eth_fec = 0; 1513 1514 if (cc_fec & FEC_AUTO) 1515 eth_fec |= ETHTOOL_FEC_AUTO; 1516 if (cc_fec & FEC_RS) 1517 eth_fec |= ETHTOOL_FEC_RS; 1518 if (cc_fec & FEC_BASER_RS) 1519 eth_fec |= ETHTOOL_FEC_BASER; 1520 1521 /* if nothing is set, then FEC is off */ 1522 if (!eth_fec) 1523 eth_fec = ETHTOOL_FEC_OFF; 1524 1525 return eth_fec; 1526 } 1527 1528 static int cxgb4vf_get_fecparam(struct net_device *dev, 1529 struct ethtool_fecparam *fec) 1530 { 1531 const struct port_info *pi = netdev_priv(dev); 1532 const struct link_config *lc = &pi->link_cfg; 1533 1534 /* Translate the Firmware FEC Support into the ethtool value. We 1535 * always support IEEE 802.3 "automatic" selection of Link FEC type if 1536 * any FEC is supported. 1537 */ 1538 fec->fec = fwcap_to_eth_fec(lc->pcaps); 1539 if (fec->fec != ETHTOOL_FEC_OFF) 1540 fec->fec |= ETHTOOL_FEC_AUTO; 1541 1542 /* Translate the current internal FEC parameters into the 1543 * ethtool values. 1544 */ 1545 fec->active_fec = cc_to_eth_fec(lc->fec); 1546 return 0; 1547 } 1548 1549 /* 1550 * Return our driver information. 1551 */ 1552 static void cxgb4vf_get_drvinfo(struct net_device *dev, 1553 struct ethtool_drvinfo *drvinfo) 1554 { 1555 struct adapter *adapter = netdev2adap(dev); 1556 1557 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver)); 1558 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)), 1559 sizeof(drvinfo->bus_info)); 1560 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 1561 "%u.%u.%u.%u, TP %u.%u.%u.%u", 1562 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev), 1563 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev), 1564 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev), 1565 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev), 1566 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev), 1567 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev), 1568 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev), 1569 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev)); 1570 } 1571 1572 /* 1573 * Return current adapter message level. 1574 */ 1575 static u32 cxgb4vf_get_msglevel(struct net_device *dev) 1576 { 1577 return netdev2adap(dev)->msg_enable; 1578 } 1579 1580 /* 1581 * Set current adapter message level. 1582 */ 1583 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel) 1584 { 1585 netdev2adap(dev)->msg_enable = msglevel; 1586 } 1587 1588 /* 1589 * Return the device's current Queue Set ring size parameters along with the 1590 * allowed maximum values. Since ethtool doesn't understand the concept of 1591 * multi-queue devices, we just return the current values associated with the 1592 * first Queue Set. 1593 */ 1594 static void cxgb4vf_get_ringparam(struct net_device *dev, 1595 struct ethtool_ringparam *rp) 1596 { 1597 const struct port_info *pi = netdev_priv(dev); 1598 const struct sge *s = &pi->adapter->sge; 1599 1600 rp->rx_max_pending = MAX_RX_BUFFERS; 1601 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES; 1602 rp->rx_jumbo_max_pending = 0; 1603 rp->tx_max_pending = MAX_TXQ_ENTRIES; 1604 1605 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID; 1606 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; 1607 rp->rx_jumbo_pending = 0; 1608 rp->tx_pending = s->ethtxq[pi->first_qset].q.size; 1609 } 1610 1611 /* 1612 * Set the Queue Set ring size parameters for the device. Again, since 1613 * ethtool doesn't allow for the concept of multiple queues per device, we'll 1614 * apply these new values across all of the Queue Sets associated with the 1615 * device -- after vetting them of course! 1616 */ 1617 static int cxgb4vf_set_ringparam(struct net_device *dev, 1618 struct ethtool_ringparam *rp) 1619 { 1620 const struct port_info *pi = netdev_priv(dev); 1621 struct adapter *adapter = pi->adapter; 1622 struct sge *s = &adapter->sge; 1623 int qs; 1624 1625 if (rp->rx_pending > MAX_RX_BUFFERS || 1626 rp->rx_jumbo_pending || 1627 rp->tx_pending > MAX_TXQ_ENTRIES || 1628 rp->rx_mini_pending > MAX_RSPQ_ENTRIES || 1629 rp->rx_mini_pending < MIN_RSPQ_ENTRIES || 1630 rp->rx_pending < MIN_FL_ENTRIES || 1631 rp->tx_pending < MIN_TXQ_ENTRIES) 1632 return -EINVAL; 1633 1634 if (adapter->flags & CXGB4VF_FULL_INIT_DONE) 1635 return -EBUSY; 1636 1637 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) { 1638 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID; 1639 s->ethrxq[qs].rspq.size = rp->rx_mini_pending; 1640 s->ethtxq[qs].q.size = rp->tx_pending; 1641 } 1642 return 0; 1643 } 1644 1645 /* 1646 * Return the interrupt holdoff timer and count for the first Queue Set on the 1647 * device. Our extension ioctl() (the cxgbtool interface) allows the 1648 * interrupt holdoff timer to be read on all of the device's Queue Sets. 1649 */ 1650 static int cxgb4vf_get_coalesce(struct net_device *dev, 1651 struct ethtool_coalesce *coalesce) 1652 { 1653 const struct port_info *pi = netdev_priv(dev); 1654 const struct adapter *adapter = pi->adapter; 1655 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq; 1656 1657 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq); 1658 coalesce->rx_max_coalesced_frames = 1659 ((rspq->intr_params & QINTR_CNT_EN_F) 1660 ? adapter->sge.counter_val[rspq->pktcnt_idx] 1661 : 0); 1662 return 0; 1663 } 1664 1665 /* 1666 * Set the RX interrupt holdoff timer and count for the first Queue Set on the 1667 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set 1668 * the interrupt holdoff timer on any of the device's Queue Sets. 1669 */ 1670 static int cxgb4vf_set_coalesce(struct net_device *dev, 1671 struct ethtool_coalesce *coalesce) 1672 { 1673 const struct port_info *pi = netdev_priv(dev); 1674 struct adapter *adapter = pi->adapter; 1675 1676 return set_rxq_intr_params(adapter, 1677 &adapter->sge.ethrxq[pi->first_qset].rspq, 1678 coalesce->rx_coalesce_usecs, 1679 coalesce->rx_max_coalesced_frames); 1680 } 1681 1682 /* 1683 * Report current port link pause parameter settings. 1684 */ 1685 static void cxgb4vf_get_pauseparam(struct net_device *dev, 1686 struct ethtool_pauseparam *pauseparam) 1687 { 1688 struct port_info *pi = netdev_priv(dev); 1689 1690 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; 1691 pauseparam->rx_pause = (pi->link_cfg.advertised_fc & PAUSE_RX) != 0; 1692 pauseparam->tx_pause = (pi->link_cfg.advertised_fc & PAUSE_TX) != 0; 1693 } 1694 1695 /* 1696 * Identify the port by blinking the port's LED. 1697 */ 1698 static int cxgb4vf_phys_id(struct net_device *dev, 1699 enum ethtool_phys_id_state state) 1700 { 1701 unsigned int val; 1702 struct port_info *pi = netdev_priv(dev); 1703 1704 if (state == ETHTOOL_ID_ACTIVE) 1705 val = 0xffff; 1706 else if (state == ETHTOOL_ID_INACTIVE) 1707 val = 0; 1708 else 1709 return -EINVAL; 1710 1711 return t4vf_identify_port(pi->adapter, pi->viid, val); 1712 } 1713 1714 /* 1715 * Port stats maintained per queue of the port. 1716 */ 1717 struct queue_port_stats { 1718 u64 tso; 1719 u64 tx_csum; 1720 u64 rx_csum; 1721 u64 vlan_ex; 1722 u64 vlan_ins; 1723 u64 lro_pkts; 1724 u64 lro_merged; 1725 }; 1726 1727 /* 1728 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that 1729 * these need to match the order of statistics returned by 1730 * t4vf_get_port_stats(). 1731 */ 1732 static const char stats_strings[][ETH_GSTRING_LEN] = { 1733 /* 1734 * These must match the layout of the t4vf_port_stats structure. 1735 */ 1736 "TxBroadcastBytes ", 1737 "TxBroadcastFrames ", 1738 "TxMulticastBytes ", 1739 "TxMulticastFrames ", 1740 "TxUnicastBytes ", 1741 "TxUnicastFrames ", 1742 "TxDroppedFrames ", 1743 "TxOffloadBytes ", 1744 "TxOffloadFrames ", 1745 "RxBroadcastBytes ", 1746 "RxBroadcastFrames ", 1747 "RxMulticastBytes ", 1748 "RxMulticastFrames ", 1749 "RxUnicastBytes ", 1750 "RxUnicastFrames ", 1751 "RxErrorFrames ", 1752 1753 /* 1754 * These are accumulated per-queue statistics and must match the 1755 * order of the fields in the queue_port_stats structure. 