1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 /* 37 * This file should not be included directly. Include t4vf_common.h instead. 38 */ 39 40 #ifndef __CXGB4VF_ADAPTER_H__ 41 #define __CXGB4VF_ADAPTER_H__ 42 43 #include <linux/interrupt.h> 44 #include <linux/pci.h> 45 #include <linux/spinlock.h> 46 #include <linux/skbuff.h> 47 #include <linux/if_ether.h> 48 #include <linux/netdevice.h> 49 50 #include "../cxgb4/t4_hw.h" 51 52 /* 53 * Constants of the implementation. 54 */ 55 enum { 56 MAX_NPORTS = 1, /* max # of "ports" */ 57 MAX_PORT_QSETS = 8, /* max # of Queue Sets / "port" */ 58 MAX_ETH_QSETS = MAX_NPORTS*MAX_PORT_QSETS, 59 60 /* 61 * MSI-X interrupt index usage. 62 */ 63 MSIX_FW = 0, /* MSI-X index for firmware Q */ 64 MSIX_IQFLINT = 1, /* MSI-X index base for Ingress Qs */ 65 MSIX_EXTRAS = 1, 66 MSIX_ENTRIES = MAX_ETH_QSETS + MSIX_EXTRAS, 67 68 /* 69 * The maximum number of Ingress and Egress Queues is determined by 70 * the maximum number of "Queue Sets" which we support plus any 71 * ancillary queues. Each "Queue Set" requires one Ingress Queue 72 * for RX Packet Ingress Event notifications and two Egress Queues for 73 * a Free List and an Ethernet TX list. 74 */ 75 INGQ_EXTRAS = 2, /* firmware event queue and */ 76 /* forwarded interrupts */ 77 MAX_INGQ = MAX_ETH_QSETS+INGQ_EXTRAS, 78 MAX_EGRQ = MAX_ETH_QSETS*2, 79 }; 80 81 /* 82 * Forward structure definition references. 83 */ 84 struct adapter; 85 struct sge_eth_rxq; 86 struct sge_rspq; 87 88 /* 89 * Per-"port" information. This is really per-Virtual Interface information 90 * but the use of the "port" nomanclature makes it easier to go back and forth 91 * between the PF and VF drivers ... 92 */ 93 struct port_info { 94 struct adapter *adapter; /* our adapter */ 95 u32 vlan_id; /* vlan id for VST */ 96 u16 viid; /* virtual interface ID */ 97 int xact_addr_filt; /* index of our MAC address filter */ 98 u16 rss_size; /* size of VI's RSS table slice */ 99 u8 pidx; /* index into adapter port[] */ 100 s8 mdio_addr; 101 u8 port_type; /* firmware port type */ 102 u8 mod_type; /* firmware module type */ 103 u8 port_id; /* physical port ID */ 104 u8 nqsets; /* # of "Queue Sets" */ 105 u8 first_qset; /* index of first "Queue Set" */ 106 struct link_config link_cfg; /* physical port configuration */ 107 }; 108 109 /* 110 * Scatter Gather Engine resources for the "adapter". Our ingress and egress 111 * queues are organized into "Queue Sets" with one ingress and one egress 112 * queue per Queue Set. These Queue Sets are aportionable between the "ports" 113 * (Virtual Interfaces). One extra ingress queue is used to receive 114 * asynchronous messages from the firmware. Note that the "Queue IDs" that we 115 * use here are really "Relative Queue IDs" which are returned as part of the 116 * firmware command to allocate queues. These queue IDs are relative to the 117 * absolute Queue ID base of the section of the Queue ID space allocated to 118 * the PF/VF. 119 */ 120 121 /* 122 * SGE free-list queue state. 123 */ 124 struct rx_sw_desc; 125 struct sge_fl { 126 unsigned int avail; /* # of available RX buffers */ 127 unsigned int pend_cred; /* new buffers since last FL DB ring */ 128 unsigned int cidx; /* consumer index */ 129 unsigned int pidx; /* producer index */ 130 unsigned long alloc_failed; /* # of buffer allocation failures */ 131 unsigned long large_alloc_failed; 132 unsigned long starving; /* # of times FL was found starving */ 133 134 /* 135 * Write-once/infrequently fields. 