1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 } 202 203 /* 204 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 205 */ 206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 207 u32 mbox_addr) 208 { 209 for ( ; nflit; nflit--, mbox_addr += 8) 210 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 211 } 212 213 /* 214 * Handle a FW assertion reported in a mailbox. 215 */ 216 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 217 { 218 struct fw_debug_cmd asrt; 219 220 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 221 dev_alert(adap->pdev_dev, 222 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 223 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 224 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 225 } 226 227 /** 228 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 229 * @adapter: the adapter 230 * @cmd: the Firmware Mailbox Command or Reply 231 * @size: command length in bytes 232 * @access: the time (ms) needed to access the Firmware Mailbox 233 * @execute: the time (ms) the command spent being executed 234 */ 235 static void t4_record_mbox(struct adapter *adapter, 236 const __be64 *cmd, unsigned int size, 237 int access, int execute) 238 { 239 struct mbox_cmd_log *log = adapter->mbox_log; 240 struct mbox_cmd *entry; 241 int i; 242 243 entry = mbox_cmd_log_entry(log, log->cursor++); 244 if (log->cursor == log->size) 245 log->cursor = 0; 246 247 for (i = 0; i < size / 8; i++) 248 entry->cmd[i] = be64_to_cpu(cmd[i]); 249 while (i < MBOX_LEN / 8) 250 entry->cmd[i++] = 0; 251 entry->timestamp = jiffies; 252 entry->seqno = log->seqno++; 253 entry->access = access; 254 entry->execute = execute; 255 } 256 257 /** 258 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 259 * @adap: the adapter 260 * @mbox: index of the mailbox to use 261 * @cmd: the command to write 262 * @size: command length in bytes 263 * @rpl: where to optionally store the reply 264 * @sleep_ok: if true we may sleep while awaiting command completion 265 * @timeout: time to wait for command to finish before timing out 266 * 267 * Sends the given command to FW through the selected mailbox and waits 268 * for the FW to execute the command. If @rpl is not %NULL it is used to 269 * store the FW's reply to the command. The command and its optional 270 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 271 * to respond. @sleep_ok determines whether we may sleep while awaiting 272 * the response. If sleeping is allowed we use progressive backoff 273 * otherwise we spin. 274 * 275 * The return value is 0 on success or a negative errno on failure. A 276 * failure can happen either because we are not able to execute the 277 * command or FW executes it but signals an error. In the latter case 278 * the return value is the error code indicated by FW (negated). 279 */ 280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 281 int size, void *rpl, bool sleep_ok, int timeout) 282 { 283 static const int delay[] = { 284 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 285 }; 286 287 struct mbox_list entry; 288 u16 access = 0; 289 u16 execute = 0; 290 u32 v; 291 u64 res; 292 int i, ms, delay_idx, ret; 293 const __be64 *p = cmd; 294 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 295 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 296 __be64 cmd_rpl[MBOX_LEN / 8]; 297 u32 pcie_fw; 298 299 if ((size & 15) || size > MBOX_LEN) 300 return -EINVAL; 301 302 /* 303 * If the device is off-line, as in EEH, commands will time out. 304 * Fail them early so we don't waste time waiting. 305 */ 306 if (adap->pdev->error_state != pci_channel_io_normal) 307 return -EIO; 308 309 /* If we have a negative timeout, that implies that we can't sleep. */ 310 if (timeout < 0) { 311 sleep_ok = false; 312 timeout = -timeout; 313 } 314 315 /* Queue ourselves onto the mailbox access list. When our entry is at 316 * the front of the list, we have rights to access the mailbox. So we 317 * wait [for a while] till we're at the front [or bail out with an 318 * EBUSY] ... 319 */ 320 spin_lock(&adap->mbox_lock); 321 list_add_tail(&entry.list, &adap->mlist.list); 322 spin_unlock(&adap->mbox_lock); 323 324 delay_idx = 0; 325 ms = delay[0]; 326 327 for (i = 0; ; i += ms) { 328 /* If we've waited too long, return a busy indication. This 329 * really ought to be based on our initial position in the 330 * mailbox access list but this is a start. We very rearely 331 * contend on access to the mailbox ... 332 */ 333 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 334 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 335 spin_lock(&adap->mbox_lock); 336 list_del(&entry.list); 337 spin_unlock(&adap->mbox_lock); 338 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 339 t4_record_mbox(adap, cmd, size, access, ret); 340 return ret; 341 } 342 343 /* If we're at the head, break out and start the mailbox 344 * protocol. 345 */ 346 if (list_first_entry(&adap->mlist.list, struct mbox_list, 347 list) == &entry) 348 break; 349 350 /* Delay for a bit before checking again ... */ 351 if (sleep_ok) { 352 ms = delay[delay_idx]; /* last element may repeat */ 353 if (delay_idx < ARRAY_SIZE(delay) - 1) 354 delay_idx++; 355 msleep(ms); 356 } else { 357 mdelay(ms); 358 } 359 } 360 361 /* Loop trying to get ownership of the mailbox. Return an error 362 * if we can't gain ownership. 363 */ 364 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 365 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 if (v != MBOX_OWNER_DRV) { 368 spin_lock(&adap->mbox_lock); 369 list_del(&entry.list); 370 spin_unlock(&adap->mbox_lock); 371 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 372 t4_record_mbox(adap, cmd, MBOX_LEN, access, ret); 373 return ret; 374 } 375 376 /* Copy in the new mailbox command and send it on its way ... */ 377 t4_record_mbox(adap, cmd, MBOX_LEN, access, 0); 378 for (i = 0; i < size; i += 8) 379 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 380 381 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 382 t4_read_reg(adap, ctl_reg); /* flush write */ 383 384 delay_idx = 0; 385 ms = delay[0]; 386 387 for (i = 0; 388 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 389 i < timeout; 390 i += ms) { 391 if (sleep_ok) { 392 ms = delay[delay_idx]; /* last element may repeat */ 393 if (delay_idx < ARRAY_SIZE(delay) - 1) 394 delay_idx++; 395 msleep(ms); 396 } else 397 mdelay(ms); 398 399 v = t4_read_reg(adap, ctl_reg); 400 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 401 if (!(v & MBMSGVALID_F)) { 402 t4_write_reg(adap, ctl_reg, 0); 403 continue; 404 } 405 406 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 407 res = be64_to_cpu(cmd_rpl[0]); 408 409 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 410 fw_asrt(adap, data_reg); 411 res = FW_CMD_RETVAL_V(EIO); 412 } else if (rpl) { 413 memcpy(rpl, cmd_rpl, size); 414 } 415 416 t4_write_reg(adap, ctl_reg, 0); 417 418 execute = i + ms; 419 t4_record_mbox(adap, cmd_rpl, 420 MBOX_LEN, access, execute); 421 spin_lock(&adap->mbox_lock); 422 list_del(&entry.list); 423 spin_unlock(&adap->mbox_lock); 424 return -FW_CMD_RETVAL_G((int)res); 425 } 426 } 427 428 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 429 t4_record_mbox(adap, cmd, MBOX_LEN, access, ret); 430 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 431 *(const u8 *)cmd, mbox); 432 t4_report_fw_error(adap); 433 spin_lock(&adap->mbox_lock); 434 list_del(&entry.list); 435 spin_unlock(&adap->mbox_lock); 436 t4_fatal_err(adap); 437 return ret; 438 } 439 440 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 441 void *rpl, bool sleep_ok) 442 { 443 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 444 FW_CMD_MAX_TIMEOUT); 445 } 446 447 static int t4_edc_err_read(struct adapter *adap, int idx) 448 { 449 u32 edc_ecc_err_addr_reg; 450 u32 rdata_reg; 451 452 if (is_t4(adap->params.chip)) { 453 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 454 return 0; 455 } 456 if (idx != 0 && idx != 1) { 457 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 458 return 0; 459 } 460 461 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 462 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 463 464 CH_WARN(adap, 465 "edc%d err addr 0x%x: 0x%x.\n", 466 idx, edc_ecc_err_addr_reg, 467 t4_read_reg(adap, edc_ecc_err_addr_reg)); 468 CH_WARN(adap, 469 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 470 rdata_reg, 471 (unsigned long long)t4_read_reg64(adap, rdata_reg), 472 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 473 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 480 481 return 0; 482 } 483 484 /** 485 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 486 * @adap: the adapter 487 * @win: PCI-E Memory Window to use 488 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 489 * @addr: address within indicated memory type 490 * @len: amount of memory to transfer 491 * @hbuf: host memory buffer 492 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 493 * 494 * Reads/writes an [almost] arbitrary memory region in the firmware: the 495 * firmware memory address and host buffer must be aligned on 32-bit 496 * boudaries; the length may be arbitrary. The memory is transferred as 497 * a raw byte sequence from/to the firmware's memory. If this memory 498 * contains data structures which contain multi-byte integers, it's the 499 * caller's responsibility to perform appropriate byte order conversions. 500 */ 501 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 502 u32 len, void *hbuf, int dir) 503 { 504 u32 pos, offset, resid, memoffset; 505 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base; 506 u32 *buf; 507 508 /* Argument sanity checks ... 509 */ 510 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 511 return -EINVAL; 512 buf = (u32 *)hbuf; 513 514 /* It's convenient to be able to handle lengths which aren't a 515 * multiple of 32-bits because we often end up transferring files to 516 * the firmware. So we'll handle that by normalizing the length here 517 * and then handling any residual transfer at the end. 518 */ 519 resid = len & 0x3; 520 len -= resid; 521 522 /* Offset into the region of memory which is being accessed 523 * MEM_EDC0 = 0 524 * MEM_EDC1 = 1 525 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 526 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 527 */ 528 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 529 if (mtype != MEM_MC1) 530 memoffset = (mtype * (edc_size * 1024 * 1024)); 531 else { 532 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 533 MA_EXT_MEMORY0_BAR_A)); 534 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 535 } 536 537 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 538 addr = addr + memoffset; 539 540 /* Each PCI-E Memory Window is programmed with a window size -- or 541 * "aperture" -- which controls the granularity of its mapping onto 542 * adapter memory. We need to grab that aperture in order to know 543 * how to use the specified window. The window is also programmed 544 * with the base address of the Memory Window in BAR0's address 545 * space. For T4 this is an absolute PCI-E Bus Address. For T5 546 * the address is relative to BAR0. 547 */ 548 mem_reg = t4_read_reg(adap, 549 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 550 win)); 551 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 552 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 553 if (is_t4(adap->params.chip)) 554 mem_base -= adap->t4_bar0; 555 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 556 557 /* Calculate our initial PCI-E Memory Window Position and Offset into 558 * that Window. 559 */ 560 pos = addr & ~(mem_aperture-1); 561 offset = addr - pos; 562 563 /* Set up initial PCI-E Memory Window to cover the start of our 564 * transfer. (Read it back to ensure that changes propagate before we 565 * attempt to use the new value.) 566 */ 567 t4_write_reg(adap, 568 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 569 pos | win_pf); 570 t4_read_reg(adap, 571 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 572 573 /* Transfer data to/from the adapter as long as there's an integral 574 * number of 32-bit transfers to complete. 575 * 576 * A note on Endianness issues: 577 * 578 * The "register" reads and writes below from/to the PCI-E Memory 579 * Window invoke the standard adapter Big-Endian to PCI-E Link 580 * Little-Endian "swizzel." As a result, if we have the following 581 * data in adapter memory: 582 * 583 * Memory: ... | b0 | b1 | b2 | b3 | ... 584 * Address: i+0 i+1 i+2 i+3 585 * 586 * Then a read of the adapter memory via the PCI-E Memory Window 587 * will yield: 588 * 589 * x = readl(i) 590 * 31 0 591 * [ b3 | b2 | b1 | b0 ] 592 * 593 * If this value is stored into local memory on a Little-Endian system 594 * it will show up correctly in local memory as: 595 * 596 * ( ..., b0, b1, b2, b3, ... ) 597 * 598 * But on a Big-Endian system, the store will show up in memory 599 * incorrectly swizzled as: 600 * 601 * ( ..., b3, b2, b1, b0, ... ) 602 * 603 * So we need to account for this in the reads and writes to the 604 * PCI-E Memory Window below by undoing the register read/write 605 * swizzels. 606 */ 607 while (len > 0) { 608 if (dir == T4_MEMORY_READ) 609 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 610 mem_base + offset)); 611 else 612 t4_write_reg(adap, mem_base + offset, 613 (__force u32)cpu_to_le32(*buf++)); 614 offset += sizeof(__be32); 615 len -= sizeof(__be32); 616 617 /* If we've reached the end of our current window aperture, 618 * move the PCI-E Memory Window on to the next. Note that 619 * doing this here after "len" may be 0 allows us to set up 620 * the PCI-E Memory Window for a possible final residual 621 * transfer below ... 622 */ 623 if (offset == mem_aperture) { 624 pos += mem_aperture; 625 offset = 0; 626 t4_write_reg(adap, 627 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 628 win), pos | win_pf); 629 t4_read_reg(adap, 630 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 631 win)); 632 } 633 } 634 635 /* If the original transfer had a length which wasn't a multiple of 636 * 32-bits, now's where we need to finish off the transfer of the 637 * residual amount. The PCI-E Memory Window has already been moved 638 * above (if necessary) to cover this final transfer. 639 */ 640 if (resid) { 641 union { 642 u32 word; 643 char byte[4]; 644 } last; 645 unsigned char *bp; 646 int i; 647 648 if (dir == T4_MEMORY_READ) { 649 last.word = le32_to_cpu( 650 (__force __le32)t4_read_reg(adap, 651 mem_base + offset)); 652 for (bp = (unsigned char *)buf, i = resid; i < 4; i++) 653 bp[i] = last.byte[i]; 654 } else { 655 last.word = *buf; 656 for (i = resid; i < 4; i++) 657 last.byte[i] = 0; 658 t4_write_reg(adap, mem_base + offset, 659 (__force u32)cpu_to_le32(last.word)); 660 } 661 } 662 663 return 0; 664 } 665 666 /* Return the specified PCI-E Configuration Space register from our Physical 667 * Function. We try first via a Firmware LDST Command since we prefer to let 668 * the firmware own all of these registers, but if that fails we go for it 669 * directly ourselves. 670 */ 671 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 672 { 673 u32 val, ldst_addrspace; 674 675 /* If fw_attach != 0, construct and send the Firmware LDST Command to 676 * retrieve the specified PCI-E Configuration Space register. 677 */ 678 struct fw_ldst_cmd ldst_cmd; 679 int ret; 680 681 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 682 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 683 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 684 FW_CMD_REQUEST_F | 685 FW_CMD_READ_F | 686 ldst_addrspace); 687 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 688 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 689 ldst_cmd.u.pcie.ctrl_to_fn = 690 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 691 ldst_cmd.u.pcie.r = reg; 692 693 /* If the LDST Command succeeds, return the result, otherwise 694 * fall through to reading it directly ourselves ... 695 */ 696 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 697 &ldst_cmd); 698 if (ret == 0) 699 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 700 else 701 /* Read the desired Configuration Space register via the PCI-E 702 * Backdoor mechanism. 703 */ 704 t4_hw_pci_read_cfg4(adap, reg, &val); 705 return val; 706 } 707 708 /* Get the window based on base passed to it. 709 * Window aperture is currently unhandled, but there is no use case for it 710 * right now 711 */ 712 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 713 u32 memwin_base) 714 { 715 u32 ret; 716 717 if (is_t4(adap->params.chip)) { 718 u32 bar0; 719 720 /* Truncation intentional: we only read the bottom 32-bits of 721 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 722 * mechanism to read BAR0 instead of using 723 * pci_resource_start() because we could be operating from 724 * within a Virtual Machine which is trapping our accesses to 725 * our Configuration Space and we need to set up the PCI-E 726 * Memory Window decoders with the actual addresses which will 727 * be coming across the PCI-E link. 728 */ 729 bar0 = t4_read_pcie_cfg4(adap, pci_base); 730 bar0 &= pci_mask; 731 adap->t4_bar0 = bar0; 732 733 ret = bar0 + memwin_base; 734 } else { 735 /* For T5, only relative offset inside the PCIe BAR is passed */ 736 ret = memwin_base; 737 } 738 return ret; 739 } 740 741 /* Get the default utility window (win0) used by everyone */ 742 u32 t4_get_util_window(struct adapter *adap) 743 { 744 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 745 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 746 } 747 748 /* Set up memory window for accessing adapter memory ranges. (Read 749 * back MA register to ensure that changes propagate before we attempt 750 * to use the new values.) 751 */ 752 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 753 { 754 t4_write_reg(adap, 755 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 756 memwin_base | BIR_V(0) | 757 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 758 t4_read_reg(adap, 759 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 760 } 761 762 /** 763 * t4_get_regs_len - return the size of the chips register set 764 * @adapter: the adapter 765 * 766 * Returns the size of the chip's BAR0 register space. 767 */ 768 unsigned int t4_get_regs_len(struct adapter *adapter) 769 { 770 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 771 772 switch (chip_version) { 773 case CHELSIO_T4: 774 return T4_REGMAP_SIZE; 775 776 case CHELSIO_T5: 777 case CHELSIO_T6: 778 return T5_REGMAP_SIZE; 779 } 780 781 dev_err(adapter->pdev_dev, 782 "Unsupported chip version %d\n", chip_version); 783 return 0; 784 } 785 786 /** 787 * t4_get_regs - read chip registers into provided buffer 788 * @adap: the adapter 789 * @buf: register buffer 790 * @buf_size: size (in bytes) of register buffer 791 * 792 * If the provided register buffer isn't large enough for the chip's 793 * full register range, the register dump will be truncated to the 794 * register buffer's size. 795 */ 796 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 797 { 798 static const unsigned int t4_reg_ranges[] = { 799 0x1008, 0x1108, 800 0x1180, 0x1184, 801 0x1190, 0x1194, 802 0x11a0, 0x11a4, 803 0x11b0, 0x11b4, 804 0x11fc, 0x123c, 805 0x1300, 0x173c, 806 0x1800, 0x18fc, 807 0x3000, 0x30d8, 808 0x30e0, 0x30e4, 809 0x30ec, 0x5910, 810 0x5920, 0x5924, 811 0x5960, 0x5960, 812 0x5968, 0x5968, 813 0x5970, 0x5970, 814 0x5978, 0x5978, 815 0x5980, 0x5980, 816 0x5988, 0x5988, 817 0x5990, 0x5990, 818 0x5998, 0x5998, 819 0x59a0, 0x59d4, 820 0x5a00, 0x5ae0, 821 0x5ae8, 0x5ae8, 822 0x5af0, 0x5af0, 823 0x5af8, 0x5af8, 824 0x6000, 0x6098, 825 0x6100, 0x6150, 826 0x6200, 0x6208, 827 0x6240, 0x6248, 828 0x6280, 0x62b0, 829 0x62c0, 0x6338, 830 0x6370, 0x638c, 831 0x6400, 0x643c, 832 0x6500, 0x6524, 833 0x6a00, 0x6a04, 834 0x6a14, 0x6a38, 835 0x6a60, 0x6a70, 836 0x6a78, 0x6a78, 837 0x6b00, 0x6b0c, 838 0x6b1c, 0x6b84, 839 0x6bf0, 0x6bf8, 840 0x6c00, 0x6c0c, 841 0x6c1c, 0x6c84, 842 0x6cf0, 0x6cf8, 843 0x6d00, 0x6d0c, 844 0x6d1c, 0x6d84, 845 0x6df0, 0x6df8, 846 0x6e00, 0x6e0c, 847 0x6e1c, 0x6e84, 848 0x6ef0, 0x6ef8, 849 0x6f00, 0x6f0c, 850 0x6f1c, 0x6f84, 851 0x6ff0, 0x6ff8, 852 0x7000, 0x700c, 853 0x701c, 0x7084, 854 0x70f0, 0x70f8, 855 0x7100, 0x710c, 856 0x711c, 0x7184, 857 0x71f0, 0x71f8, 858 0x7200, 0x720c, 859 0x721c, 0x7284, 860 0x72f0, 0x72f8, 861 0x7300, 0x730c, 862 0x731c, 0x7384, 863 0x73f0, 0x73f8, 864 0x7400, 0x7450, 865 0x7500, 0x7530, 866 0x7600, 0x760c, 867 0x7614, 0x761c, 868 0x7680, 0x76cc, 869 0x7700, 0x7798, 870 0x77c0, 0x77fc, 871 0x7900, 0x79fc, 872 0x7b00, 0x7b58, 873 0x7b60, 0x7b84, 874 0x7b8c, 0x7c38, 875 0x7d00, 0x7d38, 876 0x7d40, 0x7d80, 877 0x7d8c, 0x7ddc, 878 0x7de4, 0x7e04, 879 0x7e10, 0x7e1c, 880 0x7e24, 0x7e38, 881 0x7e40, 0x7e44, 882 0x7e4c, 0x7e78, 883 0x7e80, 0x7ea4, 884 0x7eac, 0x7edc, 885 0x7ee8, 0x7efc, 886 0x8dc0, 0x8e04, 887 0x8e10, 0x8e1c, 888 0x8e30, 0x8e78, 889 0x8ea0, 0x8eb8, 890 0x8ec0, 0x8f6c, 891 0x8fc0, 0x9008, 892 0x9010, 0x9058, 893 0x9060, 0x9060, 894 0x9068, 0x9074, 895 0x90fc, 0x90fc, 896 0x9400, 0x9408, 897 0x9410, 0x9458, 898 0x9600, 0x9600, 899 0x9608, 0x9638, 900 0x9640, 0x96bc, 901 0x9800, 0x9808, 902 0x9820, 0x983c, 903 0x9850, 0x9864, 904 0x9c00, 0x9c6c, 905 0x9c80, 0x9cec, 906 0x9d00, 0x9d6c, 907 0x9d80, 0x9dec, 908 0x9e00, 0x9e6c, 909 0x9e80, 0x9eec, 910 0x9f00, 0x9f6c, 911 0x9f80, 0x9fec, 912 0xd004, 0xd004, 913 0xd010, 0xd03c, 914 0xdfc0, 0xdfe0, 915 0xe000, 0xea7c, 916 0xf000, 0x11190, 917 0x19040, 0x1906c, 918 0x19078, 0x19080, 919 0x1908c, 0x190e4, 920 0x190f0, 0x190f8, 921 0x19100, 0x19110, 922 0x19120, 0x19124, 923 0x19150, 0x19194, 924 0x1919c, 0x191b0, 925 0x191d0, 0x191e8, 926 0x19238, 0x1924c, 927 0x193f8, 0x1943c, 928 0x1944c, 0x19474, 929 0x19490, 0x194e0, 930 0x194f0, 0x194f8, 931 0x19800, 0x19c08, 932 0x19c10, 0x19c90, 933 0x19ca0, 0x19ce4, 934 0x19cf0, 0x19d40, 935 0x19d50, 0x19d94, 936 0x19da0, 0x19de8, 937 0x19df0, 0x19e40, 938 0x19e50, 0x19e90, 939 0x19ea0, 0x19f4c, 940 0x1a000, 0x1a004, 941 0x1a010, 0x1a06c, 942 0x1a0b0, 0x1a0e4, 943 0x1a0ec, 0x1a0f4, 944 0x1a100, 0x1a108, 945 0x1a114, 0x1a120, 946 0x1a128, 0x1a130, 947 0x1a138, 0x1a138, 948 0x1a190, 0x1a1c4, 949 0x1a1fc, 0x1a1fc, 950 0x1e040, 0x1e04c, 951 0x1e284, 0x1e28c, 952 0x1e2c0, 0x1e2c0, 953 0x1e2e0, 0x1e2e0, 954 0x1e300, 0x1e384, 955 0x1e3c0, 0x1e3c8, 956 0x1e440, 0x1e44c, 957 0x1e684, 0x1e68c, 958 0x1e6c0, 0x1e6c0, 959 0x1e6e0, 0x1e6e0, 960 0x1e700, 0x1e784, 961 0x1e7c0, 0x1e7c8, 962 0x1e840, 0x1e84c, 963 0x1ea84, 0x1ea8c, 964 0x1eac0, 0x1eac0, 965 0x1eae0, 0x1eae0, 966 0x1eb00, 0x1eb84, 967 0x1ebc0, 0x1ebc8, 968 0x1ec40, 0x1ec4c, 969 0x1ee84, 0x1ee8c, 970 0x1eec0, 0x1eec0, 971 0x1eee0, 0x1eee0, 972 0x1ef00, 0x1ef84, 973 0x1efc0, 0x1efc8, 974 0x1f040, 0x1f04c, 975 0x1f284, 0x1f28c, 976 0x1f2c0, 0x1f2c0, 977 0x1f2e0, 0x1f2e0, 978 0x1f300, 0x1f384, 979 0x1f3c0, 0x1f3c8, 980 0x1f440, 0x1f44c, 981 0x1f684, 0x1f68c, 982 0x1f6c0, 0x1f6c0, 983 0x1f6e0, 0x1f6e0, 984 0x1f700, 0x1f784, 985 0x1f7c0, 0x1f7c8, 986 0x1f840, 0x1f84c, 987 0x1fa84, 0x1fa8c, 988 0x1fac0, 0x1fac0, 989 0x1fae0, 0x1fae0, 990 0x1fb00, 0x1fb84, 991 0x1fbc0, 0x1fbc8, 992 0x1fc40, 0x1fc4c, 993 0x1fe84, 0x1fe8c, 994 0x1fec0, 0x1fec0, 995 0x1fee0, 0x1fee0, 996 0x1ff00, 0x1ff84, 997 0x1ffc0, 0x1ffc8, 998 0x20000, 0x2002c, 999 0x20100, 0x2013c, 1000 0x20190, 0x201a0, 1001 0x201a8, 0x201b8, 1002 0x201c4, 0x201c8, 1003 0x20200, 0x20318, 1004 0x20400, 0x204b4, 1005 0x204c0, 0x20528, 1006 0x20540, 0x20614, 1007 0x21000, 0x21040, 1008 0x2104c, 0x21060, 1009 0x210c0, 0x210ec, 1010 0x21200, 0x21268, 1011 0x21270, 0x21284, 1012 0x212fc, 0x21388, 1013 0x21400, 0x21404, 1014 0x21500, 0x21500, 1015 0x21510, 0x21518, 1016 0x2152c, 0x21530, 1017 0x2153c, 0x2153c, 1018 0x21550, 0x21554, 1019 0x21600, 0x21600, 1020 0x21608, 0x2161c, 1021 0x21624, 0x21628, 1022 0x21630, 0x21634, 1023 0x2163c, 0x2163c, 1024 0x21700, 0x2171c, 1025 0x21780, 0x2178c, 1026 0x21800, 0x21818, 1027 0x21820, 0x21828, 1028 0x21830, 0x21848, 1029 0x21850, 0x21854, 1030 0x21860, 0x21868, 1031 0x21870, 0x21870, 1032 0x21878, 0x21898, 1033 0x218a0, 0x218a8, 1034 0x218b0, 0x218c8, 1035 0x218d0, 0x218d4, 1036 0x218e0, 0x218e8, 1037 0x218f0, 0x218f0, 1038 0x218f8, 0x21a18, 1039 0x21a20, 0x21a28, 1040 0x21a30, 0x21a48, 1041 0x21a50, 0x21a54, 1042 0x21a60, 0x21a68, 1043 0x21a70, 0x21a70, 1044 0x21a78, 0x21a98, 1045 0x21aa0, 0x21aa8, 1046 0x21ab0, 0x21ac8, 1047 0x21ad0, 0x21ad4, 1048 0x21ae0, 0x21ae8, 1049 0x21af0, 0x21af0, 1050 0x21af8, 0x21c18, 1051 0x21c20, 0x21c20, 1052 0x21c28, 0x21c30, 1053 0x21c38, 0x21c38, 1054 0x21c80, 0x21c98, 1055 0x21ca0, 0x21ca8, 1056 0x21cb0, 0x21cc8, 1057 0x21cd0, 0x21cd4, 1058 0x21ce0, 0x21ce8, 1059 0x21cf0, 0x21cf0, 1060 0x21cf8, 0x21d7c, 1061 0x21e00, 0x21e04, 1062 0x22000, 0x2202c, 1063 0x22100, 0x2213c, 1064 0x22190, 0x221a0, 1065 0x221a8, 0x221b8, 1066 0x221c4, 0x221c8, 1067 0x22200, 0x22318, 1068 0x22400, 0x224b4, 1069 0x224c0, 0x22528, 1070 0x22540, 0x22614, 1071 0x23000, 0x23040, 1072 0x2304c, 0x23060, 1073 0x230c0, 0x230ec, 1074 0x23200, 0x23268, 1075 0x23270, 0x23284, 1076 0x232fc, 0x23388, 1077 0x23400, 0x23404, 1078 0x23500, 0x23500, 1079 0x23510, 0x23518, 1080 0x2352c, 0x23530, 1081 0x2353c, 0x2353c, 1082 0x23550, 0x23554, 1083 0x23600, 0x23600, 1084 0x23608, 0x2361c, 1085 0x23624, 0x23628, 1086 0x23630, 0x23634, 1087 0x2363c, 0x2363c, 1088 0x23700, 0x2371c, 1089 0x23780, 0x2378c, 1090 0x23800, 0x23818, 1091 0x23820, 0x23828, 1092 0x23830, 0x23848, 1093 0x23850, 0x23854, 1094 0x23860, 0x23868, 1095 0x23870, 0x23870, 1096 0x23878, 0x23898, 1097 0x238a0, 0x238a8, 1098 0x238b0, 0x238c8, 1099 0x238d0, 0x238d4, 1100 0x238e0, 0x238e8, 1101 0x238f0, 0x238f0, 1102 0x238f8, 0x23a18, 1103 0x23a20, 0x23a28, 1104 0x23a30, 0x23a48, 1105 0x23a50, 0x23a54, 1106 0x23a60, 0x23a68, 1107 0x23a70, 0x23a70, 1108 0x23a78, 0x23a98, 1109 0x23aa0, 0x23aa8, 1110 0x23ab0, 0x23ac8, 1111 0x23ad0, 0x23ad4, 1112 0x23ae0, 0x23ae8, 1113 0x23af0, 0x23af0, 1114 0x23af8, 0x23c18, 1115 0x23c20, 0x23c20, 1116 0x23c28, 0x23c30, 1117 0x23c38, 0x23c38, 1118 0x23c80, 0x23c98, 1119 0x23ca0, 0x23ca8, 1120 0x23cb0, 0x23cc8, 1121 0x23cd0, 0x23cd4, 1122 0x23ce0, 0x23ce8, 1123 0x23cf0, 0x23cf0, 1124 0x23cf8, 0x23d7c, 1125 0x23e00, 0x23e04, 1126 0x24000, 0x2402c, 1127 0x24100, 0x2413c, 1128 0x24190, 0x241a0, 1129 0x241a8, 0x241b8, 1130 0x241c4, 0x241c8, 1131 0x24200, 0x24318, 1132 0x24400, 0x244b4, 1133 0x244c0, 0x24528, 1134 0x24540, 0x24614, 1135 0x25000, 0x25040, 1136 0x2504c, 0x25060, 1137 0x250c0, 0x250ec, 1138 0x25200, 0x25268, 1139 0x25270, 0x25284, 1140 0x252fc, 0x25388, 1141 0x25400, 0x25404, 1142 0x25500, 0x25500, 1143 0x25510, 0x25518, 1144 0x2552c, 0x25530, 1145 0x2553c, 0x2553c, 1146 0x25550, 0x25554, 1147 0x25600, 0x25600, 1148 0x25608, 0x2561c, 1149 0x25624, 0x25628, 1150 0x25630, 0x25634, 1151 0x2563c, 0x2563c, 1152 0x25700, 0x2571c, 1153 0x25780, 0x2578c, 1154 0x25800, 0x25818, 1155 0x25820, 0x25828, 1156 0x25830, 0x25848, 1157 0x25850, 0x25854, 1158 0x25860, 0x25868, 1159 0x25870, 0x25870, 1160 0x25878, 0x25898, 1161 0x258a0, 0x258a8, 1162 0x258b0, 0x258c8, 1163 0x258d0, 0x258d4, 1164 0x258e0, 0x258e8, 1165 0x258f0, 0x258f0, 1166 0x258f8, 0x25a18, 1167 0x25a20, 0x25a28, 1168 0x25a30, 0x25a48, 1169 0x25a50, 0x25a54, 1170 0x25a60, 0x25a68, 1171 0x25a70, 0x25a70, 1172 0x25a78, 0x25a98, 1173 0x25aa0, 0x25aa8, 1174 0x25ab0, 0x25ac8, 1175 0x25ad0, 0x25ad4, 1176 0x25ae0, 0x25ae8, 1177 0x25af0, 0x25af0, 1178 0x25af8, 0x25c18, 1179 0x25c20, 0x25c20, 1180 0x25c28, 0x25c30, 1181 0x25c38, 0x25c38, 1182 0x25c80, 0x25c98, 1183 0x25ca0, 0x25ca8, 1184 0x25cb0, 0x25cc8, 1185 0x25cd0, 0x25cd4, 1186 0x25ce0, 0x25ce8, 1187 0x25cf0, 0x25cf0, 1188 0x25cf8, 0x25d7c, 1189 0x25e00, 0x25e04, 1190 0x26000, 0x2602c, 1191 0x26100, 0x2613c, 1192 0x26190, 0x261a0, 1193 0x261a8, 0x261b8, 1194 0x261c4, 0x261c8, 1195 0x26200, 0x26318, 1196 0x26400, 0x264b4, 1197 0x264c0, 0x26528, 1198 0x26540, 0x26614, 1199 0x27000, 0x27040, 1200 0x2704c, 0x27060, 1201 0x270c0, 0x270ec, 1202 0x27200, 0x27268, 1203 0x27270, 0x27284, 1204 0x272fc, 0x27388, 1205 0x27400, 0x27404, 1206 0x27500, 0x27500, 1207 0x27510, 0x27518, 1208 0x2752c, 0x27530, 1209 0x2753c, 0x2753c, 1210 0x27550, 0x27554, 1211 0x27600, 0x27600, 1212 0x27608, 0x2761c, 1213 0x27624, 0x27628, 1214 0x27630, 0x27634, 1215 0x2763c, 0x2763c, 1216 0x27700, 0x2771c, 1217 0x27780, 0x2778c, 1218 0x27800, 0x27818, 1219 0x27820, 0x27828, 1220 0x27830, 0x27848, 1221 0x27850, 0x27854, 1222 0x27860, 0x27868, 1223 0x27870, 0x27870, 1224 0x27878, 0x27898, 1225 0x278a0, 0x278a8, 1226 0x278b0, 0x278c8, 1227 0x278d0, 0x278d4, 1228 0x278e0, 0x278e8, 1229 0x278f0, 0x278f0, 1230 0x278f8, 0x27a18, 1231 0x27a20, 0x27a28, 1232 0x27a30, 0x27a48, 1233 0x27a50, 0x27a54, 1234 0x27a60, 0x27a68, 1235 0x27a70, 0x27a70, 1236 0x27a78, 0x27a98, 1237 0x27aa0, 0x27aa8, 1238 0x27ab0, 0x27ac8, 1239 0x27ad0, 0x27ad4, 1240 0x27ae0, 0x27ae8, 1241 0x27af0, 0x27af0, 1242 0x27af8, 0x27c18, 1243 0x27c20, 0x27c20, 1244 0x27c28, 0x27c30, 1245 0x27c38, 0x27c38, 1246 0x27c80, 0x27c98, 1247 0x27ca0, 0x27ca8, 1248 0x27cb0, 0x27cc8, 1249 0x27cd0, 0x27cd4, 1250 0x27ce0, 0x27ce8, 1251 0x27cf0, 0x27cf0, 1252 0x27cf8, 0x27d7c, 1253 0x27e00, 0x27e04, 1254 }; 1255 1256 static const unsigned int t5_reg_ranges[] = { 1257 0x1008, 0x10c0, 1258 0x10cc, 0x10f8, 1259 0x1100, 0x1100, 1260 0x110c, 0x1148, 1261 0x1180, 0x1184, 1262 0x1190, 0x1194, 1263 0x11a0, 0x11a4, 1264 0x11b0, 0x11b4, 1265 0x11fc, 0x123c, 1266 0x1280, 0x173c, 1267 0x1800, 0x18fc, 1268 0x3000, 0x3028, 1269 0x3060, 0x30b0, 1270 0x30b8, 0x30d8, 1271 0x30e0, 0x30fc, 1272 0x3140, 0x357c, 1273 0x35a8, 0x35cc, 1274 0x35ec, 0x35ec, 1275 0x3600, 0x5624, 1276 0x56cc, 0x56ec, 1277 0x56f4, 0x5720, 1278 0x5728, 0x575c, 1279 0x580c, 0x5814, 1280 0x5890, 0x589c, 1281 0x58a4, 0x58ac, 1282 0x58b8, 0x58bc, 1283 0x5940, 0x59c8, 1284 0x59d0, 0x59dc, 1285 0x59fc, 0x5a18, 1286 0x5a60, 0x5a70, 1287 0x5a80, 0x5a9c, 1288 0x5b94, 0x5bfc, 1289 0x6000, 0x6020, 1290 0x6028, 0x6040, 1291 0x6058, 0x609c, 1292 0x60a8, 0x614c, 1293 0x7700, 0x7798, 1294 0x77c0, 0x78fc, 1295 0x7b00, 0x7b58, 1296 0x7b60, 0x7b84, 1297 0x7b8c, 0x7c54, 1298 0x7d00, 0x7d38, 1299 0x7d40, 0x7d80, 1300 0x7d8c, 0x7ddc, 1301 0x7de4, 0x7e04, 1302 0x7e10, 0x7e1c, 1303 0x7e24, 0x7e38, 1304 0x7e40, 0x7e44, 1305 0x7e4c, 0x7e78, 1306 0x7e80, 0x7edc, 1307 0x7ee8, 0x7efc, 1308 0x8dc0, 0x8de0, 1309 0x8df8, 0x8e04, 1310 0x8e10, 0x8e84, 1311 0x8ea0, 0x8f84, 1312 0x8fc0, 0x9058, 1313 0x9060, 0x9060, 1314 0x9068, 0x90f8, 1315 0x9400, 0x9408, 1316 0x9410, 0x9470, 1317 0x9600, 0x9600, 1318 0x9608, 0x9638, 1319 0x9640, 0x96f4, 1320 0x9800, 0x9808, 1321 0x9820, 0x983c, 1322 0x9850, 0x9864, 1323 0x9c00, 0x9c6c, 1324 0x9c80, 0x9cec, 1325 0x9d00, 0x9d6c, 1326 0x9d80, 0x9dec, 1327 0x9e00, 0x9e6c, 1328 0x9e80, 0x9eec, 1329 0x9f00, 0x9f6c, 1330 0x9f80, 0xa020, 1331 0xd004, 0xd004, 1332 0xd010, 0xd03c, 1333 0xdfc0, 0xdfe0, 1334 0xe000, 0x1106c, 1335 0x11074, 0x11088, 1336 0x1109c, 0x1117c, 1337 0x11190, 0x11204, 1338 0x19040, 0x1906c, 1339 0x19078, 0x19080, 1340 0x1908c, 0x190e8, 1341 0x190f0, 0x190f8, 1342 0x19100, 0x19110, 1343 0x19120, 0x19124, 1344 0x19150, 0x19194, 1345 0x1919c, 0x191b0, 1346 0x191d0, 0x191e8, 1347 0x19238, 0x19290, 1348 0x193f8, 0x19428, 1349 0x19430, 0x19444, 1350 0x1944c, 0x1946c, 1351 0x19474, 0x19474, 1352 0x19490, 0x194cc, 1353 0x194f0, 0x194f8, 1354 0x19c00, 0x19c08, 1355 0x19c10, 0x19c60, 1356 0x19c94, 0x19ce4, 1357 0x19cf0, 0x19d40, 1358 0x19d50, 0x19d94, 1359 0x19da0, 0x19de8, 1360 0x19df0, 0x19e10, 1361 0x19e50, 0x19e90, 1362 0x19ea0, 0x19f24, 1363 0x19f34, 0x19f34, 1364 0x19f40, 0x19f50, 1365 0x19f90, 0x19fb4, 1366 0x19fc4, 0x19fe4, 1367 0x1a000, 0x1a004, 1368 0x1a010, 0x1a06c, 1369 0x1a0b0, 0x1a0e4, 1370 0x1a0ec, 0x1a0f8, 1371 0x1a100, 0x1a108, 1372 0x1a114, 0x1a120, 1373 0x1a128, 0x1a130, 1374 0x1a138, 0x1a138, 1375 0x1a190, 0x1a1c4, 1376 0x1a1fc, 0x1a1fc, 1377 0x1e008, 0x1e00c, 1378 0x1e040, 0x1e044, 1379 0x1e04c, 0x1e04c, 1380 0x1e284, 0x1e290, 1381 0x1e2c0, 0x1e2c0, 1382 0x1e2e0, 0x1e2e0, 1383 0x1e300, 0x1e384, 1384 0x1e3c0, 0x1e3c8, 1385 0x1e408, 0x1e40c, 1386 0x1e440, 0x1e444, 1387 0x1e44c, 0x1e44c, 1388 0x1e684, 0x1e690, 1389 0x1e6c0, 0x1e6c0, 1390 0x1e6e0, 0x1e6e0, 1391 0x1e700, 0x1e784, 1392 0x1e7c0, 0x1e7c8, 1393 0x1e808, 0x1e80c, 1394 0x1e840, 0x1e844, 1395 0x1e84c, 0x1e84c, 1396 0x1ea84, 0x1ea90, 1397 0x1eac0, 0x1eac0, 1398 0x1eae0, 0x1eae0, 1399 0x1eb00, 0x1eb84, 1400 0x1ebc0, 0x1ebc8, 1401 0x1ec08, 0x1ec0c, 1402 0x1ec40, 0x1ec44, 1403 0x1ec4c, 0x1ec4c, 1404 0x1ee84, 0x1ee90, 1405 0x1eec0, 0x1eec0, 