1756 */ 1757 "TSO ", 1758 "TxCsumOffload ", 1759 "RxCsumGood ", 1760 "VLANextractions ", 1761 "VLANinsertions ", 1762 "GROPackets ", 1763 "GROMerged ", 1764 }; 1765 1766 /* 1767 * Return the number of statistics in the specified statistics set. 1768 */ 1769 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset) 1770 { 1771 switch (sset) { 1772 case ETH_SS_STATS: 1773 return ARRAY_SIZE(stats_strings); 1774 default: 1775 return -EOPNOTSUPP; 1776 } 1777 /*NOTREACHED*/ 1778 } 1779 1780 /* 1781 * Return the strings for the specified statistics set. 1782 */ 1783 static void cxgb4vf_get_strings(struct net_device *dev, 1784 u32 sset, 1785 u8 *data) 1786 { 1787 switch (sset) { 1788 case ETH_SS_STATS: 1789 memcpy(data, stats_strings, sizeof(stats_strings)); 1790 break; 1791 } 1792 } 1793 1794 /* 1795 * Small utility routine to accumulate queue statistics across the queues of 1796 * a "port". 1797 */ 1798 static void collect_sge_port_stats(const struct adapter *adapter, 1799 const struct port_info *pi, 1800 struct queue_port_stats *stats) 1801 { 1802 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset]; 1803 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 1804 int qs; 1805 1806 memset(stats, 0, sizeof(*stats)); 1807 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 1808 stats->tso += txq->tso; 1809 stats->tx_csum += txq->tx_cso; 1810 stats->rx_csum += rxq->stats.rx_cso; 1811 stats->vlan_ex += rxq->stats.vlan_ex; 1812 stats->vlan_ins += txq->vlan_ins; 1813 stats->lro_pkts += rxq->stats.lro_pkts; 1814 stats->lro_merged += rxq->stats.lro_merged; 1815 } 1816 } 1817 1818 /* 1819 * Return the ETH_SS_STATS statistics set. 1820 */ 1821 static void cxgb4vf_get_ethtool_stats(struct net_device *dev, 1822 struct ethtool_stats *stats, 1823 u64 *data) 1824 { 1825 struct port_info *pi = netdev2pinfo(dev); 1826 struct adapter *adapter = pi->adapter; 1827 int err = t4vf_get_port_stats(adapter, pi->pidx, 1828 (struct t4vf_port_stats *)data); 1829 if (err) 1830 memset(data, 0, sizeof(struct t4vf_port_stats)); 1831 1832 data += sizeof(struct t4vf_port_stats) / sizeof(u64); 1833 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); 1834 } 1835 1836 /* 1837 * Return the size of our register map. 1838 */ 1839 static int cxgb4vf_get_regs_len(struct net_device *dev) 1840 { 1841 return T4VF_REGMAP_SIZE; 1842 } 1843 1844 /* 1845 * Dump a block of registers, start to end inclusive, into a buffer. 1846 */ 1847 static void reg_block_dump(struct adapter *adapter, void *regbuf, 1848 unsigned int start, unsigned int end) 1849 { 1850 u32 *bp = regbuf + start - T4VF_REGMAP_START; 1851 1852 for ( ; start <= end; start += sizeof(u32)) { 1853 /* 1854 * Avoid reading the Mailbox Control register since that 1855 * can trigger a Mailbox Ownership Arbitration cycle and 1856 * interfere with communication with the firmware. 1857 */ 1858 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL) 1859 *bp++ = 0xffff; 1860 else 1861 *bp++ = t4_read_reg(adapter, start); 1862 } 1863 } 1864 1865 /* 1866 * Copy our entire register map into the provided buffer. 1867 */ 1868 static void cxgb4vf_get_regs(struct net_device *dev, 1869 struct ethtool_regs *regs, 1870 void *regbuf) 1871 { 1872 struct adapter *adapter = netdev2adap(dev); 1873 1874 regs->version = mk_adap_vers(adapter); 1875 1876 /* 1877 * Fill in register buffer with our register map. 1878 */ 1879 memset(regbuf, 0, T4VF_REGMAP_SIZE); 1880 1881 reg_block_dump(adapter, regbuf, 1882 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST, 1883 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST); 1884 reg_block_dump(adapter, regbuf, 1885 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST, 1886 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST); 1887 1888 /* T5 adds new registers in the PL Register map. 1889 */ 1890 reg_block_dump(adapter, regbuf, 1891 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST, 1892 T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip) 1893 ? PL_VF_WHOAMI_A : PL_VF_REVISION_A)); 1894 reg_block_dump(adapter, regbuf, 1895 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST, 1896 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST); 1897 1898 reg_block_dump(adapter, regbuf, 1899 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST, 1900 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST); 1901 } 1902 1903 /* 1904 * Report current Wake On LAN settings. 1905 */ 1906 static void cxgb4vf_get_wol(struct net_device *dev, 1907 struct ethtool_wolinfo *wol) 1908 { 1909 wol->supported = 0; 1910 wol->wolopts = 0; 1911 memset(&wol->sopass, 0, sizeof(wol->sopass)); 1912 } 1913 1914 /* 1915 * TCP Segmentation Offload flags which we support. 1916 */ 1917 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1918 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 1919 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 1920 1921 static const struct ethtool_ops cxgb4vf_ethtool_ops = { 1922 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | 1923 ETHTOOL_COALESCE_RX_MAX_FRAMES, 1924 .get_link_ksettings = cxgb4vf_get_link_ksettings, 1925 .get_fecparam = cxgb4vf_get_fecparam, 1926 .get_drvinfo = cxgb4vf_get_drvinfo, 1927 .get_msglevel = cxgb4vf_get_msglevel, 1928 .set_msglevel = cxgb4vf_set_msglevel, 1929 .get_ringparam = cxgb4vf_get_ringparam, 1930 .set_ringparam = cxgb4vf_set_ringparam, 1931 .get_coalesce = cxgb4vf_get_coalesce, 1932 .set_coalesce = cxgb4vf_set_coalesce, 1933 .get_pauseparam = cxgb4vf_get_pauseparam, 1934 .get_link = ethtool_op_get_link, 1935 .get_strings = cxgb4vf_get_strings, 1936 .set_phys_id = cxgb4vf_phys_id, 1937 .get_sset_count = cxgb4vf_get_sset_count, 1938 .get_ethtool_stats = cxgb4vf_get_ethtool_stats, 1939 .get_regs_len = cxgb4vf_get_regs_len, 1940 .get_regs = cxgb4vf_get_regs, 1941 .get_wol = cxgb4vf_get_wol, 1942 }; 1943 1944 /* 1945 * /sys/kernel/debug/cxgb4vf support code and data. 1946 * ================================================ 1947 */ 1948 1949 /* 1950 * Show Firmware Mailbox Command/Reply Log 1951 * 1952 * Note that we don't do any locking when dumping the Firmware Mailbox Log so 1953 * it's possible that we can catch things during a log update and therefore 1954 * see partially corrupted log entries. But i9t's probably Good Enough(tm). 1955 * If we ever decide that we want to make sure that we're dumping a coherent 1956 * log, we'd need to perform locking in the mailbox logging and in 1957 * mboxlog_open() where we'd need to grab the entire mailbox log in one go 1958 * like we do for the Firmware Device Log. But as stated above, meh ... 