1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 /* 37 * This file should not be included directly. Include t4vf_common.h instead. 38 */ 39 40 #ifndef __CXGB4VF_ADAPTER_H__ 41 #define __CXGB4VF_ADAPTER_H__ 42 43 #include <linux/etherdevice.h> 44 #include <linux/interrupt.h> 45 #include <linux/pci.h> 46 #include <linux/spinlock.h> 47 #include <linux/skbuff.h> 48 #include <linux/if_ether.h> 49 #include <linux/netdevice.h> 50 51 #include "../cxgb4/t4_hw.h" 52 53 /* 54 * Constants of the implementation. 55 */ 56 enum { 57 MAX_NPORTS = 1, /* max # of "ports" */ 58 MAX_PORT_QSETS = 8, /* max # of Queue Sets / "port" */ 59 MAX_ETH_QSETS = MAX_NPORTS*MAX_PORT_QSETS, 60 61 /* 62 * MSI-X interrupt index usage. 63 */ 64 MSIX_FW = 0, /* MSI-X index for firmware Q */ 65 MSIX_IQFLINT = 1, /* MSI-X index base for Ingress Qs */ 66 MSIX_EXTRAS = 1, 67 MSIX_ENTRIES = MAX_ETH_QSETS + MSIX_EXTRAS, 68 69 /* 70 * The maximum number of Ingress and Egress Queues is determined by 71 * the maximum number of "Queue Sets" which we support plus any 72 * ancillary queues. Each "Queue Set" requires one Ingress Queue 73 * for RX Packet Ingress Event notifications and two Egress Queues for 74 * a Free List and an Ethernet TX list. 75 */ 76 INGQ_EXTRAS = 2, /* firmware event queue and */ 77 /* forwarded interrupts */ 78 MAX_INGQ = MAX_ETH_QSETS+INGQ_EXTRAS, 79 MAX_EGRQ = MAX_ETH_QSETS*2, 80 }; 81 82 /* 83 * Forward structure definition references. 84 */ 85 struct adapter; 86 struct sge_eth_rxq; 87 struct sge_rspq; 88 89 /* 90 * Per-"port" information. This is really per-Virtual Interface information 91 * but the use of the "port" nomanclature makes it easier to go back and forth 92 * between the PF and VF drivers ... 93 */ 94 struct port_info { 95 struct adapter *adapter; /* our adapter */ 96 u32 vlan_id; /* vlan id for VST */ 97 u16 viid; /* virtual interface ID */ 98 int xact_addr_filt; /* index of our MAC address filter */ 99 u16 rss_size; /* size of VI's RSS table slice */ 100 u8 pidx; /* index into adapter port[] */ 101 s8 mdio_addr; 102 u8 port_type; /* firmware port type */ 103 u8 mod_type; /* firmware module type */ 104 u8 port_id; /* physical port ID */ 105 u8 nqsets; /* # of "Queue Sets" */ 106 u8 first_qset; /* index of first "Queue Set" */ 107 struct link_config link_cfg; /* physical port configuration */ 108 }; 109 110 /* 111 * Scatter Gather Engine resources for the "adapter". Our ingress and egress 112 * queues are organized into "Queue Sets" with one ingress and one egress 113 * queue per Queue Set. These Queue Sets are aportionable between the "ports" 114 * (Virtual Interfaces). One extra ingress queue is used to receive 115 * asynchronous messages from the firmware. Note that the "Queue IDs" that we 116 * use here are really "Relative Queue IDs" which are returned as part of the 117 * firmware command to allocate queues. These queue IDs are relative to the 118 * absolute Queue ID base of the section of the Queue ID space allocated to 119 * the PF/VF. 120 */ 121 122 /* 123 * SGE free-list queue state. 124 */ 125 struct rx_sw_desc; 126 struct sge_fl { 127 unsigned int avail; /* # of available RX buffers */ 128 unsigned int pend_cred; /* new buffers since last FL DB ring */ 129 unsigned int cidx; /* consumer index */ 130 unsigned int pidx; /* producer index */ 131 unsigned long alloc_failed; /* # of buffer allocation failures */ 132 unsigned long large_alloc_failed; 133 unsigned long starving; /* # of times FL was found starving */ 134 135 /* 136 * Write-once/infrequently fields. 