1406 0x1eee0, 0x1eee0, 1407 0x1ef00, 0x1ef84, 1408 0x1efc0, 0x1efc8, 1409 0x1f008, 0x1f00c, 1410 0x1f040, 0x1f044, 1411 0x1f04c, 0x1f04c, 1412 0x1f284, 0x1f290, 1413 0x1f2c0, 0x1f2c0, 1414 0x1f2e0, 0x1f2e0, 1415 0x1f300, 0x1f384, 1416 0x1f3c0, 0x1f3c8, 1417 0x1f408, 0x1f40c, 1418 0x1f440, 0x1f444, 1419 0x1f44c, 0x1f44c, 1420 0x1f684, 0x1f690, 1421 0x1f6c0, 0x1f6c0, 1422 0x1f6e0, 0x1f6e0, 1423 0x1f700, 0x1f784, 1424 0x1f7c0, 0x1f7c8, 1425 0x1f808, 0x1f80c, 1426 0x1f840, 0x1f844, 1427 0x1f84c, 0x1f84c, 1428 0x1fa84, 0x1fa90, 1429 0x1fac0, 0x1fac0, 1430 0x1fae0, 0x1fae0, 1431 0x1fb00, 0x1fb84, 1432 0x1fbc0, 0x1fbc8, 1433 0x1fc08, 0x1fc0c, 1434 0x1fc40, 0x1fc44, 1435 0x1fc4c, 0x1fc4c, 1436 0x1fe84, 0x1fe90, 1437 0x1fec0, 0x1fec0, 1438 0x1fee0, 0x1fee0, 1439 0x1ff00, 0x1ff84, 1440 0x1ffc0, 0x1ffc8, 1441 0x30000, 0x30030, 1442 0x30038, 0x30038, 1443 0x30040, 0x30040, 1444 0x30100, 0x30144, 1445 0x30190, 0x301a0, 1446 0x301a8, 0x301b8, 1447 0x301c4, 0x301c8, 1448 0x301d0, 0x301d0, 1449 0x30200, 0x30318, 1450 0x30400, 0x304b4, 1451 0x304c0, 0x3052c, 1452 0x30540, 0x3061c, 1453 0x30800, 0x30828, 1454 0x30834, 0x30834, 1455 0x308c0, 0x30908, 1456 0x30910, 0x309ac, 1457 0x30a00, 0x30a14, 1458 0x30a1c, 0x30a2c, 1459 0x30a44, 0x30a50, 1460 0x30a74, 0x30a74, 1461 0x30a7c, 0x30afc, 1462 0x30b08, 0x30c24, 1463 0x30d00, 0x30d00, 1464 0x30d08, 0x30d14, 1465 0x30d1c, 0x30d20, 1466 0x30d3c, 0x30d3c, 1467 0x30d48, 0x30d50, 1468 0x31200, 0x3120c, 1469 0x31220, 0x31220, 1470 0x31240, 0x31240, 1471 0x31600, 0x3160c, 1472 0x31a00, 0x31a1c, 1473 0x31e00, 0x31e20, 1474 0x31e38, 0x31e3c, 1475 0x31e80, 0x31e80, 1476 0x31e88, 0x31ea8, 1477 0x31eb0, 0x31eb4, 1478 0x31ec8, 0x31ed4, 1479 0x31fb8, 0x32004, 1480 0x32200, 0x32200, 1481 0x32208, 0x32240, 1482 0x32248, 0x32280, 1483 0x32288, 0x322c0, 1484 0x322c8, 0x322fc, 1485 0x32600, 0x32630, 1486 0x32a00, 0x32abc, 1487 0x32b00, 0x32b10, 1488 0x32b20, 0x32b30, 1489 0x32b40, 0x32b50, 1490 0x32b60, 0x32b70, 1491 0x33000, 0x33028, 1492 0x33030, 0x33048, 1493 0x33060, 0x33068, 1494 0x33070, 0x3309c, 1495 0x330f0, 0x33128, 1496 0x33130, 0x33148, 1497 0x33160, 0x33168, 1498 0x33170, 0x3319c, 1499 0x331f0, 0x33238, 1500 0x33240, 0x33240, 1501 0x33248, 0x33250, 1502 0x3325c, 0x33264, 1503 0x33270, 0x332b8, 1504 0x332c0, 0x332e4, 1505 0x332f8, 0x33338, 1506 0x33340, 0x33340, 1507 0x33348, 0x33350, 1508 0x3335c, 0x33364, 1509 0x33370, 0x333b8, 1510 0x333c0, 0x333e4, 1511 0x333f8, 0x33428, 1512 0x33430, 0x33448, 1513 0x33460, 0x33468, 1514 0x33470, 0x3349c, 1515 0x334f0, 0x33528, 1516 0x33530, 0x33548, 1517 0x33560, 0x33568, 1518 0x33570, 0x3359c, 1519 0x335f0, 0x33638, 1520 0x33640, 0x33640, 1521 0x33648, 0x33650, 1522 0x3365c, 0x33664, 1523 0x33670, 0x336b8, 1524 0x336c0, 0x336e4, 1525 0x336f8, 0x33738, 1526 0x33740, 0x33740, 1527 0x33748, 0x33750, 1528 0x3375c, 0x33764, 1529 0x33770, 0x337b8, 1530 0x337c0, 0x337e4, 1531 0x337f8, 0x337fc, 1532 0x33814, 0x33814, 1533 0x3382c, 0x3382c, 1534 0x33880, 0x3388c, 1535 0x338e8, 0x338ec, 1536 0x33900, 0x33928, 1537 0x33930, 0x33948, 1538 0x33960, 0x33968, 1539 0x33970, 0x3399c, 1540 0x339f0, 0x33a38, 1541 0x33a40, 0x33a40, 1542 0x33a48, 0x33a50, 1543 0x33a5c, 0x33a64, 1544 0x33a70, 0x33ab8, 1545 0x33ac0, 0x33ae4, 1546 0x33af8, 0x33b10, 1547 0x33b28, 0x33b28, 1548 0x33b3c, 0x33b50, 1549 0x33bf0, 0x33c10, 1550 0x33c28, 0x33c28, 1551 0x33c3c, 0x33c50, 1552 0x33cf0, 0x33cfc, 1553 0x34000, 0x34030, 1554 0x34038, 0x34038, 1555 0x34040, 0x34040, 1556 0x34100, 0x34144, 1557 0x34190, 0x341a0, 1558 0x341a8, 0x341b8, 1559 0x341c4, 0x341c8, 1560 0x341d0, 0x341d0, 1561 0x34200, 0x34318, 1562 0x34400, 0x344b4, 1563 0x344c0, 0x3452c, 1564 0x34540, 0x3461c, 1565 0x34800, 0x34828, 1566 0x34834, 0x34834, 1567 0x348c0, 0x34908, 1568 0x34910, 0x349ac, 1569 0x34a00, 0x34a14, 1570 0x34a1c, 0x34a2c, 1571 0x34a44, 0x34a50, 1572 0x34a74, 0x34a74, 1573 0x34a7c, 0x34afc, 1574 0x34b08, 0x34c24, 1575 0x34d00, 0x34d00, 1576 0x34d08, 0x34d14, 1577 0x34d1c, 0x34d20, 1578 0x34d3c, 0x34d3c, 1579 0x34d48, 0x34d50, 1580 0x35200, 0x3520c, 1581 0x35220, 0x35220, 1582 0x35240, 0x35240, 1583 0x35600, 0x3560c, 1584 0x35a00, 0x35a1c, 1585 0x35e00, 0x35e20, 1586 0x35e38, 0x35e3c, 1587 0x35e80, 0x35e80, 1588 0x35e88, 0x35ea8, 1589 0x35eb0, 0x35eb4, 1590 0x35ec8, 0x35ed4, 1591 0x35fb8, 0x36004, 1592 0x36200, 0x36200, 1593 0x36208, 0x36240, 1594 0x36248, 0x36280, 1595 0x36288, 0x362c0, 1596 0x362c8, 0x362fc, 1597 0x36600, 0x36630, 1598 0x36a00, 0x36abc, 1599 0x36b00, 0x36b10, 1600 0x36b20, 0x36b30, 1601 0x36b40, 0x36b50, 1602 0x36b60, 0x36b70, 1603 0x37000, 0x37028, 1604 0x37030, 0x37048, 1605 0x37060, 0x37068, 1606 0x37070, 0x3709c, 1607 0x370f0, 0x37128, 1608 0x37130, 0x37148, 1609 0x37160, 0x37168, 1610 0x37170, 0x3719c, 1611 0x371f0, 0x37238, 1612 0x37240, 0x37240, 1613 0x37248, 0x37250, 1614 0x3725c, 0x37264, 1615 0x37270, 0x372b8, 1616 0x372c0, 0x372e4, 1617 0x372f8, 0x37338, 1618 0x37340, 0x37340, 1619 0x37348, 0x37350, 1620 0x3735c, 0x37364, 1621 0x37370, 0x373b8, 1622 0x373c0, 0x373e4, 1623 0x373f8, 0x37428, 1624 0x37430, 0x37448, 1625 0x37460, 0x37468, 1626 0x37470, 0x3749c, 1627 0x374f0, 0x37528, 1628 0x37530, 0x37548, 1629 0x37560, 0x37568, 1630 0x37570, 0x3759c, 1631 0x375f0, 0x37638, 1632 0x37640, 0x37640, 1633 0x37648, 0x37650, 1634 0x3765c, 0x37664, 1635 0x37670, 0x376b8, 1636 0x376c0, 0x376e4, 1637 0x376f8, 0x37738, 1638 0x37740, 0x37740, 1639 0x37748, 0x37750, 1640 0x3775c, 0x37764, 1641 0x37770, 0x377b8, 1642 0x377c0, 0x377e4, 1643 0x377f8, 0x377fc, 1644 0x37814, 0x37814, 1645 0x3782c, 0x3782c, 1646 0x37880, 0x3788c, 1647 0x378e8, 0x378ec, 1648 0x37900, 0x37928, 1649 0x37930, 0x37948, 1650 0x37960, 0x37968, 1651 0x37970, 0x3799c, 1652 0x379f0, 0x37a38, 1653 0x37a40, 0x37a40, 1654 0x37a48, 0x37a50, 1655 0x37a5c, 0x37a64, 1656 0x37a70, 0x37ab8, 1657 0x37ac0, 0x37ae4, 1658 0x37af8, 0x37b10, 1659 0x37b28, 0x37b28, 1660 0x37b3c, 0x37b50, 1661 0x37bf0, 0x37c10, 1662 0x37c28, 0x37c28, 1663 0x37c3c, 0x37c50, 1664 0x37cf0, 0x37cfc, 1665 0x38000, 0x38030, 1666 0x38038, 0x38038, 1667 0x38040, 0x38040, 1668 0x38100, 0x38144, 1669 0x38190, 0x381a0, 1670 0x381a8, 0x381b8, 1671 0x381c4, 0x381c8, 1672 0x381d0, 0x381d0, 1673 0x38200, 0x38318, 1674 0x38400, 0x384b4, 1675 0x384c0, 0x3852c, 1676 0x38540, 0x3861c, 1677 0x38800, 0x38828, 1678 0x38834, 0x38834, 1679 0x388c0, 0x38908, 1680 0x38910, 0x389ac, 1681 0x38a00, 0x38a14, 1682 0x38a1c, 0x38a2c, 1683 0x38a44, 0x38a50, 1684 0x38a74, 0x38a74, 1685 0x38a7c, 0x38afc, 1686 0x38b08, 0x38c24, 1687 0x38d00, 0x38d00, 1688 0x38d08, 0x38d14, 1689 0x38d1c, 0x38d20, 1690 0x38d3c, 0x38d3c, 1691 0x38d48, 0x38d50, 1692 0x39200, 0x3920c, 1693 0x39220, 0x39220, 1694 0x39240, 0x39240, 1695 0x39600, 0x3960c, 1696 0x39a00, 0x39a1c, 1697 0x39e00, 0x39e20, 1698 0x39e38, 0x39e3c, 1699 0x39e80, 0x39e80, 1700 0x39e88, 0x39ea8, 1701 0x39eb0, 0x39eb4, 1702 0x39ec8, 0x39ed4, 1703 0x39fb8, 0x3a004, 1704 0x3a200, 0x3a200, 1705 0x3a208, 0x3a240, 1706 0x3a248, 0x3a280, 1707 0x3a288, 0x3a2c0, 1708 0x3a2c8, 0x3a2fc, 1709 0x3a600, 0x3a630, 1710 0x3aa00, 0x3aabc, 1711 0x3ab00, 0x3ab10, 1712 0x3ab20, 0x3ab30, 1713 0x3ab40, 0x3ab50, 1714 0x3ab60, 0x3ab70, 1715 0x3b000, 0x3b028, 1716 0x3b030, 0x3b048, 1717 0x3b060, 0x3b068, 1718 0x3b070, 0x3b09c, 1719 0x3b0f0, 0x3b128, 1720 0x3b130, 0x3b148, 1721 0x3b160, 0x3b168, 1722 0x3b170, 0x3b19c, 1723 0x3b1f0, 0x3b238, 1724 0x3b240, 0x3b240, 1725 0x3b248, 0x3b250, 1726 0x3b25c, 0x3b264, 1727 0x3b270, 0x3b2b8, 1728 0x3b2c0, 0x3b2e4, 1729 0x3b2f8, 0x3b338, 1730 0x3b340, 0x3b340, 1731 0x3b348, 0x3b350, 1732 0x3b35c, 0x3b364, 1733 0x3b370, 0x3b3b8, 1734 0x3b3c0, 0x3b3e4, 1735 0x3b3f8, 0x3b428, 1736 0x3b430, 0x3b448, 1737 0x3b460, 0x3b468, 1738 0x3b470, 0x3b49c, 1739 0x3b4f0, 0x3b528, 1740 0x3b530, 0x3b548, 1741 0x3b560, 0x3b568, 1742 0x3b570, 0x3b59c, 1743 0x3b5f0, 0x3b638, 1744 0x3b640, 0x3b640, 1745 0x3b648, 0x3b650, 1746 0x3b65c, 0x3b664, 1747 0x3b670, 0x3b6b8, 1748 0x3b6c0, 0x3b6e4, 1749 0x3b6f8, 0x3b738, 1750 0x3b740, 0x3b740, 1751 0x3b748, 0x3b750, 1752 0x3b75c, 0x3b764, 1753 0x3b770, 0x3b7b8, 1754 0x3b7c0, 0x3b7e4, 1755 0x3b7f8, 0x3b7fc, 1756 0x3b814, 0x3b814, 1757 0x3b82c, 0x3b82c, 1758 0x3b880, 0x3b88c, 1759 0x3b8e8, 0x3b8ec, 1760 0x3b900, 0x3b928, 1761 0x3b930, 0x3b948, 1762 0x3b960, 0x3b968, 1763 0x3b970, 0x3b99c, 1764 0x3b9f0, 0x3ba38, 1765 0x3ba40, 0x3ba40, 1766 0x3ba48, 0x3ba50, 1767 0x3ba5c, 0x3ba64, 1768 0x3ba70, 0x3bab8, 1769 0x3bac0, 0x3bae4, 1770 0x3baf8, 0x3bb10, 1771 0x3bb28, 0x3bb28, 1772 0x3bb3c, 0x3bb50, 1773 0x3bbf0, 0x3bc10, 1774 0x3bc28, 0x3bc28, 1775 0x3bc3c, 0x3bc50, 1776 0x3bcf0, 0x3bcfc, 1777 0x3c000, 0x3c030, 1778 0x3c038, 0x3c038, 1779 0x3c040, 0x3c040, 1780 0x3c100, 0x3c144, 1781 0x3c190, 0x3c1a0, 1782 0x3c1a8, 0x3c1b8, 1783 0x3c1c4, 0x3c1c8, 1784 0x3c1d0, 0x3c1d0, 1785 0x3c200, 0x3c318, 1786 0x3c400, 0x3c4b4, 1787 0x3c4c0, 0x3c52c, 1788 0x3c540, 0x3c61c, 1789 0x3c800, 0x3c828, 1790 0x3c834, 0x3c834, 1791 0x3c8c0, 0x3c908, 1792 0x3c910, 0x3c9ac, 1793 0x3ca00, 0x3ca14, 1794 0x3ca1c, 0x3ca2c, 1795 0x3ca44, 0x3ca50, 1796 0x3ca74, 0x3ca74, 1797 0x3ca7c, 0x3cafc, 1798 0x3cb08, 0x3cc24, 1799 0x3cd00, 0x3cd00, 1800 0x3cd08, 0x3cd14, 1801 0x3cd1c, 0x3cd20, 1802 0x3cd3c, 0x3cd3c, 1803 0x3cd48, 0x3cd50, 1804 0x3d200, 0x3d20c, 1805 0x3d220, 0x3d220, 1806 0x3d240, 0x3d240, 1807 0x3d600, 0x3d60c, 1808 0x3da00, 0x3da1c, 1809 0x3de00, 0x3de20, 1810 0x3de38, 0x3de3c, 1811 0x3de80, 0x3de80, 1812 0x3de88, 0x3dea8, 1813 0x3deb0, 0x3deb4, 1814 0x3dec8, 0x3ded4, 1815 0x3dfb8, 0x3e004, 1816 0x3e200, 0x3e200, 1817 0x3e208, 0x3e240, 1818 0x3e248, 0x3e280, 1819 0x3e288, 0x3e2c0, 1820 0x3e2c8, 0x3e2fc, 1821 0x3e600, 0x3e630, 1822 0x3ea00, 0x3eabc, 1823 0x3eb00, 0x3eb10, 1824 0x3eb20, 0x3eb30, 1825 0x3eb40, 0x3eb50, 1826 0x3eb60, 0x3eb70, 1827 0x3f000, 0x3f028, 1828 0x3f030, 0x3f048, 1829 0x3f060, 0x3f068, 1830 0x3f070, 0x3f09c, 1831 0x3f0f0, 0x3f128, 1832 0x3f130, 0x3f148, 1833 0x3f160, 0x3f168, 1834 0x3f170, 0x3f19c, 1835 0x3f1f0, 0x3f238, 1836 0x3f240, 0x3f240, 1837 0x3f248, 0x3f250, 1838 0x3f25c, 0x3f264, 1839 0x3f270, 0x3f2b8, 1840 0x3f2c0, 0x3f2e4, 1841 0x3f2f8, 0x3f338, 1842 0x3f340, 0x3f340, 1843 0x3f348, 0x3f350, 1844 0x3f35c, 0x3f364, 1845 0x3f370, 0x3f3b8, 1846 0x3f3c0, 0x3f3e4, 1847 0x3f3f8, 0x3f428, 1848 0x3f430, 0x3f448, 1849 0x3f460, 0x3f468, 1850 0x3f470, 0x3f49c, 1851 0x3f4f0, 0x3f528, 1852 0x3f530, 0x3f548, 1853 0x3f560, 0x3f568, 1854 0x3f570, 0x3f59c, 1855 0x3f5f0, 0x3f638, 1856 0x3f640, 0x3f640, 1857 0x3f648, 0x3f650, 1858 0x3f65c, 0x3f664, 1859 0x3f670, 0x3f6b8, 1860 0x3f6c0, 0x3f6e4, 1861 0x3f6f8, 0x3f738, 1862 0x3f740, 0x3f740, 1863 0x3f748, 0x3f750, 1864 0x3f75c, 0x3f764, 1865 0x3f770, 0x3f7b8, 1866 0x3f7c0, 0x3f7e4, 1867 0x3f7f8, 0x3f7fc, 1868 0x3f814, 0x3f814, 1869 0x3f82c, 0x3f82c, 1870 0x3f880, 0x3f88c, 1871 0x3f8e8, 0x3f8ec, 1872 0x3f900, 0x3f928, 1873 0x3f930, 0x3f948, 1874 0x3f960, 0x3f968, 1875 0x3f970, 0x3f99c, 1876 0x3f9f0, 0x3fa38, 1877 0x3fa40, 0x3fa40, 1878 0x3fa48, 0x3fa50, 1879 0x3fa5c, 0x3fa64, 1880 0x3fa70, 0x3fab8, 1881 0x3fac0, 0x3fae4, 1882 0x3faf8, 0x3fb10, 1883 0x3fb28, 0x3fb28, 1884 0x3fb3c, 0x3fb50, 1885 0x3fbf0, 0x3fc10, 1886 0x3fc28, 0x3fc28, 1887 0x3fc3c, 0x3fc50, 1888 0x3fcf0, 0x3fcfc, 1889 0x40000, 0x4000c, 1890 0x40040, 0x40050, 1891 0x40060, 0x40068, 1892 0x4007c, 0x4008c, 1893 0x40094, 0x400b0, 1894 0x400c0, 0x40144, 1895 0x40180, 0x4018c, 1896 0x40200, 0x40254, 1897 0x40260, 0x40264, 1898 0x40270, 0x40288, 1899 0x40290, 0x40298, 1900 0x402ac, 0x402c8, 1901 0x402d0, 0x402e0, 1902 0x402f0, 0x402f0, 1903 0x40300, 0x4033c, 1904 0x403f8, 0x403fc, 1905 0x41304, 0x413c4, 1906 0x41400, 0x4140c, 1907 0x41414, 0x4141c, 1908 0x41480, 0x414d0, 1909 0x44000, 0x44054, 1910 0x4405c, 0x44078, 1911 0x440c0, 0x44174, 1912 0x44180, 0x441ac, 1913 0x441b4, 0x441b8, 1914 0x441c0, 0x44254, 1915 0x4425c, 0x44278, 1916 0x442c0, 0x44374, 1917 0x44380, 0x443ac, 1918 0x443b4, 0x443b8, 1919 0x443c0, 0x44454, 1920 0x4445c, 0x44478, 1921 0x444c0, 0x44574, 1922 0x44580, 0x445ac, 1923 0x445b4, 0x445b8, 1924 0x445c0, 0x44654, 1925 0x4465c, 0x44678, 1926 0x446c0, 0x44774, 1927 0x44780, 0x447ac, 1928 0x447b4, 0x447b8, 1929 0x447c0, 0x44854, 1930 0x4485c, 0x44878, 1931 0x448c0, 0x44974, 1932 0x44980, 0x449ac, 1933 0x449b4, 0x449b8, 1934 0x449c0, 0x449fc, 1935 0x45000, 0x45004, 1936 0x45010, 0x45030, 1937 0x45040, 0x45060, 1938 0x45068, 0x45068, 1939 0x45080, 0x45084, 1940 0x450a0, 0x450b0, 1941 0x45200, 0x45204, 1942 0x45210, 0x45230, 1943 0x45240, 0x45260, 1944 0x45268, 0x45268, 1945 0x45280, 0x45284, 1946 0x452a0, 0x452b0, 1947 0x460c0, 0x460e4, 1948 0x47000, 0x4703c, 1949 0x47044, 0x4708c, 1950 0x47200, 0x47250, 1951 0x47400, 0x47408, 1952 0x47414, 0x47420, 1953 0x47600, 0x47618, 1954 0x47800, 0x47814, 1955 0x48000, 0x4800c, 1956 0x48040, 0x48050, 1957 0x48060, 0x48068, 1958 0x4807c, 0x4808c, 1959 0x48094, 0x480b0, 1960 0x480c0, 0x48144, 1961 0x48180, 0x4818c, 1962 0x48200, 0x48254, 1963 0x48260, 0x48264, 1964 0x48270, 0x48288, 1965 0x48290, 0x48298, 1966 0x482ac, 0x482c8, 1967 0x482d0, 0x482e0, 1968 0x482f0, 0x482f0, 1969 0x48300, 0x4833c, 1970 0x483f8, 0x483fc, 1971 0x49304, 0x493c4, 1972 0x49400, 0x4940c, 1973 0x49414, 0x4941c, 1974 0x49480, 0x494d0, 1975 0x4c000, 0x4c054, 1976 0x4c05c, 0x4c078, 1977 0x4c0c0, 0x4c174, 1978 0x4c180, 0x4c1ac, 1979 0x4c1b4, 0x4c1b8, 1980 0x4c1c0, 0x4c254, 1981 0x4c25c, 0x4c278, 1982 0x4c2c0, 0x4c374, 1983 0x4c380, 0x4c3ac, 1984 0x4c3b4, 0x4c3b8, 1985 0x4c3c0, 0x4c454, 1986 0x4c45c, 0x4c478, 1987 0x4c4c0, 0x4c574, 1988 0x4c580, 0x4c5ac, 1989 0x4c5b4, 0x4c5b8, 1990 0x4c5c0, 0x4c654, 1991 0x4c65c, 0x4c678, 1992 0x4c6c0, 0x4c774, 1993 0x4c780, 0x4c7ac, 1994 0x4c7b4, 0x4c7b8, 1995 0x4c7c0, 0x4c854, 1996 0x4c85c, 0x4c878, 1997 0x4c8c0, 0x4c974, 1998 0x4c980, 0x4c9ac, 1999 0x4c9b4, 0x4c9b8, 2000 0x4c9c0, 0x4c9fc, 2001 0x4d000, 0x4d004, 2002 0x4d010, 0x4d030, 2003 0x4d040, 0x4d060, 2004 0x4d068, 0x4d068, 2005 0x4d080, 0x4d084, 2006 0x4d0a0, 0x4d0b0, 2007 0x4d200, 0x4d204, 2008 0x4d210, 0x4d230, 2009 0x4d240, 0x4d260, 2010 0x4d268, 0x4d268, 2011 0x4d280, 0x4d284, 2012 0x4d2a0, 0x4d2b0, 2013 0x4e0c0, 0x4e0e4, 2014 0x4f000, 0x4f03c, 2015 0x4f044, 0x4f08c, 2016 0x4f200, 0x4f250, 2017 0x4f400, 0x4f408, 2018 0x4f414, 0x4f420, 2019 0x4f600, 0x4f618, 2020 0x4f800, 0x4f814, 2021 0x50000, 0x50084, 2022 0x50090, 0x500cc, 2023 0x50400, 0x50400, 2024 0x50800, 0x50884, 2025 0x50890, 0x508cc, 2026 0x50c00, 0x50c00, 2027 0x51000, 0x5101c, 2028 0x51300, 0x51308, 2029 }; 2030 2031 static const unsigned int t6_reg_ranges[] = { 2032 0x1008, 0x101c, 2033 0x1024, 0x10a8, 2034 0x10b4, 0x10f8, 2035 0x1100, 0x1114, 2036 0x111c, 0x112c, 2037 0x1138, 0x113c, 2038 0x1144, 0x114c, 2039 0x1180, 0x1184, 2040 0x1190, 0x1194, 2041 0x11a0, 0x11a4, 2042 0x11b0, 0x11b4, 2043 0x11fc, 0x1258, 2044 0x1280, 0x12d4, 2045 0x12d9, 0x12d9, 2046 0x12de, 0x12de, 2047 0x12e3, 0x12e3, 2048 0x12e8, 0x133c, 2049 0x1800, 0x18fc, 2050 0x3000, 0x302c, 2051 0x3060, 0x30b0, 2052 0x30b8, 0x30d8, 2053 0x30e0, 0x30fc, 2054 0x3140, 0x357c, 2055 0x35a8, 0x35cc, 2056 0x35ec, 0x35ec, 2057 0x3600, 0x5624, 2058 0x56cc, 0x56ec, 2059 0x56f4, 0x5720, 2060 0x5728, 0x575c, 2061 0x580c, 0x5814, 2062 0x5890, 0x589c, 2063 0x58a4, 0x58ac, 2064 0x58b8, 0x58bc, 2065 0x5940, 0x595c, 2066 0x5980, 0x598c, 2067 0x59b0, 0x59c8, 2068 0x59d0, 0x59dc, 2069 0x59fc, 0x5a18, 2070 0x5a60, 0x5a6c, 2071 0x5a80, 0x5a8c, 2072 0x5a94, 0x5a9c, 2073 0x5b94, 0x5bfc, 2074 0x5c10, 0x5e48, 2075 0x5e50, 0x5e94, 2076 0x5ea0, 0x5eb0, 2077 0x5ec0, 0x5ec0, 2078 0x5ec8, 0x5ed0, 2079 0x6000, 0x6020, 2080 0x6028, 0x6040, 2081 0x6058, 0x609c, 2082 0x60a8, 0x619c, 2083 0x7700, 0x7798, 2084 0x77c0, 0x7880, 2085 0x78cc, 0x78fc, 2086 0x7b00, 0x7b58, 2087 0x7b60, 0x7b84, 2088 0x7b8c, 0x7c54, 2089 0x7d00, 0x7d38, 2090 0x7d40, 0x7d84, 2091 0x7d8c, 0x7ddc, 2092 0x7de4, 0x7e04, 2093 0x7e10, 0x7e1c, 2094 0x7e24, 0x7e38, 2095 0x7e40, 0x7e44, 2096 0x7e4c, 0x7e78, 2097 0x7e80, 0x7edc, 2098 0x7ee8, 0x7efc, 2099 0x8dc0, 0x8de4, 2100 0x8df8, 0x8e04, 2101 0x8e10, 0x8e84, 2102 0x8ea0, 0x8f88, 2103 0x8fb8, 0x9058, 2104 0x9060, 0x9060, 2105 0x9068, 0x90f8, 2106 0x9100, 0x9124, 2107 0x9400, 0x9470, 2108 0x9600, 0x9600, 2109 0x9608, 0x9638, 2110 0x9640, 0x9704, 2111 0x9710, 0x971c, 2112 0x9800, 0x9808, 2113 0x9820, 0x983c, 2114 0x9850, 0x9864, 2115 0x9c00, 0x9c6c, 2116 0x9c80, 0x9cec, 2117 0x9d00, 0x9d6c, 2118 0x9d80, 0x9dec, 2119 0x9e00, 0x9e6c, 2120 0x9e80, 0x9eec, 2121 0x9f00, 0x9f6c, 2122 0x9f80, 0xa020, 2123 0xd004, 0xd03c, 2124 0xd100, 0xd118, 2125 0xd200, 0xd214, 2126 0xd220, 0xd234, 2127 0xd240, 0xd254, 2128 0xd260, 0xd274, 2129 0xd280, 0xd294, 2130 0xd2a0, 0xd2b4, 2131 0xd2c0, 0xd2d4, 2132 0xd2e0, 0xd2f4, 2133 0xd300, 0xd31c, 2134 0xdfc0, 0xdfe0, 2135 0xe000, 0xf008, 2136 0x11000, 0x11014, 2137 0x11048, 0x1106c, 2138 0x11074, 0x11088, 2139 0x11098, 0x11120, 2140 0x1112c, 0x1117c, 2141 0x11190, 0x112e0, 2142 0x11300, 0x1130c, 2143 0x12000, 0x1206c, 2144 0x19040, 0x1906c, 2145 0x19078, 0x19080, 2146 0x1908c, 0x190e8, 2147 0x190f0, 0x190f8, 2148 0x19100, 0x19110, 2149 0x19120, 0x19124, 2150 0x19150, 0x19194, 2151 0x1919c, 0x191b0, 2152 0x191d0, 0x191e8, 2153 0x19238, 0x19290, 2154 0x192a4, 0x192b0, 2155 0x192bc, 0x192bc, 2156 0x19348, 0x1934c, 2157 0x193f8, 0x19418, 2158 0x19420, 0x19428, 2159 0x19430, 0x19444, 2160 0x1944c, 0x1946c, 2161 0x19474, 0x19474, 2162 0x19490, 0x194cc, 2163 0x194f0, 0x194f8, 2164 0x19c00, 0x19c48, 2165 0x19c50, 0x19c80, 2166 0x19c94, 0x19c98, 2167 0x19ca0, 0x19cbc, 2168 0x19ce4, 0x19ce4, 2169 0x19cf0, 0x19cf8, 2170 0x19d00, 0x19d28, 2171 0x19d50, 0x19d78, 2172 0x19d94, 0x19d98, 2173 0x19da0, 0x19dc8, 2174 0x19df0, 0x19e10, 2175 0x19e50, 0x19e6c, 2176 0x19ea0, 0x19ebc, 2177 0x19ec4, 0x19ef4, 2178 0x19f04, 0x19f2c, 2179 0x19f34, 0x19f34, 2180 0x19f40, 0x19f50, 2181 0x19f90, 0x19fac, 2182 0x19fc4, 0x19fc8, 2183 0x19fd0, 0x19fe4, 2184 0x1a000, 0x1a004, 2185 0x1a010, 0x1a06c, 2186 0x1a0b0, 0x1a0e4, 2187 0x1a0ec, 0x1a0f8, 2188 0x1a100, 0x1a108, 2189 0x1a114, 0x1a120, 2190 0x1a128, 0x1a130, 2191 0x1a138, 0x1a138, 2192 0x1a190, 0x1a1c4, 2193 0x1a1fc, 0x1a1fc, 2194 0x1e008, 0x1e00c, 2195 0x1e040, 0x1e044, 2196 0x1e04c, 0x1e04c, 2197 0x1e284, 0x1e290, 2198 0x1e2c0, 0x1e2c0, 2199 0x1e2e0, 0x1e2e0, 2200 0x1e300, 0x1e384, 2201 0x1e3c0, 0x1e3c8, 2202 0x1e408, 0x1e40c, 2203 0x1e440, 0x1e444, 2204 0x1e44c, 0x1e44c, 2205 0x1e684, 0x1e690, 2206 0x1e6c0, 0x1e6c0, 2207 0x1e6e0, 0x1e6e0, 2208 0x1e700, 0x1e784, 2209 0x1e7c0, 0x1e7c8, 2210 0x1e808, 0x1e80c, 2211 0x1e840, 0x1e844, 2212 0x1e84c, 0x1e84c, 2213 0x1ea84, 0x1ea90, 2214 0x1eac0, 0x1eac0, 2215 0x1eae0, 0x1eae0, 2216 0x1eb00, 0x1eb84, 2217 0x1ebc0, 0x1ebc8, 2218 0x1ec08, 0x1ec0c, 2219 0x1ec40, 0x1ec44, 2220 0x1ec4c, 0x1ec4c, 2221 0x1ee84, 0x1ee90, 2222 0x1eec0, 0x1eec0, 2223 0x1eee0, 0x1eee0, 2224 0x1ef00, 0x1ef84, 2225 0x1efc0, 0x1efc8, 2226 0x1f008, 0x1f00c, 2227 0x1f040, 0x1f044, 2228 0x1f04c, 0x1f04c, 2229 0x1f284, 0x1f290, 2230 0x1f2c0, 0x1f2c0, 2231 0x1f2e0, 0x1f2e0, 2232 0x1f300, 0x1f384, 2233 0x1f3c0, 0x1f3c8, 2234 0x1f408, 0x1f40c, 2235 0x1f440, 0x1f444, 2236 0x1f44c, 0x1f44c, 2237 0x1f684, 0x1f690, 2238 0x1f6c0, 0x1f6c0, 2239 0x1f6e0, 0x1f6e0, 2240 0x1f700, 0x1f784, 2241 0x1f7c0, 0x1f7c8, 2242 0x1f808, 0x1f80c, 2243 0x1f840, 0x1f844, 2244 0x1f84c, 0x1f84c, 2245 0x1fa84, 0x1fa90, 2246 0x1fac0, 0x1fac0, 2247 0x1fae0, 0x1fae0, 2248 0x1fb00, 0x1fb84, 2249 0x1fbc0, 0x1fbc8, 2250 0x1fc08, 0x1fc0c, 2251 0x1fc40, 0x1fc44, 2252 0x1fc4c, 0x1fc4c, 2253 0x1fe84, 0x1fe90, 2254 0x1fec0, 0x1fec0, 2255 0x1fee0, 0x1fee0, 2256 0x1ff00, 0x1ff84, 2257 0x1ffc0, 0x1ffc8, 2258 0x30000, 0x30030, 2259 0x30038, 0x30038, 2260 0x30040, 0x30040, 2261 0x30048, 0x30048, 2262 0x30050, 0x30050, 2263 0x3005c, 0x30060, 2264 0x30068, 0x30068, 2265 0x30070, 0x30070, 2266 0x30100, 0x30168, 2267 0x30190, 0x301a0, 2268 0x301a8, 0x301b8, 2269 0x301c4, 0x301c8, 2270 0x301d0, 0x301d0, 2271 0x30200, 0x30320, 2272 0x30400, 0x304b4, 2273 0x304c0, 0x3052c, 2274 0x30540, 0x3061c, 2275 0x30800, 0x308a0, 2276 0x308c0, 0x30908, 2277 0x30910, 0x309b8, 2278 0x30a00, 0x30a04, 2279 0x30a0c, 0x30a14, 2280 0x30a1c, 0x30a2c, 2281 0x30a44, 0x30a50, 2282 0x30a74, 0x30a74, 2283 0x30a7c, 0x30afc, 2284 0x30b08, 0x30c24, 2285 0x30d00, 0x30d14, 2286 0x30d1c, 0x30d3c, 2287 0x30d44, 0x30d4c, 2288 0x30d54, 0x30d74, 2289 0x30d7c, 0x30d7c, 2290 0x30de0, 0x30de0, 2291 0x30e00, 0x30ed4, 2292 0x30f00, 0x30fa4, 2293 0x30fc0, 0x30fc4, 2294 0x31000, 0x31004, 2295 0x31080, 0x310fc, 2296 0x31208, 0x31220, 2297 0x3123c, 0x31254, 2298 0x31300, 0x31300, 2299 0x31308, 0x3131c, 2300 0x31338, 0x3133c, 2301 0x31380, 0x31380, 2302 0x31388, 0x313a8, 2303 0x313b4, 0x313b4, 2304 0x31400, 0x31420, 2305 0x31438, 0x3143c, 2306 0x31480, 0x31480, 2307 0x314a8, 0x314a8, 2308 0x314b0, 0x314b4, 2309 0x314c8, 0x314d4, 2310 0x31a40, 0x31a4c, 2311 0x31af0, 0x31b20, 2312 0x31b38, 0x31b3c, 2313 0x31b80, 0x31b80, 2314 0x31ba8, 0x31ba8, 2315 0x31bb0, 0x31bb4, 2316 0x31bc8, 0x31bd4, 2317 0x32140, 0x3218c, 2318 0x321f0, 0x321f4, 2319 0x32200, 0x32200, 2320 0x32218, 0x32218, 2321 0x32400, 0x32400, 2322 0x32408, 0x3241c, 2323 0x32618, 0x32620, 2324 0x32664, 0x32664, 2325 0x326a8, 0x326a8, 2326 0x326ec, 0x326ec, 2327 0x32a00, 0x32abc, 2328 0x32b00, 0x32b38, 2329 0x32b40, 0x32b58, 2330 0x32b60, 0x32b78, 2331 0x32c00, 0x32c00, 2332 0x32c08, 0x32c3c, 2333 0x32e00, 0x32e2c, 2334 0x32f00, 0x32f2c, 2335 0x33000, 0x3302c, 2336 0x33034, 0x33050, 2337 0x33058, 0x33058, 2338 0x33060, 0x3308c, 2339 0x3309c, 0x330ac, 2340 0x330c0, 0x330c0, 2341 0x330c8, 0x330d0, 2342 0x330d8, 0x330e0, 2343 0x330ec, 0x3312c, 2344 0x33134, 0x33150, 2345 0x33158, 0x33158, 2346 0x33160, 0x3318c, 2347 0x3319c, 0x331ac, 2348 0x331c0, 0x331c0, 2349 0x331c8, 0x331d0, 2350 0x331d8, 0x331e0, 2351 0x331ec, 0x33290, 2352 0x33298, 0x332c4, 2353 0x332e4, 0x33390, 2354 0x33398, 0x333c4, 2355 0x333e4, 0x3342c, 2356 0x33434, 0x33450, 2357 0x33458, 0x33458, 2358 0x33460, 0x3348c, 2359 0x3349c, 0x334ac, 2360 0x334c0, 0x334c0, 2361 0x334c8, 0x334d0, 2362 0x334d8, 0x334e0, 2363 0x334ec, 0x3352c, 2364 0x33534, 0x33550, 2365 0x33558, 0x33558, 2366 0x33560, 0x3358c, 2367 0x3359c, 0x335ac, 2368 0x335c0, 0x335c0, 2369 0x335c8, 0x335d0, 2370 0x335d8, 0x335e0, 2371 0x335ec, 0x33690, 2372 0x33698, 0x336c4, 2373 0x336e4, 0x33790, 2374 0x33798, 0x337c4, 2375 0x337e4, 0x337fc, 2376 0x33814, 0x33814, 2377 0x33854, 0x33868, 2378 0x33880, 0x3388c, 2379 0x338c0, 0x338d0, 2380 0x338e8, 0x338ec, 2381 0x33900, 0x3392c, 2382 0x33934, 0x33950, 2383 0x33958, 0x33958, 2384 0x33960, 0x3398c, 2385 0x3399c, 0x339ac, 2386 0x339c0, 0x339c0, 2387 0x339c8, 0x339d0, 2388 0x339d8, 0x339e0, 2389 0x339ec, 0x33a90, 2390 0x33a98, 0x33ac4, 2391 0x33ae4, 0x33b10, 2392 0x33b24, 0x33b28, 2393 0x33b38, 0x33b50, 2394 0x33bf0, 0x33c10, 2395 0x33c24, 0x33c28, 2396 0x33c38, 0x33c50, 2397 0x33cf0, 0x33cfc, 2398 0x34000, 0x34030, 2399 0x34038, 0x34038, 2400 0x34040, 0x34040, 2401 0x34048, 0x34048, 2402 0x34050, 0x34050, 2403 0x3405c, 0x34060, 2404 0x34068, 0x34068, 2405 0x34070, 0x34070, 2406 0x34100, 0x34168, 2407 0x34190, 0x341a0, 2408 0x341a8, 0x341b8, 2409 0x341c4, 0x341c8, 2410 0x341d0, 0x341d0, 2411 0x34200, 0x34320, 2412 0x34400, 0x344b4, 2413 0x344c0, 0x3452c, 2414 0x34540, 0x3461c, 2415 0x34800, 0x348a0, 2416 0x348c0, 0x34908, 2417 0x34910, 0x349b8, 2418 0x34a00, 0x34a04, 2419 0x34a0c, 0x34a14, 2420 0x34a1c, 0x34a2c, 2421 0x34a44, 0x34a50, 2422 0x34a74, 0x34a74, 2423 0x34a7c, 0x34afc, 2424 0x34b08, 0x34c24, 2425 0x34d00, 0x34d14, 2426 0x34d1c, 0x34d3c, 2427 0x34d44, 0x34d4c, 2428 0x34d54, 0x34d74, 2429 0x34d7c, 0x34d7c, 2430 0x34de0, 0x34de0, 2431 0x34e00, 0x34ed4, 2432 0x34f00, 0x34fa4, 2433 0x34fc0, 0x34fc4, 2434 0x35000, 0x35004, 2435 0x35080, 0x350fc, 2436 0x35208, 0x35220, 2437 0x3523c, 0x35254, 2438 0x35300, 0x35300, 2439 0x35308, 0x3531c, 2440 0x35338, 0x3533c, 2441 0x35380, 0x35380, 2442 0x35388, 0x353a8, 2443 0x353b4, 0x353b4, 2444 0x35400, 0x35420, 2445 0x35438, 0x3543c, 2446 0x35480, 0x35480, 2447 0x354a8, 0x354a8, 2448 0x354b0, 0x354b4, 2449 0x354c8, 0x354d4, 2450 0x35a40, 0x35a4c, 2451 0x35af0, 0x35b20, 2452 0x35b38, 0x35b3c, 2453 0x35b80, 0x35b80, 2454 0x35ba8, 0x35ba8, 2455 0x35bb0, 0x35bb4, 2456 0x35bc8, 0x35bd4, 2457 0x36140, 0x3618c, 2458 0x361f0, 0x361f4, 2459 0x36200, 0x36200, 2460 0x36218, 0x36218, 2461 0x36400, 0x36400, 2462 0x36408, 0x3641c, 2463 0x36618, 0x36620, 2464 0x36664, 0x36664, 2465 0x366a8, 0x366a8, 2466 0x366ec, 0x366ec, 2467 0x36a00, 0x36abc, 2468 0x36b00, 0x36b38, 2469 0x36b40, 0x36b58, 2470 0x36b60, 0x36b78, 2471 0x36c00, 0x36c00, 2472 0x36c08, 0x36c3c, 2473 0x36e00, 0x36e2c, 2474 0x36f00, 0x36f2c, 2475 0x37000, 0x3702c, 2476 0x37034, 0x37050, 2477 0x37058, 0x37058, 2478 0x37060, 0x3708c, 2479 0x3709c, 0x370ac, 2480 0x370c0, 0x370c0, 2481 0x370c8, 0x370d0, 2482 0x370d8, 0x370e0, 2483 0x370ec, 0x3712c, 2484 0x37134, 0x37150, 2485 0x37158, 0x37158, 2486 0x37160, 0x3718c, 2487 0x3719c, 0x371ac, 2488 0x371c0, 0x371c0, 2489 0x371c8, 0x371d0, 2490 0x371d8, 0x371e0, 2491 0x371ec, 0x37290, 2492 0x37298, 0x372c4, 2493 0x372e4, 0x37390, 2494 0x37398, 0x373c4, 2495 0x373e4, 0x3742c, 2496 0x37434, 0x37450, 2497 0x37458, 0x37458, 2498 0x37460, 0x3748c, 2499 0x3749c, 0x374ac, 2500 0x374c0, 0x374c0, 2501 0x374c8, 0x374d0, 2502 0x374d8, 0x374e0, 2503 0x374ec, 0x3752c, 2504 0x37534, 0x37550, 2505 0x37558, 0x37558, 2506 0x37560, 0x3758c, 2507 0x3759c, 0x375ac, 2508 0x375c0, 0x375c0, 2509 0x375c8, 0x375d0, 2510 0x375d8, 0x375e0, 2511 0x375ec, 0x37690, 2512 0x37698, 0x376c4, 2513 0x376e4, 0x37790, 2514 0x37798, 0x377c4, 2515 0x377e4, 0x377fc, 2516 0x37814, 0x37814, 2517 0x37854, 0x37868, 2518 0x37880, 0x3788c, 2519 0x378c0, 0x378d0, 2520 0x378e8, 0x378ec, 2521 0x37900, 0x3792c, 2522 0x37934, 0x37950, 2523 0x37958, 0x37958, 2524 0x37960, 0x3798c, 2525 0x3799c, 0x379ac, 2526 0x379c0, 0x379c0, 2527 0x379c8, 0x379d0, 2528 0x379d8, 0x379e0, 2529 0x379ec, 0x37a90, 2530 0x37a98, 0x37ac4, 2531 0x37ae4, 0x37b10, 2532 0x37b24, 0x37b28, 2533 0x37b38, 0x37b50, 2534 0x37bf0, 0x37c10, 2535 0x37c24, 0x37c28, 2536 0x37c38, 0x37c50, 2537 0x37cf0, 0x37cfc, 2538 0x40040, 0x40040, 2539 0x40080, 0x40084, 2540 0x40100, 0x40100, 2541 0x40140, 0x401bc, 2542 0x40200, 0x40214, 2543 0x40228, 0x40228, 2544 0x40240, 0x40258, 2545 0x40280, 0x40280, 2546 0x40304, 0x40304, 2547 0x40330, 0x4033c, 2548 0x41304, 0x413b8, 2549 0x413c0, 0x413c8, 2550 0x413d0, 0x413dc, 2551 0x413f0, 0x413f0, 2552 0x41400, 0x4140c, 2553 0x41414, 0x4141c, 2554 0x41480, 0x414d0, 2555 0x44000, 0x4407c, 2556 0x440c0, 0x441ac, 2557 0x441b4, 0x4427c, 2558 0x442c0, 0x443ac, 2559 0x443b4, 0x4447c, 2560 0x444c0, 0x445ac, 2561 0x445b4, 0x4467c, 2562 0x446c0, 0x447ac, 2563 0x447b4, 0x4487c, 2564 0x448c0, 0x449ac, 2565 0x449b4, 0x44a7c, 2566 0x44ac0, 0x44bac, 2567 0x44bb4, 0x44c7c, 2568 0x44cc0, 0x44dac, 2569 0x44db4, 0x44e7c, 2570 0x44ec0, 0x44fac, 2571 0x44fb4, 0x4507c, 2572 0x450c0, 0x451ac, 2573 0x451b4, 0x451fc, 2574 0x45800, 0x45804, 2575 0x45810, 0x45830, 2576 0x45840, 0x45860, 2577 0x45868, 0x45868, 2578 0x45880, 0x45884, 2579 0x458a0, 0x458b0, 2580 0x45a00, 0x45a04, 2581 0x45a10, 0x45a30, 2582 0x45a40, 0x45a60, 2583 0x45a68, 0x45a68, 2584 0x45a80, 0x45a84, 2585 0x45aa0, 0x45ab0, 2586 0x460c0, 0x460e4, 2587 0x47000, 0x4703c, 2588 0x47044, 0x4708c, 2589 0x47200, 0x47250, 2590 0x47400, 0x47408, 2591 0x47414, 0x47420, 2592 0x47600, 0x47618, 2593 0x47800, 0x47814, 2594 0x47820, 0x4782c, 2595 0x50000, 0x50084, 2596 0x50090, 0x500cc, 2597 0x50300, 0x50384, 2598 0x50400, 0x50400, 2599 0x50800, 0x50884, 2600 0x50890, 0x508cc, 2601 0x50b00, 0x50b84, 2602 0x50c00, 0x50c00, 2603 0x51000, 0x51020, 2604 0x51028, 0x510b0, 2605 0x51300, 0x51324, 2606 }; 2607 2608 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2609 const unsigned int *reg_ranges; 2610 int reg_ranges_size, range; 2611 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2612 2613 /* Select the right set of register ranges to dump depending on the 2614 * adapter chip type. 2615 */ 2616 switch (chip_version) { 2617 case CHELSIO_T4: 2618 reg_ranges = t4_reg_ranges; 2619 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2620 break; 2621 2622 case CHELSIO_T5: 2623 reg_ranges = t5_reg_ranges; 2624 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2625 break; 2626 2627 case CHELSIO_T6: 2628 reg_ranges = t6_reg_ranges; 2629 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2630 break; 2631 2632 default: 2633 dev_err(adap->pdev_dev, 2634 "Unsupported chip version %d\n", chip_version); 2635 return; 2636 } 2637 2638 /* Clear the register buffer and insert the appropriate register 2639 * values selected by the above register ranges. 2640 */ 2641 memset(buf, 0, buf_size); 2642 for (range = 0; range < reg_ranges_size; range += 2) { 2643 unsigned int reg = reg_ranges[range]; 2644 unsigned int last_reg = reg_ranges[range + 1]; 2645 u32 *bufp = (u32 *)((char *)buf + reg); 2646 2647 /* Iterate across the register range filling in the register 2648 * buffer but don't write past the end of the register buffer. 2649 */ 2650 while (reg <= last_reg && bufp < buf_end) { 2651 *bufp++ = t4_read_reg(adap, reg); 2652 reg += sizeof(u32); 2653 } 2654 } 2655 } 2656 2657 #define EEPROM_STAT_ADDR 0x7bfc 2658 #define VPD_SIZE 0x800 2659 #define VPD_BASE 0x400 2660 #define VPD_BASE_OLD 0 2661 #define VPD_LEN 1024 2662 #define CHELSIO_VPD_UNIQUE_ID 0x82 2663 2664 /** 2665 * t4_seeprom_wp - enable/disable EEPROM write protection 2666 * @adapter: the adapter 2667 * @enable: whether to enable or disable write protection 2668 * 2669 * Enables or disables write protection on the serial EEPROM. 2670 */ 2671 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2672 { 2673 unsigned int v = enable ? 0xc : 0; 2674 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2675 return ret < 0 ? ret : 0; 2676 } 2677 2678 /** 2679 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2680 * @adapter: adapter to read 2681 * @p: where to store the parameters 2682 * 2683 * Reads card parameters stored in VPD EEPROM. 2684 */ 2685 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2686 { 2687 int i, ret = 0, addr; 2688 int ec, sn, pn, na; 2689 u8 *vpd, csum; 2690 unsigned int vpdr_len, kw_offset, id_len; 2691 2692 vpd = vmalloc(VPD_LEN); 2693 if (!vpd) 2694 return -ENOMEM; 2695 2696 /* We have two VPD data structures stored in the adapter VPD area. 2697 * By default, Linux calculates the size of the VPD area by traversing 2698 * the first VPD area at offset 0x0, so we need to tell the OS what 2699 * our real VPD size is. 2700 */ 2701 ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE); 2702 if (ret < 0) 2703 goto out; 2704 2705 /* Card information normally starts at VPD_BASE but early cards had 2706 * it at 0. 2707 */ 2708 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2709 if (ret < 0) 2710 goto out; 2711 2712 /* The VPD shall have a unique identifier specified by the PCI SIG. 2713 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2714 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2715 * is expected to automatically put this entry at the 2716 * beginning of the VPD. 2717 */ 2718 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2719 2720 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2721 if (ret < 0) 2722 goto out; 2723 2724 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2725 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2726 ret = -EINVAL; 2727 goto out; 2728 } 2729 2730 id_len = pci_vpd_lrdt_size(vpd); 2731 if (id_len > ID_LEN) 2732 id_len = ID_LEN; 2733 2734 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2735 if (i < 0) { 2736 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2737 ret = -EINVAL; 2738 goto out; 2739 } 2740 2741 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2742 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2743 if (vpdr_len + kw_offset > VPD_LEN) { 2744 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2745 ret = -EINVAL; 2746 goto out; 2747 } 2748 2749 #define FIND_VPD_KW(var, name) do { \ 2750 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2751 if (var < 0) { \ 2752 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2753 ret = -EINVAL; \ 2754 goto out; \ 2755 } \ 2756 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2757 } while (0) 2758 2759 FIND_VPD_KW(i, "RV"); 2760 for (csum = 0; i >= 0; i--) 2761 csum += vpd[i]; 2762 2763 if (csum) { 2764 dev_err(adapter->pdev_dev, 2765 "corrupted VPD EEPROM, actual csum %u\n", csum); 2766 ret = -EINVAL; 2767 goto out; 2768 } 2769 2770 FIND_VPD_KW(ec, "EC"); 2771 FIND_VPD_KW(sn, "SN"); 2772 FIND_VPD_KW(pn, "PN"); 2773 FIND_VPD_KW(na, "NA"); 2774 #undef FIND_VPD_KW 2775 2776 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2777 strim(p->id); 2778 memcpy(p->ec, vpd + ec, EC_LEN); 2779 strim(p->ec); 2780 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2781 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2782 strim(p->sn); 2783 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2784 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2785 strim(p->pn); 2786 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2787 strim((char *)p->na); 2788 2789 out: 2790 vfree(vpd); 2791 return ret < 0 ? ret : 0; 2792 } 2793 2794 /** 2795 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2796 * @adapter: adapter to read 2797 * @p: where to store the parameters 2798 * 2799 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2800 * Clock. This can only be called after a connection to the firmware 2801 * is established. 