1959 */ 1960 static int mboxlog_show(struct seq_file *seq, void *v) 1961 { 1962 struct adapter *adapter = seq->private; 1963 struct mbox_cmd_log *log = adapter->mbox_log; 1964 struct mbox_cmd *entry; 1965 int entry_idx, i; 1966 1967 if (v == SEQ_START_TOKEN) { 1968 seq_printf(seq, 1969 "%10s %15s %5s %5s %s\n", 1970 "Seq#", "Tstamp", "Atime", "Etime", 1971 "Command/Reply"); 1972 return 0; 1973 } 1974 1975 entry_idx = log->cursor + ((uintptr_t)v - 2); 1976 if (entry_idx >= log->size) 1977 entry_idx -= log->size; 1978 entry = mbox_cmd_log_entry(log, entry_idx); 1979 1980 /* skip over unused entries */ 1981 if (entry->timestamp == 0) 1982 return 0; 1983 1984 seq_printf(seq, "%10u %15llu %5d %5d", 1985 entry->seqno, entry->timestamp, 1986 entry->access, entry->execute); 1987 for (i = 0; i < MBOX_LEN / 8; i++) { 1988 u64 flit = entry->cmd[i]; 1989 u32 hi = (u32)(flit >> 32); 1990 u32 lo = (u32)flit; 1991 1992 seq_printf(seq, " %08x %08x", hi, lo); 1993 } 1994 seq_puts(seq, "\n"); 1995 return 0; 1996 } 1997 1998 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos) 1999 { 2000 struct adapter *adapter = seq->private; 2001 struct mbox_cmd_log *log = adapter->mbox_log; 2002 2003 return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL); 2004 } 2005 2006 static void *mboxlog_start(struct seq_file *seq, loff_t *pos) 2007 { 2008 return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN; 2009 } 2010 2011 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos) 2012 { 2013 ++*pos; 2014 return mboxlog_get_idx(seq, *pos); 2015 } 2016 2017 static void mboxlog_stop(struct seq_file *seq, void *v) 2018 { 2019 } 2020 2021 static const struct seq_operations mboxlog_seq_ops = { 2022 .start = mboxlog_start, 2023 .next = mboxlog_next, 2024 .stop = mboxlog_stop, 2025 .show = mboxlog_show 2026 }; 2027 2028 static int mboxlog_open(struct inode *inode, struct file *file) 2029 { 2030 int res = seq_open(file, &mboxlog_seq_ops); 2031 2032 if (!res) { 2033 struct seq_file *seq = file->private_data; 2034 2035 seq->private = inode->i_private; 2036 } 2037 return res; 2038 } 2039 2040 static const struct file_operations mboxlog_fops = { 2041 .owner = THIS_MODULE, 2042 .open = mboxlog_open, 2043 .read = seq_read, 2044 .llseek = seq_lseek, 2045 .release = seq_release, 2046 }; 2047 2048 /* 2049 * Show SGE Queue Set information. We display QPL Queues Sets per line. 2050 */ 2051 #define QPL 4 2052 2053 static int sge_qinfo_show(struct seq_file *seq, void *v) 2054 { 2055 struct adapter *adapter = seq->private; 2056 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2057 int qs, r = (uintptr_t)v - 1; 2058 2059 if (r) 2060 seq_putc(seq, '\n'); 2061 2062 #define S3(fmt_spec, s, v) \ 2063 do {\ 2064 seq_printf(seq, "%-12s", s); \ 2065 for (qs = 0; qs < n; ++qs) \ 2066 seq_printf(seq, " %16" fmt_spec, v); \ 2067 seq_putc(seq, '\n'); \ 2068 } while (0) 2069 #define S(s, v) S3("s", s, v) 2070 #define T(s, v) S3("u", s, txq[qs].v) 2071 #define R(s, v) S3("u", s, rxq[qs].v) 2072 2073 if (r < eth_entries) { 2074 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2075 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2076 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2077 2078 S("QType:", "Ethernet"); 2079 S("Interface:", 2080 (rxq[qs].rspq.netdev 2081 ? rxq[qs].rspq.netdev->name 2082 : "N/A")); 2083 S3("d", "Port:", 2084 (rxq[qs].rspq.netdev 2085 ? ((struct port_info *) 2086 netdev_priv(rxq[qs].rspq.netdev))->port_id 2087 : -1)); 2088 T("TxQ ID:", q.abs_id); 2089 T("TxQ size:", q.size); 2090 T("TxQ inuse:", q.in_use); 2091 T("TxQ PIdx:", q.pidx); 2092 T("TxQ CIdx:", q.cidx); 2093 R("RspQ ID:", rspq.abs_id); 2094 R("RspQ size:", rspq.size); 2095 R("RspQE size:", rspq.iqe_len); 2096 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq)); 2097 S3("u", "Intr pktcnt:", 2098 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]); 2099 R("RspQ CIdx:", rspq.cidx); 2100 R("RspQ Gen:", rspq.gen); 2101 R("FL ID:", fl.abs_id); 2102 R("FL size:", fl.size - MIN_FL_RESID); 2103 R("FL avail:", fl.avail); 2104 R("FL PIdx:", fl.pidx); 2105 R("FL CIdx:", fl.cidx); 2106 return 0; 2107 } 2108 2109 r -= eth_entries; 2110 if (r == 0) { 2111 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2112 2113 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue"); 2114 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id); 2115 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2116 qtimer_val(adapter, evtq)); 2117 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2118 adapter->sge.counter_val[evtq->pktcnt_idx]); 2119 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx); 2120 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen); 2121 } else if (r == 1) { 2122 const struct sge_rspq *intrq = &adapter->sge.intrq; 2123 2124 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue"); 2125 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id); 2126 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2127 qtimer_val(adapter, intrq)); 2128 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2129 adapter->sge.counter_val[intrq->pktcnt_idx]); 2130 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx); 2131 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen); 2132 } 2133 2134 #undef R 2135 #undef T 2136 #undef S 2137 #undef S3 2138 2139 return 0; 2140 } 2141 2142 /* 2143 * Return the number of "entries" in our "file". We group the multi-Queue 2144 * sections with QPL Queue Sets per "entry". The sections of the output are: 2145 * 2146 * Ethernet RX/TX Queue Sets 2147 * Firmware Event Queue 2148 * Forwarded Interrupt Queue (if in MSI mode) 2149 */ 2150 static int sge_queue_entries(const struct adapter *adapter) 2151 { 2152 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2153 ((adapter->flags & CXGB4VF_USING_MSI) != 0); 2154 } 2155 2156 static void *sge_queue_start(struct seq_file *seq, loff_t *pos) 2157 { 2158 int entries = sge_queue_entries(seq->private); 2159 2160 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2161 } 2162 2163 static void sge_queue_stop(struct seq_file *seq, void *v) 2164 { 2165 } 2166 2167 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos) 2168 { 2169 int entries = sge_queue_entries(seq->private); 2170 2171 ++*pos; 2172 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2173 } 2174 2175 static const struct seq_operations sge_qinfo_seq_ops = { 2176 .start = sge_queue_start, 2177 .next = sge_queue_next, 2178 .stop = sge_queue_stop, 2179 .show = sge_qinfo_show 2180 }; 2181 2182 static int sge_qinfo_open(struct inode *inode, struct file *file) 2183 { 2184 int res = seq_open(file, &sge_qinfo_seq_ops); 2185 2186 if (!res) { 2187 struct seq_file *seq = file->private_data; 2188 seq->private = inode->i_private; 2189 } 2190 return res; 2191 } 2192 2193 static const struct file_operations sge_qinfo_debugfs_fops = { 2194 .owner = THIS_MODULE, 2195 .open = sge_qinfo_open, 2196 .read = seq_read, 2197 .llseek = seq_lseek, 2198 .release = seq_release, 2199 }; 2200 2201 /* 2202 * Show SGE Queue Set statistics. We display QPL Queues Sets per line. 2203 */ 2204 #define QPL 4 2205 2206 static int sge_qstats_show(struct seq_file *seq, void *v) 2207 { 2208 struct adapter *adapter = seq->private; 2209 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2210 int qs, r = (uintptr_t)v - 1; 2211 2212 if (r) 2213 seq_putc(seq, '\n'); 2214 2215 #define S3(fmt, s, v) \ 2216 do { \ 2217 seq_printf(seq, "%-16s", s); \ 2218 for (qs = 0; qs < n; ++qs) \ 2219 seq_printf(seq, " %8" fmt, v); \ 2220 seq_putc(seq, '\n'); \ 2221 } while (0) 2222 #define S(s, v) S3("s", s, v) 2223 2224 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v) 2225 #define T(s, v) T3("lu", s, v) 2226 2227 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v) 2228 #define R(s, v) R3("lu", s, v) 2229 2230 if (r < eth_entries) { 2231 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2232 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2233 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2234 2235 S("QType:", "Ethernet"); 2236 S("Interface:", 2237 (rxq[qs].rspq.netdev 2238 ? rxq[qs].rspq.netdev->name 2239 : "N/A")); 2240 R3("u", "RspQNullInts:", rspq.unhandled_irqs); 2241 R("RxPackets:", stats.pkts); 2242 R("RxCSO:", stats.rx_cso); 2243 R("VLANxtract:", stats.vlan_ex); 2244 R("LROmerged:", stats.lro_merged); 2245 R("LROpackets:", stats.lro_pkts); 2246 R("RxDrops:", stats.rx_drops); 2247 T("TSO:", tso); 2248 T("TxCSO:", tx_cso); 2249 T("VLANins:", vlan_ins); 2250 T("TxQFull:", q.stops); 2251 T("TxQRestarts:", q.restarts); 2252 T("TxMapErr:", mapping_err); 2253 R("FLAllocErr:", fl.alloc_failed); 2254 R("FLLrgAlcErr:", fl.large_alloc_failed); 2255 R("FLStarving:", fl.starving); 2256 return 0; 2257 } 2258 2259 r -= eth_entries; 2260 if (r == 0) { 2261 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2262 2263 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue"); 2264 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2265 