137 * ------------------------------- 138 */ 139 140 unsigned int cntxt_id; /* SGE relative QID for the free list */ 141 unsigned int abs_id; /* SGE absolute QID for the free list */ 142 unsigned int size; /* capacity of free list */ 143 struct rx_sw_desc *sdesc; /* address of SW RX descriptor ring */ 144 __be64 *desc; /* address of HW RX descriptor ring */ 145 dma_addr_t addr; /* PCI bus address of hardware ring */ 146 void __iomem *bar2_addr; /* address of BAR2 Queue registers */ 147 unsigned int bar2_qid; /* Queue ID for BAR2 Queue registers */ 148 }; 149 150 /* 151 * An ingress packet gather list. 152 */ 153 struct pkt_gl { 154 struct page_frag frags[MAX_SKB_FRAGS]; 155 void *va; /* virtual address of first byte */ 156 unsigned int nfrags; /* # of fragments */ 157 unsigned int tot_len; /* total length of fragments */ 158 }; 159 160 typedef int (*rspq_handler_t)(struct sge_rspq *, const __be64 *, 161 const struct pkt_gl *); 162 163 /* 164 * State for an SGE Response Queue. 165 */ 166 struct sge_rspq { 167 struct napi_struct napi; /* NAPI scheduling control */ 168 const __be64 *cur_desc; /* current descriptor in queue */ 169 unsigned int cidx; /* consumer index */ 170 u8 gen; /* current generation bit */ 171 u8 next_intr_params; /* holdoff params for next interrupt */ 172 int offset; /* offset into current FL buffer */ 173 174 unsigned int unhandled_irqs; /* bogus interrupts */ 175 176 /* 177 * Write-once/infrequently fields. 178 * ------------------------------- 179 */ 180 181 u8 intr_params; /* interrupt holdoff parameters */ 182 u8 pktcnt_idx; /* interrupt packet threshold */ 183 u8 idx; /* queue index within its group */ 184 u16 cntxt_id; /* SGE rel QID for the response Q */ 185 u16 abs_id; /* SGE abs QID for the response Q */ 186 __be64 *desc; /* address of hardware response ring */ 187 dma_addr_t phys_addr; /* PCI bus address of ring */ 188 void __iomem *bar2_addr; /* address of BAR2 Queue registers */ 189 unsigned int bar2_qid; /* Queue ID for BAR2 Queue registers */ 190 unsigned int iqe_len; /* entry size */ 191 unsigned int size; /* capcity of response Q */ 192 struct adapter *adapter; /* our adapter */ 193 struct net_device *netdev; /* associated net device */ 194 rspq_handler_t handler; /* the handler for this response Q */ 195 }; 196 197 /* 198 * Ethernet queue statistics 199 */ 200 struct sge_eth_stats { 201 unsigned long pkts; /* # of ethernet packets */ 202 unsigned long lro_pkts; /* # of LRO super packets */ 203 unsigned long lro_merged; /* # of wire packets merged by LRO */ 204 unsigned long rx_cso; /* # of Rx checksum offloads */ 205 unsigned long vlan_ex; /* # of Rx VLAN extractions */ 206 unsigned long rx_drops; /* # of packets dropped due to no mem */ 207 }; 208 209 /* 210 * State for an Ethernet Receive Queue. 211 */ 212 struct sge_eth_rxq { 213 struct sge_rspq rspq; /* Response Queue */ 214 struct sge_fl fl; /* Free List */ 215 struct sge_eth_stats stats; /* receive statistics */ 216 }; 217 218 /* 219 * SGE Transmit Queue state. This contains all of the resources associated 220 * with the hardware status of a TX Queue which is a circular ring of hardware 221 * TX Descriptors. For convenience, it also contains a pointer to a parallel 222 * "Software Descriptor" array but we don't know anything about it here other 223 * than its type name. 224 */ 225 struct tx_desc { 226 /* 227 * Egress Queues are measured in units of SGE_EQ_IDXSIZE by the 228 * hardware: Sizes, Producer and Consumer indices, etc. 229 */ 230 __be64 flit[SGE_EQ_IDXSIZE/sizeof(__be64)]; 231 }; 232 struct tx_sw_desc; 233 struct sge_txq { 234 unsigned int in_use; /* # of in-use TX descriptors */ 235 unsigned int size; /* # of descriptors */ 236 unsigned int cidx; /* SW consumer index */ 237 unsigned int pidx; /* producer index */ 238 unsigned long stops; /* # of times queue has been stopped */ 239 unsigned long restarts; /* # of queue restarts */ 240 241 /* 242 * Write-once/infrequently fields. 