2802 */ 2803 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2804 { 2805 u32 cclk_param, cclk_val; 2806 int ret; 2807 2808 /* Grab the raw VPD parameters. 2809 */ 2810 ret = t4_get_raw_vpd_params(adapter, p); 2811 if (ret) 2812 return ret; 2813 2814 /* Ask firmware for the Core Clock since it knows how to translate the 2815 * Reference Clock ('V2') VPD field into a Core Clock value ... 2816 */ 2817 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2818 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2819 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2820 1, &cclk_param, &cclk_val); 2821 2822 if (ret) 2823 return ret; 2824 p->cclk = cclk_val; 2825 2826 return 0; 2827 } 2828 2829 /* serial flash and firmware constants */ 2830 enum { 2831 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2832 2833 /* flash command opcodes */ 2834 SF_PROG_PAGE = 2, /* program page */ 2835 SF_WR_DISABLE = 4, /* disable writes */ 2836 SF_RD_STATUS = 5, /* read status register */ 2837 SF_WR_ENABLE = 6, /* enable writes */ 2838 SF_RD_DATA_FAST = 0xb, /* read flash */ 2839 SF_RD_ID = 0x9f, /* read ID */ 2840 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2841 2842 FW_MAX_SIZE = 16 * SF_SEC_SIZE, 2843 }; 2844 2845 /** 2846 * sf1_read - read data from the serial flash 2847 * @adapter: the adapter 2848 * @byte_cnt: number of bytes to read 2849 * @cont: whether another operation will be chained 2850 * @lock: whether to lock SF for PL access only 2851 * @valp: where to store the read data 2852 * 2853 * Reads up to 4 bytes of data from the serial flash. The location of 2854 * the read needs to be specified prior to calling this by issuing the 2855 * appropriate commands to the serial flash. 2856 */ 2857 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2858 int lock, u32 *valp) 2859 { 2860 int ret; 2861 2862 if (!byte_cnt || byte_cnt > 4) 2863 return -EINVAL; 2864 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2865 return -EBUSY; 2866 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2867 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2868 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2869 if (!ret) 2870 *valp = t4_read_reg(adapter, SF_DATA_A); 2871 return ret; 2872 } 2873 2874 /** 2875 * sf1_write - write data to the serial flash 2876 * @adapter: the adapter 2877 * @byte_cnt: number of bytes to write 2878 * @cont: whether another operation will be chained 2879 * @lock: whether to lock SF for PL access only 2880 * @val: value to write 2881 * 2882 * Writes up to 4 bytes of data to the serial flash. The location of 2883 * the write needs to be specified prior to calling this by issuing the 2884 * appropriate commands to the serial flash. 2885 */ 2886 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2887 int lock, u32 val) 2888 { 2889 if (!byte_cnt || byte_cnt > 4) 2890 return -EINVAL; 2891 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2892 return -EBUSY; 2893 t4_write_reg(adapter, SF_DATA_A, val); 2894 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2895 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2896 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2897 } 2898 2899 /** 2900 * flash_wait_op - wait for a flash operation to complete 2901 * @adapter: the adapter 2902 * @attempts: max number of polls of the status register 2903 * @delay: delay between polls in ms 2904 * 2905 * Wait for a flash operation to complete by polling the status register. 2906 */ 2907 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 2908 { 2909 int ret; 2910 u32 status; 2911 2912 while (1) { 2913 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 2914 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 2915 return ret; 2916 if (!(status & 1)) 2917 return 0; 2918 if (--attempts == 0) 2919 return -EAGAIN; 2920 if (delay) 2921 msleep(delay); 2922 } 2923 } 2924 2925 /** 2926 * t4_read_flash - read words from serial flash 2927 * @adapter: the adapter 2928 * @addr: the start address for the read 2929 * @nwords: how many 32-bit words to read 2930 * @data: where to store the read data 2931 * @byte_oriented: whether to store data as bytes or as words 2932 * 2933 * Read the specified number of 32-bit words from the serial flash. 2934 * If @byte_oriented is set the read data is stored as a byte array 2935 * (i.e., big-endian), otherwise as 32-bit words in the platform's 2936 * natural endianness. 2937 */ 2938 int t4_read_flash(struct adapter *adapter, unsigned int addr, 2939 unsigned int nwords, u32 *data, int byte_oriented) 2940 { 2941 int ret; 2942 2943 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 2944 return -EINVAL; 2945 2946 addr = swab32(addr) | SF_RD_DATA_FAST; 2947 2948 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 2949 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 2950 return ret; 2951 2952 for ( ; nwords; nwords--, data++) { 2953 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 2954 if (nwords == 1) 2955 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 2956 if (ret) 2957 return ret; 2958 if (byte_oriented) 2959 *data = (__force __u32)(cpu_to_be32(*data)); 2960 } 2961 return 0; 2962 } 2963 2964 /** 2965 * t4_write_flash - write up to a page of data to the serial flash 2966 * @adapter: the adapter 2967 * @addr: the start address to write 2968 * @n: length of data to write in bytes 2969 * @data: the data to write 2970 * 2971 * Writes up to a page of data (256 bytes) to the serial flash starting 2972 * at the given address. All the data must be written to the same page. 2973 */ 2974 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 2975 unsigned int n, const u8 *data) 2976 { 2977 int ret; 2978 u32 buf[64]; 2979 unsigned int i, c, left, val, offset = addr & 0xff; 2980 2981 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 2982 return -EINVAL; 2983 2984 val = swab32(addr) | SF_PROG_PAGE; 2985 2986 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 2987 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 2988 goto unlock; 2989 2990 for (left = n; left; left -= c) { 2991 c = min(left, 4U); 2992 for (val = 0, i = 0; i < c; ++i) 2993 val = (val << 8) + *data++; 2994 2995 ret = sf1_write(adapter, c, c != left, 1, val); 2996 if (ret) 2997 goto unlock; 2998 } 2999 ret = flash_wait_op(adapter, 8, 1); 3000 if (ret) 3001 goto unlock; 3002 3003 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3004 3005 /* Read the page to verify the write succeeded */ 3006 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 3007 if (ret) 3008 return ret; 3009 3010 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3011 dev_err(adapter->pdev_dev, 3012 "failed to correctly write the flash page at %#x\n", 3013 addr); 3014 return -EIO; 3015 } 3016 return 0; 3017 3018 unlock: 3019 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3020 return ret; 3021 } 3022 3023 /** 3024 * t4_get_fw_version - read the firmware version 3025 * @adapter: the adapter 3026 * @vers: where to place the version 3027 * 3028 * Reads the FW version from flash. 3029 */ 3030 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3031 { 3032 return t4_read_flash(adapter, FLASH_FW_START + 3033 offsetof(struct fw_hdr, fw_ver), 1, 3034 vers, 0); 3035 } 3036 3037 /** 3038 * t4_get_bs_version - read the firmware bootstrap version 3039 * @adapter: the adapter 3040 * @vers: where to place the version 3041 * 3042 * Reads the FW Bootstrap version from flash. 3043 */ 3044 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3045 { 3046 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3047 offsetof(struct fw_hdr, fw_ver), 1, 3048 vers, 0); 3049 } 3050 3051 /** 3052 * t4_get_tp_version - read the TP microcode version 3053 * @adapter: the adapter 3054 * @vers: where to place the version 3055 * 3056 * Reads the TP microcode version from flash. 3057 */ 3058 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3059 { 3060 return t4_read_flash(adapter, FLASH_FW_START + 3061 offsetof(struct fw_hdr, tp_microcode_ver), 3062 1, vers, 0); 3063 } 3064 3065 /** 3066 * t4_get_exprom_version - return the Expansion ROM version (if any) 3067 * @adapter: the adapter 3068 * @vers: where to place the version 3069 * 3070 * Reads the Expansion ROM header from FLASH and returns the version 3071 * number (if present) through the @vers return value pointer. We return 3072 * this in the Firmware Version Format since it's convenient. Return 3073 * 0 on success, -ENOENT if no Expansion ROM is present. 3074 */ 3075 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3076 { 3077 struct exprom_header { 3078 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3079 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3080 } *hdr; 3081 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3082 sizeof(u32))]; 3083 int ret; 3084 3085 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3086 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3087 0); 3088 if (ret) 3089 return ret; 3090 3091 hdr = (struct exprom_header *)exprom_header_buf; 3092 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3093 return -ENOENT; 3094 3095 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3096 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3097 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3098 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3099 return 0; 3100 } 3101 3102 /** 3103 * t4_check_fw_version - check if the FW is supported with this driver 3104 * @adap: the adapter 3105 * 3106 * Checks if an adapter's FW is compatible with the driver. Returns 0 3107 * if there's exact match, a negative error if the version could not be 3108 * read or there's a major version mismatch 3109 */ 3110 int t4_check_fw_version(struct adapter *adap) 3111 { 3112 int i, ret, major, minor, micro; 3113 int exp_major, exp_minor, exp_micro; 3114 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3115 3116 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3117 /* Try multiple times before returning error */ 3118 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3119 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3120 3121 if (ret) 3122 return ret; 3123 3124 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3125 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3126 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3127 3128 switch (chip_version) { 3129 case CHELSIO_T4: 3130 exp_major = T4FW_MIN_VERSION_MAJOR; 3131 exp_minor = T4FW_MIN_VERSION_MINOR; 3132 exp_micro = T4FW_MIN_VERSION_MICRO; 3133 break; 3134 case CHELSIO_T5: 3135 exp_major = T5FW_MIN_VERSION_MAJOR; 3136 exp_minor = T5FW_MIN_VERSION_MINOR; 3137 exp_micro = T5FW_MIN_VERSION_MICRO; 3138 break; 3139 case CHELSIO_T6: 3140 exp_major = T6FW_MIN_VERSION_MAJOR; 3141 exp_minor = T6FW_MIN_VERSION_MINOR; 3142 exp_micro = T6FW_MIN_VERSION_MICRO; 3143 break; 3144 default: 3145 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3146 adap->chip); 3147 return -EINVAL; 3148 } 3149 3150 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3151 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3152 dev_err(adap->pdev_dev, 3153 "Card has firmware version %u.%u.%u, minimum " 3154 "supported firmware is %u.%u.%u.\n", major, minor, 3155 micro, exp_major, exp_minor, exp_micro); 3156 return -EFAULT; 3157 } 3158 return 0; 3159 } 3160 3161 /* Is the given firmware API compatible with the one the driver was compiled 3162 * with? 3163 */ 3164 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3165 { 3166 3167 /* short circuit if it's the exact same firmware version */ 3168 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3169 return 1; 3170 3171 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3172 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3173 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3174 return 1; 3175 #undef SAME_INTF 3176 3177 return 0; 3178 } 3179 3180 /* The firmware in the filesystem is usable, but should it be installed? 3181 * This routine explains itself in detail if it indicates the filesystem 3182 * firmware should be installed. 3183 */ 3184 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3185 int k, int c) 3186 { 3187 const char *reason; 3188 3189 if (!card_fw_usable) { 3190 reason = "incompatible or unusable"; 3191 goto install; 3192 } 3193 3194 if (k > c) { 3195 reason = "older than the version supported with this driver"; 3196 goto install; 3197 } 3198 3199 return 0; 3200 3201 install: 3202 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3203 "installing firmware %u.%u.%u.%u on card.\n", 3204 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3205 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3206 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3207 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3208 3209 return 1; 3210 } 3211 3212 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3213 const u8 *fw_data, unsigned int fw_size, 3214 struct fw_hdr *card_fw, enum dev_state state, 3215 int *reset) 3216 { 3217 int ret, card_fw_usable, fs_fw_usable; 3218 const struct fw_hdr *fs_fw; 3219 const struct fw_hdr *drv_fw; 3220 3221 drv_fw = &fw_info->fw_hdr; 3222 3223 /* Read the header of the firmware on the card */ 3224 ret = -t4_read_flash(adap, FLASH_FW_START, 3225 sizeof(*card_fw) / sizeof(uint32_t), 3226 (uint32_t *)card_fw, 1); 3227 if (ret == 0) { 3228 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3229 } else { 3230 dev_err(adap->pdev_dev, 3231 "Unable to read card's firmware header: %d\n", ret); 3232 card_fw_usable = 0; 3233 } 3234 3235 if (fw_data != NULL) { 3236 fs_fw = (const void *)fw_data; 3237 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3238 } else { 3239 fs_fw = NULL; 3240 fs_fw_usable = 0; 3241 } 3242 3243 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3244 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3245 /* Common case: the firmware on the card is an exact match and 3246 * the filesystem one is an exact match too, or the filesystem 3247 * one is absent/incompatible. 3248 */ 3249 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3250 should_install_fs_fw(adap, card_fw_usable, 3251 be32_to_cpu(fs_fw->fw_ver), 3252 be32_to_cpu(card_fw->fw_ver))) { 3253 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 3254 fw_size, 0); 3255 if (ret != 0) { 3256 dev_err(adap->pdev_dev, 3257 "failed to install firmware: %d\n", ret); 3258 goto bye; 3259 } 3260 3261 /* Installed successfully, update the cached header too. */ 3262 *card_fw = *fs_fw; 3263 card_fw_usable = 1; 3264 *reset = 0; /* already reset as part of load_fw */ 3265 } 3266 3267 if (!card_fw_usable) { 3268 uint32_t d, c, k; 3269 3270 d = be32_to_cpu(drv_fw->fw_ver); 3271 c = be32_to_cpu(card_fw->fw_ver); 3272 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3273 3274 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3275 "chip state %d, " 3276 "driver compiled with %d.%d.%d.%d, " 3277 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3278 state, 3279 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3280 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3281 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3282 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3283 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3284 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3285 ret = EINVAL; 3286 goto bye; 3287 } 3288 3289 /* We're using whatever's on the card and it's known to be good. */ 3290 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3291 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3292 3293 bye: 3294 return ret; 3295 } 3296 3297 /** 3298 * t4_flash_erase_sectors - erase a range of flash sectors 3299 * @adapter: the adapter 3300 * @start: the first sector to erase 3301 * @end: the last sector to erase 3302 * 3303 * Erases the sectors in the given inclusive range. 3304 */ 3305 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3306 { 3307 int ret = 0; 3308 3309 if (end >= adapter->params.sf_nsec) 3310 return -EINVAL; 3311 3312 while (start <= end) { 3313 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3314 (ret = sf1_write(adapter, 4, 0, 1, 3315 SF_ERASE_SECTOR | (start << 8))) != 0 || 3316 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3317 dev_err(adapter->pdev_dev, 3318 "erase of flash sector %d failed, error %d\n", 3319 start, ret); 3320 break; 3321 } 3322 start++; 3323 } 3324 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3325 return ret; 3326 } 3327 3328 /** 3329 * t4_flash_cfg_addr - return the address of the flash configuration file 3330 * @adapter: the adapter 3331 * 3332 * Return the address within the flash where the Firmware Configuration 3333 * File is stored. 3334 */ 3335 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3336 { 3337 if (adapter->params.sf_size == 0x100000) 3338 return FLASH_FPGA_CFG_START; 3339 else 3340 return FLASH_CFG_START; 3341 } 3342 3343 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3344 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3345 * and emit an error message for mismatched firmware to save our caller the 3346 * effort ... 3347 */ 3348 static bool t4_fw_matches_chip(const struct adapter *adap, 3349 const struct fw_hdr *hdr) 3350 { 3351 /* The expression below will return FALSE for any unsupported adapter 3352 * which will keep us "honest" in the future ... 3353 */ 3354 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3355 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3356 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3357 return true; 3358 3359 dev_err(adap->pdev_dev, 3360 "FW image (%d) is not suitable for this adapter (%d)\n", 3361 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3362 return false; 3363 } 3364 3365 /** 3366 * t4_load_fw - download firmware 3367 * @adap: the adapter 3368 * @fw_data: the firmware image to write 3369 * @size: image size 3370 * 3371 * Write the supplied firmware image to the card's serial flash. 3372 */ 3373 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3374 { 3375 u32 csum; 3376 int ret, addr; 3377 unsigned int i; 3378 u8 first_page[SF_PAGE_SIZE]; 3379 const __be32 *p = (const __be32 *)fw_data; 3380 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3381 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3382 unsigned int fw_img_start = adap->params.sf_fw_start; 3383 unsigned int fw_start_sec = fw_img_start / sf_sec_size; 3384 3385 if (!size) { 3386 dev_err(adap->pdev_dev, "FW image has no data\n"); 3387 return -EINVAL; 3388 } 3389 if (size & 511) { 3390 dev_err(adap->pdev_dev, 3391 "FW image size not multiple of 512 bytes\n"); 3392 return -EINVAL; 3393 } 3394 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3395 dev_err(adap->pdev_dev, 3396 "FW image size differs from size in FW header\n"); 3397 return -EINVAL; 3398 } 3399 if (size > FW_MAX_SIZE) { 3400 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3401 FW_MAX_SIZE); 3402 return -EFBIG; 3403 } 3404 if (!t4_fw_matches_chip(adap, hdr)) 3405 return -EINVAL; 3406 3407 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3408 csum += be32_to_cpu(p[i]); 3409 3410 if (csum != 0xffffffff) { 3411 dev_err(adap->pdev_dev, 3412 "corrupted firmware image, checksum %#x\n", csum); 3413 return -EINVAL; 3414 } 3415 3416 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3417 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3418 if (ret) 3419 goto out; 3420 3421 /* 3422 * We write the correct version at the end so the driver can see a bad 3423 * version if the FW write fails. Start by writing a copy of the 3424 * first page with a bad version. 3425 */ 3426 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3427 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3428 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page); 3429 if (ret) 3430 goto out; 3431 3432 addr = fw_img_start; 3433 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3434 addr += SF_PAGE_SIZE; 3435 fw_data += SF_PAGE_SIZE; 3436 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3437 if (ret) 3438 goto out; 3439 } 3440 3441 ret = t4_write_flash(adap, 3442 fw_img_start + offsetof(struct fw_hdr, fw_ver), 3443 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3444 out: 3445 if (ret) 3446 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3447 ret); 3448 else 3449 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3450 return ret; 3451 } 3452 3453 /** 3454 * t4_phy_fw_ver - return current PHY firmware version 3455 * @adap: the adapter 3456 * @phy_fw_ver: return value buffer for PHY firmware version 3457 * 3458 * Returns the current version of external PHY firmware on the 3459 * adapter. 3460 */ 3461 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3462 { 3463 u32 param, val; 3464 int ret; 3465 3466 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3467 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3468 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3469 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3470 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3471 ¶m, &val); 3472 if (ret < 0) 3473 return ret; 3474 *phy_fw_ver = val; 3475 return 0; 3476 } 3477 3478 /** 3479 * t4_load_phy_fw - download port PHY firmware 3480 * @adap: the adapter 3481 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3482 * @win_lock: the lock to use to guard the memory copy 3483 * @phy_fw_version: function to check PHY firmware versions 3484 * @phy_fw_data: the PHY firmware image to write 3485 * @phy_fw_size: image size 3486 * 3487 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3488 * @phy_fw_version is supplied, then it will be used to determine if 3489 * it's necessary to perform the transfer by comparing the version 3490 * of any existing adapter PHY firmware with that of the passed in 3491 * PHY firmware image. If @win_lock is non-NULL then it will be used 3492 * around the call to t4_memory_rw() which transfers the PHY firmware 3493 * to the adapter. 3494 * 3495 * A negative error number will be returned if an error occurs. If 3496 * version number support is available and there's no need to upgrade 3497 * the firmware, 0 will be returned. If firmware is successfully 3498 * transferred to the adapter, 1 will be retured. 3499 * 3500 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3501 * a result, a RESET of the adapter would cause that RAM to lose its 3502 * contents. Thus, loading PHY firmware on such adapters must happen 3503 * after any FW_RESET_CMDs ... 3504 */ 3505 int t4_load_phy_fw(struct adapter *adap, 3506 int win, spinlock_t *win_lock, 3507 int (*phy_fw_version)(const u8 *, size_t), 3508 const u8 *phy_fw_data, size_t phy_fw_size) 3509 { 3510 unsigned long mtype = 0, maddr = 0; 3511 u32 param, val; 3512 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3513 int ret; 3514 3515 /* If we have version number support, then check to see if the adapter 3516 * already has up-to-date PHY firmware loaded. 3517 */ 3518 if (phy_fw_version) { 3519 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3520 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3521 if (ret < 0) 3522 return ret; 3523 3524 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3525 CH_WARN(adap, "PHY Firmware already up-to-date, " 3526 "version %#x\n", cur_phy_fw_ver); 3527 return 0; 3528 } 3529 } 3530 3531 /* Ask the firmware where it wants us to copy the PHY firmware image. 3532 * The size of the file requires a special version of the READ coommand 3533 * which will pass the file size via the values field in PARAMS_CMD and 3534 * retrieve the return value from firmware and place it in the same 3535 * buffer values 3536 */ 3537 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3538 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3539 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3540 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3541 val = phy_fw_size; 3542 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3543 ¶m, &val, 1); 3544 if (ret < 0) 3545 return ret; 3546 mtype = val >> 8; 3547 maddr = (val & 0xff) << 16; 3548 3549 /* Copy the supplied PHY Firmware image to the adapter memory location 3550 * allocated by the adapter firmware. 3551 */ 3552 if (win_lock) 3553 spin_lock_bh(win_lock); 3554 ret = t4_memory_rw(adap, win, mtype, maddr, 3555 phy_fw_size, (__be32 *)phy_fw_data, 3556 T4_MEMORY_WRITE); 3557 if (win_lock) 3558 spin_unlock_bh(win_lock); 3559 if (ret) 3560 return ret; 3561 3562 /* Tell the firmware that the PHY firmware image has been written to 3563 * RAM and it can now start copying it over to the PHYs. The chip 3564 * firmware will RESET the affected PHYs as part of this operation 3565 * leaving them running the new PHY firmware image. 3566 */ 3567 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3568 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3569 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3570 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3571 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3572 ¶m, &val, 30000); 3573 3574 /* If we have version number support, then check to see that the new 3575 * firmware got loaded properly. 3576 */ 3577 if (phy_fw_version) { 3578 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3579 if (ret < 0) 3580 return ret; 3581 3582 if (cur_phy_fw_ver != new_phy_fw_vers) { 3583 CH_WARN(adap, "PHY Firmware did not update: " 3584 "version on adapter %#x, " 3585 "version flashed %#x\n", 3586 cur_phy_fw_ver, new_phy_fw_vers); 3587 return -ENXIO; 3588 } 3589 } 3590 3591 return 1; 3592 } 3593 3594 /** 3595 * t4_fwcache - firmware cache operation 3596 * @adap: the adapter 3597 * @op : the operation (flush or flush and invalidate) 3598 */ 3599 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3600 { 3601 struct fw_params_cmd c; 3602 3603 memset(&c, 0, sizeof(c)); 3604 c.op_to_vfn = 3605 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3606 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3607 FW_PARAMS_CMD_PFN_V(adap->pf) | 3608 FW_PARAMS_CMD_VFN_V(0)); 3609 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3610 c.param[0].mnem = 3611 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3612 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3613 c.param[0].val = (__force __be32)op; 3614 3615 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3616 } 3617 3618 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3619 unsigned int *pif_req_wrptr, 3620 unsigned int *pif_rsp_wrptr) 3621 { 3622 int i, j; 3623 u32 cfg, val, req, rsp; 3624 3625 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3626 if (cfg & LADBGEN_F) 3627 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3628 3629 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3630 req = POLADBGWRPTR_G(val); 3631 rsp = PILADBGWRPTR_G(val); 3632 if (pif_req_wrptr) 3633 *pif_req_wrptr = req; 3634 if (pif_rsp_wrptr) 3635 *pif_rsp_wrptr = rsp; 3636 3637 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3638 for (j = 0; j < 6; j++) { 3639 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3640 PILADBGRDPTR_V(rsp)); 3641 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3642 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3643 req++; 3644 rsp++; 3645 } 3646 req = (req + 2) & POLADBGRDPTR_M; 3647 rsp = (rsp + 2) & PILADBGRDPTR_M; 3648 } 3649 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3650 } 3651 3652 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3653 { 3654 u32 cfg; 3655 int i, j, idx; 3656 3657 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3658 if (cfg & LADBGEN_F) 3659 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3660 3661 for (i = 0; i < CIM_MALA_SIZE; i++) { 3662 for (j = 0; j < 5; j++) { 3663 idx = 8 * i + j; 3664 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3665 PILADBGRDPTR_V(idx)); 3666 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3667 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3668 } 3669 } 3670 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3671 } 3672 3673 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3674 { 3675 unsigned int i, j; 3676 3677 for (i = 0; i < 8; i++) { 3678 u32 *p = la_buf + i; 3679 3680 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3681 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3682 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3683 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3684 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3685 } 3686 } 3687 3688 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\ 3689 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_25G | \ 3690 FW_PORT_CAP_SPEED_40G | FW_PORT_CAP_SPEED_100G | \ 3691 FW_PORT_CAP_ANEG) 3692 3693 /** 3694 * t4_link_l1cfg - apply link configuration to MAC/PHY 3695 * @phy: the PHY to setup 3696 * @mac: the MAC to setup 3697 * @lc: the requested link configuration 3698 * 3699 * Set up a port's MAC and PHY according to a desired link configuration. 3700 * - If the PHY can auto-negotiate first decide what to advertise, then 3701 * enable/disable auto-negotiation as desired, and reset. 3702 * - If the PHY does not auto-negotiate just reset it. 3703 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 3704 * otherwise do it later based on the outcome of auto-negotiation. 3705 */ 3706 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port, 3707 struct link_config *lc) 3708 { 3709 struct fw_port_cmd c; 3710 unsigned int mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO); 3711 unsigned int fc = 0, fec = 0, fw_fec = 0; 3712 3713 lc->link_ok = 0; 3714 if (lc->requested_fc & PAUSE_RX) 3715 fc |= FW_PORT_CAP_FC_RX; 3716 if (lc->requested_fc & PAUSE_TX) 3717 fc |= FW_PORT_CAP_FC_TX; 3718 3719 fec = lc->requested_fec & FEC_AUTO ? lc->auto_fec : lc->requested_fec; 3720 3721 if (fec & FEC_RS) 3722 fw_fec |= FW_PORT_CAP_FEC_RS; 3723 if (fec & FEC_BASER_RS) 3724 fw_fec |= FW_PORT_CAP_FEC_BASER_RS; 3725 3726 memset(&c, 0, sizeof(c)); 3727 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 3728 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 3729 FW_PORT_CMD_PORTID_V(port)); 3730 c.action_to_len16 = 3731 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | 3732 FW_LEN16(c)); 3733 3734 if (!(lc->supported & FW_PORT_CAP_ANEG)) { 3735 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) | 3736 fc | fw_fec); 3737 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 3738 } else if (lc->autoneg == AUTONEG_DISABLE) { 3739 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | 3740 fw_fec | mdi); 3741 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 3742 } else 3743 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | 3744 fw_fec | mdi); 3745 3746 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3747 } 3748 3749 /** 3750 * t4_restart_aneg - restart autonegotiation 3751 * @adap: the adapter 3752 * @mbox: mbox to use for the FW command 3753 * @port: the port id 3754 * 3755 * Restarts autonegotiation for the selected port. 3756 */ 3757 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 3758 { 3759 struct fw_port_cmd c; 3760 3761 memset(&c, 0, sizeof(c)); 3762 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 3763 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 3764 FW_PORT_CMD_PORTID_V(port)); 3765 c.action_to_len16 = 3766 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | 3767 FW_LEN16(c)); 3768 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 3769 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3770 } 3771 3772 typedef void (*int_handler_t)(struct adapter *adap); 3773 3774 struct intr_info { 3775 unsigned int mask; /* bits to check in interrupt status */ 3776 const char *msg; /* message to print or NULL */ 3777 short stat_idx; /* stat counter to increment or -1 */ 3778 unsigned short fatal; /* whether the condition reported is fatal */ 3779 int_handler_t int_handler; /* platform-specific int handler */ 3780 }; 3781 3782 /** 3783 * t4_handle_intr_status - table driven interrupt handler 3784 * @adapter: the adapter that generated the interrupt 3785 * @reg: the interrupt status register to process 3786 * @acts: table of interrupt actions 3787 * 3788 * A table driven interrupt handler that applies a set of masks to an 3789 * interrupt status word and performs the corresponding actions if the 3790 * interrupts described by the mask have occurred. The actions include 3791 * optionally emitting a warning or alert message. The table is terminated 3792 * by an entry specifying mask 0. Returns the number of fatal interrupt 3793 * conditions. 