evtq->unhandled_irqs); 2266 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx); 2267 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen); 2268 } else if (r == 1) { 2269 const struct sge_rspq *intrq = &adapter->sge.intrq; 2270 2271 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue"); 2272 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2273 intrq->unhandled_irqs); 2274 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx); 2275 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen); 2276 } 2277 2278 #undef R 2279 #undef T 2280 #undef S 2281 #undef R3 2282 #undef T3 2283 #undef S3 2284 2285 return 0; 2286 } 2287 2288 /* 2289 * Return the number of "entries" in our "file". We group the multi-Queue 2290 * sections with QPL Queue Sets per "entry". The sections of the output are: 2291 * 2292 * Ethernet RX/TX Queue Sets 2293 * Firmware Event Queue 2294 * Forwarded Interrupt Queue (if in MSI mode) 2295 */ 2296 static int sge_qstats_entries(const struct adapter *adapter) 2297 { 2298 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2299 ((adapter->flags & CXGB4VF_USING_MSI) != 0); 2300 } 2301 2302 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos) 2303 { 2304 int entries = sge_qstats_entries(seq->private); 2305 2306 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2307 } 2308 2309 static void sge_qstats_stop(struct seq_file *seq, void *v) 2310 { 2311 } 2312 2313 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos) 2314 { 2315 int entries = sge_qstats_entries(seq->private); 2316 2317 (*pos)++; 2318 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2319 } 2320 2321 static const struct seq_operations sge_qstats_seq_ops = { 2322 .start = sge_qstats_start, 2323 .next = sge_qstats_next, 2324 .stop = sge_qstats_stop, 2325 .show = sge_qstats_show 2326 }; 2327 2328 static int sge_qstats_open(struct inode *inode, struct file *file) 2329 { 2330 int res = seq_open(file, &sge_qstats_seq_ops); 2331 2332 if (res == 0) { 2333 struct seq_file *seq = file->private_data; 2334 seq->private = inode->i_private; 2335 } 2336 return res; 2337 } 2338 2339 static const struct file_operations sge_qstats_proc_fops = { 2340 .owner = THIS_MODULE, 2341 .open = sge_qstats_open, 2342 .read = seq_read, 2343 .llseek = seq_lseek, 2344 .release = seq_release, 2345 }; 2346 2347 /* 2348 * Show PCI-E SR-IOV Virtual Function Resource Limits. 2349 */ 2350 static int resources_show(struct seq_file *seq, void *v) 2351 { 2352 struct adapter *adapter = seq->private; 2353 struct vf_resources *vfres = &adapter->params.vfres; 2354 2355 #define S(desc, fmt, var) \ 2356 seq_printf(seq, "%-60s " fmt "\n", \ 2357 desc " (" #var "):", vfres->var) 2358 2359 S("Virtual Interfaces", "%d", nvi); 2360 S("Egress Queues", "%d", neq); 2361 S("Ethernet Control", "%d", nethctrl); 2362 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint); 2363 S("Ingress Queues", "%d", niq); 2364 S("Traffic Class", "%d", tc); 2365 S("Port Access Rights Mask", "%#x", pmask); 2366 S("MAC Address Filters", "%d", nexactf); 2367 S("Firmware Command Read Capabilities", "%#x", r_caps); 2368 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps); 2369 2370 #undef S 2371 2372 return 0; 2373 } 2374 DEFINE_SHOW_ATTRIBUTE(resources); 2375 2376 /* 2377 * Show Virtual Interfaces. 2378 */ 2379 static int interfaces_show(struct seq_file *seq, void *v) 2380 { 2381 if (v == SEQ_START_TOKEN) { 2382 seq_puts(seq, "Interface Port VIID\n"); 2383 } else { 2384 struct adapter *adapter = seq->private; 2385 int pidx = (uintptr_t)v - 2; 2386 struct net_device *dev = adapter->port[pidx]; 2387 struct port_info *pi = netdev_priv(dev); 2388 2389 seq_printf(seq, "%9s %4d %#5x\n", 2390 dev->name, pi->port_id, pi->viid); 2391 } 2392 return 0; 2393 } 2394 2395 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos) 2396 { 2397 return pos <= adapter->params.nports 2398 ? (void *)(uintptr_t)(pos + 1) 2399 : NULL; 2400 } 2401 2402 static void *interfaces_start(struct seq_file *seq, loff_t *pos) 2403 { 2404 return *pos 2405 ? interfaces_get_idx(seq->private, *pos) 2406 : SEQ_START_TOKEN; 2407 } 2408 2409 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos) 2410 { 2411 (*pos)++; 2412 return interfaces_get_idx(seq->private, *pos); 2413 } 2414 2415 static void interfaces_stop(struct seq_file *seq, void *v) 2416 { 2417 } 2418 2419 static const struct seq_operations interfaces_seq_ops = { 2420 .start = interfaces_start, 2421 .next = interfaces_next, 2422 .stop = interfaces_stop, 2423 .show = interfaces_show 2424 }; 2425 2426 static int interfaces_open(struct inode *inode, struct file *file) 2427 { 2428 int res = seq_open(file, &interfaces_seq_ops); 2429 2430 if (res == 0) { 2431 struct seq_file *seq = file->private_data; 2432 seq->private = inode->i_private; 2433 } 2434 return res; 2435 } 2436 2437 static const struct file_operations interfaces_proc_fops = { 2438 .owner = THIS_MODULE, 2439 .open = interfaces_open, 2440 .read = seq_read, 2441 .llseek = seq_lseek, 2442 .release = seq_release, 2443 }; 2444 2445 /* 2446 * /sys/kernel/debugfs/cxgb4vf/ files list. 2447 */ 2448 struct cxgb4vf_debugfs_entry { 2449 const char *name; /* name of debugfs node */ 2450 umode_t mode; /* file system mode */ 2451 const struct file_operations *fops; 2452 }; 2453 2454 static struct cxgb4vf_debugfs_entry debugfs_files[] = { 2455 { "mboxlog", 0444, &mboxlog_fops }, 2456 { "sge_qinfo", 0444, &sge_qinfo_debugfs_fops }, 2457 { "sge_qstats", 0444, &sge_qstats_proc_fops }, 2458 { "resources", 0444, &resources_fops }, 2459 { "interfaces", 0444, &interfaces_proc_fops }, 2460 }; 2461 2462 /* 2463 * Module and device initialization and cleanup code. 2464 * ================================================== 2465 */ 2466 2467 /* 2468 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the 2469 * directory (debugfs_root) has already been set up. 2470 */ 2471 static int setup_debugfs(struct adapter *adapter) 2472 { 2473 int i; 2474 2475 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2476 2477 /* 2478 * Debugfs support is best effort. 2479 */ 2480 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) 2481 debugfs_create_file(debugfs_files[i].name, 2482 debugfs_files[i].mode, 2483 adapter->debugfs_root, (void *)adapter, 2484 debugfs_files[i].fops); 2485 2486 return 0; 2487 } 2488 2489 /* 2490 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave 2491 * it to our caller to tear down the directory (debugfs_root). 2492 */ 2493 static void cleanup_debugfs(struct adapter *adapter) 2494 { 2495 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2496 2497 /* 2498 * Unlike our sister routine cleanup_proc(), we don't need to remove 2499 * individual entries because a call will be made to 2500 * debugfs_remove_recursive(). We just need to clean up any ancillary 2501 * persistent state. 2502 */ 2503 /* nothing to do */ 2504 } 2505 2506 /* Figure out how many Ports and Queue Sets we can support. This depends on 2507 * knowing our Virtual Function Resources and may be called a second time if 2508 * we fall back from MSI-X to MSI Interrupt Mode. 2509 */ 2510 static void size_nports_qsets(struct adapter *adapter) 2511 { 2512 struct vf_resources *vfres = &adapter->params.vfres; 2513 unsigned int ethqsets, pmask_nports; 2514 2515 /* The number of "ports" which we support is equal to the number of 2516 * Virtual Interfaces with which we've been provisioned. 2517 */ 2518 adapter->params.nports = vfres->nvi; 2519 if (adapter->params.nports > MAX_NPORTS) { 2520 dev_warn(adapter->pdev_dev, "only using %d of %d maximum" 2521 " allowed virtual interfaces\n", MAX_NPORTS, 2522 adapter->params.nports); 2523 adapter->params.nports = MAX_NPORTS; 2524 } 2525 2526 /* We may have been provisioned with more VIs than the number of 2527 * ports we're allowed to access (our Port Access Rights Mask). 