1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~CXGB4_FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rarely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boundaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9810, 0x9864,
1383 		0x9c00, 0x9c6c,
1384 		0x9c80, 0x9cec,
1385 		0x9d00, 0x9d6c,
1386 		0x9d80, 0x9dec,
1387 		0x9e00, 0x9e6c,
1388 		0x9e80, 0x9eec,
1389 		0x9f00, 0x9f6c,
1390 		0x9f80, 0xa020,
1391 		0xd000, 0xd004,
1392 		0xd010, 0xd03c,
1393 		0xdfc0, 0xdfe0,
1394 		0xe000, 0x1106c,
1395 		0x11074, 0x11088,
1396 		0x1109c, 0x1117c,
1397 		0x11190, 0x11204,
1398 		0x19040, 0x1906c,
1399 		0x19078, 0x19080,
1400 		0x1908c, 0x190e8,
1401 		0x190f0, 0x190f8,
1402 		0x19100, 0x19110,
1403 		0x19120, 0x19124,
1404 		0x19150, 0x19194,
1405 		0x1919c, 0x191b0,
1406 		0x191d0, 0x191e8,
1407 		0x19238, 0x19290,
1408 		0x193f8, 0x19428,
1409 		0x19430, 0x19444,
1410 		0x1944c, 0x1946c,
1411 		0x19474, 0x19474,
1412 		0x19490, 0x194cc,
1413 		0x194f0, 0x194f8,
1414 		0x19c00, 0x19c08,
1415 		0x19c10, 0x19c60,
1416 		0x19c94, 0x19ce4,
1417 		0x19cf0, 0x19d40,
1418 		0x19d50, 0x19d94,
1419 		0x19da0, 0x19de8,
1420 		0x19df0, 0x19e10,
1421 		0x19e50, 0x19e90,
1422 		0x19ea0, 0x19f24,
1423 		0x19f34, 0x19f34,
1424 		0x19f40, 0x19f50,
1425 		0x19f90, 0x19fb4,
1426 		0x19fc4, 0x19fe4,
1427 		0x1a000, 0x1a004,
1428 		0x1a010, 0x1a06c,
1429 		0x1a0b0, 0x1a0e4,
1430 		0x1a0ec, 0x1a0f8,
1431 		0x1a100, 0x1a108,
1432 		0x1a114, 0x1a130,
1433 		0x1a138, 0x1a1c4,
1434 		0x1a1fc, 0x1a1fc,
1435 		0x1e008, 0x1e00c,
1436 		0x1e040, 0x1e044,
1437 		0x1e04c, 0x1e04c,
1438 		0x1e284, 0x1e290,
1439 		0x1e2c0, 0x1e2c0,
1440 		0x1e2e0, 0x1e2e0,
1441 		0x1e300, 0x1e384,
1442 		0x1e3c0, 0x1e3c8,
1443 		0x1e408, 0x1e40c,
1444 		0x1e440, 0x1e444,
1445 		0x1e44c, 0x1e44c,
1446 		0x1e684, 0x1e690,
1447 		0x1e6c0, 0x1e6c0,
1448 		0x1e6e0, 0x1e6e0,
1449 		0x1e700, 0x1e784,
1450 		0x1e7c0, 0x1e7c8,
1451 		0x1e808, 0x1e80c,
1452 		0x1e840, 0x1e844,
1453 		0x1e84c, 0x1e84c,
1454 		0x1ea84, 0x1ea90,
1455 		0x1eac0, 0x1eac0,
1456 		0x1eae0, 0x1eae0,
1457 		0x1eb00, 0x1eb84,
1458 		0x1ebc0, 0x1ebc8,
1459 		0x1ec08, 0x1ec0c,
1460 		0x1ec40, 0x1ec44,
1461 		0x1ec4c, 0x1ec4c,
1462 		0x1ee84, 0x1ee90,
1463 		0x1eec0, 0x1eec0,
1464 		0x1eee0, 0x1eee0,
1465 		0x1ef00, 0x1ef84,
1466 		0x1efc0, 0x1efc8,
1467 		0x1f008, 0x1f00c,
1468 		0x1f040, 0x1f044,
1469 		0x1f04c, 0x1f04c,
1470 		0x1f284, 0x1f290,
1471 		0x1f2c0, 0x1f2c0,
1472 		0x1f2e0, 0x1f2e0,
1473 		0x1f300, 0x1f384,
1474 		0x1f3c0, 0x1f3c8,
1475 		0x1f408, 0x1f40c,
1476 		0x1f440, 0x1f444,
1477 		0x1f44c, 0x1f44c,
1478 		0x1f684, 0x1f690,
1479 		0x1f6c0, 0x1f6c0,
1480 		0x1f6e0, 0x1f6e0,
1481 		0x1f700, 0x1f784,
1482 		0x1f7c0, 0x1f7c8,
1483 		0x1f808, 0x1f80c,
1484 		0x1f840, 0x1f844,
1485 		0x1f84c, 0x1f84c,
1486 		0x1fa84, 0x1fa90,
1487 		0x1fac0, 0x1fac0,
1488 		0x1fae0, 0x1fae0,
1489 		0x1fb00, 0x1fb84,
1490 		0x1fbc0, 0x1fbc8,
1491 		0x1fc08, 0x1fc0c,
1492 		0x1fc40, 0x1fc44,
1493 		0x1fc4c, 0x1fc4c,
1494 		0x1fe84, 0x1fe90,
1495 		0x1fec0, 0x1fec0,
1496 		0x1fee0, 0x1fee0,
1497 		0x1ff00, 0x1ff84,
1498 		0x1ffc0, 0x1ffc8,
1499 		0x30000, 0x30030,
1500 		0x30100, 0x30144,
1501 		0x30190, 0x301a0,
1502 		0x301a8, 0x301b8,
1503 		0x301c4, 0x301c8,
1504 		0x301d0, 0x301d0,
1505 		0x30200, 0x30318,
1506 		0x30400, 0x304b4,
1507 		0x304c0, 0x3052c,
1508 		0x30540, 0x3061c,
1509 		0x30800, 0x30828,
1510 		0x30834, 0x30834,
1511 		0x308c0, 0x30908,
1512 		0x30910, 0x309ac,
1513 		0x30a00, 0x30a14,
1514 		0x30a1c, 0x30a2c,
1515 		0x30a44, 0x30a50,
1516 		0x30a74, 0x30a74,
1517 		0x30a7c, 0x30afc,
1518 		0x30b08, 0x30c24,
1519 		0x30d00, 0x30d00,
1520 		0x30d08, 0x30d14,
1521 		0x30d1c, 0x30d20,
1522 		0x30d3c, 0x30d3c,
1523 		0x30d48, 0x30d50,
1524 		0x31200, 0x3120c,
1525 		0x31220, 0x31220,
1526 		0x31240, 0x31240,
1527 		0x31600, 0x3160c,
1528 		0x31a00, 0x31a1c,
1529 		0x31e00, 0x31e20,
1530 		0x31e38, 0x31e3c,
1531 		0x31e80, 0x31e80,
1532 		0x31e88, 0x31ea8,
1533 		0x31eb0, 0x31eb4,
1534 		0x31ec8, 0x31ed4,
1535 		0x31fb8, 0x32004,
1536 		0x32200, 0x32200,
1537 		0x32208, 0x32240,
1538 		0x32248, 0x32280,
1539 		0x32288, 0x322c0,
1540 		0x322c8, 0x322fc,
1541 		0x32600, 0x32630,
1542 		0x32a00, 0x32abc,
1543 		0x32b00, 0x32b10,
1544 		0x32b20, 0x32b30,
1545 		0x32b40, 0x32b50,
1546 		0x32b60, 0x32b70,
1547 		0x33000, 0x33028,
1548 		0x33030, 0x33048,
1549 		0x33060, 0x33068,
1550 		0x33070, 0x3309c,
1551 		0x330f0, 0x33128,
1552 		0x33130, 0x33148,
1553 		0x33160, 0x33168,
1554 		0x33170, 0x3319c,
1555 		0x331f0, 0x33238,
1556 		0x33240, 0x33240,
1557 		0x33248, 0x33250,
1558 		0x3325c, 0x33264,
1559 		0x33270, 0x332b8,
1560 		0x332c0, 0x332e4,
1561 		0x332f8, 0x33338,
1562 		0x33340, 0x33340,
1563 		0x33348, 0x33350,
1564 		0x3335c, 0x33364,
1565 		0x33370, 0x333b8,
1566 		0x333c0, 0x333e4,
1567 		0x333f8, 0x33428,
1568 		0x33430, 0x33448,
1569 		0x33460, 0x33468,
1570 		0x33470, 0x3349c,
1571 		0x334f0, 0x33528,
1572 		0x33530, 0x33548,
1573 		0x33560, 0x33568,
1574 		0x33570, 0x3359c,
1575 		0x335f0, 0x33638,
1576 		0x33640, 0x33640,
1577 		0x33648, 0x33650,
1578 		0x3365c, 0x33664,
1579 		0x33670, 0x336b8,
1580 		0x336c0, 0x336e4,
1581 		0x336f8, 0x33738,
1582 		0x33740, 0x33740,
1583 		0x33748, 0x33750,
1584 		0x3375c, 0x33764,
1585 		0x33770, 0x337b8,
1586 		0x337c0, 0x337e4,
1587 		0x337f8, 0x337fc,
1588 		0x33814, 0x33814,
1589 		0x3382c, 0x3382c,
1590 		0x33880, 0x3388c,
1591 		0x338e8, 0x338ec,
1592 		0x33900, 0x33928,
1593 		0x33930, 0x33948,
1594 		0x33960, 0x33968,
1595 		0x33970, 0x3399c,
1596 		0x339f0, 0x33a38,
1597 		0x33a40, 0x33a40,
1598 		0x33a48, 0x33a50,
1599 		0x33a5c, 0x33a64,
1600 		0x33a70, 0x33ab8,
1601 		0x33ac0, 0x33ae4,
1602 		0x33af8, 0x33b10,
1603 		0x33b28, 0x33b28,
1604 		0x33b3c, 0x33b50,
1605 		0x33bf0, 0x33c10,
1606 		0x33c28, 0x33c28,
1607 		0x33c3c, 0x33c50,
1608 		0x33cf0, 0x33cfc,
1609 		0x34000, 0x34030,
1610 		0x34100, 0x34144,
1611 		0x34190, 0x341a0,
1612 		0x341a8, 0x341b8,
1613 		0x341c4, 0x341c8,
1614 		0x341d0, 0x341d0,
1615 		0x34200, 0x34318,
1616 		0x34400, 0x344b4,
1617 		0x344c0, 0x3452c,
1618 		0x34540, 0x3461c,
1619 		0x34800, 0x34828,
1620 		0x34834, 0x34834,
1621 		0x348c0, 0x34908,
1622 		0x34910, 0x349ac,
1623 		0x34a00, 0x34a14,
1624 		0x34a1c, 0x34a2c,
1625 		0x34a44, 0x34a50,
1626 		0x34a74, 0x34a74,
1627 		0x34a7c, 0x34afc,
1628 		0x34b08, 0x34c24,
1629 		0x34d00, 0x34d00,
1630 		0x34d08, 0x34d14,
1631 		0x34d1c, 0x34d20,
1632 		0x34d3c, 0x34d3c,
1633 		0x34d48, 0x34d50,
1634 		0x35200, 0x3520c,
1635 		0x35220, 0x35220,
1636 		0x35240, 0x35240,
1637 		0x35600, 0x3560c,
1638 		0x35a00, 0x35a1c,
1639 		0x35e00, 0x35e20,
1640 		0x35e38, 0x35e3c,
1641 		0x35e80, 0x35e80,
1642 		0x35e88, 0x35ea8,
1643 		0x35eb0, 0x35eb4,
1644 		0x35ec8, 0x35ed4,
1645 		0x35fb8, 0x36004,
1646 		0x36200, 0x36200,
1647 		0x36208, 0x36240,
1648 		0x36248, 0x36280,
1649 		0x36288, 0x362c0,
1650 		0x362c8, 0x362fc,
1651 		0x36600, 0x36630,
1652 		0x36a00, 0x36abc,
1653 		0x36b00, 0x36b10,
1654 		0x36b20, 0x36b30,
1655 		0x36b40, 0x36b50,
1656 		0x36b60, 0x36b70,
1657 		0x37000, 0x37028,
1658 		0x37030, 0x37048,
1659 		0x37060, 0x37068,
1660 		0x37070, 0x3709c,
1661 		0x370f0, 0x37128,
1662 		0x37130, 0x37148,
1663 		0x37160, 0x37168,
1664 		0x37170, 0x3719c,
1665 		0x371f0, 0x37238,
1666 		0x37240, 0x37240,
1667 		0x37248, 0x37250,
1668 		0x3725c, 0x37264,
1669 		0x37270, 0x372b8,
1670 		0x372c0, 0x372e4,
1671 		0x372f8, 0x37338,
1672 		0x37340, 0x37340,
1673 		0x37348, 0x37350,
1674 		0x3735c, 0x37364,
1675 		0x37370, 0x373b8,
1676 		0x373c0, 0x373e4,
1677 		0x373f8, 0x37428,
1678 		0x37430, 0x37448,
1679 		0x37460, 0x37468,
1680 		0x37470, 0x3749c,
1681 		0x374f0, 0x37528,
1682 		0x37530, 0x37548,
1683 		0x37560, 0x37568,
1684 		0x37570, 0x3759c,
1685 		0x375f0, 0x37638,
1686 		0x37640, 0x37640,
1687 		0x37648, 0x37650,
1688 		0x3765c, 0x37664,
1689 		0x37670, 0x376b8,
1690 		0x376c0, 0x376e4,
1691 		0x376f8, 0x37738,
1692 		0x37740, 0x37740,
1693 		0x37748, 0x37750,
1694 		0x3775c, 0x37764,
1695 		0x37770, 0x377b8,
1696 		0x377c0, 0x377e4,
1697 		0x377f8, 0x377fc,
1698 		0x37814, 0x37814,
1699 		0x3782c, 0x3782c,
1700 		0x37880, 0x3788c,
1701 		0x378e8, 0x378ec,
1702 		0x37900, 0x37928,
1703 		0x37930, 0x37948,
1704 		0x37960, 0x37968,
1705 		0x37970, 0x3799c,
1706 		0x379f0, 0x37a38,
1707 		0x37a40, 0x37a40,
1708 		0x37a48, 0x37a50,
1709 		0x37a5c, 0x37a64,
1710 		0x37a70, 0x37ab8,
1711 		0x37ac0, 0x37ae4,
1712 		0x37af8, 0x37b10,
1713 		0x37b28, 0x37b28,
1714 		0x37b3c, 0x37b50,
1715 		0x37bf0, 0x37c10,
1716 		0x37c28, 0x37c28,
1717 		0x37c3c, 0x37c50,
1718 		0x37cf0, 0x37cfc,
1719 		0x38000, 0x38030,
1720 		0x38100, 0x38144,
1721 		0x38190, 0x381a0,
1722 		0x381a8, 0x381b8,
1723 		0x381c4, 0x381c8,
1724 		0x381d0, 0x381d0,
1725 		0x38200, 0x38318,
1726 		0x38400, 0x384b4,
1727 		0x384c0, 0x3852c,
1728 		0x38540, 0x3861c,
1729 		0x38800, 0x38828,
1730 		0x38834, 0x38834,
1731 		0x388c0, 0x38908,
1732 		0x38910, 0x389ac,
1733 		0x38a00, 0x38a14,
1734 		0x38a1c, 0x38a2c,
1735 		0x38a44, 0x38a50,
1736 		0x38a74, 0x38a74,
1737 		0x38a7c, 0x38afc,
1738 		0x38b08, 0x38c24,
1739 		0x38d00, 0x38d00,
1740 		0x38d08, 0x38d14,
1741 		0x38d1c, 0x38d20,
1742 		0x38d3c, 0x38d3c,
1743 		0x38d48, 0x38d50,
1744 		0x39200, 0x3920c,
1745 		0x39220, 0x39220,
1746 		0x39240, 0x39240,
1747 		0x39600, 0x3960c,
1748 		0x39a00, 0x39a1c,
1749 		0x39e00, 0x39e20,
1750 		0x39e38, 0x39e3c,
1751 		0x39e80, 0x39e80,
1752 		0x39e88, 0x39ea8,
1753 		0x39eb0, 0x39eb4,
1754 		0x39ec8, 0x39ed4,
1755 		0x39fb8, 0x3a004,
1756 		0x3a200, 0x3a200,
1757 		0x3a208, 0x3a240,
1758 		0x3a248, 0x3a280,
1759 		0x3a288, 0x3a2c0,
1760 		0x3a2c8, 0x3a2fc,
1761 		0x3a600, 0x3a630,
1762 		0x3aa00, 0x3aabc,
1763 		0x3ab00, 0x3ab10,
1764 		0x3ab20, 0x3ab30,
1765 		0x3ab40, 0x3ab50,
1766 		0x3ab60, 0x3ab70,
1767 		0x3b000, 0x3b028,
1768 		0x3b030, 0x3b048,
1769 		0x3b060, 0x3b068,
1770 		0x3b070, 0x3b09c,
1771 		0x3b0f0, 0x3b128,
1772 		0x3b130, 0x3b148,
1773 		0x3b160, 0x3b168,
1774 		0x3b170, 0x3b19c,
1775 		0x3b1f0, 0x3b238,
1776 		0x3b240, 0x3b240,
1777 		0x3b248, 0x3b250,
1778 		0x3b25c, 0x3b264,
1779 		0x3b270, 0x3b2b8,
1780 		0x3b2c0, 0x3b2e4,
1781 		0x3b2f8, 0x3b338,
1782 		0x3b340, 0x3b340,
1783 		0x3b348, 0x3b350,
1784 		0x3b35c, 0x3b364,
1785 		0x3b370, 0x3b3b8,
1786 		0x3b3c0, 0x3b3e4,
1787 		0x3b3f8, 0x3b428,
1788 		0x3b430, 0x3b448,
1789 		0x3b460, 0x3b468,
1790 		0x3b470, 0x3b49c,
1791 		0x3b4f0, 0x3b528,
1792 		0x3b530, 0x3b548,
1793 		0x3b560, 0x3b568,
1794 		0x3b570, 0x3b59c,
1795 		0x3b5f0, 0x3b638,
1796 		0x3b640, 0x3b640,
1797 		0x3b648, 0x3b650,
1798 		0x3b65c, 0x3b664,
1799 		0x3b670, 0x3b6b8,
1800 		0x3b6c0, 0x3b6e4,
1801 		0x3b6f8, 0x3b738,
1802 		0x3b740, 0x3b740,
1803 		0x3b748, 0x3b750,
1804 		0x3b75c, 0x3b764,
1805 		0x3b770, 0x3b7b8,
1806 		0x3b7c0, 0x3b7e4,
1807 		0x3b7f8, 0x3b7fc,
1808 		0x3b814, 0x3b814,
1809 		0x3b82c, 0x3b82c,
1810 		0x3b880, 0x3b88c,
1811 		0x3b8e8, 0x3b8ec,
1812 		0x3b900, 0x3b928,
1813 		0x3b930, 0x3b948,
1814 		0x3b960, 0x3b968,
1815 		0x3b970, 0x3b99c,
1816 		0x3b9f0, 0x3ba38,
1817 		0x3ba40, 0x3ba40,
1818 		0x3ba48, 0x3ba50,
1819 		0x3ba5c, 0x3ba64,
1820 		0x3ba70, 0x3bab8,
1821 		0x3bac0, 0x3bae4,
1822 		0x3baf8, 0x3bb10,
1823 		0x3bb28, 0x3bb28,
1824 		0x3bb3c, 0x3bb50,
1825 		0x3bbf0, 0x3bc10,
1826 		0x3bc28, 0x3bc28,
1827 		0x3bc3c, 0x3bc50,
1828 		0x3bcf0, 0x3bcfc,
1829 		0x3c000, 0x3c030,
1830 		0x3c100, 0x3c144,
1831 		0x3c190, 0x3c1a0,
1832 		0x3c1a8, 0x3c1b8,
1833 		0x3c1c4, 0x3c1c8,
1834 		0x3c1d0, 0x3c1d0,
1835 		0x3c200, 0x3c318,
1836 		0x3c400, 0x3c4b4,
1837 		0x3c4c0, 0x3c52c,
1838 		0x3c540, 0x3c61c,
1839 		0x3c800, 0x3c828,
1840 		0x3c834, 0x3c834,
1841 		0x3c8c0, 0x3c908,
1842 		0x3c910, 0x3c9ac,
1843 		0x3ca00, 0x3ca14,
1844 		0x3ca1c, 0x3ca2c,
1845 		0x3ca44, 0x3ca50,
1846 		0x3ca74, 0x3ca74,
1847 		0x3ca7c, 0x3cafc,
1848 		0x3cb08, 0x3cc24,
1849 		0x3cd00, 0x3cd00,
1850 		0x3cd08, 0x3cd14,
1851 		0x3cd1c, 0x3cd20,
1852 		0x3cd3c, 0x3cd3c,
1853 		0x3cd48, 0x3cd50,
1854 		0x3d200, 0x3d20c,
1855 		0x3d220, 0x3d220,
1856 		0x3d240, 0x3d240,
1857 		0x3d600, 0x3d60c,
1858 		0x3da00, 0x3da1c,
1859 		0x3de00, 0x3de20,
1860 		0x3de38, 0x3de3c,
1861 		0x3de80, 0x3de80,
1862 		0x3de88, 0x3dea8,
1863 		0x3deb0, 0x3deb4,
1864 		0x3dec8, 0x3ded4,
1865 		0x3dfb8, 0x3e004,
1866 		0x3e200, 0x3e200,
1867 		0x3e208, 0x3e240,
1868 		0x3e248, 0x3e280,
1869 		0x3e288, 0x3e2c0,
1870 		0x3e2c8, 0x3e2fc,
1871 		0x3e600, 0x3e630,
1872 		0x3ea00, 0x3eabc,
1873 		0x3eb00, 0x3eb10,
1874 		0x3eb20, 0x3eb30,
1875 		0x3eb40, 0x3eb50,
1876 		0x3eb60, 0x3eb70,
1877 		0x3f000, 0x3f028,
1878 		0x3f030, 0x3f048,
1879 		0x3f060, 0x3f068,
1880 		0x3f070, 0x3f09c,
1881 		0x3f0f0, 0x3f128,
1882 		0x3f130, 0x3f148,
1883 		0x3f160, 0x3f168,
1884 		0x3f170, 0x3f19c,
1885 		0x3f1f0, 0x3f238,
1886 		0x3f240, 0x3f240,
1887 		0x3f248, 0x3f250,
1888 		0x3f25c, 0x3f264,
1889 		0x3f270, 0x3f2b8,
1890 		0x3f2c0, 0x3f2e4,
1891 		0x3f2f8, 0x3f338,
1892 		0x3f340, 0x3f340,
1893 		0x3f348, 0x3f350,
1894 		0x3f35c, 0x3f364,
1895 		0x3f370, 0x3f3b8,
1896 		0x3f3c0, 0x3f3e4,
1897 		0x3f3f8, 0x3f428,
1898 		0x3f430, 0x3f448,
1899 		0x3f460, 0x3f468,
1900 		0x3f470, 0x3f49c,
1901 		0x3f4f0, 0x3f528,
1902 		0x3f530, 0x3f548,
1903 		0x3f560, 0x3f568,
1904 		0x3f570, 0x3f59c,
1905 		0x3f5f0, 0x3f638,
1906 		0x3f640, 0x3f640,
1907 		0x3f648, 0x3f650,
1908 		0x3f65c, 0x3f664,
1909 		0x3f670, 0x3f6b8,
1910 		0x3f6c0, 0x3f6e4,
1911 		0x3f6f8, 0x3f738,
1912 		0x3f740, 0x3f740,
1913 		0x3f748, 0x3f750,
1914 		0x3f75c, 0x3f764,
1915 		0x3f770, 0x3f7b8,
1916 		0x3f7c0, 0x3f7e4,
1917 		0x3f7f8, 0x3f7fc,
1918 		0x3f814, 0x3f814,
1919 		0x3f82c, 0x3f82c,
1920 		0x3f880, 0x3f88c,
1921 		0x3f8e8, 0x3f8ec,
1922 		0x3f900, 0x3f928,
1923 		0x3f930, 0x3f948,
1924 		0x3f960, 0x3f968,
1925 		0x3f970, 0x3f99c,
1926 		0x3f9f0, 0x3fa38,
1927 		0x3fa40, 0x3fa40,
1928 		0x3fa48, 0x3fa50,
1929 		0x3fa5c, 0x3fa64,
1930 		0x3fa70, 0x3fab8,
1931 		0x3fac0, 0x3fae4,
1932 		0x3faf8, 0x3fb10,
1933 		0x3fb28, 0x3fb28,
1934 		0x3fb3c, 0x3fb50,
1935 		0x3fbf0, 0x3fc10,
1936 		0x3fc28, 0x3fc28,
1937 		0x3fc3c, 0x3fc50,
1938 		0x3fcf0, 0x3fcfc,
1939 		0x40000, 0x4000c,
1940 		0x40040, 0x40050,
1941 		0x40060, 0x40068,
1942 		0x4007c, 0x4008c,
1943 		0x40094, 0x400b0,
1944 		0x400c0, 0x40144,
1945 		0x40180, 0x4018c,
1946 		0x40200, 0x40254,
1947 		0x40260, 0x40264,
1948 		0x40270, 0x40288,
1949 		0x40290, 0x40298,
1950 		0x402ac, 0x402c8,
1951 		0x402d0, 0x402e0,
1952 		0x402f0, 0x402f0,
1953 		0x40300, 0x4033c,
1954 		0x403f8, 0x403fc,
1955 		0x41304, 0x413c4,
1956 		0x41400, 0x4140c,
1957 		0x41414, 0x4141c,
1958 		0x41480, 0x414d0,
1959 		0x44000, 0x44054,
1960 		0x4405c, 0x44078,
1961 		0x440c0, 0x44174,
1962 		0x44180, 0x441ac,
1963 		0x441b4, 0x441b8,
1964 		0x441c0, 0x44254,
1965 		0x4425c, 0x44278,
1966 		0x442c0, 0x44374,
1967 		0x44380, 0x443ac,
1968 		0x443b4, 0x443b8,
1969 		0x443c0, 0x44454,
1970 		0x4445c, 0x44478,
1971 		0x444c0, 0x44574,
1972 		0x44580, 0x445ac,
1973 		0x445b4, 0x445b8,
1974 		0x445c0, 0x44654,
1975 		0x4465c, 0x44678,
1976 		0x446c0, 0x44774,
1977 		0x44780, 0x447ac,
1978 		0x447b4, 0x447b8,
1979 		0x447c0, 0x44854,
1980 		0x4485c, 0x44878,
1981 		0x448c0, 0x44974,
1982 		0x44980, 0x449ac,
1983 		0x449b4, 0x449b8,
1984 		0x449c0, 0x449fc,
1985 		0x45000, 0x45004,
1986 		0x45010, 0x45030,
1987 		0x45040, 0x45060,
1988 		0x45068, 0x45068,
1989 		0x45080, 0x45084,
1990 		0x450a0, 0x450b0,
1991 		0x45200, 0x45204,
1992 		0x45210, 0x45230,
1993 		0x45240, 0x45260,
1994 		0x45268, 0x45268,
1995 		0x45280, 0x45284,
1996 		0x452a0, 0x452b0,
1997 		0x460c0, 0x460e4,
1998 		0x47000, 0x4703c,
1999 		0x47044, 0x4708c,
2000 		0x47200, 0x47250,
2001 		0x47400, 0x47408,
2002 		0x47414, 0x47420,
2003 		0x47600, 0x47618,
2004 		0x47800, 0x47814,
2005 		0x48000, 0x4800c,
2006 		0x48040, 0x48050,
2007 		0x48060, 0x48068,
2008 		0x4807c, 0x4808c,
2009 		0x48094, 0x480b0,
2010 		0x480c0, 0x48144,
2011 		0x48180, 0x4818c,
2012 		0x48200, 0x48254,
2013 		0x48260, 0x48264,
2014 		0x48270, 0x48288,
2015 		0x48290, 0x48298,
2016 		0x482ac, 0x482c8,
2017 		0x482d0, 0x482e0,
2018 		0x482f0, 0x482f0,
2019 		0x48300, 0x4833c,
2020 		0x483f8, 0x483fc,
2021 		0x49304, 0x493c4,
2022 		0x49400, 0x4940c,
2023 		0x49414, 0x4941c,
2024 		0x49480, 0x494d0,
2025 		0x4c000, 0x4c054,
2026 		0x4c05c, 0x4c078,
2027 		0x4c0c0, 0x4c174,
2028 		0x4c180, 0x4c1ac,
2029 		0x4c1b4, 0x4c1b8,
2030 		0x4c1c0, 0x4c254,
2031 		0x4c25c, 0x4c278,
2032 		0x4c2c0, 0x4c374,
2033 		0x4c380, 0x4c3ac,
2034 		0x4c3b4, 0x4c3b8,
2035 		0x4c3c0, 0x4c454,
2036 		0x4c45c, 0x4c478,
2037 		0x4c4c0, 0x4c574,
2038 		0x4c580, 0x4c5ac,
2039 		0x4c5b4, 0x4c5b8,
2040 		0x4c5c0, 0x4c654,
2041 		0x4c65c, 0x4c678,
2042 		0x4c6c0, 0x4c774,
2043 		0x4c780, 0x4c7ac,
2044 		0x4c7b4, 0x4c7b8,
2045 		0x4c7c0, 0x4c854,
2046 		0x4c85c, 0x4c878,
2047 		0x4c8c0, 0x4c974,
2048 		0x4c980, 0x4c9ac,
2049 		0x4c9b4, 0x4c9b8,
2050 		0x4c9c0, 0x4c9fc,
2051 		0x4d000, 0x4d004,
2052 		0x4d010, 0x4d030,
2053 		0x4d040, 0x4d060,
2054 		0x4d068, 0x4d068,
2055 		0x4d080, 0x4d084,
2056 		0x4d0a0, 0x4d0b0,
2057 		0x4d200, 0x4d204,
2058 		0x4d210, 0x4d230,
2059 		0x4d240, 0x4d260,
2060 		0x4d268, 0x4d268,
2061 		0x4d280, 0x4d284,
2062 		0x4d2a0, 0x4d2b0,
2063 		0x4e0c0, 0x4e0e4,
2064 		0x4f000, 0x4f03c,
2065 		0x4f044, 0x4f08c,
2066 		0x4f200, 0x4f250,
2067 		0x4f400, 0x4f408,
2068 		0x4f414, 0x4f420,
2069 		0x4f600, 0x4f618,
2070 		0x4f800, 0x4f814,
2071 		0x50000, 0x50084,
2072 		0x50090, 0x500cc,
2073 		0x50400, 0x50400,
2074 		0x50800, 0x50884,
2075 		0x50890, 0x508cc,
2076 		0x50c00, 0x50c00,
2077 		0x51000, 0x5101c,
2078 		0x51300, 0x51308,
2079 	};
2080 
2081 	static const unsigned int t6_reg_ranges[] = {
2082 		0x1008, 0x101c,
2083 		0x1024, 0x10a8,
2084 		0x10b4, 0x10f8,
2085 		0x1100, 0x1114,
2086 		0x111c, 0x112c,
2087 		0x1138, 0x113c,
2088 		0x1144, 0x114c,
2089 		0x1180, 0x1184,
2090 		0x1190, 0x1194,
2091 		0x11a0, 0x11a4,
2092 		0x11b0, 0x11b4,
2093 		0x11fc, 0x123c,
2094 		0x1254, 0x1274,
2095 		0x1280, 0x133c,
2096 		0x1800, 0x18fc,
2097 		0x3000, 0x302c,
2098 		0x3060, 0x30b0,
2099 		0x30b8, 0x30d8,
2100 		0x30e0, 0x30fc,
2101 		0x3140, 0x357c,
2102 		0x35a8, 0x35cc,
2103 		0x35ec, 0x35ec,
2104 		0x3600, 0x5624,
2105 		0x56cc, 0x56ec,
2106 		0x56f4, 0x5720,
2107 		0x5728, 0x575c,
2108 		0x580c, 0x5814,
2109 		0x5890, 0x589c,
2110 		0x58a4, 0x58ac,
2111 		0x58b8, 0x58bc,
2112 		0x5940, 0x595c,
2113 		0x5980, 0x598c,
2114 		0x59b0, 0x59c8,
2115 		0x59d0, 0x59dc,
2116 		0x59fc, 0x5a18,
2117 		0x5a60, 0x5a6c,
2118 		0x5a80, 0x5a8c,
2119 		0x5a94, 0x5a9c,
2120 		0x5b94, 0x5bfc,
2121 		0x5c10, 0x5e48,
2122 		0x5e50, 0x5e94,
2123 		0x5ea0, 0x5eb0,
2124 		0x5ec0, 0x5ec0,
2125 		0x5ec8, 0x5ed0,
2126 		0x5ee0, 0x5ee0,
2127 		0x5ef0, 0x5ef0,
2128 		0x5f00, 0x5f00,
2129 		0x6000, 0x6020,
2130 		0x6028, 0x6040,
2131 		0x6058, 0x609c,
2132 		0x60a8, 0x619c,
2133 		0x7700, 0x7798,
2134 		0x77c0, 0x7880,
2135 		0x78cc, 0x78fc,
2136 		0x7b00, 0x7b58,
2137 		0x7b60, 0x7b84,
2138 		0x7b8c, 0x7c54,
2139 		0x7d00, 0x7d38,
2140 		0x7d40, 0x7d84,
2141 		0x7d8c, 0x7ddc,
2142 		0x7de4, 0x7e04,
2143 		0x7e10, 0x7e1c,
2144 		0x7e24, 0x7e38,
2145 		0x7e40, 0x7e44,
2146 		0x7e4c, 0x7e78,
2147 		0x7e80, 0x7edc,
2148 		0x7ee8, 0x7efc,
2149 		0x8dc0, 0x8de4,
2150 		0x8df8, 0x8e04,
2151 		0x8e10, 0x8e84,
2152 		0x8ea0, 0x8f88,
2153 		0x8fb8, 0x9058,
2154 		0x9060, 0x9060,
2155 		0x9068, 0x90f8,
2156 		0x9100, 0x9124,
2157 		0x9400, 0x9470,
2158 		0x9600, 0x9600,
2159 		0x9608, 0x9638,
2160 		0x9640, 0x9704,
2161 		0x9710, 0x971c,
2162 		0x9800, 0x9808,
2163 		0x9810, 0x9864,
2164 		0x9c00, 0x9c6c,
2165 		0x9c80, 0x9cec,
2166 		0x9d00, 0x9d6c,
2167 		0x9d80, 0x9dec,
2168 		0x9e00, 0x9e6c,
2169 		0x9e80, 0x9eec,
2170 		0x9f00, 0x9f6c,
2171 		0x9f80, 0xa020,
2172 		0xd000, 0xd03c,
2173 		0xd100, 0xd118,
2174 		0xd200, 0xd214,
2175 		0xd220, 0xd234,
2176 		0xd240, 0xd254,
2177 		0xd260, 0xd274,
2178 		0xd280, 0xd294,
2179 		0xd2a0, 0xd2b4,
2180 		0xd2c0, 0xd2d4,
2181 		0xd2e0, 0xd2f4,
2182 		0xd300, 0xd31c,
2183 		0xdfc0, 0xdfe0,
2184 		0xe000, 0xf008,
2185 		0xf010, 0xf018,
2186 		0xf020, 0xf028,
2187 		0x11000, 0x11014,
2188 		0x11048, 0x1106c,
2189 		0x11074, 0x11088,
2190 		0x11098, 0x11120,
2191 		0x1112c, 0x1117c,
2192 		0x11190, 0x112e0,
2193 		0x11300, 0x1130c,
2194 		0x12000, 0x1206c,
2195 		0x19040, 0x1906c,
2196 		0x19078, 0x19080,
2197 		0x1908c, 0x190e8,
2198 		0x190f0, 0x190f8,
2199 		0x19100, 0x19110,
2200 		0x19120, 0x19124,
2201 		0x19150, 0x19194,
2202 		0x1919c, 0x191b0,
2203 		0x191d0, 0x191e8,
2204 		0x19238, 0x19290,
2205 		0x192a4, 0x192b0,
2206 		0x192bc, 0x192bc,
2207 		0x19348, 0x1934c,
2208 		0x193f8, 0x19418,
2209 		0x19420, 0x19428,
2210 		0x19430, 0x19444,
2211 		0x1944c, 0x1946c,
2212 		0x19474, 0x19474,
2213 		0x19490, 0x194cc,
2214 		0x194f0, 0x194f8,
2215 		0x19c00, 0x19c48,
2216 		0x19c50, 0x19c80,
2217 		0x19c94, 0x19c98,
2218 		0x19ca0, 0x19cbc,
2219 		0x19ce4, 0x19ce4,
2220 		0x19cf0, 0x19cf8,
2221 		0x19d00, 0x19d28,
2222 		0x19d50, 0x19d78,
2223 		0x19d94, 0x19d98,
2224 		0x19da0, 0x19dc8,
2225 		0x19df0, 0x19e10,
2226 		0x19e50, 0x19e6c,
2227 		0x19ea0, 0x19ebc,
2228 		0x19ec4, 0x19ef4,
2229 		0x19f04, 0x19f2c,
2230 		0x19f34, 0x19f34,
2231 		0x19f40, 0x19f50,
2232 		0x19f90, 0x19fac,
2233 		0x19fc4, 0x19fc8,
2234 		0x19fd0, 0x19fe4,
2235 		0x1a000, 0x1a004,
2236 		0x1a010, 0x1a06c,
2237 		0x1a0b0, 0x1a0e4,
2238 		0x1a0ec, 0x1a0f8,
2239 		0x1a100, 0x1a108,
2240 		0x1a114, 0x1a130,
2241 		0x1a138, 0x1a1c4,
2242 		0x1a1fc, 0x1a1fc,
2243 		0x1e008, 0x1e00c,
2244 		0x1e040, 0x1e044,
2245 		0x1e04c, 0x1e04c,
2246 		0x1e284, 0x1e290,
2247 		0x1e2c0, 0x1e2c0,
2248 		0x1e2e0, 0x1e2e0,
2249 		0x1e300, 0x1e384,
2250 		0x1e3c0, 0x1e3c8,
2251 		0x1e408, 0x1e40c,
2252 		0x1e440, 0x1e444,
2253 		0x1e44c, 0x1e44c,
2254 		0x1e684, 0x1e690,
2255 		0x1e6c0, 0x1e6c0,
2256 		0x1e6e0, 0x1e6e0,
2257 		0x1e700, 0x1e784,
2258 		0x1e7c0, 0x1e7c8,
2259 		0x1e808, 0x1e80c,
2260 		0x1e840, 0x1e844,
2261 		0x1e84c, 0x1e84c,
2262 		0x1ea84, 0x1ea90,
2263 		0x1eac0, 0x1eac0,
2264 		0x1eae0, 0x1eae0,
2265 		0x1eb00, 0x1eb84,
2266 		0x1ebc0, 0x1ebc8,
2267 		0x1ec08, 0x1ec0c,
2268 		0x1ec40, 0x1ec44,
2269 		0x1ec4c, 0x1ec4c,
2270 		0x1ee84, 0x1ee90,
2271 		0x1eec0, 0x1eec0,
2272 		0x1eee0, 0x1eee0,
2273 		0x1ef00, 0x1ef84,
2274 		0x1efc0, 0x1efc8,
2275 		0x1f008, 0x1f00c,
2276 		0x1f040, 0x1f044,
2277 		0x1f04c, 0x1f04c,
2278 		0x1f284, 0x1f290,
2279 		0x1f2c0, 0x1f2c0,
2280 		0x1f2e0, 0x1f2e0,
2281 		0x1f300, 0x1f384,
2282 		0x1f3c0, 0x1f3c8,
2283 		0x1f408, 0x1f40c,
2284 		0x1f440, 0x1f444,
2285 		0x1f44c, 0x1f44c,
2286 		0x1f684, 0x1f690,
2287 		0x1f6c0, 0x1f6c0,
2288 		0x1f6e0, 0x1f6e0,
2289 		0x1f700, 0x1f784,
2290 		0x1f7c0, 0x1f7c8,
2291 		0x1f808, 0x1f80c,
2292 		0x1f840, 0x1f844,
2293 		0x1f84c, 0x1f84c,
2294 		0x1fa84, 0x1fa90,
2295 		0x1fac0, 0x1fac0,
2296 		0x1fae0, 0x1fae0,
2297 		0x1fb00, 0x1fb84,
2298 		0x1fbc0, 0x1fbc8,
2299 		0x1fc08, 0x1fc0c,
2300 		0x1fc40, 0x1fc44,
2301 		0x1fc4c, 0x1fc4c,
2302 		0x1fe84, 0x1fe90,
2303 		0x1fec0, 0x1fec0,
2304 		0x1fee0, 0x1fee0,
2305 		0x1ff00, 0x1ff84,
2306 		0x1ffc0, 0x1ffc8,
2307 		0x30000, 0x30030,
2308 		0x30100, 0x30168,
2309 		0x30190, 0x301a0,
2310 		0x301a8, 0x301b8,
2311 		0x301c4, 0x301c8,
2312 		0x301d0, 0x301d0,
2313 		0x30200, 0x30320,
2314 		0x30400, 0x304b4,
2315 		0x304c0, 0x3052c,
2316 		0x30540, 0x3061c,
2317 		0x30800, 0x308a0,
2318 		0x308c0, 0x30908,
2319 		0x30910, 0x309b8,
2320 		0x30a00, 0x30a04,
2321 		0x30a0c, 0x30a14,
2322 		0x30a1c, 0x30a2c,
2323 		0x30a44, 0x30a50,
2324 		0x30a74, 0x30a74,
2325 		0x30a7c, 0x30afc,
2326 		0x30b08, 0x30c24,
2327 		0x30d00, 0x30d14,
2328 		0x30d1c, 0x30d3c,
2329 		0x30d44, 0x30d4c,
2330 		0x30d54, 0x30d74,
2331 		0x30d7c, 0x30d7c,
2332 		0x30de0, 0x30de0,
2333 		0x30e00, 0x30ed4,
2334 		0x30f00, 0x30fa4,
2335 		0x30fc0, 0x30fc4,
2336 		0x31000, 0x31004,
2337 		0x31080, 0x310fc,
2338 		0x31208, 0x31220,
2339 		0x3123c, 0x31254,
2340 		0x31300, 0x31300,
2341 		0x31308, 0x3131c,
2342 		0x31338, 0x3133c,
2343 		0x31380, 0x31380,
2344 		0x31388, 0x313a8,
2345 		0x313b4, 0x313b4,
2346 		0x31400, 0x31420,
2347 		0x31438, 0x3143c,
2348 		0x31480, 0x31480,
2349 		0x314a8, 0x314a8,
2350 		0x314b0, 0x314b4,
2351 		0x314c8, 0x314d4,
2352 		0x31a40, 0x31a4c,
2353 		0x31af0, 0x31b20,
2354 		0x31b38, 0x31b3c,
2355 		0x31b80, 0x31b80,
2356 		0x31ba8, 0x31ba8,
2357 		0x31bb0, 0x31bb4,
2358 		0x31bc8, 0x31bd4,
2359 		0x32140, 0x3218c,
2360 		0x321f0, 0x321f4,
2361 		0x32200, 0x32200,
2362 		0x32218, 0x32218,
2363 		0x32400, 0x32400,
2364 		0x32408, 0x3241c,
2365 		0x32618, 0x32620,
2366 		0x32664, 0x32664,
2367 		0x326a8, 0x326a8,
2368 		0x326ec, 0x326ec,
2369 		0x32a00, 0x32abc,
2370 		0x32b00, 0x32b18,
2371 		0x32b20, 0x32b38,
2372 		0x32b40, 0x32b58,
2373 		0x32b60, 0x32b78,
2374 		0x32c00, 0x32c00,
2375 		0x32c08, 0x32c3c,
2376 		0x33000, 0x3302c,
2377 		0x33034, 0x33050,
2378 		0x33058, 0x33058,
2379 		0x33060, 0x3308c,
2380 		0x3309c, 0x330ac,
2381 		0x330c0, 0x330c0,
2382 		0x330c8, 0x330d0,
2383 		0x330d8, 0x330e0,
2384 		0x330ec, 0x3312c,
2385 		0x33134, 0x33150,
2386 		0x33158, 0x33158,
2387 		0x33160, 0x3318c,
2388 		0x3319c, 0x331ac,
2389 		0x331c0, 0x331c0,
2390 		0x331c8, 0x331d0,
2391 		0x331d8, 0x331e0,
2392 		0x331ec, 0x33290,
2393 		0x33298, 0x332c4,
2394 		0x332e4, 0x33390,
2395 		0x33398, 0x333c4,
2396 		0x333e4, 0x3342c,
2397 		0x33434, 0x33450,
2398 		0x33458, 0x33458,
2399 		0x33460, 0x3348c,
2400 		0x3349c, 0x334ac,
2401 		0x334c0, 0x334c0,
2402 		0x334c8, 0x334d0,
2403 		0x334d8, 0x334e0,
2404 		0x334ec, 0x3352c,
2405 		0x33534, 0x33550,
2406 		0x33558, 0x33558,