3794 */ 3795 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 3796 const struct intr_info *acts) 3797 { 3798 int fatal = 0; 3799 unsigned int mask = 0; 3800 unsigned int status = t4_read_reg(adapter, reg); 3801 3802 for ( ; acts->mask; ++acts) { 3803 if (!(status & acts->mask)) 3804 continue; 3805 if (acts->fatal) { 3806 fatal++; 3807 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 3808 status & acts->mask); 3809 } else if (acts->msg && printk_ratelimit()) 3810 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 3811 status & acts->mask); 3812 if (acts->int_handler) 3813 acts->int_handler(adapter); 3814 mask |= acts->mask; 3815 } 3816 status &= mask; 3817 if (status) /* clear processed interrupts */ 3818 t4_write_reg(adapter, reg, status); 3819 return fatal; 3820 } 3821 3822 /* 3823 * Interrupt handler for the PCIE module. 3824 */ 3825 static void pcie_intr_handler(struct adapter *adapter) 3826 { 3827 static const struct intr_info sysbus_intr_info[] = { 3828 { RNPP_F, "RXNP array parity error", -1, 1 }, 3829 { RPCP_F, "RXPC array parity error", -1, 1 }, 3830 { RCIP_F, "RXCIF array parity error", -1, 1 }, 3831 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 3832 { RFTP_F, "RXFT array parity error", -1, 1 }, 3833 { 0 } 3834 }; 3835 static const struct intr_info pcie_port_intr_info[] = { 3836 { TPCP_F, "TXPC array parity error", -1, 1 }, 3837 { TNPP_F, "TXNP array parity error", -1, 1 }, 3838 { TFTP_F, "TXFT array parity error", -1, 1 }, 3839 { TCAP_F, "TXCA array parity error", -1, 1 }, 3840 { TCIP_F, "TXCIF array parity error", -1, 1 }, 3841 { RCAP_F, "RXCA array parity error", -1, 1 }, 3842 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 3843 { RDPE_F, "Rx data parity error", -1, 1 }, 3844 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 3845 { 0 } 3846 }; 3847 static const struct intr_info pcie_intr_info[] = { 3848 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 3849 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 3850 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 3851 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 3852 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 3853 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 3854 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 3855 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 3856 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 3857 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 3858 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 3859 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 3860 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 3861 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 3862 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 3863 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 3864 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 3865 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 3866 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 3867 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 3868 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 3869 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 3870 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 3871 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 3872 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 3873 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 3874 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 3875 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 3876 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 3877 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 3878 -1, 0 }, 3879 { 0 } 3880 }; 3881 3882 static struct intr_info t5_pcie_intr_info[] = { 3883 { MSTGRPPERR_F, "Master Response Read Queue parity error", 3884 -1, 1 }, 3885 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 3886 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 3887 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 3888 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 3889 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 3890 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 3891 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 3892 -1, 1 }, 3893 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 3894 -1, 1 }, 3895 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 3896 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 3897 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 3898 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 3899 { DREQWRPERR_F, "PCI DMA channel write request parity error", 3900 -1, 1 }, 3901 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 3902 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 3903 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 3904 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 3905 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 3906 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 3907 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 3908 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 3909 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 3910 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 3911 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 3912 -1, 1 }, 3913 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 3914 -1, 1 }, 3915 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 3916 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 3917 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 3918 { READRSPERR_F, "Outbound read error", -1, 0 }, 3919 { 0 } 3920 }; 3921 3922 int fat; 3923 3924 if (is_t4(adapter->params.chip)) 3925 fat = t4_handle_intr_status(adapter, 3926 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 3927 sysbus_intr_info) + 3928 t4_handle_intr_status(adapter, 3929 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 3930 pcie_port_intr_info) + 3931 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 3932 pcie_intr_info); 3933 else 3934 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 3935 t5_pcie_intr_info); 3936 3937 if (fat) 3938 t4_fatal_err(adapter); 3939 } 3940 3941 /* 3942 * TP interrupt handler. 3943 */ 3944 static void tp_intr_handler(struct adapter *adapter) 3945 { 3946 static const struct intr_info tp_intr_info[] = { 3947 { 0x3fffffff, "TP parity error", -1, 1 }, 3948 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 3949 { 0 } 3950 }; 3951 3952 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 3953 t4_fatal_err(adapter); 3954 } 3955 3956 /* 3957 * SGE interrupt handler. 3958 */ 3959 static void sge_intr_handler(struct adapter *adapter) 3960 { 3961 u64 v; 3962 u32 err; 3963 3964 static const struct intr_info sge_intr_info[] = { 3965 { ERR_CPL_EXCEED_IQE_SIZE_F, 3966 "SGE received CPL exceeding IQE size", -1, 1 }, 3967 { ERR_INVALID_CIDX_INC_F, 3968 "SGE GTS CIDX increment too large", -1, 0 }, 3969 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 3970 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 3971 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 3972 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 3973 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 3974 0 }, 3975 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 3976 0 }, 3977 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 3978 0 }, 3979 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 3980 0 }, 3981 { ERR_ING_CTXT_PRIO_F, 3982 "SGE too many priority ingress contexts", -1, 0 }, 3983 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 3984 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 3985 { 0 } 3986 }; 3987 3988 static struct intr_info t4t5_sge_intr_info[] = { 3989 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 3990 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 3991 { ERR_EGR_CTXT_PRIO_F, 3992 "SGE too many priority egress contexts", -1, 0 }, 3993 { 0 } 3994 }; 3995 3996 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | 3997 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); 3998 if (v) { 3999 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 4000 (unsigned long long)v); 4001 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); 4002 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); 4003 } 4004 4005 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4006 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4007 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4008 t4t5_sge_intr_info); 4009 4010 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4011 if (err & ERROR_QID_VALID_F) { 4012 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4013 ERROR_QID_G(err)); 4014 if (err & UNCAPTURED_ERROR_F) 4015 dev_err(adapter->pdev_dev, 4016 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4017 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4018 UNCAPTURED_ERROR_F); 4019 } 4020 4021 if (v != 0) 4022 t4_fatal_err(adapter); 4023 } 4024 4025 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4026 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4027 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4028 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4029 4030 /* 4031 * CIM interrupt handler. 4032 */ 4033 static void cim_intr_handler(struct adapter *adapter) 4034 { 4035 static const struct intr_info cim_intr_info[] = { 4036 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4037 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4038 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4039 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4040 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4041 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4042 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4043 { 0 } 4044 }; 4045 static const struct intr_info cim_upintr_info[] = { 4046 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4047 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4048 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4049 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4050 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4051 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4052 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4053 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4054 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4055 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4056 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4057 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4058 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4059 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4060 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4061 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4062 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4063 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4064 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4065 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4066 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4067 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4068 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4069 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4070 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4071 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4072 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4073 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4074 { 0 } 4075 }; 4076 4077 int fat; 4078 4079 if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F) 4080 t4_report_fw_error(adapter); 4081 4082 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4083 cim_intr_info) + 4084 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4085 cim_upintr_info); 4086 if (fat) 4087 t4_fatal_err(adapter); 4088 } 4089 4090 /* 4091 * ULP RX interrupt handler. 4092 */ 4093 static void ulprx_intr_handler(struct adapter *adapter) 4094 { 4095 static const struct intr_info ulprx_intr_info[] = { 4096 { 0x1800000, "ULPRX context error", -1, 1 }, 4097 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4098 { 0 } 4099 }; 4100 4101 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4102 t4_fatal_err(adapter); 4103 } 4104 4105 /* 4106 * ULP TX interrupt handler. 4107 */ 4108 static void ulptx_intr_handler(struct adapter *adapter) 4109 { 4110 static const struct intr_info ulptx_intr_info[] = { 4111 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4112 0 }, 4113 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4114 0 }, 4115 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4116 0 }, 4117 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4118 0 }, 4119 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4120 { 0 } 4121 }; 4122 4123 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4124 t4_fatal_err(adapter); 4125 } 4126 4127 /* 4128 * PM TX interrupt handler. 4129 */ 4130 static void pmtx_intr_handler(struct adapter *adapter) 4131 { 4132 static const struct intr_info pmtx_intr_info[] = { 4133 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4134 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4135 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4136 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4137 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4138 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4139 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4140 -1, 1 }, 4141 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4142 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4143 { 0 } 4144 }; 4145 4146 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4147 t4_fatal_err(adapter); 4148 } 4149 4150 /* 4151 * PM RX interrupt handler. 4152 */ 4153 static void pmrx_intr_handler(struct adapter *adapter) 4154 { 4155 static const struct intr_info pmrx_intr_info[] = { 4156 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4157 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4158 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4159 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4160 -1, 1 }, 4161 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4162 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4163 { 0 } 4164 }; 4165 4166 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4167 t4_fatal_err(adapter); 4168 } 4169 4170 /* 4171 * CPL switch interrupt handler. 4172 */ 4173 static void cplsw_intr_handler(struct adapter *adapter) 4174 { 4175 static const struct intr_info cplsw_intr_info[] = { 4176 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4177 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4178 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4179 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4180 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4181 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4182 { 0 } 4183 }; 4184 4185 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4186 t4_fatal_err(adapter); 4187 } 4188 4189 /* 4190 * LE interrupt handler. 4191 */ 4192 static void le_intr_handler(struct adapter *adap) 4193 { 4194 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4195 static const struct intr_info le_intr_info[] = { 4196 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4197 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4198 { PARITYERR_F, "LE parity error", -1, 1 }, 4199 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4200 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4201 { 0 } 4202 }; 4203 4204 static struct intr_info t6_le_intr_info[] = { 4205 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4206 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4207 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4208 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4209 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4210 { 0 } 4211 }; 4212 4213 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4214 (chip <= CHELSIO_T5) ? 4215 le_intr_info : t6_le_intr_info)) 4216 t4_fatal_err(adap); 4217 } 4218 4219 /* 4220 * MPS interrupt handler. 4221 */ 4222 static void mps_intr_handler(struct adapter *adapter) 4223 { 4224 static const struct intr_info mps_rx_intr_info[] = { 4225 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4226 { 0 } 4227 }; 4228 static const struct intr_info mps_tx_intr_info[] = { 4229 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4230 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4231 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4232 -1, 1 }, 4233 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4234 -1, 1 }, 4235 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4236 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4237 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4238 { 0 } 4239 }; 4240 static const struct intr_info mps_trc_intr_info[] = { 4241 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4242 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4243 -1, 1 }, 4244 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4245 { 0 } 4246 }; 4247 static const struct intr_info mps_stat_sram_intr_info[] = { 4248 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4249 { 0 } 4250 }; 4251 static const struct intr_info mps_stat_tx_intr_info[] = { 4252 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4253 { 0 } 4254 }; 4255 static const struct intr_info mps_stat_rx_intr_info[] = { 4256 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4257 { 0 } 4258 }; 4259 static const struct intr_info mps_cls_intr_info[] = { 4260 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4261 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4262 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4263 { 0 } 4264 }; 4265 4266 int fat; 4267 4268 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4269 mps_rx_intr_info) + 4270 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4271 mps_tx_intr_info) + 4272 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4273 mps_trc_intr_info) + 4274 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4275 mps_stat_sram_intr_info) + 4276 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4277 mps_stat_tx_intr_info) + 4278 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4279 mps_stat_rx_intr_info) + 4280 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4281 mps_cls_intr_info); 4282 4283 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4284 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4285 if (fat) 4286 t4_fatal_err(adapter); 4287 } 4288 4289 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4290 ECC_UE_INT_CAUSE_F) 4291 4292 /* 4293 * EDC/MC interrupt handler. 4294 */ 4295 static void mem_intr_handler(struct adapter *adapter, int idx) 4296 { 4297 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4298 4299 unsigned int addr, cnt_addr, v; 4300 4301 if (idx <= MEM_EDC1) { 4302 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4303 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4304 } else if (idx == MEM_MC) { 4305 if (is_t4(adapter->params.chip)) { 4306 addr = MC_INT_CAUSE_A; 4307 cnt_addr = MC_ECC_STATUS_A; 4308 } else { 4309 addr = MC_P_INT_CAUSE_A; 4310 cnt_addr = MC_P_ECC_STATUS_A; 4311 } 4312 } else { 4313 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4314 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4315 } 4316 4317 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4318 if (v & PERR_INT_CAUSE_F) 4319 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4320 name[idx]); 4321 if (v & ECC_CE_INT_CAUSE_F) { 4322 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4323 4324 t4_edc_err_read(adapter, idx); 4325 4326 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4327 if (printk_ratelimit()) 4328 dev_warn(adapter->pdev_dev, 4329 "%u %s correctable ECC data error%s\n", 4330 cnt, name[idx], cnt > 1 ? "s" : ""); 4331 } 4332 if (v & ECC_UE_INT_CAUSE_F) 4333 dev_alert(adapter->pdev_dev, 4334 "%s uncorrectable ECC data error\n", name[idx]); 4335 4336 t4_write_reg(adapter, addr, v); 4337 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4338 t4_fatal_err(adapter); 4339 } 4340 4341 /* 4342 * MA interrupt handler. 4343 */ 4344 static void ma_intr_handler(struct adapter *adap) 4345 { 4346 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4347 4348 if (status & MEM_PERR_INT_CAUSE_F) { 4349 dev_alert(adap->pdev_dev, 4350 "MA parity error, parity status %#x\n", 4351 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4352 if (is_t5(adap->params.chip)) 4353 dev_alert(adap->pdev_dev, 4354 "MA parity error, parity status %#x\n", 4355 t4_read_reg(adap, 4356 MA_PARITY_ERROR_STATUS2_A)); 4357 } 4358 if (status & MEM_WRAP_INT_CAUSE_F) { 4359 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4360 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4361 "client %u to address %#x\n", 4362 MEM_WRAP_CLIENT_NUM_G(v), 4363 MEM_WRAP_ADDRESS_G(v) << 4); 4364 } 4365 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4366 t4_fatal_err(adap); 4367 } 4368 4369 /* 4370 * SMB interrupt handler. 4371 */ 4372 static void smb_intr_handler(struct adapter *adap) 4373 { 4374 static const struct intr_info smb_intr_info[] = { 4375 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4376 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4377 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4378 { 0 } 4379 }; 4380 4381 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4382 t4_fatal_err(adap); 4383 } 4384 4385 /* 4386 * NC-SI interrupt handler. 4387 */ 4388 static void ncsi_intr_handler(struct adapter *adap) 4389 { 4390 static const struct intr_info ncsi_intr_info[] = { 4391 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4392 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4393 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4394 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4395 { 0 } 4396 }; 4397 4398 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4399 t4_fatal_err(adap); 4400 } 4401 4402 /* 4403 * XGMAC interrupt handler. 4404 */ 4405 static void xgmac_intr_handler(struct adapter *adap, int port) 4406 { 4407 u32 v, int_cause_reg; 4408 4409 if (is_t4(adap->params.chip)) 4410 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4411 else 4412 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4413 4414 v = t4_read_reg(adap, int_cause_reg); 4415 4416 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4417 if (!v) 4418 return; 4419 4420 if (v & TXFIFO_PRTY_ERR_F) 4421 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4422 port); 4423 if (v & RXFIFO_PRTY_ERR_F) 4424 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4425 port); 4426 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4427 t4_fatal_err(adap); 4428 } 4429 4430 /* 4431 * PL interrupt handler. 4432 */ 4433 static void pl_intr_handler(struct adapter *adap) 4434 { 4435 static const struct intr_info pl_intr_info[] = { 4436 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4437 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4438 { 0 } 4439 }; 4440 4441 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4442 t4_fatal_err(adap); 4443 } 4444 4445 #define PF_INTR_MASK (PFSW_F) 4446 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4447 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4448 CPL_SWITCH_F | SGE_F | ULP_TX_F) 4449 4450 /** 4451 * t4_slow_intr_handler - control path interrupt handler 4452 * @adapter: the adapter 4453 * 4454 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 4455 * The designation 'slow' is because it involves register reads, while 4456 * data interrupts typically don't involve any MMIOs. 4457 */ 4458 int t4_slow_intr_handler(struct adapter *adapter) 4459 { 4460 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 4461 4462 if (!(cause & GLBL_INTR_MASK)) 4463 return 0; 4464 if (cause & CIM_F) 4465 cim_intr_handler(adapter); 4466 if (cause & MPS_F) 4467 mps_intr_handler(adapter); 4468 if (cause & NCSI_F) 4469 ncsi_intr_handler(adapter); 4470 if (cause & PL_F) 4471 pl_intr_handler(adapter); 4472 if (cause & SMB_F) 4473 smb_intr_handler(adapter); 4474 if (cause & XGMAC0_F) 4475 xgmac_intr_handler(adapter, 0); 4476 if (cause & XGMAC1_F) 4477 xgmac_intr_handler(adapter, 1); 4478 if (cause & XGMAC_KR0_F) 4479 xgmac_intr_handler(adapter, 2); 4480 if (cause & XGMAC_KR1_F) 4481 xgmac_intr_handler(adapter, 3); 4482 if (cause & PCIE_F) 4483 pcie_intr_handler(adapter); 4484 if (cause & MC_F) 4485 mem_intr_handler(adapter, MEM_MC); 4486 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 4487 mem_intr_handler(adapter, MEM_MC1); 4488 if (cause & EDC0_F) 4489 mem_intr_handler(adapter, MEM_EDC0); 4490 if (cause & EDC1_F) 4491 mem_intr_handler(adapter, MEM_EDC1); 4492 if (cause & LE_F) 4493 le_intr_handler(adapter); 4494 if (cause & TP_F) 4495 tp_intr_handler(adapter); 4496 if (cause & MA_F) 4497 ma_intr_handler(adapter); 4498 if (cause & PM_TX_F) 4499 pmtx_intr_handler(adapter); 4500 if (cause & PM_RX_F) 4501 pmrx_intr_handler(adapter); 4502 if (cause & ULP_RX_F) 4503 ulprx_intr_handler(adapter); 4504 if (cause & CPL_SWITCH_F) 4505 cplsw_intr_handler(adapter); 4506 if (cause & SGE_F) 4507 sge_intr_handler(adapter); 4508 if (cause & ULP_TX_F) 4509 ulptx_intr_handler(adapter); 4510 4511 /* Clear the interrupts just processed for which we are the master. */ 4512 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK); 4513 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 4514 return 1; 4515 } 4516 4517 /** 4518 * t4_intr_enable - enable interrupts 4519 * @adapter: the adapter whose interrupts should be enabled 4520 * 4521 * Enable PF-specific interrupts for the calling function and the top-level 4522 * interrupt concentrator for global interrupts. Interrupts are already 4523 * enabled at each module, here we just enable the roots of the interrupt 4524 * hierarchies. 4525 * 4526 * Note: this function should be called only when the driver manages 4527 * non PF-specific interrupts from the various HW modules. Only one PCI 4528 * function at a time should be doing this. 4529 */ 4530 void t4_intr_enable(struct adapter *adapter) 4531 { 4532 u32 val = 0; 4533 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4534 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4535 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4536 4537 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4538 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 4539 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 4540 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 4541 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 4542 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 4543 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 4544 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 4545 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 4546 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 4547 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 4548 } 4549 4550 /** 4551 * t4_intr_disable - disable interrupts 4552 * @adapter: the adapter whose interrupts should be disabled 4553 * 4554 * Disable interrupts. We only disable the top-level interrupt 4555 * concentrators. The caller must be a PCI function managing global 4556 * interrupts. 4557 */ 4558 void t4_intr_disable(struct adapter *adapter) 4559 { 4560 u32 whoami, pf; 4561 4562 if (pci_channel_offline(adapter->pdev)) 4563 return; 4564 4565 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4566 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4567 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4568 4569 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 4570 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 4571 } 4572 4573 /** 4574 * t4_config_rss_range - configure a portion of the RSS mapping table 4575 * @adapter: the adapter 4576 * @mbox: mbox to use for the FW command 4577 * @viid: virtual interface whose RSS subtable is to be written 4578 * @start: start entry in the table to write 4579 * @n: how many table entries to write 4580 * @rspq: values for the response queue lookup table 4581 * @nrspq: number of values in @rspq 4582 * 4583 * Programs the selected part of the VI's RSS mapping table with the 4584 * provided values. If @nrspq < @n the supplied values are used repeatedly 4585 * until the full table range is populated. 4586 * 4587 * The caller must ensure the values in @rspq are in the range allowed for 4588 * @viid. 4589 */ 4590 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 4591 int start, int n, const u16 *rspq, unsigned int nrspq) 4592 { 4593 int ret; 4594 const u16 *rsp = rspq; 4595 const u16 *rsp_end = rspq + nrspq; 4596 struct fw_rss_ind_tbl_cmd cmd; 4597 4598 memset(&cmd, 0, sizeof(cmd)); 4599 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 4600 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 4601 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 4602 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 4603 4604 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 4605 while (n > 0) { 4606 int nq = min(n, 32); 4607 __be32 *qp = &cmd.iq0_to_iq2; 4608 4609 cmd.niqid = cpu_to_be16(nq); 4610 cmd.startidx = cpu_to_be16(start); 4611 4612 start += nq; 4613 n -= nq; 4614 4615 while (nq > 0) { 4616 unsigned int v; 4617 4618 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 4619 if (++rsp >= rsp_end) 4620 rsp = rspq; 4621 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 4622 if (++rsp >= rsp_end) 4623 rsp = rspq; 4624 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 4625 if (++rsp >= rsp_end) 4626 rsp = rspq; 4627 4628 *qp++ = cpu_to_be32(v); 4629 nq -= 3; 4630 } 4631 4632 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 4633 if (ret) 4634 return ret; 4635 } 4636 return 0; 4637 } 4638 4639 /** 4640 * t4_config_glbl_rss - configure the global RSS mode 4641 * @adapter: the adapter 4642 * @mbox: mbox to use for the FW command 4643 * @mode: global RSS mode 4644 * @flags: mode-specific flags 4645 * 4646 * Sets the global RSS mode. 4647 */ 4648 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 4649 unsigned int flags) 4650 { 4651 struct fw_rss_glb_config_cmd c; 4652 4653 memset(&c, 0, sizeof(c)); 4654 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 4655 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 4656 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 4657 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 4658 c.u.manual.mode_pkd = 4659 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 4660 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 4661 c.u.basicvirtual.mode_pkd = 4662 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 4663 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 4664 } else 4665 return -EINVAL; 4666 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 4667 } 4668 4669 /** 4670 * t4_config_vi_rss - configure per VI RSS settings 4671 * @adapter: the adapter 4672 * @mbox: mbox to use for the FW command 4673 * @viid: the VI id 4674 * @flags: RSS flags 4675 * @defq: id of the default RSS queue for the VI. 4676 * 4677 * Configures VI-specific RSS properties. 4678 */ 4679 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 4680 unsigned int flags, unsigned int defq) 4681 { 4682 struct fw_rss_vi_config_cmd c; 4683 4684 memset(&c, 0, sizeof(c)); 4685 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 4686 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 4687 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 4688 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 4689 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 4690 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 4691 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 4692 } 4693 4694 /* Read an RSS table row */ 4695 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 4696 { 4697 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 4698 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 4699 5, 0, val); 4700 } 4701 4702 /** 4703 * t4_read_rss - read the contents of the RSS mapping table 4704 * @adapter: the adapter 4705 * @map: holds the contents of the RSS mapping table 4706 * 4707 * Reads the contents of the RSS hash->queue mapping table. 