2528 * This is obviously a configuration conflict but we don't want to 2529 * crash the kernel or anything silly just because of that. 2530 */ 2531 pmask_nports = hweight32(adapter->params.vfres.pmask); 2532 if (pmask_nports < adapter->params.nports) { 2533 dev_warn(adapter->pdev_dev, "only using %d of %d provisioned" 2534 " virtual interfaces; limited by Port Access Rights" 2535 " mask %#x\n", pmask_nports, adapter->params.nports, 2536 adapter->params.vfres.pmask); 2537 adapter->params.nports = pmask_nports; 2538 } 2539 2540 /* We need to reserve an Ingress Queue for the Asynchronous Firmware 2541 * Event Queue. And if we're using MSI Interrupts, we'll also need to 2542 * reserve an Ingress Queue for a Forwarded Interrupts. 2543 * 2544 * The rest of the FL/Intr-capable ingress queues will be matched up 2545 * one-for-one with Ethernet/Control egress queues in order to form 2546 * "Queue Sets" which will be aportioned between the "ports". For 2547 * each Queue Set, we'll need the ability to allocate two Egress 2548 * Contexts -- one for the Ingress Queue Free List and one for the TX 2549 * Ethernet Queue. 2550 * 2551 * Note that even if we're currently configured to use MSI-X 2552 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded 2553 * to MSI Interrupts if we can't get enough MSI-X Interrupts. If that 2554 * happens we'll need to adjust things later. 2555 */ 2556 ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI); 2557 if (vfres->nethctrl != ethqsets) 2558 ethqsets = min(vfres->nethctrl, ethqsets); 2559 if (vfres->neq < ethqsets*2) 2560 ethqsets = vfres->neq/2; 2561 if (ethqsets > MAX_ETH_QSETS) 2562 ethqsets = MAX_ETH_QSETS; 2563 adapter->sge.max_ethqsets = ethqsets; 2564 2565 if (adapter->sge.max_ethqsets < adapter->params.nports) { 2566 dev_warn(adapter->pdev_dev, "only using %d of %d available" 2567 " virtual interfaces (too few Queue Sets)\n", 2568 adapter->sge.max_ethqsets, adapter->params.nports); 2569 adapter->params.nports = adapter->sge.max_ethqsets; 2570 } 2571 } 2572 2573 /* 2574 * Perform early "adapter" initialization. This is where we discover what 2575 * adapter parameters we're going to be using and initialize basic adapter 2576 * hardware support. 2577 */ 2578 static int adap_init0(struct adapter *adapter) 2579 { 2580 struct sge_params *sge_params = &adapter->params.sge; 2581 struct sge *s = &adapter->sge; 2582 int err; 2583 u32 param, val = 0; 2584 2585 /* 2586 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux 2587 * 2.6.31 and later we can't call pci_reset_function() in order to 2588 * issue an FLR because of a self- deadlock on the device semaphore. 2589 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the 2590 * cases where they're needed -- for instance, some versions of KVM 2591 * fail to reset "Assigned Devices" when the VM reboots. Therefore we 2592 * use the firmware based reset in order to reset any per function 2593 * state. 2594 */ 2595 err = t4vf_fw_reset(adapter); 2596 if (err < 0) { 2597 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err); 2598 return err; 2599 } 2600 2601 /* 2602 * Grab basic operational parameters. These will predominantly have 2603 * been set up by the Physical Function Driver or will be hard coded 2604 * into the adapter. We just have to live with them ... Note that 2605 * we _must_ get our VPD parameters before our SGE parameters because 2606 * we need to know the adapter's core clock from the VPD in order to 2607 * properly decode the SGE Timer Values. 2608 */ 2609 err = t4vf_get_dev_params(adapter); 2610 if (err) { 2611 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2612 " device parameters: err=%d\n", err); 2613 return err; 2614 } 2615 err = t4vf_get_vpd_params(adapter); 2616 if (err) { 2617 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2618 " VPD parameters: err=%d\n", err); 2619 return err; 2620 } 2621 err = t4vf_get_sge_params(adapter); 2622 if (err) { 2623 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2624 " SGE parameters: err=%d\n", err); 2625 return err; 2626 } 2627 err = t4vf_get_rss_glb_config(adapter); 2628 if (err) { 2629 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2630 " RSS parameters: err=%d\n", err); 2631 return err; 2632 } 2633 if (adapter->params.rss.mode != 2634 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 2635 dev_err(adapter->pdev_dev, "unable to operate with global RSS" 2636 " mode %d\n", adapter->params.rss.mode); 2637 return -EINVAL; 2638 } 2639 err = t4vf_sge_init(adapter); 2640 if (err) { 2641 dev_err(adapter->pdev_dev, "unable to use adapter parameters:" 2642 " err=%d\n", err); 2643 return err; 2644 } 2645 2646 /* If we're running on newer firmware, let it know that we're 2647 * prepared to deal with encapsulated CPL messages. Older 2648 * firmware won't understand this and we'll just get 2649 * unencapsulated messages ... 2650 */ 2651 param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2652 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP); 2653 val = 1; 2654 (void) t4vf_set_params(adapter, 1, ¶m, &val); 2655 2656 /* 2657 * Retrieve our RX interrupt holdoff timer values and counter 2658 * threshold values from the SGE parameters. 2659 */ 2660 s->timer_val[0] = core_ticks_to_us(adapter, 2661 TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1)); 2662 s->timer_val[1] = core_ticks_to_us(adapter, 2663 TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1)); 2664 s->timer_val[2] = core_ticks_to_us(adapter, 2665 TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3)); 2666 s->timer_val[3] = core_ticks_to_us(adapter, 2667 TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3)); 2668 s->timer_val[4] = core_ticks_to_us(adapter, 2669 TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5)); 2670 s->timer_val[5] = core_ticks_to_us(adapter, 2671 TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5)); 2672 2673 s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold); 2674 s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold); 2675 s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold); 2676 s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold); 2677 2678 /* 2679 * Grab our Virtual Interface resource allocation, extract the 2680 * features that we're interested in and do a bit of sanity testing on 2681 * what we discover. 2682 */ 2683 err = t4vf_get_vfres(adapter); 2684 if (err) { 2685 dev_err(adapter->pdev_dev, "unable to get virtual interface" 2686 " resources: err=%d\n", err); 2687 return err; 2688 } 2689 2690 /* Check for various parameter sanity issues */ 2691 if (adapter->params.vfres.pmask == 0) { 2692 dev_err(adapter->pdev_dev, "no port access configured\n" 2693 "usable!\n"); 2694 return -EINVAL; 2695 } 2696 if (adapter->params.vfres.nvi == 0) { 2697 dev_err(adapter->pdev_dev, "no virtual interfaces configured/" 2698 "usable!\n"); 2699 return -EINVAL; 2700 } 2701 2702 /* Initialize nports and max_ethqsets now that we have our Virtual 2703 * Function Resources. 2704 */ 2705 size_nports_qsets(adapter); 2706 2707 adapter->flags |= CXGB4VF_FW_OK; 2708 return 0; 2709 } 2710 2711 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx, 2712 u8 pkt_cnt_idx, unsigned int size, 2713 unsigned int iqe_size) 2714 { 2715 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 2716 (pkt_cnt_idx < SGE_NCOUNTERS ? 2717 QINTR_CNT_EN_F : 0)); 2718 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS 2719 ? pkt_cnt_idx 2720 : 0); 2721 rspq->iqe_len = iqe_size; 2722 rspq->size = size; 2723 } 2724 2725 /* 2726 * Perform default configuration of DMA queues depending on the number and 2727 * type of ports we found and the number of available CPUs. Most settings can 2728 * be modified by the admin via ethtool and cxgbtool prior to the adapter 2729 * being brought up for the first time. 2730 */ 2731 static void cfg_queues(struct adapter *adapter) 2732 { 2733 struct sge *s = &adapter->sge; 2734 int q10g, n10g, qidx, pidx, qs; 2735 size_t iqe_size; 2736 2737 /* 2738 * We should not be called till we know how many Queue Sets we can 2739 * support. In particular, this means that we need to know what kind 2740 * of interrupts we'll be using ... 