2407 		0x33560, 0x3358c,
2408 		0x3359c, 0x335ac,
2409 		0x335c0, 0x335c0,
2410 		0x335c8, 0x335d0,
2411 		0x335d8, 0x335e0,
2412 		0x335ec, 0x33690,
2413 		0x33698, 0x336c4,
2414 		0x336e4, 0x33790,
2415 		0x33798, 0x337c4,
2416 		0x337e4, 0x337fc,
2417 		0x33814, 0x33814,
2418 		0x33854, 0x33868,
2419 		0x33880, 0x3388c,
2420 		0x338c0, 0x338d0,
2421 		0x338e8, 0x338ec,
2422 		0x33900, 0x3392c,
2423 		0x33934, 0x33950,
2424 		0x33958, 0x33958,
2425 		0x33960, 0x3398c,
2426 		0x3399c, 0x339ac,
2427 		0x339c0, 0x339c0,
2428 		0x339c8, 0x339d0,
2429 		0x339d8, 0x339e0,
2430 		0x339ec, 0x33a90,
2431 		0x33a98, 0x33ac4,
2432 		0x33ae4, 0x33b10,
2433 		0x33b24, 0x33b28,
2434 		0x33b38, 0x33b50,
2435 		0x33bf0, 0x33c10,
2436 		0x33c24, 0x33c28,
2437 		0x33c38, 0x33c50,
2438 		0x33cf0, 0x33cfc,
2439 		0x34000, 0x34030,
2440 		0x34100, 0x34168,
2441 		0x34190, 0x341a0,
2442 		0x341a8, 0x341b8,
2443 		0x341c4, 0x341c8,
2444 		0x341d0, 0x341d0,
2445 		0x34200, 0x34320,
2446 		0x34400, 0x344b4,
2447 		0x344c0, 0x3452c,
2448 		0x34540, 0x3461c,
2449 		0x34800, 0x348a0,
2450 		0x348c0, 0x34908,
2451 		0x34910, 0x349b8,
2452 		0x34a00, 0x34a04,
2453 		0x34a0c, 0x34a14,
2454 		0x34a1c, 0x34a2c,
2455 		0x34a44, 0x34a50,
2456 		0x34a74, 0x34a74,
2457 		0x34a7c, 0x34afc,
2458 		0x34b08, 0x34c24,
2459 		0x34d00, 0x34d14,
2460 		0x34d1c, 0x34d3c,
2461 		0x34d44, 0x34d4c,
2462 		0x34d54, 0x34d74,
2463 		0x34d7c, 0x34d7c,
2464 		0x34de0, 0x34de0,
2465 		0x34e00, 0x34ed4,
2466 		0x34f00, 0x34fa4,
2467 		0x34fc0, 0x34fc4,
2468 		0x35000, 0x35004,
2469 		0x35080, 0x350fc,
2470 		0x35208, 0x35220,
2471 		0x3523c, 0x35254,
2472 		0x35300, 0x35300,
2473 		0x35308, 0x3531c,
2474 		0x35338, 0x3533c,
2475 		0x35380, 0x35380,
2476 		0x35388, 0x353a8,
2477 		0x353b4, 0x353b4,
2478 		0x35400, 0x35420,
2479 		0x35438, 0x3543c,
2480 		0x35480, 0x35480,
2481 		0x354a8, 0x354a8,
2482 		0x354b0, 0x354b4,
2483 		0x354c8, 0x354d4,
2484 		0x35a40, 0x35a4c,
2485 		0x35af0, 0x35b20,
2486 		0x35b38, 0x35b3c,
2487 		0x35b80, 0x35b80,
2488 		0x35ba8, 0x35ba8,
2489 		0x35bb0, 0x35bb4,
2490 		0x35bc8, 0x35bd4,
2491 		0x36140, 0x3618c,
2492 		0x361f0, 0x361f4,
2493 		0x36200, 0x36200,
2494 		0x36218, 0x36218,
2495 		0x36400, 0x36400,
2496 		0x36408, 0x3641c,
2497 		0x36618, 0x36620,
2498 		0x36664, 0x36664,
2499 		0x366a8, 0x366a8,
2500 		0x366ec, 0x366ec,
2501 		0x36a00, 0x36abc,
2502 		0x36b00, 0x36b18,
2503 		0x36b20, 0x36b38,
2504 		0x36b40, 0x36b58,
2505 		0x36b60, 0x36b78,
2506 		0x36c00, 0x36c00,
2507 		0x36c08, 0x36c3c,
2508 		0x37000, 0x3702c,
2509 		0x37034, 0x37050,
2510 		0x37058, 0x37058,
2511 		0x37060, 0x3708c,
2512 		0x3709c, 0x370ac,
2513 		0x370c0, 0x370c0,
2514 		0x370c8, 0x370d0,
2515 		0x370d8, 0x370e0,
2516 		0x370ec, 0x3712c,
2517 		0x37134, 0x37150,
2518 		0x37158, 0x37158,
2519 		0x37160, 0x3718c,
2520 		0x3719c, 0x371ac,
2521 		0x371c0, 0x371c0,
2522 		0x371c8, 0x371d0,
2523 		0x371d8, 0x371e0,
2524 		0x371ec, 0x37290,
2525 		0x37298, 0x372c4,
2526 		0x372e4, 0x37390,
2527 		0x37398, 0x373c4,
2528 		0x373e4, 0x3742c,
2529 		0x37434, 0x37450,
2530 		0x37458, 0x37458,
2531 		0x37460, 0x3748c,
2532 		0x3749c, 0x374ac,
2533 		0x374c0, 0x374c0,
2534 		0x374c8, 0x374d0,
2535 		0x374d8, 0x374e0,
2536 		0x374ec, 0x3752c,
2537 		0x37534, 0x37550,
2538 		0x37558, 0x37558,
2539 		0x37560, 0x3758c,
2540 		0x3759c, 0x375ac,
2541 		0x375c0, 0x375c0,
2542 		0x375c8, 0x375d0,
2543 		0x375d8, 0x375e0,
2544 		0x375ec, 0x37690,
2545 		0x37698, 0x376c4,
2546 		0x376e4, 0x37790,
2547 		0x37798, 0x377c4,
2548 		0x377e4, 0x377fc,
2549 		0x37814, 0x37814,
2550 		0x37854, 0x37868,
2551 		0x37880, 0x3788c,
2552 		0x378c0, 0x378d0,
2553 		0x378e8, 0x378ec,
2554 		0x37900, 0x3792c,
2555 		0x37934, 0x37950,
2556 		0x37958, 0x37958,
2557 		0x37960, 0x3798c,
2558 		0x3799c, 0x379ac,
2559 		0x379c0, 0x379c0,
2560 		0x379c8, 0x379d0,
2561 		0x379d8, 0x379e0,
2562 		0x379ec, 0x37a90,
2563 		0x37a98, 0x37ac4,
2564 		0x37ae4, 0x37b10,
2565 		0x37b24, 0x37b28,
2566 		0x37b38, 0x37b50,
2567 		0x37bf0, 0x37c10,
2568 		0x37c24, 0x37c28,
2569 		0x37c38, 0x37c50,
2570 		0x37cf0, 0x37cfc,
2571 		0x40040, 0x40040,
2572 		0x40080, 0x40084,
2573 		0x40100, 0x40100,
2574 		0x40140, 0x401bc,
2575 		0x40200, 0x40214,
2576 		0x40228, 0x40228,
2577 		0x40240, 0x40258,
2578 		0x40280, 0x40280,
2579 		0x40304, 0x40304,
2580 		0x40330, 0x4033c,
2581 		0x41304, 0x413c8,
2582 		0x413d0, 0x413dc,
2583 		0x413f0, 0x413f0,
2584 		0x41400, 0x4140c,
2585 		0x41414, 0x4141c,
2586 		0x41480, 0x414d0,
2587 		0x44000, 0x4407c,
2588 		0x440c0, 0x441ac,
2589 		0x441b4, 0x4427c,
2590 		0x442c0, 0x443ac,
2591 		0x443b4, 0x4447c,
2592 		0x444c0, 0x445ac,
2593 		0x445b4, 0x4467c,
2594 		0x446c0, 0x447ac,
2595 		0x447b4, 0x4487c,
2596 		0x448c0, 0x449ac,
2597 		0x449b4, 0x44a7c,
2598 		0x44ac0, 0x44bac,
2599 		0x44bb4, 0x44c7c,
2600 		0x44cc0, 0x44dac,
2601 		0x44db4, 0x44e7c,
2602 		0x44ec0, 0x44fac,
2603 		0x44fb4, 0x4507c,
2604 		0x450c0, 0x451ac,
2605 		0x451b4, 0x451fc,
2606 		0x45800, 0x45804,
2607 		0x45810, 0x45830,
2608 		0x45840, 0x45860,
2609 		0x45868, 0x45868,
2610 		0x45880, 0x45884,
2611 		0x458a0, 0x458b0,
2612 		0x45a00, 0x45a04,
2613 		0x45a10, 0x45a30,
2614 		0x45a40, 0x45a60,
2615 		0x45a68, 0x45a68,
2616 		0x45a80, 0x45a84,
2617 		0x45aa0, 0x45ab0,
2618 		0x460c0, 0x460e4,
2619 		0x47000, 0x4703c,
2620 		0x47044, 0x4708c,
2621 		0x47200, 0x47250,
2622 		0x47400, 0x47408,
2623 		0x47414, 0x47420,
2624 		0x47600, 0x47618,
2625 		0x47800, 0x47814,
2626 		0x47820, 0x4782c,
2627 		0x50000, 0x50084,
2628 		0x50090, 0x500cc,
2629 		0x50300, 0x50384,
2630 		0x50400, 0x50400,
2631 		0x50800, 0x50884,
2632 		0x50890, 0x508cc,
2633 		0x50b00, 0x50b84,
2634 		0x50c00, 0x50c00,
2635 		0x51000, 0x51020,
2636 		0x51028, 0x510b0,
2637 		0x51300, 0x51324,
2638 	};
2639 
2640 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2641 	const unsigned int *reg_ranges;
2642 	int reg_ranges_size, range;
2643 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2644 
2645 	/* Select the right set of register ranges to dump depending on the
2646 	 * adapter chip type.
2647 	 */
2648 	switch (chip_version) {
2649 	case CHELSIO_T4:
2650 		reg_ranges = t4_reg_ranges;
2651 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2652 		break;
2653 
2654 	case CHELSIO_T5:
2655 		reg_ranges = t5_reg_ranges;
2656 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2657 		break;
2658 
2659 	case CHELSIO_T6:
2660 		reg_ranges = t6_reg_ranges;
2661 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2662 		break;
2663 
2664 	default:
2665 		dev_err(adap->pdev_dev,
2666 			"Unsupported chip version %d\n", chip_version);
2667 		return;
2668 	}
2669 
2670 	/* Clear the register buffer and insert the appropriate register
2671 	 * values selected by the above register ranges.
2672 	 */
2673 	memset(buf, 0, buf_size);
2674 	for (range = 0; range < reg_ranges_size; range += 2) {
2675 		unsigned int reg = reg_ranges[range];
2676 		unsigned int last_reg = reg_ranges[range + 1];
2677 		u32 *bufp = (u32 *)((char *)buf + reg);
2678 
2679 		/* Iterate across the register range filling in the register
2680 		 * buffer but don't write past the end of the register buffer.
2681 		 */
2682 		while (reg <= last_reg && bufp < buf_end) {
2683 			*bufp++ = t4_read_reg(adap, reg);
2684 			reg += sizeof(u32);
2685 		}
2686 	}
2687 }
2688 
2689 #define EEPROM_STAT_ADDR   0x7bfc
2690 #define VPD_BASE           0x400
2691 #define VPD_BASE_OLD       0
2692 #define VPD_LEN            1024
2693 
2694 /**
2695  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696  * @phys_addr: the physical EEPROM address
2697  * @fn: the PCI function number
2698  * @sz: size of function-specific area
2699  *
2700  * Translate a physical EEPROM address to virtual.  The first 1K is
2701  * accessed through virtual addresses starting at 31K, the rest is
2702  * accessed through virtual addresses starting at 0.
2703  *
2704  * The mapping is as follows:
2705  * [0..1K) -> [31K..32K)
2706  * [1K..1K+A) -> [31K-A..31K)
2707  * [1K+A..ES) -> [0..ES-A-1K)
2708  *
2709  * where A = @fn * @sz, and ES = EEPROM size.
2710  */
2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712 {
2713 	fn *= sz;
2714 	if (phys_addr < 1024)
2715 		return phys_addr + (31 << 10);
2716 	if (phys_addr < 1024 + fn)
2717 		return 31744 - fn + phys_addr - 1024;
2718 	if (phys_addr < EEPROMSIZE)
2719 		return phys_addr - 1024 - fn;
2720 	return -EINVAL;
2721 }
2722 
2723 /**
2724  *	t4_seeprom_wp - enable/disable EEPROM write protection
2725  *	@adapter: the adapter
2726  *	@enable: whether to enable or disable write protection
2727  *
2728  *	Enables or disables write protection on the serial EEPROM.
2729  */
2730 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731 {
2732 	unsigned int v = enable ? 0xc : 0;
2733 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734 	return ret < 0 ? ret : 0;
2735 }
2736 
2737 /**
2738  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739  *	@adapter: adapter to read
2740  *	@p: where to store the parameters
2741  *
2742  *	Reads card parameters stored in VPD EEPROM.
2743  */
2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745 {
2746 	int i, ret = 0, addr;
2747 	int ec, sn, pn, na;
2748 	u8 *vpd, csum, base_val = 0;
2749 	unsigned int vpdr_len, kw_offset, id_len;
2750 
2751 	vpd = vmalloc(VPD_LEN);
2752 	if (!vpd)
2753 		return -ENOMEM;
2754 
2755 	/* Card information normally starts at VPD_BASE but early cards had
2756 	 * it at 0.
2757 	 */
2758 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, 1, &base_val);
2759 	if (ret < 0)
2760 		goto out;
2761 
2762 	addr = base_val == PCI_VPD_LRDT_ID_STRING ? VPD_BASE : VPD_BASE_OLD;
2763 
2764 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2765 	if (ret < 0)
2766 		goto out;
2767 
2768 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2769 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2770 		ret = -EINVAL;
2771 		goto out;
2772 	}
2773 
2774 	id_len = pci_vpd_lrdt_size(vpd);
2775 	if (id_len > ID_LEN)
2776 		id_len = ID_LEN;
2777 
2778 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2779 	if (i < 0) {
2780 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2781 		ret = -EINVAL;
2782 		goto out;
2783 	}
2784 
2785 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2786 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2787 	if (vpdr_len + kw_offset > VPD_LEN) {
2788 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2789 		ret = -EINVAL;
2790 		goto out;
2791 	}
2792 
2793 #define FIND_VPD_KW(var, name) do { \
2794 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2795 	if (var < 0) { \
2796 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2797 		ret = -EINVAL; \
2798 		goto out; \
2799 	} \
2800 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2801 } while (0)
2802 
2803 	FIND_VPD_KW(i, "RV");
2804 	for (csum = 0; i >= 0; i--)
2805 		csum += vpd[i];
2806 
2807 	if (csum) {
2808 		dev_err(adapter->pdev_dev,
2809 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2810 		ret = -EINVAL;
2811 		goto out;
2812 	}
2813 
2814 	FIND_VPD_KW(ec, "EC");
2815 	FIND_VPD_KW(sn, "SN");
2816 	FIND_VPD_KW(pn, "PN");
2817 	FIND_VPD_KW(na, "NA");
2818 #undef FIND_VPD_KW
2819 
2820 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2821 	strim(p->id);
2822 	memcpy(p->ec, vpd + ec, EC_LEN);
2823 	strim(p->ec);
2824 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2825 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2826 	strim(p->sn);
2827 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2828 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2829 	strim(p->pn);
2830 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2831 	strim((char *)p->na);
2832 
2833 out:
2834 	vfree(vpd);
2835 	return ret < 0 ? ret : 0;
2836 }
2837 
2838 /**
2839  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2840  *	@adapter: adapter to read
2841  *	@p: where to store the parameters
2842  *
2843  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2844  *	Clock.  This can only be called after a connection to the firmware
2845  *	is established.
2846  */
2847 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2848 {
2849 	u32 cclk_param, cclk_val;
2850 	int ret;
2851 
2852 	/* Grab the raw VPD parameters.
2853 	 */
2854 	ret = t4_get_raw_vpd_params(adapter, p);
2855 	if (ret)
2856 		return ret;
2857 
2858 	/* Ask firmware for the Core Clock since it knows how to translate the
2859 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2860 	 */
2861 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2862 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2863 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2864 			      1, &cclk_param, &cclk_val);
2865 
2866 	if (ret)
2867 		return ret;
2868 	p->cclk = cclk_val;
2869 
2870 	return 0;
2871 }
2872 
2873 /**
2874  *	t4_get_pfres - retrieve VF resource limits
2875  *	@adapter: the adapter
2876  *
2877  *	Retrieves configured resource limits and capabilities for a physical
2878  *	function.  The results are stored in @adapter->pfres.
2879  */
2880 int t4_get_pfres(struct adapter *adapter)
2881 {
2882 	struct pf_resources *pfres = &adapter->params.pfres;
2883 	struct fw_pfvf_cmd cmd, rpl;
2884 	int v;
2885 	u32 word;
2886 
2887 	/* Execute PFVF Read command to get VF resource limits; bail out early
2888 	 * with error on command failure.
2889 	 */
2890 	memset(&cmd, 0, sizeof(cmd));
2891 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2892 				    FW_CMD_REQUEST_F |
2893 				    FW_CMD_READ_F |
2894 				    FW_PFVF_CMD_PFN_V(adapter->pf) |
2895 				    FW_PFVF_CMD_VFN_V(0));
2896 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2897 	v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2898 	if (v != FW_SUCCESS)
2899 		return v;
2900 
2901 	/* Extract PF resource limits and return success.
2902 	 */
2903 	word = be32_to_cpu(rpl.niqflint_niq);
2904 	pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2905 	pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2906 
2907 	word = be32_to_cpu(rpl.type_to_neq);
2908 	pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2909 	pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2910 
2911 	word = be32_to_cpu(rpl.tc_to_nexactf);
2912 	pfres->tc = FW_PFVF_CMD_TC_G(word);
2913 	pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2914 	pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2915 
2916 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2917 	pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2918 	pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2919 	pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2920 
2921 	return 0;
2922 }
2923 
2924 /* serial flash and firmware constants */
2925 enum {
2926 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2927 
2928 	/* flash command opcodes */
2929 	SF_PROG_PAGE    = 2,          /* program page */
2930 	SF_WR_DISABLE   = 4,          /* disable writes */
2931 	SF_RD_STATUS    = 5,          /* read status register */
2932 	SF_WR_ENABLE    = 6,          /* enable writes */
2933 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2934 	SF_RD_ID        = 0x9f,       /* read ID */
2935 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2936 };
2937 
2938 /**
2939  *	sf1_read - read data from the serial flash
2940  *	@adapter: the adapter
2941  *	@byte_cnt: number of bytes to read
2942  *	@cont: whether another operation will be chained
2943  *	@lock: whether to lock SF for PL access only
2944  *	@valp: where to store the read data
2945  *
2946  *	Reads up to 4 bytes of data from the serial flash.  The location of
2947  *	the read needs to be specified prior to calling this by issuing the
2948  *	appropriate commands to the serial flash.
2949  */
2950 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2951 		    int lock, u32 *valp)
2952 {
2953 	int ret;
2954 
2955 	if (!byte_cnt || byte_cnt > 4)
2956 		return -EINVAL;
2957 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2958 		return -EBUSY;
2959 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2960 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2961 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2962 	if (!ret)
2963 		*valp = t4_read_reg(adapter, SF_DATA_A);
2964 	return ret;
2965 }
2966 
2967 /**
2968  *	sf1_write - write data to the serial flash
2969  *	@adapter: the adapter
2970  *	@byte_cnt: number of bytes to write
2971  *	@cont: whether another operation will be chained
2972  *	@lock: whether to lock SF for PL access only
2973  *	@val: value to write
2974  *
2975  *	Writes up to 4 bytes of data to the serial flash.  The location of
2976  *	the write needs to be specified prior to calling this by issuing the
2977  *	appropriate commands to the serial flash.
2978  */
2979 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2980 		     int lock, u32 val)
2981 {
2982 	if (!byte_cnt || byte_cnt > 4)
2983 		return -EINVAL;
2984 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2985 		return -EBUSY;
2986 	t4_write_reg(adapter, SF_DATA_A, val);
2987 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2988 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2989 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2990 }
2991 
2992 /**
2993  *	flash_wait_op - wait for a flash operation to complete
2994  *	@adapter: the adapter
2995  *	@attempts: max number of polls of the status register
2996  *	@delay: delay between polls in ms
2997  *
2998  *	Wait for a flash operation to complete by polling the status register.
2999  */
3000 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3001 {
3002 	int ret;
3003 	u32 status;
3004 
3005 	while (1) {
3006 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3007 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3008 			return ret;
3009 		if (!(status & 1))
3010 			return 0;
3011 		if (--attempts == 0)
3012 			return -EAGAIN;
3013 		if (delay)
3014 			msleep(delay);
3015 	}
3016 }
3017 
3018 /**
3019  *	t4_read_flash - read words from serial flash
3020  *	@adapter: the adapter
3021  *	@addr: the start address for the read
3022  *	@nwords: how many 32-bit words to read
3023  *	@data: where to store the read data
3024  *	@byte_oriented: whether to store data as bytes or as words
3025  *
3026  *	Read the specified number of 32-bit words from the serial flash.
3027  *	If @byte_oriented is set the read data is stored as a byte array
3028  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3029  *	natural endianness.
3030  */
3031 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3032 		  unsigned int nwords, u32 *data, int byte_oriented)
3033 {
3034 	int ret;
3035 
3036 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3037 		return -EINVAL;
3038 
3039 	addr = swab32(addr) | SF_RD_DATA_FAST;
3040 
3041 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3042 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3043 		return ret;
3044 
3045 	for ( ; nwords; nwords--, data++) {
3046 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3047 		if (nwords == 1)
3048 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3049 		if (ret)
3050 			return ret;
3051 		if (byte_oriented)
3052 			*data = (__force __u32)(cpu_to_be32(*data));
3053 	}
3054 	return 0;
3055 }
3056 
3057 /**
3058  *	t4_write_flash - write up to a page of data to the serial flash
3059  *	@adapter: the adapter
3060  *	@addr: the start address to write
3061  *	@n: length of data to write in bytes
3062  *	@data: the data to write
3063  *
3064  *	Writes up to a page of data (256 bytes) to the serial flash starting
3065  *	at the given address.  All the data must be written to the same page.
3066  */
3067 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3068 			  unsigned int n, const u8 *data)
3069 {
3070 	int ret;
3071 	u32 buf[64];
3072 	unsigned int i, c, left, val, offset = addr & 0xff;
3073 
3074 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3075 		return -EINVAL;
3076 
3077 	val = swab32(addr) | SF_PROG_PAGE;
3078 
3079 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3080 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3081 		goto unlock;
3082 
3083 	for (left = n; left; left -= c) {
3084 		c = min(left, 4U);
3085 		for (val = 0, i = 0; i < c; ++i)
3086 			val = (val << 8) + *data++;
3087 
3088 		ret = sf1_write(adapter, c, c != left, 1, val);
3089 		if (ret)
3090 			goto unlock;
3091 	}
3092 	ret = flash_wait_op(adapter, 8, 1);
3093 	if (ret)
3094 		goto unlock;
3095 
3096 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3097 
3098 	/* Read the page to verify the write succeeded */
3099 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3100 	if (ret)
3101 		return ret;
3102 
3103 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3104 		dev_err(adapter->pdev_dev,
3105 			"failed to correctly write the flash page at %#x\n",
3106 			addr);
3107 		return -EIO;
3108 	}
3109 	return 0;
3110 
3111 unlock:
3112 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3113 	return ret;
3114 }
3115 
3116 /**
3117  *	t4_get_fw_version - read the firmware version
3118  *	@adapter: the adapter
3119  *	@vers: where to place the version
3120  *
3121  *	Reads the FW version from flash.
3122  */
3123 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3124 {
3125 	return t4_read_flash(adapter, FLASH_FW_START +
3126 			     offsetof(struct fw_hdr, fw_ver), 1,
3127 			     vers, 0);
3128 }
3129 
3130 /**
3131  *	t4_get_bs_version - read the firmware bootstrap version
3132  *	@adapter: the adapter
3133  *	@vers: where to place the version
3134  *
3135  *	Reads the FW Bootstrap version from flash.
3136  */
3137 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3138 {
3139 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3140 			     offsetof(struct fw_hdr, fw_ver), 1,
3141 			     vers, 0);
3142 }
3143 
3144 /**
3145  *	t4_get_tp_version - read the TP microcode version
3146  *	@adapter: the adapter
3147  *	@vers: where to place the version
3148  *
3149  *	Reads the TP microcode version from flash.
3150  */
3151 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3152 {
3153 	return t4_read_flash(adapter, FLASH_FW_START +
3154 			     offsetof(struct fw_hdr, tp_microcode_ver),
3155 			     1, vers, 0);
3156 }
3157 
3158 /**
3159  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3160  *	@adap: the adapter
3161  *	@vers: where to place the version
3162  *
3163  *	Reads the Expansion ROM header from FLASH and returns the version
3164  *	number (if present) through the @vers return value pointer.  We return
3165  *	this in the Firmware Version Format since it's convenient.  Return
3166  *	0 on success, -ENOENT if no Expansion ROM is present.
3167  */
3168 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3169 {
3170 	struct exprom_header {
3171 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3172 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3173 	} *hdr;
3174 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3175 					   sizeof(u32))];
3176 	int ret;
3177 
3178 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3179 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3180 			    0);
3181 	if (ret)
3182 		return ret;
3183 
3184 	hdr = (struct exprom_header *)exprom_header_buf;
3185 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3186 		return -ENOENT;
3187 
3188 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3189 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3190 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3191 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3192 	return 0;
3193 }
3194 
3195 /**
3196  *      t4_get_vpd_version - return the VPD version
3197  *      @adapter: the adapter
3198  *      @vers: where to place the version
3199  *
3200  *      Reads the VPD via the Firmware interface (thus this can only be called
3201  *      once we're ready to issue Firmware commands).  The format of the
3202  *      VPD version is adapter specific.  Returns 0 on success, an error on
3203  *      failure.
3204  *
3205  *      Note that early versions of the Firmware didn't include the ability
3206  *      to retrieve the VPD version, so we zero-out the return-value parameter
3207  *      in that case to avoid leaving it with garbage in it.
3208  *
3209  *      Also note that the Firmware will return its cached copy of the VPD
3210  *      Revision ID, not the actual Revision ID as written in the Serial
3211  *      EEPROM.  This is only an issue if a new VPD has been written and the
3212  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3213  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3214  *      if the Host Driver will be performing a full adapter initialization.
3215  */
3216 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3217 {
3218 	u32 vpdrev_param;
3219 	int ret;
3220 
3221 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3222 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3223 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3224 			      1, &vpdrev_param, vers);
3225 	if (ret)
3226 		*vers = 0;
3227 	return ret;
3228 }
3229 
3230 /**
3231  *      t4_get_scfg_version - return the Serial Configuration version
3232  *      @adapter: the adapter
3233  *      @vers: where to place the version
3234  *
3235  *      Reads the Serial Configuration Version via the Firmware interface
3236  *      (thus this can only be called once we're ready to issue Firmware
3237  *      commands).  The format of the Serial Configuration version is
3238  *      adapter specific.  Returns 0 on success, an error on failure.
