1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 /*
37  * This file should not be included directly.  Include t4vf_common.h instead.
38  */
39 
40 #ifndef __CXGB4VF_ADAPTER_H__
41 #define __CXGB4VF_ADAPTER_H__
42 
43 #include <linux/interrupt.h>
44 #include <linux/pci.h>
45 #include <linux/spinlock.h>
46 #include <linux/skbuff.h>
47 #include <linux/if_ether.h>
48 #include <linux/netdevice.h>
49 
50 #include "../cxgb4/t4_hw.h"
51 
52 /*
53  * Constants of the implementation.
54  */
55 enum {
56 	MAX_NPORTS	= 1,		/* max # of "ports" */
57 	MAX_PORT_QSETS	= 8,		/* max # of Queue Sets / "port" */
58 	MAX_ETH_QSETS	= MAX_NPORTS*MAX_PORT_QSETS,
59 
60 	/*
61 	 * MSI-X interrupt index usage.
62 	 */
63 	MSIX_FW		= 0,		/* MSI-X index for firmware Q */
64 	MSIX_IQFLINT	= 1,		/* MSI-X index base for Ingress Qs */
65 	MSIX_EXTRAS	= 1,
66 	MSIX_ENTRIES	= MAX_ETH_QSETS + MSIX_EXTRAS,
67 
68 	/*
69 	 * The maximum number of Ingress and Egress Queues is determined by
70 	 * the maximum number of "Queue Sets" which we support plus any
71 	 * ancillary queues.  Each "Queue Set" requires one Ingress Queue
72 	 * for RX Packet Ingress Event notifications and two Egress Queues for
73 	 * a Free List and an Ethernet TX list.
74 	 */
75 	INGQ_EXTRAS	= 2,		/* firmware event queue and */
76 					/*   forwarded interrupts */
77 	MAX_INGQ	= MAX_ETH_QSETS+INGQ_EXTRAS,
78 	MAX_EGRQ	= MAX_ETH_QSETS*2,
79 };
80 
81 /*
82  * Forward structure definition references.
83  */
84 struct adapter;
85 struct sge_eth_rxq;
86 struct sge_rspq;
87 
88 /*
89  * Per-"port" information.  This is really per-Virtual Interface information
90  * but the use of the "port" nomanclature makes it easier to go back and forth
91  * between the PF and VF drivers ...
92  */
93 struct port_info {
94 	struct adapter *adapter;	/* our adapter */
95 	u16 viid;			/* virtual interface ID */
96 	s16 xact_addr_filt;		/* index of our MAC address filter */
97 	u16 rss_size;			/* size of VI's RSS table slice */
98 	u8 pidx;			/* index into adapter port[] */
99 	s8 mdio_addr;
100 	u8 port_type;			/* firmware port type */
101 	u8 mod_type;			/* firmware module type */
102 	u8 port_id;			/* physical port ID */
103 	u8 nqsets;			/* # of "Queue Sets" */
104 	u8 first_qset;			/* index of first "Queue Set" */
105 	struct link_config link_cfg;	/* physical port configuration */
106 };
107 
108 /*
109  * Scatter Gather Engine resources for the "adapter".  Our ingress and egress
110  * queues are organized into "Queue Sets" with one ingress and one egress
111  * queue per Queue Set.  These Queue Sets are aportionable between the "ports"
112  * (Virtual Interfaces).  One extra ingress queue is used to receive
113  * asynchronous messages from the firmware.  Note that the "Queue IDs" that we
114  * use here are really "Relative Queue IDs" which are returned as part of the
115  * firmware command to allocate queues.  These queue IDs are relative to the
116  * absolute Queue ID base of the section of the Queue ID space allocated to
117  * the PF/VF.
118  */
119 
120 /*
121  * SGE free-list queue state.
122  */
123 struct rx_sw_desc;
124 struct sge_fl {
125 	unsigned int avail;		/* # of available RX buffers */
126 	unsigned int pend_cred;		/* new buffers since last FL DB ring */
127 	unsigned int cidx;		/* consumer index */
128 	unsigned int pidx;		/* producer index */
129 	unsigned long alloc_failed;	/* # of buffer allocation failures */
130 	unsigned long large_alloc_failed;
131 	unsigned long starving;		/* # of times FL was found starving */
132 
133 	/*
134 	 * Write-once/infrequently fields.