2741 */ 2742 BUG_ON((adapter->flags & 2743 (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0); 2744 2745 /* 2746 * Count the number of 10GbE Virtual Interfaces that we have. 2747 */ 2748 n10g = 0; 2749 for_each_port(adapter, pidx) 2750 n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg); 2751 2752 /* 2753 * We default to 1 queue per non-10G port and up to # of cores queues 2754 * per 10G port. 2755 */ 2756 if (n10g == 0) 2757 q10g = 0; 2758 else { 2759 int n1g = (adapter->params.nports - n10g); 2760 q10g = (adapter->sge.max_ethqsets - n1g) / n10g; 2761 if (q10g > num_online_cpus()) 2762 q10g = num_online_cpus(); 2763 } 2764 2765 /* 2766 * Allocate the "Queue Sets" to the various Virtual Interfaces. 2767 * The layout will be established in setup_sge_queues() when the 2768 * adapter is brough up for the first time. 2769 */ 2770 qidx = 0; 2771 for_each_port(adapter, pidx) { 2772 struct port_info *pi = adap2pinfo(adapter, pidx); 2773 2774 pi->first_qset = qidx; 2775 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 2776 qidx += pi->nqsets; 2777 } 2778 s->ethqsets = qidx; 2779 2780 /* 2781 * The Ingress Queue Entry Size for our various Response Queues needs 2782 * to be big enough to accommodate the largest message we can receive 2783 * from the chip/firmware; which is 64 bytes ... 2784 */ 2785 iqe_size = 64; 2786 2787 /* 2788 * Set up default Queue Set parameters ... Start off with the 2789 * shortest interrupt holdoff timer. 2790 */ 2791 for (qs = 0; qs < s->max_ethqsets; qs++) { 2792 struct sge_eth_rxq *rxq = &s->ethrxq[qs]; 2793 struct sge_eth_txq *txq = &s->ethtxq[qs]; 2794 2795 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size); 2796 rxq->fl.size = 72; 2797 txq->q.size = 1024; 2798 } 2799 2800 /* 2801 * The firmware event queue is used for link state changes and 2802 * notifications of TX DMA completions. 2803 */ 2804 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size); 2805 2806 /* 2807 * The forwarded interrupt queue is used when we're in MSI interrupt 2808 * mode. In this mode all interrupts associated with RX queues will 2809 * be forwarded to a single queue which we'll associate with our MSI 2810 * interrupt vector. The messages dropped in the forwarded interrupt 2811 * queue will indicate which ingress queue needs servicing ... This 2812 * queue needs to be large enough to accommodate all of the ingress 2813 * queues which are forwarding their interrupt (+1 to prevent the PIDX 2814 * from equalling the CIDX if every ingress queue has an outstanding 2815 * interrupt). The queue doesn't need to be any larger because no 2816 * ingress queue will ever have more than one outstanding interrupt at 2817 * any time ... 2818 */ 2819 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1, 2820 iqe_size); 2821 } 2822 2823 /* 2824 * Reduce the number of Ethernet queues across all ports to at most n. 2825 * n provides at least one queue per port. 2826 */ 2827 static void reduce_ethqs(struct adapter *adapter, int n) 2828 { 2829 int i; 2830 struct port_info *pi; 2831 2832 /* 2833 * While we have too many active Ether Queue Sets, interate across the 2834 * "ports" and reduce their individual Queue Set allocations. 2835 */ 2836 BUG_ON(n < adapter->params.nports); 2837 while (n < adapter->sge.ethqsets) 2838 for_each_port(adapter, i) { 2839 pi = adap2pinfo(adapter, i); 2840 if (pi->nqsets > 1) { 2841 pi->nqsets--; 2842 adapter->sge.ethqsets--; 2843 if (adapter->sge.ethqsets <= n) 2844 break; 2845 } 2846 } 2847 2848 /* 2849 * Reassign the starting Queue Sets for each of the "ports" ... 2850 */ 2851 n = 0; 2852 for_each_port(adapter, i) { 2853 pi = adap2pinfo(adapter, i); 2854 pi->first_qset = n; 2855 n += pi->nqsets; 2856 } 2857 } 2858 2859 /* 2860 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally 2861 * we get a separate MSI-X vector for every "Queue Set" plus any extras we 2862 * need. Minimally we need one for every Virtual Interface plus those needed 2863 * for our "extras". Note that this process may lower the maximum number of 2864 * allowed Queue Sets ... 2865 */ 2866 static int enable_msix(struct adapter *adapter) 2867 { 2868 int i, want, need, nqsets; 2869 struct msix_entry entries[MSIX_ENTRIES]; 2870 struct sge *s = &adapter->sge; 2871 2872 for (i = 0; i < MSIX_ENTRIES; ++i) 2873 entries[i].entry = i; 2874 2875 /* 2876 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets" 2877 * plus those needed for our "extras" (for example, the firmware 2878 * message queue). We _need_ at least one "Queue Set" per Virtual 2879 * Interface plus those needed for our "extras". So now we get to see 2880 * if the song is right ... 2881 */ 2882 want = s->max_ethqsets + MSIX_EXTRAS; 2883 need = adapter->params.nports + MSIX_EXTRAS; 2884 2885 want = pci_enable_msix_range(adapter->pdev, entries, need, want); 2886 if (want < 0) 2887 return want; 2888 2889 nqsets = want - MSIX_EXTRAS; 2890 if (nqsets < s->max_ethqsets) { 2891 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors" 2892 " for %d Queue Sets\n", nqsets); 2893 s->max_ethqsets = nqsets; 2894 if (nqsets < s->ethqsets) 2895 reduce_ethqs(adapter, nqsets); 2896 } 2897 for (i = 0; i < want; ++i) 2898 adapter->msix_info[i].vec = entries[i].vector; 2899 2900 return 0; 2901 } 2902 2903 static const struct net_device_ops cxgb4vf_netdev_ops = { 2904 .ndo_open = cxgb4vf_open, 2905 .ndo_stop = cxgb4vf_stop, 2906 .ndo_start_xmit = t4vf_eth_xmit, 2907 .ndo_get_stats = cxgb4vf_get_stats, 2908 .ndo_set_rx_mode = cxgb4vf_set_rxmode, 2909 .ndo_set_mac_address = cxgb4vf_set_mac_addr, 2910 .ndo_validate_addr = eth_validate_addr, 2911 .ndo_do_ioctl = cxgb4vf_do_ioctl, 2912 .ndo_change_mtu = cxgb4vf_change_mtu, 2913 .ndo_fix_features = cxgb4vf_fix_features, 2914 .ndo_set_features = cxgb4vf_set_features, 2915 #ifdef CONFIG_NET_POLL_CONTROLLER 2916 .ndo_poll_controller = cxgb4vf_poll_controller, 2917 #endif 2918 }; 2919 2920 /* 2921 * "Probe" a device: initialize a device and construct all kernel and driver 2922 * state needed to manage the device. This routine is called "init_one" in 2923 * the PF Driver ... 2924 */ 2925 static int cxgb4vf_pci_probe(struct pci_dev *pdev, 2926 const struct pci_device_id *ent) 2927 { 2928 int pci_using_dac; 2929 int err, pidx; 2930 unsigned int pmask; 2931 struct adapter *adapter; 2932 struct port_info *pi; 2933 struct net_device *netdev; 2934 unsigned int pf; 2935 2936 /* 2937 * Initialize generic PCI device state. 2938 */ 2939 err = pci_enable_device(pdev); 2940 if (err) { 2941 dev_err(&pdev->dev, "cannot enable PCI device\n"); 2942 return err; 2943 } 2944 2945 /* 2946 * Reserve PCI resources for the device. If we can't get them some 2947 * other driver may have already claimed the device ... 2948 */ 2949 err = pci_request_regions(pdev, KBUILD_MODNAME); 2950 if (err) { 2951 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 2952 goto err_disable_device; 2953 } 2954 2955 /* 2956 * Set up our DMA mask: try for 64-bit address masking first and 2957 * fall back to 32-bit if we can't get 64 bits ... 2958 */ 2959 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 2960 if (err == 0) { 2961 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 2962 if (err) { 2963 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for" 2964 " coherent allocations\n"); 2965 goto err_release_regions; 2966 } 2967 pci_using_dac = 1; 2968 } else { 2969 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2970 if (err != 0) { 2971 dev_err(&pdev->dev, "no usable DMA configuration\n"); 2972 goto err_release_regions; 2973 } 2974 pci_using_dac = 0; 2975 } 2976 2977 /* 2978 * Enable bus mastering for the device ... 