3239  *
3240  *      Note that early versions of the Firmware didn't include the ability
3241  *      to retrieve the Serial Configuration version, so we zero-out the
3242  *      return-value parameter in that case to avoid leaving it with
3243  *      garbage in it.
3244  *
3245  *      Also note that the Firmware will return its cached copy of the Serial
3246  *      Initialization Revision ID, not the actual Revision ID as written in
3247  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3248  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3249  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3250  *      been issued if the Host Driver will be performing a full adapter
3251  *      initialization.
3252  */
3253 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3254 {
3255 	u32 scfgrev_param;
3256 	int ret;
3257 
3258 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3259 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3260 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3261 			      1, &scfgrev_param, vers);
3262 	if (ret)
3263 		*vers = 0;
3264 	return ret;
3265 }
3266 
3267 /**
3268  *      t4_get_version_info - extract various chip/firmware version information
3269  *      @adapter: the adapter
3270  *
3271  *      Reads various chip/firmware version numbers and stores them into the
3272  *      adapter Adapter Parameters structure.  If any of the efforts fails
3273  *      the first failure will be returned, but all of the version numbers
3274  *      will be read.
3275  */
3276 int t4_get_version_info(struct adapter *adapter)
3277 {
3278 	int ret = 0;
3279 
3280 	#define FIRST_RET(__getvinfo) \
3281 	do { \
3282 		int __ret = __getvinfo; \
3283 		if (__ret && !ret) \
3284 			ret = __ret; \
3285 	} while (0)
3286 
3287 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3288 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3289 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3290 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3291 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3292 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3293 
3294 	#undef FIRST_RET
3295 	return ret;
3296 }
3297 
3298 /**
3299  *      t4_dump_version_info - dump all of the adapter configuration IDs
3300  *      @adapter: the adapter
3301  *
3302  *      Dumps all of the various bits of adapter configuration version/revision
3303  *      IDs information.  This is typically called at some point after
3304  *      t4_get_version_info() has been called.
3305  */
3306 void t4_dump_version_info(struct adapter *adapter)
3307 {
3308 	/* Device information */
3309 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3310 		 adapter->params.vpd.id,
3311 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3312 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3313 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3314 
3315 	/* Firmware Version */
3316 	if (!adapter->params.fw_vers)
3317 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3318 	else
3319 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3320 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3321 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3322 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3323 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3324 
3325 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3326 	 * Firmware, so dev_info() is more appropriate here.)
3327 	 */
3328 	if (!adapter->params.bs_vers)
3329 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3330 	else
3331 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3332 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3333 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3334 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3335 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3336 
3337 	/* TP Microcode Version */
3338 	if (!adapter->params.tp_vers)
3339 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3340 	else
3341 		dev_info(adapter->pdev_dev,
3342 			 "TP Microcode version: %u.%u.%u.%u\n",
3343 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3344 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3345 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3346 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3347 
3348 	/* Expansion ROM version */
3349 	if (!adapter->params.er_vers)
3350 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3351 	else
3352 		dev_info(adapter->pdev_dev,
3353 			 "Expansion ROM version: %u.%u.%u.%u\n",
3354 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3355 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3356 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3357 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3358 
3359 	/* Serial Configuration version */
3360 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3361 		 adapter->params.scfg_vers);
3362 
3363 	/* VPD Version */
3364 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3365 		 adapter->params.vpd_vers);
3366 }
3367 
3368 /**
3369  *	t4_check_fw_version - check if the FW is supported with this driver
3370  *	@adap: the adapter
3371  *
3372  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3373  *	if there's exact match, a negative error if the version could not be
3374  *	read or there's a major version mismatch
3375  */
3376 int t4_check_fw_version(struct adapter *adap)
3377 {
3378 	int i, ret, major, minor, micro;
3379 	int exp_major, exp_minor, exp_micro;
3380 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3381 
3382 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3383 	/* Try multiple times before returning error */
3384 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3385 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3386 
3387 	if (ret)
3388 		return ret;
3389 
3390 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3391 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3392 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3393 
3394 	switch (chip_version) {
3395 	case CHELSIO_T4:
3396 		exp_major = T4FW_MIN_VERSION_MAJOR;
3397 		exp_minor = T4FW_MIN_VERSION_MINOR;
3398 		exp_micro = T4FW_MIN_VERSION_MICRO;
3399 		break;
3400 	case CHELSIO_T5:
3401 		exp_major = T5FW_MIN_VERSION_MAJOR;
3402 		exp_minor = T5FW_MIN_VERSION_MINOR;
3403 		exp_micro = T5FW_MIN_VERSION_MICRO;
3404 		break;
3405 	case CHELSIO_T6:
3406 		exp_major = T6FW_MIN_VERSION_MAJOR;
3407 		exp_minor = T6FW_MIN_VERSION_MINOR;
3408 		exp_micro = T6FW_MIN_VERSION_MICRO;
3409 		break;
3410 	default:
3411 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3412 			adap->chip);
3413 		return -EINVAL;
3414 	}
3415 
3416 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3417 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3418 		dev_err(adap->pdev_dev,
3419 			"Card has firmware version %u.%u.%u, minimum "
3420 			"supported firmware is %u.%u.%u.\n", major, minor,
3421 			micro, exp_major, exp_minor, exp_micro);
3422 		return -EFAULT;
3423 	}
3424 	return 0;
3425 }
3426 
3427 /* Is the given firmware API compatible with the one the driver was compiled
3428  * with?
3429  */
3430 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3431 {
3432 
3433 	/* short circuit if it's the exact same firmware version */
3434 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3435 		return 1;
3436 
3437 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3438 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3439 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3440 		return 1;
3441 #undef SAME_INTF
3442 
3443 	return 0;
3444 }
3445 
3446 /* The firmware in the filesystem is usable, but should it be installed?
3447  * This routine explains itself in detail if it indicates the filesystem
3448  * firmware should be installed.
3449  */
3450 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3451 				int k, int c)
3452 {
3453 	const char *reason;
3454 
3455 	if (!card_fw_usable) {
3456 		reason = "incompatible or unusable";
3457 		goto install;
3458 	}
3459 
3460 	if (k > c) {
3461 		reason = "older than the version supported with this driver";
3462 		goto install;
3463 	}
3464 
3465 	return 0;
3466 
3467 install:
3468 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3469 		"installing firmware %u.%u.%u.%u on card.\n",
3470 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3471 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3472 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3473 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3474 
3475 	return 1;
3476 }
3477 
3478 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3479 	       const u8 *fw_data, unsigned int fw_size,
3480 	       struct fw_hdr *card_fw, enum dev_state state,
3481 	       int *reset)
3482 {
3483 	int ret, card_fw_usable, fs_fw_usable;
3484 	const struct fw_hdr *fs_fw;
3485 	const struct fw_hdr *drv_fw;
3486 
3487 	drv_fw = &fw_info->fw_hdr;
3488 
3489 	/* Read the header of the firmware on the card */
3490 	ret = t4_read_flash(adap, FLASH_FW_START,
3491 			    sizeof(*card_fw) / sizeof(uint32_t),
3492 			    (uint32_t *)card_fw, 1);
3493 	if (ret == 0) {
3494 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3495 	} else {
3496 		dev_err(adap->pdev_dev,
3497 			"Unable to read card's firmware header: %d\n", ret);
3498 		card_fw_usable = 0;
3499 	}
3500 
3501 	if (fw_data != NULL) {
3502 		fs_fw = (const void *)fw_data;
3503 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3504 	} else {
3505 		fs_fw = NULL;
3506 		fs_fw_usable = 0;
3507 	}
3508 
3509 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3510 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3511 		/* Common case: the firmware on the card is an exact match and
3512 		 * the filesystem one is an exact match too, or the filesystem
3513 		 * one is absent/incompatible.
3514 		 */
3515 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3516 		   should_install_fs_fw(adap, card_fw_usable,
3517 					be32_to_cpu(fs_fw->fw_ver),
3518 					be32_to_cpu(card_fw->fw_ver))) {
3519 		ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3520 				    fw_size, 0);
3521 		if (ret != 0) {
3522 			dev_err(adap->pdev_dev,
3523 				"failed to install firmware: %d\n", ret);
3524 			goto bye;
3525 		}
3526 
3527 		/* Installed successfully, update the cached header too. */
3528 		*card_fw = *fs_fw;
3529 		card_fw_usable = 1;
3530 		*reset = 0;	/* already reset as part of load_fw */
3531 	}
3532 
3533 	if (!card_fw_usable) {
3534 		uint32_t d, c, k;
3535 
3536 		d = be32_to_cpu(drv_fw->fw_ver);
3537 		c = be32_to_cpu(card_fw->fw_ver);
3538 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3539 
3540 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3541 			"chip state %d, "
3542 			"driver compiled with %d.%d.%d.%d, "
3543 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3544 			state,
3545 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3546 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3547 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3548 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3549 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3550 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3551 		ret = -EINVAL;
3552 		goto bye;
3553 	}
3554 
3555 	/* We're using whatever's on the card and it's known to be good. */
3556 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3557 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3558 
3559 bye:
3560 	return ret;
3561 }
3562 
3563 /**
3564  *	t4_flash_erase_sectors - erase a range of flash sectors
3565  *	@adapter: the adapter
3566  *	@start: the first sector to erase
3567  *	@end: the last sector to erase
3568  *
3569  *	Erases the sectors in the given inclusive range.
3570  */
3571 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3572 {
3573 	int ret = 0;
3574 
3575 	if (end >= adapter->params.sf_nsec)
3576 		return -EINVAL;
3577 
3578 	while (start <= end) {
3579 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3580 		    (ret = sf1_write(adapter, 4, 0, 1,
3581 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3582 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3583 			dev_err(adapter->pdev_dev,
3584 				"erase of flash sector %d failed, error %d\n",
3585 				start, ret);
3586 			break;
3587 		}
3588 		start++;
3589 	}
3590 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3591 	return ret;
3592 }
3593 
3594 /**
3595  *	t4_flash_cfg_addr - return the address of the flash configuration file
3596  *	@adapter: the adapter
3597  *
3598  *	Return the address within the flash where the Firmware Configuration
3599  *	File is stored.
3600  */
3601 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3602 {
3603 	if (adapter->params.sf_size == 0x100000)
3604 		return FLASH_FPGA_CFG_START;
3605 	else
3606 		return FLASH_CFG_START;
3607 }
3608 
3609 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3610  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3611  * and emit an error message for mismatched firmware to save our caller the
3612  * effort ...
3613  */
3614 static bool t4_fw_matches_chip(const struct adapter *adap,
3615 			       const struct fw_hdr *hdr)
3616 {
3617 	/* The expression below will return FALSE for any unsupported adapter
3618 	 * which will keep us "honest" in the future ...
3619 	 */
3620 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3621 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3622 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3623 		return true;
3624 
3625 	dev_err(adap->pdev_dev,
3626 		"FW image (%d) is not suitable for this adapter (%d)\n",
3627 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3628 	return false;
3629 }
3630 
3631 /**
3632  *	t4_load_fw - download firmware
3633  *	@adap: the adapter
3634  *	@fw_data: the firmware image to write
3635  *	@size: image size
3636  *
3637  *	Write the supplied firmware image to the card's serial flash.
3638  */
3639 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3640 {
3641 	u32 csum;
3642 	int ret, addr;
3643 	unsigned int i;
3644 	u8 first_page[SF_PAGE_SIZE];
3645 	const __be32 *p = (const __be32 *)fw_data;
3646 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3647 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3648 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3649 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3650 	unsigned int fw_start = FLASH_FW_START;
3651 
3652 	if (!size) {
3653 		dev_err(adap->pdev_dev, "FW image has no data\n");
3654 		return -EINVAL;
3655 	}
3656 	if (size & 511) {
3657 		dev_err(adap->pdev_dev,
3658 			"FW image size not multiple of 512 bytes\n");
3659 		return -EINVAL;
3660 	}
3661 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3662 		dev_err(adap->pdev_dev,
3663 			"FW image size differs from size in FW header\n");
3664 		return -EINVAL;
3665 	}
3666 	if (size > fw_size) {
3667 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3668 			fw_size);
3669 		return -EFBIG;
3670 	}
3671 	if (!t4_fw_matches_chip(adap, hdr))
3672 		return -EINVAL;
3673 
3674 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3675 		csum += be32_to_cpu(p[i]);
3676 
3677 	if (csum != 0xffffffff) {
3678 		dev_err(adap->pdev_dev,
3679 			"corrupted firmware image, checksum %#x\n", csum);
3680 		return -EINVAL;
3681 	}
3682 
3683 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3684 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3685 	if (ret)
3686 		goto out;
3687 
3688 	/*
3689 	 * We write the correct version at the end so the driver can see a bad
3690 	 * version if the FW write fails.  Start by writing a copy of the
3691 	 * first page with a bad version.
3692 	 */
3693 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3694 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3695 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3696 	if (ret)
3697 		goto out;
3698 
3699 	addr = fw_start;
3700 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3701 		addr += SF_PAGE_SIZE;
3702 		fw_data += SF_PAGE_SIZE;
3703 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3704 		if (ret)
3705 			goto out;
3706 	}
3707 
3708 	ret = t4_write_flash(adap,
3709 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3710 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3711 out:
3712 	if (ret)
3713 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3714 			ret);
3715 	else
3716 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3717 	return ret;
3718 }
3719 
3720 /**
3721  *	t4_phy_fw_ver - return current PHY firmware version
3722  *	@adap: the adapter
3723  *	@phy_fw_ver: return value buffer for PHY firmware version
3724  *
3725  *	Returns the current version of external PHY firmware on the
3726  *	adapter.
3727  */
3728 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3729 {
3730 	u32 param, val;
3731 	int ret;
3732 
3733 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3734 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3735 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3736 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3737 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3738 			      &param, &val);
3739 	if (ret)
3740 		return ret;
3741 	*phy_fw_ver = val;
3742 	return 0;
3743 }
3744 
3745 /**
3746  *	t4_load_phy_fw - download port PHY firmware
3747  *	@adap: the adapter
3748  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3749  *	@phy_fw_version: function to check PHY firmware versions
3750  *	@phy_fw_data: the PHY firmware image to write
3751  *	@phy_fw_size: image size
3752  *
3753  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3754  *	@phy_fw_version is supplied, then it will be used to determine if
3755  *	it's necessary to perform the transfer by comparing the version
3756  *	of any existing adapter PHY firmware with that of the passed in
3757  *	PHY firmware image.
3758  *
3759  *	A negative error number will be returned if an error occurs.  If
3760  *	version number support is available and there's no need to upgrade
3761  *	the firmware, 0 will be returned.  If firmware is successfully
3762  *	transferred to the adapter, 1 will be returned.
3763  *
3764  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3765  *	a result, a RESET of the adapter would cause that RAM to lose its
3766  *	contents.  Thus, loading PHY firmware on such adapters must happen
3767  *	after any FW_RESET_CMDs ...
3768  */
3769 int t4_load_phy_fw(struct adapter *adap, int win,
3770 		   int (*phy_fw_version)(const u8 *, size_t),
3771 		   const u8 *phy_fw_data, size_t phy_fw_size)
3772 {
3773 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3774 	unsigned long mtype = 0, maddr = 0;
3775 	u32 param, val;
3776 	int ret;
3777 
3778 	/* If we have version number support, then check to see if the adapter
3779 	 * already has up-to-date PHY firmware loaded.
3780 	 */
3781 	if (phy_fw_version) {
3782 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3783 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3784 		if (ret < 0)
3785 			return ret;
3786 
3787 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3788 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3789 				"version %#x\n", cur_phy_fw_ver);
3790 			return 0;
3791 		}
3792 	}
3793 
3794 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3795 	 * The size of the file requires a special version of the READ command
3796 	 * which will pass the file size via the values field in PARAMS_CMD and
3797 	 * retrieve the return value from firmware and place it in the same
3798 	 * buffer values
3799 	 */
3800 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3801 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3802 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3803 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3804 	val = phy_fw_size;
3805 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3806 				 &param, &val, 1, true);
3807 	if (ret < 0)
3808 		return ret;
3809 	mtype = val >> 8;
3810 	maddr = (val & 0xff) << 16;
3811 
3812 	/* Copy the supplied PHY Firmware image to the adapter memory location
3813 	 * allocated by the adapter firmware.
3814 	 */
3815 	ret = t4_memory_rw(adap, win, mtype, maddr,
3816 			   phy_fw_size, (__be32 *)phy_fw_data,
3817 			   T4_MEMORY_WRITE);
3818 	if (ret)
3819 		return ret;
3820 
3821 	/* Tell the firmware that the PHY firmware image has been written to
3822 	 * RAM and it can now start copying it over to the PHYs.  The chip
3823 	 * firmware will RESET the affected PHYs as part of this operation
3824 	 * leaving them running the new PHY firmware image.
3825 	 */
3826 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3827 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3828 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3829 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3830 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3831 				    &param, &val, 30000);
3832 
3833 	/* If we have version number support, then check to see that the new
3834 	 * firmware got loaded properly.
3835 	 */
3836 	if (phy_fw_version) {
3837 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3838 		if (ret < 0)
3839 			return ret;
3840 
3841 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3842 			CH_WARN(adap, "PHY Firmware did not update: "
3843 				"version on adapter %#x, "
3844 				"version flashed %#x\n",
3845 				cur_phy_fw_ver, new_phy_fw_vers);
3846 			return -ENXIO;
3847 		}
3848 	}
3849 
3850 	return 1;
3851 }
3852 
3853 /**
3854  *	t4_fwcache - firmware cache operation
3855  *	@adap: the adapter
3856  *	@op  : the operation (flush or flush and invalidate)
3857  */
3858 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3859 {
3860 	struct fw_params_cmd c;
3861 
3862 	memset(&c, 0, sizeof(c));
3863 	c.op_to_vfn =
3864 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3865 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3866 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3867 			    FW_PARAMS_CMD_VFN_V(0));
3868 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3869 	c.param[0].mnem =
3870 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3871 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3872 	c.param[0].val = cpu_to_be32(op);
3873 
3874 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3875 }
3876 
3877 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3878 			unsigned int *pif_req_wrptr,
3879 			unsigned int *pif_rsp_wrptr)
3880 {
3881 	int i, j;
3882 	u32 cfg, val, req, rsp;
3883 
3884 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3885 	if (cfg & LADBGEN_F)
3886 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3887 
3888 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3889 	req = POLADBGWRPTR_G(val);
3890 	rsp = PILADBGWRPTR_G(val);
3891 	if (pif_req_wrptr)
3892 		*pif_req_wrptr = req;
3893 	if (pif_rsp_wrptr)
3894 		*pif_rsp_wrptr = rsp;
3895 
3896 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3897 		for (j = 0; j < 6; j++) {
3898 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3899 				     PILADBGRDPTR_V(rsp));
3900 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3901 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3902 			req++;
3903 			rsp++;
3904 		}
3905 		req = (req + 2) & POLADBGRDPTR_M;
3906 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3907 	}
3908 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3909 }
3910 
3911 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3912 {
3913 	u32 cfg;
3914 	int i, j, idx;
3915 
3916 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3917 	if (cfg & LADBGEN_F)
3918 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3919 
3920 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3921 		for (j = 0; j < 5; j++) {
3922 			idx = 8 * i + j;
3923 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3924 				     PILADBGRDPTR_V(idx));
3925 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3926 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3927 		}
3928 	}
3929 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3930 }
3931 
3932 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3933 {
3934 	unsigned int i, j;
3935 
3936 	for (i = 0; i < 8; i++) {
3937 		u32 *p = la_buf + i;
3938 
3939 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3940 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3941 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3942 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3943 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3944 	}
3945 }
3946 
3947 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3948  * Capabilities which we control with separate controls -- see, for instance,
3949  * Pause Frames and Forward Error Correction.  In order to determine what the
3950  * full set of Advertised Port Capabilities are, the base Advertised Port
3951  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3952  * Port Capabilities associated with those other controls.  See
3953  * t4_link_acaps() for how this is done.
3954  */
3955 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3956 		     FW_PORT_CAP32_ANEG)
3957 
3958 /**
3959  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3960  *	@caps16: a 16-bit Port Capabilities value
3961  *
3962  *	Returns the equivalent 32-bit Port Capabilities value.
3963  */
3964 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3965 {
3966 	fw_port_cap32_t caps32 = 0;
3967 
3968 	#define CAP16_TO_CAP32(__cap) \
3969 		do { \
3970 			if (caps16 & FW_PORT_CAP_##__cap) \
3971 				caps32 |= FW_PORT_CAP32_##__cap; \
3972 		} while (0)
3973 
3974 	CAP16_TO_CAP32(SPEED_100M);
3975 	CAP16_TO_CAP32(SPEED_1G);
3976 	CAP16_TO_CAP32(SPEED_25G);
3977 	CAP16_TO_CAP32(SPEED_10G);
3978 	CAP16_TO_CAP32(SPEED_40G);
3979 	CAP16_TO_CAP32(SPEED_100G);
3980 	CAP16_TO_CAP32(FC_RX);
3981 	CAP16_TO_CAP32(FC_TX);
3982 	CAP16_TO_CAP32(ANEG);
3983 	CAP16_TO_CAP32(FORCE_PAUSE);
3984 	CAP16_TO_CAP32(MDIAUTO);
3985 	CAP16_TO_CAP32(MDISTRAIGHT);
3986 	CAP16_TO_CAP32(FEC_RS);
3987 	CAP16_TO_CAP32(FEC_BASER_RS);
3988 	CAP16_TO_CAP32(802_3_PAUSE);
3989 	CAP16_TO_CAP32(802_3_ASM_DIR);
3990 
3991 	#undef CAP16_TO_CAP32
3992 
3993 	return caps32;
3994 }
3995 
3996 /**
3997  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3998  *	@caps32: a 32-bit Port Capabilities value
3999  *
4000  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
4001  *	not all 32-bit Port Capabilities can be represented in the 16-bit
4002  *	Port Capabilities and some fields/values may not make it.
4003  */
4004 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4005 {
4006 	fw_port_cap16_t caps16 = 0;
4007 
4008 	#define CAP32_TO_CAP16(__cap) \
4009 		do { \
4010 			if (caps32 & FW_PORT_CAP32_##__cap) \
4011 				caps16 |= FW_PORT_CAP_##__cap; \
4012 		} while (0)
4013 
4014 	CAP32_TO_CAP16(SPEED_100M);
4015 	CAP32_TO_CAP16(SPEED_1G);
4016 	CAP32_TO_CAP16(SPEED_10G);
4017 	CAP32_TO_CAP16(SPEED_25G);
4018 	CAP32_TO_CAP16(SPEED_40G);
4019 	CAP32_TO_CAP16(SPEED_100G);
4020 	CAP32_TO_CAP16(FC_RX);
4021 	CAP32_TO_CAP16(FC_TX);
4022 	CAP32_TO_CAP16(802_3_PAUSE);
4023 	CAP32_TO_CAP16(802_3_ASM_DIR);
4024 	CAP32_TO_CAP16(ANEG);
4025 	CAP32_TO_CAP16(FORCE_PAUSE);
4026 	CAP32_TO_CAP16(MDIAUTO);
4027 	CAP32_TO_CAP16(MDISTRAIGHT);
4028 	CAP32_TO_CAP16(FEC_RS);
4029 	CAP32_TO_CAP16(FEC_BASER_RS);
4030 
4031 	#undef CAP32_TO_CAP16
4032 
4033 	return caps16;
4034 }
4035 
4036 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4037 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4038 {
4039 	enum cc_pause cc_pause = 0;
4040 
4041 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4042 		cc_pause |= PAUSE_RX;
4043 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4044 		cc_pause |= PAUSE_TX;
4045 
4046 	return cc_pause;
4047 }
4048 
4049 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4050 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4051 {
4052 	/* Translate orthogonal RX/TX Pause Controls for L1 Configure
4053 	 * commands, etc.
4054 	 */
4055 	fw_port_cap32_t fw_pause = 0;
4056 
4057 	if (cc_pause & PAUSE_RX)
4058 		fw_pause |= FW_PORT_CAP32_FC_RX;
4059 	if (cc_pause & PAUSE_TX)
4060 		fw_pause |= FW_PORT_CAP32_FC_TX;
4061 	if (!(cc_pause & PAUSE_AUTONEG))
4062 		fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4063 
4064 	/* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4065 	 * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4066 	 * Note that these bits are ignored in L1 Configure commands.
4067 	 */
4068 	if (cc_pause & PAUSE_RX) {
4069 		if (cc_pause & PAUSE_TX)
4070 			fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4071 		else
4072 			fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4073 				    FW_PORT_CAP32_802_3_PAUSE;
4074 	} else if (cc_pause & PAUSE_TX) {
4075 		fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4076 	}
4077 
4078 	return fw_pause;
4079 }
4080 
4081 /* Translate Firmware Forward Error Correction specification to Common Code */
4082 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4083 {
4084 	enum cc_fec cc_fec = 0;
4085 
4086 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4087 		cc_fec |= FEC_RS;
4088 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4089 		cc_fec |= FEC_BASER_RS;
4090 
4091 	return cc_fec;
4092 }
4093 
4094 /* Translate Common Code Forward Error Correction specification to Firmware */
4095 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4096 {
4097 	fw_port_cap32_t fw_fec = 0;
4098 
4099 	if (cc_fec & FEC_RS)
4100 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4101 	if (cc_fec & FEC_BASER_RS)
4102 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4103 
4104 	return fw_fec;
4105 }
4106 
4107 /**
4108  *	t4_link_acaps - compute Link Advertised Port Capabilities
4109  *	@adapter: the adapter
4110  *	@port: the Port ID
4111  *	@lc: the Port's Link Configuration
4112  *
4113  *	Synthesize the Advertised Port Capabilities we'll be using based on
4114  *	the base Advertised Port Capabilities (which have been filtered by
4115  *	ADVERT_MASK) plus the individual controls for things like Pause
4116  *	Frames, Forward Error Correction, MDI, etc.
4117  */
4118 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4119 			      struct link_config *lc)
4120 {
4121 	fw_port_cap32_t fw_fc, fw_fec, acaps;
4122 	unsigned int fw_mdi;
4123 	char cc_fec;
4124 
4125 	fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4126 
4127 	/* Convert driver coding of Pause Frame Flow Control settings into the
4128 	 * Firmware's API.
4129 	 */
4130 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4131 
4132 	/* Convert Common Code Forward Error Control settings into the
4133 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4134 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4135 	 * sent us as part of its IEEE 802.3-based interpretation of
4136 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4137 	 * use whatever is in the current Requested FEC settings.
4138 	 */
4139 	if (lc->requested_fec & FEC_AUTO)
4140 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4141 	else
4142 		cc_fec = lc->requested_fec;
4143 	fw_fec = cc_to_fwcap_fec(cc_fec);
4144 
4145 	/* Figure out what our Requested Port Capabilities are going to be.
4146 	 * Note parallel structure in t4_handle_get_port_info() and
4147 	 * init_link_config().
4148 	 */
4149 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4150 		acaps = lc->acaps | fw_fc | fw_fec;
4151 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4152 		lc->fec = cc_fec;
4153 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4154 		acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4155 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4156 		lc->fec = cc_fec;
4157 	} else {
4158 		acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4159 	}
4160 
4161 	/* Some Requested Port Capabilities are trivially wrong if they exceed
4162 	 * the Physical Port Capabilities.  We can check that here and provide
4163 	 * moderately useful feedback in the system log.
4164 	 *
4165 	 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4166 	 * we need to exclude this from this check in order to maintain
4167 	 * compatibility ...
4168 	 */
4169 	if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4170 		dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4171 			acaps, lc->pcaps);
4172 		return -EINVAL;
4173 	}
4174 
4175 	return acaps;
4176 }
4177 
4178 /**
4179  *	t4_link_l1cfg_core - apply link configuration to MAC/PHY
4180  *	@adapter: the adapter
4181  *	@mbox: the Firmware Mailbox to use
4182  *	@port: the Port ID
4183  *	@lc: the Port's Link Configuration
4184  *	@sleep_ok: if true we may sleep while awaiting command completion
4185  *	@timeout: time to wait for command to finish before timing out
4186  *		(negative implies @sleep_ok=false)
4187  *
4188  *	Set up a port's MAC and PHY according to a desired link configuration.
4189  *	- If the PHY can auto-negotiate first decide what to advertise, then
4190  *	  enable/disable auto-negotiation as desired, and reset.
4191  *	- If the PHY does not auto-negotiate just reset it.
4192  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4193  *	  otherwise do it later based on the outcome of auto-negotiation.
4194  */
4195 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4196 		       unsigned int port, struct link_config *lc,
4197 		       u8 sleep_ok, int timeout)
4198 {
4199 	unsigned int fw_caps = adapter->params.fw_caps_support;
4200 	struct fw_port_cmd cmd;
4201 	fw_port_cap32_t rcap;
4202 	int ret;
4203 
4204 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4205 	    lc->autoneg == AUTONEG_ENABLE) {
4206 		return -EINVAL;
4207 	}
4208 
4209 	/* Compute our Requested Port Capabilities and send that on to the
4210 	 * Firmware.
4211 	 */
4212 	rcap = t4_link_acaps(adapter, port, lc);
4213 	memset(&cmd, 0, sizeof(cmd));
4214 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4215 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4216 				       FW_PORT_CMD_PORTID_V(port));
4217 	cmd.action_to_len16 =
4218 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4219 						 ? FW_PORT_ACTION_L1_CFG
4220 						 : FW_PORT_ACTION_L1_CFG32) |
4221 						 FW_LEN16(cmd));
4222 	if (fw_caps == FW_CAPS16)
4223 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4224 	else
4225 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4226 
4227 	ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4228 				      sleep_ok, timeout);
4229 
4230 	/* Unfortunately, even if the Requested Port Capabilities "fit" within
4231 	 * the Physical Port Capabilities, some combinations of features may
4232 	 * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4233 	 * Error Correction.  So if the Firmware rejects the L1 Configure
4234 	 * request, flag that here.
4235 	 */
4236 	if (ret) {
4237 		dev_err(adapter->pdev_dev,
4238 			"Requested Port Capabilities %#x rejected, error %d\n",
4239 			rcap, -ret);
4240 		return ret;
4241 	}
4242 	return 0;
4243 }
4244 
4245 /**
4246  *	t4_restart_aneg - restart autonegotiation
4247  *	@adap: the adapter
4248  *	@mbox: mbox to use for the FW command
4249  *	@port: the port id
4250  *
4251  *	Restarts autonegotiation for the selected port.
4252  */
4253 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4254 {
4255 	unsigned int fw_caps = adap->params.fw_caps_support;
4256 	struct fw_port_cmd c;
4257 
4258 	memset(&c, 0, sizeof(c));
4259 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4260 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4261 				     FW_PORT_CMD_PORTID_V(port));
4262 	c.action_to_len16 =
4263 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4264 						 ? FW_PORT_ACTION_L1_CFG
4265 						 : FW_PORT_ACTION_L1_CFG32) |
4266 			    FW_LEN16(c));
4267 	if (fw_caps == FW_CAPS16)
4268 		c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4269 	else
4270 		c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4271 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4272 }
4273 
4274 typedef void (*int_handler_t)(struct adapter *adap);
4275 
4276 struct intr_info {
4277 	unsigned int mask;       /* bits to check in interrupt status */
4278 	const char *msg;         /* message to print or NULL */
4279 	short stat_idx;          /* stat counter to increment or -1 */
4280 	unsigned short fatal;    /* whether the condition reported is fatal */
4281 	int_handler_t int_handler; /* platform-specific int handler */
4282 };
4283 
4284 /**
4285  *	t4_handle_intr_status - table driven interrupt handler
4286  *	@adapter: the adapter that generated the interrupt
4287  *	@reg: the interrupt status register to process
4288  *	@acts: table of interrupt actions
4289  *
4290  *	A table driven interrupt handler that applies a set of masks to an
4291  *	interrupt status word and performs the corresponding actions if the
4292  *	interrupts described by the mask have occurred.  The actions include
4293  *	optionally emitting a warning or alert message.  The table is terminated
4294  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4295  *	conditions.
4296  */
4297 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4298 				 const struct intr_info *acts)
4299 {
4300 	int fatal = 0;
4301 	unsigned int mask = 0;
4302 	unsigned int status = t4_read_reg(adapter, reg);
4303 
4304 	for ( ; acts->mask; ++acts) {
4305 		if (!(status & acts->mask))
4306 			continue;
4307 		if (acts->fatal) {
4308 			fatal++;
4309 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4310 				  status & acts->mask);
4311 		} else if (acts->msg && printk_ratelimit())
4312 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4313 				 status & acts->mask);
4314 		if (acts->int_handler)
4315 			acts->int_handler(adapter);
4316 		mask |= acts->mask;
4317 	}
4318 	status &= mask;
4319 	if (status)                           /* clear processed interrupts */
4320 		t4_write_reg(adapter, reg, status);
4321 	return fatal;
4322 }
4323 
4324 /*
4325  * Interrupt handler for the PCIE module.
4326  */
4327 static void pcie_intr_handler(struct adapter *adapter)
4328 {
4329 	static const struct intr_info sysbus_intr_info[] = {
4330 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4331 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4332 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4333 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4334 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4335 		{ 0 }
4336 	};
4337 	static const struct intr_info pcie_port_intr_info[] = {
4338 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4339 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4340 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4341 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4342 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4343 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4344 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4345 		{ RDPE_F, "Rx data parity error", -1, 1 },
4346 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4347 		{ 0 }
4348 	};
4349 	static const struct intr_info pcie_intr_info[] = {
4350 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4351 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4352 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4353 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4354 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4355 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4356 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4357 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4358 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4359 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4360 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4361 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4362 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4363 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4364 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4365 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4366 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4367 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4368 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4369 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4370 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4371 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4372 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4373 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4374 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4375 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4376 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4377 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4378 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4379 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4380 		  -1, 0 },
4381 		{ 0 }
4382 	};
4383 
4384 	static struct intr_info t5_pcie_intr_info[] = {
4385 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4386 		  -1, 1 },
4387 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4388 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4389 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4390 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4391 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4392 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4393 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4394 		  -1, 1 },
4395 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4396 		  -1, 1 },
4397 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4398 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4399 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4400 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4401 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4402 		  -1, 1 },
4403 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4404 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4405 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4406 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4407 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4408 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4409 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4410 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4411 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4412 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4413 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4414 		  -1, 1 },
4415 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4416 		  -1, 1 },
4417 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4418 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4419 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4420 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4421 		{ 0 }
4422 	};
4423 
4424 	int fat;
4425 
4426 	if (is_t4(adapter->params.chip))
4427 		fat = t4_handle_intr_status(adapter,
4428 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4429 				sysbus_intr_info) +
4430 			t4_handle_intr_status(adapter,
4431 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4432 					pcie_port_intr_info) +
4433 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4434 					      pcie_intr_info);
4435 	else
4436 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4437 					    t5_pcie_intr_info);
4438 
4439 	if (fat)
4440 		t4_fatal_err(adapter);
4441 }
4442 
4443 /*
4444  * TP interrupt handler.
4445  */
4446 static void tp_intr_handler(struct adapter *adapter)
4447 {
4448 	static const struct intr_info tp_intr_info[] = {
4449 		{ 0x3fffffff, "TP parity error", -1, 1 },
4450 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4451 		{ 0 }
4452 	};
4453 
4454 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4455 		t4_fatal_err(adapter);
4456 }
4457 
4458 /*
4459  * SGE interrupt handler.
