1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 /*
37  * This file should not be included directly.  Include t4vf_common.h instead.
38  */
39 
40 #ifndef __CXGB4VF_ADAPTER_H__
41 #define __CXGB4VF_ADAPTER_H__
42 
43 #include <linux/interrupt.h>
44 #include <linux/pci.h>
45 #include <linux/spinlock.h>
46 #include <linux/skbuff.h>
47 #include <linux/if_ether.h>
48 #include <linux/netdevice.h>
49 
50 #include "../cxgb4/t4_hw.h"
51 
52 /*
53  * Constants of the implementation.
54  */
55 enum {
56 	MAX_NPORTS	= 1,		/* max # of "ports" */
57 	MAX_PORT_QSETS	= 8,		/* max # of Queue Sets / "port" */
58 	MAX_ETH_QSETS	= MAX_NPORTS*MAX_PORT_QSETS,
59 
60 	/*
61 	 * MSI-X interrupt index usage.
62 	 */
63 	MSIX_FW		= 0,		/* MSI-X index for firmware Q */
64 	MSIX_IQFLINT	= 1,		/* MSI-X index base for Ingress Qs */
65 	MSIX_EXTRAS	= 1,
66 	MSIX_ENTRIES	= MAX_ETH_QSETS + MSIX_EXTRAS,
67 
68 	/*
69 	 * The maximum number of Ingress and Egress Queues is determined by
70 	 * the maximum number of "Queue Sets" which we support plus any
71 	 * ancillary queues.  Each "Queue Set" requires one Ingress Queue
72 	 * for RX Packet Ingress Event notifications and two Egress Queues for
73 	 * a Free List and an Ethernet TX list.
74 	 */
75 	INGQ_EXTRAS	= 2,		/* firmware event queue and */
76 					/*   forwarded interrupts */
77 	MAX_INGQ	= MAX_ETH_QSETS+INGQ_EXTRAS,
78 	MAX_EGRQ	= MAX_ETH_QSETS*2,
79 };
80 
81 /*
82  * Forward structure definition references.
83  */
84 struct adapter;
85 struct sge_eth_rxq;
86 struct sge_rspq;
87 
88 /*
89  * Per-"port" information.  This is really per-Virtual Interface information
90  * but the use of the "port" nomanclature makes it easier to go back and forth
91  * between the PF and VF drivers ...
92  */
93 struct port_info {
94 	struct adapter *adapter;	/* our adapter */
95 	u16 viid;			/* virtual interface ID */
96 	s16 xact_addr_filt;		/* index of our MAC address filter */
97 	u16 rss_size;			/* size of VI's RSS table slice */
98 	u8 pidx;			/* index into adapter port[] */
99 	u8 port_id;			/* physical port ID */
100 	u8 nqsets;			/* # of "Queue Sets" */
101 	u8 first_qset;			/* index of first "Queue Set" */
102 	struct link_config link_cfg;	/* physical port configuration */
103 };
104 
105 /*
106  * Scatter Gather Engine resources for the "adapter".  Our ingress and egress
107  * queues are organized into "Queue Sets" with one ingress and one egress
108  * queue per Queue Set.  These Queue Sets are aportionable between the "ports"
109  * (Virtual Interfaces).  One extra ingress queue is used to receive
110  * asynchronous messages from the firmware.  Note that the "Queue IDs" that we
111  * use here are really "Relative Queue IDs" which are returned as part of the
112  * firmware command to allocate queues.  These queue IDs are relative to the
113  * absolute Queue ID base of the section of the Queue ID space allocated to
114  * the PF/VF.
115  */
116 
117 /*
118  * SGE free-list queue state.
119  */
120 struct rx_sw_desc;
121 struct sge_fl {
122 	unsigned int avail;		/* # of available RX buffers */
123 	unsigned int pend_cred;		/* new buffers since last FL DB ring */
124 	unsigned int cidx;		/* consumer index */
125 	unsigned int pidx;		/* producer index */
126 	unsigned long alloc_failed;	/* # of buffer allocation failures */
127 	unsigned long large_alloc_failed;
128 	unsigned long starving;		/* # of times FL was found starving */
129 
130 	/*
131 	 * Write-once/infrequently fields.
