1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <linux/debugfs.h>
46 #include <linux/ethtool.h>
47 #include <linux/mdio.h>
48 
49 #include "t4vf_common.h"
50 #include "t4vf_defs.h"
51 
52 #include "../cxgb4/t4_regs.h"
53 #include "../cxgb4/t4_msg.h"
54 
55 /*
56  * Generic information about the driver.
57  */
58 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver"
59 
60 /*
61  * Module Parameters.
62  * ==================
63  */
64 
65 /*
66  * Default ethtool "message level" for adapters.
67  */
68 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
69 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
70 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
71 
72 /*
73  * The driver uses the best interrupt scheme available on a platform in the
74  * order MSI-X then MSI.  This parameter determines which of these schemes the
75  * driver may consider as follows:
76  *
77  *     msi = 2: choose from among MSI-X and MSI
78  *     msi = 1: only consider MSI interrupts
79  *
80  * Note that unlike the Physical Function driver, this Virtual Function driver
81  * does _not_ support legacy INTx interrupts (this limitation is mandated by
82  * the PCI-E SR-IOV standard).
83  */
84 #define MSI_MSIX	2
85 #define MSI_MSI		1
86 #define MSI_DEFAULT	MSI_MSIX
87 
88 static int msi = MSI_DEFAULT;
89 
90 module_param(msi, int, 0644);
91 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
92 
93 /*
94  * Fundamental constants.
95  * ======================
96  */
97 
98 enum {
99 	MAX_TXQ_ENTRIES		= 16384,
100 	MAX_RSPQ_ENTRIES	= 16384,
101 	MAX_RX_BUFFERS		= 16384,
102 
103 	MIN_TXQ_ENTRIES		= 32,
104 	MIN_RSPQ_ENTRIES	= 128,
105 	MIN_FL_ENTRIES		= 16,
106 
107 	/*
108 	 * For purposes of manipulating the Free List size we need to
109 	 * recognize that Free Lists are actually Egress Queues (the host
110 	 * produces free buffers which the hardware consumes), Egress Queues
111 	 * indices are all in units of Egress Context Units bytes, and free
112 	 * list entries are 64-bit PCI DMA addresses.  And since the state of
113 	 * the Producer Index == the Consumer Index implies an EMPTY list, we
114 	 * always have at least one Egress Unit's worth of Free List entries
115 	 * unused.  See sge.c for more details ...
116 	 */
117 	EQ_UNIT = SGE_EQ_IDXSIZE,
118 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
119 	MIN_FL_RESID = FL_PER_EQ_UNIT,
120 };
121 
122 /*
123  * Global driver state.
124  * ====================
125  */
126 
127 static struct dentry *cxgb4vf_debugfs_root;
128 
129 /*
130  * OS "Callback" functions.
131  * ========================
132  */
133 
134 /*
135  * The link status has changed on the indicated "port" (Virtual Interface).
136  */
137 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
138 {
139 	struct net_device *dev = adapter->port[pidx];
140 
141 	/*
142 	 * If the port is disabled or the current recorded "link up"
143 	 * status matches the new status, just return.
144 	 */
145 	if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
146 		return;
147 
148 	/*
149 	 * Tell the OS that the link status has changed and print a short
150 	 * informative message on the console about the event.
151 	 */
152 	if (link_ok) {
153 		const char *s;
154 		const char *fc;
155 		const struct port_info *pi = netdev_priv(dev);
156 
157 		netif_carrier_on(dev);
158 
159 		switch (pi->link_cfg.speed) {
160 		case 100:
161 			s = "100Mbps";
162 			break;
163 		case 1000:
164 			s = "1Gbps";
165 			break;
166 		case 10000:
167 			s = "10Gbps";
168 			break;
169 		case 25000:
170 			s = "25Gbps";
171 			break;
172 		case 40000:
173 			s = "40Gbps";
174 			break;
175 		case 100000:
176 			s = "100Gbps";
177 			break;
178 
179 		default:
180 			s = "unknown";
181 			break;
182 		}
183 
184 		switch ((int)pi->link_cfg.fc) {
185 		case PAUSE_RX:
186 			fc = "RX";
187 			break;
188 
189 		case PAUSE_TX:
190 			fc = "TX";
191 			break;
192 
193 		case PAUSE_RX | PAUSE_TX:
194 			fc = "RX/TX";
195 			break;
196 
197 		default:
198 			fc = "no";
199 			break;
200 		}
201 
202 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
203 	} else {
204 		netif_carrier_off(dev);
205 		netdev_info(dev, "link down\n");
206 	}
207 }
208 
209 /*
210  * THe port module type has changed on the indicated "port" (Virtual
211  * Interface).
212  */
213 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx)
214 {
215 	static const char * const mod_str[] = {
216 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
217 	};
218 	const struct net_device *dev = adapter->port[pidx];
219 	const struct port_info *pi = netdev_priv(dev);
220 
221 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
222 		dev_info(adapter->pdev_dev, "%s: port module unplugged\n",
223 			 dev->name);
224 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
225 		dev_info(adapter->pdev_dev, "%s: %s port module inserted\n",
226 			 dev->name, mod_str[pi->mod_type]);
227 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
228 		dev_info(adapter->pdev_dev, "%s: unsupported optical port "
229 			 "module inserted\n", dev->name);
230 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
231 		dev_info(adapter->pdev_dev, "%s: unknown port module inserted,"
232 			 "forcing TWINAX\n", dev->name);
233 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
234 		dev_info(adapter->pdev_dev, "%s: transceiver module error\n",
235 			 dev->name);
236 	else
237 		dev_info(adapter->pdev_dev, "%s: unknown module type %d "
238 			 "inserted\n", dev->name, pi->mod_type);
239 }
240 
241 static int cxgb4vf_set_addr_hash(struct port_info *pi)
242 {
243 	struct adapter *adapter = pi->adapter;
244 	u64 vec = 0;
245 	bool ucast = false;
246 	struct hash_mac_addr *entry;
247 
248 	/* Calculate the hash vector for the updated list and program it */
249 	list_for_each_entry(entry, &adapter->mac_hlist, list) {
250 		ucast |= is_unicast_ether_addr(entry->addr);
251 		vec |= (1ULL << hash_mac_addr(entry->addr));
252 	}
253 	return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false);
254 }
255 
256 /**
257  *	cxgb4vf_change_mac - Update match filter for a MAC address.
258  *	@pi: the port_info
259  *	@viid: the VI id
260  *	@tcam_idx: TCAM index of existing filter for old value of MAC address,
261  *		   or -1
262  *	@addr: the new MAC address value
263  *	@persistent: whether a new MAC allocation should be persistent
264  *
265  *	Modifies an MPS filter and sets it to the new MAC address if
266  *	@tcam_idx >= 0, or adds the MAC address to a new filter if
267  *	@tcam_idx < 0. In the latter case the address is added persistently
268  *	if @persist is %true.
269  *	Addresses are programmed to hash region, if tcam runs out of entries.
270  *
271  */
272 static int cxgb4vf_change_mac(struct port_info *pi, unsigned int viid,
273 			      int *tcam_idx, const u8 *addr, bool persistent)
274 {
275 	struct hash_mac_addr *new_entry, *entry;
276 	struct adapter *adapter = pi->adapter;
277 	int ret;
278 
279 	ret = t4vf_change_mac(adapter, viid, *tcam_idx, addr, persistent);
280 	/* We ran out of TCAM entries. try programming hash region. */
281 	if (ret == -ENOMEM) {
282 		/* If the MAC address to be updated is in the hash addr
283 		 * list, update it from the list
284 		 */
285 		list_for_each_entry(entry, &adapter->mac_hlist, list) {
286 			if (entry->iface_mac) {
287 				ether_addr_copy(entry->addr, addr);
288 				goto set_hash;
289 			}
290 		}
291 		new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
292 		if (!new_entry)
293 			return -ENOMEM;
294 		ether_addr_copy(new_entry->addr, addr);
295 		new_entry->iface_mac = true;
296 		list_add_tail(&new_entry->list, &adapter->mac_hlist);
297 set_hash:
298 		ret = cxgb4vf_set_addr_hash(pi);
299 	} else if (ret >= 0) {
300 		*tcam_idx = ret;
301 		ret = 0;
302 	}
303 
304 	return ret;
305 }
306 
307 /*
308  * Net device operations.
309  * ======================
310  */
311 
312 
313 
314 
315 /*
316  * Perform the MAC and PHY actions needed to enable a "port" (Virtual
317  * Interface).
318  */
319 static int link_start(struct net_device *dev)
320 {
321 	int ret;
322 	struct port_info *pi = netdev_priv(dev);
323 
324 	/*
325 	 * We do not set address filters and promiscuity here, the stack does
326 	 * that step explicitly. Enable vlan accel.
327 	 */
328 	ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
329 			      true);
330 	if (ret == 0)
331 		ret = cxgb4vf_change_mac(pi, pi->viid,
332 					 &pi->xact_addr_filt,
333 					 dev->dev_addr, true);
334 
335 	/*
336 	 * We don't need to actually "start the link" itself since the
337 	 * firmware will do that for us when the first Virtual Interface
338 	 * is enabled on a port.
339 	 */
340 	if (ret == 0)
341 		ret = t4vf_enable_pi(pi->adapter, pi, true, true);
342 
343 	return ret;
344 }
345 
346 /*
347  * Name the MSI-X interrupts.
348  */
349 static void name_msix_vecs(struct adapter *adapter)
350 {
351 	int namelen = sizeof(adapter->msix_info[0].desc) - 1;
352 	int pidx;
353 
354 	/*
355 	 * Firmware events.
356 	 */
357 	snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
358 		 "%s-FWeventq", adapter->name);
359 	adapter->msix_info[MSIX_FW].desc[namelen] = 0;
360 
361 	/*
362 	 * Ethernet queues.
363 	 */
364 	for_each_port(adapter, pidx) {
365 		struct net_device *dev = adapter->port[pidx];
366 		const struct port_info *pi = netdev_priv(dev);
367 		int qs, msi;
368 
369 		for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
370 			snprintf(adapter->msix_info[msi].desc, namelen,
371 				 "%s-%d", dev->name, qs);
372 			adapter->msix_info[msi].desc[namelen] = 0;
373 		}
374 	}
375 }
376 
377 /*
378  * Request all of our MSI-X resources.
379  */
380 static int request_msix_queue_irqs(struct adapter *adapter)
381 {
382 	struct sge *s = &adapter->sge;
383 	int rxq, msi, err;
384 
385 	/*
386 	 * Firmware events.
387 	 */
388 	err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
389 			  0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
390 	if (err)
391 		return err;
392 
393 	/*
394 	 * Ethernet queues.
395 	 */
396 	msi = MSIX_IQFLINT;
397 	for_each_ethrxq(s, rxq) {
398 		err = request_irq(adapter->msix_info[msi].vec,
399 				  t4vf_sge_intr_msix, 0,
400 				  adapter->msix_info[msi].desc,
401 				  &s->ethrxq[rxq].rspq);
402 		if (err)
403 			goto err_free_irqs;
404 		msi++;
405 	}
406 	return 0;
407 
408 err_free_irqs:
409 	while (--rxq >= 0)
410 		free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
411 	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
412 	return err;
413 }
414 
415 /*
416  * Free our MSI-X resources.
417  */
418 static void free_msix_queue_irqs(struct adapter *adapter)
419 {
420 	struct sge *s = &adapter->sge;
421 	int rxq, msi;
422 
423 	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
424 	msi = MSIX_IQFLINT;
425 	for_each_ethrxq(s, rxq)
426 		free_irq(adapter->msix_info[msi++].vec,
427 			 &s->ethrxq[rxq].rspq);
428 }
429 
430 /*
431  * Turn on NAPI and start up interrupts on a response queue.
432  */
433 static void qenable(struct sge_rspq *rspq)
434 {
435 	napi_enable(&rspq->napi);
436 
437 	/*
438 	 * 0-increment the Going To Sleep register to start the timer and
439 	 * enable interrupts.
440 	 */
441 	t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
442 		     CIDXINC_V(0) |
443 		     SEINTARM_V(rspq->intr_params) |
444 		     INGRESSQID_V(rspq->cntxt_id));
445 }
446 
447 /*
448  * Enable NAPI scheduling and interrupt generation for all Receive Queues.
449  */
450 static void enable_rx(struct adapter *adapter)
451 {
452 	int rxq;
453 	struct sge *s = &adapter->sge;
454 
455 	for_each_ethrxq(s, rxq)
456 		qenable(&s->ethrxq[rxq].rspq);
457 	qenable(&s->fw_evtq);
458 
459 	/*
460 	 * The interrupt queue doesn't use NAPI so we do the 0-increment of
461 	 * its Going To Sleep register here to get it started.
462 	 */
463 	if (adapter->flags & CXGB4VF_USING_MSI)
464 		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
465 			     CIDXINC_V(0) |
466 			     SEINTARM_V(s->intrq.intr_params) |
467 			     INGRESSQID_V(s->intrq.cntxt_id));
468 
469 }
470 
471 /*
472  * Wait until all NAPI handlers are descheduled.
473  */
474 static void quiesce_rx(struct adapter *adapter)
475 {
476 	struct sge *s = &adapter->sge;
477 	int rxq;
478 
479 	for_each_ethrxq(s, rxq)
480 		napi_disable(&s->ethrxq[rxq].rspq.napi);
481 	napi_disable(&s->fw_evtq.napi);
482 }
483 
484 /*
485  * Response queue handler for the firmware event queue.
486  */
487 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
488 			  const struct pkt_gl *gl)
489 {
490 	/*
491 	 * Extract response opcode and get pointer to CPL message body.
492 	 */
493 	struct adapter *adapter = rspq->adapter;
494 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
495 	void *cpl = (void *)(rsp + 1);
496 
497 	switch (opcode) {
498 	case CPL_FW6_MSG: {
499 		/*
500 		 * We've received an asynchronous message from the firmware.
501 		 */
502 		const struct cpl_fw6_msg *fw_msg = cpl;
503 		if (fw_msg->type == FW6_TYPE_CMD_RPL)
504 			t4vf_handle_fw_rpl(adapter, fw_msg->data);
505 		break;
506 	}
507 
508 	case CPL_FW4_MSG: {
509 		/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
510 		 */
511 		const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
512 		opcode = CPL_OPCODE_G(ntohl(p->opcode_qid));
513 		if (opcode != CPL_SGE_EGR_UPDATE) {
514 			dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
515 				, opcode);
516 			break;
517 		}
518 		cpl = (void *)p;
519 	}
520 		fallthrough;
521 
522 	case CPL_SGE_EGR_UPDATE: {
523 		/*
524 		 * We've received an Egress Queue Status Update message.  We
525 		 * get these, if the SGE is configured to send these when the
526 		 * firmware passes certain points in processing our TX
527 		 * Ethernet Queue or if we make an explicit request for one.