4460  */
4461 static void sge_intr_handler(struct adapter *adapter)
4462 {
4463 	u32 v = 0, perr;
4464 	u32 err;
4465 
4466 	static const struct intr_info sge_intr_info[] = {
4467 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4468 		  "SGE received CPL exceeding IQE size", -1, 1 },
4469 		{ ERR_INVALID_CIDX_INC_F,
4470 		  "SGE GTS CIDX increment too large", -1, 0 },
4471 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4472 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4473 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4474 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4475 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4476 		  0 },
4477 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4478 		  0 },
4479 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4480 		  0 },
4481 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4482 		  0 },
4483 		{ ERR_ING_CTXT_PRIO_F,
4484 		  "SGE too many priority ingress contexts", -1, 0 },
4485 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4486 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4487 		{ 0 }
4488 	};
4489 
4490 	static struct intr_info t4t5_sge_intr_info[] = {
4491 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4492 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4493 		{ ERR_EGR_CTXT_PRIO_F,
4494 		  "SGE too many priority egress contexts", -1, 0 },
4495 		{ 0 }
4496 	};
4497 
4498 	perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4499 	if (perr) {
4500 		v |= perr;
4501 		dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4502 			  perr);
4503 	}
4504 
4505 	perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4506 	if (perr) {
4507 		v |= perr;
4508 		dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4509 			  perr);
4510 	}
4511 
4512 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4513 		perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4514 		/* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4515 		perr &= ~ERR_T_RXCRC_F;
4516 		if (perr) {
4517 			v |= perr;
4518 			dev_alert(adapter->pdev_dev,
4519 				  "SGE Cause5 Parity Error %#x\n", perr);
4520 		}
4521 	}
4522 
4523 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4524 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4525 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4526 					   t4t5_sge_intr_info);
4527 
4528 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4529 	if (err & ERROR_QID_VALID_F) {
4530 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4531 			ERROR_QID_G(err));
4532 		if (err & UNCAPTURED_ERROR_F)
4533 			dev_err(adapter->pdev_dev,
4534 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4535 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4536 			     UNCAPTURED_ERROR_F);
4537 	}
4538 
4539 	if (v != 0)
4540 		t4_fatal_err(adapter);
4541 }
4542 
4543 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4544 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4545 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4546 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4547 
4548 /*
4549  * CIM interrupt handler.
4550  */
4551 static void cim_intr_handler(struct adapter *adapter)
4552 {
4553 	static const struct intr_info cim_intr_info[] = {
4554 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4555 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4556 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4557 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4558 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4559 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4560 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4561 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4562 		{ 0 }
4563 	};
4564 	static const struct intr_info cim_upintr_info[] = {
4565 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4566 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4567 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4568 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4569 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4570 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4571 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4572 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4573 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4574 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4575 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4576 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4577 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4578 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4579 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4580 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4581 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4582 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4583 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4584 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4585 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4586 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4587 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4588 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4589 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4590 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4591 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4592 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4593 		{ 0 }
4594 	};
4595 
4596 	u32 val, fw_err;
4597 	int fat;
4598 
4599 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4600 	if (fw_err & PCIE_FW_ERR_F)
4601 		t4_report_fw_error(adapter);
4602 
4603 	/* When the Firmware detects an internal error which normally
4604 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4605 	 * in order to make sure the Host sees the Firmware Crash.  So
4606 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4607 	 * ignore the Timer0 interrupt.
4608 	 */
4609 
4610 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4611 	if (val & TIMER0INT_F)
4612 		if (!(fw_err & PCIE_FW_ERR_F) ||
4613 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4614 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4615 				     TIMER0INT_F);
4616 
4617 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4618 				    cim_intr_info) +
4619 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4620 				    cim_upintr_info);
4621 	if (fat)
4622 		t4_fatal_err(adapter);
4623 }
4624 
4625 /*
4626  * ULP RX interrupt handler.
4627  */
4628 static void ulprx_intr_handler(struct adapter *adapter)
4629 {
4630 	static const struct intr_info ulprx_intr_info[] = {
4631 		{ 0x1800000, "ULPRX context error", -1, 1 },
4632 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4633 		{ 0 }
4634 	};
4635 
4636 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4637 		t4_fatal_err(adapter);
4638 }
4639 
4640 /*
4641  * ULP TX interrupt handler.
4642  */
4643 static void ulptx_intr_handler(struct adapter *adapter)
4644 {
4645 	static const struct intr_info ulptx_intr_info[] = {
4646 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4647 		  0 },
4648 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4649 		  0 },
4650 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4651 		  0 },
4652 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4653 		  0 },
4654 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4655 		{ 0 }
4656 	};
4657 
4658 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4659 		t4_fatal_err(adapter);
4660 }
4661 
4662 /*
4663  * PM TX interrupt handler.
4664  */
4665 static void pmtx_intr_handler(struct adapter *adapter)
4666 {
4667 	static const struct intr_info pmtx_intr_info[] = {
4668 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4669 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4670 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4671 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4672 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4673 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4674 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4675 		  -1, 1 },
4676 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4677 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4678 		{ 0 }
4679 	};
4680 
4681 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4682 		t4_fatal_err(adapter);
4683 }
4684 
4685 /*
4686  * PM RX interrupt handler.
4687  */
4688 static void pmrx_intr_handler(struct adapter *adapter)
4689 {
4690 	static const struct intr_info pmrx_intr_info[] = {
4691 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4692 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4693 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4694 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4695 		  -1, 1 },
4696 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4697 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4698 		{ 0 }
4699 	};
4700 
4701 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4702 		t4_fatal_err(adapter);
4703 }
4704 
4705 /*
4706  * CPL switch interrupt handler.
4707  */
4708 static void cplsw_intr_handler(struct adapter *adapter)
4709 {
4710 	static const struct intr_info cplsw_intr_info[] = {
4711 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4712 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4713 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4714 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4715 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4716 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4717 		{ 0 }
4718 	};
4719 
4720 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4721 		t4_fatal_err(adapter);
4722 }
4723 
4724 /*
4725  * LE interrupt handler.
4726  */
4727 static void le_intr_handler(struct adapter *adap)
4728 {
4729 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4730 	static const struct intr_info le_intr_info[] = {
4731 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4732 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4733 		{ PARITYERR_F, "LE parity error", -1, 1 },
4734 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4735 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4736 		{ 0 }
4737 	};
4738 
4739 	static struct intr_info t6_le_intr_info[] = {
4740 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4741 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4742 		{ CMDTIDERR_F, "LE cmd tid error", -1, 1 },
4743 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4744 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4745 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4746 		{ HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 },
4747 		{ 0 }
4748 	};
4749 
4750 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4751 				  (chip <= CHELSIO_T5) ?
4752 				  le_intr_info : t6_le_intr_info))
4753 		t4_fatal_err(adap);
4754 }
4755 
4756 /*
4757  * MPS interrupt handler.
4758  */
4759 static void mps_intr_handler(struct adapter *adapter)
4760 {
4761 	static const struct intr_info mps_rx_intr_info[] = {
4762 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4763 		{ 0 }
4764 	};
4765 	static const struct intr_info mps_tx_intr_info[] = {
4766 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4767 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4768 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4769 		  -1, 1 },
4770 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4771 		  -1, 1 },
4772 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4773 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4774 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4775 		{ 0 }
4776 	};
4777 	static const struct intr_info t6_mps_tx_intr_info[] = {
4778 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4779 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4780 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4781 		  -1, 1 },
4782 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4783 		  -1, 1 },
4784 		/* MPS Tx Bubble is normal for T6 */
4785 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4786 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4787 		{ 0 }
4788 	};
4789 	static const struct intr_info mps_trc_intr_info[] = {
4790 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4791 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4792 		  -1, 1 },
4793 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4794 		{ 0 }
4795 	};
4796 	static const struct intr_info mps_stat_sram_intr_info[] = {
4797 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4798 		{ 0 }
4799 	};
4800 	static const struct intr_info mps_stat_tx_intr_info[] = {
4801 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4802 		{ 0 }
4803 	};
4804 	static const struct intr_info mps_stat_rx_intr_info[] = {
4805 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4806 		{ 0 }
4807 	};
4808 	static const struct intr_info mps_cls_intr_info[] = {
4809 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4810 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4811 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4812 		{ 0 }
4813 	};
4814 
4815 	int fat;
4816 
4817 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4818 				    mps_rx_intr_info) +
4819 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4820 				    is_t6(adapter->params.chip)
4821 				    ? t6_mps_tx_intr_info
4822 				    : mps_tx_intr_info) +
4823 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4824 				    mps_trc_intr_info) +
4825 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4826 				    mps_stat_sram_intr_info) +
4827 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4828 				    mps_stat_tx_intr_info) +
4829 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4830 				    mps_stat_rx_intr_info) +
4831 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4832 				    mps_cls_intr_info);
4833 
4834 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4835 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4836 	if (fat)
4837 		t4_fatal_err(adapter);
4838 }
4839 
4840 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4841 		      ECC_UE_INT_CAUSE_F)
4842 
4843 /*
4844  * EDC/MC interrupt handler.
4845  */
4846 static void mem_intr_handler(struct adapter *adapter, int idx)
4847 {
4848 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4849 
4850 	unsigned int addr, cnt_addr, v;
4851 
4852 	if (idx <= MEM_EDC1) {
4853 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4854 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4855 	} else if (idx == MEM_MC) {
4856 		if (is_t4(adapter->params.chip)) {
4857 			addr = MC_INT_CAUSE_A;
4858 			cnt_addr = MC_ECC_STATUS_A;
4859 		} else {
4860 			addr = MC_P_INT_CAUSE_A;
4861 			cnt_addr = MC_P_ECC_STATUS_A;
4862 		}
4863 	} else {
4864 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4865 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4866 	}
4867 
4868 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4869 	if (v & PERR_INT_CAUSE_F)
4870 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4871 			  name[idx]);
4872 	if (v & ECC_CE_INT_CAUSE_F) {
4873 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4874 
4875 		t4_edc_err_read(adapter, idx);
4876 
4877 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4878 		if (printk_ratelimit())
4879 			dev_warn(adapter->pdev_dev,
4880 				 "%u %s correctable ECC data error%s\n",
4881 				 cnt, name[idx], cnt > 1 ? "s" : "");
4882 	}
4883 	if (v & ECC_UE_INT_CAUSE_F)
4884 		dev_alert(adapter->pdev_dev,
4885 			  "%s uncorrectable ECC data error\n", name[idx]);
4886 
4887 	t4_write_reg(adapter, addr, v);
4888 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4889 		t4_fatal_err(adapter);
4890 }
4891 
4892 /*
4893  * MA interrupt handler.
4894  */
4895 static void ma_intr_handler(struct adapter *adap)
4896 {
4897 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4898 
4899 	if (status & MEM_PERR_INT_CAUSE_F) {
4900 		dev_alert(adap->pdev_dev,
4901 			  "MA parity error, parity status %#x\n",
4902 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4903 		if (is_t5(adap->params.chip))
4904 			dev_alert(adap->pdev_dev,
4905 				  "MA parity error, parity status %#x\n",
4906 				  t4_read_reg(adap,
4907 					      MA_PARITY_ERROR_STATUS2_A));
4908 	}
4909 	if (status & MEM_WRAP_INT_CAUSE_F) {
4910 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4911 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4912 			  "client %u to address %#x\n",
4913 			  MEM_WRAP_CLIENT_NUM_G(v),
4914 			  MEM_WRAP_ADDRESS_G(v) << 4);
4915 	}
4916 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4917 	t4_fatal_err(adap);
4918 }
4919 
4920 /*
4921  * SMB interrupt handler.
4922  */
4923 static void smb_intr_handler(struct adapter *adap)
4924 {
4925 	static const struct intr_info smb_intr_info[] = {
4926 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4927 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4928 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4929 		{ 0 }
4930 	};
4931 
4932 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4933 		t4_fatal_err(adap);
4934 }
4935 
4936 /*
4937  * NC-SI interrupt handler.
4938  */
4939 static void ncsi_intr_handler(struct adapter *adap)
4940 {
4941 	static const struct intr_info ncsi_intr_info[] = {
4942 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4943 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4944 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4945 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4946 		{ 0 }
4947 	};
4948 
4949 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4950 		t4_fatal_err(adap);
4951 }
4952 
4953 /*
4954  * XGMAC interrupt handler.
4955  */
4956 static void xgmac_intr_handler(struct adapter *adap, int port)
4957 {
4958 	u32 v, int_cause_reg;
4959 
4960 	if (is_t4(adap->params.chip))
4961 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4962 	else
4963 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4964 
4965 	v = t4_read_reg(adap, int_cause_reg);
4966 
4967 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4968 	if (!v)
4969 		return;
4970 
4971 	if (v & TXFIFO_PRTY_ERR_F)
4972 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4973 			  port);
4974 	if (v & RXFIFO_PRTY_ERR_F)
4975 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4976 			  port);
4977 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4978 	t4_fatal_err(adap);
4979 }
4980 
4981 /*
4982  * PL interrupt handler.
4983  */
4984 static void pl_intr_handler(struct adapter *adap)
4985 {
4986 	static const struct intr_info pl_intr_info[] = {
4987 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4988 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4989 		{ 0 }
4990 	};
4991 
4992 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4993 		t4_fatal_err(adap);
4994 }
4995 
4996 #define PF_INTR_MASK (PFSW_F)
4997 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4998 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4999 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
5000 
5001 /**
5002  *	t4_slow_intr_handler - control path interrupt handler
5003  *	@adapter: the adapter
5004  *
5005  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5006  *	The designation 'slow' is because it involves register reads, while
5007  *	data interrupts typically don't involve any MMIOs.
5008  */
5009 int t4_slow_intr_handler(struct adapter *adapter)
5010 {
5011 	/* There are rare cases where a PL_INT_CAUSE bit may end up getting
5012 	 * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5013 	 * easiest just to mask that case here.
5014 	 */
5015 	u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5016 	u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5017 	u32 cause = raw_cause & enable;
5018 
5019 	if (!(cause & GLBL_INTR_MASK))
5020 		return 0;
5021 	if (cause & CIM_F)
5022 		cim_intr_handler(adapter);
5023 	if (cause & MPS_F)
5024 		mps_intr_handler(adapter);
5025 	if (cause & NCSI_F)
5026 		ncsi_intr_handler(adapter);
5027 	if (cause & PL_F)
5028 		pl_intr_handler(adapter);
5029 	if (cause & SMB_F)
5030 		smb_intr_handler(adapter);
5031 	if (cause & XGMAC0_F)
5032 		xgmac_intr_handler(adapter, 0);
5033 	if (cause & XGMAC1_F)
5034 		xgmac_intr_handler(adapter, 1);
5035 	if (cause & XGMAC_KR0_F)
5036 		xgmac_intr_handler(adapter, 2);
5037 	if (cause & XGMAC_KR1_F)
5038 		xgmac_intr_handler(adapter, 3);
5039 	if (cause & PCIE_F)
5040 		pcie_intr_handler(adapter);
5041 	if (cause & MC_F)
5042 		mem_intr_handler(adapter, MEM_MC);
5043 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
5044 		mem_intr_handler(adapter, MEM_MC1);
5045 	if (cause & EDC0_F)
5046 		mem_intr_handler(adapter, MEM_EDC0);
5047 	if (cause & EDC1_F)
5048 		mem_intr_handler(adapter, MEM_EDC1);
5049 	if (cause & LE_F)
5050 		le_intr_handler(adapter);
5051 	if (cause & TP_F)
5052 		tp_intr_handler(adapter);
5053 	if (cause & MA_F)
5054 		ma_intr_handler(adapter);
5055 	if (cause & PM_TX_F)
5056 		pmtx_intr_handler(adapter);
5057 	if (cause & PM_RX_F)
5058 		pmrx_intr_handler(adapter);
5059 	if (cause & ULP_RX_F)
5060 		ulprx_intr_handler(adapter);
5061 	if (cause & CPL_SWITCH_F)
5062 		cplsw_intr_handler(adapter);
5063 	if (cause & SGE_F)
5064 		sge_intr_handler(adapter);
5065 	if (cause & ULP_TX_F)
5066 		ulptx_intr_handler(adapter);
5067 
5068 	/* Clear the interrupts just processed for which we are the master. */
5069 	t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5070 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5071 	return 1;
5072 }
5073 
5074 /**
5075  *	t4_intr_enable - enable interrupts
5076  *	@adapter: the adapter whose interrupts should be enabled
5077  *
5078  *	Enable PF-specific interrupts for the calling function and the top-level
5079  *	interrupt concentrator for global interrupts.  Interrupts are already
5080  *	enabled at each module,	here we just enable the roots of the interrupt
5081  *	hierarchies.
5082  *
5083  *	Note: this function should be called only when the driver manages
5084  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5085  *	function at a time should be doing this.
5086  */
5087 void t4_intr_enable(struct adapter *adapter)
5088 {
5089 	u32 val = 0;
5090 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5091 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5092 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5093 
5094 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5095 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5096 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5097 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5098 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5099 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5100 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5101 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5102 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5103 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5104 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5105 }
5106 
5107 /**
5108  *	t4_intr_disable - disable interrupts
5109  *	@adapter: the adapter whose interrupts should be disabled
5110  *
5111  *	Disable interrupts.  We only disable the top-level interrupt
5112  *	concentrators.  The caller must be a PCI function managing global
5113  *	interrupts.
5114  */
5115 void t4_intr_disable(struct adapter *adapter)
5116 {
5117 	u32 whoami, pf;
5118 
5119 	if (pci_channel_offline(adapter->pdev))
5120 		return;
5121 
5122 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5123 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5124 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5125 
5126 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5127 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5128 }
5129 
5130 unsigned int t4_chip_rss_size(struct adapter *adap)
5131 {
5132 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5133 		return RSS_NENTRIES;
5134 	else
5135 		return T6_RSS_NENTRIES;
5136 }
5137 
5138 /**
5139  *	t4_config_rss_range - configure a portion of the RSS mapping table
5140  *	@adapter: the adapter
5141  *	@mbox: mbox to use for the FW command
5142  *	@viid: virtual interface whose RSS subtable is to be written
5143  *	@start: start entry in the table to write
5144  *	@n: how many table entries to write
5145  *	@rspq: values for the response queue lookup table
5146  *	@nrspq: number of values in @rspq
5147  *
5148  *	Programs the selected part of the VI's RSS mapping table with the
5149  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5150  *	until the full table range is populated.
5151  *
5152  *	The caller must ensure the values in @rspq are in the range allowed for
5153  *	@viid.
5154  */
5155 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5156 			int start, int n, const u16 *rspq, unsigned int nrspq)
5157 {
5158 	int ret;
5159 	const u16 *rsp = rspq;
5160 	const u16 *rsp_end = rspq + nrspq;
5161 	struct fw_rss_ind_tbl_cmd cmd;
5162 
5163 	memset(&cmd, 0, sizeof(cmd));
5164 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5165 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5166 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5167 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5168 
5169 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5170 	while (n > 0) {
5171 		int nq = min(n, 32);
5172 		__be32 *qp = &cmd.iq0_to_iq2;
5173 
5174 		cmd.niqid = cpu_to_be16(nq);
5175 		cmd.startidx = cpu_to_be16(start);
5176 
5177 		start += nq;
5178 		n -= nq;
5179 
5180 		while (nq > 0) {
5181 			unsigned int v;
5182 
5183 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5184 			if (++rsp >= rsp_end)
5185 				rsp = rspq;
5186 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5187 			if (++rsp >= rsp_end)
5188 				rsp = rspq;
5189 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5190 			if (++rsp >= rsp_end)
5191 				rsp = rspq;
5192 
5193 			*qp++ = cpu_to_be32(v);
5194 			nq -= 3;
5195 		}
5196 
5197 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5198 		if (ret)
5199 			return ret;
5200 	}
5201 	return 0;
5202 }
5203 
5204 /**
5205  *	t4_config_glbl_rss - configure the global RSS mode
5206  *	@adapter: the adapter
5207  *	@mbox: mbox to use for the FW command
5208  *	@mode: global RSS mode
5209  *	@flags: mode-specific flags
5210  *
5211  *	Sets the global RSS mode.
5212  */
5213 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5214 		       unsigned int flags)
5215 {
5216 	struct fw_rss_glb_config_cmd c;
5217 
5218 	memset(&c, 0, sizeof(c));
5219 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5220 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5221 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5222 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5223 		c.u.manual.mode_pkd =
5224 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5225 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5226 		c.u.basicvirtual.mode_pkd =
5227 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5228 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5229 	} else
5230 		return -EINVAL;
5231 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5232 }
5233 
5234 /**
5235  *	t4_config_vi_rss - configure per VI RSS settings
5236  *	@adapter: the adapter
5237  *	@mbox: mbox to use for the FW command
5238  *	@viid: the VI id
5239  *	@flags: RSS flags
5240  *	@defq: id of the default RSS queue for the VI.
5241  *
5242  *	Configures VI-specific RSS properties.
5243  */
5244 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5245 		     unsigned int flags, unsigned int defq)
5246 {
5247 	struct fw_rss_vi_config_cmd c;
5248 
5249 	memset(&c, 0, sizeof(c));
5250 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5251 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5252 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5253 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5254 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5255 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5256 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5257 }
5258 
5259 /* Read an RSS table row */
5260 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5261 {
5262 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5263 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5264 				   5, 0, val);
5265 }
5266 
5267 /**
5268  *	t4_read_rss - read the contents of the RSS mapping table
5269  *	@adapter: the adapter
5270  *	@map: holds the contents of the RSS mapping table
5271  *
5272  *	Reads the contents of the RSS hash->queue mapping table.
5273  */
5274 int t4_read_rss(struct adapter *adapter, u16 *map)
5275 {
5276 	int i, ret, nentries;
5277 	u32 val;
5278 
5279 	nentries = t4_chip_rss_size(adapter);
5280 	for (i = 0; i < nentries / 2; ++i) {
5281 		ret = rd_rss_row(adapter, i, &val);
5282 		if (ret)
5283 			return ret;
5284 		*map++ = LKPTBLQUEUE0_G(val);
5285 		*map++ = LKPTBLQUEUE1_G(val);
5286 	}
5287 	return 0;
5288 }
5289 
5290 static unsigned int t4_use_ldst(struct adapter *adap)
5291 {
5292 	return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5293 }
5294 
5295 /**
5296  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5297  * @adap: the adapter
5298  * @cmd: TP fw ldst address space type
5299  * @vals: where the indirect register values are stored/written
5300  * @nregs: how many indirect registers to read/write
5301  * @start_index: index of first indirect register to read/write
5302  * @rw: Read (1) or Write (0)
5303  * @sleep_ok: if true we may sleep while awaiting command completion
5304  *
5305  * Access TP indirect registers through LDST
5306  */
5307 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5308 			    unsigned int nregs, unsigned int start_index,
5309 			    unsigned int rw, bool sleep_ok)
5310 {
5311 	int ret = 0;
5312 	unsigned int i;
5313 	struct fw_ldst_cmd c;
5314 
5315 	for (i = 0; i < nregs; i++) {
5316 		memset(&c, 0, sizeof(c));
5317 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5318 						FW_CMD_REQUEST_F |
5319 						(rw ? FW_CMD_READ_F :
5320 						      FW_CMD_WRITE_F) |
5321 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5322 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5323 
5324 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5325 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5326 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5327 				      sleep_ok);
5328 		if (ret)
5329 			return ret;
5330 
5331 		if (rw)
5332 			vals[i] = be32_to_cpu(c.u.addrval.val);
5333 	}
5334 	return 0;
5335 }
5336 
5337 /**
5338  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5339  * @adap: the adapter
5340  * @reg_addr: Address Register
5341  * @reg_data: Data register
5342  * @buff: where the indirect register values are stored/written
5343  * @nregs: how many indirect registers to read/write
5344  * @start_index: index of first indirect register to read/write
5345  * @rw: READ(1) or WRITE(0)
5346  * @sleep_ok: if true we may sleep while awaiting command completion
5347  *
5348  * Read/Write TP indirect registers through LDST if possible.
5349  * Else, use backdoor access
5350  **/
5351 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5352 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5353 			      bool sleep_ok)
5354 {
5355 	int rc = -EINVAL;
5356 	int cmd;
5357 
5358 	switch (reg_addr) {
5359 	case TP_PIO_ADDR_A:
5360 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5361 		break;
5362 	case TP_TM_PIO_ADDR_A:
5363 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5364 		break;
5365 	case TP_MIB_INDEX_A:
5366 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5367 		break;
5368 	default:
5369 		goto indirect_access;
5370 	}
5371 
5372 	if (t4_use_ldst(adap))
5373 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5374 				      sleep_ok);
5375 
5376 indirect_access:
5377 
5378 	if (rc) {
5379 		if (rw)
5380 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5381 					 start_index);
5382 		else
5383 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5384 					  start_index);
5385 	}
5386 }
5387 
5388 /**
5389  * t4_tp_pio_read - Read TP PIO registers
5390  * @adap: the adapter
5391  * @buff: where the indirect register values are written
5392  * @nregs: how many indirect registers to read
5393  * @start_index: index of first indirect register to read
5394  * @sleep_ok: if true we may sleep while awaiting command completion
5395  *
5396  * Read TP PIO Registers
5397  **/
5398 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5399 		    u32 start_index, bool sleep_ok)
5400 {
5401 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5402 			  start_index, 1, sleep_ok);
5403 }
5404 
5405 /**
5406  * t4_tp_pio_write - Write TP PIO registers
5407  * @adap: the adapter
5408  * @buff: where the indirect register values are stored
5409  * @nregs: how many indirect registers to write
5410  * @start_index: index of first indirect register to write
5411  * @sleep_ok: if true we may sleep while awaiting command completion
5412  *
5413  * Write TP PIO Registers
5414  **/
5415 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5416 			    u32 start_index, bool sleep_ok)
5417 {
5418 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5419 			  start_index, 0, sleep_ok);
5420 }
5421 
5422 /**
5423  * t4_tp_tm_pio_read - Read TP TM PIO registers
5424  * @adap: the adapter
5425  * @buff: where the indirect register values are written
5426  * @nregs: how many indirect registers to read
5427  * @start_index: index of first indirect register to read
5428  * @sleep_ok: if true we may sleep while awaiting command completion
5429  *
5430  * Read TP TM PIO Registers
5431  **/
5432 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5433 		       u32 start_index, bool sleep_ok)
5434 {
5435 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5436 			  nregs, start_index, 1, sleep_ok);
5437 }
5438 
5439 /**
5440  * t4_tp_mib_read - Read TP MIB registers
5441  * @adap: the adapter
5442  * @buff: where the indirect register values are written
5443  * @nregs: how many indirect registers to read
5444  * @start_index: index of first indirect register to read
5445  * @sleep_ok: if true we may sleep while awaiting command completion
5446  *
5447  * Read TP MIB Registers
5448  **/
5449 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5450 		    bool sleep_ok)
5451 {
5452 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5453 			  start_index, 1, sleep_ok);
5454 }
5455 
5456 /**
5457  *	t4_read_rss_key - read the global RSS key
5458  *	@adap: the adapter
5459  *	@key: 10-entry array holding the 320-bit RSS key
5460  *      @sleep_ok: if true we may sleep while awaiting command completion
5461  *
5462  *	Reads the global 320-bit RSS key.
5463  */
5464 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5465 {
5466 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5467 }
5468 
5469 /**
5470  *	t4_write_rss_key - program one of the RSS keys
5471  *	@adap: the adapter
5472  *	@key: 10-entry array holding the 320-bit RSS key
5473  *	@idx: which RSS key to write
5474  *      @sleep_ok: if true we may sleep while awaiting command completion
5475  *
5476  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5477  *	0..15 the corresponding entry in the RSS key table is written,
5478  *	otherwise the global RSS key is written.
5479  */
5480 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5481 		      bool sleep_ok)
5482 {
5483 	u8 rss_key_addr_cnt = 16;
5484 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5485 
5486 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5487 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5488 	 * as index[5:4](upper 2) into key table
5489 	 */
5490 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5491 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5492 		rss_key_addr_cnt = 32;
5493 
5494 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5495 
5496 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5497 		if (rss_key_addr_cnt > 16)
5498 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5499 				     KEYWRADDRX_V(idx >> 4) |
5500 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5501 		else
5502 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5503 				     KEYWRADDR_V(idx) | KEYWREN_F);
5504 	}
5505 }
5506 
5507 /**
5508  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5509  *	@adapter: the adapter
5510  *	@index: the entry in the PF RSS table to read
5511  *	@valp: where to store the returned value
5512  *      @sleep_ok: if true we may sleep while awaiting command completion
5513  *
5514  *	Reads the PF RSS Configuration Table at the specified index and returns
5515  *	the value found there.
5516  */
5517 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5518 			   u32 *valp, bool sleep_ok)
5519 {
5520 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5521 }
5522 
5523 /**
5524  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5525  *	@adapter: the adapter
5526  *	@index: the entry in the VF RSS table to read
5527  *	@vfl: where to store the returned VFL
5528  *	@vfh: where to store the returned VFH
5529  *      @sleep_ok: if true we may sleep while awaiting command completion
5530  *
5531  *	Reads the VF RSS Configuration Table at the specified index and returns
5532  *	the (VFL, VFH) values found there.
5533  */
5534 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5535 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5536 {
5537 	u32 vrt, mask, data;
5538 
5539 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5540 		mask = VFWRADDR_V(VFWRADDR_M);
5541 		data = VFWRADDR_V(index);
5542 	} else {
5543 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5544 		 data = T6_VFWRADDR_V(index);
5545 	}
5546 
5547 	/* Request that the index'th VF Table values be read into VFL/VFH.
5548 	 */
5549 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5550 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5551 	vrt |= data | VFRDEN_F;
5552 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5553 
5554 	/* Grab the VFL/VFH values ...
5555 	 */
5556 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5557 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5558 }
5559 
5560 /**
5561  *	t4_read_rss_pf_map - read PF RSS Map
5562  *	@adapter: the adapter
5563  *      @sleep_ok: if true we may sleep while awaiting command completion
5564  *
5565  *	Reads the PF RSS Map register and returns its value.
5566  */
5567 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5568 {
5569 	u32 pfmap;
5570 
5571 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5572 	return pfmap;
5573 }
5574 
5575 /**
5576  *	t4_read_rss_pf_mask - read PF RSS Mask
5577  *	@adapter: the adapter
5578  *      @sleep_ok: if true we may sleep while awaiting command completion
5579  *
5580  *	Reads the PF RSS Mask register and returns its value.
5581  */
5582 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5583 {
5584 	u32 pfmask;
5585 
5586 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5587 	return pfmask;
5588 }
5589 
5590 /**
5591  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5592  *	@adap: the adapter
5593  *	@v4: holds the TCP/IP counter values
5594  *	@v6: holds the TCP/IPv6 counter values
5595  *      @sleep_ok: if true we may sleep while awaiting command completion
5596  *
5597  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5598  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5599  */
5600 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5601 			 struct tp_tcp_stats *v6, bool sleep_ok)
5602 {
5603 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5604 
5605 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5606 #define STAT(x)     val[STAT_IDX(x)]
5607 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5608 
5609 	if (v4) {
5610 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5611 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5612 		v4->tcp_out_rsts = STAT(OUT_RST);
5613 		v4->tcp_in_segs  = STAT64(IN_SEG);
5614 		v4->tcp_out_segs = STAT64(OUT_SEG);
5615 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5616 	}
5617 	if (v6) {
5618 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5619 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5620 		v6->tcp_out_rsts = STAT(OUT_RST);
5621 		v6->tcp_in_segs  = STAT64(IN_SEG);
5622 		v6->tcp_out_segs = STAT64(OUT_SEG);
5623 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5624 	}
5625 #undef STAT64
5626 #undef STAT
5627 #undef STAT_IDX
5628 }
5629 
5630 /**
5631  *	t4_tp_get_err_stats - read TP's error MIB counters
5632  *	@adap: the adapter
5633  *	@st: holds the counter values
5634  *      @sleep_ok: if true we may sleep while awaiting command completion
5635  *
5636  *	Returns the values of TP's error counters.
5637  */
5638 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5639 			 bool sleep_ok)
5640 {
5641 	int nchan = adap->params.arch.nchan;
5642 
5643 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5644 		       sleep_ok);
5645 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5646 		       sleep_ok);
5647 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5648 		       sleep_ok);
5649 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5650 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5651 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5652 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5653 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5654 		       sleep_ok);
5655 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5656 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5657 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5658 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5659 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5660 		       sleep_ok);
5661 }
5662 
5663 /**
5664  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5665  *	@adap: the adapter
5666  *	@st: holds the counter values
5667  *      @sleep_ok: if true we may sleep while awaiting command completion
5668  *
5669  *	Returns the values of TP's CPL counters.
5670  */
5671 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5672 			 bool sleep_ok)
5673 {
5674 	int nchan = adap->params.arch.nchan;
5675 
5676 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5677 
5678 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5679 }
5680 
5681 /**
5682  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5683  *	@adap: the adapter
5684  *	@st: holds the counter values
5685  *      @sleep_ok: if true we may sleep while awaiting command completion
5686  *
5687  *	Returns the values of TP's RDMA counters.
5688  */
5689 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5690 			  bool sleep_ok)
5691 {
5692 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5693 		       sleep_ok);
5694 }
5695 
5696 /**
5697  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5698  *	@adap: the adapter
5699  *	@idx: the port index
5700  *	@st: holds the counter values
5701  *      @sleep_ok: if true we may sleep while awaiting command completion
5702  *
5703  *	Returns the values of TP's FCoE counters for the selected port.
5704  */
5705 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5706 		       struct tp_fcoe_stats *st, bool sleep_ok)
5707 {
5708 	u32 val[2];
5709 
5710 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5711 		       sleep_ok);
5712 
5713 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5714 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5715 
5716 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5717 		       sleep_ok);
5718 
5719 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5720 }
5721 
5722 /**
5723  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5724  *	@adap: the adapter
5725  *	@st: holds the counter values
5726  *      @sleep_ok: if true we may sleep while awaiting command completion
5727  *
5728  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5729  */
5730 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5731 		      bool sleep_ok)
5732 {
5733 	u32 val[4];
5734 
5735 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5736 	st->frames = val[0];
5737 	st->drops = val[1];
5738 	st->octets = ((u64)val[2] << 32) | val[3];
5739 }
5740 
5741 /**
5742  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5743  *	@adap: the adapter
5744  *	@mtus: where to store the MTU values
5745  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5746  *
5747  *	Reads the HW path MTU table.
5748  */
5749 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5750 {
5751 	u32 v;
5752 	int i;
5753 
5754 	for (i = 0; i < NMTUS; ++i) {
5755 		t4_write_reg(adap, TP_MTU_TABLE_A,
5756 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5757 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5758 		mtus[i] = MTUVALUE_G(v);
5759 		if (mtu_log)
5760 			mtu_log[i] = MTUWIDTH_G(v);
5761 	}
5762 }
5763 
5764 /**
5765  *	t4_read_cong_tbl - reads the congestion control table
5766  *	@adap: the adapter
5767  *	@incr: where to store the alpha values
5768  *
5769  *	Reads the additive increments programmed into the HW congestion
5770  *	control table.
5771  */
5772 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5773 {
5774 	unsigned int mtu, w;
5775 
5776 	for (mtu = 0; mtu < NMTUS; ++mtu)
5777 		for (w = 0; w < NCCTRL_WIN; ++w) {
5778 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5779 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5780 			incr[mtu][w] = (u16)t4_read_reg(adap,
5781 						TP_CCTRL_TABLE_A) & 0x1fff;
5782 		}
5783 }
5784 
5785 /**
5786  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5787  *	@adap: the adapter
5788  *	@addr: the indirect TP register address
5789  *	@mask: specifies the field within the register to modify
5790  *	@val: new value for the field
5791  *
5792  *	Sets a field of an indirect TP register to the given value.
5793  */
5794 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5795 			    unsigned int mask, unsigned int val)
5796 {
5797 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5798 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5799 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5800 }
5801 
5802 /**
5803  *	init_cong_ctrl - initialize congestion control parameters
5804  *	@a: the alpha values for congestion control
5805  *	@b: the beta values for congestion control
5806  *
5807  *	Initialize the congestion control parameters.
5808  */
5809 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5810 {
5811 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5812 	a[9] = 2;
5813 	a[10] = 3;
5814 	a[11] = 4;
5815 	a[12] = 5;
5816 	a[13] = 6;
5817 	a[14] = 7;
5818 	a[15] = 8;
5819 	a[16] = 9;
5820 	a[17] = 10;
5821 	a[18] = 14;
5822 	a[19] = 17;
5823 	a[20] = 21;
5824 	a[21] = 25;
5825 	a[22] = 30;
5826 	a[23] = 35;
5827 	a[24] = 45;
5828 	a[25] = 60;
5829 	a[26] = 80;
5830 	a[27] = 100;
5831 	a[28] = 200;
5832 	a[29] = 300;
5833 	a[30] = 400;
5834 	a[31] = 500;
5835 
5836 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5837 	b[9] = b[10] = 1;
5838 	b[11] = b[12] = 2;
5839 	b[13] = b[14] = b[15] = b[16] = 3;
5840 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5841 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5842 	b[28] = b[29] = 6;
5843 	b[30] = b[31] = 7;
5844 }
5845 
5846 /* The minimum additive increment value for the congestion control table */
5847 #define CC_MIN_INCR 2U
5848 
5849 /**
5850  *	t4_load_mtus - write the MTU and congestion control HW tables
5851  *	@adap: the adapter
5852  *	@mtus: the values for the MTU table
5853  *	@alpha: the values for the congestion control alpha parameter
5854  *	@beta: the values for the congestion control beta parameter
5855  *
5856  *	Write the HW MTU table with the supplied MTUs and the high-speed
5857  *	congestion control table with the supplied alpha, beta, and MTUs.