132 	 * -------------------------------
133 	 */
134 
135 	unsigned int cntxt_id;		/* SGE relative QID for the free list */
136 	unsigned int abs_id;		/* SGE absolute QID for the free list */
137 	unsigned int size;		/* capacity of free list */
138 	struct rx_sw_desc *sdesc;	/* address of SW RX descriptor ring */
139 	__be64 *desc;			/* address of HW RX descriptor ring */
140 	dma_addr_t addr;		/* PCI bus address of hardware ring */
141 };
142 
143 /*
144  * An ingress packet gather list.
145  */
146 struct pkt_gl {
147 	struct page_frag frags[MAX_SKB_FRAGS];
148 	void *va;			/* virtual address of first byte */
149 	unsigned int nfrags;		/* # of fragments */
150 	unsigned int tot_len;		/* total length of fragments */
151 };
152 
153 typedef int (*rspq_handler_t)(struct sge_rspq *, const __be64 *,
154 			      const struct pkt_gl *);
155 
156 /*
157  * State for an SGE Response Queue.
158  */
159 struct sge_rspq {
160 	struct napi_struct napi;	/* NAPI scheduling control */
161 	const __be64 *cur_desc;		/* current descriptor in queue */
162 	unsigned int cidx;		/* consumer index */
163 	u8 gen;				/* current generation bit */
164 	u8 next_intr_params;		/* holdoff params for next interrupt */
165 	int offset;			/* offset into current FL buffer */
166 
167 	unsigned int unhandled_irqs;	/* bogus interrupts */
168 
169 	/*
170 	 * Write-once/infrequently fields.
171 	 * -------------------------------
172 	 */
173 
174 	u8 intr_params;			/* interrupt holdoff parameters */
175 	u8 pktcnt_idx;			/* interrupt packet threshold */
176 	u8 idx;				/* queue index within its group */
177 	u16 cntxt_id;			/* SGE rel QID for the response Q */
178 	u16 abs_id;			/* SGE abs QID for the response Q */
179 	__be64 *desc;			/* address of hardware response ring */
180 	dma_addr_t phys_addr;		/* PCI bus address of ring */
181 	unsigned int iqe_len;		/* entry size */
182 	unsigned int size;		/* capcity of response Q */
183 	struct adapter *adapter;	/* our adapter */
184 	struct net_device *netdev;	/* associated net device */
185 	rspq_handler_t handler;		/* the handler for this response Q */
186 };
187 
188 /*
189  * Ethernet queue statistics
190  */
191 struct sge_eth_stats {
192 	unsigned long pkts;		/* # of ethernet packets */
193 	unsigned long lro_pkts;		/* # of LRO super packets */
194 	unsigned long lro_merged;	/* # of wire packets merged by LRO */
195 	unsigned long rx_cso;		/* # of Rx checksum offloads */
196 	unsigned long vlan_ex;		/* # of Rx VLAN extractions */
197 	unsigned long rx_drops;		/* # of packets dropped due to no mem */
198 };
199 
200 /*
201  * State for an Ethernet Receive Queue.
202  */
203 struct sge_eth_rxq {
204 	struct sge_rspq rspq;		/* Response Queue */
205 	struct sge_fl fl;		/* Free List */
206 	struct sge_eth_stats stats;	/* receive statistics */
207 };
208 
209 /*
210  * SGE Transmit Queue state.  This contains all of the resources associated
211  * with the hardware status of a TX Queue which is a circular ring of hardware
212  * TX Descriptors.  For convenience, it also contains a pointer to a parallel
213  * "Software Descriptor" array but we don't know anything about it here other
214  * than its type name.