136 * ------------------------------- 137 */ 138 139 unsigned int cntxt_id; /* SGE relative QID for the free list */ 140 unsigned int abs_id; /* SGE absolute QID for the free list */ 141 unsigned int size; /* capacity of free list */ 142 struct rx_sw_desc *sdesc; /* address of SW RX descriptor ring */ 143 __be64 *desc; /* address of HW RX descriptor ring */ 144 dma_addr_t addr; /* PCI bus address of hardware ring */ 145 void __iomem *bar2_addr; /* address of BAR2 Queue registers */ 146 unsigned int bar2_qid; /* Queue ID for BAR2 Queue registers */ 147 }; 148 149 /* 150 * An ingress packet gather list. 151 */ 152 struct pkt_gl { 153 struct page_frag frags[MAX_SKB_FRAGS]; 154 void *va; /* virtual address of first byte */ 155 unsigned int nfrags; /* # of fragments */ 156 unsigned int tot_len; /* total length of fragments */ 157 }; 158 159 typedef int (*rspq_handler_t)(struct sge_rspq *, const __be64 *, 160 const struct pkt_gl *); 161 162 /* 163 * State for an SGE Response Queue. 164 */ 165 struct sge_rspq { 166 struct napi_struct napi; /* NAPI scheduling control */ 167 const __be64 *cur_desc; /* current descriptor in queue */ 168 unsigned int cidx; /* consumer index */ 169 u8 gen; /* current generation bit */ 170 u8 next_intr_params; /* holdoff params for next interrupt */ 171 int offset; /* offset into current FL buffer */ 172 173 unsigned int unhandled_irqs; /* bogus interrupts */ 174 175 /* 176 * Write-once/infrequently fields. 177 * ------------------------------- 178 */ 179 180 u8 intr_params; /* interrupt holdoff parameters */ 181 u8 pktcnt_idx; /* interrupt packet threshold */ 182 u8 idx; /* queue index within its group */ 183 u16 cntxt_id; /* SGE rel QID for the response Q */ 184 u16 abs_id; /* SGE abs QID for the response Q */ 185 __be64 *desc; /* address of hardware response ring */ 186 dma_addr_t phys_addr; /* PCI bus address of ring */ 187 void __iomem *bar2_addr; /* address of BAR2 Queue registers */ 188 unsigned int bar2_qid; /* Queue ID for BAR2 Queue registers */ 189 unsigned int iqe_len; /* entry size */ 190 unsigned int size; /* capcity of response Q */ 191 struct adapter *adapter; /* our adapter */ 192 struct net_device *netdev; /* associated net device */ 193 rspq_handler_t handler; /* the handler for this response Q */ 194 }; 195 196 /* 197 * Ethernet queue statistics 198 */ 199 struct sge_eth_stats { 200 unsigned long pkts; /* # of ethernet packets */ 201 unsigned long lro_pkts; /* # of LRO super packets */ 202 unsigned long lro_merged; /* # of wire packets merged by LRO */ 203 unsigned long rx_cso; /* # of Rx checksum offloads */ 204 unsigned long vlan_ex; /* # of Rx VLAN extractions */ 205 unsigned long rx_drops; /* # of packets dropped due to no mem */ 206 }; 207 208 /* 209 * State for an Ethernet Receive Queue. 210 */ 211 struct sge_eth_rxq { 212 struct sge_rspq rspq; /* Response Queue */ 213 struct sge_fl fl; /* Free List */ 214 struct sge_eth_stats stats; /* receive statistics */ 215 }; 216 217 /* 218 * SGE Transmit Queue state. This contains all of the resources associated 219 * with the hardware status of a TX Queue which is a circular ring of hardware 220 * TX Descriptors. For convenience, it also contains a pointer to a parallel 221 * "Software Descriptor" array but we don't know anything about it here other 222 * than its type name. 223 */ 224 struct tx_desc { 225 /* 226 * Egress Queues are measured in units of SGE_EQ_IDXSIZE by the 227 * hardware: Sizes, Producer and Consumer indices, etc. 228 */ 229 __be64 flit[SGE_EQ_IDXSIZE/sizeof(__be64)]; 230 }; 231 struct tx_sw_desc; 232 struct sge_txq { 233 unsigned int in_use; /* # of in-use TX descriptors */ 234 unsigned int size; /* # of descriptors */ 235 unsigned int cidx; /* SW consumer index */ 236 unsigned int pidx; /* producer index */ 237 unsigned long stops; /* # of times queue has been stopped */ 238 unsigned long restarts; /* # of queue restarts */ 239 240 /* 241 * Write-once/infrequently fields. 