5858  *	We write the two tables together because the additive increments
5859  *	depend on the MTUs.
5860  */
5861 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5862 		  const unsigned short *alpha, const unsigned short *beta)
5863 {
5864 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5865 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5866 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5867 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5868 	};
5869 
5870 	unsigned int i, w;
5871 
5872 	for (i = 0; i < NMTUS; ++i) {
5873 		unsigned int mtu = mtus[i];
5874 		unsigned int log2 = fls(mtu);
5875 
5876 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5877 			log2--;
5878 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5879 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5880 
5881 		for (w = 0; w < NCCTRL_WIN; ++w) {
5882 			unsigned int inc;
5883 
5884 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5885 				  CC_MIN_INCR);
5886 
5887 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5888 				     (w << 16) | (beta[w] << 13) | inc);
5889 		}
5890 	}
5891 }
5892 
5893 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5894  * clocks.  The formula is
5895  *
5896  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5897  *
5898  * which is equivalent to
5899  *
5900  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5901  */
5902 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5903 {
5904 	u64 v = bytes256 * adap->params.vpd.cclk;
5905 
5906 	return v * 62 + v / 2;
5907 }
5908 
5909 /**
5910  *	t4_get_chan_txrate - get the current per channel Tx rates
5911  *	@adap: the adapter
5912  *	@nic_rate: rates for NIC traffic
5913  *	@ofld_rate: rates for offloaded traffic
5914  *
5915  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5916  *	for each channel.
5917  */
5918 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5919 {
5920 	u32 v;
5921 
5922 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5923 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5924 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5925 	if (adap->params.arch.nchan == NCHAN) {
5926 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5927 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5928 	}
5929 
5930 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5931 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5932 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5933 	if (adap->params.arch.nchan == NCHAN) {
5934 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5935 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5936 	}
5937 }
5938 
5939 /**
5940  *	t4_set_trace_filter - configure one of the tracing filters
5941  *	@adap: the adapter
5942  *	@tp: the desired trace filter parameters
5943  *	@idx: which filter to configure
5944  *	@enable: whether to enable or disable the filter
5945  *
5946  *	Configures one of the tracing filters available in HW.  If @enable is
5947  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5948  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5949  */
5950 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5951 			int idx, int enable)
5952 {
5953 	int i, ofst = idx * 4;
5954 	u32 data_reg, mask_reg, cfg;
5955 
5956 	if (!enable) {
5957 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5958 		return 0;
5959 	}
5960 
5961 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5962 	if (cfg & TRCMULTIFILTER_F) {
5963 		/* If multiple tracers are enabled, then maximum
5964 		 * capture size is 2.5KB (FIFO size of a single channel)
5965 		 * minus 2 flits for CPL_TRACE_PKT header.
5966 		 */
5967 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5968 			return -EINVAL;
5969 	} else {
5970 		/* If multiple tracers are disabled, to avoid deadlocks
5971 		 * maximum packet capture size of 9600 bytes is recommended.
5972 		 * Also in this mode, only trace0 can be enabled and running.
5973 		 */
5974 		if (tp->snap_len > 9600 || idx)
5975 			return -EINVAL;
5976 	}
5977 
5978 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5979 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5980 	    tp->min_len > TFMINPKTSIZE_M)
5981 		return -EINVAL;
5982 
5983 	/* stop the tracer we'll be changing */
5984 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5985 
5986 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5987 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5988 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5989 
5990 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5991 		t4_write_reg(adap, data_reg, tp->data[i]);
5992 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5993 	}
5994 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5995 		     TFCAPTUREMAX_V(tp->snap_len) |
5996 		     TFMINPKTSIZE_V(tp->min_len));
5997 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5998 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5999 		     (is_t4(adap->params.chip) ?
6000 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
6001 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
6002 		     T5_TFINVERTMATCH_V(tp->invert)));
6003 
6004 	return 0;
6005 }
6006 
6007 /**
6008  *	t4_get_trace_filter - query one of the tracing filters
6009  *	@adap: the adapter
6010  *	@tp: the current trace filter parameters
6011  *	@idx: which trace filter to query
6012  *	@enabled: non-zero if the filter is enabled
6013  *
6014  *	Returns the current settings of one of the HW tracing filters.
6015  */
6016 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6017 			 int *enabled)
6018 {
6019 	u32 ctla, ctlb;
6020 	int i, ofst = idx * 4;
6021 	u32 data_reg, mask_reg;
6022 
6023 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6024 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6025 
6026 	if (is_t4(adap->params.chip)) {
6027 		*enabled = !!(ctla & TFEN_F);
6028 		tp->port =  TFPORT_G(ctla);
6029 		tp->invert = !!(ctla & TFINVERTMATCH_F);
6030 	} else {
6031 		*enabled = !!(ctla & T5_TFEN_F);
6032 		tp->port = T5_TFPORT_G(ctla);
6033 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6034 	}
6035 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
6036 	tp->min_len = TFMINPKTSIZE_G(ctlb);
6037 	tp->skip_ofst = TFOFFSET_G(ctla);
6038 	tp->skip_len = TFLENGTH_G(ctla);
6039 
6040 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6041 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6042 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6043 
6044 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6045 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6046 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6047 	}
6048 }
6049 
6050 /**
6051  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6052  *	@adap: the adapter
6053  *	@cnt: where to store the count statistics
6054  *	@cycles: where to store the cycle statistics
6055  *
6056  *	Returns performance statistics from PMTX.
6057  */
6058 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6059 {
6060 	int i;
6061 	u32 data[2];
6062 
6063 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6064 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6065 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6066 		if (is_t4(adap->params.chip)) {
6067 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6068 		} else {
6069 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6070 					 PM_TX_DBG_DATA_A, data, 2,
6071 					 PM_TX_DBG_STAT_MSB_A);
6072 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6073 		}
6074 	}
6075 }
6076 
6077 /**
6078  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6079  *	@adap: the adapter
6080  *	@cnt: where to store the count statistics
6081  *	@cycles: where to store the cycle statistics
6082  *
6083  *	Returns performance statistics from PMRX.
6084  */
6085 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6086 {
6087 	int i;
6088 	u32 data[2];
6089 
6090 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6091 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6092 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6093 		if (is_t4(adap->params.chip)) {
6094 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6095 		} else {
6096 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6097 					 PM_RX_DBG_DATA_A, data, 2,
6098 					 PM_RX_DBG_STAT_MSB_A);
6099 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6100 		}
6101 	}
6102 }
6103 
6104 /**
6105  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6106  *	@adapter: the adapter
6107  *	@pidx: the port index
6108  *
6109  *	Computes and returns a bitmap indicating which MPS buffer groups are
6110  *	associated with the given Port.  Bit i is set if buffer group i is
6111  *	used by the Port.
6112  */
6113 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6114 					      int pidx)
6115 {
6116 	unsigned int chip_version, nports;
6117 
6118 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6119 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6120 
6121 	switch (chip_version) {
6122 	case CHELSIO_T4:
6123 	case CHELSIO_T5:
6124 		switch (nports) {
6125 		case 1: return 0xf;
6126 		case 2: return 3 << (2 * pidx);
6127 		case 4: return 1 << pidx;
6128 		}
6129 		break;
6130 
6131 	case CHELSIO_T6:
6132 		switch (nports) {
6133 		case 2: return 1 << (2 * pidx);
6134 		}
6135 		break;
6136 	}
6137 
6138 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6139 		chip_version, nports);
6140 
6141 	return 0;
6142 }
6143 
6144 /**
6145  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6146  *	@adapter: the adapter
6147  *	@pidx: the port index
6148  *
6149  *	Returns a bitmap indicating which MPS buffer groups are associated
6150  *	with the given Port.  Bit i is set if buffer group i is used by the
6151  *	Port.
6152  */
6153 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6154 {
6155 	u8 *mps_bg_map;
6156 	unsigned int nports;
6157 
6158 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6159 	if (pidx >= nports) {
6160 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6161 			pidx, nports);
6162 		return 0;
6163 	}
6164 
6165 	/* If we've already retrieved/computed this, just return the result.
6166 	 */
6167 	mps_bg_map = adapter->params.mps_bg_map;
6168 	if (mps_bg_map[pidx])
6169 		return mps_bg_map[pidx];
6170 
6171 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6172 	 * If we're talking to such Firmware, let it tell us.  If the new
6173 	 * API isn't supported, revert back to old hardcoded way.  The value
6174 	 * obtained from Firmware is encoded in below format:
6175 	 *
6176 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6177 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6178 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6179 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6180 	 */
6181 	if (adapter->flags & CXGB4_FW_OK) {
6182 		u32 param, val;
6183 		int ret;
6184 
6185 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6186 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6187 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6188 					 0, 1, &param, &val);
6189 		if (!ret) {
6190 			int p;
6191 
6192 			/* Store the BG Map for all of the Ports in order to
6193 			 * avoid more calls to the Firmware in the future.
6194 			 */
6195 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6196 				mps_bg_map[p] = val & 0xff;
6197 
6198 			return mps_bg_map[pidx];
6199 		}
6200 	}
6201 
6202 	/* Either we're not talking to the Firmware or we're dealing with
6203 	 * older Firmware which doesn't support the new API to get the MPS
6204 	 * Buffer Group Map.  Fall back to computing it ourselves.
6205 	 */
6206 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6207 	return mps_bg_map[pidx];
6208 }
6209 
6210 /**
6211  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6212  *      @adapter: the adapter
6213  *      @pidx: the port index
6214  */
6215 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6216 {
6217 	unsigned int nports;
6218 	u32 param, val = 0;
6219 	int ret;
6220 
6221 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6222 	if (pidx >= nports) {
6223 		CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6224 			pidx, nports);
6225 		return 0;
6226 	}
6227 
6228 	/* FW version >= 1.16.44.0 can determine E2C channel map using
6229 	 * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6230 	 */
6231 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6232 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6233 	ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6234 				 0, 1, &param, &val);
6235 	if (!ret)
6236 		return (val >> (8 * pidx)) & 0xff;
6237 
6238 	return 0;
6239 }
6240 
6241 /**
6242  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6243  *	@adap: the adapter
6244  *	@pidx: the port index
6245  *
6246  *	Returns a bitmap indicating which TP Ingress Channels are associated
6247  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6248  *	the Port.
6249  */
6250 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6251 {
6252 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6253 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6254 
6255 	if (pidx >= nports) {
6256 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6257 			 pidx, nports);
6258 		return 0;
6259 	}
6260 
6261 	switch (chip_version) {
6262 	case CHELSIO_T4:
6263 	case CHELSIO_T5:
6264 		/* Note that this happens to be the same values as the MPS
6265 		 * Buffer Group Map for these Chips.  But we replicate the code
6266 		 * here because they're really separate concepts.
6267 		 */
6268 		switch (nports) {
6269 		case 1: return 0xf;
6270 		case 2: return 3 << (2 * pidx);
6271 		case 4: return 1 << pidx;
6272 		}
6273 		break;
6274 
6275 	case CHELSIO_T6:
6276 		switch (nports) {
6277 		case 1:
6278 		case 2: return 1 << pidx;
6279 		}
6280 		break;
6281 	}
6282 
6283 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6284 		chip_version, nports);
6285 	return 0;
6286 }
6287 
6288 /**
6289  *      t4_get_port_type_description - return Port Type string description
6290  *      @port_type: firmware Port Type enumeration
6291  */
6292 const char *t4_get_port_type_description(enum fw_port_type port_type)
6293 {
6294 	static const char *const port_type_description[] = {
6295 		"Fiber_XFI",
6296 		"Fiber_XAUI",
6297 		"BT_SGMII",
6298 		"BT_XFI",
6299 		"BT_XAUI",
6300 		"KX4",
6301 		"CX4",
6302 		"KX",
6303 		"KR",
6304 		"SFP",
6305 		"BP_AP",
6306 		"BP4_AP",
6307 		"QSFP_10G",
6308 		"QSA",
6309 		"QSFP",
6310 		"BP40_BA",
6311 		"KR4_100G",
6312 		"CR4_QSFP",
6313 		"CR_QSFP",
6314 		"CR2_QSFP",
6315 		"SFP28",
6316 		"KR_SFP28",
6317 		"KR_XLAUI"
6318 	};
6319 
6320 	if (port_type < ARRAY_SIZE(port_type_description))
6321 		return port_type_description[port_type];
6322 	return "UNKNOWN";
6323 }
6324 
6325 /**
6326  *      t4_get_port_stats_offset - collect port stats relative to a previous
6327  *                                 snapshot
6328  *      @adap: The adapter
6329  *      @idx: The port
6330  *      @stats: Current stats to fill
6331  *      @offset: Previous stats snapshot
6332  */
6333 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6334 			      struct port_stats *stats,
6335 			      struct port_stats *offset)
6336 {
6337 	u64 *s, *o;
6338 	int i;
6339 
6340 	t4_get_port_stats(adap, idx, stats);
6341 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6342 			i < (sizeof(struct port_stats) / sizeof(u64));
6343 			i++, s++, o++)
6344 		*s -= *o;
6345 }
6346 
6347 /**
6348  *	t4_get_port_stats - collect port statistics
6349  *	@adap: the adapter
6350  *	@idx: the port index
6351  *	@p: the stats structure to fill
6352  *
6353  *	Collect statistics related to the given port from HW.
6354  */
6355 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6356 {
6357 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6358 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6359 
6360 #define GET_STAT(name) \
6361 	t4_read_reg64(adap, \
6362 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6363 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6364 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6365 
6366 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6367 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6368 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6369 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6370 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6371 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6372 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6373 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6374 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6375 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6376 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6377 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6378 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6379 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6380 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6381 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6382 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6383 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6384 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6385 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6386 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6387 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6388 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6389 
6390 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6391 		if (stat_ctl & COUNTPAUSESTATTX_F)
6392 			p->tx_frames_64 -= p->tx_pause;
6393 		if (stat_ctl & COUNTPAUSEMCTX_F)
6394 			p->tx_mcast_frames -= p->tx_pause;
6395 	}
6396 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6397 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6398 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6399 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6400 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6401 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6402 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6403 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6404 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6405 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6406 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6407 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6408 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6409 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6410 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6411 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6412 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6413 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6414 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6415 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6416 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6417 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6418 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6419 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6420 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6421 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6422 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6423 
6424 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6425 		if (stat_ctl & COUNTPAUSESTATRX_F)
6426 			p->rx_frames_64 -= p->rx_pause;
6427 		if (stat_ctl & COUNTPAUSEMCRX_F)
6428 			p->rx_mcast_frames -= p->rx_pause;
6429 	}
6430 
6431 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6432 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6433 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6434 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6435 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6436 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6437 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6438 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6439 
6440 #undef GET_STAT
6441 #undef GET_STAT_COM
6442 }
6443 
6444 /**
6445  *	t4_get_lb_stats - collect loopback port statistics
6446  *	@adap: the adapter
6447  *	@idx: the loopback port index
6448  *	@p: the stats structure to fill
6449  *
6450  *	Return HW statistics for the given loopback port.
6451  */
6452 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6453 {
6454 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6455 
6456 #define GET_STAT(name) \
6457 	t4_read_reg64(adap, \
6458 	(is_t4(adap->params.chip) ? \
6459 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6460 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6461 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6462 
6463 	p->octets           = GET_STAT(BYTES);
6464 	p->frames           = GET_STAT(FRAMES);
6465 	p->bcast_frames     = GET_STAT(BCAST);
6466 	p->mcast_frames     = GET_STAT(MCAST);
6467 	p->ucast_frames     = GET_STAT(UCAST);
6468 	p->error_frames     = GET_STAT(ERROR);
6469 
6470 	p->frames_64        = GET_STAT(64B);
6471 	p->frames_65_127    = GET_STAT(65B_127B);
6472 	p->frames_128_255   = GET_STAT(128B_255B);
6473 	p->frames_256_511   = GET_STAT(256B_511B);
6474 	p->frames_512_1023  = GET_STAT(512B_1023B);
6475 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6476 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6477 	p->drop             = GET_STAT(DROP_FRAMES);
6478 
6479 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6480 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6481 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6482 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6483 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6484 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6485 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6486 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6487 
6488 #undef GET_STAT
6489 #undef GET_STAT_COM
6490 }
6491 
6492 /*     t4_mk_filtdelwr - create a delete filter WR
6493  *     @ftid: the filter ID
6494  *     @wr: the filter work request to populate
6495  *     @qid: ingress queue to receive the delete notification
6496  *
6497  *     Creates a filter work request to delete the supplied filter.  If @qid is
6498  *     negative the delete notification is suppressed.
6499  */
6500 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6501 {
6502 	memset(wr, 0, sizeof(*wr));
6503 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6504 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6505 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6506 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6507 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6508 	if (qid >= 0)
6509 		wr->rx_chan_rx_rpl_iq =
6510 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6511 }
6512 
6513 #define INIT_CMD(var, cmd, rd_wr) do { \
6514 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6515 					FW_CMD_REQUEST_F | \
6516 					FW_CMD_##rd_wr##_F); \
6517 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6518 } while (0)
6519 
6520 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6521 			  u32 addr, u32 val)
6522 {
6523 	u32 ldst_addrspace;
6524 	struct fw_ldst_cmd c;
6525 
6526 	memset(&c, 0, sizeof(c));
6527 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6528 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6529 					FW_CMD_REQUEST_F |
6530 					FW_CMD_WRITE_F |
6531 					ldst_addrspace);
6532 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6533 	c.u.addrval.addr = cpu_to_be32(addr);
6534 	c.u.addrval.val = cpu_to_be32(val);
6535 
6536 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6537 }
6538 
6539 /**
6540  *	t4_mdio_rd - read a PHY register through MDIO
6541  *	@adap: the adapter
6542  *	@mbox: mailbox to use for the FW command
6543  *	@phy_addr: the PHY address
6544  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6545  *	@reg: the register to read
6546  *	@valp: where to store the value
6547  *
6548  *	Issues a FW command through the given mailbox to read a PHY register.
6549  */
6550 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6551 	       unsigned int mmd, unsigned int reg, u16 *valp)
6552 {
6553 	int ret;
6554 	u32 ldst_addrspace;
6555 	struct fw_ldst_cmd c;
6556 
6557 	memset(&c, 0, sizeof(c));
6558 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6559 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6560 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6561 					ldst_addrspace);
6562 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6563 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6564 					 FW_LDST_CMD_MMD_V(mmd));
6565 	c.u.mdio.raddr = cpu_to_be16(reg);
6566 
6567 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6568 	if (ret == 0)
6569 		*valp = be16_to_cpu(c.u.mdio.rval);
6570 	return ret;
6571 }
6572 
6573 /**
6574  *	t4_mdio_wr - write a PHY register through MDIO
6575  *	@adap: the adapter
6576  *	@mbox: mailbox to use for the FW command
6577  *	@phy_addr: the PHY address
6578  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6579  *	@reg: the register to write
6580  *	@val: value to write
6581  *
6582  *	Issues a FW command through the given mailbox to write a PHY register.
6583  */
6584 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6585 	       unsigned int mmd, unsigned int reg, u16 val)
6586 {
6587 	u32 ldst_addrspace;
6588 	struct fw_ldst_cmd c;
6589 
6590 	memset(&c, 0, sizeof(c));
6591 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6592 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6593 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6594 					ldst_addrspace);
6595 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6596 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6597 					 FW_LDST_CMD_MMD_V(mmd));
6598 	c.u.mdio.raddr = cpu_to_be16(reg);
6599 	c.u.mdio.rval = cpu_to_be16(val);
6600 
6601 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6602 }
6603 
6604 /**
6605  *	t4_sge_decode_idma_state - decode the idma state
6606  *	@adapter: the adapter
6607  *	@state: the state idma is stuck in
6608  */
6609 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6610 {
6611 	static const char * const t4_decode[] = {
6612 		"IDMA_IDLE",
6613 		"IDMA_PUSH_MORE_CPL_FIFO",
6614 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6615 		"Not used",
6616 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6617 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6618 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6619 		"IDMA_SEND_FIFO_TO_IMSG",
6620 		"IDMA_FL_REQ_DATA_FL_PREP",
6621 		"IDMA_FL_REQ_DATA_FL",
6622 		"IDMA_FL_DROP",
6623 		"IDMA_FL_H_REQ_HEADER_FL",
6624 		"IDMA_FL_H_SEND_PCIEHDR",
6625 		"IDMA_FL_H_PUSH_CPL_FIFO",
6626 		"IDMA_FL_H_SEND_CPL",
6627 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6628 		"IDMA_FL_H_SEND_IP_HDR",
6629 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6630 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6631 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6632 		"IDMA_FL_D_SEND_PCIEHDR",
6633 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6634 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6635 		"IDMA_FL_SEND_PCIEHDR",
6636 		"IDMA_FL_PUSH_CPL_FIFO",
6637 		"IDMA_FL_SEND_CPL",
6638 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6639 		"IDMA_FL_SEND_PAYLOAD",
6640 		"IDMA_FL_REQ_NEXT_DATA_FL",
6641 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6642 		"IDMA_FL_SEND_PADDING",
6643 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6644 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6645 		"IDMA_FL_REQ_DATAFL_DONE",
6646 		"IDMA_FL_REQ_HEADERFL_DONE",
6647 	};
6648 	static const char * const t5_decode[] = {
6649 		"IDMA_IDLE",
6650 		"IDMA_ALMOST_IDLE",
6651 		"IDMA_PUSH_MORE_CPL_FIFO",
6652 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6653 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6654 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6655 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6656 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6657 		"IDMA_SEND_FIFO_TO_IMSG",
6658 		"IDMA_FL_REQ_DATA_FL",
6659 		"IDMA_FL_DROP",
6660 		"IDMA_FL_DROP_SEND_INC",
6661 		"IDMA_FL_H_REQ_HEADER_FL",
6662 		"IDMA_FL_H_SEND_PCIEHDR",
6663 		"IDMA_FL_H_PUSH_CPL_FIFO",
6664 		"IDMA_FL_H_SEND_CPL",
6665 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6666 		"IDMA_FL_H_SEND_IP_HDR",
6667 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6668 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6669 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6670 		"IDMA_FL_D_SEND_PCIEHDR",
6671 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6672 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6673 		"IDMA_FL_SEND_PCIEHDR",
6674 		"IDMA_FL_PUSH_CPL_FIFO",
6675 		"IDMA_FL_SEND_CPL",
6676 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6677 		"IDMA_FL_SEND_PAYLOAD",
6678 		"IDMA_FL_REQ_NEXT_DATA_FL",
6679 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6680 		"IDMA_FL_SEND_PADDING",
6681 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6682 	};
6683 	static const char * const t6_decode[] = {
6684 		"IDMA_IDLE",
6685 		"IDMA_PUSH_MORE_CPL_FIFO",
6686 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6687 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6688 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6689 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6690 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6691 		"IDMA_FL_REQ_DATA_FL",
6692 		"IDMA_FL_DROP",
6693 		"IDMA_FL_DROP_SEND_INC",
6694 		"IDMA_FL_H_REQ_HEADER_FL",
6695 		"IDMA_FL_H_SEND_PCIEHDR",
6696 		"IDMA_FL_H_PUSH_CPL_FIFO",
6697 		"IDMA_FL_H_SEND_CPL",
6698 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6699 		"IDMA_FL_H_SEND_IP_HDR",
6700 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6701 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6702 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6703 		"IDMA_FL_D_SEND_PCIEHDR",
6704 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6705 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6706 		"IDMA_FL_SEND_PCIEHDR",
6707 		"IDMA_FL_PUSH_CPL_FIFO",
6708 		"IDMA_FL_SEND_CPL",
6709 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6710 		"IDMA_FL_SEND_PAYLOAD",
6711 		"IDMA_FL_REQ_NEXT_DATA_FL",
6712 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6713 		"IDMA_FL_SEND_PADDING",
6714 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6715 	};
6716 	static const u32 sge_regs[] = {
6717 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6718 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6719 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6720 	};
6721 	const char **sge_idma_decode;
6722 	int sge_idma_decode_nstates;
6723 	int i;
6724 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6725 
6726 	/* Select the right set of decode strings to dump depending on the
6727 	 * adapter chip type.
6728 	 */
6729 	switch (chip_version) {
6730 	case CHELSIO_T4:
6731 		sge_idma_decode = (const char **)t4_decode;
6732 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6733 		break;
6734 
6735 	case CHELSIO_T5:
6736 		sge_idma_decode = (const char **)t5_decode;
6737 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6738 		break;
6739 
6740 	case CHELSIO_T6:
6741 		sge_idma_decode = (const char **)t6_decode;
6742 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6743 		break;
6744 
6745 	default:
6746 		dev_err(adapter->pdev_dev,
6747 			"Unsupported chip version %d\n", chip_version);
6748 		return;
6749 	}
6750 
6751 	if (is_t4(adapter->params.chip)) {
6752 		sge_idma_decode = (const char **)t4_decode;
6753 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6754 	} else {
6755 		sge_idma_decode = (const char **)t5_decode;
6756 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6757 	}
6758 
6759 	if (state < sge_idma_decode_nstates)
6760 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6761 	else
6762 		CH_WARN(adapter, "idma state %d unknown\n", state);
6763 
6764 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6765 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6766 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6767 }
6768 
6769 /**
6770  *      t4_sge_ctxt_flush - flush the SGE context cache
6771  *      @adap: the adapter
6772  *      @mbox: mailbox to use for the FW command
6773  *      @ctxt_type: Egress or Ingress
6774  *
6775  *      Issues a FW command through the given mailbox to flush the
6776  *      SGE context cache.
6777  */
6778 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6779 {
6780 	int ret;
6781 	u32 ldst_addrspace;
6782 	struct fw_ldst_cmd c;
6783 
6784 	memset(&c, 0, sizeof(c));
6785 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6786 						 FW_LDST_ADDRSPC_SGE_EGRC :
6787 						 FW_LDST_ADDRSPC_SGE_INGC);
6788 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6789 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6790 					ldst_addrspace);
6791 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6792 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6793 
6794 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6795 	return ret;
6796 }
6797 
6798 /**
6799  *	t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6800  *	@adap: the adapter
6801  *	@ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6802  *	@dbqtimers: SGE Doorbell Queue Timer table
6803  *
6804  *	Reads the SGE Doorbell Queue Timer values into the provided table.
6805  *	Returns 0 on success (Firmware and Hardware support this feature),
6806  *	an error on failure.
6807  */
6808 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6809 			  u16 *dbqtimers)
6810 {
6811 	int ret, dbqtimerix;
6812 
6813 	ret = 0;
6814 	dbqtimerix = 0;
6815 	while (dbqtimerix < ndbqtimers) {
6816 		int nparams, param;
6817 		u32 params[7], vals[7];
6818 
6819 		nparams = ndbqtimers - dbqtimerix;
6820 		if (nparams > ARRAY_SIZE(params))
6821 			nparams = ARRAY_SIZE(params);
6822 
6823 		for (param = 0; param < nparams; param++)
6824 			params[param] =
6825 			  (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6826 			   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6827 			   FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6828 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6829 				      nparams, params, vals);
6830 		if (ret)
6831 			break;
6832 
6833 		for (param = 0; param < nparams; param++)
6834 			dbqtimers[dbqtimerix++] = vals[param];
6835 	}
6836 	return ret;
6837 }
6838 
6839 /**
6840  *      t4_fw_hello - establish communication with FW
6841  *      @adap: the adapter
6842  *      @mbox: mailbox to use for the FW command
6843  *      @evt_mbox: mailbox to receive async FW events
6844  *      @master: specifies the caller's willingness to be the device master
6845  *	@state: returns the current device state (if non-NULL)
6846  *
6847  *	Issues a command to establish communication with FW.  Returns either
6848  *	an error (negative integer) or the mailbox of the Master PF.
6849  */
6850 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6851 		enum dev_master master, enum dev_state *state)
6852 {
6853 	int ret;
6854 	struct fw_hello_cmd c;
6855 	u32 v;
6856 	unsigned int master_mbox;
6857 	int retries = FW_CMD_HELLO_RETRIES;
6858 
6859 retry:
6860 	memset(&c, 0, sizeof(c));
6861 	INIT_CMD(c, HELLO, WRITE);
6862 	c.err_to_clearinit = cpu_to_be32(
6863 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6864 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6865 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6866 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6867 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6868 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6869 		FW_HELLO_CMD_CLEARINIT_F);
6870 
6871 	/*
6872 	 * Issue the HELLO command to the firmware.  If it's not successful
6873 	 * but indicates that we got a "busy" or "timeout" condition, retry
6874 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6875 	 * retry limit, check to see if the firmware left us any error
6876 	 * information and report that if so.
6877 	 */
6878 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6879 	if (ret < 0) {
6880 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6881 			goto retry;
6882 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6883 			t4_report_fw_error(adap);
6884 		return ret;
6885 	}
6886 
6887 	v = be32_to_cpu(c.err_to_clearinit);
6888 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6889 	if (state) {
6890 		if (v & FW_HELLO_CMD_ERR_F)
6891 			*state = DEV_STATE_ERR;
6892 		else if (v & FW_HELLO_CMD_INIT_F)
6893 			*state = DEV_STATE_INIT;
6894 		else
6895 			*state = DEV_STATE_UNINIT;
6896 	}
6897 
6898 	/*
6899 	 * If we're not the Master PF then we need to wait around for the
6900 	 * Master PF Driver to finish setting up the adapter.
6901 	 *
6902 	 * Note that we also do this wait if we're a non-Master-capable PF and
6903 	 * there is no current Master PF; a Master PF may show up momentarily
6904 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6905 	 * OS loads lots of different drivers rapidly at the same time).  In
6906 	 * this case, the Master PF returned by the firmware will be
6907 	 * PCIE_FW_MASTER_M so the test below will work ...
6908 	 */
6909 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6910 	    master_mbox != mbox) {
6911 		int waiting = FW_CMD_HELLO_TIMEOUT;
6912 
6913 		/*
6914 		 * Wait for the firmware to either indicate an error or
6915 		 * initialized state.  If we see either of these we bail out
6916 		 * and report the issue to the caller.  If we exhaust the
6917 		 * "hello timeout" and we haven't exhausted our retries, try
6918 		 * again.  Otherwise bail with a timeout error.
6919 		 */
6920 		for (;;) {
6921 			u32 pcie_fw;
6922 
6923 			msleep(50);
6924 			waiting -= 50;
6925 
6926 			/*
6927 			 * If neither Error nor Initialized are indicated
6928 			 * by the firmware keep waiting till we exhaust our
6929 			 * timeout ... and then retry if we haven't exhausted
6930 			 * our retries ...
6931 			 */
6932 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6933 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6934 				if (waiting <= 0) {
6935 					if (retries-- > 0)
6936 						goto retry;
6937 
6938 					return -ETIMEDOUT;
6939 				}
6940 				continue;
6941 			}
6942 
6943 			/*
6944 			 * We either have an Error or Initialized condition
6945 			 * report errors preferentially.
6946 			 */
6947 			if (state) {
6948 				if (pcie_fw & PCIE_FW_ERR_F)
6949 					*state = DEV_STATE_ERR;
6950 				else if (pcie_fw & PCIE_FW_INIT_F)
6951 					*state = DEV_STATE_INIT;
6952 			}
6953 
6954 			/*
6955 			 * If we arrived before a Master PF was selected and
6956 			 * there's not a valid Master PF, grab its identity
6957 			 * for our caller.
6958 			 */
6959 			if (master_mbox == PCIE_FW_MASTER_M &&
6960 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6961 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6962 			break;
6963 		}
6964 	}
6965 
6966 	return master_mbox;
6967 }
6968 
6969 /**
6970  *	t4_fw_bye - end communication with FW
6971  *	@adap: the adapter
6972  *	@mbox: mailbox to use for the FW command
6973  *
6974  *	Issues a command to terminate communication with FW.
6975  */
6976 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6977 {
6978 	struct fw_bye_cmd c;
6979 
6980 	memset(&c, 0, sizeof(c));
6981 	INIT_CMD(c, BYE, WRITE);
6982 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6983 }
6984 
6985 /**
6986  *	t4_init_cmd - ask FW to initialize the device
6987  *	@adap: the adapter
6988  *	@mbox: mailbox to use for the FW command
6989  *
6990  *	Issues a command to FW to partially initialize the device.  This
6991  *	performs initialization that generally doesn't depend on user input.
6992  */
6993 int t4_early_init(struct adapter *adap, unsigned int mbox)
6994 {
6995 	struct fw_initialize_cmd c;
6996 
6997 	memset(&c, 0, sizeof(c));
6998 	INIT_CMD(c, INITIALIZE, WRITE);
6999 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7000 }
7001 
7002 /**
7003  *	t4_fw_reset - issue a reset to FW
7004  *	@adap: the adapter
7005  *	@mbox: mailbox to use for the FW command
7006  *	@reset: specifies the type of reset to perform
7007  *
7008  *	Issues a reset command of the specified type to FW.
7009  */
7010 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7011 {
7012 	struct fw_reset_cmd c;
7013 
7014 	memset(&c, 0, sizeof(c));
7015 	INIT_CMD(c, RESET, WRITE);
7016 	c.val = cpu_to_be32(reset);
7017 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7018 }
7019 
7020 /**
7021  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7022  *	@adap: the adapter
7023  *	@mbox: mailbox to use for the FW RESET command (if desired)
7024  *	@force: force uP into RESET even if FW RESET command fails
7025  *
7026  *	Issues a RESET command to firmware (if desired) with a HALT indication
7027  *	and then puts the microprocessor into RESET state.  The RESET command
7028  *	will only be issued if a legitimate mailbox is provided (mbox <=
7029  *	PCIE_FW_MASTER_M).
7030  *
7031  *	This is generally used in order for the host to safely manipulate the
7032  *	adapter without fear of conflicting with whatever the firmware might
7033  *	be doing.  The only way out of this state is to RESTART the firmware
7034  *	...
7035  */
7036 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7037 {
7038 	int ret = 0;
7039 
7040 	/*
7041 	 * If a legitimate mailbox is provided, issue a RESET command
7042 	 * with a HALT indication.
7043 	 */
7044 	if (mbox <= PCIE_FW_MASTER_M) {
7045 		struct fw_reset_cmd c;
7046 
7047 		memset(&c, 0, sizeof(c));
7048 		INIT_CMD(c, RESET, WRITE);
7049 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7050 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7051 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7052 	}
7053 
7054 	/*
7055 	 * Normally we won't complete the operation if the firmware RESET
7056 	 * command fails but if our caller insists we'll go ahead and put the
7057 	 * uP into RESET.  This can be useful if the firmware is hung or even
7058 	 * missing ...  We'll have to take the risk of putting the uP into
7059 	 * RESET without the cooperation of firmware in that case.
7060 	 *
7061 	 * We also force the firmware's HALT flag to be on in case we bypassed
7062 	 * the firmware RESET command above or we're dealing with old firmware
7063 	 * which doesn't have the HALT capability.  This will serve as a flag
7064 	 * for the incoming firmware to know that it's coming out of a HALT
7065 	 * rather than a RESET ... if it's new enough to understand that ...
7066 	 */
7067 	if (ret == 0 || force) {
7068 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7069 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7070 				 PCIE_FW_HALT_F);
7071 	}
7072 
7073 	/*
7074 	 * And we always return the result of the firmware RESET command
7075 	 * even when we force the uP into RESET ...
7076 	 */
7077 	return ret;
7078 }
7079 
7080 /**
7081  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7082  *	@adap: the adapter
7083  *	@mbox: mailbox to use for the FW command
7084  *	@reset: if we want to do a RESET to restart things
7085  *
7086  *	Restart firmware previously halted by t4_fw_halt().  On successful
7087  *	return the previous PF Master remains as the new PF Master and there
7088  *	is no need to issue a new HELLO command, etc.
7089  *
7090  *	We do this in two ways:
7091  *
7092  *	 1. If we're dealing with newer firmware we'll simply want to take
7093  *	    the chip's microprocessor out of RESET.  This will cause the
7094  *	    firmware to start up from its start vector.  And then we'll loop
7095  *	    until the firmware indicates it's started again (PCIE_FW.HALT
7096  *	    reset to 0) or we timeout.
7097  *
7098  *	 2. If we're dealing with older firmware then we'll need to RESET
7099  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
7100  *	    flag and automatically RESET itself on startup.