528 		 * We use these updates to determine when we may need to
529 		 * restart a TX Ethernet Queue which was stopped for lack of
530 		 * free TX Queue Descriptors ...
531 		 */
532 		const struct cpl_sge_egr_update *p = cpl;
533 		unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid));
534 		struct sge *s = &adapter->sge;
535 		struct sge_txq *tq;
536 		struct sge_eth_txq *txq;
537 		unsigned int eq_idx;
538 
539 		/*
540 		 * Perform sanity checking on the Queue ID to make sure it
541 		 * really refers to one of our TX Ethernet Egress Queues which
542 		 * is active and matches the queue's ID.  None of these error
543 		 * conditions should ever happen so we may want to either make
544 		 * them fatal and/or conditionalized under DEBUG.
545 		 */
546 		eq_idx = EQ_IDX(s, qid);
547 		if (unlikely(eq_idx >= MAX_EGRQ)) {
548 			dev_err(adapter->pdev_dev,
549 				"Egress Update QID %d out of range\n", qid);
550 			break;
551 		}
552 		tq = s->egr_map[eq_idx];
553 		if (unlikely(tq == NULL)) {
554 			dev_err(adapter->pdev_dev,
555 				"Egress Update QID %d TXQ=NULL\n", qid);
556 			break;
557 		}
558 		txq = container_of(tq, struct sge_eth_txq, q);
559 		if (unlikely(tq->abs_id != qid)) {
560 			dev_err(adapter->pdev_dev,
561 				"Egress Update QID %d refers to TXQ %d\n",
562 				qid, tq->abs_id);
563 			break;
564 		}
565 
566 		/*
567 		 * Restart a stopped TX Queue which has less than half of its
568 		 * TX ring in use ...
569 		 */
570 		txq->q.restarts++;
571 		netif_tx_wake_queue(txq->txq);
572 		break;
573 	}
574 
575 	default:
576 		dev_err(adapter->pdev_dev,
577 			"unexpected CPL %#x on FW event queue\n", opcode);
578 	}
579 
580 	return 0;
581 }
582 
583 /*
584  * Allocate SGE TX/RX response queues.  Determine how many sets of SGE queues
585  * to use and initializes them.  We support multiple "Queue Sets" per port if
586  * we have MSI-X, otherwise just one queue set per port.
587  */
588 static int setup_sge_queues(struct adapter *adapter)
589 {
590 	struct sge *s = &adapter->sge;
591 	int err, pidx, msix;
592 
593 	/*
594 	 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
595 	 * state.
596 	 */
597 	bitmap_zero(s->starving_fl, MAX_EGRQ);
598 
599 	/*
600 	 * If we're using MSI interrupt mode we need to set up a "forwarded
601 	 * interrupt" queue which we'll set up with our MSI vector.  The rest
602 	 * of the ingress queues will be set up to forward their interrupts to
603 	 * this queue ...  This must be first since t4vf_sge_alloc_rxq() uses
604 	 * the intrq's queue ID as the interrupt forwarding queue for the
605 	 * subsequent calls ...
606 	 */
607 	if (adapter->flags & CXGB4VF_USING_MSI) {
608 		err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
609 					 adapter->port[0], 0, NULL, NULL);
610 		if (err)
611 			goto err_free_queues;
612 	}
613 
614 	/*
615 	 * Allocate our ingress queue for asynchronous firmware messages.
616 	 */
617 	err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
618 				 MSIX_FW, NULL, fwevtq_handler);
619 	if (err)
620 		goto err_free_queues;
621 
622 	/*
623 	 * Allocate each "port"'s initial Queue Sets.  These can be changed
624 	 * later on ... up to the point where any interface on the adapter is
625 	 * brought up at which point lots of things get nailed down
626 	 * permanently ...
627 	 */
628 	msix = MSIX_IQFLINT;
629 	for_each_port(adapter, pidx) {
630 		struct net_device *dev = adapter->port[pidx];
631 		struct port_info *pi = netdev_priv(dev);
632 		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
633 		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
634 		int qs;
635 
636 		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
637 			err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
638 						 dev, msix++,
639 						 &rxq->fl, t4vf_ethrx_handler);
640 			if (err)
641 				goto err_free_queues;
642 
643 			err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
644 					     netdev_get_tx_queue(dev, qs),
645 					     s->fw_evtq.cntxt_id);
646 			if (err)
647 				goto err_free_queues;
648 
649 			rxq->rspq.idx = qs;
650 			memset(&rxq->stats, 0, sizeof(rxq->stats));
651 		}
652 	}
653 
654 	/*
655 	 * Create the reverse mappings for the queues.
656 	 */
657 	s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
658 	s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
659 	IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
660 	for_each_port(adapter, pidx) {
661 		struct net_device *dev = adapter->port[pidx];
662 		struct port_info *pi = netdev_priv(dev);
663 		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
664 		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
665 		int qs;
666 
667 		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
668 			IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
669 			EQ_MAP(s, txq->q.abs_id) = &txq->q;
670 
671 			/*
672 			 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
673 			 * for Free Lists but since all of the Egress Queues
674 			 * (including Free Lists) have Relative Queue IDs
675 			 * which are computed as Absolute - Base Queue ID, we
676 			 * can synthesize the Absolute Queue IDs for the Free
677 			 * Lists.  This is useful for debugging purposes when
678 			 * we want to dump Queue Contexts via the PF Driver.
679 			 */
680 			rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
681 			EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
682 		}
683 	}
684 	return 0;
685 
686 err_free_queues:
687 	t4vf_free_sge_resources(adapter);
688 	return err;
689 }
690 
691 /*
692  * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
693  * queues.  We configure the RSS CPU lookup table to distribute to the number
694  * of HW receive queues, and the response queue lookup table to narrow that
695  * down to the response queues actually configured for each "port" (Virtual
696  * Interface).  We always configure the RSS mapping for all ports since the
697  * mapping table has plenty of entries.
698  */
699 static int setup_rss(struct adapter *adapter)
700 {
701 	int pidx;
702 
703 	for_each_port(adapter, pidx) {
704 		struct port_info *pi = adap2pinfo(adapter, pidx);
705 		struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
706 		u16 rss[MAX_PORT_QSETS];
707 		int qs, err;
708 
709 		for (qs = 0; qs < pi->nqsets; qs++)
710 			rss[qs] = rxq[qs].rspq.abs_id;
711 
712 		err = t4vf_config_rss_range(adapter, pi->viid,
713 					    0, pi->rss_size, rss, pi->nqsets);
714 		if (err)
715 			return err;
716 
717 		/*
718 		 * Perform Global RSS Mode-specific initialization.
719 		 */
720 		switch (adapter->params.rss.mode) {
721 		case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
722 			/*
723 			 * If Tunnel All Lookup isn't specified in the global
724 			 * RSS Configuration, then we need to specify a
725 			 * default Ingress Queue for any ingress packets which
726 			 * aren't hashed.  We'll use our first ingress queue
727 			 * ...
728 			 */
729 			if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
730 				union rss_vi_config config;
731 				err = t4vf_read_rss_vi_config(adapter,
732 							      pi->viid,
733 							      &config);
734 				if (err)
735 					return err;
736 				config.basicvirtual.defaultq =
737 					rxq[0].rspq.abs_id;
738 				err = t4vf_write_rss_vi_config(adapter,
739 							       pi->viid,
740 							       &config);
741 				if (err)
742 					return err;
743 			}
744 			break;
745 		}
746 	}
747 
748 	return 0;
749 }
750 
751 /*
752  * Bring the adapter up.  Called whenever we go from no "ports" open to having
753  * one open.  This function performs the actions necessary to make an adapter
754  * operational, such as completing the initialization of HW modules, and
755  * enabling interrupts.  Must be called with the rtnl lock held.  (Note that
756  * this is called "cxgb_up" in the PF Driver.)
757  */
758 static int adapter_up(struct adapter *adapter)
759 {
760 	int err;
761 
762 	/*
763 	 * If this is the first time we've been called, perform basic
764 	 * adapter setup.  Once we've done this, many of our adapter
765 	 * parameters can no longer be changed ...
766 	 */
767 	if ((adapter->flags & CXGB4VF_FULL_INIT_DONE) == 0) {
768 		err = setup_sge_queues(adapter);
769 		if (err)
770 			return err;
771 		err = setup_rss(adapter);
772 		if (err) {
773 			t4vf_free_sge_resources(adapter);
774 			return err;
775 		}
776 
777 		if (adapter->flags & CXGB4VF_USING_MSIX)
778 			name_msix_vecs(adapter);
779 
780 		adapter->flags |= CXGB4VF_FULL_INIT_DONE;
781 	}
782 
783 	/*
784 	 * Acquire our interrupt resources.  We only support MSI-X and MSI.
785 	 */
786 	BUG_ON((adapter->flags &
787 	       (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
788 	if (adapter->flags & CXGB4VF_USING_MSIX)
789 		err = request_msix_queue_irqs(adapter);
790 	else
791 		err = request_irq(adapter->pdev->irq,
792 				  t4vf_intr_handler(adapter), 0,
793 				  adapter->name, adapter);
794 	if (err) {
795 		dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
796 			err);
797 		return err;
798 	}
799 
800 	/*
801 	 * Enable NAPI ingress processing and return success.
802 	 */
803 	enable_rx(adapter);
804 	t4vf_sge_start(adapter);
805 
806 	return 0;
807 }
808 
809 /*
810  * Bring the adapter down.  Called whenever the last "port" (Virtual
811  * Interface) closed.  (Note that this routine is called "cxgb_down" in the PF
812  * Driver.)
813  */
814 static void adapter_down(struct adapter *adapter)
815 {
816 	/*
817 	 * Free interrupt resources.
818 	 */
819 	if (adapter->flags & CXGB4VF_USING_MSIX)
820 		free_msix_queue_irqs(adapter);
821 	else
822 		free_irq(adapter->pdev->irq, adapter);
823 
824 	/*
825 	 * Wait for NAPI handlers to finish.
826 	 */
827 	quiesce_rx(adapter);
828 }
829 
830 /*
831  * Start up a net device.
832  */
833 static int cxgb4vf_open(struct net_device *dev)
834 {
835 	int err;
836 	struct port_info *pi = netdev_priv(dev);
837 	struct adapter *adapter = pi->adapter;
838 
839 	/*
840 	 * If we don't have a connection to the firmware there's nothing we
841 	 * can do.
842 	 */
843 	if (!(adapter->flags & CXGB4VF_FW_OK))
844 		return -ENXIO;
845 
846 	/*
847 	 * If this is the first interface that we're opening on the "adapter",
848 	 * bring the "adapter" up now.
849 	 */
850 	if (adapter->open_device_map == 0) {
851 		err = adapter_up(adapter);
852 		if (err)
853 			return err;
854 	}
855 
856 	/* It's possible that the basic port information could have
857 	 * changed since we first read it.
858 	 */
859 	err = t4vf_update_port_info(pi);
860 	if (err < 0)
861 		return err;
862 
863 	/*
864 	 * Note that this interface is up and start everything up ...
865 	 */
866 	err = link_start(dev);
867 	if (err)
868 		goto err_unwind;
869 
870 	pi->vlan_id = t4vf_get_vf_vlan_acl(adapter);
871 
872 	netif_tx_start_all_queues(dev);
873 	set_bit(pi->port_id, &adapter->open_device_map);
874 	return 0;
875 
876 err_unwind:
877 	if (adapter->open_device_map == 0)
878 		adapter_down(adapter);
879 	return err;
880 }
881 
882 /*
883  * Shut down a net device.  This routine is called "cxgb_close" in the PF
884  * Driver ...
885  */
886 static int cxgb4vf_stop(struct net_device *dev)
887 {
888 	struct port_info *pi = netdev_priv(dev);
889 	struct adapter *adapter = pi->adapter;
890 
891 	netif_tx_stop_all_queues(dev);
892 	netif_carrier_off(dev);
893 	t4vf_enable_pi(adapter, pi, false, false);
894 
895 	clear_bit(pi->port_id, &adapter->open_device_map);
896 	if (adapter->open_device_map == 0)
897 		adapter_down(adapter);
898 	return 0;
899 }
900 
901 /*
902  * Translate our basic statistics into the standard "ifconfig" statistics.
903  */
904 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
905 {
906 	struct t4vf_port_stats stats;
907 	struct port_info *pi = netdev2pinfo(dev);
908 	struct adapter *adapter = pi->adapter;
909 	struct net_device_stats *ns = &dev->stats;
910 	int err;
911 
912 	spin_lock(&adapter->stats_lock);
913 	err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
914 	spin_unlock(&adapter->stats_lock);
915 
916 	memset(ns, 0, sizeof(*ns));
917 	if (err)
918 		return ns;
919 
920 	ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
921 			stats.tx_ucast_bytes + stats.tx_offload_bytes);
922 	ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
923 			  stats.tx_ucast_frames + stats.tx_offload_frames);
924 	ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
925 			stats.rx_ucast_bytes);
926 	ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
927 			  stats.rx_ucast_frames);
928 	ns->multicast = stats.rx_mcast_frames;
929 	ns->tx_errors = stats.tx_drop_frames;
930 	ns->rx_errors = stats.rx_err_frames;
931 
932 	return ns;
933 }
934 
935 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr)
936 {
937 	struct port_info *pi = netdev_priv(netdev);
938 	struct adapter *adapter = pi->adapter;
939 	int ret;
940 	u64 mhash = 0;
941 	u64 uhash = 0;
942 	bool free = false;
943 	bool ucast = is_unicast_ether_addr(mac_addr);
944 	const u8 *maclist[1] = {mac_addr};
945 	struct hash_mac_addr *new_entry;
946 
947 	ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist,
948 				  NULL, ucast ? &uhash : &mhash, false);
949 	if (ret < 0)
950 		goto out;
951 	/* if hash != 0, then add the addr to hash addr list
952 	 * so on the end we will calculate the hash for the
953 	 * list and program it
954 	 */
955 	if (uhash || mhash) {
956 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
957 		if (!new_entry)
958 			return -ENOMEM;
959 		ether_addr_copy(new_entry->addr, mac_addr);
960 		list_add_tail(&new_entry->list, &adapter->mac_hlist);
961 		ret = cxgb4vf_set_addr_hash(pi);
962 	}
963 out:
964 	return ret < 0 ? ret : 0;
965 }
966 
967 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
968 {
969 	struct port_info *pi = netdev_priv(netdev);
970 	struct adapter *adapter = pi->adapter;
971 	int ret;
972 	const u8 *maclist[1] = {mac_addr};
973 	struct hash_mac_addr *entry, *tmp;
974 
975 	/* If the MAC address to be removed is in the hash addr
976 	 * list, delete it from the list and update hash vector
977 	 */
978 	list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) {
979 		if (ether_addr_equal(entry->addr, mac_addr)) {
980 			list_del(&entry->list);
981 			kfree(entry);
982 			return cxgb4vf_set_addr_hash(pi);
983 		}
984 	}
985 
986 	ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false);
987 	return ret < 0 ? -EINVAL : 0;
988 }
989 
990 /*
991  * Set RX properties of a port, such as promiscruity, address filters, and MTU.
