1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 /*
37  * This file should not be included directly.  Include t4vf_common.h instead.
38  */
39 
40 #ifndef __CXGB4VF_ADAPTER_H__
41 #define __CXGB4VF_ADAPTER_H__
42 
43 #include <linux/interrupt.h>
44 #include <linux/pci.h>
45 #include <linux/spinlock.h>
46 #include <linux/skbuff.h>
47 #include <linux/if_ether.h>
48 #include <linux/netdevice.h>
49 
50 #include "../cxgb4/t4_hw.h"
51 
52 /*
53  * Constants of the implementation.
54  */
55 enum {
56 	MAX_NPORTS	= 1,		/* max # of "ports" */
57 	MAX_PORT_QSETS	= 8,		/* max # of Queue Sets / "port" */
58 	MAX_ETH_QSETS	= MAX_NPORTS*MAX_PORT_QSETS,
59 
60 	/*
61 	 * MSI-X interrupt index usage.
62 	 */
63 	MSIX_FW		= 0,		/* MSI-X index for firmware Q */
64 	MSIX_IQFLINT	= 1,		/* MSI-X index base for Ingress Qs */
65 	MSIX_EXTRAS	= 1,
66 	MSIX_ENTRIES	= MAX_ETH_QSETS + MSIX_EXTRAS,
67 
68 	/*
69 	 * The maximum number of Ingress and Egress Queues is determined by
70 	 * the maximum number of "Queue Sets" which we support plus any
71 	 * ancillary queues.  Each "Queue Set" requires one Ingress Queue
72 	 * for RX Packet Ingress Event notifications and two Egress Queues for
73 	 * a Free List and an Ethernet TX list.
74 	 */
75 	INGQ_EXTRAS	= 2,		/* firmware event queue and */
76 					/*   forwarded interrupts */
77 	MAX_INGQ	= MAX_ETH_QSETS+INGQ_EXTRAS,
78 	MAX_EGRQ	= MAX_ETH_QSETS*2,
79 };
80 
81 /*
82  * Forward structure definition references.
83  */
84 struct adapter;
85 struct sge_eth_rxq;
86 struct sge_rspq;
87 
88 /*
89  * Per-"port" information.  This is really per-Virtual Interface information
90  * but the use of the "port" nomanclature makes it easier to go back and forth
91  * between the PF and VF drivers ...
92  */
93 struct port_info {
94 	struct adapter *adapter;	/* our adapter */
95 	u16 viid;			/* virtual interface ID */
96 	s16 xact_addr_filt;		/* index of our MAC address filter */
97 	u16 rss_size;			/* size of VI's RSS table slice */
98 	u8 pidx;			/* index into adapter port[] */
99 	u8 port_id;			/* physical port ID */
100 	u8 nqsets;			/* # of "Queue Sets" */
101 	u8 first_qset;			/* index of first "Queue Set" */
102 	struct link_config link_cfg;	/* physical port configuration */
103 };
104 
105 /*
106  * Scatter Gather Engine resources for the "adapter".  Our ingress and egress
107  * queues are organized into "Queue Sets" with one ingress and one egress
108  * queue per Queue Set.  These Queue Sets are aportionable between the "ports"
109  * (Virtual Interfaces).  One extra ingress queue is used to receive
110  * asynchronous messages from the firmware.  Note that the "Queue IDs" that we
111  * use here are really "Relative Queue IDs" which are returned as part of the
112  * firmware command to allocate queues.  These queue IDs are relative to the
113  * absolute Queue ID base of the section of the Queue ID space allocated to
114  * the PF/VF.
115  */
116 
117 /*
118  * SGE free-list queue state.
119  */
120 struct rx_sw_desc;
121 struct sge_fl {
122 	unsigned int avail;		/* # of available RX buffers */
123 	unsigned int pend_cred;		/* new buffers since last FL DB ring */
124 	unsigned int cidx;		/* consumer index */
125 	unsigned int pidx;		/* producer index */
126 	unsigned long alloc_failed;	/* # of buffer allocation failures */
127 	unsigned long large_alloc_failed;
128 	unsigned long starving;		/* # of times FL was found starving */
129 
130 	/*
131 	 * Write-once/infrequently fields.