243 * ------------------------------- 244 */ 245 246 unsigned int cntxt_id; /* SGE relative QID for the TX Q */ 247 unsigned int abs_id; /* SGE absolute QID for the TX Q */ 248 struct tx_desc *desc; /* address of HW TX descriptor ring */ 249 struct tx_sw_desc *sdesc; /* address of SW TX descriptor ring */ 250 struct sge_qstat *stat; /* queue status entry */ 251 dma_addr_t phys_addr; /* PCI bus address of hardware ring */ 252 void __iomem *bar2_addr; /* address of BAR2 Queue registers */ 253 unsigned int bar2_qid; /* Queue ID for BAR2 Queue registers */ 254 }; 255 256 /* 257 * State for an Ethernet Transmit Queue. 258 */ 259 struct sge_eth_txq { 260 struct sge_txq q; /* SGE TX Queue */ 261 struct netdev_queue *txq; /* associated netdev TX queue */ 262 unsigned long tso; /* # of TSO requests */ 263 unsigned long tx_cso; /* # of TX checksum offloads */ 264 unsigned long vlan_ins; /* # of TX VLAN insertions */ 265 unsigned long mapping_err; /* # of I/O MMU packet mapping errors */ 266 }; 267 268 /* 269 * The complete set of Scatter/Gather Engine resources. 270 */ 271 struct sge { 272 /* 273 * Our "Queue Sets" ... 274 */ 275 struct sge_eth_txq ethtxq[MAX_ETH_QSETS]; 276 struct sge_eth_rxq ethrxq[MAX_ETH_QSETS]; 277 278 /* 279 * Extra ingress queues for asynchronous firmware events and 280 * forwarded interrupts (when in MSI mode). 281 */ 282 struct sge_rspq fw_evtq ____cacheline_aligned_in_smp; 283 284 struct sge_rspq intrq ____cacheline_aligned_in_smp; 285 spinlock_t intrq_lock; 286 287 /* 288 * State for managing "starving Free Lists" -- Free Lists which have 289 * fallen below a certain threshold of buffers available to the 290 * hardware and attempts to refill them up to that threshold have 291 * failed. We have a regular "slow tick" timer process which will 292 * make periodic attempts to refill these starving Free Lists ... 293 */ 294 DECLARE_BITMAP(starving_fl, MAX_EGRQ); 295 struct timer_list rx_timer; 296 297 /* 298 * State for cleaning up completed TX descriptors. 299 */ 300 struct timer_list tx_timer; 301 302 /* 303 * Write-once/infrequently fields. 304 * ------------------------------- 305 */ 306 307 u16 max_ethqsets; /* # of available Ethernet queue sets */ 308 u16 ethqsets; /* # of active Ethernet queue sets */ 309 u16 ethtxq_rover; /* Tx queue to clean up next */ 310 u16 timer_val[SGE_NTIMERS]; /* interrupt holdoff timer array */ 311 u8 counter_val[SGE_NCOUNTERS]; /* interrupt RX threshold array */ 312 313 /* Decoded Adapter Parameters. 314 */ 315 u32 fl_pg_order; /* large page allocation size */ 316 u32 stat_len; /* length of status page at ring end */ 317 u32 pktshift; /* padding between CPL & packet data */ 318 u32 fl_align; /* response queue message alignment */ 319 u32 fl_starve_thres; /* Free List starvation threshold */ 320 321 /* 322 * Reverse maps from Absolute Queue IDs to associated queue pointers. 323 * The absolute Queue IDs are in a compact range which start at a 324 * [potentially large] Base Queue ID. We perform the reverse map by 325 * first converting the Absolute Queue ID into a Relative Queue ID by 326 * subtracting off the Base Queue ID and then use a Relative Queue ID 327 * indexed table to get the pointer to the corresponding software 328 * queue structure. 