992  * If @mtu is -1 it is left unchanged.
993  */
994 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
995 {
996 	struct port_info *pi = netdev_priv(dev);
997 
998 	__dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
999 	__dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
1000 	return t4vf_set_rxmode(pi->adapter, pi->viid, -1,
1001 			       (dev->flags & IFF_PROMISC) != 0,
1002 			       (dev->flags & IFF_ALLMULTI) != 0,
1003 			       1, -1, sleep_ok);
1004 }
1005 
1006 /*
1007  * Set the current receive modes on the device.
1008  */
1009 static void cxgb4vf_set_rxmode(struct net_device *dev)
1010 {
1011 	/* unfortunately we can't return errors to the stack */
1012 	set_rxmode(dev, -1, false);
1013 }
1014 
1015 /*
1016  * Find the entry in the interrupt holdoff timer value array which comes
1017  * closest to the specified interrupt holdoff value.
1018  */
1019 static int closest_timer(const struct sge *s, int us)
1020 {
1021 	int i, timer_idx = 0, min_delta = INT_MAX;
1022 
1023 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1024 		int delta = us - s->timer_val[i];
1025 		if (delta < 0)
1026 			delta = -delta;
1027 		if (delta < min_delta) {
1028 			min_delta = delta;
1029 			timer_idx = i;
1030 		}
1031 	}
1032 	return timer_idx;
1033 }
1034 
1035 static int closest_thres(const struct sge *s, int thres)
1036 {
1037 	int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
1038 
1039 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1040 		delta = thres - s->counter_val[i];
1041 		if (delta < 0)
1042 			delta = -delta;
1043 		if (delta < min_delta) {
1044 			min_delta = delta;
1045 			pktcnt_idx = i;
1046 		}
1047 	}
1048 	return pktcnt_idx;
1049 }
1050 
1051 /*
1052  * Return a queue's interrupt hold-off time in us.  0 means no timer.
1053  */
1054 static unsigned int qtimer_val(const struct adapter *adapter,
1055 			       const struct sge_rspq *rspq)
1056 {
1057 	unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params);
1058 
1059 	return timer_idx < SGE_NTIMERS
1060 		? adapter->sge.timer_val[timer_idx]
1061 		: 0;
1062 }
1063 
1064 /**
1065  *	set_rxq_intr_params - set a queue's interrupt holdoff parameters
1066  *	@adapter: the adapter
1067  *	@rspq: the RX response queue
1068  *	@us: the hold-off time in us, or 0 to disable timer
1069  *	@cnt: the hold-off packet count, or 0 to disable counter
1070  *
1071  *	Sets an RX response queue's interrupt hold-off time and packet count.
1072  *	At least one of the two needs to be enabled for the queue to generate
1073  *	interrupts.
1074  */
1075 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1076 			       unsigned int us, unsigned int cnt)
1077 {
1078 	unsigned int timer_idx;
1079 
1080 	/*
1081 	 * If both the interrupt holdoff timer and count are specified as
1082 	 * zero, default to a holdoff count of 1 ...
1083 	 */
1084 	if ((us | cnt) == 0)
1085 		cnt = 1;
1086 
1087 	/*
1088 	 * If an interrupt holdoff count has been specified, then find the
1089 	 * closest configured holdoff count and use that.  If the response
1090 	 * queue has already been created, then update its queue context
1091 	 * parameters ...
1092 	 */
1093 	if (cnt) {
1094 		int err;
1095 		u32 v, pktcnt_idx;
1096 
1097 		pktcnt_idx = closest_thres(&adapter->sge, cnt);
1098 		if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1099 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1100 			    FW_PARAMS_PARAM_X_V(
1101 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1102 			    FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id);
1103 			err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1104 			if (err)
1105 				return err;
1106 		}
1107 		rspq->pktcnt_idx = pktcnt_idx;
1108 	}
1109 
1110 	/*
1111 	 * Compute the closest holdoff timer index from the supplied holdoff
1112 	 * timer value.
1113 	 */
1114 	timer_idx = (us == 0
1115 		     ? SGE_TIMER_RSTRT_CNTR
1116 		     : closest_timer(&adapter->sge, us));
1117 
1118 	/*
1119 	 * Update the response queue's interrupt coalescing parameters and
1120 	 * return success.
1121 	 */
1122 	rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
1123 			     QINTR_CNT_EN_V(cnt > 0));
1124 	return 0;
1125 }
1126 
1127 /*
1128  * Return a version number to identify the type of adapter.  The scheme is:
1129  * - bits 0..9: chip version
1130  * - bits 10..15: chip revision
1131  */
1132 static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1133 {
1134 	/*
1135 	 * Chip version 4, revision 0x3f (cxgb4vf).
1136 	 */
1137 	return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1138 }
1139 
1140 /*
1141  * Execute the specified ioctl command.
1142  */
1143 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1144 {
1145 	int ret = 0;
1146 
1147 	switch (cmd) {
1148 	    /*
1149 	     * The VF Driver doesn't have access to any of the other
1150 	     * common Ethernet device ioctl()'s (like reading/writing
1151 	     * PHY registers, etc.
1152 	     */
1153 
1154 	default:
1155 		ret = -EOPNOTSUPP;
1156 		break;
1157 	}
1158 	return ret;
1159 }
1160 
1161 /*
1162  * Change the device's MTU.
1163  */
1164 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1165 {
1166 	int ret;
1167 	struct port_info *pi = netdev_priv(dev);
1168 
1169 	ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1170 			      -1, -1, -1, -1, true);
1171 	if (!ret)
1172 		dev->mtu = new_mtu;
1173 	return ret;
1174 }
1175 
1176 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1177 	netdev_features_t features)
1178 {
1179 	/*
1180 	 * Since there is no support for separate rx/tx vlan accel
1181 	 * enable/disable make sure tx flag is always in same state as rx.
1182 	 */
1183 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1184 		features |= NETIF_F_HW_VLAN_CTAG_TX;
1185 	else
1186 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1187 
1188 	return features;
1189 }
1190 
1191 static int cxgb4vf_set_features(struct net_device *dev,
1192 	netdev_features_t features)
1193 {
1194 	struct port_info *pi = netdev_priv(dev);
1195 	netdev_features_t changed = dev->features ^ features;
1196 
1197 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1198 		t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1199 				features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1200 
1201 	return 0;
1202 }
1203 
1204 /*
1205  * Change the devices MAC address.
1206  */
1207 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1208 {
1209 	int ret;
1210 	struct sockaddr *addr = _addr;
1211 	struct port_info *pi = netdev_priv(dev);
1212 
1213 	if (!is_valid_ether_addr(addr->sa_data))
1214 		return -EADDRNOTAVAIL;
1215 
1216 	ret = cxgb4vf_change_mac(pi, pi->viid, &pi->xact_addr_filt,
1217 				 addr->sa_data, true);
1218 	if (ret < 0)
1219 		return ret;
1220 
1221 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1222 	return 0;
1223 }
1224 
1225 #ifdef CONFIG_NET_POLL_CONTROLLER
1226 /*
1227  * Poll all of our receive queues.  This is called outside of normal interrupt
1228  * context.
1229  */
1230 static void cxgb4vf_poll_controller(struct net_device *dev)
1231 {
1232 	struct port_info *pi = netdev_priv(dev);
1233 	struct adapter *adapter = pi->adapter;
1234 
1235 	if (adapter->flags & CXGB4VF_USING_MSIX) {
1236 		struct sge_eth_rxq *rxq;
1237 		int nqsets;
1238 
1239 		rxq = &adapter->sge.ethrxq[pi->first_qset];
1240 		for (nqsets = pi->nqsets; nqsets; nqsets--) {
1241 			t4vf_sge_intr_msix(0, &rxq->rspq);
1242 			rxq++;
1243 		}
1244 	} else
1245 		t4vf_intr_handler(adapter)(0, adapter);
1246 }
1247 #endif
1248 
1249 /*
1250  * Ethtool operations.
1251  * ===================
1252  *
1253  * Note that we don't support any ethtool operations which change the physical
1254  * state of the port to which we're linked.
1255  */
1256 
1257 /**
1258  *	from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
1259  *	@port_type: Firmware Port Type
1260  *	@mod_type: Firmware Module Type
1261  *
1262  *	Translate Firmware Port/Module type to Ethtool Port Type.
1263  */
1264 static int from_fw_port_mod_type(enum fw_port_type port_type,
1265 				 enum fw_port_module_type mod_type)
1266 {
1267 	if (port_type == FW_PORT_TYPE_BT_SGMII ||
1268 	    port_type == FW_PORT_TYPE_BT_XFI ||
1269 	    port_type == FW_PORT_TYPE_BT_XAUI) {
1270 		return PORT_TP;
1271 	} else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
1272 		   port_type == FW_PORT_TYPE_FIBER_XAUI) {
1273 		return PORT_FIBRE;
1274 	} else if (port_type == FW_PORT_TYPE_SFP ||
1275 		   port_type == FW_PORT_TYPE_QSFP_10G ||
1276 		   port_type == FW_PORT_TYPE_QSA ||
1277 		   port_type == FW_PORT_TYPE_QSFP ||
1278 		   port_type == FW_PORT_TYPE_CR4_QSFP ||
1279 		   port_type == FW_PORT_TYPE_CR_QSFP ||
1280 		   port_type == FW_PORT_TYPE_CR2_QSFP ||
1281 		   port_type == FW_PORT_TYPE_SFP28) {
1282 		if (mod_type == FW_PORT_MOD_TYPE_LR ||
1283 		    mod_type == FW_PORT_MOD_TYPE_SR ||
1284 		    mod_type == FW_PORT_MOD_TYPE_ER ||
1285 		    mod_type == FW_PORT_MOD_TYPE_LRM)
1286 			return PORT_FIBRE;
1287 		else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1288 			 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1289 			return PORT_DA;
1290 		else
1291 			return PORT_OTHER;
1292 	} else if (port_type == FW_PORT_TYPE_KR4_100G ||
1293 		   port_type == FW_PORT_TYPE_KR_SFP28 ||
1294 		   port_type == FW_PORT_TYPE_KR_XLAUI) {
1295 		return PORT_NONE;
1296 	}
1297 
1298 	return PORT_OTHER;
1299 }
1300 
1301 /**
1302  *	fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
1303  *	@port_type: Firmware Port Type
1304  *	@fw_caps: Firmware Port Capabilities
1305  *	@link_mode_mask: ethtool Link Mode Mask
1306  *
1307  *	Translate a Firmware Port Capabilities specification to an ethtool
1308  *	Link Mode Mask.
1309  */
1310 static void fw_caps_to_lmm(enum fw_port_type port_type,
1311 			   unsigned int fw_caps,
1312 			   unsigned long *link_mode_mask)
1313 {
1314 	#define SET_LMM(__lmm_name) \
1315 		__set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
1316 			  link_mode_mask)
1317 
1318 	#define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
1319 		do { \
1320 			if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1321 				SET_LMM(__lmm_name); \
1322 		} while (0)
1323 
1324 	switch (port_type) {
1325 	case FW_PORT_TYPE_BT_SGMII:
1326 	case FW_PORT_TYPE_BT_XFI:
1327 	case FW_PORT_TYPE_BT_XAUI:
1328 		SET_LMM(TP);
1329 		FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
1330 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1331 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1332 		break;
1333 
1334 	case FW_PORT_TYPE_KX4:
1335 	case FW_PORT_TYPE_KX:
1336 		SET_LMM(Backplane);
1337 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1338 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1339 		break;
1340 
1341 	case FW_PORT_TYPE_KR:
1342 		SET_LMM(Backplane);
1343 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1344 		break;
1345 
1346 	case FW_PORT_TYPE_BP_AP:
1347 		SET_LMM(Backplane);
1348 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1349 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1350 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1351 		break;
1352 
1353 	case FW_PORT_TYPE_BP4_AP:
1354 		SET_LMM(Backplane);
1355 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1356 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1357 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1358 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1359 		break;
1360 
1361 	case FW_PORT_TYPE_FIBER_XFI:
1362 	case FW_PORT_TYPE_FIBER_XAUI:
1363 	case FW_PORT_TYPE_SFP:
1364 	case FW_PORT_TYPE_QSFP_10G:
1365 	case FW_PORT_TYPE_QSA:
1366 		SET_LMM(FIBRE);
1367 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1368 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1369 		break;
1370 
1371 	case FW_PORT_TYPE_BP40_BA:
1372 	case FW_PORT_TYPE_QSFP:
1373 		SET_LMM(FIBRE);
1374 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1375 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1376 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1377 		break;
1378 
1379 	case FW_PORT_TYPE_CR_QSFP:
1380 	case FW_PORT_TYPE_SFP28:
1381 		SET_LMM(FIBRE);
1382 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1383 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1384 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1385 		break;
1386 
1387 	case FW_PORT_TYPE_KR_SFP28:
1388 		SET_LMM(Backplane);
1389 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1390 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1391 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full);
1392 		break;
1393 
1394 	case FW_PORT_TYPE_KR_XLAUI:
1395 		SET_LMM(Backplane);
1396 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1397 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1398 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full);
1399 		break;
1400 
1401 	case FW_PORT_TYPE_CR2_QSFP:
1402 		SET_LMM(FIBRE);
1403 		FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full);
1404 		break;
1405 
1406 	case FW_PORT_TYPE_KR4_100G:
1407 	case FW_PORT_TYPE_CR4_QSFP:
1408 		SET_LMM(FIBRE);
1409 		FW_CAPS_TO_LMM(SPEED_1G,  1000baseT_Full);
1410 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1411 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1412 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1413 		FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full);
1414 		FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full);
1415 		break;
1416 
1417 	default:
1418 		break;
1419 	}
1420 
1421 	if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) {
1422 		FW_CAPS_TO_LMM(FEC_RS, FEC_RS);
1423 		FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER);
1424 	} else {
1425 		SET_LMM(FEC_NONE);
1426 	}
1427 
1428 	FW_CAPS_TO_LMM(ANEG, Autoneg);
1429 	FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
1430 	FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
1431 
1432 	#undef FW_CAPS_TO_LMM
1433 	#undef SET_LMM
1434 }
1435 
1436 static int cxgb4vf_get_link_ksettings(struct net_device *dev,
1437 				  struct ethtool_link_ksettings *link_ksettings)
1438 {
1439 	struct port_info *pi = netdev_priv(dev);
1440 	struct ethtool_link_settings *base = &link_ksettings->base;
1441 
1442 	/* For the nonce, the Firmware doesn't send up Port State changes
1443 	 * when the Virtual Interface attached to the Port is down.  So
1444 	 * if it's down, let's grab any changes.