132 	 * -------------------------------
133 	 */
134 
135 	unsigned int cntxt_id;		/* SGE relative QID for the free list */
136 	unsigned int abs_id;		/* SGE absolute QID for the free list */
137 	unsigned int size;		/* capacity of free list */
138 	struct rx_sw_desc *sdesc;	/* address of SW RX descriptor ring */
139 	__be64 *desc;			/* address of HW RX descriptor ring */
140 	dma_addr_t addr;		/* PCI bus address of hardware ring */
141 	void __iomem *bar2_addr;	/* address of BAR2 Queue registers */
142 	unsigned int bar2_qid;		/* Queue ID for BAR2 Queue registers */
143 };
144 
145 /*
146  * An ingress packet gather list.
147  */
148 struct pkt_gl {
149 	struct page_frag frags[MAX_SKB_FRAGS];
150 	void *va;			/* virtual address of first byte */
151 	unsigned int nfrags;		/* # of fragments */
152 	unsigned int tot_len;		/* total length of fragments */
153 };
154 
155 typedef int (*rspq_handler_t)(struct sge_rspq *, const __be64 *,
156 			      const struct pkt_gl *);
157 
158 /*
159  * State for an SGE Response Queue.
160  */
161 struct sge_rspq {
162 	struct napi_struct napi;	/* NAPI scheduling control */
163 	const __be64 *cur_desc;		/* current descriptor in queue */
164 	unsigned int cidx;		/* consumer index */
165 	u8 gen;				/* current generation bit */
166 	u8 next_intr_params;		/* holdoff params for next interrupt */
167 	int offset;			/* offset into current FL buffer */
168 
169 	unsigned int unhandled_irqs;	/* bogus interrupts */
170 
171 	/*
172 	 * Write-once/infrequently fields.
173 	 * -------------------------------
174 	 */
175 
176 	u8 intr_params;			/* interrupt holdoff parameters */
177 	u8 pktcnt_idx;			/* interrupt packet threshold */
178 	u8 idx;				/* queue index within its group */
179 	u16 cntxt_id;			/* SGE rel QID for the response Q */
180 	u16 abs_id;			/* SGE abs QID for the response Q */
181 	__be64 *desc;			/* address of hardware response ring */
182 	dma_addr_t phys_addr;		/* PCI bus address of ring */
183 	void __iomem *bar2_addr;	/* address of BAR2 Queue registers */
184 	unsigned int bar2_qid;		/* Queue ID for BAR2 Queue registers */
185 	unsigned int iqe_len;		/* entry size */
186 	unsigned int size;		/* capcity of response Q */
187 	struct adapter *adapter;	/* our adapter */
188 	struct net_device *netdev;	/* associated net device */
189 	rspq_handler_t handler;		/* the handler for this response Q */
190 };
191 
192 /*
193  * Ethernet queue statistics
194  */
195 struct sge_eth_stats {
196 	unsigned long pkts;		/* # of ethernet packets */
197 	unsigned long lro_pkts;		/* # of LRO super packets */
198 	unsigned long lro_merged;	/* # of wire packets merged by LRO */
199 	unsigned long rx_cso;		/* # of Rx checksum offloads */
200 	unsigned long vlan_ex;		/* # of Rx VLAN extractions */
201 	unsigned long rx_drops;		/* # of packets dropped due to no mem */
202 };
203 
204 /*
205  * State for an Ethernet Receive Queue.
206  */
207 struct sge_eth_rxq {
208 	struct sge_rspq rspq;		/* Response Queue */
209 	struct sge_fl fl;		/* Free List */
210 	struct sge_eth_stats stats;	/* receive statistics */
211 };
212 
213 /*
214  * SGE Transmit Queue state.  This contains all of the resources associated
215  * with the hardware status of a TX Queue which is a circular ring of hardware
216  * TX Descriptors.  For convenience, it also contains a pointer to a parallel
217  * "Software Descriptor" array but we don't know anything about it here other
218  * than its type name.
219  */
220 struct tx_desc {
221 	/*
222 	 * Egress Queues are measured in units of SGE_EQ_IDXSIZE by the
223 	 * hardware: Sizes, Producer and Consumer indices, etc.