2979 */ 2980 pci_set_master(pdev); 2981 2982 /* 2983 * Allocate our adapter data structure and attach it to the device. 2984 */ 2985 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 2986 if (!adapter) { 2987 err = -ENOMEM; 2988 goto err_release_regions; 2989 } 2990 pci_set_drvdata(pdev, adapter); 2991 adapter->pdev = pdev; 2992 adapter->pdev_dev = &pdev->dev; 2993 2994 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 2995 (sizeof(struct mbox_cmd) * 2996 T4VF_OS_LOG_MBOX_CMDS), 2997 GFP_KERNEL); 2998 if (!adapter->mbox_log) { 2999 err = -ENOMEM; 3000 goto err_free_adapter; 3001 } 3002 adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS; 3003 3004 /* 3005 * Initialize SMP data synchronization resources. 3006 */ 3007 spin_lock_init(&adapter->stats_lock); 3008 spin_lock_init(&adapter->mbox_lock); 3009 INIT_LIST_HEAD(&adapter->mlist.list); 3010 3011 /* 3012 * Map our I/O registers in BAR0. 3013 */ 3014 adapter->regs = pci_ioremap_bar(pdev, 0); 3015 if (!adapter->regs) { 3016 dev_err(&pdev->dev, "cannot map device registers\n"); 3017 err = -ENOMEM; 3018 goto err_free_adapter; 3019 } 3020 3021 /* Wait for the device to become ready before proceeding ... 3022 */ 3023 err = t4vf_prep_adapter(adapter); 3024 if (err) { 3025 dev_err(adapter->pdev_dev, "device didn't become ready:" 3026 " err=%d\n", err); 3027 goto err_unmap_bar0; 3028 } 3029 3030 /* For T5 and later we want to use the new BAR-based User Doorbells, 3031 * so we need to map BAR2 here ... 3032 */ 3033 if (!is_t4(adapter->params.chip)) { 3034 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 3035 pci_resource_len(pdev, 2)); 3036 if (!adapter->bar2) { 3037 dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n"); 3038 err = -ENOMEM; 3039 goto err_unmap_bar0; 3040 } 3041 } 3042 /* 3043 * Initialize adapter level features. 3044 */ 3045 adapter->name = pci_name(pdev); 3046 adapter->msg_enable = DFLT_MSG_ENABLE; 3047 3048 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 3049 * Ingress Packet Data to Free List Buffers in order to allow for 3050 * chipset performance optimizations between the Root Complex and 3051 * Memory Controllers. (Messages to the associated Ingress Queue 3052 * notifying new Packet Placement in the Free Lists Buffers will be 3053 * send without the Relaxed Ordering Attribute thus guaranteeing that 3054 * all preceding PCIe Transaction Layer Packets will be processed 3055 * first.) But some Root Complexes have various issues with Upstream 3056 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 3057 * The PCIe devices which under the Root Complexes will be cleared the 3058 * Relaxed Ordering bit in the configuration space, So we check our 3059 * PCIe configuration space to see if it's flagged with advice against 3060 * using Relaxed Ordering. 3061 */ 3062 if (!pcie_relaxed_ordering_enabled(pdev)) 3063 adapter->flags |= CXGB4VF_ROOT_NO_RELAXED_ORDERING; 3064 3065 err = adap_init0(adapter); 3066 if (err) 3067 dev_err(&pdev->dev, 3068 "Adapter initialization failed, error %d. Continuing in debug mode\n", 3069 err); 3070 3071 /* Initialize hash mac addr list */ 3072 INIT_LIST_HEAD(&adapter->mac_hlist); 3073 3074 /* 3075 * Allocate our "adapter ports" and stitch everything together. 3076 */ 3077 pmask = adapter->params.vfres.pmask; 3078 pf = t4vf_get_pf_from_vf(adapter); 3079 for_each_port(adapter, pidx) { 3080 int port_id, viid; 3081 u8 mac[ETH_ALEN]; 3082 unsigned int naddr = 1; 3083 3084 /* 3085 * We simplistically allocate our virtual interfaces 3086 * sequentially across the port numbers to which we have 3087 * access rights. This should be configurable in some manner 3088 * ... 3089 */ 3090 if (pmask == 0) 3091 break; 3092 port_id = ffs(pmask) - 1; 3093 pmask &= ~(1 << port_id); 3094 3095 /* 3096 * Allocate our network device and stitch things together. 3097 */ 3098 netdev = alloc_etherdev_mq(sizeof(struct port_info), 3099 MAX_PORT_QSETS); 3100 if (netdev == NULL) { 3101 err = -ENOMEM; 3102 goto err_free_dev; 3103 } 3104 adapter->port[pidx] = netdev; 3105 SET_NETDEV_DEV(netdev, &pdev->dev); 3106 pi = netdev_priv(netdev); 3107 pi->adapter = adapter; 3108 pi->pidx = pidx; 3109 pi->port_id = port_id; 3110 3111 /* 3112 * Initialize the starting state of our "port" and register 3113 * it. 3114 */ 3115 pi->xact_addr_filt = -1; 3116 netdev->irq = pdev->irq; 3117 3118 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | NETIF_F_GRO | 3119 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM | 3120 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 3121 netdev->features = netdev->hw_features; 3122 if (pci_using_dac) 3123 netdev->features |= NETIF_F_HIGHDMA; 3124 netdev->vlan_features = netdev->features & VLAN_FEAT; 3125 3126 netdev->priv_flags |= IFF_UNICAST_FLT; 3127 netdev->min_mtu = 81; 3128 netdev->max_mtu = ETH_MAX_MTU; 3129 3130 netdev->netdev_ops = &cxgb4vf_netdev_ops; 3131 netdev->ethtool_ops = &cxgb4vf_ethtool_ops; 3132 netdev->dev_port = pi->port_id; 3133 3134 /* 3135 * If we haven't been able to contact the firmware, there's 3136 * nothing else we can do for this "port" ... 3137 */ 3138 if (!(adapter->flags & CXGB4VF_FW_OK)) 3139 continue; 3140 3141 viid = t4vf_alloc_vi(adapter, port_id); 3142 if (viid < 0) { 3143 dev_err(&pdev->dev, 3144 "cannot allocate VI for port %d: err=%d\n", 3145 port_id, viid); 3146 err = viid; 3147 goto err_free_dev; 3148 } 3149 pi->viid = viid; 3150 3151 /* 3152 * Initialize the hardware/software state for the port. 3153 */ 3154 err = t4vf_port_init(adapter, pidx); 3155 if (err) { 3156 dev_err(&pdev->dev, "cannot initialize port %d\n", 3157 pidx); 3158 goto err_free_dev; 3159 } 3160 3161 err = t4vf_get_vf_mac_acl(adapter, pf, &naddr, mac); 3162 if (err) { 3163 dev_err(&pdev->dev, 3164 "unable to determine MAC ACL address, " 3165 "continuing anyway.. (status %d)\n", err); 3166 } else if (naddr && adapter->params.vfres.nvi == 1) { 3167 struct sockaddr addr; 3168 3169 ether_addr_copy(addr.sa_data, mac); 3170 err = cxgb4vf_set_mac_addr(netdev, &addr); 3171 if (err) { 3172 dev_err(&pdev->dev, 3173 "unable to set MAC address %pM\n", 3174 mac); 3175 goto err_free_dev; 3176 } 3177 dev_info(&pdev->dev, 3178 "Using assigned MAC ACL: %pM\n", mac); 3179 } 3180 } 3181 3182 /* See what interrupts we'll be using. If we've been configured to 3183 * use MSI-X interrupts, try to enable them but fall back to using 3184 * MSI interrupts if we can't enable MSI-X interrupts. If we can't 3185 * get MSI interrupts we bail with the error. 3186 */ 3187 if (msi == MSI_MSIX && enable_msix(adapter) == 0) 3188 adapter->flags |= CXGB4VF_USING_MSIX; 3189 else { 3190 if (msi == MSI_MSIX) { 3191 dev_info(adapter->pdev_dev, 3192 "Unable to use MSI-X Interrupts; falling " 3193 "back to MSI Interrupts\n"); 3194 3195 /* We're going to need a Forwarded Interrupt Queue so 3196 * that may cut into how many Queue Sets we can 3197 * support. 3198 */ 3199 msi = MSI_MSI; 3200 size_nports_qsets(adapter); 3201 } 3202 err = pci_enable_msi(pdev); 3203 if (err) { 3204 dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;" 3205 " err=%d\n", err); 3206 goto err_free_dev; 3207 } 3208 adapter->flags |= CXGB4VF_USING_MSI; 3209 } 3210 3211 /* Now that we know how many "ports" we have and what interrupt 3212 * mechanism we're going to use, we can configure our queue resources. 3213 */ 3214 cfg_queues(adapter); 3215 3216 /* 3217 * The "card" is now ready to go. If any errors occur during device 3218 * registration we do not fail the whole "card" but rather proceed 3219 * only with the ports we manage to register successfully. However we 3220 * must register at least one net device. 