135 	 * -------------------------------
136 	 */
137 
138 	unsigned int cntxt_id;		/* SGE relative QID for the free list */
139 	unsigned int abs_id;		/* SGE absolute QID for the free list */
140 	unsigned int size;		/* capacity of free list */
141 	struct rx_sw_desc *sdesc;	/* address of SW RX descriptor ring */
142 	__be64 *desc;			/* address of HW RX descriptor ring */
143 	dma_addr_t addr;		/* PCI bus address of hardware ring */
144 	void __iomem *bar2_addr;	/* address of BAR2 Queue registers */
145 	unsigned int bar2_qid;		/* Queue ID for BAR2 Queue registers */
146 };
147 
148 /*
149  * An ingress packet gather list.
150  */
151 struct pkt_gl {
152 	struct page_frag frags[MAX_SKB_FRAGS];
153 	void *va;			/* virtual address of first byte */
154 	unsigned int nfrags;		/* # of fragments */
155 	unsigned int tot_len;		/* total length of fragments */
156 };
157 
158 typedef int (*rspq_handler_t)(struct sge_rspq *, const __be64 *,
159 			      const struct pkt_gl *);
160 
161 /*
162  * State for an SGE Response Queue.
163  */
164 struct sge_rspq {
165 	struct napi_struct napi;	/* NAPI scheduling control */
166 	const __be64 *cur_desc;		/* current descriptor in queue */
167 	unsigned int cidx;		/* consumer index */
168 	u8 gen;				/* current generation bit */
169 	u8 next_intr_params;		/* holdoff params for next interrupt */
170 	int offset;			/* offset into current FL buffer */
171 
172 	unsigned int unhandled_irqs;	/* bogus interrupts */
173 
174 	/*
175 	 * Write-once/infrequently fields.
176 	 * -------------------------------
177 	 */
178 
179 	u8 intr_params;			/* interrupt holdoff parameters */
180 	u8 pktcnt_idx;			/* interrupt packet threshold */
181 	u8 idx;				/* queue index within its group */
182 	u16 cntxt_id;			/* SGE rel QID for the response Q */
183 	u16 abs_id;			/* SGE abs QID for the response Q */
184 	__be64 *desc;			/* address of hardware response ring */
185 	dma_addr_t phys_addr;		/* PCI bus address of ring */
186 	void __iomem *bar2_addr;	/* address of BAR2 Queue registers */
187 	unsigned int bar2_qid;		/* Queue ID for BAR2 Queue registers */
188 	unsigned int iqe_len;		/* entry size */
189 	unsigned int size;		/* capcity of response Q */
190 	struct adapter *adapter;	/* our adapter */
191 	struct net_device *netdev;	/* associated net device */
192 	rspq_handler_t handler;		/* the handler for this response Q */
193 };
194 
195 /*
196  * Ethernet queue statistics
197  */
198 struct sge_eth_stats {
199 	unsigned long pkts;		/* # of ethernet packets */
200 	unsigned long lro_pkts;		/* # of LRO super packets */
201 	unsigned long lro_merged;	/* # of wire packets merged by LRO */
202 	unsigned long rx_cso;		/* # of Rx checksum offloads */
203 	unsigned long vlan_ex;		/* # of Rx VLAN extractions */
204 	unsigned long rx_drops;		/* # of packets dropped due to no mem */
205 };
206 
207 /*
208  * State for an Ethernet Receive Queue.
209  */
210 struct sge_eth_rxq {
211 	struct sge_rspq rspq;		/* Response Queue */
212 	struct sge_fl fl;		/* Free List */
213 	struct sge_eth_stats stats;	/* receive statistics */
214 };
215 
216 /*
217  * SGE Transmit Queue state.  This contains all of the resources associated
218  * with the hardware status of a TX Queue which is a circular ring of hardware
219  * TX Descriptors.  For convenience, it also contains a pointer to a parallel
220  * "Software Descriptor" array but we don't know anything about it here other
221  * than its type name.
222  */
223 struct tx_desc {
224 	/*
225 	 * Egress Queues are measured in units of SGE_EQ_IDXSIZE by the
226 	 * hardware: Sizes, Producer and Consumer indices, etc.