4708 */ 4709 int t4_read_rss(struct adapter *adapter, u16 *map) 4710 { 4711 u32 val; 4712 int i, ret; 4713 4714 for (i = 0; i < RSS_NENTRIES / 2; ++i) { 4715 ret = rd_rss_row(adapter, i, &val); 4716 if (ret) 4717 return ret; 4718 *map++ = LKPTBLQUEUE0_G(val); 4719 *map++ = LKPTBLQUEUE1_G(val); 4720 } 4721 return 0; 4722 } 4723 4724 static unsigned int t4_use_ldst(struct adapter *adap) 4725 { 4726 return (adap->flags & FW_OK) || !adap->use_bd; 4727 } 4728 4729 /** 4730 * t4_fw_tp_pio_rw - Access TP PIO through LDST 4731 * @adap: the adapter 4732 * @vals: where the indirect register values are stored/written 4733 * @nregs: how many indirect registers to read/write 4734 * @start_idx: index of first indirect register to read/write 4735 * @rw: Read (1) or Write (0) 4736 * 4737 * Access TP PIO registers through LDST 4738 */ 4739 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs, 4740 unsigned int start_index, unsigned int rw) 4741 { 4742 int ret, i; 4743 int cmd = FW_LDST_ADDRSPC_TP_PIO; 4744 struct fw_ldst_cmd c; 4745 4746 for (i = 0 ; i < nregs; i++) { 4747 memset(&c, 0, sizeof(c)); 4748 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 4749 FW_CMD_REQUEST_F | 4750 (rw ? FW_CMD_READ_F : 4751 FW_CMD_WRITE_F) | 4752 FW_LDST_CMD_ADDRSPACE_V(cmd)); 4753 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 4754 4755 c.u.addrval.addr = cpu_to_be32(start_index + i); 4756 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 4757 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4758 if (!ret && rw) 4759 vals[i] = be32_to_cpu(c.u.addrval.val); 4760 } 4761 } 4762 4763 /** 4764 * t4_read_rss_key - read the global RSS key 4765 * @adap: the adapter 4766 * @key: 10-entry array holding the 320-bit RSS key 4767 * 4768 * Reads the global 320-bit RSS key. 4769 */ 4770 void t4_read_rss_key(struct adapter *adap, u32 *key) 4771 { 4772 if (t4_use_ldst(adap)) 4773 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1); 4774 else 4775 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10, 4776 TP_RSS_SECRET_KEY0_A); 4777 } 4778 4779 /** 4780 * t4_write_rss_key - program one of the RSS keys 4781 * @adap: the adapter 4782 * @key: 10-entry array holding the 320-bit RSS key 4783 * @idx: which RSS key to write 4784 * 4785 * Writes one of the RSS keys with the given 320-bit value. If @idx is 4786 * 0..15 the corresponding entry in the RSS key table is written, 4787 * otherwise the global RSS key is written. 4788 */ 4789 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx) 4790 { 4791 u8 rss_key_addr_cnt = 16; 4792 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 4793 4794 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 4795 * allows access to key addresses 16-63 by using KeyWrAddrX 4796 * as index[5:4](upper 2) into key table 4797 */ 4798 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 4799 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 4800 rss_key_addr_cnt = 32; 4801 4802 if (t4_use_ldst(adap)) 4803 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0); 4804 else 4805 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10, 4806 TP_RSS_SECRET_KEY0_A); 4807 4808 if (idx >= 0 && idx < rss_key_addr_cnt) { 4809 if (rss_key_addr_cnt > 16) 4810 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 4811 KEYWRADDRX_V(idx >> 4) | 4812 T6_VFWRADDR_V(idx) | KEYWREN_F); 4813 else 4814 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 4815 KEYWRADDR_V(idx) | KEYWREN_F); 4816 } 4817 } 4818 4819 /** 4820 * t4_read_rss_pf_config - read PF RSS Configuration Table 4821 * @adapter: the adapter 4822 * @index: the entry in the PF RSS table to read 4823 * @valp: where to store the returned value 4824 * 4825 * Reads the PF RSS Configuration Table at the specified index and returns 4826 * the value found there. 4827 */ 4828 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 4829 u32 *valp) 4830 { 4831 if (t4_use_ldst(adapter)) 4832 t4_fw_tp_pio_rw(adapter, valp, 1, 4833 TP_RSS_PF0_CONFIG_A + index, 1); 4834 else 4835 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4836 valp, 1, TP_RSS_PF0_CONFIG_A + index); 4837 } 4838 4839 /** 4840 * t4_read_rss_vf_config - read VF RSS Configuration Table 4841 * @adapter: the adapter 4842 * @index: the entry in the VF RSS table to read 4843 * @vfl: where to store the returned VFL 4844 * @vfh: where to store the returned VFH 4845 * 4846 * Reads the VF RSS Configuration Table at the specified index and returns 4847 * the (VFL, VFH) values found there. 4848 */ 4849 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 4850 u32 *vfl, u32 *vfh) 4851 { 4852 u32 vrt, mask, data; 4853 4854 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 4855 mask = VFWRADDR_V(VFWRADDR_M); 4856 data = VFWRADDR_V(index); 4857 } else { 4858 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 4859 data = T6_VFWRADDR_V(index); 4860 } 4861 4862 /* Request that the index'th VF Table values be read into VFL/VFH. 4863 */ 4864 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 4865 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 4866 vrt |= data | VFRDEN_F; 4867 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 4868 4869 /* Grab the VFL/VFH values ... 4870 */ 4871 if (t4_use_ldst(adapter)) { 4872 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1); 4873 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1); 4874 } else { 4875 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4876 vfl, 1, TP_RSS_VFL_CONFIG_A); 4877 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4878 vfh, 1, TP_RSS_VFH_CONFIG_A); 4879 } 4880 } 4881 4882 /** 4883 * t4_read_rss_pf_map - read PF RSS Map 4884 * @adapter: the adapter 4885 * 4886 * Reads the PF RSS Map register and returns its value. 4887 */ 4888 u32 t4_read_rss_pf_map(struct adapter *adapter) 4889 { 4890 u32 pfmap; 4891 4892 if (t4_use_ldst(adapter)) 4893 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1); 4894 else 4895 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4896 &pfmap, 1, TP_RSS_PF_MAP_A); 4897 return pfmap; 4898 } 4899 4900 /** 4901 * t4_read_rss_pf_mask - read PF RSS Mask 4902 * @adapter: the adapter 4903 * 4904 * Reads the PF RSS Mask register and returns its value. 4905 */ 4906 u32 t4_read_rss_pf_mask(struct adapter *adapter) 4907 { 4908 u32 pfmask; 4909 4910 if (t4_use_ldst(adapter)) 4911 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1); 4912 else 4913 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4914 &pfmask, 1, TP_RSS_PF_MSK_A); 4915 return pfmask; 4916 } 4917 4918 /** 4919 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 4920 * @adap: the adapter 4921 * @v4: holds the TCP/IP counter values 4922 * @v6: holds the TCP/IPv6 counter values 4923 * 4924 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 4925 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 4926 */ 4927 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 4928 struct tp_tcp_stats *v6) 4929 { 4930 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 4931 4932 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 4933 #define STAT(x) val[STAT_IDX(x)] 4934 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 4935 4936 if (v4) { 4937 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4938 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A); 4939 v4->tcp_out_rsts = STAT(OUT_RST); 4940 v4->tcp_in_segs = STAT64(IN_SEG); 4941 v4->tcp_out_segs = STAT64(OUT_SEG); 4942 v4->tcp_retrans_segs = STAT64(RXT_SEG); 4943 } 4944 if (v6) { 4945 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4946 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A); 4947 v6->tcp_out_rsts = STAT(OUT_RST); 4948 v6->tcp_in_segs = STAT64(IN_SEG); 4949 v6->tcp_out_segs = STAT64(OUT_SEG); 4950 v6->tcp_retrans_segs = STAT64(RXT_SEG); 4951 } 4952 #undef STAT64 4953 #undef STAT 4954 #undef STAT_IDX 4955 } 4956 4957 /** 4958 * t4_tp_get_err_stats - read TP's error MIB counters 4959 * @adap: the adapter 4960 * @st: holds the counter values 4961 * 4962 * Returns the values of TP's error counters. 4963 */ 4964 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st) 4965 { 4966 int nchan = adap->params.arch.nchan; 4967 4968 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4969 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A); 4970 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4971 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A); 4972 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4973 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A); 4974 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4975 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A); 4976 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4977 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A); 4978 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4979 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A); 4980 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4981 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A); 4982 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4983 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A); 4984 4985 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4986 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A); 4987 } 4988 4989 /** 4990 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 4991 * @adap: the adapter 4992 * @st: holds the counter values 4993 * 4994 * Returns the values of TP's CPL counters. 4995 */ 4996 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st) 4997 { 4998 int nchan = adap->params.arch.nchan; 4999 5000 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req, 5001 nchan, TP_MIB_CPL_IN_REQ_0_A); 5002 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp, 5003 nchan, TP_MIB_CPL_OUT_RSP_0_A); 5004 5005 } 5006 5007 /** 5008 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5009 * @adap: the adapter 5010 * @st: holds the counter values 5011 * 5012 * Returns the values of TP's RDMA counters. 5013 */ 5014 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st) 5015 { 5016 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt, 5017 2, TP_MIB_RQE_DFR_PKT_A); 5018 } 5019 5020 /** 5021 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5022 * @adap: the adapter 5023 * @idx: the port index 5024 * @st: holds the counter values 5025 * 5026 * Returns the values of TP's FCoE counters for the selected port. 5027 */ 5028 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5029 struct tp_fcoe_stats *st) 5030 { 5031 u32 val[2]; 5032 5033 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp, 5034 1, TP_MIB_FCOE_DDP_0_A + idx); 5035 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop, 5036 1, TP_MIB_FCOE_DROP_0_A + idx); 5037 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 5038 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx); 5039 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5040 } 5041 5042 /** 5043 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5044 * @adap: the adapter 5045 * @st: holds the counter values 5046 * 5047 * Returns the values of TP's counters for non-TCP directly-placed packets. 5048 */ 5049 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st) 5050 { 5051 u32 val[4]; 5052 5053 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4, 5054 TP_MIB_USM_PKTS_A); 5055 st->frames = val[0]; 5056 st->drops = val[1]; 5057 st->octets = ((u64)val[2] << 32) | val[3]; 5058 } 5059 5060 /** 5061 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5062 * @adap: the adapter 5063 * @mtus: where to store the MTU values 5064 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5065 * 5066 * Reads the HW path MTU table. 5067 */ 5068 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5069 { 5070 u32 v; 5071 int i; 5072 5073 for (i = 0; i < NMTUS; ++i) { 5074 t4_write_reg(adap, TP_MTU_TABLE_A, 5075 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5076 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5077 mtus[i] = MTUVALUE_G(v); 5078 if (mtu_log) 5079 mtu_log[i] = MTUWIDTH_G(v); 5080 } 5081 } 5082 5083 /** 5084 * t4_read_cong_tbl - reads the congestion control table 5085 * @adap: the adapter 5086 * @incr: where to store the alpha values 5087 * 5088 * Reads the additive increments programmed into the HW congestion 5089 * control table. 5090 */ 5091 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5092 { 5093 unsigned int mtu, w; 5094 5095 for (mtu = 0; mtu < NMTUS; ++mtu) 5096 for (w = 0; w < NCCTRL_WIN; ++w) { 5097 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5098 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5099 incr[mtu][w] = (u16)t4_read_reg(adap, 5100 TP_CCTRL_TABLE_A) & 0x1fff; 5101 } 5102 } 5103 5104 /** 5105 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5106 * @adap: the adapter 5107 * @addr: the indirect TP register address 5108 * @mask: specifies the field within the register to modify 5109 * @val: new value for the field 5110 * 5111 * Sets a field of an indirect TP register to the given value. 5112 */ 5113 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5114 unsigned int mask, unsigned int val) 5115 { 5116 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5117 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5118 t4_write_reg(adap, TP_PIO_DATA_A, val); 5119 } 5120 5121 /** 5122 * init_cong_ctrl - initialize congestion control parameters 5123 * @a: the alpha values for congestion control 5124 * @b: the beta values for congestion control 5125 * 5126 * Initialize the congestion control parameters. 5127 */ 5128 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5129 { 5130 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5131 a[9] = 2; 5132 a[10] = 3; 5133 a[11] = 4; 5134 a[12] = 5; 5135 a[13] = 6; 5136 a[14] = 7; 5137 a[15] = 8; 5138 a[16] = 9; 5139 a[17] = 10; 5140 a[18] = 14; 5141 a[19] = 17; 5142 a[20] = 21; 5143 a[21] = 25; 5144 a[22] = 30; 5145 a[23] = 35; 5146 a[24] = 45; 5147 a[25] = 60; 5148 a[26] = 80; 5149 a[27] = 100; 5150 a[28] = 200; 5151 a[29] = 300; 5152 a[30] = 400; 5153 a[31] = 500; 5154 5155 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5156 b[9] = b[10] = 1; 5157 b[11] = b[12] = 2; 5158 b[13] = b[14] = b[15] = b[16] = 3; 5159 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5160 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5161 b[28] = b[29] = 6; 5162 b[30] = b[31] = 7; 5163 } 5164 5165 /* The minimum additive increment value for the congestion control table */ 5166 #define CC_MIN_INCR 2U 5167 5168 /** 5169 * t4_load_mtus - write the MTU and congestion control HW tables 5170 * @adap: the adapter 5171 * @mtus: the values for the MTU table 5172 * @alpha: the values for the congestion control alpha parameter 5173 * @beta: the values for the congestion control beta parameter 5174 * 5175 * Write the HW MTU table with the supplied MTUs and the high-speed 5176 * congestion control table with the supplied alpha, beta, and MTUs. 5177 * We write the two tables together because the additive increments 5178 * depend on the MTUs. 5179 */ 5180 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5181 const unsigned short *alpha, const unsigned short *beta) 5182 { 5183 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5184 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5185 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5186 28672, 40960, 57344, 81920, 114688, 163840, 229376 5187 }; 5188 5189 unsigned int i, w; 5190 5191 for (i = 0; i < NMTUS; ++i) { 5192 unsigned int mtu = mtus[i]; 5193 unsigned int log2 = fls(mtu); 5194 5195 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5196 log2--; 5197 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5198 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5199 5200 for (w = 0; w < NCCTRL_WIN; ++w) { 5201 unsigned int inc; 5202 5203 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5204 CC_MIN_INCR); 5205 5206 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5207 (w << 16) | (beta[w] << 13) | inc); 5208 } 5209 } 5210 } 5211 5212 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5213 * clocks. The formula is 5214 * 5215 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5216 * 5217 * which is equivalent to 5218 * 5219 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5220 */ 5221 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5222 { 5223 u64 v = bytes256 * adap->params.vpd.cclk; 5224 5225 return v * 62 + v / 2; 5226 } 5227 5228 /** 5229 * t4_get_chan_txrate - get the current per channel Tx rates 5230 * @adap: the adapter 5231 * @nic_rate: rates for NIC traffic 5232 * @ofld_rate: rates for offloaded traffic 5233 * 5234 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5235 * for each channel. 5236 */ 5237 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5238 { 5239 u32 v; 5240 5241 v = t4_read_reg(adap, TP_TX_TRATE_A); 5242 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5243 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5244 if (adap->params.arch.nchan == NCHAN) { 5245 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5246 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5247 } 5248 5249 v = t4_read_reg(adap, TP_TX_ORATE_A); 5250 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5251 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5252 if (adap->params.arch.nchan == NCHAN) { 5253 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5254 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5255 } 5256 } 5257 5258 /** 5259 * t4_set_trace_filter - configure one of the tracing filters 5260 * @adap: the adapter 5261 * @tp: the desired trace filter parameters 5262 * @idx: which filter to configure 5263 * @enable: whether to enable or disable the filter 5264 * 5265 * Configures one of the tracing filters available in HW. If @enable is 5266 * %0 @tp is not examined and may be %NULL. The user is responsible to 5267 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5268 */ 5269 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5270 int idx, int enable) 5271 { 5272 int i, ofst = idx * 4; 5273 u32 data_reg, mask_reg, cfg; 5274 u32 multitrc = TRCMULTIFILTER_F; 5275 5276 if (!enable) { 5277 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5278 return 0; 5279 } 5280 5281 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5282 if (cfg & TRCMULTIFILTER_F) { 5283 /* If multiple tracers are enabled, then maximum 5284 * capture size is 2.5KB (FIFO size of a single channel) 5285 * minus 2 flits for CPL_TRACE_PKT header. 5286 */ 5287 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5288 return -EINVAL; 5289 } else { 5290 /* If multiple tracers are disabled, to avoid deadlocks 5291 * maximum packet capture size of 9600 bytes is recommended. 5292 * Also in this mode, only trace0 can be enabled and running. 5293 */ 5294 multitrc = 0; 5295 if (tp->snap_len > 9600 || idx) 5296 return -EINVAL; 5297 } 5298 5299 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5300 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5301 tp->min_len > TFMINPKTSIZE_M) 5302 return -EINVAL; 5303 5304 /* stop the tracer we'll be changing */ 5305 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5306 5307 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5308 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5309 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5310 5311 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5312 t4_write_reg(adap, data_reg, tp->data[i]); 5313 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5314 } 5315 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5316 TFCAPTUREMAX_V(tp->snap_len) | 5317 TFMINPKTSIZE_V(tp->min_len)); 5318 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5319 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5320 (is_t4(adap->params.chip) ? 5321 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 5322 T5_TFPORT_V(tp->port) | T5_TFEN_F | 5323 T5_TFINVERTMATCH_V(tp->invert))); 5324 5325 return 0; 5326 } 5327 5328 /** 5329 * t4_get_trace_filter - query one of the tracing filters 5330 * @adap: the adapter 5331 * @tp: the current trace filter parameters 5332 * @idx: which trace filter to query 5333 * @enabled: non-zero if the filter is enabled 5334 * 5335 * Returns the current settings of one of the HW tracing filters. 5336 */ 5337 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 5338 int *enabled) 5339 { 5340 u32 ctla, ctlb; 5341 int i, ofst = idx * 4; 5342 u32 data_reg, mask_reg; 5343 5344 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 5345 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 5346 5347 if (is_t4(adap->params.chip)) { 5348 *enabled = !!(ctla & TFEN_F); 5349 tp->port = TFPORT_G(ctla); 5350 tp->invert = !!(ctla & TFINVERTMATCH_F); 5351 } else { 5352 *enabled = !!(ctla & T5_TFEN_F); 5353 tp->port = T5_TFPORT_G(ctla); 5354 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 5355 } 5356 tp->snap_len = TFCAPTUREMAX_G(ctlb); 5357 tp->min_len = TFMINPKTSIZE_G(ctlb); 5358 tp->skip_ofst = TFOFFSET_G(ctla); 5359 tp->skip_len = TFLENGTH_G(ctla); 5360 5361 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 5362 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 5363 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 5364 5365 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5366 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 5367 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 5368 } 5369 } 5370 5371 /** 5372 * t4_pmtx_get_stats - returns the HW stats from PMTX 5373 * @adap: the adapter 5374 * @cnt: where to store the count statistics 5375 * @cycles: where to store the cycle statistics 5376 * 5377 * Returns performance statistics from PMTX. 5378 */ 5379 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5380 { 5381 int i; 5382 u32 data[2]; 5383 5384 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5385 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 5386 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 5387 if (is_t4(adap->params.chip)) { 5388 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 5389 } else { 5390 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 5391 PM_TX_DBG_DATA_A, data, 2, 5392 PM_TX_DBG_STAT_MSB_A); 5393 cycles[i] = (((u64)data[0] << 32) | data[1]); 5394 } 5395 } 5396 } 5397 5398 /** 5399 * t4_pmrx_get_stats - returns the HW stats from PMRX 5400 * @adap: the adapter 5401 * @cnt: where to store the count statistics 5402 * @cycles: where to store the cycle statistics 5403 * 5404 * Returns performance statistics from PMRX. 5405 */ 5406 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5407 { 5408 int i; 5409 u32 data[2]; 5410 5411 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5412 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 5413 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 5414 if (is_t4(adap->params.chip)) { 5415 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 5416 } else { 5417 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 5418 PM_RX_DBG_DATA_A, data, 2, 5419 PM_RX_DBG_STAT_MSB_A); 5420 cycles[i] = (((u64)data[0] << 32) | data[1]); 5421 } 5422 } 5423 } 5424 5425 /** 5426 * t4_get_mps_bg_map - return the buffer groups associated with a port 5427 * @adap: the adapter 5428 * @idx: the port index 5429 * 5430 * Returns a bitmap indicating which MPS buffer groups are associated 5431 * with the given port. Bit i is set if buffer group i is used by the 5432 * port. 5433 */ 5434 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx) 5435 { 5436 u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 5437 5438 if (n == 0) 5439 return idx == 0 ? 0xf : 0; 5440 /* In T6 (which is a 2 port card), 5441 * port 0 is mapped to channel 0 and port 1 is mapped to channel 1. 5442 * For 2 port T4/T5 adapter, 5443 * port 0 is mapped to channel 0 and 1, 5444 * port 1 is mapped to channel 2 and 3. 5445 */ 5446 if ((n == 1) && 5447 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)) 5448 return idx < 2 ? (3 << (2 * idx)) : 0; 5449 return 1 << idx; 5450 } 5451 5452 /** 5453 * t4_get_port_type_description - return Port Type string description 5454 * @port_type: firmware Port Type enumeration 5455 */ 5456 const char *t4_get_port_type_description(enum fw_port_type port_type) 5457 { 5458 static const char *const port_type_description[] = { 5459 "Fiber_XFI", 5460 "Fiber_XAUI", 5461 "BT_SGMII", 5462 "BT_XFI", 5463 "BT_XAUI", 5464 "KX4", 5465 "CX4", 5466 "KX", 5467 "KR", 5468 "SFP", 5469 "BP_AP", 5470 "BP4_AP", 5471 "QSFP_10G", 5472 "QSA", 5473 "QSFP", 5474 "BP40_BA", 5475 "KR4_100G", 5476 "CR4_QSFP", 5477 "CR_QSFP", 5478 "CR2_QSFP", 5479 "SFP28", 5480 "KR_SFP28", 5481 }; 5482 5483 if (port_type < ARRAY_SIZE(port_type_description)) 5484 return port_type_description[port_type]; 5485 return "UNKNOWN"; 5486 } 5487 5488 /** 5489 * t4_get_port_stats_offset - collect port stats relative to a previous 5490 * snapshot 5491 * @adap: The adapter 5492 * @idx: The port 5493 * @stats: Current stats to fill 5494 * @offset: Previous stats snapshot 5495 */ 5496 void t4_get_port_stats_offset(struct adapter *adap, int idx, 5497 struct port_stats *stats, 5498 struct port_stats *offset) 5499 { 5500 u64 *s, *o; 5501 int i; 5502 5503 t4_get_port_stats(adap, idx, stats); 5504 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 5505 i < (sizeof(struct port_stats) / sizeof(u64)); 5506 i++, s++, o++) 5507 *s -= *o; 5508 } 5509 5510 /** 5511 * t4_get_port_stats - collect port statistics 5512 * @adap: the adapter 5513 * @idx: the port index 5514 * @p: the stats structure to fill 5515 * 5516 * Collect statistics related to the given port from HW. 5517 */ 5518 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 5519 { 5520 u32 bgmap = t4_get_mps_bg_map(adap, idx); 5521 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 5522 5523 #define GET_STAT(name) \ 5524 t4_read_reg64(adap, \ 5525 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 5526 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 5527 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 5528 5529 p->tx_octets = GET_STAT(TX_PORT_BYTES); 5530 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 5531 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 5532 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 5533 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 5534 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 5535 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 5536 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 5537 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 5538 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 5539 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 5540 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 5541 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 5542 p->tx_drop = GET_STAT(TX_PORT_DROP); 5543 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 5544 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 5545 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 5546 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 5547 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 5548 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 5549 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 5550 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 5551 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 5552 5553 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 5554 if (stat_ctl & COUNTPAUSESTATTX_F) { 5555 p->tx_frames -= p->tx_pause; 5556 p->tx_octets -= p->tx_pause * 64; 5557 } 5558 if (stat_ctl & COUNTPAUSEMCTX_F) 5559 p->tx_mcast_frames -= p->tx_pause; 5560 } 5561 p->rx_octets = GET_STAT(RX_PORT_BYTES); 5562 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 5563 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 5564 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 5565 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 5566 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 5567 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 5568 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 5569 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 5570 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 5571 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 5572 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 5573 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 5574 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 5575 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 5576 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 5577 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 5578 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 5579 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 5580 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 5581 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 5582 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 5583 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 5584 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 5585 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 5586 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 5587 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 5588 5589 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 5590 if (stat_ctl & COUNTPAUSESTATRX_F) { 5591 p->rx_frames -= p->rx_pause; 5592 p->rx_octets -= p->rx_pause * 64; 5593 } 5594 if (stat_ctl & COUNTPAUSEMCRX_F) 5595 p->rx_mcast_frames -= p->rx_pause; 5596 } 5597 5598 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 5599 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 5600 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 5601 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 5602 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 5603 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 5604 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 5605 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 5606 5607 #undef GET_STAT 5608 #undef GET_STAT_COM 5609 } 5610 5611 /** 5612 * t4_get_lb_stats - collect loopback port statistics 5613 * @adap: the adapter 5614 * @idx: the loopback port index 5615 * @p: the stats structure to fill 5616 * 5617 * Return HW statistics for the given loopback port. 5618 */ 5619 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 5620 { 5621 u32 bgmap = t4_get_mps_bg_map(adap, idx); 5622 5623 #define GET_STAT(name) \ 5624 t4_read_reg64(adap, \ 5625 (is_t4(adap->params.chip) ? \ 5626 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 5627 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 5628 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 5629 5630 p->octets = GET_STAT(BYTES); 5631 p->frames = GET_STAT(FRAMES); 5632 p->bcast_frames = GET_STAT(BCAST); 5633 p->mcast_frames = GET_STAT(MCAST); 5634 p->ucast_frames = GET_STAT(UCAST); 5635 p->error_frames = GET_STAT(ERROR); 5636 5637 p->frames_64 = GET_STAT(64B); 5638 p->frames_65_127 = GET_STAT(65B_127B); 5639 p->frames_128_255 = GET_STAT(128B_255B); 5640 p->frames_256_511 = GET_STAT(256B_511B); 5641 p->frames_512_1023 = GET_STAT(512B_1023B); 5642 p->frames_1024_1518 = GET_STAT(1024B_1518B); 5643 p->frames_1519_max = GET_STAT(1519B_MAX); 5644 p->drop = GET_STAT(DROP_FRAMES); 5645 5646 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 5647 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 5648 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 5649 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 5650 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 5651 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 5652 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 5653 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 5654 5655 #undef GET_STAT 5656 #undef GET_STAT_COM 5657 } 5658 5659 /* t4_mk_filtdelwr - create a delete filter WR 5660 * @ftid: the filter ID 5661 * @wr: the filter work request to populate 5662 * @qid: ingress queue to receive the delete notification 5663 * 5664 * Creates a filter work request to delete the supplied filter. If @qid is 5665 * negative the delete notification is suppressed. 