3221 */ 3222 for_each_port(adapter, pidx) { 3223 struct port_info *pi = netdev_priv(adapter->port[pidx]); 3224 netdev = adapter->port[pidx]; 3225 if (netdev == NULL) 3226 continue; 3227 3228 netif_set_real_num_tx_queues(netdev, pi->nqsets); 3229 netif_set_real_num_rx_queues(netdev, pi->nqsets); 3230 3231 err = register_netdev(netdev); 3232 if (err) { 3233 dev_warn(&pdev->dev, "cannot register net device %s," 3234 " skipping\n", netdev->name); 3235 continue; 3236 } 3237 3238 netif_carrier_off(netdev); 3239 set_bit(pidx, &adapter->registered_device_map); 3240 } 3241 if (adapter->registered_device_map == 0) { 3242 dev_err(&pdev->dev, "could not register any net devices\n"); 3243 goto err_disable_interrupts; 3244 } 3245 3246 /* 3247 * Set up our debugfs entries. 3248 */ 3249 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) { 3250 adapter->debugfs_root = 3251 debugfs_create_dir(pci_name(pdev), 3252 cxgb4vf_debugfs_root); 3253 setup_debugfs(adapter); 3254 } 3255 3256 /* 3257 * Print a short notice on the existence and configuration of the new 3258 * VF network device ... 3259 */ 3260 for_each_port(adapter, pidx) { 3261 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n", 3262 adapter->port[pidx]->name, 3263 (adapter->flags & CXGB4VF_USING_MSIX) ? "MSI-X" : 3264 (adapter->flags & CXGB4VF_USING_MSI) ? "MSI" : ""); 3265 } 3266 3267 /* 3268 * Return success! 3269 */ 3270 return 0; 3271 3272 /* 3273 * Error recovery and exit code. Unwind state that's been created 3274 * so far and return the error. 3275 */ 3276 err_disable_interrupts: 3277 if (adapter->flags & CXGB4VF_USING_MSIX) { 3278 pci_disable_msix(adapter->pdev); 3279 adapter->flags &= ~CXGB4VF_USING_MSIX; 3280 } else if (adapter->flags & CXGB4VF_USING_MSI) { 3281 pci_disable_msi(adapter->pdev); 3282 adapter->flags &= ~CXGB4VF_USING_MSI; 3283 } 3284 3285 err_free_dev: 3286 for_each_port(adapter, pidx) { 3287 netdev = adapter->port[pidx]; 3288 if (netdev == NULL) 3289 continue; 3290 pi = netdev_priv(netdev); 3291 if (pi->viid) 3292 t4vf_free_vi(adapter, pi->viid); 3293 if (test_bit(pidx, &adapter->registered_device_map)) 3294 unregister_netdev(netdev); 3295 free_netdev(netdev); 3296 } 3297 3298 if (!is_t4(adapter->params.chip)) 3299 iounmap(adapter->bar2); 3300 3301 err_unmap_bar0: 3302 iounmap(adapter->regs); 3303 3304 err_free_adapter: 3305 kfree(adapter->mbox_log); 3306 kfree(adapter); 3307 3308 err_release_regions: 3309 pci_release_regions(pdev); 3310 pci_clear_master(pdev); 3311 3312 err_disable_device: 3313 pci_disable_device(pdev); 3314 3315 return err; 3316 } 3317 3318 /* 3319 * "Remove" a device: tear down all kernel and driver state created in the 3320 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note 3321 * that this is called "remove_one" in the PF Driver.) 3322 */ 3323 static void cxgb4vf_pci_remove(struct pci_dev *pdev) 3324 { 3325 struct adapter *adapter = pci_get_drvdata(pdev); 3326 struct hash_mac_addr *entry, *tmp; 3327 3328 /* 3329 * Tear down driver state associated with device. 3330 */ 3331 if (adapter) { 3332 int pidx; 3333 3334 /* 3335 * Stop all of our activity. Unregister network port, 3336 * disable interrupts, etc. 3337 */ 3338 for_each_port(adapter, pidx) 3339 if (test_bit(pidx, &adapter->registered_device_map)) 3340 unregister_netdev(adapter->port[pidx]); 3341 t4vf_sge_stop(adapter); 3342 if (adapter->flags & CXGB4VF_USING_MSIX) { 3343 pci_disable_msix(adapter->pdev); 3344 adapter->flags &= ~CXGB4VF_USING_MSIX; 3345 } else if (adapter->flags & CXGB4VF_USING_MSI) { 3346 pci_disable_msi(adapter->pdev); 3347 adapter->flags &= ~CXGB4VF_USING_MSI; 3348 } 3349 3350 /* 3351 * Tear down our debugfs entries. 3352 */ 3353 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) { 3354 cleanup_debugfs(adapter); 3355 debugfs_remove_recursive(adapter->debugfs_root); 3356 } 3357 3358 /* 3359 * Free all of the various resources which we've acquired ... 3360 */ 3361 t4vf_free_sge_resources(adapter); 3362 for_each_port(adapter, pidx) { 3363 struct net_device *netdev = adapter->port[pidx]; 3364 struct port_info *pi; 3365 3366 if (netdev == NULL) 3367 continue; 3368 3369 pi = netdev_priv(netdev); 3370 if (pi->viid) 3371 t4vf_free_vi(adapter, pi->viid); 3372 free_netdev(netdev); 3373 } 3374 iounmap(adapter->regs); 3375 if (!is_t4(adapter->params.chip)) 3376 iounmap(adapter->bar2); 3377 kfree(adapter->mbox_log); 3378 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 3379 list) { 3380 list_del(&entry->list); 3381 kfree(entry); 3382 } 3383 kfree(adapter); 3384 } 3385 3386 /* 3387 * Disable the device and release its PCI resources. 3388 */ 3389 pci_disable_device(pdev); 3390 pci_clear_master(pdev); 3391 pci_release_regions(pdev); 3392 } 3393 3394 /* 3395 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt 3396 * delivery. 3397 */ 3398 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev) 3399 { 3400 struct adapter *adapter; 3401 int pidx; 3402 3403 adapter = pci_get_drvdata(pdev); 3404 if (!adapter) 3405 return; 3406 3407 /* Disable all Virtual Interfaces. This will shut down the 3408 * delivery of all ingress packets into the chip for these 3409 * Virtual Interfaces. 3410 */ 3411 for_each_port(adapter, pidx) 3412 if (test_bit(pidx, &adapter->registered_device_map)) 3413 unregister_netdev(adapter->port[pidx]); 3414 3415 /* Free up all Queues which will prevent further DMA and 3416 * Interrupts allowing various internal pathways to drain. 3417 */ 3418 t4vf_sge_stop(adapter); 3419 if (adapter->flags & CXGB4VF_USING_MSIX) { 3420 pci_disable_msix(adapter->pdev); 3421 adapter->flags &= ~CXGB4VF_USING_MSIX; 3422 } else if (adapter->flags & CXGB4VF_USING_MSI) { 3423 pci_disable_msi(adapter->pdev); 3424 adapter->flags &= ~CXGB4VF_USING_MSI; 3425 } 3426 3427 /* 3428 * Free up all Queues which will prevent further DMA and 3429 * Interrupts allowing various internal pathways to drain. 3430 */ 3431 t4vf_free_sge_resources(adapter); 3432 pci_set_drvdata(pdev, NULL); 3433 } 3434 3435 /* Macros needed to support the PCI Device ID Table ... 3436 */ 3437 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 3438 static const struct pci_device_id cxgb4vf_pci_tbl[] = { 3439 #define CH_PCI_DEVICE_ID_FUNCTION 0x8 3440 3441 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 3442 { PCI_VDEVICE(CHELSIO, (devid)), 0 } 3443 3444 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } } 3445 3446 #include "../cxgb4/t4_pci_id_tbl.h" 3447 3448 MODULE_DESCRIPTION(DRV_DESC); 3449 MODULE_AUTHOR("Chelsio Communications"); 3450 MODULE_LICENSE("Dual BSD/GPL"); 3451 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl); 3452 3453 static struct pci_driver cxgb4vf_driver = { 3454 .name = KBUILD_MODNAME, 3455 .id_table = cxgb4vf_pci_tbl, 3456 .probe = cxgb4vf_pci_probe, 3457 .remove = cxgb4vf_pci_remove, 3458 .shutdown = cxgb4vf_pci_shutdown, 3459 }; 3460 3461 /* 3462 * Initialize global driver state. 3463 */ 3464 static int __init cxgb4vf_module_init(void) 3465 { 3466 int ret; 3467 3468 /* 3469 * Vet our module parameters. 3470 */ 3471 if (msi != MSI_MSIX && msi != MSI_MSI) { 3472 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n", 3473 msi, MSI_MSIX, MSI_MSI); 3474 return -EINVAL; 3475 } 3476 3477 /* Debugfs support is optional, debugfs will warn if this fails */ 3478 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 3479 3480 ret = pci_register_driver(&cxgb4vf_driver); 3481 if (ret < 0) 3482 debugfs_remove(cxgb4vf_debugfs_root); 3483 return ret; 3484 } 3485 3486 /* 3487 * Tear down global driver state. 3488 */ 3489 static void __exit cxgb4vf_module_exit(void) 3490 { 3491 pci_unregister_driver(&cxgb4vf_driver); 3492 debugfs_remove(cxgb4vf_debugfs_root); 3493 } 3494 3495 module_init(cxgb4vf_module_init); 3496 module_exit(cxgb4vf_module_exit); 3497