224 	 */
225 	__be64 flit[SGE_EQ_IDXSIZE/sizeof(__be64)];
226 };
227 struct tx_sw_desc;
228 struct sge_txq {
229 	unsigned int in_use;		/* # of in-use TX descriptors */
230 	unsigned int size;		/* # of descriptors */
231 	unsigned int cidx;		/* SW consumer index */
232 	unsigned int pidx;		/* producer index */
233 	unsigned long stops;		/* # of times queue has been stopped */
234 	unsigned long restarts;		/* # of queue restarts */
235 
236 	/*
237 	 * Write-once/infrequently fields.
238 	 * -------------------------------
239 	 */
240 
241 	unsigned int cntxt_id;		/* SGE relative QID for the TX Q */
242 	unsigned int abs_id;		/* SGE absolute QID for the TX Q */
243 	struct tx_desc *desc;		/* address of HW TX descriptor ring */
244 	struct tx_sw_desc *sdesc;	/* address of SW TX descriptor ring */
245 	struct sge_qstat *stat;		/* queue status entry */
246 	dma_addr_t phys_addr;		/* PCI bus address of hardware ring */
247 	void __iomem *bar2_addr;	/* address of BAR2 Queue registers */
248 	unsigned int bar2_qid;		/* Queue ID for BAR2 Queue registers */
249 };
250 
251 /*
252  * State for an Ethernet Transmit Queue.
253  */
254 struct sge_eth_txq {
255 	struct sge_txq q;		/* SGE TX Queue */
256 	struct netdev_queue *txq;	/* associated netdev TX queue */
257 	unsigned long tso;		/* # of TSO requests */
258 	unsigned long tx_cso;		/* # of TX checksum offloads */
259 	unsigned long vlan_ins;		/* # of TX VLAN insertions */
260 	unsigned long mapping_err;	/* # of I/O MMU packet mapping errors */
261 };
262 
263 /*
264  * The complete set of Scatter/Gather Engine resources.
265  */
266 struct sge {
267 	/*
268 	 * Our "Queue Sets" ...
269 	 */
270 	struct sge_eth_txq ethtxq[MAX_ETH_QSETS];
271 	struct sge_eth_rxq ethrxq[MAX_ETH_QSETS];
272 
273 	/*
274 	 * Extra ingress queues for asynchronous firmware events and
275 	 * forwarded interrupts (when in MSI mode).
276 	 */
277 	struct sge_rspq fw_evtq ____cacheline_aligned_in_smp;
278 
279 	struct sge_rspq intrq ____cacheline_aligned_in_smp;
280 	spinlock_t intrq_lock;
281 
282 	/*
283 	 * State for managing "starving Free Lists" -- Free Lists which have
284 	 * fallen below a certain threshold of buffers available to the
285 	 * hardware and attempts to refill them up to that threshold have
286 	 * failed.  We have a regular "slow tick" timer process which will
287 	 * make periodic attempts to refill these starving Free Lists ...
288 	 */
289 	DECLARE_BITMAP(starving_fl, MAX_EGRQ);
290 	struct timer_list rx_timer;
291 
292 	/*
293 	 * State for cleaning up completed TX descriptors.
294 	 */
295 	struct timer_list tx_timer;
296 
297 	/*
298 	 * Write-once/infrequently fields.
299 	 * -------------------------------
300 	 */
301 
302 	u16 max_ethqsets;		/* # of available Ethernet queue sets */
303 	u16 ethqsets;			/* # of active Ethernet queue sets */
304 	u16 ethtxq_rover;		/* Tx queue to clean up next */
305 	u16 timer_val[SGE_NTIMERS];	/* interrupt holdoff timer array */
306 	u8 counter_val[SGE_NCOUNTERS];	/* interrupt RX threshold array */
307 
308 	/* Decoded Adapter Parameters.
309 	 */
310 	u32 fl_pg_order;		/* large page allocation size */
311 	u32 stat_len;			/* length of status page at ring end */
312 	u32 pktshift;			/* padding between CPL & packet data */
313 	u32 fl_align;			/* response queue message alignment */
314 	u32 fl_starve_thres;		/* Free List starvation threshold */
315 
316 	/*
317 	 * Reverse maps from Absolute Queue IDs to associated queue pointers.