7101  */
7102 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7103 {
7104 	if (reset) {
7105 		/*
7106 		 * Since we're directing the RESET instead of the firmware
7107 		 * doing it automatically, we need to clear the PCIE_FW.HALT
7108 		 * bit.
7109 		 */
7110 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7111 
7112 		/*
7113 		 * If we've been given a valid mailbox, first try to get the
7114 		 * firmware to do the RESET.  If that works, great and we can
7115 		 * return success.  Otherwise, if we haven't been given a
7116 		 * valid mailbox or the RESET command failed, fall back to
7117 		 * hitting the chip with a hammer.
7118 		 */
7119 		if (mbox <= PCIE_FW_MASTER_M) {
7120 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7121 			msleep(100);
7122 			if (t4_fw_reset(adap, mbox,
7123 					PIORST_F | PIORSTMODE_F) == 0)
7124 				return 0;
7125 		}
7126 
7127 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7128 		msleep(2000);
7129 	} else {
7130 		int ms;
7131 
7132 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7133 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7134 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7135 				return 0;
7136 			msleep(100);
7137 			ms += 100;
7138 		}
7139 		return -ETIMEDOUT;
7140 	}
7141 	return 0;
7142 }
7143 
7144 /**
7145  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7146  *	@adap: the adapter
7147  *	@mbox: mailbox to use for the FW RESET command (if desired)
7148  *	@fw_data: the firmware image to write
7149  *	@size: image size
7150  *	@force: force upgrade even if firmware doesn't cooperate
7151  *
7152  *	Perform all of the steps necessary for upgrading an adapter's
7153  *	firmware image.  Normally this requires the cooperation of the
7154  *	existing firmware in order to halt all existing activities
7155  *	but if an invalid mailbox token is passed in we skip that step
7156  *	(though we'll still put the adapter microprocessor into RESET in
7157  *	that case).
7158  *
7159  *	On successful return the new firmware will have been loaded and
7160  *	the adapter will have been fully RESET losing all previous setup
7161  *	state.  On unsuccessful return the adapter may be completely hosed ...
7162  *	positive errno indicates that the adapter is ~probably~ intact, a
7163  *	negative errno indicates that things are looking bad ...
7164  */
7165 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7166 		  const u8 *fw_data, unsigned int size, int force)
7167 {
7168 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7169 	int reset, ret;
7170 
7171 	if (!t4_fw_matches_chip(adap, fw_hdr))
7172 		return -EINVAL;
7173 
7174 	/* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7175 	 * set wont be sent when we are flashing FW.
7176 	 */
7177 	adap->flags &= ~CXGB4_FW_OK;
7178 
7179 	ret = t4_fw_halt(adap, mbox, force);
7180 	if (ret < 0 && !force)
7181 		goto out;
7182 
7183 	ret = t4_load_fw(adap, fw_data, size);
7184 	if (ret < 0)
7185 		goto out;
7186 
7187 	/*
7188 	 * If there was a Firmware Configuration File stored in FLASH,
7189 	 * there's a good chance that it won't be compatible with the new
7190 	 * Firmware.  In order to prevent difficult to diagnose adapter
7191 	 * initialization issues, we clear out the Firmware Configuration File
7192 	 * portion of the FLASH .  The user will need to re-FLASH a new
7193 	 * Firmware Configuration File which is compatible with the new
7194 	 * Firmware if that's desired.
7195 	 */
7196 	(void)t4_load_cfg(adap, NULL, 0);
7197 
7198 	/*
7199 	 * Older versions of the firmware don't understand the new
7200 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7201 	 * restart.  So for newly loaded older firmware we'll have to do the
7202 	 * RESET for it so it starts up on a clean slate.  We can tell if
7203 	 * the newly loaded firmware will handle this right by checking
7204 	 * its header flags to see if it advertises the capability.
7205 	 */
7206 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7207 	ret = t4_fw_restart(adap, mbox, reset);
7208 
7209 	/* Grab potentially new Firmware Device Log parameters so we can see
7210 	 * how healthy the new Firmware is.  It's okay to contact the new
7211 	 * Firmware for these parameters even though, as far as it's
7212 	 * concerned, we've never said "HELLO" to it ...
7213 	 */
7214 	(void)t4_init_devlog_params(adap);
7215 out:
7216 	adap->flags |= CXGB4_FW_OK;
7217 	return ret;
7218 }
7219 
7220 /**
7221  *	t4_fl_pkt_align - return the fl packet alignment
7222  *	@adap: the adapter
7223  *
7224  *	T4 has a single field to specify the packing and padding boundary.
7225  *	T5 onwards has separate fields for this and hence the alignment for
7226  *	next packet offset is maximum of these two.
7227  *
7228  */
7229 int t4_fl_pkt_align(struct adapter *adap)
7230 {
7231 	u32 sge_control, sge_control2;
7232 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7233 
7234 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7235 
7236 	/* T4 uses a single control field to specify both the PCIe Padding and
7237 	 * Packing Boundary.  T5 introduced the ability to specify these
7238 	 * separately.  The actual Ingress Packet Data alignment boundary
7239 	 * within Packed Buffer Mode is the maximum of these two
7240 	 * specifications.  (Note that it makes no real practical sense to
7241 	 * have the Padding Boundary be larger than the Packing Boundary but you
7242 	 * could set the chip up that way and, in fact, legacy T4 code would
7243 	 * end doing this because it would initialize the Padding Boundary and
7244 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7245 	 * Padding Boundary values in T6 starts from 8B,
7246 	 * where as it is 32B for T4 and T5.
7247 	 */
7248 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7249 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7250 	else
7251 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7252 
7253 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7254 
7255 	fl_align = ingpadboundary;
7256 	if (!is_t4(adap->params.chip)) {
7257 		/* T5 has a weird interpretation of one of the PCIe Packing
7258 		 * Boundary values.  No idea why ...
7259 		 */
7260 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7261 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7262 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7263 			ingpackboundary = 16;
7264 		else
7265 			ingpackboundary = 1 << (ingpackboundary +
7266 						INGPACKBOUNDARY_SHIFT_X);
7267 
7268 		fl_align = max(ingpadboundary, ingpackboundary);
7269 	}
7270 	return fl_align;
7271 }
7272 
7273 /**
7274  *	t4_fixup_host_params - fix up host-dependent parameters
7275  *	@adap: the adapter
7276  *	@page_size: the host's Base Page Size
7277  *	@cache_line_size: the host's Cache Line Size
7278  *
7279  *	Various registers in T4 contain values which are dependent on the
7280  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7281  *	those registers with the appropriate values as passed in ...
7282  */
7283 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7284 			 unsigned int cache_line_size)
7285 {
7286 	unsigned int page_shift = fls(page_size) - 1;
7287 	unsigned int sge_hps = page_shift - 10;
7288 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7289 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7290 	unsigned int fl_align_log = fls(fl_align) - 1;
7291 
7292 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7293 		     HOSTPAGESIZEPF0_V(sge_hps) |
7294 		     HOSTPAGESIZEPF1_V(sge_hps) |
7295 		     HOSTPAGESIZEPF2_V(sge_hps) |
7296 		     HOSTPAGESIZEPF3_V(sge_hps) |
7297 		     HOSTPAGESIZEPF4_V(sge_hps) |
7298 		     HOSTPAGESIZEPF5_V(sge_hps) |
7299 		     HOSTPAGESIZEPF6_V(sge_hps) |
7300 		     HOSTPAGESIZEPF7_V(sge_hps));
7301 
7302 	if (is_t4(adap->params.chip)) {
7303 		t4_set_reg_field(adap, SGE_CONTROL_A,
7304 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7305 				 EGRSTATUSPAGESIZE_F,
7306 				 INGPADBOUNDARY_V(fl_align_log -
7307 						  INGPADBOUNDARY_SHIFT_X) |
7308 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7309 	} else {
7310 		unsigned int pack_align;
7311 		unsigned int ingpad, ingpack;
7312 
7313 		/* T5 introduced the separation of the Free List Padding and
7314 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7315 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7316 		 * Bandwidth, and use a Packing Boundary which is large enough
7317 		 * to avoid false sharing between CPUs, etc.
7318 		 *
7319 		 * For the PCI Link, the smaller the Padding Boundary the
7320 		 * better.  For the Memory Controller, a smaller Padding
7321 		 * Boundary is better until we cross under the Memory Line
7322 		 * Size (the minimum unit of transfer to/from Memory).  If we
7323 		 * have a Padding Boundary which is smaller than the Memory
7324 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7325 		 * Memory Controller which is never good.
7326 		 */
7327 
7328 		/* We want the Packing Boundary to be based on the Cache Line
7329 		 * Size in order to help avoid False Sharing performance
7330 		 * issues between CPUs, etc.  We also want the Packing
7331 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7332 		 * get best performance when the Packing Boundary is a
7333 		 * multiple of the Maximum Payload Size.
7334 		 */
7335 		pack_align = fl_align;
7336 		if (pci_is_pcie(adap->pdev)) {
7337 			unsigned int mps, mps_log;
7338 			u16 devctl;
7339 
7340 			/* The PCIe Device Control Maximum Payload Size field
7341 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7342 			 * 128 bytes.
7343 			 */
7344 			pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7345 						  &devctl);
7346 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7347 			mps = 1 << mps_log;
7348 			if (mps > pack_align)
7349 				pack_align = mps;
7350 		}
7351 
7352 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7353 		 * value for the Packing Boundary.  This corresponds to 16
7354 		 * bytes instead of the expected 32 bytes.  So if we want 32
7355 		 * bytes, the best we can really do is 64 bytes ...
7356 		 */
7357 		if (pack_align <= 16) {
7358 			ingpack = INGPACKBOUNDARY_16B_X;
7359 			fl_align = 16;
7360 		} else if (pack_align == 32) {
7361 			ingpack = INGPACKBOUNDARY_64B_X;
7362 			fl_align = 64;
7363 		} else {
7364 			unsigned int pack_align_log = fls(pack_align) - 1;
7365 
7366 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7367 			fl_align = pack_align;
7368 		}
7369 
7370 		/* Use the smallest Ingress Padding which isn't smaller than
7371 		 * the Memory Controller Read/Write Size.  We'll take that as
7372 		 * being 8 bytes since we don't know of any system with a
7373 		 * wider Memory Controller Bus Width.
7374 		 */
7375 		if (is_t5(adap->params.chip))
7376 			ingpad = INGPADBOUNDARY_32B_X;
7377 		else
7378 			ingpad = T6_INGPADBOUNDARY_8B_X;
7379 
7380 		t4_set_reg_field(adap, SGE_CONTROL_A,
7381 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7382 				 EGRSTATUSPAGESIZE_F,
7383 				 INGPADBOUNDARY_V(ingpad) |
7384 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7385 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7386 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7387 				 INGPACKBOUNDARY_V(ingpack));
7388 	}
7389 	/*
7390 	 * Adjust various SGE Free List Host Buffer Sizes.
7391 	 *
7392 	 * This is something of a crock since we're using fixed indices into
7393 	 * the array which are also known by the sge.c code and the T4
7394 	 * Firmware Configuration File.  We need to come up with a much better
7395 	 * approach to managing this array.  For now, the first four entries
7396 	 * are:
7397 	 *
7398 	 *   0: Host Page Size
7399 	 *   1: 64KB
7400 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7401 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7402 	 *
7403 	 * For the single-MTU buffers in unpacked mode we need to include
7404 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7405 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7406 	 * Padding boundary.  All of these are accommodated in the Factory
7407 	 * Default Firmware Configuration File but we need to adjust it for
7408 	 * this host's cache line size.
7409 	 */
7410 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7411 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7412 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7413 		     & ~(fl_align-1));
7414 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7415 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7416 		     & ~(fl_align-1));
7417 
7418 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7419 
7420 	return 0;
7421 }
7422 
7423 /**
7424  *	t4_fw_initialize - ask FW to initialize the device
7425  *	@adap: the adapter
7426  *	@mbox: mailbox to use for the FW command
7427  *
7428  *	Issues a command to FW to partially initialize the device.  This
7429  *	performs initialization that generally doesn't depend on user input.
7430  */
7431 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7432 {
7433 	struct fw_initialize_cmd c;
7434 
7435 	memset(&c, 0, sizeof(c));
7436 	INIT_CMD(c, INITIALIZE, WRITE);
7437 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7438 }
7439 
7440 /**
7441  *	t4_query_params_rw - query FW or device parameters
7442  *	@adap: the adapter
7443  *	@mbox: mailbox to use for the FW command
7444  *	@pf: the PF
7445  *	@vf: the VF
7446  *	@nparams: the number of parameters
7447  *	@params: the parameter names
7448  *	@val: the parameter values
7449  *	@rw: Write and read flag
7450  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7451  *
7452  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7453  *	queried at once.
7454  */
7455 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7456 		       unsigned int vf, unsigned int nparams, const u32 *params,
7457 		       u32 *val, int rw, bool sleep_ok)
7458 {
7459 	int i, ret;
7460 	struct fw_params_cmd c;
7461 	__be32 *p = &c.param[0].mnem;
7462 
7463 	if (nparams > 7)
7464 		return -EINVAL;
7465 
7466 	memset(&c, 0, sizeof(c));
7467 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7468 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7469 				  FW_PARAMS_CMD_PFN_V(pf) |
7470 				  FW_PARAMS_CMD_VFN_V(vf));
7471 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7472 
7473 	for (i = 0; i < nparams; i++) {
7474 		*p++ = cpu_to_be32(*params++);
7475 		if (rw)
7476 			*p = cpu_to_be32(*(val + i));
7477 		p++;
7478 	}
7479 
7480 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7481 	if (ret == 0)
7482 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7483 			*val++ = be32_to_cpu(*p);
7484 	return ret;
7485 }
7486 
7487 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7488 		    unsigned int vf, unsigned int nparams, const u32 *params,
7489 		    u32 *val)
7490 {
7491 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7492 				  true);
7493 }
7494 
7495 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7496 		       unsigned int vf, unsigned int nparams, const u32 *params,
7497 		       u32 *val)
7498 {
7499 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7500 				  false);
7501 }
7502 
7503 /**
7504  *      t4_set_params_timeout - sets FW or device parameters
7505  *      @adap: the adapter
7506  *      @mbox: mailbox to use for the FW command
7507  *      @pf: the PF
7508  *      @vf: the VF
7509  *      @nparams: the number of parameters
7510  *      @params: the parameter names
7511  *      @val: the parameter values
7512  *      @timeout: the timeout time
7513  *
7514  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7515  *      specified at once.
7516  */
7517 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7518 			  unsigned int pf, unsigned int vf,
7519 			  unsigned int nparams, const u32 *params,
7520 			  const u32 *val, int timeout)
7521 {
7522 	struct fw_params_cmd c;
7523 	__be32 *p = &c.param[0].mnem;
7524 
7525 	if (nparams > 7)
7526 		return -EINVAL;
7527 
7528 	memset(&c, 0, sizeof(c));
7529 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7530 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7531 				  FW_PARAMS_CMD_PFN_V(pf) |
7532 				  FW_PARAMS_CMD_VFN_V(vf));
7533 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7534 
7535 	while (nparams--) {
7536 		*p++ = cpu_to_be32(*params++);
7537 		*p++ = cpu_to_be32(*val++);
7538 	}
7539 
7540 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7541 }
7542 
7543 /**
7544  *	t4_set_params - sets FW or device parameters
7545  *	@adap: the adapter
7546  *	@mbox: mailbox to use for the FW command
7547  *	@pf: the PF
7548  *	@vf: the VF
7549  *	@nparams: the number of parameters
7550  *	@params: the parameter names
7551  *	@val: the parameter values
7552  *
7553  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7554  *	specified at once.
7555  */
7556 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7557 		  unsigned int vf, unsigned int nparams, const u32 *params,
7558 		  const u32 *val)
7559 {
7560 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7561 				     FW_CMD_MAX_TIMEOUT);
7562 }
7563 
7564 /**
7565  *	t4_cfg_pfvf - configure PF/VF resource limits
7566  *	@adap: the adapter
7567  *	@mbox: mailbox to use for the FW command
7568  *	@pf: the PF being configured
7569  *	@vf: the VF being configured
7570  *	@txq: the max number of egress queues
7571  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7572  *	@rxqi: the max number of interrupt-capable ingress queues
7573  *	@rxq: the max number of interruptless ingress queues
7574  *	@tc: the PCI traffic class
7575  *	@vi: the max number of virtual interfaces
7576  *	@cmask: the channel access rights mask for the PF/VF
7577  *	@pmask: the port access rights mask for the PF/VF
7578  *	@nexact: the maximum number of exact MPS filters
7579  *	@rcaps: read capabilities
7580  *	@wxcaps: write/execute capabilities
7581  *
7582  *	Configures resource limits and capabilities for a physical or virtual
7583  *	function.
7584  */
7585 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7586 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7587 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7588 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7589 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7590 {
7591 	struct fw_pfvf_cmd c;
7592 
7593 	memset(&c, 0, sizeof(c));
7594 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7595 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7596 				  FW_PFVF_CMD_VFN_V(vf));
7597 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7598 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7599 				     FW_PFVF_CMD_NIQ_V(rxq));
7600 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7601 				    FW_PFVF_CMD_PMASK_V(pmask) |
7602 				    FW_PFVF_CMD_NEQ_V(txq));
7603 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7604 				      FW_PFVF_CMD_NVI_V(vi) |
7605 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7606 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7607 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7608 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7609 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7610 }
7611 
7612 /**
7613  *	t4_alloc_vi - allocate a virtual interface
7614  *	@adap: the adapter
7615  *	@mbox: mailbox to use for the FW command
7616  *	@port: physical port associated with the VI
7617  *	@pf: the PF owning the VI
7618  *	@vf: the VF owning the VI
7619  *	@nmac: number of MAC addresses needed (1 to 5)
7620  *	@mac: the MAC addresses of the VI
7621  *	@rss_size: size of RSS table slice associated with this VI
7622  *	@vivld: the destination to store the VI Valid value.
7623  *	@vin: the destination to store the VIN value.
7624  *
7625  *	Allocates a virtual interface for the given physical port.  If @mac is
7626  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7627  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7628  *	stored consecutively so the space needed is @nmac * 6 bytes.
7629  *	Returns a negative error number or the non-negative VI id.
7630  */
7631 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7632 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7633 		unsigned int *rss_size, u8 *vivld, u8 *vin)
7634 {
7635 	int ret;
7636 	struct fw_vi_cmd c;
7637 
7638 	memset(&c, 0, sizeof(c));
7639 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7640 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7641 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7642 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7643 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7644 	c.nmac = nmac - 1;
7645 
7646 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7647 	if (ret)
7648 		return ret;
7649 
7650 	if (mac) {
7651 		memcpy(mac, c.mac, sizeof(c.mac));
7652 		switch (nmac) {
7653 		case 5:
7654 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7655 			fallthrough;
7656 		case 4:
7657 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7658 			fallthrough;
7659 		case 3:
7660 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7661 			fallthrough;
7662 		case 2:
7663 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7664 		}
7665 	}
7666 	if (rss_size)
7667 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7668 
7669 	if (vivld)
7670 		*vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7671 
7672 	if (vin)
7673 		*vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7674 
7675 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7676 }
7677 
7678 /**
7679  *	t4_free_vi - free a virtual interface
7680  *	@adap: the adapter
7681  *	@mbox: mailbox to use for the FW command
7682  *	@pf: the PF owning the VI
7683  *	@vf: the VF owning the VI
7684  *	@viid: virtual interface identifiler
7685  *
7686  *	Free a previously allocated virtual interface.
7687  */
7688 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7689 	       unsigned int vf, unsigned int viid)
7690 {
7691 	struct fw_vi_cmd c;
7692 
7693 	memset(&c, 0, sizeof(c));
7694 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7695 				  FW_CMD_REQUEST_F |
7696 				  FW_CMD_EXEC_F |
7697 				  FW_VI_CMD_PFN_V(pf) |
7698 				  FW_VI_CMD_VFN_V(vf));
7699 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7700 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7701 
7702 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7703 }
7704 
7705 /**
7706  *	t4_set_rxmode - set Rx properties of a virtual interface
7707  *	@adap: the adapter
7708  *	@mbox: mailbox to use for the FW command
7709  *	@viid: the VI id
7710  *	@viid_mirror: the mirror VI id
7711  *	@mtu: the new MTU or -1
7712  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7713  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7714  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7715  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7716  *	@sleep_ok: if true we may sleep while awaiting command completion
7717  *
7718  *	Sets Rx properties of a virtual interface.
7719  */
7720 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7721 		  unsigned int viid_mirror, int mtu, int promisc, int all_multi,
7722 		  int bcast, int vlanex, bool sleep_ok)
7723 {
7724 	struct fw_vi_rxmode_cmd c, c_mirror;
7725 	int ret;
7726 
7727 	/* convert to FW values */
7728 	if (mtu < 0)
7729 		mtu = FW_RXMODE_MTU_NO_CHG;
7730 	if (promisc < 0)
7731 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7732 	if (all_multi < 0)
7733 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7734 	if (bcast < 0)
7735 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7736 	if (vlanex < 0)
7737 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7738 
7739 	memset(&c, 0, sizeof(c));
7740 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7741 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7742 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7743 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7744 	c.mtu_to_vlanexen =
7745 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7746 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7747 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7748 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7749 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7750 
7751 	if (viid_mirror) {
7752 		memcpy(&c_mirror, &c, sizeof(c_mirror));
7753 		c_mirror.op_to_viid =
7754 			cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7755 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7756 				    FW_VI_RXMODE_CMD_VIID_V(viid_mirror));
7757 	}
7758 
7759 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7760 	if (ret)
7761 		return ret;
7762 
7763 	if (viid_mirror)
7764 		ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror),
7765 				      NULL, sleep_ok);
7766 
7767 	return ret;
7768 }
7769 
7770 /**
7771  *      t4_free_encap_mac_filt - frees MPS entry at given index
7772  *      @adap: the adapter
7773  *      @viid: the VI id
7774  *      @idx: index of MPS entry to be freed
7775  *      @sleep_ok: call is allowed to sleep
7776  *
7777  *      Frees the MPS entry at supplied index
7778  *
7779  *      Returns a negative error number or zero on success
7780  */
7781 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7782 			   int idx, bool sleep_ok)
7783 {
7784 	struct fw_vi_mac_exact *p;
7785 	u8 addr[] = {0, 0, 0, 0, 0, 0};
7786 	struct fw_vi_mac_cmd c;
7787 	int ret = 0;
7788 	u32 exact;
7789 
7790 	memset(&c, 0, sizeof(c));
7791 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7792 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7793 				   FW_CMD_EXEC_V(0) |
7794 				   FW_VI_MAC_CMD_VIID_V(viid));
7795 	exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7796 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7797 					  exact |
7798 					  FW_CMD_LEN16_V(1));
7799 	p = c.u.exact;
7800 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7801 				      FW_VI_MAC_CMD_IDX_V(idx));
7802 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7803 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7804 	return ret;
7805 }
7806 
7807 /**
7808  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7809  *	@adap: the adapter
7810  *	@viid: the VI id
7811  *	@addr: the MAC address
7812  *	@mask: the mask
7813  *	@idx: index of the entry in mps tcam
7814  *	@lookup_type: MAC address for inner (1) or outer (0) header
7815  *	@port_id: the port index
7816  *	@sleep_ok: call is allowed to sleep
7817  *
7818  *	Removes the mac entry at the specified index using raw mac interface.
7819  *
7820  *	Returns a negative error number on failure.
7821  */
7822 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7823 			 const u8 *addr, const u8 *mask, unsigned int idx,
7824 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7825 {
7826 	struct fw_vi_mac_cmd c;
7827 	struct fw_vi_mac_raw *p = &c.u.raw;
7828 	u32 val;
7829 
7830 	memset(&c, 0, sizeof(c));
7831 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7832 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7833 				   FW_CMD_EXEC_V(0) |
7834 				   FW_VI_MAC_CMD_VIID_V(viid));
7835 	val = FW_CMD_LEN16_V(1) |
7836 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7837 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7838 					  FW_CMD_LEN16_V(val));
7839 
7840 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7841 				     FW_VI_MAC_ID_BASED_FREE);
7842 
7843 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7844 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7845 				   DATAPORTNUM_V(port_id));
7846 	/* Lookup mask and port mask */
7847 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7848 				    DATAPORTNUM_V(DATAPORTNUM_M));
7849 
7850 	/* Copy the address and the mask */
7851 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7852 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7853 
7854 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7855 }
7856 
7857 /**
7858  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7859  *      @adap: the adapter
7860  *      @viid: the VI id
7861  *      @addr: the MAC address
7862  *      @mask: the mask
7863  *      @vni: the VNI id for the tunnel protocol
7864  *      @vni_mask: mask for the VNI id
7865  *      @dip_hit: to enable DIP match for the MPS entry
7866  *      @lookup_type: MAC address for inner (1) or outer (0) header
7867  *      @sleep_ok: call is allowed to sleep
7868  *
7869  *      Allocates an MPS entry with specified MAC address and VNI value.
7870  *
7871  *      Returns a negative error number or the allocated index for this mac.
7872  */
7873 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7874 			    const u8 *addr, const u8 *mask, unsigned int vni,
7875 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7876 			    bool sleep_ok)
7877 {
7878 	struct fw_vi_mac_cmd c;
7879 	struct fw_vi_mac_vni *p = c.u.exact_vni;
7880 	int ret = 0;
7881 	u32 val;
7882 
7883 	memset(&c, 0, sizeof(c));
7884 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7885 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7886 				   FW_VI_MAC_CMD_VIID_V(viid));
7887 	val = FW_CMD_LEN16_V(1) |
7888 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7889 	c.freemacs_to_len16 = cpu_to_be32(val);
7890 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7891 				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7892 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7893 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7894 
7895 	p->lookup_type_to_vni =
7896 		cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7897 			    FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7898 			    FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7899 	p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7900 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7901 	if (ret == 0)
7902 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7903 	return ret;
7904 }
7905 
7906 /**
7907  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7908  *	@adap: the adapter
7909  *	@viid: the VI id
7910  *	@addr: the MAC address
7911  *	@mask: the mask
7912  *	@idx: index at which to add this entry
7913  *	@lookup_type: MAC address for inner (1) or outer (0) header
7914  *	@port_id: the port index
7915  *	@sleep_ok: call is allowed to sleep
7916  *
7917  *	Adds the mac entry at the specified index using raw mac interface.
7918  *
7919  *	Returns a negative error number or the allocated index for this mac.
7920  */
7921 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7922 			  const u8 *addr, const u8 *mask, unsigned int idx,
7923 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7924 {
7925 	int ret = 0;
7926 	struct fw_vi_mac_cmd c;
7927 	struct fw_vi_mac_raw *p = &c.u.raw;
7928 	u32 val;
7929 
7930 	memset(&c, 0, sizeof(c));
7931 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7932 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7933 				   FW_VI_MAC_CMD_VIID_V(viid));
7934 	val = FW_CMD_LEN16_V(1) |
7935 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7936 	c.freemacs_to_len16 = cpu_to_be32(val);
7937 
7938 	/* Specify that this is an inner mac address */
7939 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7940 
7941 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7942 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7943 				   DATAPORTNUM_V(port_id));
7944 	/* Lookup mask and port mask */
7945 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7946 				    DATAPORTNUM_V(DATAPORTNUM_M));
7947 
7948 	/* Copy the address and the mask */
7949 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7950 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7951 
7952 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7953 	if (ret == 0) {
7954 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7955 		if (ret != idx)
7956 			ret = -ENOMEM;
7957 	}
7958 
7959 	return ret;
7960 }
7961 
7962 /**
7963  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7964  *	@adap: the adapter
7965  *	@mbox: mailbox to use for the FW command
7966  *	@viid: the VI id
7967  *	@free: if true any existing filters for this VI id are first removed
7968  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7969  *	@addr: the MAC address(es)
7970  *	@idx: where to store the index of each allocated filter
7971  *	@hash: pointer to hash address filter bitmap
7972  *	@sleep_ok: call is allowed to sleep
7973  *
7974  *	Allocates an exact-match filter for each of the supplied addresses and
7975  *	sets it to the corresponding address.  If @idx is not %NULL it should
7976  *	have at least @naddr entries, each of which will be set to the index of
7977  *	the filter allocated for the corresponding MAC address.  If a filter
7978  *	could not be allocated for an address its index is set to 0xffff.
7979  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7980  *	are hashed and update the hash filter bitmap pointed at by @hash.
7981  *
7982  *	Returns a negative error number or the number of filters allocated.
7983  */
7984 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7985 		      unsigned int viid, bool free, unsigned int naddr,
7986 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7987 {
7988 	int offset, ret = 0;
7989 	struct fw_vi_mac_cmd c;
7990 	unsigned int nfilters = 0;
7991 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7992 	unsigned int rem = naddr;
7993 
7994 	if (naddr > max_naddr)
7995 		return -EINVAL;
7996 
7997 	for (offset = 0; offset < naddr ; /**/) {
7998 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7999 					 rem : ARRAY_SIZE(c.u.exact));
8000 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8001 						     u.exact[fw_naddr]), 16);
8002 		struct fw_vi_mac_exact *p;
8003 		int i;
8004 
8005 		memset(&c, 0, sizeof(c));
8006 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8007 					   FW_CMD_REQUEST_F |
8008 					   FW_CMD_WRITE_F |
8009 					   FW_CMD_EXEC_V(free) |
8010 					   FW_VI_MAC_CMD_VIID_V(viid));
8011 		c.freemacs_to_len16 =
8012 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
8013 				    FW_CMD_LEN16_V(len16));
8014 
8015 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8016 			p->valid_to_idx =
8017 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8018 					    FW_VI_MAC_CMD_IDX_V(
8019 						    FW_VI_MAC_ADD_MAC));
8020 			memcpy(p->macaddr, addr[offset + i],
8021 			       sizeof(p->macaddr));
8022 		}
8023 
8024 		/* It's okay if we run out of space in our MAC address arena.
8025 		 * Some of the addresses we submit may get stored so we need
8026 		 * to run through the reply to see what the results were ...
8027 		 */
8028 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8029 		if (ret && ret != -FW_ENOMEM)
8030 			break;
8031 
8032 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8033 			u16 index = FW_VI_MAC_CMD_IDX_G(
8034 					be16_to_cpu(p->valid_to_idx));
8035 
8036 			if (idx)
8037 				idx[offset + i] = (index >= max_naddr ?
8038 						   0xffff : index);
8039 			if (index < max_naddr)
8040 				nfilters++;
8041 			else if (hash)
8042 				*hash |= (1ULL <<
8043 					  hash_mac_addr(addr[offset + i]));
8044 		}
8045 
8046 		free = false;
8047 		offset += fw_naddr;
8048 		rem -= fw_naddr;
8049 	}
8050 
8051 	if (ret == 0 || ret == -FW_ENOMEM)
8052 		ret = nfilters;
8053 	return ret;
8054 }
8055 
8056 /**
8057  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8058  *	@adap: the adapter
8059  *	@mbox: mailbox to use for the FW command
8060  *	@viid: the VI id
8061  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8062  *	@addr: the MAC address(es)
8063  *	@sleep_ok: call is allowed to sleep
8064  *
8065  *	Frees the exact-match filter for each of the supplied addresses
8066  *
8067  *	Returns a negative error number or the number of filters freed.
8068  */
8069 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8070 		     unsigned int viid, unsigned int naddr,
8071 		     const u8 **addr, bool sleep_ok)
8072 {
8073 	int offset, ret = 0;
8074 	struct fw_vi_mac_cmd c;
8075 	unsigned int nfilters = 0;
8076 	unsigned int max_naddr = is_t4(adap->params.chip) ?
8077 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
8078 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8079 	unsigned int rem = naddr;
8080 
8081 	if (naddr > max_naddr)
8082 		return -EINVAL;
8083 
8084 	for (offset = 0; offset < (int)naddr ; /**/) {
8085 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8086 					 ? rem
8087 					 : ARRAY_SIZE(c.u.exact));
8088 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8089 						     u.exact[fw_naddr]), 16);
8090 		struct fw_vi_mac_exact *p;
8091 		int i;
8092 
8093 		memset(&c, 0, sizeof(c));
8094 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8095 				     FW_CMD_REQUEST_F |
8096 				     FW_CMD_WRITE_F |
8097 				     FW_CMD_EXEC_V(0) |
8098 				     FW_VI_MAC_CMD_VIID_V(viid));
8099 		c.freemacs_to_len16 =
8100 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8101 					    FW_CMD_LEN16_V(len16));
8102 
8103 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8104 			p->valid_to_idx = cpu_to_be16(
8105 				FW_VI_MAC_CMD_VALID_F |
8106 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8107 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8108 		}
8109 
8110 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8111 		if (ret)
8112 			break;
8113 
8114 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8115 			u16 index = FW_VI_MAC_CMD_IDX_G(
8116 						be16_to_cpu(p->valid_to_idx));
8117 
8118 			if (index < max_naddr)
8119 				nfilters++;
8120 		}
8121 
8122 		offset += fw_naddr;
8123 		rem -= fw_naddr;
8124 	}
8125 
8126 	if (ret == 0)
8127 		ret = nfilters;
8128 	return ret;
8129 }
8130 
8131 /**
8132  *	t4_change_mac - modifies the exact-match filter for a MAC address
8133  *	@adap: the adapter
8134  *	@mbox: mailbox to use for the FW command
8135  *	@viid: the VI id
8136  *	@idx: index of existing filter for old value of MAC address, or -1
8137  *	@addr: the new MAC address value
8138  *	@persist: whether a new MAC allocation should be persistent
8139  *	@smt_idx: the destination to store the new SMT index.
8140  *
8141  *	Modifies an exact-match filter and sets it to the new MAC address.
8142  *	Note that in general it is not possible to modify the value of a given
8143  *	filter so the generic way to modify an address filter is to free the one
8144  *	being used by the old address value and allocate a new filter for the
8145  *	new address value.  @idx can be -1 if the address is a new addition.
8146  *
8147  *	Returns a negative error number or the index of the filter with the new
8148  *	MAC value.
8149  */
8150 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8151 		  int idx, const u8 *addr, bool persist, u8 *smt_idx)
8152 {
8153 	int ret, mode;
8154 	struct fw_vi_mac_cmd c;
8155 	struct fw_vi_mac_exact *p = c.u.exact;
8156 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8157 
8158 	if (idx < 0)                             /* new allocation */
8159 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8160 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8161 
8162 	memset(&c, 0, sizeof(c));
8163 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8164 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8165 				   FW_VI_MAC_CMD_VIID_V(viid));
8166 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8167 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8168 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8169 				      FW_VI_MAC_CMD_IDX_V(idx));
8170 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8171 
8172 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8173 	if (ret == 0) {
8174 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8175 		if (ret >= max_mac_addr)
8176 			ret = -ENOMEM;
8177 		if (smt_idx) {
8178 			if (adap->params.viid_smt_extn_support) {
8179 				*smt_idx = FW_VI_MAC_CMD_SMTID_G
8180 						    (be32_to_cpu(c.op_to_viid));
8181 			} else {
8182 				/* In T4/T5, SMT contains 256 SMAC entries
8183 				 * organized in 128 rows of 2 entries each.
8184 				 * In T6, SMT contains 256 SMAC entries in
8185 				 * 256 rows.
8186 				 */
8187 				if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8188 								     CHELSIO_T5)
8189 					*smt_idx = (viid & FW_VIID_VIN_M) << 1;
8190 				else
8191 					*smt_idx = (viid & FW_VIID_VIN_M);
8192 			}
8193 		}
8194 	}
8195 	return ret;
8196 }
8197 
8198 /**
8199  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8200  *	@adap: the adapter
8201  *	@mbox: mailbox to use for the FW command
8202  *	@viid: the VI id
8203  *	@ucast: whether the hash filter should also match unicast addresses
8204  *	@vec: the value to be written to the hash filter
8205  *	@sleep_ok: call is allowed to sleep
8206  *
8207  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8208  */
8209 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8210 		     bool ucast, u64 vec, bool sleep_ok)
8211 {
8212 	struct fw_vi_mac_cmd c;
8213 
8214 	memset(&c, 0, sizeof(c));
8215 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8216 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8217 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8218 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8219 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8220 					  FW_CMD_LEN16_V(1));
8221 	c.u.hash.hashvec = cpu_to_be64(vec);
8222 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8223 }
8224 
8225 /**
8226  *      t4_enable_vi_params - enable/disable a virtual interface
8227  *      @adap: the adapter
8228  *      @mbox: mailbox to use for the FW command
8229  *      @viid: the VI id
8230  *      @rx_en: 1=enable Rx, 0=disable Rx
8231  *      @tx_en: 1=enable Tx, 0=disable Tx
8232  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8233  *
8234  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8235  *      only makes sense when enabling a Virtual Interface ...