242 * ------------------------------- 243 */ 244 245 unsigned int cntxt_id; /* SGE relative QID for the TX Q */ 246 unsigned int abs_id; /* SGE absolute QID for the TX Q */ 247 struct tx_desc *desc; /* address of HW TX descriptor ring */ 248 struct tx_sw_desc *sdesc; /* address of SW TX descriptor ring */ 249 struct sge_qstat *stat; /* queue status entry */ 250 dma_addr_t phys_addr; /* PCI bus address of hardware ring */ 251 void __iomem *bar2_addr; /* address of BAR2 Queue registers */ 252 unsigned int bar2_qid; /* Queue ID for BAR2 Queue registers */ 253 }; 254 255 /* 256 * State for an Ethernet Transmit Queue. 257 */ 258 struct sge_eth_txq { 259 struct sge_txq q; /* SGE TX Queue */ 260 struct netdev_queue *txq; /* associated netdev TX queue */ 261 unsigned long tso; /* # of TSO requests */ 262 unsigned long tx_cso; /* # of TX checksum offloads */ 263 unsigned long vlan_ins; /* # of TX VLAN insertions */ 264 unsigned long mapping_err; /* # of I/O MMU packet mapping errors */ 265 }; 266 267 /* 268 * The complete set of Scatter/Gather Engine resources. 269 */ 270 struct sge { 271 /* 272 * Our "Queue Sets" ... 273 */ 274 struct sge_eth_txq ethtxq[MAX_ETH_QSETS]; 275 struct sge_eth_rxq ethrxq[MAX_ETH_QSETS]; 276 277 /* 278 * Extra ingress queues for asynchronous firmware events and 279 * forwarded interrupts (when in MSI mode). 280 */ 281 struct sge_rspq fw_evtq ____cacheline_aligned_in_smp; 282 283 struct sge_rspq intrq ____cacheline_aligned_in_smp; 284 spinlock_t intrq_lock; 285 286 /* 287 * State for managing "starving Free Lists" -- Free Lists which have 288 * fallen below a certain threshold of buffers available to the 289 * hardware and attempts to refill them up to that threshold have 290 * failed. We have a regular "slow tick" timer process which will 291 * make periodic attempts to refill these starving Free Lists ... 292 */ 293 DECLARE_BITMAP(starving_fl, MAX_EGRQ); 294 struct timer_list rx_timer; 295 296 /* 297 * State for cleaning up completed TX descriptors. 298 */ 299 struct timer_list tx_timer; 300 301 /* 302 * Write-once/infrequently fields. 303 * ------------------------------- 304 */ 305 306 u16 max_ethqsets; /* # of available Ethernet queue sets */ 307 u16 ethqsets; /* # of active Ethernet queue sets */ 308 u16 ethtxq_rover; /* Tx queue to clean up next */ 309 u16 timer_val[SGE_NTIMERS]; /* interrupt holdoff timer array */ 310 u8 counter_val[SGE_NCOUNTERS]; /* interrupt RX threshold array */ 311 312 /* Decoded Adapter Parameters. 313 */ 314 u32 fl_pg_order; /* large page allocation size */ 315 u32 stat_len; /* length of status page at ring end */ 316 u32 pktshift; /* padding between CPL & packet data */ 317 u32 fl_align; /* response queue message alignment */ 318 u32 fl_starve_thres; /* Free List starvation threshold */ 319 320 /* 321 * Reverse maps from Absolute Queue IDs to associated queue pointers. 322 * The absolute Queue IDs are in a compact range which start at a 323 * [potentially large] Base Queue ID. We perform the reverse map by 324 * first converting the Absolute Queue ID into a Relative Queue ID by 325 * subtracting off the Base Queue ID and then use a Relative Queue ID 326 * indexed table to get the pointer to the corresponding software 327 * queue structure. 