215  */
216 struct tx_desc {
217 	/*
218 	 * Egress Queues are measured in units of SGE_EQ_IDXSIZE by the
219 	 * hardware: Sizes, Producer and Consumer indices, etc.
220 	 */
221 	__be64 flit[SGE_EQ_IDXSIZE/sizeof(__be64)];
222 };
223 struct tx_sw_desc;
224 struct sge_txq {
225 	unsigned int in_use;		/* # of in-use TX descriptors */
226 	unsigned int size;		/* # of descriptors */
227 	unsigned int cidx;		/* SW consumer index */
228 	unsigned int pidx;		/* producer index */
229 	unsigned long stops;		/* # of times queue has been stopped */
230 	unsigned long restarts;		/* # of queue restarts */
231 
232 	/*
233 	 * Write-once/infrequently fields.
234 	 * -------------------------------
235 	 */
236 
237 	unsigned int cntxt_id;		/* SGE relative QID for the TX Q */
238 	unsigned int abs_id;		/* SGE absolute QID for the TX Q */
239 	struct tx_desc *desc;		/* address of HW TX descriptor ring */
240 	struct tx_sw_desc *sdesc;	/* address of SW TX descriptor ring */
241 	struct sge_qstat *stat;		/* queue status entry */
242 	dma_addr_t phys_addr;		/* PCI bus address of hardware ring */
243 };
244 
245 /*
246  * State for an Ethernet Transmit Queue.
247  */
248 struct sge_eth_txq {
249 	struct sge_txq q;		/* SGE TX Queue */
250 	struct netdev_queue *txq;	/* associated netdev TX queue */
251 	unsigned long tso;		/* # of TSO requests */
252 	unsigned long tx_cso;		/* # of TX checksum offloads */
253 	unsigned long vlan_ins;		/* # of TX VLAN insertions */
254 	unsigned long mapping_err;	/* # of I/O MMU packet mapping errors */
255 };
256 
257 /*
258  * The complete set of Scatter/Gather Engine resources.
259  */
260 struct sge {
261 	/*
262 	 * Our "Queue Sets" ...
263 	 */
264 	struct sge_eth_txq ethtxq[MAX_ETH_QSETS];
265 	struct sge_eth_rxq ethrxq[MAX_ETH_QSETS];
266 
267 	/*
268 	 * Extra ingress queues for asynchronous firmware events and
269 	 * forwarded interrupts (when in MSI mode).
270 	 */
271 	struct sge_rspq fw_evtq ____cacheline_aligned_in_smp;
272 
273 	struct sge_rspq intrq ____cacheline_aligned_in_smp;
274 	spinlock_t intrq_lock;
275 
276 	/*
277 	 * State for managing "starving Free Lists" -- Free Lists which have
278 	 * fallen below a certain threshold of buffers available to the
279 	 * hardware and attempts to refill them up to that threshold have
280 	 * failed.  We have a regular "slow tick" timer process which will
281 	 * make periodic attempts to refill these starving Free Lists ...
282 	 */
283 	DECLARE_BITMAP(starving_fl, MAX_EGRQ);
284 	struct timer_list rx_timer;
285 
286 	/*
287 	 * State for cleaning up completed TX descriptors.
288 	 */
289 	struct timer_list tx_timer;
290 
291 	/*
292 	 * Write-once/infrequently fields.
293 	 * -------------------------------
294 	 */
295 
296 	u16 max_ethqsets;		/* # of available Ethernet queue sets */
297 	u16 ethqsets;			/* # of active Ethernet queue sets */
298 	u16 ethtxq_rover;		/* Tx queue to clean up next */
299 	u16 timer_val[SGE_NTIMERS];	/* interrupt holdoff timer array */
300 	u8 counter_val[SGE_NCOUNTERS];	/* interrupt RX threshold array */
301 
302 	/*
303 	 * Reverse maps from Absolute Queue IDs to associated queue pointers.