5666 */ 5667 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 5668 { 5669 memset(wr, 0, sizeof(*wr)); 5670 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 5671 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 5672 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 5673 FW_FILTER_WR_NOREPLY_V(qid < 0)); 5674 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 5675 if (qid >= 0) 5676 wr->rx_chan_rx_rpl_iq = 5677 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 5678 } 5679 5680 #define INIT_CMD(var, cmd, rd_wr) do { \ 5681 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 5682 FW_CMD_REQUEST_F | \ 5683 FW_CMD_##rd_wr##_F); \ 5684 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 5685 } while (0) 5686 5687 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 5688 u32 addr, u32 val) 5689 { 5690 u32 ldst_addrspace; 5691 struct fw_ldst_cmd c; 5692 5693 memset(&c, 0, sizeof(c)); 5694 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 5695 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5696 FW_CMD_REQUEST_F | 5697 FW_CMD_WRITE_F | 5698 ldst_addrspace); 5699 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5700 c.u.addrval.addr = cpu_to_be32(addr); 5701 c.u.addrval.val = cpu_to_be32(val); 5702 5703 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 5704 } 5705 5706 /** 5707 * t4_mdio_rd - read a PHY register through MDIO 5708 * @adap: the adapter 5709 * @mbox: mailbox to use for the FW command 5710 * @phy_addr: the PHY address 5711 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 5712 * @reg: the register to read 5713 * @valp: where to store the value 5714 * 5715 * Issues a FW command through the given mailbox to read a PHY register. 5716 */ 5717 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 5718 unsigned int mmd, unsigned int reg, u16 *valp) 5719 { 5720 int ret; 5721 u32 ldst_addrspace; 5722 struct fw_ldst_cmd c; 5723 5724 memset(&c, 0, sizeof(c)); 5725 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 5726 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5727 FW_CMD_REQUEST_F | FW_CMD_READ_F | 5728 ldst_addrspace); 5729 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5730 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 5731 FW_LDST_CMD_MMD_V(mmd)); 5732 c.u.mdio.raddr = cpu_to_be16(reg); 5733 5734 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 5735 if (ret == 0) 5736 *valp = be16_to_cpu(c.u.mdio.rval); 5737 return ret; 5738 } 5739 5740 /** 5741 * t4_mdio_wr - write a PHY register through MDIO 5742 * @adap: the adapter 5743 * @mbox: mailbox to use for the FW command 5744 * @phy_addr: the PHY address 5745 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 5746 * @reg: the register to write 5747 * @valp: value to write 5748 * 5749 * Issues a FW command through the given mailbox to write a PHY register. 5750 */ 5751 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 5752 unsigned int mmd, unsigned int reg, u16 val) 5753 { 5754 u32 ldst_addrspace; 5755 struct fw_ldst_cmd c; 5756 5757 memset(&c, 0, sizeof(c)); 5758 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 5759 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5760 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5761 ldst_addrspace); 5762 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5763 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 5764 FW_LDST_CMD_MMD_V(mmd)); 5765 c.u.mdio.raddr = cpu_to_be16(reg); 5766 c.u.mdio.rval = cpu_to_be16(val); 5767 5768 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 5769 } 5770 5771 /** 5772 * t4_sge_decode_idma_state - decode the idma state 5773 * @adap: the adapter 5774 * @state: the state idma is stuck in 5775 */ 5776 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 5777 { 5778 static const char * const t4_decode[] = { 5779 "IDMA_IDLE", 5780 "IDMA_PUSH_MORE_CPL_FIFO", 5781 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 5782 "Not used", 5783 "IDMA_PHYSADDR_SEND_PCIEHDR", 5784 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 5785 "IDMA_PHYSADDR_SEND_PAYLOAD", 5786 "IDMA_SEND_FIFO_TO_IMSG", 5787 "IDMA_FL_REQ_DATA_FL_PREP", 5788 "IDMA_FL_REQ_DATA_FL", 5789 "IDMA_FL_DROP", 5790 "IDMA_FL_H_REQ_HEADER_FL", 5791 "IDMA_FL_H_SEND_PCIEHDR", 5792 "IDMA_FL_H_PUSH_CPL_FIFO", 5793 "IDMA_FL_H_SEND_CPL", 5794 "IDMA_FL_H_SEND_IP_HDR_FIRST", 5795 "IDMA_FL_H_SEND_IP_HDR", 5796 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 5797 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 5798 "IDMA_FL_H_SEND_IP_HDR_PADDING", 5799 "IDMA_FL_D_SEND_PCIEHDR", 5800 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 5801 "IDMA_FL_D_REQ_NEXT_DATA_FL", 5802 "IDMA_FL_SEND_PCIEHDR", 5803 "IDMA_FL_PUSH_CPL_FIFO", 5804 "IDMA_FL_SEND_CPL", 5805 "IDMA_FL_SEND_PAYLOAD_FIRST", 5806 "IDMA_FL_SEND_PAYLOAD", 5807 "IDMA_FL_REQ_NEXT_DATA_FL", 5808 "IDMA_FL_SEND_NEXT_PCIEHDR", 5809 "IDMA_FL_SEND_PADDING", 5810 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 5811 "IDMA_FL_SEND_FIFO_TO_IMSG", 5812 "IDMA_FL_REQ_DATAFL_DONE", 5813 "IDMA_FL_REQ_HEADERFL_DONE", 5814 }; 5815 static const char * const t5_decode[] = { 5816 "IDMA_IDLE", 5817 "IDMA_ALMOST_IDLE", 5818 "IDMA_PUSH_MORE_CPL_FIFO", 5819 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 5820 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 5821 "IDMA_PHYSADDR_SEND_PCIEHDR", 5822 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 5823 "IDMA_PHYSADDR_SEND_PAYLOAD", 5824 "IDMA_SEND_FIFO_TO_IMSG", 5825 "IDMA_FL_REQ_DATA_FL", 5826 "IDMA_FL_DROP", 5827 "IDMA_FL_DROP_SEND_INC", 5828 "IDMA_FL_H_REQ_HEADER_FL", 5829 "IDMA_FL_H_SEND_PCIEHDR", 5830 "IDMA_FL_H_PUSH_CPL_FIFO", 5831 "IDMA_FL_H_SEND_CPL", 5832 "IDMA_FL_H_SEND_IP_HDR_FIRST", 5833 "IDMA_FL_H_SEND_IP_HDR", 5834 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 5835 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 5836 "IDMA_FL_H_SEND_IP_HDR_PADDING", 5837 "IDMA_FL_D_SEND_PCIEHDR", 5838 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 5839 "IDMA_FL_D_REQ_NEXT_DATA_FL", 5840 "IDMA_FL_SEND_PCIEHDR", 5841 "IDMA_FL_PUSH_CPL_FIFO", 5842 "IDMA_FL_SEND_CPL", 5843 "IDMA_FL_SEND_PAYLOAD_FIRST", 5844 "IDMA_FL_SEND_PAYLOAD", 5845 "IDMA_FL_REQ_NEXT_DATA_FL", 5846 "IDMA_FL_SEND_NEXT_PCIEHDR", 5847 "IDMA_FL_SEND_PADDING", 5848 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 5849 }; 5850 static const char * const t6_decode[] = { 5851 "IDMA_IDLE", 5852 "IDMA_PUSH_MORE_CPL_FIFO", 5853 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 5854 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 5855 "IDMA_PHYSADDR_SEND_PCIEHDR", 5856 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 5857 "IDMA_PHYSADDR_SEND_PAYLOAD", 5858 "IDMA_FL_REQ_DATA_FL", 5859 "IDMA_FL_DROP", 5860 "IDMA_FL_DROP_SEND_INC", 5861 "IDMA_FL_H_REQ_HEADER_FL", 5862 "IDMA_FL_H_SEND_PCIEHDR", 5863 "IDMA_FL_H_PUSH_CPL_FIFO", 5864 "IDMA_FL_H_SEND_CPL", 5865 "IDMA_FL_H_SEND_IP_HDR_FIRST", 5866 "IDMA_FL_H_SEND_IP_HDR", 5867 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 5868 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 5869 "IDMA_FL_H_SEND_IP_HDR_PADDING", 5870 "IDMA_FL_D_SEND_PCIEHDR", 5871 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 5872 "IDMA_FL_D_REQ_NEXT_DATA_FL", 5873 "IDMA_FL_SEND_PCIEHDR", 5874 "IDMA_FL_PUSH_CPL_FIFO", 5875 "IDMA_FL_SEND_CPL", 5876 "IDMA_FL_SEND_PAYLOAD_FIRST", 5877 "IDMA_FL_SEND_PAYLOAD", 5878 "IDMA_FL_REQ_NEXT_DATA_FL", 5879 "IDMA_FL_SEND_NEXT_PCIEHDR", 5880 "IDMA_FL_SEND_PADDING", 5881 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 5882 }; 5883 static const u32 sge_regs[] = { 5884 SGE_DEBUG_DATA_LOW_INDEX_2_A, 5885 SGE_DEBUG_DATA_LOW_INDEX_3_A, 5886 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 5887 }; 5888 const char **sge_idma_decode; 5889 int sge_idma_decode_nstates; 5890 int i; 5891 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 5892 5893 /* Select the right set of decode strings to dump depending on the 5894 * adapter chip type. 5895 */ 5896 switch (chip_version) { 5897 case CHELSIO_T4: 5898 sge_idma_decode = (const char **)t4_decode; 5899 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 5900 break; 5901 5902 case CHELSIO_T5: 5903 sge_idma_decode = (const char **)t5_decode; 5904 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 5905 break; 5906 5907 case CHELSIO_T6: 5908 sge_idma_decode = (const char **)t6_decode; 5909 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 5910 break; 5911 5912 default: 5913 dev_err(adapter->pdev_dev, 5914 "Unsupported chip version %d\n", chip_version); 5915 return; 5916 } 5917 5918 if (is_t4(adapter->params.chip)) { 5919 sge_idma_decode = (const char **)t4_decode; 5920 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 5921 } else { 5922 sge_idma_decode = (const char **)t5_decode; 5923 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 5924 } 5925 5926 if (state < sge_idma_decode_nstates) 5927 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 5928 else 5929 CH_WARN(adapter, "idma state %d unknown\n", state); 5930 5931 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 5932 CH_WARN(adapter, "SGE register %#x value %#x\n", 5933 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 5934 } 5935 5936 /** 5937 * t4_sge_ctxt_flush - flush the SGE context cache 5938 * @adap: the adapter 5939 * @mbox: mailbox to use for the FW command 5940 * 5941 * Issues a FW command through the given mailbox to flush the 5942 * SGE context cache. 5943 */ 5944 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox) 5945 { 5946 int ret; 5947 u32 ldst_addrspace; 5948 struct fw_ldst_cmd c; 5949 5950 memset(&c, 0, sizeof(c)); 5951 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC); 5952 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5953 FW_CMD_REQUEST_F | FW_CMD_READ_F | 5954 ldst_addrspace); 5955 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5956 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 5957 5958 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 5959 return ret; 5960 } 5961 5962 /** 5963 * t4_fw_hello - establish communication with FW 5964 * @adap: the adapter 5965 * @mbox: mailbox to use for the FW command 5966 * @evt_mbox: mailbox to receive async FW events 5967 * @master: specifies the caller's willingness to be the device master 5968 * @state: returns the current device state (if non-NULL) 5969 * 5970 * Issues a command to establish communication with FW. Returns either 5971 * an error (negative integer) or the mailbox of the Master PF. 5972 */ 5973 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 5974 enum dev_master master, enum dev_state *state) 5975 { 5976 int ret; 5977 struct fw_hello_cmd c; 5978 u32 v; 5979 unsigned int master_mbox; 5980 int retries = FW_CMD_HELLO_RETRIES; 5981 5982 retry: 5983 memset(&c, 0, sizeof(c)); 5984 INIT_CMD(c, HELLO, WRITE); 5985 c.err_to_clearinit = cpu_to_be32( 5986 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 5987 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 5988 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 5989 mbox : FW_HELLO_CMD_MBMASTER_M) | 5990 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 5991 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 5992 FW_HELLO_CMD_CLEARINIT_F); 5993 5994 /* 5995 * Issue the HELLO command to the firmware. If it's not successful 5996 * but indicates that we got a "busy" or "timeout" condition, retry 5997 * the HELLO until we exhaust our retry limit. If we do exceed our 5998 * retry limit, check to see if the firmware left us any error 5999 * information and report that if so. 6000 */ 6001 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6002 if (ret < 0) { 6003 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6004 goto retry; 6005 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6006 t4_report_fw_error(adap); 6007 return ret; 6008 } 6009 6010 v = be32_to_cpu(c.err_to_clearinit); 6011 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6012 if (state) { 6013 if (v & FW_HELLO_CMD_ERR_F) 6014 *state = DEV_STATE_ERR; 6015 else if (v & FW_HELLO_CMD_INIT_F) 6016 *state = DEV_STATE_INIT; 6017 else 6018 *state = DEV_STATE_UNINIT; 6019 } 6020 6021 /* 6022 * If we're not the Master PF then we need to wait around for the 6023 * Master PF Driver to finish setting up the adapter. 6024 * 6025 * Note that we also do this wait if we're a non-Master-capable PF and 6026 * there is no current Master PF; a Master PF may show up momentarily 6027 * and we wouldn't want to fail pointlessly. (This can happen when an 6028 * OS loads lots of different drivers rapidly at the same time). In 6029 * this case, the Master PF returned by the firmware will be 6030 * PCIE_FW_MASTER_M so the test below will work ... 6031 */ 6032 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6033 master_mbox != mbox) { 6034 int waiting = FW_CMD_HELLO_TIMEOUT; 6035 6036 /* 6037 * Wait for the firmware to either indicate an error or 6038 * initialized state. If we see either of these we bail out 6039 * and report the issue to the caller. If we exhaust the 6040 * "hello timeout" and we haven't exhausted our retries, try 6041 * again. Otherwise bail with a timeout error. 6042 */ 6043 for (;;) { 6044 u32 pcie_fw; 6045 6046 msleep(50); 6047 waiting -= 50; 6048 6049 /* 6050 * If neither Error nor Initialialized are indicated 6051 * by the firmware keep waiting till we exaust our 6052 * timeout ... and then retry if we haven't exhausted 6053 * our retries ... 6054 */ 6055 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6056 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6057 if (waiting <= 0) { 6058 if (retries-- > 0) 6059 goto retry; 6060 6061 return -ETIMEDOUT; 6062 } 6063 continue; 6064 } 6065 6066 /* 6067 * We either have an Error or Initialized condition 6068 * report errors preferentially. 6069 */ 6070 if (state) { 6071 if (pcie_fw & PCIE_FW_ERR_F) 6072 *state = DEV_STATE_ERR; 6073 else if (pcie_fw & PCIE_FW_INIT_F) 6074 *state = DEV_STATE_INIT; 6075 } 6076 6077 /* 6078 * If we arrived before a Master PF was selected and 6079 * there's not a valid Master PF, grab its identity 6080 * for our caller. 6081 */ 6082 if (master_mbox == PCIE_FW_MASTER_M && 6083 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6084 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6085 break; 6086 } 6087 } 6088 6089 return master_mbox; 6090 } 6091 6092 /** 6093 * t4_fw_bye - end communication with FW 6094 * @adap: the adapter 6095 * @mbox: mailbox to use for the FW command 6096 * 6097 * Issues a command to terminate communication with FW. 6098 */ 6099 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6100 { 6101 struct fw_bye_cmd c; 6102 6103 memset(&c, 0, sizeof(c)); 6104 INIT_CMD(c, BYE, WRITE); 6105 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6106 } 6107 6108 /** 6109 * t4_init_cmd - ask FW to initialize the device 6110 * @adap: the adapter 6111 * @mbox: mailbox to use for the FW command 6112 * 6113 * Issues a command to FW to partially initialize the device. This 6114 * performs initialization that generally doesn't depend on user input. 6115 */ 6116 int t4_early_init(struct adapter *adap, unsigned int mbox) 6117 { 6118 struct fw_initialize_cmd c; 6119 6120 memset(&c, 0, sizeof(c)); 6121 INIT_CMD(c, INITIALIZE, WRITE); 6122 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6123 } 6124 6125 /** 6126 * t4_fw_reset - issue a reset to FW 6127 * @adap: the adapter 6128 * @mbox: mailbox to use for the FW command 6129 * @reset: specifies the type of reset to perform 6130 * 6131 * Issues a reset command of the specified type to FW. 6132 */ 6133 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 6134 { 6135 struct fw_reset_cmd c; 6136 6137 memset(&c, 0, sizeof(c)); 6138 INIT_CMD(c, RESET, WRITE); 6139 c.val = cpu_to_be32(reset); 6140 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6141 } 6142 6143 /** 6144 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 6145 * @adap: the adapter 6146 * @mbox: mailbox to use for the FW RESET command (if desired) 6147 * @force: force uP into RESET even if FW RESET command fails 6148 * 6149 * Issues a RESET command to firmware (if desired) with a HALT indication 6150 * and then puts the microprocessor into RESET state. The RESET command 6151 * will only be issued if a legitimate mailbox is provided (mbox <= 6152 * PCIE_FW_MASTER_M). 6153 * 6154 * This is generally used in order for the host to safely manipulate the 6155 * adapter without fear of conflicting with whatever the firmware might 6156 * be doing. The only way out of this state is to RESTART the firmware 6157 * ... 6158 */ 6159 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 6160 { 6161 int ret = 0; 6162 6163 /* 6164 * If a legitimate mailbox is provided, issue a RESET command 6165 * with a HALT indication. 6166 */ 6167 if (mbox <= PCIE_FW_MASTER_M) { 6168 struct fw_reset_cmd c; 6169 6170 memset(&c, 0, sizeof(c)); 6171 INIT_CMD(c, RESET, WRITE); 6172 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 6173 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 6174 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6175 } 6176 6177 /* 6178 * Normally we won't complete the operation if the firmware RESET 6179 * command fails but if our caller insists we'll go ahead and put the 6180 * uP into RESET. This can be useful if the firmware is hung or even 6181 * missing ... We'll have to take the risk of putting the uP into 6182 * RESET without the cooperation of firmware in that case. 6183 * 6184 * We also force the firmware's HALT flag to be on in case we bypassed 6185 * the firmware RESET command above or we're dealing with old firmware 6186 * which doesn't have the HALT capability. This will serve as a flag 6187 * for the incoming firmware to know that it's coming out of a HALT 6188 * rather than a RESET ... if it's new enough to understand that ... 6189 */ 6190 if (ret == 0 || force) { 6191 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 6192 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 6193 PCIE_FW_HALT_F); 6194 } 6195 6196 /* 6197 * And we always return the result of the firmware RESET command 6198 * even when we force the uP into RESET ... 6199 */ 6200 return ret; 6201 } 6202 6203 /** 6204 * t4_fw_restart - restart the firmware by taking the uP out of RESET 6205 * @adap: the adapter 6206 * @reset: if we want to do a RESET to restart things 6207 * 6208 * Restart firmware previously halted by t4_fw_halt(). On successful 6209 * return the previous PF Master remains as the new PF Master and there 6210 * is no need to issue a new HELLO command, etc. 6211 * 6212 * We do this in two ways: 6213 * 6214 * 1. If we're dealing with newer firmware we'll simply want to take 6215 * the chip's microprocessor out of RESET. This will cause the 6216 * firmware to start up from its start vector. And then we'll loop 6217 * until the firmware indicates it's started again (PCIE_FW.HALT 6218 * reset to 0) or we timeout. 6219 * 6220 * 2. If we're dealing with older firmware then we'll need to RESET 6221 * the chip since older firmware won't recognize the PCIE_FW.HALT 6222 * flag and automatically RESET itself on startup. 6223 */ 6224 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 6225 { 6226 if (reset) { 6227 /* 6228 * Since we're directing the RESET instead of the firmware 6229 * doing it automatically, we need to clear the PCIE_FW.HALT 6230 * bit. 6231 */ 6232 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 6233 6234 /* 6235 * If we've been given a valid mailbox, first try to get the 6236 * firmware to do the RESET. If that works, great and we can 6237 * return success. Otherwise, if we haven't been given a 6238 * valid mailbox or the RESET command failed, fall back to 6239 * hitting the chip with a hammer. 6240 */ 6241 if (mbox <= PCIE_FW_MASTER_M) { 6242 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6243 msleep(100); 6244 if (t4_fw_reset(adap, mbox, 6245 PIORST_F | PIORSTMODE_F) == 0) 6246 return 0; 6247 } 6248 6249 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 6250 msleep(2000); 6251 } else { 6252 int ms; 6253 6254 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6255 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 6256 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 6257 return 0; 6258 msleep(100); 6259 ms += 100; 6260 } 6261 return -ETIMEDOUT; 6262 } 6263 return 0; 6264 } 6265 6266 /** 6267 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 6268 * @adap: the adapter 6269 * @mbox: mailbox to use for the FW RESET command (if desired) 6270 * @fw_data: the firmware image to write 6271 * @size: image size 6272 * @force: force upgrade even if firmware doesn't cooperate 6273 * 6274 * Perform all of the steps necessary for upgrading an adapter's 6275 * firmware image. Normally this requires the cooperation of the 6276 * existing firmware in order to halt all existing activities 6277 * but if an invalid mailbox token is passed in we skip that step 6278 * (though we'll still put the adapter microprocessor into RESET in 6279 * that case). 6280 * 6281 * On successful return the new firmware will have been loaded and 6282 * the adapter will have been fully RESET losing all previous setup 6283 * state. On unsuccessful return the adapter may be completely hosed ... 6284 * positive errno indicates that the adapter is ~probably~ intact, a 6285 * negative errno indicates that things are looking bad ... 6286 */ 6287 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 6288 const u8 *fw_data, unsigned int size, int force) 6289 { 6290 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 6291 int reset, ret; 6292 6293 if (!t4_fw_matches_chip(adap, fw_hdr)) 6294 return -EINVAL; 6295 6296 ret = t4_fw_halt(adap, mbox, force); 6297 if (ret < 0 && !force) 6298 return ret; 6299 6300 ret = t4_load_fw(adap, fw_data, size); 6301 if (ret < 0) 6302 return ret; 6303 6304 /* 6305 * Older versions of the firmware don't understand the new 6306 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 6307 * restart. So for newly loaded older firmware we'll have to do the 6308 * RESET for it so it starts up on a clean slate. We can tell if 6309 * the newly loaded firmware will handle this right by checking 6310 * its header flags to see if it advertises the capability. 6311 */ 6312 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 6313 return t4_fw_restart(adap, mbox, reset); 6314 } 6315 6316 /** 6317 * t4_fl_pkt_align - return the fl packet alignment 6318 * @adap: the adapter 6319 * 6320 * T4 has a single field to specify the packing and padding boundary. 6321 * T5 onwards has separate fields for this and hence the alignment for 6322 * next packet offset is maximum of these two. 6323 * 6324 */ 6325 int t4_fl_pkt_align(struct adapter *adap) 6326 { 6327 u32 sge_control, sge_control2; 6328 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 6329 6330 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 6331 6332 /* T4 uses a single control field to specify both the PCIe Padding and 6333 * Packing Boundary. T5 introduced the ability to specify these 6334 * separately. The actual Ingress Packet Data alignment boundary 6335 * within Packed Buffer Mode is the maximum of these two 6336 * specifications. (Note that it makes no real practical sense to 6337 * have the Pading Boudary be larger than the Packing Boundary but you 6338 * could set the chip up that way and, in fact, legacy T4 code would 6339 * end doing this because it would initialize the Padding Boundary and 6340 * leave the Packing Boundary initialized to 0 (16 bytes).) 6341 * Padding Boundary values in T6 starts from 8B, 6342 * where as it is 32B for T4 and T5. 6343 */ 6344 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 6345 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 6346 else 6347 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 6348 6349 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 6350 6351 fl_align = ingpadboundary; 6352 if (!is_t4(adap->params.chip)) { 6353 /* T5 has a weird interpretation of one of the PCIe Packing 6354 * Boundary values. No idea why ... 6355 */ 6356 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 6357 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 6358 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 6359 ingpackboundary = 16; 6360 else 6361 ingpackboundary = 1 << (ingpackboundary + 6362 INGPACKBOUNDARY_SHIFT_X); 6363 6364 fl_align = max(ingpadboundary, ingpackboundary); 6365 } 6366 return fl_align; 6367 } 6368 6369 /** 6370 * t4_fixup_host_params - fix up host-dependent parameters 6371 * @adap: the adapter 6372 * @page_size: the host's Base Page Size 6373 * @cache_line_size: the host's Cache Line Size 6374 * 6375 * Various registers in T4 contain values which are dependent on the 6376 * host's Base Page and Cache Line Sizes. This function will fix all of 6377 * those registers with the appropriate values as passed in ... 6378 */ 6379 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 6380 unsigned int cache_line_size) 6381 { 6382 unsigned int page_shift = fls(page_size) - 1; 6383 unsigned int sge_hps = page_shift - 10; 6384 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 6385 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 6386 unsigned int fl_align_log = fls(fl_align) - 1; 6387 6388 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 6389 HOSTPAGESIZEPF0_V(sge_hps) | 6390 HOSTPAGESIZEPF1_V(sge_hps) | 6391 HOSTPAGESIZEPF2_V(sge_hps) | 6392 HOSTPAGESIZEPF3_V(sge_hps) | 6393 HOSTPAGESIZEPF4_V(sge_hps) | 6394 HOSTPAGESIZEPF5_V(sge_hps) | 6395 HOSTPAGESIZEPF6_V(sge_hps) | 6396 HOSTPAGESIZEPF7_V(sge_hps)); 6397 6398 if (is_t4(adap->params.chip)) { 6399 t4_set_reg_field(adap, SGE_CONTROL_A, 6400 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 6401 EGRSTATUSPAGESIZE_F, 6402 INGPADBOUNDARY_V(fl_align_log - 6403 INGPADBOUNDARY_SHIFT_X) | 6404 EGRSTATUSPAGESIZE_V(stat_len != 64)); 6405 } else { 6406 unsigned int pack_align; 6407 unsigned int ingpad, ingpack; 6408 unsigned int pcie_cap; 6409 6410 /* T5 introduced the separation of the Free List Padding and 6411 * Packing Boundaries. Thus, we can select a smaller Padding 6412 * Boundary to avoid uselessly chewing up PCIe Link and Memory 6413 * Bandwidth, and use a Packing Boundary which is large enough 6414 * to avoid false sharing between CPUs, etc. 6415 * 6416 * For the PCI Link, the smaller the Padding Boundary the 6417 * better. For the Memory Controller, a smaller Padding 6418 * Boundary is better until we cross under the Memory Line 6419 * Size (the minimum unit of transfer to/from Memory). If we 6420 * have a Padding Boundary which is smaller than the Memory 6421 * Line Size, that'll involve a Read-Modify-Write cycle on the 6422 * Memory Controller which is never good. 6423 */ 6424 6425 /* We want the Packing Boundary to be based on the Cache Line 6426 * Size in order to help avoid False Sharing performance 6427 * issues between CPUs, etc. We also want the Packing 6428 * Boundary to incorporate the PCI-E Maximum Payload Size. We 6429 * get best performance when the Packing Boundary is a 6430 * multiple of the Maximum Payload Size. 6431 */ 6432 pack_align = fl_align; 6433 pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP); 6434 if (pcie_cap) { 6435 unsigned int mps, mps_log; 6436 u16 devctl; 6437 6438 /* The PCIe Device Control Maximum Payload Size field 6439 * [bits 7:5] encodes sizes as powers of 2 starting at 6440 * 128 bytes. 6441 */ 6442 pci_read_config_word(adap->pdev, 6443 pcie_cap + PCI_EXP_DEVCTL, 6444 &devctl); 6445 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 6446 mps = 1 << mps_log; 6447 if (mps > pack_align) 6448 pack_align = mps; 6449 } 6450 6451 /* N.B. T5/T6 have a crazy special interpretation of the "0" 6452 * value for the Packing Boundary. This corresponds to 16 6453 * bytes instead of the expected 32 bytes. So if we want 32 6454 * bytes, the best we can really do is 64 bytes ... 6455 */ 6456 if (pack_align <= 16) { 6457 ingpack = INGPACKBOUNDARY_16B_X; 6458 fl_align = 16; 6459 } else if (pack_align == 32) { 6460 ingpack = INGPACKBOUNDARY_64B_X; 6461 fl_align = 64; 6462 } else { 6463 unsigned int pack_align_log = fls(pack_align) - 1; 6464 6465 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 6466 fl_align = pack_align; 6467 } 6468 6469 /* Use the smallest Ingress Padding which isn't smaller than 6470 * the Memory Controller Read/Write Size. We'll take that as 6471 * being 8 bytes since we don't know of any system with a 6472 * wider Memory Controller Bus Width. 6473 */ 6474 if (is_t5(adap->params.chip)) 6475 ingpad = INGPADBOUNDARY_32B_X; 6476 else 6477 ingpad = T6_INGPADBOUNDARY_8B_X; 6478 6479 t4_set_reg_field(adap, SGE_CONTROL_A, 6480 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 6481 EGRSTATUSPAGESIZE_F, 6482 INGPADBOUNDARY_V(ingpad) | 6483 EGRSTATUSPAGESIZE_V(stat_len != 64)); 6484 t4_set_reg_field(adap, SGE_CONTROL2_A, 6485 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 6486 INGPACKBOUNDARY_V(ingpack)); 6487 } 6488 /* 6489 * Adjust various SGE Free List Host Buffer Sizes. 6490 * 6491 * This is something of a crock since we're using fixed indices into 6492 * the array which are also known by the sge.c code and the T4 6493 * Firmware Configuration File. We need to come up with a much better 6494 * approach to managing this array. For now, the first four entries 6495 * are: 6496 * 6497 * 0: Host Page Size 6498 * 1: 64KB 6499 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 6500 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 6501 * 6502 * For the single-MTU buffers in unpacked mode we need to include 6503 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 6504 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 6505 * Padding boundary. All of these are accommodated in the Factory 6506 * Default Firmware Configuration File but we need to adjust it for 6507 * this host's cache line size. 6508 */ 6509 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 6510 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 6511 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 6512 & ~(fl_align-1)); 6513 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 6514 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 6515 & ~(fl_align-1)); 6516 6517 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 6518 6519 return 0; 6520 } 6521 6522 /** 6523 * t4_fw_initialize - ask FW to initialize the device 6524 * @adap: the adapter 6525 * @mbox: mailbox to use for the FW command 6526 * 6527 * Issues a command to FW to partially initialize the device. This 6528 * performs initialization that generally doesn't depend on user input. 