328 */ 329 unsigned int egr_base; 330 unsigned int ingr_base; 331 void *egr_map[MAX_EGRQ]; 332 struct sge_rspq *ingr_map[MAX_INGQ]; 333 }; 334 335 /* 336 * Utility macros to convert Absolute- to Relative-Queue indices and Egress- 337 * and Ingress-Queues. The EQ_MAP() and IQ_MAP() macros which provide 338 * pointers to Ingress- and Egress-Queues can be used as both L- and R-values 339 */ 340 #define EQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->egr_base)) 341 #define IQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->ingr_base)) 342 343 #define EQ_MAP(s, abs_id) ((s)->egr_map[EQ_IDX(s, abs_id)]) 344 #define IQ_MAP(s, abs_id) ((s)->ingr_map[IQ_IDX(s, abs_id)]) 345 346 /* 347 * Macro to iterate across Queue Sets ("rxq" is a historic misnomer). 348 */ 349 #define for_each_ethrxq(sge, iter) \ 350 for (iter = 0; iter < (sge)->ethqsets; iter++) 351 352 struct hash_mac_addr { 353 struct list_head list; 354 u8 addr[ETH_ALEN]; 355 unsigned int iface_mac; 356 }; 357 358 struct mbox_list { 359 struct list_head list; 360 }; 361 362 /* 363 * Per-"adapter" (Virtual Function) information. 364 */ 365 struct adapter { 366 /* PCI resources */ 367 void __iomem *regs; 368 void __iomem *bar2; 369 struct pci_dev *pdev; 370 struct device *pdev_dev; 371 372 /* "adapter" resources */ 373 unsigned long registered_device_map; 374 unsigned long open_device_map; 375 unsigned long flags; 376 struct adapter_params params; 377 378 /* queue and interrupt resources */ 379 struct { 380 unsigned short vec; 381 char desc[22]; 382 } msix_info[MSIX_ENTRIES]; 383 struct sge sge; 384 385 /* Linux network device resources */ 386 struct net_device *port[MAX_NPORTS]; 387 const char *name; 388 unsigned int msg_enable; 389 390 /* debugfs resources */ 391 struct dentry *debugfs_root; 392 393 /* various locks */ 394 spinlock_t stats_lock; 395 396 /* lock for mailbox cmd list */ 397 spinlock_t mbox_lock; 398 struct mbox_list mlist; 399 400 /* support for mailbox command/reply logging */ 401 #define T4VF_OS_LOG_MBOX_CMDS 256 402 struct mbox_cmd_log *mbox_log; 403 404 /* list of MAC addresses in MPS Hash */ 405 struct list_head mac_hlist; 406 }; 407 408 enum { /* adapter flags */ 409 CXGB4VF_FULL_INIT_DONE = (1UL << 0), 410 CXGB4VF_USING_MSI = (1UL << 1), 411 CXGB4VF_USING_MSIX = (1UL << 2), 412 CXGB4VF_QUEUES_BOUND = (1UL << 3), 413 CXGB4VF_ROOT_NO_RELAXED_ORDERING = (1UL << 4), 414 CXGB4VF_FW_OK = (1UL << 5), 415 }; 416 417 /* 418 * The following register read/write routine definitions are required by 419 * the common code. 420 */ 421 422 /** 423 * t4_read_reg - read a HW register 424 * @adapter: the adapter 425 * @reg_addr: the register address 426 * 427 * Returns the 32-bit value of the given HW register. 428 */ 429 static inline u32 t4_read_reg(struct adapter *adapter, u32 reg_addr) 430 { 431 return readl(adapter->regs + reg_addr); 432 } 433 434 /** 435 * t4_write_reg - write a HW register 436 * @adapter: the adapter 437 * @reg_addr: the register address 438 * @val: the value to write 439 * 440 * Write a 32-bit value into the given HW register. 441 */ 442 static inline void t4_write_reg(struct adapter *adapter, u32 reg_addr, u32 val) 443 { 444 writel(val, adapter->regs + reg_addr); 445 } 446 447 #ifndef readq 448 static inline u64 readq(const volatile void __iomem *addr) 449 { 450 return readl(addr) + ((u64)readl(addr + 4) << 32); 451 } 452 453 static inline void writeq(u64 val, volatile void __iomem *addr) 454 { 455 writel(val, addr); 456 writel(val >> 32, addr + 4); 457 } 458 #endif 459 460 /** 461 * t4_read_reg64 - read a 64-bit HW register 462 * @adapter: the adapter 463 * @reg_addr: the register address 464 * 465 * Returns the 64-bit value of the given HW register. 