329 */ 330 unsigned int egr_base; 331 unsigned int ingr_base; 332 void *egr_map[MAX_EGRQ]; 333 struct sge_rspq *ingr_map[MAX_INGQ]; 334 }; 335 336 /* 337 * Utility macros to convert Absolute- to Relative-Queue indices and Egress- 338 * and Ingress-Queues. The EQ_MAP() and IQ_MAP() macros which provide 339 * pointers to Ingress- and Egress-Queues can be used as both L- and R-values 340 */ 341 #define EQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->egr_base)) 342 #define IQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->ingr_base)) 343 344 #define EQ_MAP(s, abs_id) ((s)->egr_map[EQ_IDX(s, abs_id)]) 345 #define IQ_MAP(s, abs_id) ((s)->ingr_map[IQ_IDX(s, abs_id)]) 346 347 /* 348 * Macro to iterate across Queue Sets ("rxq" is a historic misnomer). 349 */ 350 #define for_each_ethrxq(sge, iter) \ 351 for (iter = 0; iter < (sge)->ethqsets; iter++) 352 353 struct hash_mac_addr { 354 struct list_head list; 355 u8 addr[ETH_ALEN]; 356 unsigned int iface_mac; 357 }; 358 359 struct mbox_list { 360 struct list_head list; 361 }; 362 363 /* 364 * Per-"adapter" (Virtual Function) information. 365 */ 366 struct adapter { 367 /* PCI resources */ 368 void __iomem *regs; 369 void __iomem *bar2; 370 struct pci_dev *pdev; 371 struct device *pdev_dev; 372 373 /* "adapter" resources */ 374 unsigned long registered_device_map; 375 unsigned long open_device_map; 376 unsigned long flags; 377 struct adapter_params params; 378 379 /* queue and interrupt resources */ 380 struct { 381 unsigned short vec; 382 char desc[22]; 383 } msix_info[MSIX_ENTRIES]; 384 struct sge sge; 385 386 /* Linux network device resources */ 387 struct net_device *port[MAX_NPORTS]; 388 const char *name; 389 unsigned int msg_enable; 390 391 /* debugfs resources */ 392 struct dentry *debugfs_root; 393 394 /* various locks */ 395 spinlock_t stats_lock; 396 397 /* lock for mailbox cmd list */ 398 spinlock_t mbox_lock; 399 struct mbox_list mlist; 400 401 /* support for mailbox command/reply logging */ 402 #define T4VF_OS_LOG_MBOX_CMDS 256 403 struct mbox_cmd_log *mbox_log; 404 405 /* list of MAC addresses in MPS Hash */ 406 struct list_head mac_hlist; 407 }; 408 409 enum { /* adapter flags */ 410 CXGB4VF_FULL_INIT_DONE = (1UL << 0), 411 CXGB4VF_USING_MSI = (1UL << 1), 412 CXGB4VF_USING_MSIX = (1UL << 2), 413 CXGB4VF_QUEUES_BOUND = (1UL << 3), 414 CXGB4VF_ROOT_NO_RELAXED_ORDERING = (1UL << 4), 415 CXGB4VF_FW_OK = (1UL << 5), 416 }; 417 418 /* 419 * The following register read/write routine definitions are required by 420 * the common code. 421 */ 422 423 /** 424 * t4_read_reg - read a HW register 425 * @adapter: the adapter 426 * @reg_addr: the register address 427 * 428 * Returns the 32-bit value of the given HW register. 429 */ 430 static inline u32 t4_read_reg(struct adapter *adapter, u32 reg_addr) 431 { 432 return readl(adapter->regs + reg_addr); 433 } 434 435 /** 436 * t4_write_reg - write a HW register 437 * @adapter: the adapter 438 * @reg_addr: the register address 439 * @val: the value to write 440 * 441 * Write a 32-bit value into the given HW register. 442 */ 443 static inline void t4_write_reg(struct adapter *adapter, u32 reg_addr, u32 val) 444 { 445 writel(val, adapter->regs + reg_addr); 446 } 447 448 #ifndef readq 449 static inline u64 readq(const volatile void __iomem *addr) 450 { 451 return readl(addr) + ((u64)readl(addr + 4) << 32); 452 } 453 454 static inline void writeq(u64 val, volatile void __iomem *addr) 455 { 456 writel(val, addr); 457 writel(val >> 32, addr + 4); 458 } 459 #endif 460 461 /** 462 * t4_read_reg64 - read a 64-bit HW register 463 * @adapter: the adapter 464 * @reg_addr: the register address 465 * 466 * Returns the 64-bit value of the given HW register. 