8236  */
8237 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8238 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8239 {
8240 	struct fw_vi_enable_cmd c;
8241 
8242 	memset(&c, 0, sizeof(c));
8243 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8244 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8245 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8246 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8247 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8248 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8249 				     FW_LEN16(c));
8250 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8251 }
8252 
8253 /**
8254  *	t4_enable_vi - enable/disable a virtual interface
8255  *	@adap: the adapter
8256  *	@mbox: mailbox to use for the FW command
8257  *	@viid: the VI id
8258  *	@rx_en: 1=enable Rx, 0=disable Rx
8259  *	@tx_en: 1=enable Tx, 0=disable Tx
8260  *
8261  *	Enables/disables a virtual interface.
8262  */
8263 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8264 		 bool rx_en, bool tx_en)
8265 {
8266 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8267 }
8268 
8269 /**
8270  *	t4_enable_pi_params - enable/disable a Port's Virtual Interface
8271  *      @adap: the adapter
8272  *      @mbox: mailbox to use for the FW command
8273  *      @pi: the Port Information structure
8274  *      @rx_en: 1=enable Rx, 0=disable Rx
8275  *      @tx_en: 1=enable Tx, 0=disable Tx
8276  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8277  *
8278  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8279  *	Enable only makes sense when enabling a Virtual Interface ...
8280  *	If the Virtual Interface enable/disable operation is successful,
8281  *	we notify the OS-specific code of a potential Link Status change
8282  *	via the OS Contract API t4_os_link_changed().
8283  */
8284 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8285 			struct port_info *pi,
8286 			bool rx_en, bool tx_en, bool dcb_en)
8287 {
8288 	int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8289 				      rx_en, tx_en, dcb_en);
8290 	if (ret)
8291 		return ret;
8292 	t4_os_link_changed(adap, pi->port_id,
8293 			   rx_en && tx_en && pi->link_cfg.link_ok);
8294 	return 0;
8295 }
8296 
8297 /**
8298  *	t4_identify_port - identify a VI's port by blinking its LED
8299  *	@adap: the adapter
8300  *	@mbox: mailbox to use for the FW command
8301  *	@viid: the VI id
8302  *	@nblinks: how many times to blink LED at 2.5 Hz
8303  *
8304  *	Identifies a VI's port by blinking its LED.
8305  */
8306 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8307 		     unsigned int nblinks)
8308 {
8309 	struct fw_vi_enable_cmd c;
8310 
8311 	memset(&c, 0, sizeof(c));
8312 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8313 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8314 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8315 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8316 	c.blinkdur = cpu_to_be16(nblinks);
8317 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8318 }
8319 
8320 /**
8321  *	t4_iq_stop - stop an ingress queue and its FLs
8322  *	@adap: the adapter
8323  *	@mbox: mailbox to use for the FW command
8324  *	@pf: the PF owning the queues
8325  *	@vf: the VF owning the queues
8326  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8327  *	@iqid: ingress queue id
8328  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8329  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8330  *
8331  *	Stops an ingress queue and its associated FLs, if any.  This causes
8332  *	any current or future data/messages destined for these queues to be
8333  *	tossed.
8334  */
8335 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8336 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8337 	       unsigned int fl0id, unsigned int fl1id)
8338 {
8339 	struct fw_iq_cmd c;
8340 
8341 	memset(&c, 0, sizeof(c));
8342 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8343 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8344 				  FW_IQ_CMD_VFN_V(vf));
8345 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8346 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8347 	c.iqid = cpu_to_be16(iqid);
8348 	c.fl0id = cpu_to_be16(fl0id);
8349 	c.fl1id = cpu_to_be16(fl1id);
8350 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8351 }
8352 
8353 /**
8354  *	t4_iq_free - free an ingress queue and its FLs
8355  *	@adap: the adapter
8356  *	@mbox: mailbox to use for the FW command
8357  *	@pf: the PF owning the queues
8358  *	@vf: the VF owning the queues
8359  *	@iqtype: the ingress queue type
8360  *	@iqid: ingress queue id
8361  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8362  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8363  *
8364  *	Frees an ingress queue and its associated FLs, if any.
8365  */
8366 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8367 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8368 	       unsigned int fl0id, unsigned int fl1id)
8369 {
8370 	struct fw_iq_cmd c;
8371 
8372 	memset(&c, 0, sizeof(c));
8373 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8374 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8375 				  FW_IQ_CMD_VFN_V(vf));
8376 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8377 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8378 	c.iqid = cpu_to_be16(iqid);
8379 	c.fl0id = cpu_to_be16(fl0id);
8380 	c.fl1id = cpu_to_be16(fl1id);
8381 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8382 }
8383 
8384 /**
8385  *	t4_eth_eq_free - free an Ethernet egress queue
8386  *	@adap: the adapter
8387  *	@mbox: mailbox to use for the FW command
8388  *	@pf: the PF owning the queue
8389  *	@vf: the VF owning the queue
8390  *	@eqid: egress queue id
8391  *
8392  *	Frees an Ethernet egress queue.
8393  */
8394 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8395 		   unsigned int vf, unsigned int eqid)
8396 {
8397 	struct fw_eq_eth_cmd c;
8398 
8399 	memset(&c, 0, sizeof(c));
8400 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8401 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8402 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8403 				  FW_EQ_ETH_CMD_VFN_V(vf));
8404 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8405 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8406 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8407 }
8408 
8409 /**
8410  *	t4_ctrl_eq_free - free a control egress queue
8411  *	@adap: the adapter
8412  *	@mbox: mailbox to use for the FW command
8413  *	@pf: the PF owning the queue
8414  *	@vf: the VF owning the queue
8415  *	@eqid: egress queue id
8416  *
8417  *	Frees a control egress queue.
8418  */
8419 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8420 		    unsigned int vf, unsigned int eqid)
8421 {
8422 	struct fw_eq_ctrl_cmd c;
8423 
8424 	memset(&c, 0, sizeof(c));
8425 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8426 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8427 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8428 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8429 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8430 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8431 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8432 }
8433 
8434 /**
8435  *	t4_ofld_eq_free - free an offload egress queue
8436  *	@adap: the adapter
8437  *	@mbox: mailbox to use for the FW command
8438  *	@pf: the PF owning the queue
8439  *	@vf: the VF owning the queue
8440  *	@eqid: egress queue id
8441  *
8442  *	Frees a control egress queue.
8443  */
8444 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8445 		    unsigned int vf, unsigned int eqid)
8446 {
8447 	struct fw_eq_ofld_cmd c;
8448 
8449 	memset(&c, 0, sizeof(c));
8450 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8451 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8452 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8453 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8454 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8455 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8456 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8457 }
8458 
8459 /**
8460  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8461  *	@link_down_rc: Link Down Reason Code
8462  *
8463  *	Returns a string representation of the Link Down Reason Code.
8464  */
8465 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8466 {
8467 	static const char * const reason[] = {
8468 		"Link Down",
8469 		"Remote Fault",
8470 		"Auto-negotiation Failure",
8471 		"Reserved",
8472 		"Insufficient Airflow",
8473 		"Unable To Determine Reason",
8474 		"No RX Signal Detected",
8475 		"Reserved",
8476 	};
8477 
8478 	if (link_down_rc >= ARRAY_SIZE(reason))
8479 		return "Bad Reason Code";
8480 
8481 	return reason[link_down_rc];
8482 }
8483 
8484 /* Return the highest speed set in the port capabilities, in Mb/s. */
8485 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8486 {
8487 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8488 		do { \
8489 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8490 				return __speed; \
8491 		} while (0)
8492 
8493 	TEST_SPEED_RETURN(400G, 400000);
8494 	TEST_SPEED_RETURN(200G, 200000);
8495 	TEST_SPEED_RETURN(100G, 100000);
8496 	TEST_SPEED_RETURN(50G,   50000);
8497 	TEST_SPEED_RETURN(40G,   40000);
8498 	TEST_SPEED_RETURN(25G,   25000);
8499 	TEST_SPEED_RETURN(10G,   10000);
8500 	TEST_SPEED_RETURN(1G,     1000);
8501 	TEST_SPEED_RETURN(100M,    100);
8502 
8503 	#undef TEST_SPEED_RETURN
8504 
8505 	return 0;
8506 }
8507 
8508 /**
8509  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8510  *	@acaps: advertised Port Capabilities
8511  *
8512  *	Get the highest speed for the port from the advertised Port
8513  *	Capabilities.  It will be either the highest speed from the list of
8514  *	speeds or whatever user has set using ethtool.
8515  */
8516 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8517 {
8518 	#define TEST_SPEED_RETURN(__caps_speed) \
8519 		do { \
8520 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8521 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8522 		} while (0)
8523 
8524 	TEST_SPEED_RETURN(400G);
8525 	TEST_SPEED_RETURN(200G);
8526 	TEST_SPEED_RETURN(100G);
8527 	TEST_SPEED_RETURN(50G);
8528 	TEST_SPEED_RETURN(40G);
8529 	TEST_SPEED_RETURN(25G);
8530 	TEST_SPEED_RETURN(10G);
8531 	TEST_SPEED_RETURN(1G);
8532 	TEST_SPEED_RETURN(100M);
8533 
8534 	#undef TEST_SPEED_RETURN
8535 
8536 	return 0;
8537 }
8538 
8539 /**
8540  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8541  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8542  *
8543  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8544  *	32-bit Port Capabilities value.
8545  */
8546 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8547 {
8548 	fw_port_cap32_t linkattr = 0;
8549 
8550 	/* Unfortunately the format of the Link Status in the old
8551 	 * 16-bit Port Information message isn't the same as the
8552 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8553 	 */
8554 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8555 		linkattr |= FW_PORT_CAP32_FC_RX;
8556 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8557 		linkattr |= FW_PORT_CAP32_FC_TX;
8558 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8559 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8560 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8561 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8562 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8563 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8564 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8565 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8566 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8567 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8568 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8569 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8570 
8571 	return linkattr;
8572 }
8573 
8574 /**
8575  *	t4_handle_get_port_info - process a FW reply message
8576  *	@pi: the port info
8577  *	@rpl: start of the FW message
8578  *
8579  *	Processes a GET_PORT_INFO FW reply message.
8580  */
8581 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8582 {
8583 	const struct fw_port_cmd *cmd = (const void *)rpl;
8584 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8585 	struct link_config *lc = &pi->link_cfg;
8586 	struct adapter *adapter = pi->adapter;
8587 	unsigned int speed, fc, fec, adv_fc;
8588 	enum fw_port_module_type mod_type;
8589 	int action, link_ok, linkdnrc;
8590 	enum fw_port_type port_type;
8591 
8592 	/* Extract the various fields from the Port Information message.
8593 	 */
8594 	action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8595 	switch (action) {
8596 	case FW_PORT_ACTION_GET_PORT_INFO: {
8597 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8598 
8599 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8600 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8601 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8602 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8603 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8604 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8605 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8606 		linkattr = lstatus_to_fwcap(lstatus);
8607 		break;
8608 	}
8609 
8610 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8611 		u32 lstatus32;
8612 
8613 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8614 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8615 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8616 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8617 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8618 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8619 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8620 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8621 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8622 		break;
8623 	}
8624 
8625 	default:
8626 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8627 			be32_to_cpu(cmd->action_to_len16));
8628 		return;
8629 	}
8630 
8631 	fec = fwcap_to_cc_fec(acaps);
8632 	adv_fc = fwcap_to_cc_pause(acaps);
8633 	fc = fwcap_to_cc_pause(linkattr);
8634 	speed = fwcap_to_speed(linkattr);
8635 
8636 	/* Reset state for communicating new Transceiver Module status and
8637 	 * whether the OS-dependent layer wants us to redo the current
8638 	 * "sticky" L1 Configure Link Parameters.
8639 	 */
8640 	lc->new_module = false;
8641 	lc->redo_l1cfg = false;
8642 
8643 	if (mod_type != pi->mod_type) {
8644 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8645 		 * various fundamental Port Capabilities which used to be
8646 		 * immutable can now change radically.  We can now have
8647 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8648 		 * all change based on what Transceiver Module is inserted.
8649 		 * So we need to record the Physical "Port" Capabilities on
8650 		 * every Transceiver Module change.
8651 		 */
8652 		lc->pcaps = pcaps;
8653 
8654 		/* When a new Transceiver Module is inserted, the Firmware
8655 		 * will examine its i2c EPROM to determine its type and
8656 		 * general operating parameters including things like Forward
8657 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8658 		 * how to interpret these i2c values to determine default
8659 		 * "sutomatic" settings.  We record these for future use when
8660 		 * the user explicitly requests these standards-based values.
8661 		 */
8662 		lc->def_acaps = acaps;
8663 
8664 		/* Some versions of the early T6 Firmware "cheated" when
8665 		 * handling different Transceiver Modules by changing the
8666 		 * underlaying Port Type reported to the Host Drivers.  As
8667 		 * such we need to capture whatever Port Type the Firmware
8668 		 * sends us and record it in case it's different from what we
8669 		 * were told earlier.  Unfortunately, since Firmware is
8670 		 * forever, we'll need to keep this code here forever, but in
8671 		 * later T6 Firmware it should just be an assignment of the
8672 		 * same value already recorded.
8673 		 */
8674 		pi->port_type = port_type;
8675 
8676 		/* Record new Module Type information.
8677 		 */
8678 		pi->mod_type = mod_type;
8679 
8680 		/* Let the OS-dependent layer know if we have a new
8681 		 * Transceiver Module inserted.
8682 		 */
8683 		lc->new_module = t4_is_inserted_mod_type(mod_type);
8684 
8685 		t4_os_portmod_changed(adapter, pi->port_id);
8686 	}
8687 
8688 	if (link_ok != lc->link_ok || speed != lc->speed ||
8689 	    fc != lc->fc || adv_fc != lc->advertised_fc ||
8690 	    fec != lc->fec) {
8691 		/* something changed */
8692 		if (!link_ok && lc->link_ok) {
8693 			lc->link_down_rc = linkdnrc;
8694 			dev_warn_ratelimited(adapter->pdev_dev,
8695 					     "Port %d link down, reason: %s\n",
8696 					     pi->tx_chan,
8697 					     t4_link_down_rc_str(linkdnrc));
8698 		}
8699 		lc->link_ok = link_ok;
8700 		lc->speed = speed;
8701 		lc->advertised_fc = adv_fc;
8702 		lc->fc = fc;
8703 		lc->fec = fec;
8704 
8705 		lc->lpacaps = lpacaps;
8706 		lc->acaps = acaps & ADVERT_MASK;
8707 
8708 		/* If we're not physically capable of Auto-Negotiation, note
8709 		 * this as Auto-Negotiation disabled.  Otherwise, we track
8710 		 * what Auto-Negotiation settings we have.  Note parallel
8711 		 * structure in t4_link_l1cfg_core() and init_link_config().
8712 		 */
8713 		if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8714 			lc->autoneg = AUTONEG_DISABLE;
8715 		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8716 			lc->autoneg = AUTONEG_ENABLE;
8717 		} else {
8718 			/* When Autoneg is disabled, user needs to set
8719 			 * single speed.
8720 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8721 			 */
8722 			lc->acaps = 0;
8723 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8724 			lc->autoneg = AUTONEG_DISABLE;
8725 		}
8726 
8727 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8728 	}
8729 
8730 	/* If we have a new Transceiver Module and the OS-dependent code has
8731 	 * told us that it wants us to redo whatever "sticky" L1 Configuration
8732 	 * Link Parameters are set, do that now.
8733 	 */
8734 	if (lc->new_module && lc->redo_l1cfg) {
8735 		struct link_config old_lc;
8736 		int ret;
8737 
8738 		/* Save the current L1 Configuration and restore it if an
8739 		 * error occurs.  We probably should fix the l1_cfg*()
8740 		 * routines not to change the link_config when an error
8741 		 * occurs ...
8742 		 */
8743 		old_lc = *lc;
8744 		ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8745 		if (ret) {
8746 			*lc = old_lc;
8747 			dev_warn(adapter->pdev_dev,
8748 				 "Attempt to update new Transceiver Module settings failed\n");
8749 		}
8750 	}
8751 	lc->new_module = false;
8752 	lc->redo_l1cfg = false;
8753 }
8754 
8755 /**
8756  *	t4_update_port_info - retrieve and update port information if changed
8757  *	@pi: the port_info
8758  *
8759  *	We issue a Get Port Information Command to the Firmware and, if
8760  *	successful, we check to see if anything is different from what we
8761  *	last recorded and update things accordingly.
8762  */
8763 int t4_update_port_info(struct port_info *pi)
8764 {
8765 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8766 	struct fw_port_cmd port_cmd;
8767 	int ret;
8768 
8769 	memset(&port_cmd, 0, sizeof(port_cmd));
8770 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8771 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8772 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8773 	port_cmd.action_to_len16 = cpu_to_be32(
8774 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8775 				     ? FW_PORT_ACTION_GET_PORT_INFO
8776 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8777 		FW_LEN16(port_cmd));
8778 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8779 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8780 	if (ret)
8781 		return ret;
8782 
8783 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8784 	return 0;
8785 }
8786 
8787 /**
8788  *	t4_get_link_params - retrieve basic link parameters for given port
8789  *	@pi: the port
8790  *	@link_okp: value return pointer for link up/down
8791  *	@speedp: value return pointer for speed (Mb/s)
8792  *	@mtup: value return pointer for mtu
8793  *
8794  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8795  *	and MTU for a specified port.  A negative error is returned on
8796  *	failure; 0 on success.
8797  */
8798 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8799 		       unsigned int *speedp, unsigned int *mtup)
8800 {
8801 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8802 	unsigned int action, link_ok, mtu;
8803 	struct fw_port_cmd port_cmd;
8804 	fw_port_cap32_t linkattr;
8805 	int ret;
8806 
8807 	memset(&port_cmd, 0, sizeof(port_cmd));
8808 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8809 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8810 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8811 	action = (fw_caps == FW_CAPS16
8812 		  ? FW_PORT_ACTION_GET_PORT_INFO
8813 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8814 	port_cmd.action_to_len16 = cpu_to_be32(
8815 		FW_PORT_CMD_ACTION_V(action) |
8816 		FW_LEN16(port_cmd));
8817 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8818 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8819 	if (ret)
8820 		return ret;
8821 
8822 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8823 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8824 
8825 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8826 		linkattr = lstatus_to_fwcap(lstatus);
8827 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8828 	} else {
8829 		u32 lstatus32 =
8830 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8831 
8832 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8833 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8834 		mtu = FW_PORT_CMD_MTU32_G(
8835 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8836 	}
8837 
8838 	if (link_okp)
8839 		*link_okp = link_ok;
8840 	if (speedp)
8841 		*speedp = fwcap_to_speed(linkattr);
8842 	if (mtup)
8843 		*mtup = mtu;
8844 
8845 	return 0;
8846 }
8847 
8848 /**
8849  *      t4_handle_fw_rpl - process a FW reply message
8850  *      @adap: the adapter
8851  *      @rpl: start of the FW message
8852  *
8853  *      Processes a FW message, such as link state change messages.
8854  */
8855 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8856 {
8857 	u8 opcode = *(const u8 *)rpl;
8858 
8859 	/* This might be a port command ... this simplifies the following
8860 	 * conditionals ...  We can get away with pre-dereferencing
8861 	 * action_to_len16 because it's in the first 16 bytes and all messages
8862 	 * will be at least that long.
8863 	 */
8864 	const struct fw_port_cmd *p = (const void *)rpl;
8865 	unsigned int action =
8866 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8867 
8868 	if (opcode == FW_PORT_CMD &&
8869 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8870 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8871 		int i;
8872 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8873 		struct port_info *pi = NULL;
8874 
8875 		for_each_port(adap, i) {
8876 			pi = adap2pinfo(adap, i);
8877 			if (pi->tx_chan == chan)
8878 				break;
8879 		}
8880 
8881 		t4_handle_get_port_info(pi, rpl);
8882 	} else {
8883 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8884 			 opcode);
8885 		return -EINVAL;
8886 	}
8887 	return 0;
8888 }
8889 
8890 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8891 {
8892 	u16 val;
8893 
8894 	if (pci_is_pcie(adapter->pdev)) {
8895 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8896 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8897 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8898 	}
8899 }
8900 
8901 /**
8902  *	init_link_config - initialize a link's SW state
8903  *	@lc: pointer to structure holding the link state
8904  *	@pcaps: link Port Capabilities
8905  *	@acaps: link current Advertised Port Capabilities
8906  *
8907  *	Initializes the SW state maintained for each link, including the link's
8908  *	capabilities and default speed/flow-control/autonegotiation settings.
8909  */
8910 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8911 			     fw_port_cap32_t acaps)
8912 {
8913 	lc->pcaps = pcaps;
8914 	lc->def_acaps = acaps;
8915 	lc->lpacaps = 0;
8916 	lc->speed_caps = 0;
8917 	lc->speed = 0;
8918 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8919 
8920 	/* For Forward Error Control, we default to whatever the Firmware
8921 	 * tells us the Link is currently advertising.
8922 	 */
8923 	lc->requested_fec = FEC_AUTO;
8924 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8925 
8926 	/* If the Port is capable of Auto-Negtotiation, initialize it as
8927 	 * "enabled" and copy over all of the Physical Port Capabilities
8928 	 * to the Advertised Port Capabilities.  Otherwise mark it as
8929 	 * Auto-Negotiate disabled and select the highest supported speed
8930 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
8931 	 * and t4_handle_get_port_info().
8932 	 */
8933 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8934 		lc->acaps = lc->pcaps & ADVERT_MASK;
8935 		lc->autoneg = AUTONEG_ENABLE;
8936 		lc->requested_fc |= PAUSE_AUTONEG;
8937 	} else {
8938 		lc->acaps = 0;
8939 		lc->autoneg = AUTONEG_DISABLE;
8940 		lc->speed_caps = fwcap_to_fwspeed(acaps);
8941 	}
8942 }
8943 
8944 #define CIM_PF_NOACCESS 0xeeeeeeee
8945 
8946 int t4_wait_dev_ready(void __iomem *regs)
8947 {
8948 	u32 whoami;
8949 
8950 	whoami = readl(regs + PL_WHOAMI_A);
8951 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8952 		return 0;
8953 
8954 	msleep(500);
8955 	whoami = readl(regs + PL_WHOAMI_A);
8956 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8957 }
8958 
8959 struct flash_desc {
8960 	u32 vendor_and_model_id;
8961 	u32 size_mb;
8962 };
8963 
8964 static int t4_get_flash_params(struct adapter *adap)
8965 {
8966 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8967 	 * to the preexisting code.  All flash parts have 64KB sectors.
8968 	 */
8969 	static struct flash_desc supported_flash[] = {
8970 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8971 	};
8972 
8973 	unsigned int part, manufacturer;
8974 	unsigned int density, size = 0;
8975 	u32 flashid = 0;
8976 	int ret;
8977 
8978 	/* Issue a Read ID Command to the Flash part.  We decode supported
8979 	 * Flash parts and their sizes from this.  There's a newer Query
8980 	 * Command which can retrieve detailed geometry information but many
8981 	 * Flash parts don't support it.
8982 	 */
8983 
8984 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8985 	if (!ret)
8986 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8987 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8988 	if (ret)
8989 		return ret;
8990 
8991 	/* Check to see if it's one of our non-standard supported Flash parts.
8992 	 */
8993 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8994 		if (supported_flash[part].vendor_and_model_id == flashid) {
8995 			adap->params.sf_size = supported_flash[part].size_mb;
8996 			adap->params.sf_nsec =
8997 				adap->params.sf_size / SF_SEC_SIZE;
8998 			goto found;
8999 		}
9000 
9001 	/* Decode Flash part size.  The code below looks repetitive with
9002 	 * common encodings, but that's not guaranteed in the JEDEC
9003 	 * specification for the Read JEDEC ID command.  The only thing that
9004 	 * we're guaranteed by the JEDEC specification is where the
9005 	 * Manufacturer ID is in the returned result.  After that each
9006 	 * Manufacturer ~could~ encode things completely differently.
9007 	 * Note, all Flash parts must have 64KB sectors.
9008 	 */
9009 	manufacturer = flashid & 0xff;
9010 	switch (manufacturer) {
9011 	case 0x20: { /* Micron/Numonix */
9012 		/* This Density -> Size decoding table is taken from Micron
9013 		 * Data Sheets.
9014 		 */
9015 		density = (flashid >> 16) & 0xff;
9016 		switch (density) {
9017 		case 0x14: /* 1MB */
9018 			size = 1 << 20;
9019 			break;
9020 		case 0x15: /* 2MB */
9021 			size = 1 << 21;
9022 			break;
9023 		case 0x16: /* 4MB */
9024 			size = 1 << 22;
9025 			break;
9026 		case 0x17: /* 8MB */
9027 			size = 1 << 23;
9028 			break;
9029 		case 0x18: /* 16MB */
9030 			size = 1 << 24;
9031 			break;
9032 		case 0x19: /* 32MB */
9033 			size = 1 << 25;
9034 			break;
9035 		case 0x20: /* 64MB */
9036 			size = 1 << 26;
9037 			break;
9038 		case 0x21: /* 128MB */
9039 			size = 1 << 27;
9040 			break;
9041 		case 0x22: /* 256MB */
9042 			size = 1 << 28;
9043 			break;
9044 		}
9045 		break;
9046 	}
9047 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9048 		/* This Density -> Size decoding table is taken from ISSI
9049 		 * Data Sheets.
9050 		 */
9051 		density = (flashid >> 16) & 0xff;
9052 		switch (density) {
9053 		case 0x16: /* 32 MB */
9054 			size = 1 << 25;
9055 			break;
9056 		case 0x17: /* 64MB */
9057 			size = 1 << 26;
9058 			break;
9059 		}
9060 		break;
9061 	}
9062 	case 0xc2: { /* Macronix */
9063 		/* This Density -> Size decoding table is taken from Macronix
9064 		 * Data Sheets.
9065 		 */
9066 		density = (flashid >> 16) & 0xff;
9067 		switch (density) {
9068 		case 0x17: /* 8MB */
9069 			size = 1 << 23;
9070 			break;
9071 		case 0x18: /* 16MB */
9072 			size = 1 << 24;
9073 			break;
9074 		}
9075 		break;
9076 	}
9077 	case 0xef: { /* Winbond */
9078 		/* This Density -> Size decoding table is taken from Winbond
9079 		 * Data Sheets.
9080 		 */
9081 		density = (flashid >> 16) & 0xff;
9082 		switch (density) {
9083 		case 0x17: /* 8MB */
9084 			size = 1 << 23;
9085 			break;
9086 		case 0x18: /* 16MB */
9087 			size = 1 << 24;
9088 			break;
9089 		}
9090 		break;
9091 	}
9092 	}
9093 
9094 	/* If we didn't recognize the FLASH part, that's no real issue: the
9095 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9096 	 * use a FLASH part which is at least 4MB in size and has 64KB
9097 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9098 	 * than 4MB, but that's all we really need.
9099 	 */
9100 	if (size == 0) {
9101 		dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9102 			 flashid);
9103 		size = 1 << 22;
9104 	}
9105 
9106 	/* Store decoded Flash size and fall through into vetting code. */
9107 	adap->params.sf_size = size;
9108 	adap->params.sf_nsec = size / SF_SEC_SIZE;
9109 
9110 found:
9111 	if (adap->params.sf_size < FLASH_MIN_SIZE)
9112 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9113 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9114 	return 0;
9115 }
9116 
9117 /**
9118  *	t4_prep_adapter - prepare SW and HW for operation
9119  *	@adapter: the adapter
9120  *
9121  *	Initialize adapter SW state for the various HW modules, set initial
9122  *	values for some adapter tunables, take PHYs out of reset, and
9123  *	initialize the MDIO interface.
9124  */
9125 int t4_prep_adapter(struct adapter *adapter)
9126 {
9127 	int ret, ver;
9128 	uint16_t device_id;
9129 	u32 pl_rev;
9130 
9131 	get_pci_mode(adapter, &adapter->params.pci);
9132 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9133 
9134 	ret = t4_get_flash_params(adapter);
9135 	if (ret < 0) {
9136 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9137 		return ret;
9138 	}
9139 
9140 	/* Retrieve adapter's device ID
9141 	 */
9142 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9143 	ver = device_id >> 12;
9144 	adapter->params.chip = 0;
9145 	switch (ver) {
9146 	case CHELSIO_T4:
9147 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9148 		adapter->params.arch.sge_fl_db = DBPRIO_F;
9149 		adapter->params.arch.mps_tcam_size =
9150 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
9151 		adapter->params.arch.mps_rplc_size = 128;
9152 		adapter->params.arch.nchan = NCHAN;
9153 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9154 		adapter->params.arch.vfcount = 128;
9155 		/* Congestion map is for 4 channels so that
9156 		 * MPS can have 4 priority per port.
9157 		 */
9158 		adapter->params.arch.cng_ch_bits_log = 2;
9159 		break;
9160 	case CHELSIO_T5:
9161 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9162 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9163 		adapter->params.arch.mps_tcam_size =
9164 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9165 		adapter->params.arch.mps_rplc_size = 128;
9166 		adapter->params.arch.nchan = NCHAN;
9167 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9168 		adapter->params.arch.vfcount = 128;
9169 		adapter->params.arch.cng_ch_bits_log = 2;
9170 		break;
9171 	case CHELSIO_T6:
9172 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9173 		adapter->params.arch.sge_fl_db = 0;
9174 		adapter->params.arch.mps_tcam_size =
9175 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9176 		adapter->params.arch.mps_rplc_size = 256;
9177 		adapter->params.arch.nchan = 2;
9178 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9179 		adapter->params.arch.vfcount = 256;
9180 		/* Congestion map will be for 2 channels so that
9181 		 * MPS can have 8 priority per port.
9182 		 */
9183 		adapter->params.arch.cng_ch_bits_log = 3;
9184 		break;
9185 	default:
9186 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9187 			device_id);
9188 		return -EINVAL;
9189 	}
9190 
9191 	adapter->params.cim_la_size = CIMLA_SIZE;
9192 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9193 
9194 	/*
9195 	 * Default port for debugging in case we can't reach FW.
9196 	 */
9197 	adapter->params.nports = 1;
9198 	adapter->params.portvec = 1;
9199 	adapter->params.vpd.cclk = 50000;
9200 
9201 	/* Set PCIe completion timeout to 4 seconds. */
9202 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9203 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9204 	return 0;
9205 }
9206 
9207 /**
9208  *	t4_shutdown_adapter - shut down adapter, host & wire
9209  *	@adapter: the adapter
9210  *
9211  *	Perform an emergency shutdown of the adapter and stop it from
9212  *	continuing any further communication on the ports or DMA to the
9213  *	host.  This is typically used when the adapter and/or firmware
9214  *	have crashed and we want to prevent any further accidental
9215  *	communication with the rest of the world.  This will also force
9216  *	the port Link Status to go down -- if register writes work --
9217  *	which should help our peers figure out that we're down.
9218  */
9219 int t4_shutdown_adapter(struct adapter *adapter)
9220 {
9221 	int port;
9222 
9223 	t4_intr_disable(adapter);
9224 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9225 	for_each_port(adapter, port) {
9226 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
9227 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
9228 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
9229 
9230 		t4_write_reg(adapter, a_port_cfg,
9231 			     t4_read_reg(adapter, a_port_cfg)
9232 			     & ~SIGNAL_DET_V(1));
9233 	}
9234 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9235 
9236 	return 0;
9237 }
9238 
9239 /**
9240  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9241  *	@adapter: the adapter
9242  *	@qid: the Queue ID
9243  *	@qtype: the Ingress or Egress type for @qid
9244  *	@user: true if this request is for a user mode queue
9245  *	@pbar2_qoffset: BAR2 Queue Offset
9246  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9247  *
9248  *	Returns the BAR2 SGE Queue Registers information associated with the
9249  *	indicated Absolute Queue ID.  These are passed back in return value
9250  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9251  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9252  *
9253  *	This may return an error which indicates that BAR2 SGE Queue
9254  *	registers aren't available.  If an error is not returned, then the
9255  *	following values are returned:
9256  *
9257  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9258  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9259  *
9260  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9261  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9262  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9263  *	then these "Inferred Queue ID" register may not be used.
9264  */
9265 int t4_bar2_sge_qregs(struct adapter *adapter,
9266 		      unsigned int qid,
9267 		      enum t4_bar2_qtype qtype,
9268 		      int user,
9269 		      u64 *pbar2_qoffset,
9270 		      unsigned int *pbar2_qid)
9271 {
9272 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9273 	u64 bar2_page_offset, bar2_qoffset;
9274 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9275 
9276 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9277 	if (!user && is_t4(adapter->params.chip))
9278 		return -EINVAL;
9279 
9280 	/* Get our SGE Page Size parameters.
9281 	 */
9282 	page_shift = adapter->params.sge.hps + 10;
9283 	page_size = 1 << page_shift;
9284 
9285 	/* Get the right Queues per Page parameters for our Queue.
9286 	 */
9287 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9288 		     ? adapter->params.sge.eq_qpp
9289 		     : adapter->params.sge.iq_qpp);
9290 	qpp_mask = (1 << qpp_shift) - 1;
9291 
9292 	/*  Calculate the basics of the BAR2 SGE Queue register area:
9293 	 *  o The BAR2 page the Queue registers will be in.
9294 	 *  o The BAR2 Queue ID.
9295 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9296 	 */
9297 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9298 	bar2_qid = qid & qpp_mask;
9299 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9300 
9301 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9302 	 * hardware will infer the Absolute Queue ID simply from the writes to
9303 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9304 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9305 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9306 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9307 	 * from the BAR2 Page and BAR2 Queue ID.
9308 	 *
9309 	 * One important censequence of this is that some BAR2 SGE registers
9310 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9311 	 * there.  But other registers synthesize the SGE Queue ID purely
9312 	 * from the writes to the registers -- the Write Combined Doorbell
9313 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9314 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9315 	 * Queue ID can be inferred from simple writes.
9316 	 */
9317 	bar2_qoffset = bar2_page_offset;
9318 	bar2_qinferred = (bar2_qid_offset < page_size);
9319 	if (bar2_qinferred) {
9320 		bar2_qoffset += bar2_qid_offset;
9321 		bar2_qid = 0;
9322 	}
9323 
9324 	*pbar2_qoffset = bar2_qoffset;
9325 	*pbar2_qid = bar2_qid;
9326 	return 0;
9327 }
9328 
9329 /**
9330  *	t4_init_devlog_params - initialize adapter->params.devlog
9331  *	@adap: the adapter
9332  *
9333  *	Initialize various fields of the adapter's Firmware Device Log
9334  *	Parameters structure.
9335  */
9336 int t4_init_devlog_params(struct adapter *adap)
9337 {
9338 	struct devlog_params *dparams = &adap->params.devlog;
9339 	u32 pf_dparams;
9340 	unsigned int devlog_meminfo;
9341 	struct fw_devlog_cmd devlog_cmd;
9342 	int ret;
9343 
9344 	/* If we're dealing with newer firmware, the Device Log Parameters
9345 	 * are stored in a designated register which allows us to access the
9346 	 * Device Log even if we can't talk to the firmware.
9347 	 */
9348 	pf_dparams =
9349 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9350 	if (pf_dparams) {
9351 		unsigned int nentries, nentries128;
9352 
9353 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9354 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9355 
9356 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9357 		nentries = (nentries128 + 1) * 128;
9358 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9359 
9360 		return 0;
9361 	}
9362 
9363 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9364 	 */
9365 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9366 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9367 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
9368 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9369 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9370 			 &devlog_cmd);
9371 	if (ret)
9372 		return ret;
9373 
9374 	devlog_meminfo =
9375 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9376 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9377 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9378 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9379 
9380 	return 0;
9381 }
9382 
9383 /**
9384  *	t4_init_sge_params - initialize adap->params.sge
9385  *	@adapter: the adapter
9386  *
9387  *	Initialize various fields of the adapter's SGE Parameters structure.
9388  */
9389 int t4_init_sge_params(struct adapter *adapter)
9390 {
9391 	struct sge_params *sge_params = &adapter->params.sge;
9392 	u32 hps, qpp;
9393 	unsigned int s_hps, s_qpp;
9394 
9395 	/* Extract the SGE Page Size for our PF.