304 	 * The absolute Queue IDs are in a compact range which start at a
305 	 * [potentially large] Base Queue ID.  We perform the reverse map by
306 	 * first converting the Absolute Queue ID into a Relative Queue ID by
307 	 * subtracting off the Base Queue ID and then use a Relative Queue ID
308 	 * indexed table to get the pointer to the corresponding software
309 	 * queue structure.
310 	 */
311 	unsigned int egr_base;
312 	unsigned int ingr_base;
313 	void *egr_map[MAX_EGRQ];
314 	struct sge_rspq *ingr_map[MAX_INGQ];
315 };
316 
317 /*
318  * Utility macros to convert Absolute- to Relative-Queue indices and Egress-
319  * and Ingress-Queues.  The EQ_MAP() and IQ_MAP() macros which provide
320  * pointers to Ingress- and Egress-Queues can be used as both L- and R-values
321  */
322 #define EQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->egr_base))
323 #define IQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->ingr_base))
324 
325 #define EQ_MAP(s, abs_id) ((s)->egr_map[EQ_IDX(s, abs_id)])
326 #define IQ_MAP(s, abs_id) ((s)->ingr_map[IQ_IDX(s, abs_id)])
327 
328 /*
329  * Macro to iterate across Queue Sets ("rxq" is a historic misnomer).
330  */
331 #define for_each_ethrxq(sge, iter) \
332 	for (iter = 0; iter < (sge)->ethqsets; iter++)
333 
334 /*
335  * Per-"adapter" (Virtual Function) information.
336  */
337 struct adapter {
338 	/* PCI resources */
339 	void __iomem *regs;
340 	struct pci_dev *pdev;
341 	struct device *pdev_dev;
342 
343 	/* "adapter" resources */
344 	unsigned long registered_device_map;
345 	unsigned long open_device_map;
346 	unsigned long flags;
347 	struct adapter_params params;
348 
349 	/* queue and interrupt resources */
350 	struct {
351 		unsigned short vec;
352 		char desc[22];
353 	} msix_info[MSIX_ENTRIES];
354 	struct sge sge;
355 
356 	/* Linux network device resources */
357 	struct net_device *port[MAX_NPORTS];
358 	const char *name;
359 	unsigned int msg_enable;
360 
361 	/* debugfs resources */
362 	struct dentry *debugfs_root;
363 
364 	/* various locks */
365 	spinlock_t stats_lock;
366 };
367 
368 enum { /* adapter flags */
369 	FULL_INIT_DONE     = (1UL << 0),
370 	USING_MSI          = (1UL << 1),
371 	USING_MSIX         = (1UL << 2),
372 	QUEUES_BOUND       = (1UL << 3),
373 };
374 
375 /*
376  * The following register read/write routine definitions are required by
377  * the common code.
378  */
379 
380 /**
381  * t4_read_reg - read a HW register
382  * @adapter: the adapter
383  * @reg_addr: the register address
384  *
385  * Returns the 32-bit value of the given HW register.
386  */
387 static inline u32 t4_read_reg(struct adapter *adapter, u32 reg_addr)
388 {
389 	return readl(adapter->regs + reg_addr);
390 }
391 
392 /**
393  * t4_write_reg - write a HW register
394  * @adapter: the adapter
395  * @reg_addr: the register address
396  * @val: the value to write
397  *
398  * Write a 32-bit value into the given HW register.
399  */
400 static inline void t4_write_reg(struct adapter *adapter, u32 reg_addr, u32 val)
401 {
402 	writel(val, adapter->regs + reg_addr);
403 }
404 
405 #ifndef readq
406 static inline u64 readq(const volatile void __iomem *addr)
407 {
408 	return readl(addr) + ((u64)readl(addr + 4) << 32);
409 }
410 
411 static inline void writeq(u64 val, volatile void __iomem *addr)
412 {
413 	writel(val, addr);
414 	writel(val >> 32, addr + 4);
415 }
416 #endif
417 
418 /**
419  * t4_read_reg64 - read a 64-bit HW register
420  * @adapter: the adapter
421  * @reg_addr: the register address
422  *
423  * Returns the 64-bit value of the given HW register.