467 */ 468 static inline u64 t4_read_reg64(struct adapter *adapter, u32 reg_addr) 469 { 470 return readq(adapter->regs + reg_addr); 471 } 472 473 /** 474 * t4_write_reg64 - write a 64-bit HW register 475 * @adapter: the adapter 476 * @reg_addr: the register address 477 * @val: the value to write 478 * 479 * Write a 64-bit value into the given HW register. 480 */ 481 static inline void t4_write_reg64(struct adapter *adapter, u32 reg_addr, 482 u64 val) 483 { 484 writeq(val, adapter->regs + reg_addr); 485 } 486 487 /** 488 * port_name - return the string name of a port 489 * @adapter: the adapter 490 * @pidx: the port index 491 * 492 * Return the string name of the selected port. 493 */ 494 static inline const char *port_name(struct adapter *adapter, int pidx) 495 { 496 return adapter->port[pidx]->name; 497 } 498 499 /** 500 * t4_os_set_hw_addr - store a port's MAC address in SW 501 * @adapter: the adapter 502 * @pidx: the port index 503 * @hw_addr: the Ethernet address 504 * 505 * Store the Ethernet address of the given port in SW. Called by the common 506 * code when it retrieves a port's Ethernet address from EEPROM. 507 */ 508 static inline void t4_os_set_hw_addr(struct adapter *adapter, int pidx, 509 u8 hw_addr[]) 510 { 511 eth_hw_addr_set(adapter->port[pidx], hw_addr); 512 } 513 514 /** 515 * netdev2pinfo - return the port_info structure associated with a net_device 516 * @dev: the netdev 517 * 518 * Return the struct port_info associated with a net_device 519 */ 520 static inline struct port_info *netdev2pinfo(const struct net_device *dev) 521 { 522 return netdev_priv(dev); 523 } 524 525 /** 526 * adap2pinfo - return the port_info of a port 527 * @adap: the adapter 528 * @pidx: the port index 529 * 530 * Return the port_info structure for the adapter. 531 */ 532 static inline struct port_info *adap2pinfo(struct adapter *adapter, int pidx) 533 { 534 return netdev_priv(adapter->port[pidx]); 535 } 536 537 /** 538 * netdev2adap - return the adapter structure associated with a net_device 539 * @dev: the netdev 540 * 541 * Return the struct adapter associated with a net_device 542 */ 543 static inline struct adapter *netdev2adap(const struct net_device *dev) 544 { 545 return netdev2pinfo(dev)->adapter; 546 } 547 548 /* 549 * OS "Callback" function declarations. These are functions that the OS code 550 * is "contracted" to provide for the common code. 551 */ 552 void t4vf_os_link_changed(struct adapter *, int, int); 553 void t4vf_os_portmod_changed(struct adapter *, int); 554 555 /* 556 * SGE function prototype declarations. 557 */ 558 int t4vf_sge_alloc_rxq(struct adapter *, struct sge_rspq *, bool, 559 struct net_device *, int, 560 struct sge_fl *, rspq_handler_t); 561 int t4vf_sge_alloc_eth_txq(struct adapter *, struct sge_eth_txq *, 562 struct net_device *, struct netdev_queue *, 563 unsigned int); 564 void t4vf_free_sge_resources(struct adapter *); 565 566 netdev_tx_t t4vf_eth_xmit(struct sk_buff *, struct net_device *); 567 int t4vf_ethrx_handler(struct sge_rspq *, const __be64 *, 568 const struct pkt_gl *); 569 570 irq_handler_t t4vf_intr_handler(struct adapter *); 571 irqreturn_t t4vf_sge_intr_msix(int, void *); 572 573 int t4vf_sge_init(struct adapter *); 574 void t4vf_sge_start(struct adapter *); 575 void t4vf_sge_stop(struct adapter *); 576 577 #endif /* __CXGB4VF_ADAPTER_H__ */ 578