318 	 * The absolute Queue IDs are in a compact range which start at a
319 	 * [potentially large] Base Queue ID.  We perform the reverse map by
320 	 * first converting the Absolute Queue ID into a Relative Queue ID by
321 	 * subtracting off the Base Queue ID and then use a Relative Queue ID
322 	 * indexed table to get the pointer to the corresponding software
323 	 * queue structure.
324 	 */
325 	unsigned int egr_base;
326 	unsigned int ingr_base;
327 	void *egr_map[MAX_EGRQ];
328 	struct sge_rspq *ingr_map[MAX_INGQ];
329 };
330 
331 /*
332  * Utility macros to convert Absolute- to Relative-Queue indices and Egress-
333  * and Ingress-Queues.  The EQ_MAP() and IQ_MAP() macros which provide
334  * pointers to Ingress- and Egress-Queues can be used as both L- and R-values
335  */
336 #define EQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->egr_base))
337 #define IQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->ingr_base))
338 
339 #define EQ_MAP(s, abs_id) ((s)->egr_map[EQ_IDX(s, abs_id)])
340 #define IQ_MAP(s, abs_id) ((s)->ingr_map[IQ_IDX(s, abs_id)])
341 
342 /*
343  * Macro to iterate across Queue Sets ("rxq" is a historic misnomer).
344  */
345 #define for_each_ethrxq(sge, iter) \
346 	for (iter = 0; iter < (sge)->ethqsets; iter++)
347 
348 /*
349  * Per-"adapter" (Virtual Function) information.
350  */
351 struct adapter {
352 	/* PCI resources */
353 	void __iomem *regs;
354 	void __iomem *bar2;
355 	struct pci_dev *pdev;
356 	struct device *pdev_dev;
357 
358 	/* "adapter" resources */
359 	unsigned long registered_device_map;
360 	unsigned long open_device_map;
361 	unsigned long flags;
362 	struct adapter_params params;
363 
364 	/* queue and interrupt resources */
365 	struct {
366 		unsigned short vec;
367 		char desc[22];
368 	} msix_info[MSIX_ENTRIES];
369 	struct sge sge;
370 
371 	/* Linux network device resources */
372 	struct net_device *port[MAX_NPORTS];
373 	const char *name;
374 	unsigned int msg_enable;
375 
376 	/* debugfs resources */
377 	struct dentry *debugfs_root;
378 
379 	/* various locks */
380 	spinlock_t stats_lock;
381 };
382 
383 enum { /* adapter flags */
384 	FULL_INIT_DONE     = (1UL << 0),
385 	USING_MSI          = (1UL << 1),
386 	USING_MSIX         = (1UL << 2),
387 	QUEUES_BOUND       = (1UL << 3),
388 };
389 
390 /*
391  * The following register read/write routine definitions are required by
392  * the common code.
393  */
394 
395 /**
396  * t4_read_reg - read a HW register
397  * @adapter: the adapter
398  * @reg_addr: the register address
399  *
400  * Returns the 32-bit value of the given HW register.
401  */
402 static inline u32 t4_read_reg(struct adapter *adapter, u32 reg_addr)
403 {
404 	return readl(adapter->regs + reg_addr);
405 }
406 
407 /**
408  * t4_write_reg - write a HW register
409  * @adapter: the adapter
410  * @reg_addr: the register address
411  * @val: the value to write
412  *
413  * Write a 32-bit value into the given HW register.
414  */
415 static inline void t4_write_reg(struct adapter *adapter, u32 reg_addr, u32 val)
416 {
417 	writel(val, adapter->regs + reg_addr);
418 }
419 
420 #ifndef readq
421 static inline u64 readq(const volatile void __iomem *addr)
422 {
423 	return readl(addr) + ((u64)readl(addr + 4) << 32);
424 }
425 
426 static inline void writeq(u64 val, volatile void __iomem *addr)
427 {
428 	writel(val, addr);
429 	writel(val >> 32, addr + 4);
430 }
431 #endif
432 
433 /**
434  * t4_read_reg64 - read a 64-bit HW register
435  * @adapter: the adapter
436  * @reg_addr: the register address
437  *
438  * Returns the 64-bit value of the given HW register.