6529 */ 6530 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 6531 { 6532 struct fw_initialize_cmd c; 6533 6534 memset(&c, 0, sizeof(c)); 6535 INIT_CMD(c, INITIALIZE, WRITE); 6536 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6537 } 6538 6539 /** 6540 * t4_query_params_rw - query FW or device parameters 6541 * @adap: the adapter 6542 * @mbox: mailbox to use for the FW command 6543 * @pf: the PF 6544 * @vf: the VF 6545 * @nparams: the number of parameters 6546 * @params: the parameter names 6547 * @val: the parameter values 6548 * @rw: Write and read flag 6549 * 6550 * Reads the value of FW or device parameters. Up to 7 parameters can be 6551 * queried at once. 6552 */ 6553 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 6554 unsigned int vf, unsigned int nparams, const u32 *params, 6555 u32 *val, int rw) 6556 { 6557 int i, ret; 6558 struct fw_params_cmd c; 6559 __be32 *p = &c.param[0].mnem; 6560 6561 if (nparams > 7) 6562 return -EINVAL; 6563 6564 memset(&c, 0, sizeof(c)); 6565 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 6566 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6567 FW_PARAMS_CMD_PFN_V(pf) | 6568 FW_PARAMS_CMD_VFN_V(vf)); 6569 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6570 6571 for (i = 0; i < nparams; i++) { 6572 *p++ = cpu_to_be32(*params++); 6573 if (rw) 6574 *p = cpu_to_be32(*(val + i)); 6575 p++; 6576 } 6577 6578 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6579 if (ret == 0) 6580 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 6581 *val++ = be32_to_cpu(*p); 6582 return ret; 6583 } 6584 6585 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 6586 unsigned int vf, unsigned int nparams, const u32 *params, 6587 u32 *val) 6588 { 6589 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0); 6590 } 6591 6592 /** 6593 * t4_set_params_timeout - sets FW or device parameters 6594 * @adap: the adapter 6595 * @mbox: mailbox to use for the FW command 6596 * @pf: the PF 6597 * @vf: the VF 6598 * @nparams: the number of parameters 6599 * @params: the parameter names 6600 * @val: the parameter values 6601 * @timeout: the timeout time 6602 * 6603 * Sets the value of FW or device parameters. Up to 7 parameters can be 6604 * specified at once. 6605 */ 6606 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 6607 unsigned int pf, unsigned int vf, 6608 unsigned int nparams, const u32 *params, 6609 const u32 *val, int timeout) 6610 { 6611 struct fw_params_cmd c; 6612 __be32 *p = &c.param[0].mnem; 6613 6614 if (nparams > 7) 6615 return -EINVAL; 6616 6617 memset(&c, 0, sizeof(c)); 6618 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 6619 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6620 FW_PARAMS_CMD_PFN_V(pf) | 6621 FW_PARAMS_CMD_VFN_V(vf)); 6622 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6623 6624 while (nparams--) { 6625 *p++ = cpu_to_be32(*params++); 6626 *p++ = cpu_to_be32(*val++); 6627 } 6628 6629 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 6630 } 6631 6632 /** 6633 * t4_set_params - sets FW or device parameters 6634 * @adap: the adapter 6635 * @mbox: mailbox to use for the FW command 6636 * @pf: the PF 6637 * @vf: the VF 6638 * @nparams: the number of parameters 6639 * @params: the parameter names 6640 * @val: the parameter values 6641 * 6642 * Sets the value of FW or device parameters. Up to 7 parameters can be 6643 * specified at once. 6644 */ 6645 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 6646 unsigned int vf, unsigned int nparams, const u32 *params, 6647 const u32 *val) 6648 { 6649 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 6650 FW_CMD_MAX_TIMEOUT); 6651 } 6652 6653 /** 6654 * t4_cfg_pfvf - configure PF/VF resource limits 6655 * @adap: the adapter 6656 * @mbox: mailbox to use for the FW command 6657 * @pf: the PF being configured 6658 * @vf: the VF being configured 6659 * @txq: the max number of egress queues 6660 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 6661 * @rxqi: the max number of interrupt-capable ingress queues 6662 * @rxq: the max number of interruptless ingress queues 6663 * @tc: the PCI traffic class 6664 * @vi: the max number of virtual interfaces 6665 * @cmask: the channel access rights mask for the PF/VF 6666 * @pmask: the port access rights mask for the PF/VF 6667 * @nexact: the maximum number of exact MPS filters 6668 * @rcaps: read capabilities 6669 * @wxcaps: write/execute capabilities 6670 * 6671 * Configures resource limits and capabilities for a physical or virtual 6672 * function. 6673 */ 6674 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 6675 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 6676 unsigned int rxqi, unsigned int rxq, unsigned int tc, 6677 unsigned int vi, unsigned int cmask, unsigned int pmask, 6678 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 6679 { 6680 struct fw_pfvf_cmd c; 6681 6682 memset(&c, 0, sizeof(c)); 6683 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 6684 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 6685 FW_PFVF_CMD_VFN_V(vf)); 6686 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6687 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 6688 FW_PFVF_CMD_NIQ_V(rxq)); 6689 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 6690 FW_PFVF_CMD_PMASK_V(pmask) | 6691 FW_PFVF_CMD_NEQ_V(txq)); 6692 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 6693 FW_PFVF_CMD_NVI_V(vi) | 6694 FW_PFVF_CMD_NEXACTF_V(nexact)); 6695 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 6696 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 6697 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 6698 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6699 } 6700 6701 /** 6702 * t4_alloc_vi - allocate a virtual interface 6703 * @adap: the adapter 6704 * @mbox: mailbox to use for the FW command 6705 * @port: physical port associated with the VI 6706 * @pf: the PF owning the VI 6707 * @vf: the VF owning the VI 6708 * @nmac: number of MAC addresses needed (1 to 5) 6709 * @mac: the MAC addresses of the VI 6710 * @rss_size: size of RSS table slice associated with this VI 6711 * 6712 * Allocates a virtual interface for the given physical port. If @mac is 6713 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 6714 * @mac should be large enough to hold @nmac Ethernet addresses, they are 6715 * stored consecutively so the space needed is @nmac * 6 bytes. 6716 * Returns a negative error number or the non-negative VI id. 6717 */ 6718 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 6719 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 6720 unsigned int *rss_size) 6721 { 6722 int ret; 6723 struct fw_vi_cmd c; 6724 6725 memset(&c, 0, sizeof(c)); 6726 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 6727 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 6728 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 6729 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 6730 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 6731 c.nmac = nmac - 1; 6732 6733 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6734 if (ret) 6735 return ret; 6736 6737 if (mac) { 6738 memcpy(mac, c.mac, sizeof(c.mac)); 6739 switch (nmac) { 6740 case 5: 6741 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 6742 case 4: 6743 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 6744 case 3: 6745 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 6746 case 2: 6747 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 6748 } 6749 } 6750 if (rss_size) 6751 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 6752 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 6753 } 6754 6755 /** 6756 * t4_free_vi - free a virtual interface 6757 * @adap: the adapter 6758 * @mbox: mailbox to use for the FW command 6759 * @pf: the PF owning the VI 6760 * @vf: the VF owning the VI 6761 * @viid: virtual interface identifiler 6762 * 6763 * Free a previously allocated virtual interface. 6764 */ 6765 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 6766 unsigned int vf, unsigned int viid) 6767 { 6768 struct fw_vi_cmd c; 6769 6770 memset(&c, 0, sizeof(c)); 6771 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 6772 FW_CMD_REQUEST_F | 6773 FW_CMD_EXEC_F | 6774 FW_VI_CMD_PFN_V(pf) | 6775 FW_VI_CMD_VFN_V(vf)); 6776 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 6777 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 6778 6779 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6780 } 6781 6782 /** 6783 * t4_set_rxmode - set Rx properties of a virtual interface 6784 * @adap: the adapter 6785 * @mbox: mailbox to use for the FW command 6786 * @viid: the VI id 6787 * @mtu: the new MTU or -1 6788 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 6789 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 6790 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 6791 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 6792 * @sleep_ok: if true we may sleep while awaiting command completion 6793 * 6794 * Sets Rx properties of a virtual interface. 6795 */ 6796 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 6797 int mtu, int promisc, int all_multi, int bcast, int vlanex, 6798 bool sleep_ok) 6799 { 6800 struct fw_vi_rxmode_cmd c; 6801 6802 /* convert to FW values */ 6803 if (mtu < 0) 6804 mtu = FW_RXMODE_MTU_NO_CHG; 6805 if (promisc < 0) 6806 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 6807 if (all_multi < 0) 6808 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 6809 if (bcast < 0) 6810 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 6811 if (vlanex < 0) 6812 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 6813 6814 memset(&c, 0, sizeof(c)); 6815 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 6816 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6817 FW_VI_RXMODE_CMD_VIID_V(viid)); 6818 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6819 c.mtu_to_vlanexen = 6820 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 6821 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 6822 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 6823 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 6824 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 6825 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 6826 } 6827 6828 /** 6829 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 6830 * @adap: the adapter 6831 * @mbox: mailbox to use for the FW command 6832 * @viid: the VI id 6833 * @free: if true any existing filters for this VI id are first removed 6834 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 6835 * @addr: the MAC address(es) 6836 * @idx: where to store the index of each allocated filter 6837 * @hash: pointer to hash address filter bitmap 6838 * @sleep_ok: call is allowed to sleep 6839 * 6840 * Allocates an exact-match filter for each of the supplied addresses and 6841 * sets it to the corresponding address. If @idx is not %NULL it should 6842 * have at least @naddr entries, each of which will be set to the index of 6843 * the filter allocated for the corresponding MAC address. If a filter 6844 * could not be allocated for an address its index is set to 0xffff. 6845 * If @hash is not %NULL addresses that fail to allocate an exact filter 6846 * are hashed and update the hash filter bitmap pointed at by @hash. 6847 * 6848 * Returns a negative error number or the number of filters allocated. 6849 */ 6850 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 6851 unsigned int viid, bool free, unsigned int naddr, 6852 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 6853 { 6854 int offset, ret = 0; 6855 struct fw_vi_mac_cmd c; 6856 unsigned int nfilters = 0; 6857 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 6858 unsigned int rem = naddr; 6859 6860 if (naddr > max_naddr) 6861 return -EINVAL; 6862 6863 for (offset = 0; offset < naddr ; /**/) { 6864 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 6865 rem : ARRAY_SIZE(c.u.exact)); 6866 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 6867 u.exact[fw_naddr]), 16); 6868 struct fw_vi_mac_exact *p; 6869 int i; 6870 6871 memset(&c, 0, sizeof(c)); 6872 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 6873 FW_CMD_REQUEST_F | 6874 FW_CMD_WRITE_F | 6875 FW_CMD_EXEC_V(free) | 6876 FW_VI_MAC_CMD_VIID_V(viid)); 6877 c.freemacs_to_len16 = 6878 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 6879 FW_CMD_LEN16_V(len16)); 6880 6881 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 6882 p->valid_to_idx = 6883 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 6884 FW_VI_MAC_CMD_IDX_V( 6885 FW_VI_MAC_ADD_MAC)); 6886 memcpy(p->macaddr, addr[offset + i], 6887 sizeof(p->macaddr)); 6888 } 6889 6890 /* It's okay if we run out of space in our MAC address arena. 6891 * Some of the addresses we submit may get stored so we need 6892 * to run through the reply to see what the results were ... 6893 */ 6894 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 6895 if (ret && ret != -FW_ENOMEM) 6896 break; 6897 6898 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 6899 u16 index = FW_VI_MAC_CMD_IDX_G( 6900 be16_to_cpu(p->valid_to_idx)); 6901 6902 if (idx) 6903 idx[offset + i] = (index >= max_naddr ? 6904 0xffff : index); 6905 if (index < max_naddr) 6906 nfilters++; 6907 else if (hash) 6908 *hash |= (1ULL << 6909 hash_mac_addr(addr[offset + i])); 6910 } 6911 6912 free = false; 6913 offset += fw_naddr; 6914 rem -= fw_naddr; 6915 } 6916 6917 if (ret == 0 || ret == -FW_ENOMEM) 6918 ret = nfilters; 6919 return ret; 6920 } 6921 6922 /** 6923 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 6924 * @adap: the adapter 6925 * @mbox: mailbox to use for the FW command 6926 * @viid: the VI id 6927 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 6928 * @addr: the MAC address(es) 6929 * @sleep_ok: call is allowed to sleep 6930 * 6931 * Frees the exact-match filter for each of the supplied addresses 6932 * 6933 * Returns a negative error number or the number of filters freed. 6934 */ 6935 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 6936 unsigned int viid, unsigned int naddr, 6937 const u8 **addr, bool sleep_ok) 6938 { 6939 int offset, ret = 0; 6940 struct fw_vi_mac_cmd c; 6941 unsigned int nfilters = 0; 6942 unsigned int max_naddr = is_t4(adap->params.chip) ? 6943 NUM_MPS_CLS_SRAM_L_INSTANCES : 6944 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 6945 unsigned int rem = naddr; 6946 6947 if (naddr > max_naddr) 6948 return -EINVAL; 6949 6950 for (offset = 0; offset < (int)naddr ; /**/) { 6951 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 6952 ? rem 6953 : ARRAY_SIZE(c.u.exact)); 6954 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 6955 u.exact[fw_naddr]), 16); 6956 struct fw_vi_mac_exact *p; 6957 int i; 6958 6959 memset(&c, 0, sizeof(c)); 6960 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 6961 FW_CMD_REQUEST_F | 6962 FW_CMD_WRITE_F | 6963 FW_CMD_EXEC_V(0) | 6964 FW_VI_MAC_CMD_VIID_V(viid)); 6965 c.freemacs_to_len16 = 6966 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 6967 FW_CMD_LEN16_V(len16)); 6968 6969 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 6970 p->valid_to_idx = cpu_to_be16( 6971 FW_VI_MAC_CMD_VALID_F | 6972 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 6973 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 6974 } 6975 6976 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 6977 if (ret) 6978 break; 6979 6980 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 6981 u16 index = FW_VI_MAC_CMD_IDX_G( 6982 be16_to_cpu(p->valid_to_idx)); 6983 6984 if (index < max_naddr) 6985 nfilters++; 6986 } 6987 6988 offset += fw_naddr; 6989 rem -= fw_naddr; 6990 } 6991 6992 if (ret == 0) 6993 ret = nfilters; 6994 return ret; 6995 } 6996 6997 /** 6998 * t4_change_mac - modifies the exact-match filter for a MAC address 6999 * @adap: the adapter 7000 * @mbox: mailbox to use for the FW command 7001 * @viid: the VI id 7002 * @idx: index of existing filter for old value of MAC address, or -1 7003 * @addr: the new MAC address value 7004 * @persist: whether a new MAC allocation should be persistent 7005 * @add_smt: if true also add the address to the HW SMT 7006 * 7007 * Modifies an exact-match filter and sets it to the new MAC address. 7008 * Note that in general it is not possible to modify the value of a given 7009 * filter so the generic way to modify an address filter is to free the one 7010 * being used by the old address value and allocate a new filter for the 7011 * new address value. @idx can be -1 if the address is a new addition. 7012 * 7013 * Returns a negative error number or the index of the filter with the new 7014 * MAC value. 7015 */ 7016 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 7017 int idx, const u8 *addr, bool persist, bool add_smt) 7018 { 7019 int ret, mode; 7020 struct fw_vi_mac_cmd c; 7021 struct fw_vi_mac_exact *p = c.u.exact; 7022 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 7023 7024 if (idx < 0) /* new allocation */ 7025 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 7026 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 7027 7028 memset(&c, 0, sizeof(c)); 7029 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7030 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7031 FW_VI_MAC_CMD_VIID_V(viid)); 7032 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 7033 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7034 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 7035 FW_VI_MAC_CMD_IDX_V(idx)); 7036 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7037 7038 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7039 if (ret == 0) { 7040 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7041 if (ret >= max_mac_addr) 7042 ret = -ENOMEM; 7043 } 7044 return ret; 7045 } 7046 7047 /** 7048 * t4_set_addr_hash - program the MAC inexact-match hash filter 7049 * @adap: the adapter 7050 * @mbox: mailbox to use for the FW command 7051 * @viid: the VI id 7052 * @ucast: whether the hash filter should also match unicast addresses 7053 * @vec: the value to be written to the hash filter 7054 * @sleep_ok: call is allowed to sleep 7055 * 7056 * Sets the 64-bit inexact-match hash filter for a virtual interface. 7057 */ 7058 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 7059 bool ucast, u64 vec, bool sleep_ok) 7060 { 7061 struct fw_vi_mac_cmd c; 7062 7063 memset(&c, 0, sizeof(c)); 7064 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7065 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7066 FW_VI_ENABLE_CMD_VIID_V(viid)); 7067 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 7068 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 7069 FW_CMD_LEN16_V(1)); 7070 c.u.hash.hashvec = cpu_to_be64(vec); 7071 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7072 } 7073 7074 /** 7075 * t4_enable_vi_params - enable/disable a virtual interface 7076 * @adap: the adapter 7077 * @mbox: mailbox to use for the FW command 7078 * @viid: the VI id 7079 * @rx_en: 1=enable Rx, 0=disable Rx 7080 * @tx_en: 1=enable Tx, 0=disable Tx 7081 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 7082 * 7083 * Enables/disables a virtual interface. Note that setting DCB Enable 7084 * only makes sense when enabling a Virtual Interface ... 7085 */ 7086 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 7087 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 7088 { 7089 struct fw_vi_enable_cmd c; 7090 7091 memset(&c, 0, sizeof(c)); 7092 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 7093 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7094 FW_VI_ENABLE_CMD_VIID_V(viid)); 7095 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 7096 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 7097 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 7098 FW_LEN16(c)); 7099 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 7100 } 7101 7102 /** 7103 * t4_enable_vi - enable/disable a virtual interface 7104 * @adap: the adapter 7105 * @mbox: mailbox to use for the FW command 7106 * @viid: the VI id 7107 * @rx_en: 1=enable Rx, 0=disable Rx 7108 * @tx_en: 1=enable Tx, 0=disable Tx 7109 * 7110 * Enables/disables a virtual interface. 7111 */ 7112 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 7113 bool rx_en, bool tx_en) 7114 { 7115 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 7116 } 7117 7118 /** 7119 * t4_identify_port - identify a VI's port by blinking its LED 7120 * @adap: the adapter 7121 * @mbox: mailbox to use for the FW command 7122 * @viid: the VI id 7123 * @nblinks: how many times to blink LED at 2.5 Hz 7124 * 7125 * Identifies a VI's port by blinking its LED. 7126 */ 7127 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 7128 unsigned int nblinks) 7129 { 7130 struct fw_vi_enable_cmd c; 7131 7132 memset(&c, 0, sizeof(c)); 7133 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 7134 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7135 FW_VI_ENABLE_CMD_VIID_V(viid)); 7136 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 7137 c.blinkdur = cpu_to_be16(nblinks); 7138 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7139 } 7140 7141 /** 7142 * t4_iq_stop - stop an ingress queue and its FLs 7143 * @adap: the adapter 7144 * @mbox: mailbox to use for the FW command 7145 * @pf: the PF owning the queues 7146 * @vf: the VF owning the queues 7147 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 7148 * @iqid: ingress queue id 7149 * @fl0id: FL0 queue id or 0xffff if no attached FL0 7150 * @fl1id: FL1 queue id or 0xffff if no attached FL1 7151 * 7152 * Stops an ingress queue and its associated FLs, if any. This causes 7153 * any current or future data/messages destined for these queues to be 7154 * tossed. 7155 */ 7156 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 7157 unsigned int vf, unsigned int iqtype, unsigned int iqid, 7158 unsigned int fl0id, unsigned int fl1id) 7159 { 7160 struct fw_iq_cmd c; 7161 7162 memset(&c, 0, sizeof(c)); 7163 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 7164 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 7165 FW_IQ_CMD_VFN_V(vf)); 7166 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 7167 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 7168 c.iqid = cpu_to_be16(iqid); 7169 c.fl0id = cpu_to_be16(fl0id); 7170 c.fl1id = cpu_to_be16(fl1id); 7171 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7172 } 7173 7174 /** 7175 * t4_iq_free - free an ingress queue and its FLs 7176 * @adap: the adapter 7177 * @mbox: mailbox to use for the FW command 7178 * @pf: the PF owning the queues 7179 * @vf: the VF owning the queues 7180 * @iqtype: the ingress queue type 7181 * @iqid: ingress queue id 7182 * @fl0id: FL0 queue id or 0xffff if no attached FL0 7183 * @fl1id: FL1 queue id or 0xffff if no attached FL1 7184 * 7185 * Frees an ingress queue and its associated FLs, if any. 7186 */ 7187 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7188 unsigned int vf, unsigned int iqtype, unsigned int iqid, 7189 unsigned int fl0id, unsigned int fl1id) 7190 { 7191 struct fw_iq_cmd c; 7192 7193 memset(&c, 0, sizeof(c)); 7194 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 7195 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 7196 FW_IQ_CMD_VFN_V(vf)); 7197 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 7198 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 7199 c.iqid = cpu_to_be16(iqid); 7200 c.fl0id = cpu_to_be16(fl0id); 7201 c.fl1id = cpu_to_be16(fl1id); 7202 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7203 } 7204 7205 /** 7206 * t4_eth_eq_free - free an Ethernet egress queue 7207 * @adap: the adapter 7208 * @mbox: mailbox to use for the FW command 7209 * @pf: the PF owning the queue 7210 * @vf: the VF owning the queue 7211 * @eqid: egress queue id 7212 * 7213 * Frees an Ethernet egress queue. 7214 */ 7215 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7216 unsigned int vf, unsigned int eqid) 7217 { 7218 struct fw_eq_eth_cmd c; 7219 7220 memset(&c, 0, sizeof(c)); 7221 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 7222 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7223 FW_EQ_ETH_CMD_PFN_V(pf) | 7224 FW_EQ_ETH_CMD_VFN_V(vf)); 7225 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 7226 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 7227 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7228 } 7229 7230 /** 7231 * t4_ctrl_eq_free - free a control egress queue 7232 * @adap: the adapter 7233 * @mbox: mailbox to use for the FW command 7234 * @pf: the PF owning the queue 7235 * @vf: the VF owning the queue 7236 * @eqid: egress queue id 7237 * 7238 * Frees a control egress queue. 7239 */ 7240 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7241 unsigned int vf, unsigned int eqid) 7242 { 7243 struct fw_eq_ctrl_cmd c; 7244 7245 memset(&c, 0, sizeof(c)); 7246 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 7247 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7248 FW_EQ_CTRL_CMD_PFN_V(pf) | 7249 FW_EQ_CTRL_CMD_VFN_V(vf)); 7250 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 7251 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 7252 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7253 } 7254 7255 /** 7256 * t4_ofld_eq_free - free an offload egress queue 7257 * @adap: the adapter 7258 * @mbox: mailbox to use for the FW command 7259 * @pf: the PF owning the queue 7260 * @vf: the VF owning the queue 7261 * @eqid: egress queue id 7262 * 7263 * Frees a control egress queue. 7264 */ 7265 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7266 unsigned int vf, unsigned int eqid) 7267 { 7268 struct fw_eq_ofld_cmd c; 7269 7270 memset(&c, 0, sizeof(c)); 7271 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 7272 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7273 FW_EQ_OFLD_CMD_PFN_V(pf) | 7274 FW_EQ_OFLD_CMD_VFN_V(vf)); 7275 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 7276 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 7277 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7278 } 7279 7280 /** 7281 * t4_link_down_rc_str - return a string for a Link Down Reason Code 7282 * @adap: the adapter 7283 * @link_down_rc: Link Down Reason Code 7284 * 7285 * Returns a string representation of the Link Down Reason Code. 7286 */ 7287 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 7288 { 7289 static const char * const reason[] = { 7290 "Link Down", 7291 "Remote Fault", 7292 "Auto-negotiation Failure", 7293 "Reserved", 7294 "Insufficient Airflow", 7295 "Unable To Determine Reason", 7296 "No RX Signal Detected", 7297 "Reserved", 7298 }; 7299 7300 if (link_down_rc >= ARRAY_SIZE(reason)) 7301 return "Bad Reason Code"; 7302 7303 return reason[link_down_rc]; 7304 } 7305 7306 /** 7307 * t4_handle_get_port_info - process a FW reply message 7308 * @pi: the port info 7309 * @rpl: start of the FW message 7310 * 7311 * Processes a GET_PORT_INFO FW reply message. 7312 */ 7313 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 7314 { 7315 const struct fw_port_cmd *p = (const void *)rpl; 7316 struct adapter *adap = pi->adapter; 7317 7318 /* link/module state change message */ 7319 int speed = 0, fc = 0; 7320 struct link_config *lc; 7321 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype); 7322 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0; 7323 u32 mod = FW_PORT_CMD_MODTYPE_G(stat); 7324 7325 if (stat & FW_PORT_CMD_RXPAUSE_F) 7326 fc |= PAUSE_RX; 7327 if (stat & FW_PORT_CMD_TXPAUSE_F) 7328 fc |= PAUSE_TX; 7329 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 7330 speed = 100; 7331 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 7332 speed = 1000; 7333 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 7334 speed = 10000; 7335 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 7336 speed = 25000; 7337 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 7338 speed = 40000; 7339 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 7340 speed = 100000; 7341 7342 lc = &pi->link_cfg; 7343 7344 if (mod != pi->mod_type) { 7345 pi->mod_type = mod; 7346 t4_os_portmod_changed(adap, pi->port_id); 7347 } 7348 if (link_ok != lc->link_ok || speed != lc->speed || 7349 fc != lc->fc) { /* something changed */ 7350 if (!link_ok && lc->link_ok) { 7351 unsigned char rc = FW_PORT_CMD_LINKDNRC_G(stat); 7352 7353 lc->link_down_rc = rc; 7354 dev_warn(adap->pdev_dev, 7355 "Port %d link down, reason: %s\n", 7356 pi->port_id, t4_link_down_rc_str(rc)); 7357 } 7358 lc->link_ok = link_ok; 7359 lc->speed = speed; 7360 lc->fc = fc; 7361 lc->supported = be16_to_cpu(p->u.info.pcap); 7362 lc->lp_advertising = be16_to_cpu(p->u.info.lpacap); 7363 t4_os_link_changed(adap, pi->port_id, link_ok); 7364 } 7365 } 7366 7367 /** 7368 * t4_handle_fw_rpl - process a FW reply message 7369 * @adap: the adapter 7370 * @rpl: start of the FW message 7371 * 7372 * Processes a FW message, such as link state change messages. 7373 */ 7374 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 7375 { 7376 u8 opcode = *(const u8 *)rpl; 7377 7378 /* This might be a port command ... this simplifies the following 7379 * conditionals ... We can get away with pre-dereferencing 7380 * action_to_len16 because it's in the first 16 bytes and all messages 7381 * will be at least that long. 7382 */ 7383 const struct fw_port_cmd *p = (const void *)rpl; 7384 unsigned int action = 7385 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 7386 7387 if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) { 7388 int i; 7389 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 7390 struct port_info *pi = NULL; 7391 7392 for_each_port(adap, i) { 7393 pi = adap2pinfo(adap, i); 7394 if (pi->tx_chan == chan) 7395 break; 7396 } 7397 7398 t4_handle_get_port_info(pi, rpl); 7399 } else { 7400 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", opcode); 7401 return -EINVAL; 7402 } 7403 return 0; 7404 } 7405 7406 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 7407 { 7408 u16 val; 7409 7410 if (pci_is_pcie(adapter->pdev)) { 7411 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 7412 p->speed = val & PCI_EXP_LNKSTA_CLS; 7413 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 7414 } 7415 } 7416 7417 /** 7418 * init_link_config - initialize a link's SW state 7419 * @lc: structure holding the link state 7420 * @caps: link capabilities 7421 * 7422 * Initializes the SW state maintained for each link, including the link's 7423 * capabilities and default speed/flow-control/autonegotiation settings. 7424 */ 7425 static void init_link_config(struct link_config *lc, unsigned int pcaps, 7426 unsigned int acaps) 7427 { 7428 lc->supported = pcaps; 7429 lc->lp_advertising = 0; 7430 lc->requested_speed = 0; 7431 lc->speed = 0; 7432 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 7433 lc->auto_fec = 0; 7434 7435 /* For Forward Error Control, we default to whatever the Firmware 7436 * tells us the Link is currently advertising. 7437 */ 7438 if (acaps & FW_PORT_CAP_FEC_RS) 7439 lc->auto_fec |= FEC_RS; 7440 if (acaps & FW_PORT_CAP_FEC_BASER_RS) 7441 lc->auto_fec |= FEC_BASER_RS; 7442 lc->requested_fec = FEC_AUTO; 7443 lc->fec = lc->auto_fec; 7444 7445 if (lc->supported & FW_PORT_CAP_ANEG) { 7446 lc->advertising = lc->supported & ADVERT_MASK; 7447 lc->autoneg = AUTONEG_ENABLE; 7448 lc->requested_fc |= PAUSE_AUTONEG; 7449 } else { 7450 lc->advertising = 0; 7451 lc->autoneg = AUTONEG_DISABLE; 7452 } 7453 } 7454 7455 #define CIM_PF_NOACCESS 0xeeeeeeee 7456 7457 int t4_wait_dev_ready(void __iomem *regs) 7458 { 7459 u32 whoami; 7460 7461 whoami = readl(regs + PL_WHOAMI_A); 7462 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 7463 return 0; 7464 7465 msleep(500); 7466 whoami = readl(regs + PL_WHOAMI_A); 7467 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 7468 } 7469 7470 struct flash_desc { 7471 u32 vendor_and_model_id; 7472 u32 size_mb; 7473 }; 7474 7475 static int get_flash_params(struct adapter *adap) 7476 { 7477 /* Table for non-Numonix supported flash parts. Numonix parts are left 7478 * to the preexisting code. All flash parts have 64KB sectors. 7479 */ 7480 static struct flash_desc supported_flash[] = { 7481 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 7482 }; 7483 7484 int ret; 7485 u32 info; 7486 7487 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 7488 if (!ret) 7489 ret = sf1_read(adap, 3, 0, 1, &info); 7490 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 7491 if (ret) 7492 return ret; 7493 7494 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret) 7495 if (supported_flash[ret].vendor_and_model_id == info) { 7496 adap->params.sf_size = supported_flash[ret].size_mb; 7497 adap->params.sf_nsec = 7498 adap->params.sf_size / SF_SEC_SIZE; 7499 return 0; 7500 } 7501 7502 if ((info & 0xff) != 0x20) /* not a Numonix flash */ 7503 return -EINVAL; 7504 info >>= 16; /* log2 of size */ 7505 if (info >= 0x14 && info < 0x18) 7506 adap->params.sf_nsec = 1 << (info - 16); 7507 else if (info == 0x18) 7508 adap->params.sf_nsec = 64; 7509 else 7510 return -EINVAL; 7511 adap->params.sf_size = 1 << info; 7512 adap->params.sf_fw_start = 7513 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M; 7514 7515 if (adap->params.sf_size < FLASH_MIN_SIZE) 7516 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n", 7517 adap->params.sf_size, FLASH_MIN_SIZE); 7518 return 0; 7519 } 7520 7521 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range) 7522 { 7523 u16 val; 7524 u32 pcie_cap; 7525 7526 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); 7527 if (pcie_cap) { 7528 pci_read_config_word(adapter->pdev, 7529 pcie_cap + PCI_EXP_DEVCTL2, &val); 7530 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT; 7531 val |= range; 7532 pci_write_config_word(adapter->pdev, 7533 pcie_cap + PCI_EXP_DEVCTL2, val); 7534 } 7535 } 7536 7537 /** 7538 * t4_prep_adapter - prepare SW and HW for operation 7539 * @adapter: the adapter 7540 * @reset: if true perform a HW reset 7541 * 7542 * Initialize adapter SW state for the various HW modules, set initial 7543 * values for some adapter tunables, take PHYs out of reset, and 7544 * initialize the MDIO interface. 