227 	 */
228 	__be64 flit[SGE_EQ_IDXSIZE/sizeof(__be64)];
229 };
230 struct tx_sw_desc;
231 struct sge_txq {
232 	unsigned int in_use;		/* # of in-use TX descriptors */
233 	unsigned int size;		/* # of descriptors */
234 	unsigned int cidx;		/* SW consumer index */
235 	unsigned int pidx;		/* producer index */
236 	unsigned long stops;		/* # of times queue has been stopped */
237 	unsigned long restarts;		/* # of queue restarts */
238 
239 	/*
240 	 * Write-once/infrequently fields.
241 	 * -------------------------------
242 	 */
243 
244 	unsigned int cntxt_id;		/* SGE relative QID for the TX Q */
245 	unsigned int abs_id;		/* SGE absolute QID for the TX Q */
246 	struct tx_desc *desc;		/* address of HW TX descriptor ring */
247 	struct tx_sw_desc *sdesc;	/* address of SW TX descriptor ring */
248 	struct sge_qstat *stat;		/* queue status entry */
249 	dma_addr_t phys_addr;		/* PCI bus address of hardware ring */
250 	void __iomem *bar2_addr;	/* address of BAR2 Queue registers */
251 	unsigned int bar2_qid;		/* Queue ID for BAR2 Queue registers */
252 };
253 
254 /*
255  * State for an Ethernet Transmit Queue.
256  */
257 struct sge_eth_txq {
258 	struct sge_txq q;		/* SGE TX Queue */
259 	struct netdev_queue *txq;	/* associated netdev TX queue */
260 	unsigned long tso;		/* # of TSO requests */
261 	unsigned long tx_cso;		/* # of TX checksum offloads */
262 	unsigned long vlan_ins;		/* # of TX VLAN insertions */
263 	unsigned long mapping_err;	/* # of I/O MMU packet mapping errors */
264 };
265 
266 /*
267  * The complete set of Scatter/Gather Engine resources.
268  */
269 struct sge {
270 	/*
271 	 * Our "Queue Sets" ...
272 	 */
273 	struct sge_eth_txq ethtxq[MAX_ETH_QSETS];
274 	struct sge_eth_rxq ethrxq[MAX_ETH_QSETS];
275 
276 	/*
277 	 * Extra ingress queues for asynchronous firmware events and
278 	 * forwarded interrupts (when in MSI mode).
279 	 */
280 	struct sge_rspq fw_evtq ____cacheline_aligned_in_smp;
281 
282 	struct sge_rspq intrq ____cacheline_aligned_in_smp;
283 	spinlock_t intrq_lock;
284 
285 	/*
286 	 * State for managing "starving Free Lists" -- Free Lists which have
287 	 * fallen below a certain threshold of buffers available to the
288 	 * hardware and attempts to refill them up to that threshold have
289 	 * failed.  We have a regular "slow tick" timer process which will
290 	 * make periodic attempts to refill these starving Free Lists ...
291 	 */
292 	DECLARE_BITMAP(starving_fl, MAX_EGRQ);
293 	struct timer_list rx_timer;
294 
295 	/*
296 	 * State for cleaning up completed TX descriptors.
297 	 */
298 	struct timer_list tx_timer;
299 
300 	/*
301 	 * Write-once/infrequently fields.
302 	 * -------------------------------
303 	 */
304 
305 	u16 max_ethqsets;		/* # of available Ethernet queue sets */
306 	u16 ethqsets;			/* # of active Ethernet queue sets */
307 	u16 ethtxq_rover;		/* Tx queue to clean up next */
308 	u16 timer_val[SGE_NTIMERS];	/* interrupt holdoff timer array */
309 	u8 counter_val[SGE_NCOUNTERS];	/* interrupt RX threshold array */
310 
311 	/* Decoded Adapter Parameters.
312 	 */
313 	u32 fl_pg_order;		/* large page allocation size */
314 	u32 stat_len;			/* length of status page at ring end */
315 	u32 pktshift;			/* padding between CPL & packet data */
316 	u32 fl_align;			/* response queue message alignment */
317 	u32 fl_starve_thres;		/* Free List starvation threshold */
318 
319 	/*
320 	 * Reverse maps from Absolute Queue IDs to associated queue pointers.