1445 	 */
1446 	if (!netif_running(dev))
1447 		(void)t4vf_update_port_info(pi);
1448 
1449 	ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
1450 	ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
1451 	ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
1452 
1453 	base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
1454 
1455 	if (pi->mdio_addr >= 0) {
1456 		base->phy_address = pi->mdio_addr;
1457 		base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
1458 				      ? ETH_MDIO_SUPPORTS_C22
1459 				      : ETH_MDIO_SUPPORTS_C45);
1460 	} else {
1461 		base->phy_address = 255;
1462 		base->mdio_support = 0;
1463 	}
1464 
1465 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps,
1466 		       link_ksettings->link_modes.supported);
1467 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps,
1468 		       link_ksettings->link_modes.advertising);
1469 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps,
1470 		       link_ksettings->link_modes.lp_advertising);
1471 
1472 	if (netif_carrier_ok(dev)) {
1473 		base->speed = pi->link_cfg.speed;
1474 		base->duplex = DUPLEX_FULL;
1475 	} else {
1476 		base->speed = SPEED_UNKNOWN;
1477 		base->duplex = DUPLEX_UNKNOWN;
1478 	}
1479 
1480 	base->autoneg = pi->link_cfg.autoneg;
1481 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG)
1482 		ethtool_link_ksettings_add_link_mode(link_ksettings,
1483 						     supported, Autoneg);
1484 	if (pi->link_cfg.autoneg)
1485 		ethtool_link_ksettings_add_link_mode(link_ksettings,
1486 						     advertising, Autoneg);
1487 
1488 	return 0;
1489 }
1490 
1491 /* Translate the Firmware FEC value into the ethtool value. */
1492 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec)
1493 {
1494 	unsigned int eth_fec = 0;
1495 
1496 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
1497 		eth_fec |= ETHTOOL_FEC_RS;
1498 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1499 		eth_fec |= ETHTOOL_FEC_BASER;
1500 
1501 	/* if nothing is set, then FEC is off */
1502 	if (!eth_fec)
1503 		eth_fec = ETHTOOL_FEC_OFF;
1504 
1505 	return eth_fec;
1506 }
1507 
1508 /* Translate Common Code FEC value into ethtool value. */
1509 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec)
1510 {
1511 	unsigned int eth_fec = 0;
1512 
1513 	if (cc_fec & FEC_AUTO)
1514 		eth_fec |= ETHTOOL_FEC_AUTO;
1515 	if (cc_fec & FEC_RS)
1516 		eth_fec |= ETHTOOL_FEC_RS;
1517 	if (cc_fec & FEC_BASER_RS)
1518 		eth_fec |= ETHTOOL_FEC_BASER;
1519 
1520 	/* if nothing is set, then FEC is off */
1521 	if (!eth_fec)
1522 		eth_fec = ETHTOOL_FEC_OFF;
1523 
1524 	return eth_fec;
1525 }
1526 
1527 static int cxgb4vf_get_fecparam(struct net_device *dev,
1528 				struct ethtool_fecparam *fec)
1529 {
1530 	const struct port_info *pi = netdev_priv(dev);
1531 	const struct link_config *lc = &pi->link_cfg;
1532 
1533 	/* Translate the Firmware FEC Support into the ethtool value.  We
1534 	 * always support IEEE 802.3 "automatic" selection of Link FEC type if
1535 	 * any FEC is supported.
1536 	 */
1537 	fec->fec = fwcap_to_eth_fec(lc->pcaps);
1538 	if (fec->fec != ETHTOOL_FEC_OFF)
1539 		fec->fec |= ETHTOOL_FEC_AUTO;
1540 
1541 	/* Translate the current internal FEC parameters into the
1542 	 * ethtool values.
1543 	 */
1544 	fec->active_fec = cc_to_eth_fec(lc->fec);
1545 	return 0;
1546 }
1547 
1548 /*
1549  * Return our driver information.
1550  */
1551 static void cxgb4vf_get_drvinfo(struct net_device *dev,
1552 				struct ethtool_drvinfo *drvinfo)
1553 {
1554 	struct adapter *adapter = netdev2adap(dev);
1555 
1556 	strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1557 	strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1558 		sizeof(drvinfo->bus_info));
1559 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1560 		 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1561 		 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev),
1562 		 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev),
1563 		 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev),
1564 		 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev),
1565 		 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev),
1566 		 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev),
1567 		 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev),
1568 		 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev));
1569 }
1570 
1571 /*
1572  * Return current adapter message level.
1573  */
1574 static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1575 {
1576 	return netdev2adap(dev)->msg_enable;
1577 }
1578 
1579 /*
1580  * Set current adapter message level.
1581  */
1582 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1583 {
1584 	netdev2adap(dev)->msg_enable = msglevel;
1585 }
1586 
1587 /*
1588  * Return the device's current Queue Set ring size parameters along with the
1589  * allowed maximum values.  Since ethtool doesn't understand the concept of
1590  * multi-queue devices, we just return the current values associated with the
1591  * first Queue Set.
1592  */
1593 static void cxgb4vf_get_ringparam(struct net_device *dev,
1594 				  struct ethtool_ringparam *rp)
1595 {
1596 	const struct port_info *pi = netdev_priv(dev);
1597 	const struct sge *s = &pi->adapter->sge;
1598 
1599 	rp->rx_max_pending = MAX_RX_BUFFERS;
1600 	rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1601 	rp->rx_jumbo_max_pending = 0;
1602 	rp->tx_max_pending = MAX_TXQ_ENTRIES;
1603 
1604 	rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1605 	rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1606 	rp->rx_jumbo_pending = 0;
1607 	rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1608 }
1609 
1610 /*
1611  * Set the Queue Set ring size parameters for the device.  Again, since
1612  * ethtool doesn't allow for the concept of multiple queues per device, we'll
1613  * apply these new values across all of the Queue Sets associated with the
1614  * device -- after vetting them of course!
1615  */
1616 static int cxgb4vf_set_ringparam(struct net_device *dev,
1617 				 struct ethtool_ringparam *rp)
1618 {
1619 	const struct port_info *pi = netdev_priv(dev);
1620 	struct adapter *adapter = pi->adapter;
1621 	struct sge *s = &adapter->sge;
1622 	int qs;
1623 
1624 	if (rp->rx_pending > MAX_RX_BUFFERS ||
1625 	    rp->rx_jumbo_pending ||
1626 	    rp->tx_pending > MAX_TXQ_ENTRIES ||
1627 	    rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1628 	    rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1629 	    rp->rx_pending < MIN_FL_ENTRIES ||
1630 	    rp->tx_pending < MIN_TXQ_ENTRIES)
1631 		return -EINVAL;
1632 
1633 	if (adapter->flags & CXGB4VF_FULL_INIT_DONE)
1634 		return -EBUSY;
1635 
1636 	for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1637 		s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1638 		s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1639 		s->ethtxq[qs].q.size = rp->tx_pending;
1640 	}
1641 	return 0;
1642 }
1643 
1644 /*
1645  * Return the interrupt holdoff timer and count for the first Queue Set on the
1646  * device.  Our extension ioctl() (the cxgbtool interface) allows the
1647  * interrupt holdoff timer to be read on all of the device's Queue Sets.
1648  */
1649 static int cxgb4vf_get_coalesce(struct net_device *dev,
1650 				struct ethtool_coalesce *coalesce)
1651 {
1652 	const struct port_info *pi = netdev_priv(dev);
1653 	const struct adapter *adapter = pi->adapter;
1654 	const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1655 
1656 	coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1657 	coalesce->rx_max_coalesced_frames =
1658 		((rspq->intr_params & QINTR_CNT_EN_F)
1659 		 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1660 		 : 0);
1661 	return 0;
1662 }
1663 
1664 /*
1665  * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1666  * interface.  Our extension ioctl() (the cxgbtool interface) allows us to set
1667  * the interrupt holdoff timer on any of the device's Queue Sets.
1668  */
1669 static int cxgb4vf_set_coalesce(struct net_device *dev,
1670 				struct ethtool_coalesce *coalesce)
1671 {
1672 	const struct port_info *pi = netdev_priv(dev);
1673 	struct adapter *adapter = pi->adapter;
1674 
1675 	return set_rxq_intr_params(adapter,
1676 				   &adapter->sge.ethrxq[pi->first_qset].rspq,
1677 				   coalesce->rx_coalesce_usecs,
1678 				   coalesce->rx_max_coalesced_frames);
1679 }
1680 
1681 /*
1682  * Report current port link pause parameter settings.
1683  */
1684 static void cxgb4vf_get_pauseparam(struct net_device *dev,
1685 				   struct ethtool_pauseparam *pauseparam)
1686 {
1687 	struct port_info *pi = netdev_priv(dev);
1688 
1689 	pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1690 	pauseparam->rx_pause = (pi->link_cfg.advertised_fc & PAUSE_RX) != 0;
1691 	pauseparam->tx_pause = (pi->link_cfg.advertised_fc & PAUSE_TX) != 0;
1692 }
1693 
1694 /*
1695  * Identify the port by blinking the port's LED.
1696  */
1697 static int cxgb4vf_phys_id(struct net_device *dev,
1698 			   enum ethtool_phys_id_state state)
1699 {
1700 	unsigned int val;
1701 	struct port_info *pi = netdev_priv(dev);
1702 
1703 	if (state == ETHTOOL_ID_ACTIVE)
1704 		val = 0xffff;
1705 	else if (state == ETHTOOL_ID_INACTIVE)
1706 		val = 0;
1707 	else
1708 		return -EINVAL;
1709 
1710 	return t4vf_identify_port(pi->adapter, pi->viid, val);
1711 }
1712 
1713 /*
1714  * Port stats maintained per queue of the port.
1715  */
1716 struct queue_port_stats {
1717 	u64 tso;
1718 	u64 tx_csum;
1719 	u64 rx_csum;
1720 	u64 vlan_ex;
1721 	u64 vlan_ins;
1722 	u64 lro_pkts;
1723 	u64 lro_merged;
1724 };
1725 
1726 /*
1727  * Strings for the ETH_SS_STATS statistics set ("ethtool -S").  Note that
1728  * these need to match the order of statistics returned by
1729  * t4vf_get_port_stats().
1730  */
1731 static const char stats_strings[][ETH_GSTRING_LEN] = {
1732 	/*
1733 	 * These must match the layout of the t4vf_port_stats structure.
1734 	 */
1735 	"TxBroadcastBytes  ",
1736 	"TxBroadcastFrames ",
1737 	"TxMulticastBytes  ",
1738 	"TxMulticastFrames ",
1739 	"TxUnicastBytes    ",
1740 	"TxUnicastFrames   ",
1741 	"TxDroppedFrames   ",
1742 	"TxOffloadBytes    ",
1743 	"TxOffloadFrames   ",
1744 	"RxBroadcastBytes  ",
1745 	"RxBroadcastFrames ",
1746 	"RxMulticastBytes  ",
1747 	"RxMulticastFrames ",
1748 	"RxUnicastBytes    ",
1749 	"RxUnicastFrames   ",
1750 	"RxErrorFrames     ",
1751 
1752 	/*
1753 	 * These are accumulated per-queue statistics and must match the
1754 	 * order of the fields in the queue_port_stats structure.
1755 	 */
1756 	"TSO               ",
1757 	"TxCsumOffload     ",
1758 	"RxCsumGood        ",
1759 	"VLANextractions   ",
1760 	"VLANinsertions    ",
1761 	"GROPackets        ",
1762 	"GROMerged         ",
1763 };
1764 
1765 /*
1766  * Return the number of statistics in the specified statistics set.
1767  */
1768 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1769 {
1770 	switch (sset) {
1771 	case ETH_SS_STATS:
1772 		return ARRAY_SIZE(stats_strings);
1773 	default:
1774 		return -EOPNOTSUPP;
1775 	}
1776 	/*NOTREACHED*/
1777 }
1778 
1779 /*
1780  * Return the strings for the specified statistics set.
1781  */
1782 static void cxgb4vf_get_strings(struct net_device *dev,
1783 				u32 sset,
1784 				u8 *data)
1785 {
1786 	switch (sset) {
1787 	case ETH_SS_STATS:
1788 		memcpy(data, stats_strings, sizeof(stats_strings));
1789 		break;
1790 	}
1791 }
1792 
1793 /*
1794  * Small utility routine to accumulate queue statistics across the queues of
1795  * a "port".
1796  */
1797 static void collect_sge_port_stats(const struct adapter *adapter,
1798 				   const struct port_info *pi,
1799 				   struct queue_port_stats *stats)
1800 {
1801 	const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1802 	const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1803 	int qs;
1804 
1805 	memset(stats, 0, sizeof(*stats));
1806 	for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1807 		stats->tso += txq->tso;
1808 		stats->tx_csum += txq->tx_cso;
1809 		stats->rx_csum += rxq->stats.rx_cso;
1810 		stats->vlan_ex += rxq->stats.vlan_ex;
1811 		stats->vlan_ins += txq->vlan_ins;
1812 		stats->lro_pkts += rxq->stats.lro_pkts;
1813 		stats->lro_merged += rxq->stats.lro_merged;
1814 	}
1815 }
1816 
1817 /*
1818  * Return the ETH_SS_STATS statistics set.
1819  */
1820 static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1821 				      struct ethtool_stats *stats,
1822 				      u64 *data)
1823 {
1824 	struct port_info *pi = netdev2pinfo(dev);
1825 	struct adapter *adapter = pi->adapter;
1826 	int err = t4vf_get_port_stats(adapter, pi->pidx,
1827 				      (struct t4vf_port_stats *)data);
1828 	if (err)
1829 		memset(data, 0, sizeof(struct t4vf_port_stats));
1830 
1831 	data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1832 	collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1833 }
1834 
1835 /*
1836  * Return the size of our register map.
1837  */
1838 static int cxgb4vf_get_regs_len(struct net_device *dev)
1839 {
1840 	return T4VF_REGMAP_SIZE;
1841 }
1842 
1843 /*
1844  * Dump a block of registers, start to end inclusive, into a buffer.