7545 */ 7546 int t4_prep_adapter(struct adapter *adapter) 7547 { 7548 int ret, ver; 7549 uint16_t device_id; 7550 u32 pl_rev; 7551 7552 get_pci_mode(adapter, &adapter->params.pci); 7553 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 7554 7555 ret = get_flash_params(adapter); 7556 if (ret < 0) { 7557 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 7558 return ret; 7559 } 7560 7561 /* Retrieve adapter's device ID 7562 */ 7563 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 7564 ver = device_id >> 12; 7565 adapter->params.chip = 0; 7566 switch (ver) { 7567 case CHELSIO_T4: 7568 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 7569 adapter->params.arch.sge_fl_db = DBPRIO_F; 7570 adapter->params.arch.mps_tcam_size = 7571 NUM_MPS_CLS_SRAM_L_INSTANCES; 7572 adapter->params.arch.mps_rplc_size = 128; 7573 adapter->params.arch.nchan = NCHAN; 7574 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 7575 adapter->params.arch.vfcount = 128; 7576 /* Congestion map is for 4 channels so that 7577 * MPS can have 4 priority per port. 7578 */ 7579 adapter->params.arch.cng_ch_bits_log = 2; 7580 break; 7581 case CHELSIO_T5: 7582 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 7583 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 7584 adapter->params.arch.mps_tcam_size = 7585 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7586 adapter->params.arch.mps_rplc_size = 128; 7587 adapter->params.arch.nchan = NCHAN; 7588 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 7589 adapter->params.arch.vfcount = 128; 7590 adapter->params.arch.cng_ch_bits_log = 2; 7591 break; 7592 case CHELSIO_T6: 7593 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 7594 adapter->params.arch.sge_fl_db = 0; 7595 adapter->params.arch.mps_tcam_size = 7596 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7597 adapter->params.arch.mps_rplc_size = 256; 7598 adapter->params.arch.nchan = 2; 7599 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 7600 adapter->params.arch.vfcount = 256; 7601 /* Congestion map will be for 2 channels so that 7602 * MPS can have 8 priority per port. 7603 */ 7604 adapter->params.arch.cng_ch_bits_log = 3; 7605 break; 7606 default: 7607 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 7608 device_id); 7609 return -EINVAL; 7610 } 7611 7612 adapter->params.cim_la_size = CIMLA_SIZE; 7613 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 7614 7615 /* 7616 * Default port for debugging in case we can't reach FW. 7617 */ 7618 adapter->params.nports = 1; 7619 adapter->params.portvec = 1; 7620 adapter->params.vpd.cclk = 50000; 7621 7622 /* Set pci completion timeout value to 4 seconds. */ 7623 set_pcie_completion_timeout(adapter, 0xd); 7624 return 0; 7625 } 7626 7627 /** 7628 * t4_shutdown_adapter - shut down adapter, host & wire 7629 * @adapter: the adapter 7630 * 7631 * Perform an emergency shutdown of the adapter and stop it from 7632 * continuing any further communication on the ports or DMA to the 7633 * host. This is typically used when the adapter and/or firmware 7634 * have crashed and we want to prevent any further accidental 7635 * communication with the rest of the world. This will also force 7636 * the port Link Status to go down -- if register writes work -- 7637 * which should help our peers figure out that we're down. 7638 */ 7639 int t4_shutdown_adapter(struct adapter *adapter) 7640 { 7641 int port; 7642 7643 t4_intr_disable(adapter); 7644 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 7645 for_each_port(adapter, port) { 7646 u32 a_port_cfg = PORT_REG(port, 7647 is_t4(adapter->params.chip) 7648 ? XGMAC_PORT_CFG_A 7649 : MAC_PORT_CFG_A); 7650 7651 t4_write_reg(adapter, a_port_cfg, 7652 t4_read_reg(adapter, a_port_cfg) 7653 & ~SIGNAL_DET_V(1)); 7654 } 7655 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 7656 7657 return 0; 7658 } 7659 7660 /** 7661 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 7662 * @adapter: the adapter 7663 * @qid: the Queue ID 7664 * @qtype: the Ingress or Egress type for @qid 7665 * @user: true if this request is for a user mode queue 7666 * @pbar2_qoffset: BAR2 Queue Offset 7667 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 7668 * 7669 * Returns the BAR2 SGE Queue Registers information associated with the 7670 * indicated Absolute Queue ID. These are passed back in return value 7671 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 7672 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 7673 * 7674 * This may return an error which indicates that BAR2 SGE Queue 7675 * registers aren't available. If an error is not returned, then the 7676 * following values are returned: 7677 * 7678 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 7679 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 7680 * 7681 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 7682 * require the "Inferred Queue ID" ability may be used. E.g. the 7683 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 7684 * then these "Inferred Queue ID" register may not be used. 7685 */ 7686 int t4_bar2_sge_qregs(struct adapter *adapter, 7687 unsigned int qid, 7688 enum t4_bar2_qtype qtype, 7689 int user, 7690 u64 *pbar2_qoffset, 7691 unsigned int *pbar2_qid) 7692 { 7693 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 7694 u64 bar2_page_offset, bar2_qoffset; 7695 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 7696 7697 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 7698 if (!user && is_t4(adapter->params.chip)) 7699 return -EINVAL; 7700 7701 /* Get our SGE Page Size parameters. 7702 */ 7703 page_shift = adapter->params.sge.hps + 10; 7704 page_size = 1 << page_shift; 7705 7706 /* Get the right Queues per Page parameters for our Queue. 7707 */ 7708 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 7709 ? adapter->params.sge.eq_qpp 7710 : adapter->params.sge.iq_qpp); 7711 qpp_mask = (1 << qpp_shift) - 1; 7712 7713 /* Calculate the basics of the BAR2 SGE Queue register area: 7714 * o The BAR2 page the Queue registers will be in. 7715 * o The BAR2 Queue ID. 7716 * o The BAR2 Queue ID Offset into the BAR2 page. 7717 */ 7718 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 7719 bar2_qid = qid & qpp_mask; 7720 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 7721 7722 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 7723 * hardware will infer the Absolute Queue ID simply from the writes to 7724 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 7725 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 7726 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 7727 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 7728 * from the BAR2 Page and BAR2 Queue ID. 7729 * 7730 * One important censequence of this is that some BAR2 SGE registers 7731 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 7732 * there. But other registers synthesize the SGE Queue ID purely 7733 * from the writes to the registers -- the Write Combined Doorbell 7734 * Buffer is a good example. These BAR2 SGE Registers are only 7735 * available for those BAR2 SGE Register areas where the SGE Absolute 7736 * Queue ID can be inferred from simple writes. 7737 */ 7738 bar2_qoffset = bar2_page_offset; 7739 bar2_qinferred = (bar2_qid_offset < page_size); 7740 if (bar2_qinferred) { 7741 bar2_qoffset += bar2_qid_offset; 7742 bar2_qid = 0; 7743 } 7744 7745 *pbar2_qoffset = bar2_qoffset; 7746 *pbar2_qid = bar2_qid; 7747 return 0; 7748 } 7749 7750 /** 7751 * t4_init_devlog_params - initialize adapter->params.devlog 7752 * @adap: the adapter 7753 * 7754 * Initialize various fields of the adapter's Firmware Device Log 7755 * Parameters structure. 7756 */ 7757 int t4_init_devlog_params(struct adapter *adap) 7758 { 7759 struct devlog_params *dparams = &adap->params.devlog; 7760 u32 pf_dparams; 7761 unsigned int devlog_meminfo; 7762 struct fw_devlog_cmd devlog_cmd; 7763 int ret; 7764 7765 /* If we're dealing with newer firmware, the Device Log Paramerters 7766 * are stored in a designated register which allows us to access the 7767 * Device Log even if we can't talk to the firmware. 7768 */ 7769 pf_dparams = 7770 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 7771 if (pf_dparams) { 7772 unsigned int nentries, nentries128; 7773 7774 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 7775 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 7776 7777 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 7778 nentries = (nentries128 + 1) * 128; 7779 dparams->size = nentries * sizeof(struct fw_devlog_e); 7780 7781 return 0; 7782 } 7783 7784 /* Otherwise, ask the firmware for it's Device Log Parameters. 7785 */ 7786 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 7787 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 7788 FW_CMD_REQUEST_F | FW_CMD_READ_F); 7789 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 7790 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 7791 &devlog_cmd); 7792 if (ret) 7793 return ret; 7794 7795 devlog_meminfo = 7796 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 7797 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 7798 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 7799 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 7800 7801 return 0; 7802 } 7803 7804 /** 7805 * t4_init_sge_params - initialize adap->params.sge 7806 * @adapter: the adapter 7807 * 7808 * Initialize various fields of the adapter's SGE Parameters structure. 7809 */ 7810 int t4_init_sge_params(struct adapter *adapter) 7811 { 7812 struct sge_params *sge_params = &adapter->params.sge; 7813 u32 hps, qpp; 7814 unsigned int s_hps, s_qpp; 7815 7816 /* Extract the SGE Page Size for our PF. 7817 */ 7818 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 7819 s_hps = (HOSTPAGESIZEPF0_S + 7820 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 7821 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 7822 7823 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 7824 */ 7825 s_qpp = (QUEUESPERPAGEPF0_S + 7826 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 7827 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 7828 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 7829 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 7830 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 7831 7832 return 0; 7833 } 7834 7835 /** 7836 * t4_init_tp_params - initialize adap->params.tp 7837 * @adap: the adapter 7838 * 7839 * Initialize various fields of the adapter's TP Parameters structure. 7840 */ 7841 int t4_init_tp_params(struct adapter *adap) 7842 { 7843 int chan; 7844 u32 v; 7845 7846 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 7847 adap->params.tp.tre = TIMERRESOLUTION_G(v); 7848 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 7849 7850 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 7851 for (chan = 0; chan < NCHAN; chan++) 7852 adap->params.tp.tx_modq[chan] = chan; 7853 7854 /* Cache the adapter's Compressed Filter Mode and global Incress 7855 * Configuration. 7856 */ 7857 if (t4_use_ldst(adap)) { 7858 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1, 7859 TP_VLAN_PRI_MAP_A, 1); 7860 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1, 7861 TP_INGRESS_CONFIG_A, 1); 7862 } else { 7863 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 7864 &adap->params.tp.vlan_pri_map, 1, 7865 TP_VLAN_PRI_MAP_A); 7866 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 7867 &adap->params.tp.ingress_config, 1, 7868 TP_INGRESS_CONFIG_A); 7869 } 7870 /* For T6, cache the adapter's compressed error vector 7871 * and passing outer header info for encapsulated packets. 7872 */ 7873 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 7874 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 7875 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 7876 } 7877 7878 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 7879 * shift positions of several elements of the Compressed Filter Tuple 7880 * for this adapter which we need frequently ... 7881 */ 7882 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 7883 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 7884 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 7885 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 7886 PROTOCOL_F); 7887 7888 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 7889 * represents the presence of an Outer VLAN instead of a VNIC ID. 7890 */ 7891 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 7892 adap->params.tp.vnic_shift = -1; 7893 7894 return 0; 7895 } 7896 7897 /** 7898 * t4_filter_field_shift - calculate filter field shift 7899 * @adap: the adapter 7900 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 7901 * 7902 * Return the shift position of a filter field within the Compressed 7903 * Filter Tuple. The filter field is specified via its selection bit 7904 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 7905 */ 7906 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 7907 { 7908 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 7909 unsigned int sel; 7910 int field_shift; 7911 7912 if ((filter_mode & filter_sel) == 0) 7913 return -1; 7914 7915 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 7916 switch (filter_mode & sel) { 7917 case FCOE_F: 7918 field_shift += FT_FCOE_W; 7919 break; 7920 case PORT_F: 7921 field_shift += FT_PORT_W; 7922 break; 7923 case VNIC_ID_F: 7924 field_shift += FT_VNIC_ID_W; 7925 break; 7926 case VLAN_F: 7927 field_shift += FT_VLAN_W; 7928 break; 7929 case TOS_F: 7930 field_shift += FT_TOS_W; 7931 break; 7932 case PROTOCOL_F: 7933 field_shift += FT_PROTOCOL_W; 7934 break; 7935 case ETHERTYPE_F: 7936 field_shift += FT_ETHERTYPE_W; 7937 break; 7938 case MACMATCH_F: 7939 field_shift += FT_MACMATCH_W; 7940 break; 7941 case MPSHITTYPE_F: 7942 field_shift += FT_MPSHITTYPE_W; 7943 break; 7944 case FRAGMENTATION_F: 7945 field_shift += FT_FRAGMENTATION_W; 7946 break; 7947 } 7948 } 7949 return field_shift; 7950 } 7951 7952 int t4_init_rss_mode(struct adapter *adap, int mbox) 7953 { 7954 int i, ret; 7955 struct fw_rss_vi_config_cmd rvc; 7956 7957 memset(&rvc, 0, sizeof(rvc)); 7958 7959 for_each_port(adap, i) { 7960 struct port_info *p = adap2pinfo(adap, i); 7961 7962 rvc.op_to_viid = 7963 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 7964 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7965 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 7966 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 7967 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 7968 if (ret) 7969 return ret; 7970 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 7971 } 7972 return 0; 7973 } 7974 7975 /** 7976 * t4_init_portinfo - allocate a virtual interface amd initialize port_info 7977 * @pi: the port_info 7978 * @mbox: mailbox to use for the FW command 7979 * @port: physical port associated with the VI 7980 * @pf: the PF owning the VI 7981 * @vf: the VF owning the VI 7982 * @mac: the MAC address of the VI 7983 * 7984 * Allocates a virtual interface for the given physical port. If @mac is 7985 * not %NULL it contains the MAC address of the VI as assigned by FW. 7986 * @mac should be large enough to hold an Ethernet address. 7987 * Returns < 0 on error. 7988 */ 7989 int t4_init_portinfo(struct port_info *pi, int mbox, 7990 int port, int pf, int vf, u8 mac[]) 7991 { 7992 int ret; 7993 struct fw_port_cmd c; 7994 unsigned int rss_size; 7995 7996 memset(&c, 0, sizeof(c)); 7997 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 7998 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7999 FW_PORT_CMD_PORTID_V(port)); 8000 c.action_to_len16 = cpu_to_be32( 8001 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) | 8002 FW_LEN16(c)); 8003 ret = t4_wr_mbox(pi->adapter, mbox, &c, sizeof(c), &c); 8004 if (ret) 8005 return ret; 8006 8007 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size); 8008 if (ret < 0) 8009 return ret; 8010 8011 pi->viid = ret; 8012 pi->tx_chan = port; 8013 pi->lport = port; 8014 pi->rss_size = rss_size; 8015 8016 ret = be32_to_cpu(c.u.info.lstatus_to_modtype); 8017 pi->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ? 8018 FW_PORT_CMD_MDIOADDR_G(ret) : -1; 8019 pi->port_type = FW_PORT_CMD_PTYPE_G(ret); 8020 pi->mod_type = FW_PORT_MOD_TYPE_NA; 8021 8022 init_link_config(&pi->link_cfg, be16_to_cpu(c.u.info.pcap), 8023 be16_to_cpu(c.u.info.acap)); 8024 return 0; 8025 } 8026 8027 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 8028 { 8029 u8 addr[6]; 8030 int ret, i, j = 0; 8031 8032 for_each_port(adap, i) { 8033 struct port_info *pi = adap2pinfo(adap, i); 8034 8035 while ((adap->params.portvec & (1 << j)) == 0) 8036 j++; 8037 8038 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 8039 if (ret) 8040 return ret; 8041 8042 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 8043 j++; 8044 } 8045 return 0; 8046 } 8047 8048 /** 8049 * t4_read_cimq_cfg - read CIM queue configuration 8050 * @adap: the adapter 8051 * @base: holds the queue base addresses in bytes 8052 * @size: holds the queue sizes in bytes 8053 * @thres: holds the queue full thresholds in bytes 8054 * 8055 * Returns the current configuration of the CIM queues, starting with 8056 * the IBQs, then the OBQs. 8057 */ 8058 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 8059 { 8060 unsigned int i, v; 8061 int cim_num_obq = is_t4(adap->params.chip) ? 8062 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 8063 8064 for (i = 0; i < CIM_NUM_IBQ; i++) { 8065 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 8066 QUENUMSELECT_V(i)); 8067 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 8068 /* value is in 256-byte units */ 8069 *base++ = CIMQBASE_G(v) * 256; 8070 *size++ = CIMQSIZE_G(v) * 256; 8071 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 8072 } 8073 for (i = 0; i < cim_num_obq; i++) { 8074 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 8075 QUENUMSELECT_V(i)); 8076 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 8077 /* value is in 256-byte units */ 8078 *base++ = CIMQBASE_G(v) * 256; 8079 *size++ = CIMQSIZE_G(v) * 256; 8080 } 8081 } 8082 8083 /** 8084 * t4_read_cim_ibq - read the contents of a CIM inbound queue 8085 * @adap: the adapter 8086 * @qid: the queue index 8087 * @data: where to store the queue contents 8088 * @n: capacity of @data in 32-bit words 8089 * 8090 * Reads the contents of the selected CIM queue starting at address 0 up 8091 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 8092 * error and the number of 32-bit words actually read on success. 8093 */ 8094 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 8095 { 8096 int i, err, attempts; 8097 unsigned int addr; 8098 const unsigned int nwords = CIM_IBQ_SIZE * 4; 8099 8100 if (qid > 5 || (n & 3)) 8101 return -EINVAL; 8102 8103 addr = qid * nwords; 8104 if (n > nwords) 8105 n = nwords; 8106 8107 /* It might take 3-10ms before the IBQ debug read access is allowed. 8108 * Wait for 1 Sec with a delay of 1 usec. 8109 */ 8110 attempts = 1000000; 8111 8112 for (i = 0; i < n; i++, addr++) { 8113 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 8114 IBQDBGEN_F); 8115 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 8116 attempts, 1); 8117 if (err) 8118 return err; 8119 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 8120 } 8121 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 8122 return i; 8123 } 8124 8125 /** 8126 * t4_read_cim_obq - read the contents of a CIM outbound queue 8127 * @adap: the adapter 8128 * @qid: the queue index 8129 * @data: where to store the queue contents 8130 * @n: capacity of @data in 32-bit words 8131 * 8132 * Reads the contents of the selected CIM queue starting at address 0 up 8133 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 8134 * error and the number of 32-bit words actually read on success. 8135 */ 8136 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 8137 { 8138 int i, err; 8139 unsigned int addr, v, nwords; 8140 int cim_num_obq = is_t4(adap->params.chip) ? 8141 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 8142 8143 if ((qid > (cim_num_obq - 1)) || (n & 3)) 8144 return -EINVAL; 8145 8146 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 8147 QUENUMSELECT_V(qid)); 8148 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 8149 8150 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 8151 nwords = CIMQSIZE_G(v) * 64; /* same */ 8152 if (n > nwords) 8153 n = nwords; 8154 8155 for (i = 0; i < n; i++, addr++) { 8156 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 8157 OBQDBGEN_F); 8158 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 8159 2, 1); 8160 if (err) 8161 return err; 8162 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 8163 } 8164 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 8165 return i; 8166 } 8167 8168 /** 8169 * t4_cim_read - read a block from CIM internal address space 8170 * @adap: the adapter 8171 * @addr: the start address within the CIM address space 8172 * @n: number of words to read 8173 * @valp: where to store the result 8174 * 8175 * Reads a block of 4-byte words from the CIM intenal address space. 8176 */ 8177 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 8178 unsigned int *valp) 8179 { 8180 int ret = 0; 8181 8182 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 8183 return -EBUSY; 8184 8185 for ( ; !ret && n--; addr += 4) { 8186 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 8187 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 8188 0, 5, 2); 8189 if (!ret) 8190 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 8191 } 8192 return ret; 8193 } 8194 8195 /** 8196 * t4_cim_write - write a block into CIM internal address space 8197 * @adap: the adapter 8198 * @addr: the start address within the CIM address space 8199 * @n: number of words to write 8200 * @valp: set of values to write 8201 * 8202 * Writes a block of 4-byte words into the CIM intenal address space. 8203 */ 8204 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 8205 const unsigned int *valp) 8206 { 8207 int ret = 0; 8208 8209 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 8210 return -EBUSY; 8211 8212 for ( ; !ret && n--; addr += 4) { 8213 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 8214 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 8215 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 8216 0, 5, 2); 8217 } 8218 return ret; 8219 } 8220 8221 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 8222 unsigned int val) 8223 { 8224 return t4_cim_write(adap, addr, 1, &val); 8225 } 8226 8227 /** 8228 * t4_cim_read_la - read CIM LA capture buffer 8229 * @adap: the adapter 8230 * @la_buf: where to store the LA data 8231 * @wrptr: the HW write pointer within the capture buffer 8232 * 8233 * Reads the contents of the CIM LA buffer with the most recent entry at 8234 * the end of the returned data and with the entry at @wrptr first. 8235 * We try to leave the LA in the running state we find it in. 8236 */ 8237 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 8238 { 8239 int i, ret; 8240 unsigned int cfg, val, idx; 8241 8242 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 8243 if (ret) 8244 return ret; 8245 8246 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 8247 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 8248 if (ret) 8249 return ret; 8250 } 8251 8252 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 8253 if (ret) 8254 goto restart; 8255 8256 idx = UPDBGLAWRPTR_G(val); 8257 if (wrptr) 8258 *wrptr = idx; 8259 8260 for (i = 0; i < adap->params.cim_la_size; i++) { 8261 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 8262 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 8263 if (ret) 8264 break; 8265 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 8266 if (ret) 8267 break; 8268 if (val & UPDBGLARDEN_F) { 8269 ret = -ETIMEDOUT; 8270 break; 8271 } 8272 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 8273 if (ret) 8274 break; 8275 idx = (idx + 1) & UPDBGLARDPTR_M; 8276 } 8277 restart: 8278 if (cfg & UPDBGLAEN_F) { 8279 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 8280 cfg & ~UPDBGLARDEN_F); 8281 if (!ret) 8282 ret = r; 8283 } 8284 return ret; 8285 } 8286 8287 /** 8288 * t4_tp_read_la - read TP LA capture buffer 8289 * @adap: the adapter 8290 * @la_buf: where to store the LA data 8291 * @wrptr: the HW write pointer within the capture buffer 8292 * 8293 * Reads the contents of the TP LA buffer with the most recent entry at 8294 * the end of the returned data and with the entry at @wrptr first. 8295 * We leave the LA in the running state we find it in. 8296 */ 8297 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 8298 { 8299 bool last_incomplete; 8300 unsigned int i, cfg, val, idx; 8301 8302 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 8303 if (cfg & DBGLAENABLE_F) /* freeze LA */ 8304 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 8305 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 8306 8307 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 8308 idx = DBGLAWPTR_G(val); 8309 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 8310 if (last_incomplete) 8311 idx = (idx + 1) & DBGLARPTR_M; 8312 if (wrptr) 8313 *wrptr = idx; 8314 8315 val &= 0xffff; 8316 val &= ~DBGLARPTR_V(DBGLARPTR_M); 8317 val |= adap->params.tp.la_mask; 8318 8319 for (i = 0; i < TPLA_SIZE; i++) { 8320 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 8321 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 8322 idx = (idx + 1) & DBGLARPTR_M; 8323 } 8324 8325 /* Wipe out last entry if it isn't valid */ 8326 if (last_incomplete) 8327 la_buf[TPLA_SIZE - 1] = ~0ULL; 8328 8329 if (cfg & DBGLAENABLE_F) /* restore running state */ 8330 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 8331 cfg | adap->params.tp.la_mask); 8332 } 8333 8334 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 8335 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 8336 * state for more than the Warning Threshold then we'll issue a warning about 8337 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 8338 * appears to be hung every Warning Repeat second till the situation clears. 8339 * If the situation clears, we'll note that as well. 8340 */ 8341 #define SGE_IDMA_WARN_THRESH 1 8342 #define SGE_IDMA_WARN_REPEAT 300 8343 8344 /** 8345 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 8346 * @adapter: the adapter 8347 * @idma: the adapter IDMA Monitor state 8348 * 8349 * Initialize the state of an SGE Ingress DMA Monitor. 8350 */ 8351 void t4_idma_monitor_init(struct adapter *adapter, 8352 struct sge_idma_monitor_state *idma) 8353 { 8354 /* Initialize the state variables for detecting an SGE Ingress DMA 8355 * hang. The SGE has internal counters which count up on each clock 8356 * tick whenever the SGE finds its Ingress DMA State Engines in the 8357 * same state they were on the previous clock tick. The clock used is 8358 * the Core Clock so we have a limit on the maximum "time" they can 8359 * record; typically a very small number of seconds. For instance, 8360 * with a 600MHz Core Clock, we can only count up to a bit more than 8361 * 7s. So we'll synthesize a larger counter in order to not run the 8362 * risk of having the "timers" overflow and give us the flexibility to 8363 * maintain a Hung SGE State Machine of our own which operates across 8364 * a longer time frame. 8365 */ 8366 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 8367 idma->idma_stalled[0] = 0; 8368 idma->idma_stalled[1] = 0; 8369 } 8370 8371 /** 8372 * t4_idma_monitor - monitor SGE Ingress DMA state 8373 * @adapter: the adapter 8374 * @idma: the adapter IDMA Monitor state 8375 * @hz: number of ticks/second 8376 * @ticks: number of ticks since the last IDMA Monitor call 8377 */ 8378 void t4_idma_monitor(struct adapter *adapter, 8379 struct sge_idma_monitor_state *idma, 8380 int hz, int ticks) 8381 { 8382 int i, idma_same_state_cnt[2]; 8383 8384 /* Read the SGE Debug Ingress DMA Same State Count registers. These 8385 * are counters inside the SGE which count up on each clock when the 8386 * SGE finds its Ingress DMA State Engines in the same states they 8387 * were in the previous clock. The counters will peg out at 8388 * 0xffffffff without wrapping around so once they pass the 1s 8389 * threshold they'll stay above that till the IDMA state changes. 8390 */ 8391 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 8392 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 8393 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 8394 8395 for (i = 0; i < 2; i++) { 8396 u32 debug0, debug11; 8397 8398 /* If the Ingress DMA Same State Counter ("timer") is less 8399 * than 1s, then we can reset our synthesized Stall Timer and 8400 * continue. If we have previously emitted warnings about a 8401 * potential stalled Ingress Queue, issue a note indicating 8402 * that the Ingress Queue has resumed forward progress. 8403 */ 8404 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 8405 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 8406 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 8407 "resumed after %d seconds\n", 8408 i, idma->idma_qid[i], 8409 idma->idma_stalled[i] / hz); 8410 idma->idma_stalled[i] = 0; 8411 continue; 8412 } 8413 8414 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 8415 * domain. The first time we get here it'll be because we 8416 * passed the 1s Threshold; each additional time it'll be 8417 * because the RX Timer Callback is being fired on its regular 8418 * schedule. 8419 * 8420 * If the stall is below our Potential Hung Ingress Queue 8421 * Warning Threshold, continue. 8422 */ 8423 if (idma->idma_stalled[i] == 0) { 8424 idma->idma_stalled[i] = hz; 8425 idma->idma_warn[i] = 0; 8426 } else { 8427 idma->idma_stalled[i] += ticks; 8428 idma->idma_warn[i] -= ticks; 8429 } 8430 8431 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 8432 continue; 8433 8434 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 8435 */ 8436 if (idma->idma_warn[i] > 0) 8437 continue; 8438 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 8439 8440 /* Read and save the SGE IDMA State and Queue ID information. 8441 * We do this every time in case it changes across time ... 8442 * can't be too careful ... 8443 */ 8444 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 8445 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 8446 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 8447 8448 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 8449 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 8450 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 8451 8452 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 8453 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 8454 i, idma->idma_qid[i], idma->idma_state[i], 8455 idma->idma_stalled[i] / hz, 8456 debug0, debug11); 8457 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 8458 } 8459 } 8460 8461 /** 8462 * t4_set_vf_mac - Set MAC address for the specified VF 8463 * @adapter: The adapter 8464 * @vf: one of the VFs instantiated by the specified PF 8465 * @naddr: the number of MAC addresses 8466 * @addr: the MAC address(es) to be set to the specified VF 8467 */ 8468 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 8469 unsigned int naddr, u8 *addr) 8470 { 8471 struct fw_acl_mac_cmd cmd; 8472 8473 memset(&cmd, 0, sizeof(cmd)); 8474 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 8475 FW_CMD_REQUEST_F | 8476 FW_CMD_WRITE_F | 8477 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 8478 FW_ACL_MAC_CMD_VFN_V(vf)); 8479 8480 /* Note: Do not enable the ACL */ 8481 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 8482 cmd.nmac = naddr; 8483 8484 switch (adapter->pf) { 8485 case 3: 8486 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 8487 break; 8488 case 2: 8489 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 8490 break; 8491 case 1: 8492 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 8493 break; 8494 case 0: 8495 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 8496 break; 8497 } 8498 8499 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 8500 } 8501 8502 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 8503 int rateunit, int ratemode, int channel, int class, 8504 int minrate, int maxrate, int weight, int pktsize) 8505 { 8506 struct fw_sched_cmd cmd; 8507 8508 memset(&cmd, 0, sizeof(cmd)); 8509 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 8510 FW_CMD_REQUEST_F | 8511 FW_CMD_WRITE_F); 8512 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 8513 8514 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 8515 cmd.u.params.type = type; 8516 cmd.u.params.level = level; 8517 cmd.u.params.mode = mode; 8518 cmd.u.params.ch = channel; 8519 cmd.u.params.cl = class; 8520 cmd.u.params.unit = rateunit; 8521 cmd.u.params.rate = ratemode; 8522 cmd.u.params.min = cpu_to_be32(minrate); 8523 cmd.u.params.max = cpu_to_be32(maxrate); 8524 cmd.u.params.weight = cpu_to_be16(weight); 8525 cmd.u.params.pktsize = cpu_to_be16(pktsize); 8526 8527 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 8528 NULL, 1); 8529 } 8530