321 	 * The absolute Queue IDs are in a compact range which start at a
322 	 * [potentially large] Base Queue ID.  We perform the reverse map by
323 	 * first converting the Absolute Queue ID into a Relative Queue ID by
324 	 * subtracting off the Base Queue ID and then use a Relative Queue ID
325 	 * indexed table to get the pointer to the corresponding software
326 	 * queue structure.
327 	 */
328 	unsigned int egr_base;
329 	unsigned int ingr_base;
330 	void *egr_map[MAX_EGRQ];
331 	struct sge_rspq *ingr_map[MAX_INGQ];
332 };
333 
334 /*
335  * Utility macros to convert Absolute- to Relative-Queue indices and Egress-
336  * and Ingress-Queues.  The EQ_MAP() and IQ_MAP() macros which provide
337  * pointers to Ingress- and Egress-Queues can be used as both L- and R-values
338  */
339 #define EQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->egr_base))
340 #define IQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->ingr_base))
341 
342 #define EQ_MAP(s, abs_id) ((s)->egr_map[EQ_IDX(s, abs_id)])
343 #define IQ_MAP(s, abs_id) ((s)->ingr_map[IQ_IDX(s, abs_id)])
344 
345 /*
346  * Macro to iterate across Queue Sets ("rxq" is a historic misnomer).
347  */
348 #define for_each_ethrxq(sge, iter) \
349 	for (iter = 0; iter < (sge)->ethqsets; iter++)
350 
351 struct hash_mac_addr {
352 	struct list_head list;
353 	u8 addr[ETH_ALEN];
354 };
355 
356 struct mbox_list {
357 	struct list_head list;
358 };
359 
360 /*
361  * Per-"adapter" (Virtual Function) information.
362  */
363 struct adapter {
364 	/* PCI resources */
365 	void __iomem *regs;
366 	void __iomem *bar2;
367 	struct pci_dev *pdev;
368 	struct device *pdev_dev;
369 
370 	/* "adapter" resources */
371 	unsigned long registered_device_map;
372 	unsigned long open_device_map;
373 	unsigned long flags;
374 	struct adapter_params params;
375 
376 	/* queue and interrupt resources */
377 	struct {
378 		unsigned short vec;
379 		char desc[22];
380 	} msix_info[MSIX_ENTRIES];
381 	struct sge sge;
382 
383 	/* Linux network device resources */
384 	struct net_device *port[MAX_NPORTS];
385 	const char *name;
386 	unsigned int msg_enable;
387 
388 	/* debugfs resources */
389 	struct dentry *debugfs_root;
390 
391 	/* various locks */
392 	spinlock_t stats_lock;
393 
394 	/* lock for mailbox cmd list */
395 	spinlock_t mbox_lock;
396 	struct mbox_list mlist;
397 
398 	/* support for mailbox command/reply logging */
399 #define T4VF_OS_LOG_MBOX_CMDS 256
400 	struct mbox_cmd_log *mbox_log;
401 
402 	/* list of MAC addresses in MPS Hash */
403 	struct list_head mac_hlist;
404 };
405 
406 enum { /* adapter flags */
407 	FULL_INIT_DONE     = (1UL << 0),
408 	USING_MSI          = (1UL << 1),
409 	USING_MSIX         = (1UL << 2),
410 	QUEUES_BOUND       = (1UL << 3),
411 };
412 
413 /*
414  * The following register read/write routine definitions are required by
415  * the common code.
416  */
417 
418 /**
419  * t4_read_reg - read a HW register
420  * @adapter: the adapter
421  * @reg_addr: the register address
422  *
423  * Returns the 32-bit value of the given HW register.
424  */
425 static inline u32 t4_read_reg(struct adapter *adapter, u32 reg_addr)
426 {
427 	return readl(adapter->regs + reg_addr);
428 }
429 
430 /**
431  * t4_write_reg - write a HW register
432  * @adapter: the adapter
433  * @reg_addr: the register address
434  * @val: the value to write
435  *
436  * Write a 32-bit value into the given HW register.
437  */
438 static inline void t4_write_reg(struct adapter *adapter, u32 reg_addr, u32 val)
439 {
440 	writel(val, adapter->regs + reg_addr);
441 }
442 
443 #ifndef readq
444 static inline u64 readq(const volatile void __iomem *addr)
445 {
446 	return readl(addr) + ((u64)readl(addr + 4) << 32);
447 }
448 
449 static inline void writeq(u64 val, volatile void __iomem *addr)
450 {
451 	writel(val, addr);
452 	writel(val >> 32, addr + 4);
453 }
454 #endif
455 
456 /**
457  * t4_read_reg64 - read a 64-bit HW register
458  * @adapter: the adapter
459  * @reg_addr: the register address
460  *
461  * Returns the 64-bit value of the given HW register.