1845  */
1846 static void reg_block_dump(struct adapter *adapter, void *regbuf,
1847 			   unsigned int start, unsigned int end)
1848 {
1849 	u32 *bp = regbuf + start - T4VF_REGMAP_START;
1850 
1851 	for ( ; start <= end; start += sizeof(u32)) {
1852 		/*
1853 		 * Avoid reading the Mailbox Control register since that
1854 		 * can trigger a Mailbox Ownership Arbitration cycle and
1855 		 * interfere with communication with the firmware.
1856 		 */
1857 		if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1858 			*bp++ = 0xffff;
1859 		else
1860 			*bp++ = t4_read_reg(adapter, start);
1861 	}
1862 }
1863 
1864 /*
1865  * Copy our entire register map into the provided buffer.
1866  */
1867 static void cxgb4vf_get_regs(struct net_device *dev,
1868 			     struct ethtool_regs *regs,
1869 			     void *regbuf)
1870 {
1871 	struct adapter *adapter = netdev2adap(dev);
1872 
1873 	regs->version = mk_adap_vers(adapter);
1874 
1875 	/*
1876 	 * Fill in register buffer with our register map.
1877 	 */
1878 	memset(regbuf, 0, T4VF_REGMAP_SIZE);
1879 
1880 	reg_block_dump(adapter, regbuf,
1881 		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1882 		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1883 	reg_block_dump(adapter, regbuf,
1884 		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1885 		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1886 
1887 	/* T5 adds new registers in the PL Register map.
1888 	 */
1889 	reg_block_dump(adapter, regbuf,
1890 		       T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1891 		       T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1892 		       ? PL_VF_WHOAMI_A : PL_VF_REVISION_A));
1893 	reg_block_dump(adapter, regbuf,
1894 		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1895 		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1896 
1897 	reg_block_dump(adapter, regbuf,
1898 		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1899 		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1900 }
1901 
1902 /*
1903  * Report current Wake On LAN settings.
1904  */
1905 static void cxgb4vf_get_wol(struct net_device *dev,
1906 			    struct ethtool_wolinfo *wol)
1907 {
1908 	wol->supported = 0;
1909 	wol->wolopts = 0;
1910 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1911 }
1912 
1913 /*
1914  * TCP Segmentation Offload flags which we support.
1915  */
1916 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1917 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
1918 		   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
1919 
1920 static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1921 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1922 				     ETHTOOL_COALESCE_RX_MAX_FRAMES,
1923 	.get_link_ksettings	= cxgb4vf_get_link_ksettings,
1924 	.get_fecparam		= cxgb4vf_get_fecparam,
1925 	.get_drvinfo		= cxgb4vf_get_drvinfo,
1926 	.get_msglevel		= cxgb4vf_get_msglevel,
1927 	.set_msglevel		= cxgb4vf_set_msglevel,
1928 	.get_ringparam		= cxgb4vf_get_ringparam,
1929 	.set_ringparam		= cxgb4vf_set_ringparam,
1930 	.get_coalesce		= cxgb4vf_get_coalesce,
1931 	.set_coalesce		= cxgb4vf_set_coalesce,
1932 	.get_pauseparam		= cxgb4vf_get_pauseparam,
1933 	.get_link		= ethtool_op_get_link,
1934 	.get_strings		= cxgb4vf_get_strings,
1935 	.set_phys_id		= cxgb4vf_phys_id,
1936 	.get_sset_count		= cxgb4vf_get_sset_count,
1937 	.get_ethtool_stats	= cxgb4vf_get_ethtool_stats,
1938 	.get_regs_len		= cxgb4vf_get_regs_len,
1939 	.get_regs		= cxgb4vf_get_regs,
1940 	.get_wol		= cxgb4vf_get_wol,
1941 };
1942 
1943 /*
1944  * /sys/kernel/debug/cxgb4vf support code and data.
1945  * ================================================
1946  */
1947 
1948 /*
1949  * Show Firmware Mailbox Command/Reply Log
1950  *
1951  * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1952  * it's possible that we can catch things during a log update and therefore
1953  * see partially corrupted log entries.  But i9t's probably Good Enough(tm).
1954  * If we ever decide that we want to make sure that we're dumping a coherent
1955  * log, we'd need to perform locking in the mailbox logging and in
1956  * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1957  * like we do for the Firmware Device Log.  But as stated above, meh ...
1958  */
1959 static int mboxlog_show(struct seq_file *seq, void *v)
1960 {
1961 	struct adapter *adapter = seq->private;
1962 	struct mbox_cmd_log *log = adapter->mbox_log;
1963 	struct mbox_cmd *entry;
1964 	int entry_idx, i;
1965 
1966 	if (v == SEQ_START_TOKEN) {
1967 		seq_printf(seq,
1968 			   "%10s  %15s  %5s  %5s  %s\n",
1969 			   "Seq#", "Tstamp", "Atime", "Etime",
1970 			   "Command/Reply");
1971 		return 0;
1972 	}
1973 
1974 	entry_idx = log->cursor + ((uintptr_t)v - 2);
1975 	if (entry_idx >= log->size)
1976 		entry_idx -= log->size;
1977 	entry = mbox_cmd_log_entry(log, entry_idx);
1978 
1979 	/* skip over unused entries */
1980 	if (entry->timestamp == 0)
1981 		return 0;
1982 
1983 	seq_printf(seq, "%10u  %15llu  %5d  %5d",
1984 		   entry->seqno, entry->timestamp,
1985 		   entry->access, entry->execute);
1986 	for (i = 0; i < MBOX_LEN / 8; i++) {
1987 		u64 flit = entry->cmd[i];
1988 		u32 hi = (u32)(flit >> 32);
1989 		u32 lo = (u32)flit;
1990 
1991 		seq_printf(seq, "  %08x %08x", hi, lo);
1992 	}
1993 	seq_puts(seq, "\n");
1994 	return 0;
1995 }
1996 
1997 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos)
1998 {
1999 	struct adapter *adapter = seq->private;
2000 	struct mbox_cmd_log *log = adapter->mbox_log;
2001 
2002 	return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL);
2003 }
2004 
2005 static void *mboxlog_start(struct seq_file *seq, loff_t *pos)
2006 {
2007 	return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN;
2008 }
2009 
2010 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos)
2011 {
2012 	++*pos;
2013 	return mboxlog_get_idx(seq, *pos);
2014 }
2015 
2016 static void mboxlog_stop(struct seq_file *seq, void *v)
2017 {
2018 }
2019 
2020 static const struct seq_operations mboxlog_sops = {
2021 	.start = mboxlog_start,
2022 	.next  = mboxlog_next,
2023 	.stop  = mboxlog_stop,
2024 	.show  = mboxlog_show
2025 };
2026 
2027 DEFINE_SEQ_ATTRIBUTE(mboxlog);
2028 /*
2029  * Show SGE Queue Set information.  We display QPL Queues Sets per line.
2030  */
2031 #define QPL	4
2032 
2033 static int sge_qinfo_show(struct seq_file *seq, void *v)
2034 {
2035 	struct adapter *adapter = seq->private;
2036 	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2037 	int qs, r = (uintptr_t)v - 1;
2038 
2039 	if (r)
2040 		seq_putc(seq, '\n');
2041 
2042 	#define S3(fmt_spec, s, v) \
2043 		do {\
2044 			seq_printf(seq, "%-12s", s); \
2045 			for (qs = 0; qs < n; ++qs) \
2046 				seq_printf(seq, " %16" fmt_spec, v); \
2047 			seq_putc(seq, '\n'); \
2048 		} while (0)
2049 	#define S(s, v)		S3("s", s, v)
2050 	#define T(s, v)		S3("u", s, txq[qs].v)
2051 	#define R(s, v)		S3("u", s, rxq[qs].v)
2052 
2053 	if (r < eth_entries) {
2054 		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2055 		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2056 		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2057 
2058 		S("QType:", "Ethernet");
2059 		S("Interface:",
2060 		  (rxq[qs].rspq.netdev
2061 		   ? rxq[qs].rspq.netdev->name
2062 		   : "N/A"));
2063 		S3("d", "Port:",
2064 		   (rxq[qs].rspq.netdev
2065 		    ? ((struct port_info *)
2066 		       netdev_priv(rxq[qs].rspq.netdev))->port_id
2067 		    : -1));
2068 		T("TxQ ID:", q.abs_id);
2069 		T("TxQ size:", q.size);
2070 		T("TxQ inuse:", q.in_use);
2071 		T("TxQ PIdx:", q.pidx);
2072 		T("TxQ CIdx:", q.cidx);
2073 		R("RspQ ID:", rspq.abs_id);
2074 		R("RspQ size:", rspq.size);
2075 		R("RspQE size:", rspq.iqe_len);
2076 		S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
2077 		S3("u", "Intr pktcnt:",
2078 		   adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
2079 		R("RspQ CIdx:", rspq.cidx);
2080 		R("RspQ Gen:", rspq.gen);
2081 		R("FL ID:", fl.abs_id);
2082 		R("FL size:", fl.size - MIN_FL_RESID);
2083 		R("FL avail:", fl.avail);
2084 		R("FL PIdx:", fl.pidx);
2085 		R("FL CIdx:", fl.cidx);
2086 		return 0;
2087 	}
2088 
2089 	r -= eth_entries;
2090 	if (r == 0) {
2091 		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2092 
2093 		seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
2094 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
2095 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2096 			   qtimer_val(adapter, evtq));
2097 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2098 			   adapter->sge.counter_val[evtq->pktcnt_idx]);
2099 		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
2100 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
2101 	} else if (r == 1) {
2102 		const struct sge_rspq *intrq = &adapter->sge.intrq;
2103 
2104 		seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
2105 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
2106 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2107 			   qtimer_val(adapter, intrq));
2108 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2109 			   adapter->sge.counter_val[intrq->pktcnt_idx]);
2110 		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
2111 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
2112 	}
2113 
2114 	#undef R
2115 	#undef T
2116 	#undef S
2117 	#undef S3
2118 
2119 	return 0;
2120 }
2121 
2122 /*
2123  * Return the number of "entries" in our "file".  We group the multi-Queue
2124  * sections with QPL Queue Sets per "entry".  The sections of the output are:
2125  *
2126  *     Ethernet RX/TX Queue Sets
2127  *     Firmware Event Queue
2128  *     Forwarded Interrupt Queue (if in MSI mode)
2129  */
2130 static int sge_queue_entries(const struct adapter *adapter)
2131 {
2132 	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2133 		((adapter->flags & CXGB4VF_USING_MSI) != 0);
2134 }
2135 
2136 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
2137 {
2138 	int entries = sge_queue_entries(seq->private);
2139 
2140 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2141 }
2142 
2143 static void sge_queue_stop(struct seq_file *seq, void *v)
2144 {
2145 }
2146 
2147 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2148 {
2149 	int entries = sge_queue_entries(seq->private);
2150 
2151 	++*pos;
2152 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2153 }
2154 
2155 static const struct seq_operations sge_qinfo_sops = {
2156 	.start = sge_queue_start,
2157 	.next  = sge_queue_next,
2158 	.stop  = sge_queue_stop,
2159 	.show  = sge_qinfo_show
2160 };
2161 
2162 DEFINE_SEQ_ATTRIBUTE(sge_qinfo);
2163 
2164 /*
2165  * Show SGE Queue Set statistics.  We display QPL Queues Sets per line.
2166  */
2167 #define QPL	4
2168 
2169 static int sge_qstats_show(struct seq_file *seq, void *v)
2170 {
2171 	struct adapter *adapter = seq->private;
2172 	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2173 	int qs, r = (uintptr_t)v - 1;
2174 
2175 	if (r)
2176 		seq_putc(seq, '\n');
2177 
2178 	#define S3(fmt, s, v) \
2179 		do { \
2180 			seq_printf(seq, "%-16s", s); \
2181 			for (qs = 0; qs < n; ++qs) \
2182 				seq_printf(seq, " %8" fmt, v); \
2183 			seq_putc(seq, '\n'); \
2184 		} while (0)
2185 	#define S(s, v)		S3("s", s, v)
2186 
2187 	#define T3(fmt, s, v)	S3(fmt, s, txq[qs].v)
2188 	#define T(s, v)		T3("lu", s, v)
2189 
2190 	#define R3(fmt, s, v)	S3(fmt, s, rxq[qs].v)
2191 	#define R(s, v)		R3("lu", s, v)
2192 
2193 	if (r < eth_entries) {
2194 		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2195 		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2196 		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2197 
2198 		S("QType:", "Ethernet");
2199 		S("Interface:",
2200 		  (rxq[qs].rspq.netdev
2201 		   ? rxq[qs].rspq.netdev->name
2202 		   : "N/A"));
2203 		R3("u", "RspQNullInts:", rspq.unhandled_irqs);
2204 		R("RxPackets:", stats.pkts);
2205 		R("RxCSO:", stats.rx_cso);
2206 		R("VLANxtract:", stats.vlan_ex);
2207 		R("LROmerged:", stats.lro_merged);
2208 		R("LROpackets:", stats.lro_pkts);
2209 		R("RxDrops:", stats.rx_drops);
2210 		T("TSO:", tso);
2211 		T("TxCSO:", tx_cso);
2212 		T("VLANins:", vlan_ins);
2213 		T("TxQFull:", q.stops);
2214 		T("TxQRestarts:", q.restarts);
2215 		T("TxMapErr:", mapping_err);
2216 		R("FLAllocErr:", fl.alloc_failed);
2217 		R("FLLrgAlcErr:", fl.large_alloc_failed);
2218 		R("FLStarving:", fl.starving);
2219 		return 0;
2220 	}
2221 
2222 	r -= eth_entries;
2223 	if (r == 0) {
2224 		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2225 
2226 		seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
2227 		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2228 			   evtq->unhandled_irqs);
2229 		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
2230 		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
2231 	} else if (r == 1) {
2232 		const struct sge_rspq *intrq = &adapter->sge.intrq;
2233 
2234 		seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
2235 		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2236 			   intrq->unhandled_irqs);
2237 		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
2238 		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
2239 	}
2240 
2241 	#undef R
2242 	#undef T
2243 	#undef S
2244 	#undef R3
2245 	#undef T3
2246 	#undef S3
2247 
2248 	return 0;
2249 }
2250 
2251 /*
2252  * Return the number of "entries" in our "file".  We group the multi-Queue
2253  * sections with QPL Queue Sets per "entry".  The sections of the output are:
2254  *
2255  *     Ethernet RX/TX Queue Sets
2256  *     Firmware Event Queue
2257  *     Forwarded Interrupt Queue (if in MSI mode)
2258  */
2259 static int sge_qstats_entries(const struct adapter *adapter)
2260 {
2261 	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2262 		((adapter->flags & CXGB4VF_USING_MSI) != 0);
2263 }
2264 
2265 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
2266 {
2267 	int entries = sge_qstats_entries(seq->private);
2268 
2269 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2270 }
2271 
2272 static void sge_qstats_stop(struct seq_file *seq, void *v)
2273 {
2274 }
2275 
2276 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
2277 {
2278 	int entries = sge_qstats_entries(seq->private);
2279 
2280 	(*pos)++;
2281 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2282 }
2283 
2284 static const struct seq_operations sge_qstats_sops = {
2285 	.start = sge_qstats_start,
2286 	.next  = sge_qstats_next,
2287 	.stop  = sge_qstats_stop,
2288 	.show  = sge_qstats_show
2289 };
2290 
2291 DEFINE_SEQ_ATTRIBUTE(sge_qstats);
2292 
2293 /*
2294  * Show PCI-E SR-IOV Virtual Function Resource Limits.