466 */ 467 static inline u64 t4_read_reg64(struct adapter *adapter, u32 reg_addr) 468 { 469 return readq(adapter->regs + reg_addr); 470 } 471 472 /** 473 * t4_write_reg64 - write a 64-bit HW register 474 * @adapter: the adapter 475 * @reg_addr: the register address 476 * @val: the value to write 477 * 478 * Write a 64-bit value into the given HW register. 479 */ 480 static inline void t4_write_reg64(struct adapter *adapter, u32 reg_addr, 481 u64 val) 482 { 483 writeq(val, adapter->regs + reg_addr); 484 } 485 486 /** 487 * port_name - return the string name of a port 488 * @adapter: the adapter 489 * @pidx: the port index 490 * 491 * Return the string name of the selected port. 492 */ 493 static inline const char *port_name(struct adapter *adapter, int pidx) 494 { 495 return adapter->port[pidx]->name; 496 } 497 498 /** 499 * t4_os_set_hw_addr - store a port's MAC address in SW 500 * @adapter: the adapter 501 * @pidx: the port index 502 * @hw_addr: the Ethernet address 503 * 504 * Store the Ethernet address of the given port in SW. Called by the common 505 * code when it retrieves a port's Ethernet address from EEPROM. 506 */ 507 static inline void t4_os_set_hw_addr(struct adapter *adapter, int pidx, 508 u8 hw_addr[]) 509 { 510 memcpy(adapter->port[pidx]->dev_addr, hw_addr, ETH_ALEN); 511 } 512 513 /** 514 * netdev2pinfo - return the port_info structure associated with a net_device 515 * @dev: the netdev 516 * 517 * Return the struct port_info associated with a net_device 518 */ 519 static inline struct port_info *netdev2pinfo(const struct net_device *dev) 520 { 521 return netdev_priv(dev); 522 } 523 524 /** 525 * adap2pinfo - return the port_info of a port 526 * @adap: the adapter 527 * @pidx: the port index 528 * 529 * Return the port_info structure for the adapter. 530 */ 531 static inline struct port_info *adap2pinfo(struct adapter *adapter, int pidx) 532 { 533 return netdev_priv(adapter->port[pidx]); 534 } 535 536 /** 537 * netdev2adap - return the adapter structure associated with a net_device 538 * @dev: the netdev 539 * 540 * Return the struct adapter associated with a net_device 541 */ 542 static inline struct adapter *netdev2adap(const struct net_device *dev) 543 { 544 return netdev2pinfo(dev)->adapter; 545 } 546 547 /* 548 * OS "Callback" function declarations. These are functions that the OS code 549 * is "contracted" to provide for the common code. 550 */ 551 void t4vf_os_link_changed(struct adapter *, int, int); 552 void t4vf_os_portmod_changed(struct adapter *, int); 553 554 /* 555 * SGE function prototype declarations. 556 */ 557 int t4vf_sge_alloc_rxq(struct adapter *, struct sge_rspq *, bool, 558 struct net_device *, int, 559 struct sge_fl *, rspq_handler_t); 560 int t4vf_sge_alloc_eth_txq(struct adapter *, struct sge_eth_txq *, 561 struct net_device *, struct netdev_queue *, 562 unsigned int); 563 void t4vf_free_sge_resources(struct adapter *); 564 565 int t4vf_eth_xmit(struct sk_buff *, struct net_device *); 566 int t4vf_ethrx_handler(struct sge_rspq *, const __be64 *, 567 const struct pkt_gl *); 568 569 irq_handler_t t4vf_intr_handler(struct adapter *); 570 irqreturn_t t4vf_sge_intr_msix(int, void *); 571 572 int t4vf_sge_init(struct adapter *); 573 void t4vf_sge_start(struct adapter *); 574 void t4vf_sge_stop(struct adapter *); 575 576 #endif /* __CXGB4VF_ADAPTER_H__ */ 577