462  */
463 static inline u64 t4_read_reg64(struct adapter *adapter, u32 reg_addr)
464 {
465 	return readq(adapter->regs + reg_addr);
466 }
467 
468 /**
469  * t4_write_reg64 - write a 64-bit HW register
470  * @adapter: the adapter
471  * @reg_addr: the register address
472  * @val: the value to write
473  *
474  * Write a 64-bit value into the given HW register.
475  */
476 static inline void t4_write_reg64(struct adapter *adapter, u32 reg_addr,
477 				  u64 val)
478 {
479 	writeq(val, adapter->regs + reg_addr);
480 }
481 
482 /**
483  * port_name - return the string name of a port
484  * @adapter: the adapter
485  * @pidx: the port index
486  *
487  * Return the string name of the selected port.
488  */
489 static inline const char *port_name(struct adapter *adapter, int pidx)
490 {
491 	return adapter->port[pidx]->name;
492 }
493 
494 /**
495  * t4_os_set_hw_addr - store a port's MAC address in SW
496  * @adapter: the adapter
497  * @pidx: the port index
498  * @hw_addr: the Ethernet address
499  *
500  * Store the Ethernet address of the given port in SW.  Called by the common
501  * code when it retrieves a port's Ethernet address from EEPROM.
502  */
503 static inline void t4_os_set_hw_addr(struct adapter *adapter, int pidx,
504 				     u8 hw_addr[])
505 {
506 	memcpy(adapter->port[pidx]->dev_addr, hw_addr, ETH_ALEN);
507 }
508 
509 /**
510  * netdev2pinfo - return the port_info structure associated with a net_device
511  * @dev: the netdev
512  *
513  * Return the struct port_info associated with a net_device
514  */
515 static inline struct port_info *netdev2pinfo(const struct net_device *dev)
516 {
517 	return netdev_priv(dev);
518 }
519 
520 /**
521  * adap2pinfo - return the port_info of a port
522  * @adap: the adapter
523  * @pidx: the port index
524  *
525  * Return the port_info structure for the adapter.
526  */
527 static inline struct port_info *adap2pinfo(struct adapter *adapter, int pidx)
528 {
529 	return netdev_priv(adapter->port[pidx]);
530 }
531 
532 /**
533  * netdev2adap - return the adapter structure associated with a net_device
534  * @dev: the netdev
535  *
536  * Return the struct adapter associated with a net_device
537  */
538 static inline struct adapter *netdev2adap(const struct net_device *dev)
539 {
540 	return netdev2pinfo(dev)->adapter;
541 }
542 
543 /*
544  * OS "Callback" function declarations.  These are functions that the OS code
545  * is "contracted" to provide for the common code.
546  */
547 void t4vf_os_link_changed(struct adapter *, int, int);
548 void t4vf_os_portmod_changed(struct adapter *, int);
549 
550 /*
551  * SGE function prototype declarations.
552  */
553 int t4vf_sge_alloc_rxq(struct adapter *, struct sge_rspq *, bool,
554 		       struct net_device *, int,
555 		       struct sge_fl *, rspq_handler_t);
556 int t4vf_sge_alloc_eth_txq(struct adapter *, struct sge_eth_txq *,
557 			   struct net_device *, struct netdev_queue *,
558 			   unsigned int);
559 void t4vf_free_sge_resources(struct adapter *);
560 
561 int t4vf_eth_xmit(struct sk_buff *, struct net_device *);
562 int t4vf_ethrx_handler(struct sge_rspq *, const __be64 *,
563 		       const struct pkt_gl *);
564 
565 irq_handler_t t4vf_intr_handler(struct adapter *);
566 irqreturn_t t4vf_sge_intr_msix(int, void *);
567 
568 int t4vf_sge_init(struct adapter *);
569 void t4vf_sge_start(struct adapter *);
570 void t4vf_sge_stop(struct adapter *);
571 
572 #endif /* __CXGB4VF_ADAPTER_H__ */
573