2295  */
2296 static int resources_show(struct seq_file *seq, void *v)
2297 {
2298 	struct adapter *adapter = seq->private;
2299 	struct vf_resources *vfres = &adapter->params.vfres;
2300 
2301 	#define S(desc, fmt, var) \
2302 		seq_printf(seq, "%-60s " fmt "\n", \
2303 			   desc " (" #var "):", vfres->var)
2304 
2305 	S("Virtual Interfaces", "%d", nvi);
2306 	S("Egress Queues", "%d", neq);
2307 	S("Ethernet Control", "%d", nethctrl);
2308 	S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
2309 	S("Ingress Queues", "%d", niq);
2310 	S("Traffic Class", "%d", tc);
2311 	S("Port Access Rights Mask", "%#x", pmask);
2312 	S("MAC Address Filters", "%d", nexactf);
2313 	S("Firmware Command Read Capabilities", "%#x", r_caps);
2314 	S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
2315 
2316 	#undef S
2317 
2318 	return 0;
2319 }
2320 DEFINE_SHOW_ATTRIBUTE(resources);
2321 
2322 /*
2323  * Show Virtual Interfaces.
2324  */
2325 static int interfaces_show(struct seq_file *seq, void *v)
2326 {
2327 	if (v == SEQ_START_TOKEN) {
2328 		seq_puts(seq, "Interface  Port   VIID\n");
2329 	} else {
2330 		struct adapter *adapter = seq->private;
2331 		int pidx = (uintptr_t)v - 2;
2332 		struct net_device *dev = adapter->port[pidx];
2333 		struct port_info *pi = netdev_priv(dev);
2334 
2335 		seq_printf(seq, "%9s  %4d  %#5x\n",
2336 			   dev->name, pi->port_id, pi->viid);
2337 	}
2338 	return 0;
2339 }
2340 
2341 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
2342 {
2343 	return pos <= adapter->params.nports
2344 		? (void *)(uintptr_t)(pos + 1)
2345 		: NULL;
2346 }
2347 
2348 static void *interfaces_start(struct seq_file *seq, loff_t *pos)
2349 {
2350 	return *pos
2351 		? interfaces_get_idx(seq->private, *pos)
2352 		: SEQ_START_TOKEN;
2353 }
2354 
2355 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
2356 {
2357 	(*pos)++;
2358 	return interfaces_get_idx(seq->private, *pos);
2359 }
2360 
2361 static void interfaces_stop(struct seq_file *seq, void *v)
2362 {
2363 }
2364 
2365 static const struct seq_operations interfaces_sops = {
2366 	.start = interfaces_start,
2367 	.next  = interfaces_next,
2368 	.stop  = interfaces_stop,
2369 	.show  = interfaces_show
2370 };
2371 
2372 DEFINE_SEQ_ATTRIBUTE(interfaces);
2373 
2374 /*
2375  * /sys/kernel/debugfs/cxgb4vf/ files list.
2376  */
2377 struct cxgb4vf_debugfs_entry {
2378 	const char *name;		/* name of debugfs node */
2379 	umode_t mode;			/* file system mode */
2380 	const struct file_operations *fops;
2381 };
2382 
2383 static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2384 	{ "mboxlog",    0444, &mboxlog_fops },
2385 	{ "sge_qinfo",  0444, &sge_qinfo_fops },
2386 	{ "sge_qstats", 0444, &sge_qstats_fops },
2387 	{ "resources",  0444, &resources_fops },
2388 	{ "interfaces", 0444, &interfaces_fops },
2389 };
2390 
2391 /*
2392  * Module and device initialization and cleanup code.
2393  * ==================================================
2394  */
2395 
2396 /*
2397  * Set up out /sys/kernel/debug/cxgb4vf sub-nodes.  We assume that the
2398  * directory (debugfs_root) has already been set up.
2399  */
2400 static int setup_debugfs(struct adapter *adapter)
2401 {
2402 	int i;
2403 
2404 	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2405 
2406 	/*
2407 	 * Debugfs support is best effort.
2408 	 */
2409 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2410 		debugfs_create_file(debugfs_files[i].name,
2411 				    debugfs_files[i].mode,
2412 				    adapter->debugfs_root, adapter,
2413 				    debugfs_files[i].fops);
2414 
2415 	return 0;
2416 }
2417 
2418 /*
2419  * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above.  We leave
2420  * it to our caller to tear down the directory (debugfs_root).
2421  */
2422 static void cleanup_debugfs(struct adapter *adapter)
2423 {
2424 	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2425 
2426 	/*
2427 	 * Unlike our sister routine cleanup_proc(), we don't need to remove
2428 	 * individual entries because a call will be made to
2429 	 * debugfs_remove_recursive().  We just need to clean up any ancillary
2430 	 * persistent state.
2431 	 */
2432 	/* nothing to do */
2433 }
2434 
2435 /* Figure out how many Ports and Queue Sets we can support.  This depends on
2436  * knowing our Virtual Function Resources and may be called a second time if
2437  * we fall back from MSI-X to MSI Interrupt Mode.
2438  */
2439 static void size_nports_qsets(struct adapter *adapter)
2440 {
2441 	struct vf_resources *vfres = &adapter->params.vfres;
2442 	unsigned int ethqsets, pmask_nports;
2443 
2444 	/* The number of "ports" which we support is equal to the number of
2445 	 * Virtual Interfaces with which we've been provisioned.
2446 	 */
2447 	adapter->params.nports = vfres->nvi;
2448 	if (adapter->params.nports > MAX_NPORTS) {
2449 		dev_warn(adapter->pdev_dev, "only using %d of %d maximum"
2450 			 " allowed virtual interfaces\n", MAX_NPORTS,
2451 			 adapter->params.nports);
2452 		adapter->params.nports = MAX_NPORTS;
2453 	}
2454 
2455 	/* We may have been provisioned with more VIs than the number of
2456 	 * ports we're allowed to access (our Port Access Rights Mask).
2457 	 * This is obviously a configuration conflict but we don't want to
2458 	 * crash the kernel or anything silly just because of that.
2459 	 */
2460 	pmask_nports = hweight32(adapter->params.vfres.pmask);
2461 	if (pmask_nports < adapter->params.nports) {
2462 		dev_warn(adapter->pdev_dev, "only using %d of %d provisioned"
2463 			 " virtual interfaces; limited by Port Access Rights"
2464 			 " mask %#x\n", pmask_nports, adapter->params.nports,
2465 			 adapter->params.vfres.pmask);
2466 		adapter->params.nports = pmask_nports;
2467 	}
2468 
2469 	/* We need to reserve an Ingress Queue for the Asynchronous Firmware
2470 	 * Event Queue.  And if we're using MSI Interrupts, we'll also need to
2471 	 * reserve an Ingress Queue for a Forwarded Interrupts.
2472 	 *
2473 	 * The rest of the FL/Intr-capable ingress queues will be matched up
2474 	 * one-for-one with Ethernet/Control egress queues in order to form
2475 	 * "Queue Sets" which will be aportioned between the "ports".  For
2476 	 * each Queue Set, we'll need the ability to allocate two Egress
2477 	 * Contexts -- one for the Ingress Queue Free List and one for the TX
2478 	 * Ethernet Queue.
2479 	 *
2480 	 * Note that even if we're currently configured to use MSI-X
2481 	 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded
2482 	 * to MSI Interrupts if we can't get enough MSI-X Interrupts.  If that
2483 	 * happens we'll need to adjust things later.
2484 	 */
2485 	ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI);
2486 	if (vfres->nethctrl != ethqsets)
2487 		ethqsets = min(vfres->nethctrl, ethqsets);
2488 	if (vfres->neq < ethqsets*2)
2489 		ethqsets = vfres->neq/2;
2490 	if (ethqsets > MAX_ETH_QSETS)
2491 		ethqsets = MAX_ETH_QSETS;
2492 	adapter->sge.max_ethqsets = ethqsets;
2493 
2494 	if (adapter->sge.max_ethqsets < adapter->params.nports) {
2495 		dev_warn(adapter->pdev_dev, "only using %d of %d available"
2496 			 " virtual interfaces (too few Queue Sets)\n",
2497 			 adapter->sge.max_ethqsets, adapter->params.nports);
2498 		adapter->params.nports = adapter->sge.max_ethqsets;
2499 	}
2500 }
2501 
2502 /*
2503  * Perform early "adapter" initialization.  This is where we discover what
2504  * adapter parameters we're going to be using and initialize basic adapter
2505  * hardware support.
2506  */
2507 static int adap_init0(struct adapter *adapter)
2508 {
2509 	struct sge_params *sge_params = &adapter->params.sge;
2510 	struct sge *s = &adapter->sge;
2511 	int err;
2512 	u32 param, val = 0;
2513 
2514 	/*
2515 	 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2516 	 * 2.6.31 and later we can't call pci_reset_function() in order to
2517 	 * issue an FLR because of a self- deadlock on the device semaphore.
2518 	 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2519 	 * cases where they're needed -- for instance, some versions of KVM
2520 	 * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
2521 	 * use the firmware based reset in order to reset any per function
2522 	 * state.
2523 	 */
2524 	err = t4vf_fw_reset(adapter);
2525 	if (err < 0) {
2526 		dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2527 		return err;
2528 	}
2529 
2530 	/*
2531 	 * Grab basic operational parameters.  These will predominantly have
2532 	 * been set up by the Physical Function Driver or will be hard coded
2533 	 * into the adapter.  We just have to live with them ...  Note that
2534 	 * we _must_ get our VPD parameters before our SGE parameters because
2535 	 * we need to know the adapter's core clock from the VPD in order to
2536 	 * properly decode the SGE Timer Values.
2537 	 */
2538 	err = t4vf_get_dev_params(adapter);
2539 	if (err) {
2540 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2541 			" device parameters: err=%d\n", err);
2542 		return err;
2543 	}
2544 	err = t4vf_get_vpd_params(adapter);
2545 	if (err) {
2546 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2547 			" VPD parameters: err=%d\n", err);
2548 		return err;
2549 	}
2550 	err = t4vf_get_sge_params(adapter);
2551 	if (err) {
2552 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2553 			" SGE parameters: err=%d\n", err);
2554 		return err;
2555 	}
2556 	err = t4vf_get_rss_glb_config(adapter);
2557 	if (err) {
2558 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2559 			" RSS parameters: err=%d\n", err);
2560 		return err;
2561 	}
2562 	if (adapter->params.rss.mode !=
2563 	    FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2564 		dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2565 			" mode %d\n", adapter->params.rss.mode);
2566 		return -EINVAL;
2567 	}
2568 	err = t4vf_sge_init(adapter);
2569 	if (err) {
2570 		dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2571 			" err=%d\n", err);
2572 		return err;
2573 	}
2574 
2575 	/* If we're running on newer firmware, let it know that we're
2576 	 * prepared to deal with encapsulated CPL messages.  Older
2577 	 * firmware won't understand this and we'll just get
2578 	 * unencapsulated messages ...
2579 	 */
2580 	param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2581 		FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2582 	val = 1;
2583 	(void) t4vf_set_params(adapter, 1, &param, &val);
2584 
2585 	/*
2586 	 * Retrieve our RX interrupt holdoff timer values and counter
2587 	 * threshold values from the SGE parameters.
2588 	 */
2589 	s->timer_val[0] = core_ticks_to_us(adapter,
2590 		TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1));
2591 	s->timer_val[1] = core_ticks_to_us(adapter,
2592 		TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1));
2593 	s->timer_val[2] = core_ticks_to_us(adapter,
2594 		TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3));
2595 	s->timer_val[3] = core_ticks_to_us(adapter,
2596 		TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3));
2597 	s->timer_val[4] = core_ticks_to_us(adapter,
2598 		TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5));
2599 	s->timer_val[5] = core_ticks_to_us(adapter,
2600 		TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5));
2601 
2602 	s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold);
2603 	s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold);
2604 	s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold);
2605 	s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold);
2606 
2607 	/*
2608 	 * Grab our Virtual Interface resource allocation, extract the
2609 	 * features that we're interested in and do a bit of sanity testing on
2610 	 * what we discover.
2611 	 */
2612 	err = t4vf_get_vfres(adapter);
2613 	if (err) {
2614 		dev_err(adapter->pdev_dev, "unable to get virtual interface"
2615 			" resources: err=%d\n", err);
2616 		return err;
2617 	}
2618 
2619 	/* Check for various parameter sanity issues */
2620 	if (adapter->params.vfres.pmask == 0) {
2621 		dev_err(adapter->pdev_dev, "no port access configured\n"
2622 			"usable!\n");
2623 		return -EINVAL;
2624 	}
2625 	if (adapter->params.vfres.nvi == 0) {
2626 		dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2627 			"usable!\n");
2628 		return -EINVAL;
2629 	}
2630 
2631 	/* Initialize nports and max_ethqsets now that we have our Virtual
2632 	 * Function Resources.
2633 	 */
2634 	size_nports_qsets(adapter);
2635 
2636 	adapter->flags |= CXGB4VF_FW_OK;
2637 	return 0;
2638 }
2639 
2640 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2641 			     u8 pkt_cnt_idx, unsigned int size,
2642 			     unsigned int iqe_size)
2643 {
2644 	rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
2645 			     (pkt_cnt_idx < SGE_NCOUNTERS ?
2646 			      QINTR_CNT_EN_F : 0));
2647 	rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2648 			    ? pkt_cnt_idx
2649 			    : 0);
2650 	rspq->iqe_len = iqe_size;
2651 	rspq->size = size;
2652 }
2653 
2654 /*
2655  * Perform default configuration of DMA queues depending on the number and
2656  * type of ports we found and the number of available CPUs.  Most settings can
2657  * be modified by the admin via ethtool and cxgbtool prior to the adapter
2658  * being brought up for the first time.
2659  */
2660 static void cfg_queues(struct adapter *adapter)
2661 {
2662 	struct sge *s = &adapter->sge;
2663 	int q10g, n10g, qidx, pidx, qs;
2664 	size_t iqe_size;
2665 
2666 	/*
2667 	 * We should not be called till we know how many Queue Sets we can
2668 	 * support.  In particular, this means that we need to know what kind
2669 	 * of interrupts we'll be using ...