439  */
440 static inline u64 t4_read_reg64(struct adapter *adapter, u32 reg_addr)
441 {
442 	return readq(adapter->regs + reg_addr);
443 }
444 
445 /**
446  * t4_write_reg64 - write a 64-bit HW register
447  * @adapter: the adapter
448  * @reg_addr: the register address
449  * @val: the value to write
450  *
451  * Write a 64-bit value into the given HW register.
452  */
453 static inline void t4_write_reg64(struct adapter *adapter, u32 reg_addr,
454 				  u64 val)
455 {
456 	writeq(val, adapter->regs + reg_addr);
457 }
458 
459 /**
460  * port_name - return the string name of a port
461  * @adapter: the adapter
462  * @pidx: the port index
463  *
464  * Return the string name of the selected port.
465  */
466 static inline const char *port_name(struct adapter *adapter, int pidx)
467 {
468 	return adapter->port[pidx]->name;
469 }
470 
471 /**
472  * t4_os_set_hw_addr - store a port's MAC address in SW
473  * @adapter: the adapter
474  * @pidx: the port index
475  * @hw_addr: the Ethernet address
476  *
477  * Store the Ethernet address of the given port in SW.  Called by the common
478  * code when it retrieves a port's Ethernet address from EEPROM.
479  */
480 static inline void t4_os_set_hw_addr(struct adapter *adapter, int pidx,
481 				     u8 hw_addr[])
482 {
483 	memcpy(adapter->port[pidx]->dev_addr, hw_addr, ETH_ALEN);
484 }
485 
486 /**
487  * netdev2pinfo - return the port_info structure associated with a net_device
488  * @dev: the netdev
489  *
490  * Return the struct port_info associated with a net_device
491  */
492 static inline struct port_info *netdev2pinfo(const struct net_device *dev)
493 {
494 	return netdev_priv(dev);
495 }
496 
497 /**
498  * adap2pinfo - return the port_info of a port
499  * @adap: the adapter
500  * @pidx: the port index
501  *
502  * Return the port_info structure for the adapter.
503  */
504 static inline struct port_info *adap2pinfo(struct adapter *adapter, int pidx)
505 {
506 	return netdev_priv(adapter->port[pidx]);
507 }
508 
509 /**
510  * netdev2adap - return the adapter structure associated with a net_device
511  * @dev: the netdev
512  *
513  * Return the struct adapter associated with a net_device
514  */
515 static inline struct adapter *netdev2adap(const struct net_device *dev)
516 {
517 	return netdev2pinfo(dev)->adapter;
518 }
519 
520 /*
521  * OS "Callback" function declarations.  These are functions that the OS code
522  * is "contracted" to provide for the common code.
523  */
524 void t4vf_os_link_changed(struct adapter *, int, int);
525 
526 /*
527  * SGE function prototype declarations.
528  */
529 int t4vf_sge_alloc_rxq(struct adapter *, struct sge_rspq *, bool,
530 		       struct net_device *, int,
531 		       struct sge_fl *, rspq_handler_t);
532 int t4vf_sge_alloc_eth_txq(struct adapter *, struct sge_eth_txq *,
533 			   struct net_device *, struct netdev_queue *,
534 			   unsigned int);
535 void t4vf_free_sge_resources(struct adapter *);
536 
537 int t4vf_eth_xmit(struct sk_buff *, struct net_device *);
538 int t4vf_ethrx_handler(struct sge_rspq *, const __be64 *,
539 		       const struct pkt_gl *);
540 
541 irq_handler_t t4vf_intr_handler(struct adapter *);
542 irqreturn_t t4vf_sge_intr_msix(int, void *);
543 
544 int t4vf_sge_init(struct adapter *);
545 void t4vf_sge_start(struct adapter *);
546 void t4vf_sge_stop(struct adapter *);
547 
548 #endif /* __CXGB4VF_ADAPTER_H__ */
549