424  */
425 static inline u64 t4_read_reg64(struct adapter *adapter, u32 reg_addr)
426 {
427 	return readq(adapter->regs + reg_addr);
428 }
429 
430 /**
431  * t4_write_reg64 - write a 64-bit HW register
432  * @adapter: the adapter
433  * @reg_addr: the register address
434  * @val: the value to write
435  *
436  * Write a 64-bit value into the given HW register.
437  */
438 static inline void t4_write_reg64(struct adapter *adapter, u32 reg_addr,
439 				  u64 val)
440 {
441 	writeq(val, adapter->regs + reg_addr);
442 }
443 
444 /**
445  * port_name - return the string name of a port
446  * @adapter: the adapter
447  * @pidx: the port index
448  *
449  * Return the string name of the selected port.
450  */
451 static inline const char *port_name(struct adapter *adapter, int pidx)
452 {
453 	return adapter->port[pidx]->name;
454 }
455 
456 /**
457  * t4_os_set_hw_addr - store a port's MAC address in SW
458  * @adapter: the adapter
459  * @pidx: the port index
460  * @hw_addr: the Ethernet address
461  *
462  * Store the Ethernet address of the given port in SW.  Called by the common
463  * code when it retrieves a port's Ethernet address from EEPROM.
464  */
465 static inline void t4_os_set_hw_addr(struct adapter *adapter, int pidx,
466 				     u8 hw_addr[])
467 {
468 	memcpy(adapter->port[pidx]->dev_addr, hw_addr, ETH_ALEN);
469 }
470 
471 /**
472  * netdev2pinfo - return the port_info structure associated with a net_device
473  * @dev: the netdev
474  *
475  * Return the struct port_info associated with a net_device
476  */
477 static inline struct port_info *netdev2pinfo(const struct net_device *dev)
478 {
479 	return netdev_priv(dev);
480 }
481 
482 /**
483  * adap2pinfo - return the port_info of a port
484  * @adap: the adapter
485  * @pidx: the port index
486  *
487  * Return the port_info structure for the adapter.
488  */
489 static inline struct port_info *adap2pinfo(struct adapter *adapter, int pidx)
490 {
491 	return netdev_priv(adapter->port[pidx]);
492 }
493 
494 /**
495  * netdev2adap - return the adapter structure associated with a net_device
496  * @dev: the netdev
497  *
498  * Return the struct adapter associated with a net_device
499  */
500 static inline struct adapter *netdev2adap(const struct net_device *dev)
501 {
502 	return netdev2pinfo(dev)->adapter;
503 }
504 
505 /*
506  * OS "Callback" function declarations.  These are functions that the OS code
507  * is "contracted" to provide for the common code.
508  */
509 void t4vf_os_link_changed(struct adapter *, int, int);
510 
511 /*
512  * SGE function prototype declarations.
513  */
514 int t4vf_sge_alloc_rxq(struct adapter *, struct sge_rspq *, bool,
515 		       struct net_device *, int,
516 		       struct sge_fl *, rspq_handler_t);
517 int t4vf_sge_alloc_eth_txq(struct adapter *, struct sge_eth_txq *,
518 			   struct net_device *, struct netdev_queue *,
519 			   unsigned int);
520 void t4vf_free_sge_resources(struct adapter *);
521 
522 int t4vf_eth_xmit(struct sk_buff *, struct net_device *);
523 int t4vf_ethrx_handler(struct sge_rspq *, const __be64 *,
524 		       const struct pkt_gl *);
525 
526 irq_handler_t t4vf_intr_handler(struct adapter *);
527 irqreturn_t t4vf_sge_intr_msix(int, void *);
528 
529 int t4vf_sge_init(struct adapter *);
530 void t4vf_sge_start(struct adapter *);
531 void t4vf_sge_stop(struct adapter *);
532 
533 #endif /* __CXGB4VF_ADAPTER_H__ */
534