2670 	 */
2671 	BUG_ON((adapter->flags &
2672 	       (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
2673 
2674 	/*
2675 	 * Count the number of 10GbE Virtual Interfaces that we have.
2676 	 */
2677 	n10g = 0;
2678 	for_each_port(adapter, pidx)
2679 		n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2680 
2681 	/*
2682 	 * We default to 1 queue per non-10G port and up to # of cores queues
2683 	 * per 10G port.
2684 	 */
2685 	if (n10g == 0)
2686 		q10g = 0;
2687 	else {
2688 		int n1g = (adapter->params.nports - n10g);
2689 		q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2690 		if (q10g > num_online_cpus())
2691 			q10g = num_online_cpus();
2692 	}
2693 
2694 	/*
2695 	 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2696 	 * The layout will be established in setup_sge_queues() when the
2697 	 * adapter is brough up for the first time.
2698 	 */
2699 	qidx = 0;
2700 	for_each_port(adapter, pidx) {
2701 		struct port_info *pi = adap2pinfo(adapter, pidx);
2702 
2703 		pi->first_qset = qidx;
2704 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
2705 		qidx += pi->nqsets;
2706 	}
2707 	s->ethqsets = qidx;
2708 
2709 	/*
2710 	 * The Ingress Queue Entry Size for our various Response Queues needs
2711 	 * to be big enough to accommodate the largest message we can receive
2712 	 * from the chip/firmware; which is 64 bytes ...
2713 	 */
2714 	iqe_size = 64;
2715 
2716 	/*
2717 	 * Set up default Queue Set parameters ...  Start off with the
2718 	 * shortest interrupt holdoff timer.
2719 	 */
2720 	for (qs = 0; qs < s->max_ethqsets; qs++) {
2721 		struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2722 		struct sge_eth_txq *txq = &s->ethtxq[qs];
2723 
2724 		init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2725 		rxq->fl.size = 72;
2726 		txq->q.size = 1024;
2727 	}
2728 
2729 	/*
2730 	 * The firmware event queue is used for link state changes and
2731 	 * notifications of TX DMA completions.
2732 	 */
2733 	init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2734 
2735 	/*
2736 	 * The forwarded interrupt queue is used when we're in MSI interrupt
2737 	 * mode.  In this mode all interrupts associated with RX queues will
2738 	 * be forwarded to a single queue which we'll associate with our MSI
2739 	 * interrupt vector.  The messages dropped in the forwarded interrupt
2740 	 * queue will indicate which ingress queue needs servicing ...  This
2741 	 * queue needs to be large enough to accommodate all of the ingress
2742 	 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2743 	 * from equalling the CIDX if every ingress queue has an outstanding
2744 	 * interrupt).  The queue doesn't need to be any larger because no
2745 	 * ingress queue will ever have more than one outstanding interrupt at
2746 	 * any time ...
2747 	 */
2748 	init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2749 		  iqe_size);
2750 }
2751 
2752 /*
2753  * Reduce the number of Ethernet queues across all ports to at most n.
2754  * n provides at least one queue per port.
2755  */
2756 static void reduce_ethqs(struct adapter *adapter, int n)
2757 {
2758 	int i;
2759 	struct port_info *pi;
2760 
2761 	/*
2762 	 * While we have too many active Ether Queue Sets, interate across the
2763 	 * "ports" and reduce their individual Queue Set allocations.
2764 	 */
2765 	BUG_ON(n < adapter->params.nports);
2766 	while (n < adapter->sge.ethqsets)
2767 		for_each_port(adapter, i) {
2768 			pi = adap2pinfo(adapter, i);
2769 			if (pi->nqsets > 1) {
2770 				pi->nqsets--;
2771 				adapter->sge.ethqsets--;
2772 				if (adapter->sge.ethqsets <= n)
2773 					break;
2774 			}
2775 		}
2776 
2777 	/*
2778 	 * Reassign the starting Queue Sets for each of the "ports" ...
2779 	 */
2780 	n = 0;
2781 	for_each_port(adapter, i) {
2782 		pi = adap2pinfo(adapter, i);
2783 		pi->first_qset = n;
2784 		n += pi->nqsets;
2785 	}
2786 }
2787 
2788 /*
2789  * We need to grab enough MSI-X vectors to cover our interrupt needs.  Ideally
2790  * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2791  * need.  Minimally we need one for every Virtual Interface plus those needed
2792  * for our "extras".  Note that this process may lower the maximum number of
2793  * allowed Queue Sets ...
2794  */
2795 static int enable_msix(struct adapter *adapter)
2796 {
2797 	int i, want, need, nqsets;
2798 	struct msix_entry entries[MSIX_ENTRIES];
2799 	struct sge *s = &adapter->sge;
2800 
2801 	for (i = 0; i < MSIX_ENTRIES; ++i)
2802 		entries[i].entry = i;
2803 
2804 	/*
2805 	 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2806 	 * plus those needed for our "extras" (for example, the firmware
2807 	 * message queue).  We _need_ at least one "Queue Set" per Virtual
2808 	 * Interface plus those needed for our "extras".  So now we get to see
2809 	 * if the song is right ...
2810 	 */
2811 	want = s->max_ethqsets + MSIX_EXTRAS;
2812 	need = adapter->params.nports + MSIX_EXTRAS;
2813 
2814 	want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2815 	if (want < 0)
2816 		return want;
2817 
2818 	nqsets = want - MSIX_EXTRAS;
2819 	if (nqsets < s->max_ethqsets) {
2820 		dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2821 			 " for %d Queue Sets\n", nqsets);
2822 		s->max_ethqsets = nqsets;
2823 		if (nqsets < s->ethqsets)
2824 			reduce_ethqs(adapter, nqsets);
2825 	}
2826 	for (i = 0; i < want; ++i)
2827 		adapter->msix_info[i].vec = entries[i].vector;
2828 
2829 	return 0;
2830 }
2831 
2832 static const struct net_device_ops cxgb4vf_netdev_ops	= {
2833 	.ndo_open		= cxgb4vf_open,
2834 	.ndo_stop		= cxgb4vf_stop,
2835 	.ndo_start_xmit		= t4vf_eth_xmit,
2836 	.ndo_get_stats		= cxgb4vf_get_stats,
2837 	.ndo_set_rx_mode	= cxgb4vf_set_rxmode,
2838 	.ndo_set_mac_address	= cxgb4vf_set_mac_addr,
2839 	.ndo_validate_addr	= eth_validate_addr,
2840 	.ndo_do_ioctl		= cxgb4vf_do_ioctl,
2841 	.ndo_change_mtu		= cxgb4vf_change_mtu,
2842 	.ndo_fix_features	= cxgb4vf_fix_features,
2843 	.ndo_set_features	= cxgb4vf_set_features,
2844 #ifdef CONFIG_NET_POLL_CONTROLLER
2845 	.ndo_poll_controller	= cxgb4vf_poll_controller,
2846 #endif
2847 };
2848 
2849 /**
2850  *	cxgb4vf_get_port_mask - Get port mask for the VF based on mac
2851  *				address stored on the adapter
2852  *	@adapter: The adapter
2853  *
2854  *	Find the the port mask for the VF based on the index of mac
2855  *	address stored in the adapter. If no mac address is stored on
2856  *	the adapter for the VF, use the port mask received from the
2857  *	firmware.
2858  */
2859 static unsigned int cxgb4vf_get_port_mask(struct adapter *adapter)
2860 {
2861 	unsigned int naddr = 1, pidx = 0;
2862 	unsigned int pmask, rmask = 0;
2863 	u8 mac[ETH_ALEN];
2864 	int err;
2865 
2866 	pmask = adapter->params.vfres.pmask;
2867 	while (pmask) {
2868 		if (pmask & 1) {
2869 			err = t4vf_get_vf_mac_acl(adapter, pidx, &naddr, mac);
2870 			if (!err && !is_zero_ether_addr(mac))
2871 				rmask |= (1 << pidx);
2872 		}
2873 		pmask >>= 1;
2874 		pidx++;
2875 	}
2876 	if (!rmask)
2877 		rmask = adapter->params.vfres.pmask;
2878 
2879 	return rmask;
2880 }
2881 
2882 /*
2883  * "Probe" a device: initialize a device and construct all kernel and driver
2884  * state needed to manage the device.  This routine is called "init_one" in
2885  * the PF Driver ...
2886  */
2887 static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2888 			     const struct pci_device_id *ent)
2889 {
2890 	struct adapter *adapter;
2891 	struct net_device *netdev;
2892 	struct port_info *pi;
2893 	unsigned int pmask;
2894 	int pci_using_dac;
2895 	int err, pidx;
2896 
2897 	/*
2898 	 * Initialize generic PCI device state.
2899 	 */
2900 	err = pci_enable_device(pdev);
2901 	if (err) {
2902 		dev_err(&pdev->dev, "cannot enable PCI device\n");
2903 		return err;
2904 	}
2905 
2906 	/*
2907 	 * Reserve PCI resources for the device.  If we can't get them some
2908 	 * other driver may have already claimed the device ...
2909 	 */
2910 	err = pci_request_regions(pdev, KBUILD_MODNAME);
2911 	if (err) {
2912 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2913 		goto err_disable_device;
2914 	}
2915 
2916 	/*
2917 	 * Set up our DMA mask: try for 64-bit address masking first and
2918 	 * fall back to 32-bit if we can't get 64 bits ...
2919 	 */
2920 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2921 	if (err == 0) {
2922 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2923 		if (err) {
2924 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2925 				" coherent allocations\n");
2926 			goto err_release_regions;
2927 		}
2928 		pci_using_dac = 1;
2929 	} else {
2930 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2931 		if (err != 0) {
2932 			dev_err(&pdev->dev, "no usable DMA configuration\n");
2933 			goto err_release_regions;
2934 		}
2935 		pci_using_dac = 0;
2936 	}
2937 
2938 	/*
2939 	 * Enable bus mastering for the device ...
2940 	 */
2941 	pci_set_master(pdev);
2942 
2943 	/*
2944 	 * Allocate our adapter data structure and attach it to the device.
2945 	 */
2946 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2947 	if (!adapter) {
2948 		err = -ENOMEM;
2949 		goto err_release_regions;
2950 	}
2951 	pci_set_drvdata(pdev, adapter);
2952 	adapter->pdev = pdev;
2953 	adapter->pdev_dev = &pdev->dev;
2954 
2955 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
2956 				    (sizeof(struct mbox_cmd) *
2957 				     T4VF_OS_LOG_MBOX_CMDS),
2958 				    GFP_KERNEL);
2959 	if (!adapter->mbox_log) {
2960 		err = -ENOMEM;
2961 		goto err_free_adapter;
2962 	}
2963 	adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS;
2964 
2965 	/*
2966 	 * Initialize SMP data synchronization resources.
2967 	 */
2968 	spin_lock_init(&adapter->stats_lock);
2969 	spin_lock_init(&adapter->mbox_lock);
2970 	INIT_LIST_HEAD(&adapter->mlist.list);
2971 
2972 	/*
2973 	 * Map our I/O registers in BAR0.
2974 	 */
2975 	adapter->regs = pci_ioremap_bar(pdev, 0);
2976 	if (!adapter->regs) {
2977 		dev_err(&pdev->dev, "cannot map device registers\n");
2978 		err = -ENOMEM;
2979 		goto err_free_adapter;
2980 	}
2981 
2982 	/* Wait for the device to become ready before proceeding ...
2983 	 */
2984 	err = t4vf_prep_adapter(adapter);
2985 	if (err) {
2986 		dev_err(adapter->pdev_dev, "device didn't become ready:"
2987 			" err=%d\n", err);
2988 		goto err_unmap_bar0;
2989 	}
2990 
2991 	/* For T5 and later we want to use the new BAR-based User Doorbells,
2992 	 * so we need to map BAR2 here ...
2993 	 */
2994 	if (!is_t4(adapter->params.chip)) {
2995 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
2996 					   pci_resource_len(pdev, 2));
2997 		if (!adapter->bar2) {
2998 			dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n");
2999 			err = -ENOMEM;
3000 			goto err_unmap_bar0;
3001 		}
3002 	}
3003 	/*
3004 	 * Initialize adapter level features.
3005 	 */
3006 	adapter->name = pci_name(pdev);
3007 	adapter->msg_enable = DFLT_MSG_ENABLE;
3008 
3009 	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
3010 	 * Ingress Packet Data to Free List Buffers in order to allow for
3011 	 * chipset performance optimizations between the Root Complex and
3012 	 * Memory Controllers.  (Messages to the associated Ingress Queue
3013 	 * notifying new Packet Placement in the Free Lists Buffers will be
3014 	 * send without the Relaxed Ordering Attribute thus guaranteeing that
3015 	 * all preceding PCIe Transaction Layer Packets will be processed
3016 	 * first.)  But some Root Complexes have various issues with Upstream
3017 	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
3018 	 * The PCIe devices which under the Root Complexes will be cleared the
3019 	 * Relaxed Ordering bit in the configuration space, So we check our
3020 	 * PCIe configuration space to see if it's flagged with advice against
3021 	 * using Relaxed Ordering.
3022 	 */
3023 	if (!pcie_relaxed_ordering_enabled(pdev))
3024 		adapter->flags |= CXGB4VF_ROOT_NO_RELAXED_ORDERING;
3025 
3026 	err = adap_init0(adapter);
3027 	if (err)
3028 		dev_err(&pdev->dev,
3029 			"Adapter initialization failed, error %d. Continuing in debug mode\n",
3030 			err);
3031 
3032 	/* Initialize hash mac addr list */
3033 	INIT_LIST_HEAD(&adapter->mac_hlist);
3034 
3035 	/*
3036 	 * Allocate our "adapter ports" and stitch everything together.
3037 	 */
3038 	pmask = cxgb4vf_get_port_mask(adapter);
3039 	for_each_port(adapter, pidx) {
3040 		int port_id, viid;
3041 		u8 mac[ETH_ALEN];
3042 		unsigned int naddr = 1;
3043 
3044 		/*
3045 		 * We simplistically allocate our virtual interfaces
3046 		 * sequentially across the port numbers to which we have
3047 		 * access rights.  This should be configurable in some manner
3048 		 * ...
3049 		 */
3050 		if (pmask == 0)
3051 			break;
3052 		port_id = ffs(pmask) - 1;
3053 		pmask &= ~(1 << port_id);
3054 
3055 		/*
3056 		 * Allocate our network device and stitch things together.
3057 		 */
3058 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
3059 					   MAX_PORT_QSETS);
3060 		if (netdev == NULL) {
3061 			err = -ENOMEM;
3062 			goto err_free_dev;
3063 		}
3064 		adapter->port[pidx] = netdev;
3065 		SET_NETDEV_DEV(netdev, &pdev->dev);
3066 		pi = netdev_priv(netdev);
3067 		pi->adapter = adapter;
3068 		pi->pidx = pidx;
3069 		pi->port_id = port_id;
3070 
3071 		/*
3072 		 * Initialize the starting state of our "port" and register
3073 		 * it.
3074 		 */
3075 		pi->xact_addr_filt = -1;
3076 		netdev->irq = pdev->irq;
3077 
3078 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS | NETIF_F_GRO |
3079 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
3080 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
3081 		netdev->features = netdev->hw_features;
3082 		if (pci_using_dac)
3083 			netdev->features |= NETIF_F_HIGHDMA;
3084 		netdev->vlan_features = netdev->features & VLAN_FEAT;
3085 
3086 		netdev->priv_flags |= IFF_UNICAST_FLT;
3087 		netdev->min_mtu = 81;
3088 		netdev->max_mtu = ETH_MAX_MTU;
3089 
3090 		netdev->netdev_ops = &cxgb4vf_netdev_ops;
3091 		netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
3092 		netdev->dev_port = pi->port_id;
3093 
3094 		/*
3095 		 * If we haven't been able to contact the firmware, there's
3096 		 * nothing else we can do for this "port" ...
3097 		 */
3098 		if (!(adapter->flags & CXGB4VF_FW_OK))
3099 			continue;
3100 
3101 		viid = t4vf_alloc_vi(adapter, port_id);
3102 		if (viid < 0) {
3103 			dev_err(&pdev->dev,
3104 				"cannot allocate VI for port %d: err=%d\n",
3105 				port_id, viid);
3106 			err = viid;
3107 			goto err_free_dev;
3108 		}
3109 		pi->viid = viid;
3110 
3111 		/*
3112 		 * Initialize the hardware/software state for the port.
3113 		 */
3114 		err = t4vf_port_init(adapter, pidx);
3115 		if (err) {
3116 			dev_err(&pdev->dev, "cannot initialize port %d\n",
3117 				pidx);
3118 			goto err_free_dev;
3119 		}
3120 
3121 		err = t4vf_get_vf_mac_acl(adapter, port_id, &naddr, mac);
3122 		if (err) {
3123 			dev_err(&pdev->dev,
3124 				"unable to determine MAC ACL address, "
3125 				"continuing anyway.. (status %d)\n", err);
3126 		} else if (naddr && adapter->params.vfres.nvi == 1) {
3127 			struct sockaddr addr;
3128 
3129 			ether_addr_copy(addr.sa_data, mac);
3130 			err = cxgb4vf_set_mac_addr(netdev, &addr);
3131 			if (err) {
3132 				dev_err(&pdev->dev,
3133 					"unable to set MAC address %pM\n",
3134 					mac);
3135 				goto err_free_dev;
3136 			}
3137 			dev_info(&pdev->dev,
3138 				 "Using assigned MAC ACL: %pM\n", mac);
3139 		}
3140 	}
3141 
3142 	/* See what interrupts we'll be using.  If we've been configured to
3143 	 * use MSI-X interrupts, try to enable them but fall back to using
3144 	 * MSI interrupts if we can't enable MSI-X interrupts.  If we can't
3145 	 * get MSI interrupts we bail with the error.
3146 	 */
3147 	if (msi == MSI_MSIX && enable_msix(adapter) == 0)
3148 		adapter->flags |= CXGB4VF_USING_MSIX;
3149 	else {
3150 		if (msi == MSI_MSIX) {
3151 			dev_info(adapter->pdev_dev,
3152 				 "Unable to use MSI-X Interrupts; falling "
3153 				 "back to MSI Interrupts\n");
3154 
3155 			/* We're going to need a Forwarded Interrupt Queue so
3156 			 * that may cut into how many Queue Sets we can
3157 			 * support.
3158 			 */
3159 			msi = MSI_MSI;
3160 			size_nports_qsets(adapter);
3161 		}
3162 		err = pci_enable_msi(pdev);
3163 		if (err) {
3164 			dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;"
3165 				" err=%d\n", err);
3166 			goto err_free_dev;
3167 		}
3168 		adapter->flags |= CXGB4VF_USING_MSI;
3169 	}
3170 
3171 	/* Now that we know how many "ports" we have and what interrupt
3172 	 * mechanism we're going to use, we can configure our queue resources.
3173 	 */
3174 	cfg_queues(adapter);
3175 
3176 	/*
3177 	 * The "card" is now ready to go.  If any errors occur during device
3178 	 * registration we do not fail the whole "card" but rather proceed
3179 	 * only with the ports we manage to register successfully.  However we
3180 	 * must register at least one net device.
3181 	 */
3182 	for_each_port(adapter, pidx) {
3183 		struct port_info *pi = netdev_priv(adapter->port[pidx]);
3184 		netdev = adapter->port[pidx];
3185 		if (netdev == NULL)
3186 			continue;
3187 
3188 		netif_set_real_num_tx_queues(netdev, pi->nqsets);
3189 		netif_set_real_num_rx_queues(netdev, pi->nqsets);
3190 
3191 		err = register_netdev(netdev);
3192 		if (err) {
3193 			dev_warn(&pdev->dev, "cannot register net device %s,"
3194 				 " skipping\n", netdev->name);
3195 			continue;
3196 		}
3197 
3198 		netif_carrier_off(netdev);
3199 		set_bit(pidx, &adapter->registered_device_map);
3200 	}
3201 	if (adapter->registered_device_map == 0) {
3202 		dev_err(&pdev->dev, "could not register any net devices\n");
3203 		goto err_disable_interrupts;
3204 	}
3205 
3206 	/*
3207 	 * Set up our debugfs entries.
3208 	 */
3209 	if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
3210 		adapter->debugfs_root =
3211 			debugfs_create_dir(pci_name(pdev),
3212 					   cxgb4vf_debugfs_root);
3213 		setup_debugfs(adapter);
3214 	}
3215 
3216 	/*
3217 	 * Print a short notice on the existence and configuration of the new
3218 	 * VF network device ...
3219 	 */
3220 	for_each_port(adapter, pidx) {
3221 		dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
3222 			 adapter->port[pidx]->name,
3223 			 (adapter->flags & CXGB4VF_USING_MSIX) ? "MSI-X" :
3224 			 (adapter->flags & CXGB4VF_USING_MSI)  ? "MSI" : "");
3225 	}
3226 
3227 	/*
3228 	 * Return success!
3229 	 */
3230 	return 0;
3231 
3232 	/*
3233 	 * Error recovery and exit code.  Unwind state that's been created
3234 	 * so far and return the error.
3235 	 */
3236 err_disable_interrupts:
3237 	if (adapter->flags & CXGB4VF_USING_MSIX) {
3238 		pci_disable_msix(adapter->pdev);
3239 		adapter->flags &= ~CXGB4VF_USING_MSIX;
3240 	} else if (adapter->flags & CXGB4VF_USING_MSI) {
3241 		pci_disable_msi(adapter->pdev);
3242 		adapter->flags &= ~CXGB4VF_USING_MSI;
3243 	}
3244 
3245 err_free_dev:
3246 	for_each_port(adapter, pidx) {
3247 		netdev = adapter->port[pidx];
3248 		if (netdev == NULL)
3249 			continue;
3250 		pi = netdev_priv(netdev);
3251 		if (pi->viid)
3252 			t4vf_free_vi(adapter, pi->viid);
3253 		if (test_bit(pidx, &adapter->registered_device_map))
3254 			unregister_netdev(netdev);
3255 		free_netdev(netdev);
3256 	}
3257 
3258 	if (!is_t4(adapter->params.chip))
3259 		iounmap(adapter->bar2);
3260 
3261 err_unmap_bar0:
3262 	iounmap(adapter->regs);
3263 
3264 err_free_adapter:
3265 	kfree(adapter->mbox_log);
3266 	kfree(adapter);
3267 
3268 err_release_regions:
3269 	pci_release_regions(pdev);
3270 	pci_clear_master(pdev);
3271 
3272 err_disable_device:
3273 	pci_disable_device(pdev);
3274 
3275 	return err;
3276 }
3277 
3278 /*
3279  * "Remove" a device: tear down all kernel and driver state created in the
3280  * "probe" routine and quiesce the device (disable interrupts, etc.).  (Note
3281  * that this is called "remove_one" in the PF Driver.)
3282  */
3283 static void cxgb4vf_pci_remove(struct pci_dev *pdev)
3284 {
3285 	struct adapter *adapter = pci_get_drvdata(pdev);
3286 	struct hash_mac_addr *entry, *tmp;
3287 
3288 	/*
3289 	 * Tear down driver state associated with device.
3290 	 */
3291 	if (adapter) {
3292 		int pidx;
3293 
3294 		/*
3295 		 * Stop all of our activity.  Unregister network port,
3296 		 * disable interrupts, etc.
3297 		 */
3298 		for_each_port(adapter, pidx)
3299 			if (test_bit(pidx, &adapter->registered_device_map))
3300 				unregister_netdev(adapter->port[pidx]);
3301 		t4vf_sge_stop(adapter);
3302 		if (adapter->flags & CXGB4VF_USING_MSIX) {
3303 			pci_disable_msix(adapter->pdev);
3304 			adapter->flags &= ~CXGB4VF_USING_MSIX;
3305 		} else if (adapter->flags & CXGB4VF_USING_MSI) {
3306 			pci_disable_msi(adapter->pdev);
3307 			adapter->flags &= ~CXGB4VF_USING_MSI;
3308 		}
3309 
3310 		/*
3311 		 * Tear down our debugfs entries.
3312 		 */
3313 		if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
3314 			cleanup_debugfs(adapter);
3315 			debugfs_remove_recursive(adapter->debugfs_root);
3316 		}
3317 
3318 		/*
3319 		 * Free all of the various resources which we've acquired ...
3320 		 */
3321 		t4vf_free_sge_resources(adapter);
3322 		for_each_port(adapter, pidx) {
3323 			struct net_device *netdev = adapter->port[pidx];
3324 			struct port_info *pi;
3325 
3326 			if (netdev == NULL)
3327 				continue;
3328 
3329 			pi = netdev_priv(netdev);
3330 			if (pi->viid)
3331 				t4vf_free_vi(adapter, pi->viid);
3332 			free_netdev(netdev);
3333 		}
3334 		iounmap(adapter->regs);
3335 		if (!is_t4(adapter->params.chip))
3336 			iounmap(adapter->bar2);
3337 		kfree(adapter->mbox_log);
3338 		list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
3339 					 list) {
3340 			list_del(&entry->list);
3341 			kfree(entry);
3342 		}
3343 		kfree(adapter);
3344 	}
3345 
3346 	/*
3347 	 * Disable the device and release its PCI resources.
3348 	 */
3349 	pci_disable_device(pdev);
3350 	pci_clear_master(pdev);
3351 	pci_release_regions(pdev);
3352 }
3353 
3354 /*
3355  * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
3356  * delivery.
3357  */
3358 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
3359 {
3360 	struct adapter *adapter;
3361 	int pidx;
3362 
3363 	adapter = pci_get_drvdata(pdev);
3364 	if (!adapter)
3365 		return;
3366 
3367 	/* Disable all Virtual Interfaces.  This will shut down the
3368 	 * delivery of all ingress packets into the chip for these
3369 	 * Virtual Interfaces.
3370 	 */
3371 	for_each_port(adapter, pidx)
3372 		if (test_bit(pidx, &adapter->registered_device_map))
3373 			unregister_netdev(adapter->port[pidx]);
3374 
3375 	/* Free up all Queues which will prevent further DMA and
3376 	 * Interrupts allowing various internal pathways to drain.
3377 	 */
3378 	t4vf_sge_stop(adapter);
3379 	if (adapter->flags & CXGB4VF_USING_MSIX) {
3380 		pci_disable_msix(adapter->pdev);
3381 		adapter->flags &= ~CXGB4VF_USING_MSIX;
3382 	} else if (adapter->flags & CXGB4VF_USING_MSI) {
3383 		pci_disable_msi(adapter->pdev);
3384 		adapter->flags &= ~CXGB4VF_USING_MSI;
3385 	}
3386 
3387 	/*
3388 	 * Free up all Queues which will prevent further DMA and
3389 	 * Interrupts allowing various internal pathways to drain.
3390 	 */
3391 	t4vf_free_sge_resources(adapter);
3392 	pci_set_drvdata(pdev, NULL);
3393 }
3394 
3395 /* Macros needed to support the PCI Device ID Table ...
3396  */
3397 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
3398 	static const struct pci_device_id cxgb4vf_pci_tbl[] = {
3399 #define CH_PCI_DEVICE_ID_FUNCTION	0x8
3400 
3401 #define CH_PCI_ID_TABLE_ENTRY(devid) \
3402 		{ PCI_VDEVICE(CHELSIO, (devid)), 0 }
3403 
3404 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
3405 
3406 #include "../cxgb4/t4_pci_id_tbl.h"
3407 
3408 MODULE_DESCRIPTION(DRV_DESC);
3409 MODULE_AUTHOR("Chelsio Communications");
3410 MODULE_LICENSE("Dual BSD/GPL");
3411 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
3412 
3413 static struct pci_driver cxgb4vf_driver = {
3414 	.name		= KBUILD_MODNAME,
3415 	.id_table	= cxgb4vf_pci_tbl,
3416 	.probe		= cxgb4vf_pci_probe,
3417 	.remove		= cxgb4vf_pci_remove,
3418 	.shutdown	= cxgb4vf_pci_shutdown,
3419 };
3420 
3421 /*
3422  * Initialize global driver state.
3423  */
3424 static int __init cxgb4vf_module_init(void)
3425 {
3426 	int ret;
3427 
3428 	/*
3429 	 * Vet our module parameters.
3430 	 */
3431 	if (msi != MSI_MSIX && msi != MSI_MSI) {
3432 		pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
3433 			msi, MSI_MSIX, MSI_MSI);
3434 		return -EINVAL;
3435 	}
3436 
3437 	/* Debugfs support is optional, debugfs will warn if this fails */
3438 	cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3439 
3440 	ret = pci_register_driver(&cxgb4vf_driver);
3441 	if (ret < 0)
3442 		debugfs_remove(cxgb4vf_debugfs_root);
3443 	return ret;
3444 }
3445 
3446 /*
3447  * Tear down global driver state.
3448  */
3449 static void __exit cxgb4vf_module_exit(void)
3450 {
3451 	pci_unregister_driver(&cxgb4vf_driver);
3452 	debugfs_remove(cxgb4vf_debugfs_root);
3453 }
3454 
3455 module_init(cxgb4vf_module_init);
3456 module_exit(cxgb4vf_module_exit);
3457