9396 	 */
9397 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9398 	s_hps = (HOSTPAGESIZEPF0_S +
9399 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9400 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9401 
9402 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9403 	 */
9404 	s_qpp = (QUEUESPERPAGEPF0_S +
9405 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9406 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9407 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9408 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9409 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9410 
9411 	return 0;
9412 }
9413 
9414 /**
9415  *      t4_init_tp_params - initialize adap->params.tp
9416  *      @adap: the adapter
9417  *      @sleep_ok: if true we may sleep while awaiting command completion
9418  *
9419  *      Initialize various fields of the adapter's TP Parameters structure.
9420  */
9421 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9422 {
9423 	u32 param, val, v;
9424 	int chan, ret;
9425 
9426 
9427 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9428 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
9429 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9430 
9431 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9432 	for (chan = 0; chan < NCHAN; chan++)
9433 		adap->params.tp.tx_modq[chan] = chan;
9434 
9435 	/* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9436 	 * Configuration.
9437 	 */
9438 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9439 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9440 		 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9441 
9442 	/* Read current value */
9443 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9444 			      &param, &val);
9445 	if (ret == 0) {
9446 		dev_info(adap->pdev_dev,
9447 			 "Current filter mode/mask 0x%x:0x%x\n",
9448 			 FW_PARAMS_PARAM_FILTER_MODE_G(val),
9449 			 FW_PARAMS_PARAM_FILTER_MASK_G(val));
9450 		adap->params.tp.vlan_pri_map =
9451 			FW_PARAMS_PARAM_FILTER_MODE_G(val);
9452 		adap->params.tp.filter_mask =
9453 			FW_PARAMS_PARAM_FILTER_MASK_G(val);
9454 	} else {
9455 		dev_info(adap->pdev_dev,
9456 			 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9457 
9458 		/* Incase of older-fw (which doesn't expose the api
9459 		 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9460 		 * the fw api) combination, fall-back to older method of reading
9461 		 * the filter mode from indirect-register
9462 		 */
9463 		t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9464 			       TP_VLAN_PRI_MAP_A, sleep_ok);
9465 
9466 		/* With the older-fw and newer-driver combination we might run
9467 		 * into an issue when user wants to use hash filter region but
9468 		 * the filter_mask is zero, in this case filter_mask validation
9469 		 * is tough. To avoid that we set the filter_mask same as filter
9470 		 * mode, which will behave exactly as the older way of ignoring
9471 		 * the filter mask validation.
9472 		 */
9473 		adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9474 	}
9475 
9476 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9477 		       TP_INGRESS_CONFIG_A, sleep_ok);
9478 
9479 	/* For T6, cache the adapter's compressed error vector
9480 	 * and passing outer header info for encapsulated packets.
9481 	 */
9482 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9483 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9484 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9485 	}
9486 
9487 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9488 	 * shift positions of several elements of the Compressed Filter Tuple
9489 	 * for this adapter which we need frequently ...
9490 	 */
9491 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9492 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9493 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9494 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9495 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9496 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9497 							       PROTOCOL_F);
9498 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9499 								ETHERTYPE_F);
9500 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9501 							       MACMATCH_F);
9502 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9503 								MPSHITTYPE_F);
9504 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9505 							   FRAGMENTATION_F);
9506 
9507 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9508 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9509 	 */
9510 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9511 		adap->params.tp.vnic_shift = -1;
9512 
9513 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9514 	adap->params.tp.hash_filter_mask = v;
9515 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9516 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9517 	return 0;
9518 }
9519 
9520 /**
9521  *      t4_filter_field_shift - calculate filter field shift
9522  *      @adap: the adapter
9523  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9524  *
9525  *      Return the shift position of a filter field within the Compressed
9526  *      Filter Tuple.  The filter field is specified via its selection bit
9527  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9528  */
9529 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9530 {
9531 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9532 	unsigned int sel;
9533 	int field_shift;
9534 
9535 	if ((filter_mode & filter_sel) == 0)
9536 		return -1;
9537 
9538 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9539 		switch (filter_mode & sel) {
9540 		case FCOE_F:
9541 			field_shift += FT_FCOE_W;
9542 			break;
9543 		case PORT_F:
9544 			field_shift += FT_PORT_W;
9545 			break;
9546 		case VNIC_ID_F:
9547 			field_shift += FT_VNIC_ID_W;
9548 			break;
9549 		case VLAN_F:
9550 			field_shift += FT_VLAN_W;
9551 			break;
9552 		case TOS_F:
9553 			field_shift += FT_TOS_W;
9554 			break;
9555 		case PROTOCOL_F:
9556 			field_shift += FT_PROTOCOL_W;
9557 			break;
9558 		case ETHERTYPE_F:
9559 			field_shift += FT_ETHERTYPE_W;
9560 			break;
9561 		case MACMATCH_F:
9562 			field_shift += FT_MACMATCH_W;
9563 			break;
9564 		case MPSHITTYPE_F:
9565 			field_shift += FT_MPSHITTYPE_W;
9566 			break;
9567 		case FRAGMENTATION_F:
9568 			field_shift += FT_FRAGMENTATION_W;
9569 			break;
9570 		}
9571 	}
9572 	return field_shift;
9573 }
9574 
9575 int t4_init_rss_mode(struct adapter *adap, int mbox)
9576 {
9577 	int i, ret;
9578 	struct fw_rss_vi_config_cmd rvc;
9579 
9580 	memset(&rvc, 0, sizeof(rvc));
9581 
9582 	for_each_port(adap, i) {
9583 		struct port_info *p = adap2pinfo(adap, i);
9584 
9585 		rvc.op_to_viid =
9586 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9587 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9588 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9589 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9590 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9591 		if (ret)
9592 			return ret;
9593 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9594 	}
9595 	return 0;
9596 }
9597 
9598 /**
9599  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9600  *	@pi: the port_info
9601  *	@mbox: mailbox to use for the FW command
9602  *	@port: physical port associated with the VI
9603  *	@pf: the PF owning the VI
9604  *	@vf: the VF owning the VI
9605  *	@mac: the MAC address of the VI
9606  *
9607  *	Allocates a virtual interface for the given physical port.  If @mac is
9608  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9609  *	@mac should be large enough to hold an Ethernet address.
9610  *	Returns < 0 on error.
9611  */
9612 int t4_init_portinfo(struct port_info *pi, int mbox,
9613 		     int port, int pf, int vf, u8 mac[])
9614 {
9615 	struct adapter *adapter = pi->adapter;
9616 	unsigned int fw_caps = adapter->params.fw_caps_support;
9617 	struct fw_port_cmd cmd;
9618 	unsigned int rss_size;
9619 	enum fw_port_type port_type;
9620 	int mdio_addr;
9621 	fw_port_cap32_t pcaps, acaps;
9622 	u8 vivld = 0, vin = 0;
9623 	int ret;
9624 
9625 	/* If we haven't yet determined whether we're talking to Firmware
9626 	 * which knows the new 32-bit Port Capabilities, it's time to find
9627 	 * out now.  This will also tell new Firmware to send us Port Status
9628 	 * Updates using the new 32-bit Port Capabilities version of the
9629 	 * Port Information message.
9630 	 */
9631 	if (fw_caps == FW_CAPS_UNKNOWN) {
9632 		u32 param, val;
9633 
9634 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9635 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9636 		val = 1;
9637 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9638 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9639 		adapter->params.fw_caps_support = fw_caps;
9640 	}
9641 
9642 	memset(&cmd, 0, sizeof(cmd));
9643 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9644 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9645 				       FW_PORT_CMD_PORTID_V(port));
9646 	cmd.action_to_len16 = cpu_to_be32(
9647 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9648 				     ? FW_PORT_ACTION_GET_PORT_INFO
9649 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9650 		FW_LEN16(cmd));
9651 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9652 	if (ret)
9653 		return ret;
9654 
9655 	/* Extract the various fields from the Port Information message.
9656 	 */
9657 	if (fw_caps == FW_CAPS16) {
9658 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9659 
9660 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9661 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9662 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9663 			     : -1);
9664 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9665 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9666 	} else {
9667 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9668 
9669 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9670 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9671 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9672 			     : -1);
9673 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9674 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9675 	}
9676 
9677 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9678 			  &vivld, &vin);
9679 	if (ret < 0)
9680 		return ret;
9681 
9682 	pi->viid = ret;
9683 	pi->tx_chan = port;
9684 	pi->lport = port;
9685 	pi->rss_size = rss_size;
9686 	pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9687 
9688 	/* If fw supports returning the VIN as part of FW_VI_CMD,
9689 	 * save the returned values.
9690 	 */
9691 	if (adapter->params.viid_smt_extn_support) {
9692 		pi->vivld = vivld;
9693 		pi->vin = vin;
9694 	} else {
9695 		/* Retrieve the values from VIID */
9696 		pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9697 		pi->vin =  FW_VIID_VIN_G(pi->viid);
9698 	}
9699 
9700 	pi->port_type = port_type;
9701 	pi->mdio_addr = mdio_addr;
9702 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9703 
9704 	init_link_config(&pi->link_cfg, pcaps, acaps);
9705 	return 0;
9706 }
9707 
9708 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9709 {
9710 	u8 addr[6];
9711 	int ret, i, j = 0;
9712 
9713 	for_each_port(adap, i) {
9714 		struct port_info *pi = adap2pinfo(adap, i);
9715 
9716 		while ((adap->params.portvec & (1 << j)) == 0)
9717 			j++;
9718 
9719 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9720 		if (ret)
9721 			return ret;
9722 
9723 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9724 		j++;
9725 	}
9726 	return 0;
9727 }
9728 
9729 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf,
9730 			u16 *mirror_viid)
9731 {
9732 	int ret;
9733 
9734 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL,
9735 			  NULL, NULL);
9736 	if (ret < 0)
9737 		return ret;
9738 
9739 	if (mirror_viid)
9740 		*mirror_viid = ret;
9741 
9742 	return 0;
9743 }
9744 
9745 /**
9746  *	t4_read_cimq_cfg - read CIM queue configuration
9747  *	@adap: the adapter
9748  *	@base: holds the queue base addresses in bytes
9749  *	@size: holds the queue sizes in bytes
9750  *	@thres: holds the queue full thresholds in bytes
9751  *
9752  *	Returns the current configuration of the CIM queues, starting with
9753  *	the IBQs, then the OBQs.
9754  */
9755 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9756 {
9757 	unsigned int i, v;
9758 	int cim_num_obq = is_t4(adap->params.chip) ?
9759 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9760 
9761 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9762 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9763 			     QUENUMSELECT_V(i));
9764 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9765 		/* value is in 256-byte units */
9766 		*base++ = CIMQBASE_G(v) * 256;
9767 		*size++ = CIMQSIZE_G(v) * 256;
9768 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9769 	}
9770 	for (i = 0; i < cim_num_obq; i++) {
9771 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9772 			     QUENUMSELECT_V(i));
9773 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9774 		/* value is in 256-byte units */
9775 		*base++ = CIMQBASE_G(v) * 256;
9776 		*size++ = CIMQSIZE_G(v) * 256;
9777 	}
9778 }
9779 
9780 /**
9781  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9782  *	@adap: the adapter
9783  *	@qid: the queue index
9784  *	@data: where to store the queue contents
9785  *	@n: capacity of @data in 32-bit words
9786  *
9787  *	Reads the contents of the selected CIM queue starting at address 0 up
9788  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9789  *	error and the number of 32-bit words actually read on success.
9790  */
9791 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9792 {
9793 	int i, err, attempts;
9794 	unsigned int addr;
9795 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9796 
9797 	if (qid > 5 || (n & 3))
9798 		return -EINVAL;
9799 
9800 	addr = qid * nwords;
9801 	if (n > nwords)
9802 		n = nwords;
9803 
9804 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9805 	 * Wait for 1 Sec with a delay of 1 usec.
9806 	 */
9807 	attempts = 1000000;
9808 
9809 	for (i = 0; i < n; i++, addr++) {
9810 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9811 			     IBQDBGEN_F);
9812 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9813 				      attempts, 1);
9814 		if (err)
9815 			return err;
9816 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9817 	}
9818 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9819 	return i;
9820 }
9821 
9822 /**
9823  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9824  *	@adap: the adapter
9825  *	@qid: the queue index
9826  *	@data: where to store the queue contents
9827  *	@n: capacity of @data in 32-bit words
9828  *
9829  *	Reads the contents of the selected CIM queue starting at address 0 up
9830  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9831  *	error and the number of 32-bit words actually read on success.
9832  */
9833 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9834 {
9835 	int i, err;
9836 	unsigned int addr, v, nwords;
9837 	int cim_num_obq = is_t4(adap->params.chip) ?
9838 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9839 
9840 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9841 		return -EINVAL;
9842 
9843 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9844 		     QUENUMSELECT_V(qid));
9845 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9846 
9847 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9848 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9849 	if (n > nwords)
9850 		n = nwords;
9851 
9852 	for (i = 0; i < n; i++, addr++) {
9853 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9854 			     OBQDBGEN_F);
9855 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9856 				      2, 1);
9857 		if (err)
9858 			return err;
9859 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9860 	}
9861 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9862 	return i;
9863 }
9864 
9865 /**
9866  *	t4_cim_read - read a block from CIM internal address space
9867  *	@adap: the adapter
9868  *	@addr: the start address within the CIM address space
9869  *	@n: number of words to read
9870  *	@valp: where to store the result
9871  *
9872  *	Reads a block of 4-byte words from the CIM intenal address space.
9873  */
9874 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9875 		unsigned int *valp)
9876 {
9877 	int ret = 0;
9878 
9879 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9880 		return -EBUSY;
9881 
9882 	for ( ; !ret && n--; addr += 4) {
9883 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9884 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9885 				      0, 5, 2);
9886 		if (!ret)
9887 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9888 	}
9889 	return ret;
9890 }
9891 
9892 /**
9893  *	t4_cim_write - write a block into CIM internal address space
9894  *	@adap: the adapter
9895  *	@addr: the start address within the CIM address space
9896  *	@n: number of words to write
9897  *	@valp: set of values to write
9898  *
9899  *	Writes a block of 4-byte words into the CIM intenal address space.
9900  */
9901 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9902 		 const unsigned int *valp)
9903 {
9904 	int ret = 0;
9905 
9906 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9907 		return -EBUSY;
9908 
9909 	for ( ; !ret && n--; addr += 4) {
9910 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9911 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9912 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9913 				      0, 5, 2);
9914 	}
9915 	return ret;
9916 }
9917 
9918 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9919 			 unsigned int val)
9920 {
9921 	return t4_cim_write(adap, addr, 1, &val);
9922 }
9923 
9924 /**
9925  *	t4_cim_read_la - read CIM LA capture buffer
9926  *	@adap: the adapter
9927  *	@la_buf: where to store the LA data
9928  *	@wrptr: the HW write pointer within the capture buffer
9929  *
9930  *	Reads the contents of the CIM LA buffer with the most recent entry at
9931  *	the end	of the returned data and with the entry at @wrptr first.
9932  *	We try to leave the LA in the running state we find it in.
9933  */
9934 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9935 {
9936 	int i, ret;
9937 	unsigned int cfg, val, idx;
9938 
9939 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9940 	if (ret)
9941 		return ret;
9942 
9943 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9944 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9945 		if (ret)
9946 			return ret;
9947 	}
9948 
9949 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9950 	if (ret)
9951 		goto restart;
9952 
9953 	idx = UPDBGLAWRPTR_G(val);
9954 	if (wrptr)
9955 		*wrptr = idx;
9956 
9957 	for (i = 0; i < adap->params.cim_la_size; i++) {
9958 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9959 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9960 		if (ret)
9961 			break;
9962 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9963 		if (ret)
9964 			break;
9965 		if (val & UPDBGLARDEN_F) {
9966 			ret = -ETIMEDOUT;
9967 			break;
9968 		}
9969 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9970 		if (ret)
9971 			break;
9972 
9973 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9974 		 * identify the 32-bit portion of the full 312-bit data
9975 		 */
9976 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9977 			idx = (idx & 0xff0) + 0x10;
9978 		else
9979 			idx++;
9980 		/* address can't exceed 0xfff */
9981 		idx &= UPDBGLARDPTR_M;
9982 	}
9983 restart:
9984 	if (cfg & UPDBGLAEN_F) {
9985 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9986 				      cfg & ~UPDBGLARDEN_F);
9987 		if (!ret)
9988 			ret = r;
9989 	}
9990 	return ret;
9991 }
9992 
9993 /**
9994  *	t4_tp_read_la - read TP LA capture buffer
9995  *	@adap: the adapter
9996  *	@la_buf: where to store the LA data
9997  *	@wrptr: the HW write pointer within the capture buffer
9998  *
9999  *	Reads the contents of the TP LA buffer with the most recent entry at
10000  *	the end	of the returned data and with the entry at @wrptr first.
10001  *	We leave the LA in the running state we find it in.
10002  */
10003 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10004 {
10005 	bool last_incomplete;
10006 	unsigned int i, cfg, val, idx;
10007 
10008 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
10009 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
10010 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10011 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
10012 
10013 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
10014 	idx = DBGLAWPTR_G(val);
10015 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
10016 	if (last_incomplete)
10017 		idx = (idx + 1) & DBGLARPTR_M;
10018 	if (wrptr)
10019 		*wrptr = idx;
10020 
10021 	val &= 0xffff;
10022 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
10023 	val |= adap->params.tp.la_mask;
10024 
10025 	for (i = 0; i < TPLA_SIZE; i++) {
10026 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10027 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10028 		idx = (idx + 1) & DBGLARPTR_M;
10029 	}
10030 
10031 	/* Wipe out last entry if it isn't valid */
10032 	if (last_incomplete)
10033 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10034 
10035 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
10036 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10037 			     cfg | adap->params.tp.la_mask);
10038 }
10039 
10040 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10041  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10042  * state for more than the Warning Threshold then we'll issue a warning about
10043  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10044  * appears to be hung every Warning Repeat second till the situation clears.
10045  * If the situation clears, we'll note that as well.
10046  */
10047 #define SGE_IDMA_WARN_THRESH 1
10048 #define SGE_IDMA_WARN_REPEAT 300
10049 
10050 /**
10051  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10052  *	@adapter: the adapter
10053  *	@idma: the adapter IDMA Monitor state
10054  *
10055  *	Initialize the state of an SGE Ingress DMA Monitor.
10056  */
10057 void t4_idma_monitor_init(struct adapter *adapter,
10058 			  struct sge_idma_monitor_state *idma)
10059 {
10060 	/* Initialize the state variables for detecting an SGE Ingress DMA
10061 	 * hang.  The SGE has internal counters which count up on each clock
10062 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10063 	 * same state they were on the previous clock tick.  The clock used is
10064 	 * the Core Clock so we have a limit on the maximum "time" they can
10065 	 * record; typically a very small number of seconds.  For instance,
10066 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10067 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10068 	 * risk of having the "timers" overflow and give us the flexibility to
10069 	 * maintain a Hung SGE State Machine of our own which operates across
10070 	 * a longer time frame.
10071 	 */
10072 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10073 	idma->idma_stalled[0] = 0;
10074 	idma->idma_stalled[1] = 0;
10075 }
10076 
10077 /**
10078  *	t4_idma_monitor - monitor SGE Ingress DMA state
10079  *	@adapter: the adapter
10080  *	@idma: the adapter IDMA Monitor state
10081  *	@hz: number of ticks/second
10082  *	@ticks: number of ticks since the last IDMA Monitor call
10083  */
10084 void t4_idma_monitor(struct adapter *adapter,
10085 		     struct sge_idma_monitor_state *idma,
10086 		     int hz, int ticks)
10087 {
10088 	int i, idma_same_state_cnt[2];
10089 
10090 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10091 	  * are counters inside the SGE which count up on each clock when the
10092 	  * SGE finds its Ingress DMA State Engines in the same states they
10093 	  * were in the previous clock.  The counters will peg out at
10094 	  * 0xffffffff without wrapping around so once they pass the 1s
10095 	  * threshold they'll stay above that till the IDMA state changes.
10096 	  */
10097 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10098 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10099 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10100 
10101 	for (i = 0; i < 2; i++) {
10102 		u32 debug0, debug11;
10103 
10104 		/* If the Ingress DMA Same State Counter ("timer") is less
10105 		 * than 1s, then we can reset our synthesized Stall Timer and
10106 		 * continue.  If we have previously emitted warnings about a
10107 		 * potential stalled Ingress Queue, issue a note indicating
10108 		 * that the Ingress Queue has resumed forward progress.
10109 		 */
10110 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10111 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10112 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10113 					 "resumed after %d seconds\n",
10114 					 i, idma->idma_qid[i],
10115 					 idma->idma_stalled[i] / hz);
10116 			idma->idma_stalled[i] = 0;
10117 			continue;
10118 		}
10119 
10120 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10121 		 * domain.  The first time we get here it'll be because we
10122 		 * passed the 1s Threshold; each additional time it'll be
10123 		 * because the RX Timer Callback is being fired on its regular
10124 		 * schedule.
10125 		 *
10126 		 * If the stall is below our Potential Hung Ingress Queue
10127 		 * Warning Threshold, continue.
10128 		 */
10129 		if (idma->idma_stalled[i] == 0) {
10130 			idma->idma_stalled[i] = hz;
10131 			idma->idma_warn[i] = 0;
10132 		} else {
10133 			idma->idma_stalled[i] += ticks;
10134 			idma->idma_warn[i] -= ticks;
10135 		}
10136 
10137 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10138 			continue;
10139 
10140 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10141 		 */
10142 		if (idma->idma_warn[i] > 0)
10143 			continue;
10144 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10145 
10146 		/* Read and save the SGE IDMA State and Queue ID information.
10147 		 * We do this every time in case it changes across time ...
10148 		 * can't be too careful ...
10149 		 */
10150 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10151 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10152 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10153 
10154 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10155 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10156 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10157 
10158 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10159 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10160 			 i, idma->idma_qid[i], idma->idma_state[i],
10161 			 idma->idma_stalled[i] / hz,
10162 			 debug0, debug11);
10163 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10164 	}
10165 }
10166 
10167 /**
10168  *	t4_load_cfg - download config file
10169  *	@adap: the adapter
10170  *	@cfg_data: the cfg text file to write
10171  *	@size: text file size
10172  *
10173  *	Write the supplied config text file to the card's serial flash.
10174  */
10175 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10176 {
10177 	int ret, i, n, cfg_addr;
10178 	unsigned int addr;
10179 	unsigned int flash_cfg_start_sec;
10180 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10181 
10182 	cfg_addr = t4_flash_cfg_addr(adap);
10183 	if (cfg_addr < 0)
10184 		return cfg_addr;
10185 
10186 	addr = cfg_addr;
10187 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10188 
10189 	if (size > FLASH_CFG_MAX_SIZE) {
10190 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10191 			FLASH_CFG_MAX_SIZE);
10192 		return -EFBIG;
10193 	}
10194 
10195 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10196 			 sf_sec_size);
10197 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10198 				     flash_cfg_start_sec + i - 1);
10199 	/* If size == 0 then we're simply erasing the FLASH sectors associated
10200 	 * with the on-adapter Firmware Configuration File.
10201 	 */
10202 	if (ret || size == 0)
10203 		goto out;
10204 
10205 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10206 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10207 		if ((size - i) <  SF_PAGE_SIZE)
10208 			n = size - i;
10209 		else
10210 			n = SF_PAGE_SIZE;
10211 		ret = t4_write_flash(adap, addr, n, cfg_data);
10212 		if (ret)
10213 			goto out;
10214 
10215 		addr += SF_PAGE_SIZE;
10216 		cfg_data += SF_PAGE_SIZE;
10217 	}
10218 
10219 out:
10220 	if (ret)
10221 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
10222 			(size == 0 ? "clear" : "download"), ret);
10223 	return ret;
10224 }
10225 
10226 /**
10227  *	t4_set_vf_mac - Set MAC address for the specified VF
10228  *	@adapter: The adapter
10229  *	@vf: one of the VFs instantiated by the specified PF
10230  *	@naddr: the number of MAC addresses
10231  *	@addr: the MAC address(es) to be set to the specified VF
10232  */
10233 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10234 		      unsigned int naddr, u8 *addr)
10235 {
10236 	struct fw_acl_mac_cmd cmd;
10237 
10238 	memset(&cmd, 0, sizeof(cmd));
10239 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10240 				    FW_CMD_REQUEST_F |
10241 				    FW_CMD_WRITE_F |
10242 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10243 				    FW_ACL_MAC_CMD_VFN_V(vf));
10244 
10245 	/* Note: Do not enable the ACL */
10246 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10247 	cmd.nmac = naddr;
10248 
10249 	switch (adapter->pf) {
10250 	case 3:
10251 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10252 		break;
10253 	case 2:
10254 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10255 		break;
10256 	case 1:
10257 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10258 		break;
10259 	case 0:
10260 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10261 		break;
10262 	}
10263 
10264 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10265 }
10266 
10267 /**
10268  * t4_read_pace_tbl - read the pace table
10269  * @adap: the adapter
10270  * @pace_vals: holds the returned values
10271  *
10272  * Returns the values of TP's pace table in microseconds.
10273  */
10274 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10275 {
10276 	unsigned int i, v;
10277 
10278 	for (i = 0; i < NTX_SCHED; i++) {
10279 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10280 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
10281 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10282 	}
10283 }
10284 
10285 /**
10286  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10287  * @adap: the adapter
10288  * @sched: the scheduler index
10289  * @kbps: the byte rate in Kbps
10290  * @ipg: the interpacket delay in tenths of nanoseconds
10291  * @sleep_ok: if true we may sleep while awaiting command completion
10292  *
10293  * Return the current configuration of a HW Tx scheduler.
10294  */
10295 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10296 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10297 {
10298 	unsigned int v, addr, bpt, cpt;
10299 
10300 	if (kbps) {
10301 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10302 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10303 		if (sched & 1)
10304 			v >>= 16;
10305 		bpt = (v >> 8) & 0xff;
10306 		cpt = v & 0xff;
10307 		if (!cpt) {
10308 			*kbps = 0;	/* scheduler disabled */
10309 		} else {
10310 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10311 			*kbps = (v * bpt) / 125;
10312 		}
10313 	}
10314 	if (ipg) {
10315 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10316 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10317 		if (sched & 1)
10318 			v >>= 16;
10319 		v &= 0xffff;
10320 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10321 	}
10322 }
10323 
10324 /* t4_sge_ctxt_rd - read an SGE context through FW
10325  * @adap: the adapter
10326  * @mbox: mailbox to use for the FW command
10327  * @cid: the context id
10328  * @ctype: the context type
10329  * @data: where to store the context data
10330  *
10331  * Issues a FW command through the given mailbox to read an SGE context.
10332  */
10333 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10334 		   enum ctxt_type ctype, u32 *data)
10335 {
10336 	struct fw_ldst_cmd c;
10337 	int ret;
10338 
10339 	if (ctype == CTXT_FLM)
10340 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10341 	else
10342 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10343 
10344 	memset(&c, 0, sizeof(c));
10345 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10346 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
10347 					FW_LDST_CMD_ADDRSPACE_V(ret));
10348 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10349 	c.u.idctxt.physid = cpu_to_be32(cid);
10350 
10351 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10352 	if (ret == 0) {
10353 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10354 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10355 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10356 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10357 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10358 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10359 	}
10360 	return ret;
10361 }
10362 
10363 /**
10364  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10365  * @adap: the adapter
10366  * @cid: the context id
10367  * @ctype: the context type
10368  * @data: where to store the context data
10369  *
10370  * Reads an SGE context directly, bypassing FW.  This is only for
10371  * debugging when FW is unavailable.
10372  */
10373 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10374 		      enum ctxt_type ctype, u32 *data)
10375 {
10376 	int i, ret;
10377 
10378 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10379 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10380 	if (!ret)
10381 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10382 			*data++ = t4_read_reg(adap, i);
10383 	return ret;
10384 }
10385 
10386 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10387 		    u8 rateunit, u8 ratemode, u8 channel, u8 class,
10388 		    u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10389 		    u16 burstsize)
10390 {
10391 	struct fw_sched_cmd cmd;
10392 
10393 	memset(&cmd, 0, sizeof(cmd));
10394 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10395 				      FW_CMD_REQUEST_F |
10396 				      FW_CMD_WRITE_F);
10397 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10398 
10399 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10400 	cmd.u.params.type = type;
10401 	cmd.u.params.level = level;
10402 	cmd.u.params.mode = mode;
10403 	cmd.u.params.ch = channel;
10404 	cmd.u.params.cl = class;
10405 	cmd.u.params.unit = rateunit;
10406 	cmd.u.params.rate = ratemode;
10407 	cmd.u.params.min = cpu_to_be32(minrate);
10408 	cmd.u.params.max = cpu_to_be32(maxrate);
10409 	cmd.u.params.weight = cpu_to_be16(weight);
10410 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10411 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
10412 
10413 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10414 			       NULL, 1);
10415 }
10416 
10417 /**
10418  *	t4_i2c_rd - read I2C data from adapter
10419  *	@adap: the adapter
10420  *	@mbox: mailbox to use for the FW command
10421  *	@port: Port number if per-port device; <0 if not
10422  *	@devid: per-port device ID or absolute device ID
10423  *	@offset: byte offset into device I2C space
10424  *	@len: byte length of I2C space data
10425  *	@buf: buffer in which to return I2C data
10426  *
10427  *	Reads the I2C data from the indicated device and location.
10428  */
10429 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10430 	      unsigned int devid, unsigned int offset,
10431 	      unsigned int len, u8 *buf)
10432 {
10433 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10434 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10435 	int ret = 0;
10436 
10437 	if (len > I2C_PAGE_SIZE)
10438 		return -EINVAL;
10439 
10440 	/* Dont allow reads that spans multiple pages */
10441 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10442 		return -EINVAL;
10443 
10444 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10445 	ldst_cmd.op_to_addrspace =
10446 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10447 			    FW_CMD_REQUEST_F |
10448 			    FW_CMD_READ_F |
10449 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10450 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10451 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10452 	ldst_cmd.u.i2c.did = devid;
10453 
10454 	while (len > 0) {
10455 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10456 
10457 		ldst_cmd.u.i2c.boffset = offset;
10458 		ldst_cmd.u.i2c.blen = i2c_len;
10459 
10460 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10461 				 &ldst_rpl);
10462 		if (ret)
10463 			break;
10464 
10465 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10466 		offset += i2c_len;
10467 		buf += i2c_len;
10468 		len -= i2c_len;
10469 	}
10470 
10471 	return ret;
10472 }
10473 
10474 /**
10475  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10476  *      @adap: the adapter
10477  *      @mbox: mailbox to use for the FW command
10478  *      @vf: one of the VFs instantiated by the specified PF
10479  *      @vlan: The vlanid to be set
10480  */
10481 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10482 		    u16 vlan)
10483 {
10484 	struct fw_acl_vlan_cmd vlan_cmd;
10485 	unsigned int enable;
10486 
10487 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10488 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10489 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10490 					 FW_CMD_REQUEST_F |
10491 					 FW_CMD_WRITE_F |
10492 					 FW_CMD_EXEC_F |
10493 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10494 					 FW_ACL_VLAN_CMD_VFN_V(vf));
10495 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10496 	/* Drop all packets that donot match vlan id */
10497 	vlan_cmd.dropnovlan_fm = (enable
10498 				  ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10499 				     FW_ACL_VLAN_CMD_FM_F) : 0);
10500 	if (enable != 0) {
10501 		vlan_cmd.nvlan = 1;
10502 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10503 	}
10504 
10505 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10506 }
10507 
10508 /**
10509  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10510  *	@device_id: the device ID to write.
10511  *	@boot_data: the boot image to modify.
10512  *
10513  *	Write the supplied device ID to the boot BIOS image.
10514  */
10515 static void modify_device_id(int device_id, u8 *boot_data)
10516 {
10517 	struct cxgb4_pcir_data *pcir_header;
10518 	struct legacy_pci_rom_hdr *header;
10519 	u8 *cur_header = boot_data;
10520 	u16 pcir_offset;
10521 
10522 	 /* Loop through all chained images and change the device ID's */
10523 	do {
10524 		header = (struct legacy_pci_rom_hdr *)cur_header;
10525 		pcir_offset = le16_to_cpu(header->pcir_offset);
10526 		pcir_header = (struct cxgb4_pcir_data *)(cur_header +
10527 			      pcir_offset);
10528 
10529 		/**
10530 		 * Only modify the Device ID if code type is Legacy or HP.
10531 		 * 0x00: Okay to modify
10532 		 * 0x01: FCODE. Do not modify
10533 		 * 0x03: Okay to modify
10534 		 * 0x04-0xFF: Do not modify
10535 		 */
10536 		if (pcir_header->code_type == CXGB4_HDR_CODE1) {
10537 			u8 csum = 0;
10538 			int i;
10539 
10540 			/**
10541 			 * Modify Device ID to match current adatper
10542 			 */
10543 			pcir_header->device_id = cpu_to_le16(device_id);
10544 
10545 			/**
10546 			 * Set checksum temporarily to 0.
10547 			 * We will recalculate it later.
10548 			 */
10549 			header->cksum = 0x0;
10550 
10551 			/**
10552 			 * Calculate and update checksum
10553 			 */
10554 			for (i = 0; i < (header->size512 * 512); i++)
10555 				csum += cur_header[i];
10556 
10557 			/**
10558 			 * Invert summed value to create the checksum
10559 			 * Writing new checksum value directly to the boot data
10560 			 */
10561 			cur_header[7] = -csum;
10562 
10563 		} else if (pcir_header->code_type == CXGB4_HDR_CODE2) {
10564 			/**
10565 			 * Modify Device ID to match current adatper
10566 			 */
10567 			pcir_header->device_id = cpu_to_le16(device_id);
10568 		}
10569 
10570 		/**
10571 		 * Move header pointer up to the next image in the ROM.
10572 		 */
10573 		cur_header += header->size512 * 512;
10574 	} while (!(pcir_header->indicator & CXGB4_HDR_INDI));
10575 }
10576 
10577 /**
10578  *	t4_load_boot - download boot flash
10579  *	@adap: the adapter
10580  *	@boot_data: the boot image to write
10581  *	@boot_addr: offset in flash to write boot_data
10582  *	@size: image size
10583  *
10584  *	Write the supplied boot image to the card's serial flash.
10585  *	The boot image has the following sections: a 28-byte header and the
10586  *	boot image.
10587  */
10588 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10589 		 unsigned int boot_addr, unsigned int size)
10590 {
10591 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10592 	unsigned int boot_sector = (boot_addr * 1024);
10593 	struct cxgb4_pci_exp_rom_header *header;
10594 	struct cxgb4_pcir_data *pcir_header;
10595 	int pcir_offset;
10596 	unsigned int i;
10597 	u16 device_id;
10598 	int ret, addr;
10599 
10600 	/**
10601 	 * Make sure the boot image does not encroach on the firmware region
10602 	 */
10603 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10604 		dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n");
10605 		return -EFBIG;
10606 	}
10607 
10608 	/* Get boot header */
10609 	header = (struct cxgb4_pci_exp_rom_header *)boot_data;
10610 	pcir_offset = le16_to_cpu(header->pcir_offset);
10611 	/* PCIR Data Structure */
10612 	pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset];
10613 
10614 	/**
10615 	 * Perform some primitive sanity testing to avoid accidentally
10616 	 * writing garbage over the boot sectors.  We ought to check for
10617 	 * more but it's not worth it for now ...
10618 	 */
10619 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10620 		dev_err(adap->pdev_dev, "boot image too small/large\n");
10621 		return -EFBIG;
10622 	}
10623 
10624 	if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) {
10625 		dev_err(adap->pdev_dev, "Boot image missing signature\n");
10626 		return -EINVAL;
10627 	}
10628 
10629 	/* Check PCI header signature */
10630 	if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) {
10631 		dev_err(adap->pdev_dev, "PCI header missing signature\n");
10632 		return -EINVAL;
10633 	}
10634 
10635 	/* Check Vendor ID matches Chelsio ID*/
10636 	if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) {
10637 		dev_err(adap->pdev_dev, "Vendor ID missing signature\n");
10638 		return -EINVAL;
10639 	}
10640 
10641 	/**
10642 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10643 	 * and Boot configuration data sections. These 3 boot sections span
10644 	 * sectors 0 to 7 in flash and live right before the FW image location.
10645 	 */
10646 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,  sf_sec_size);
10647 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10648 				     (boot_sector >> 16) + i - 1);
10649 
10650 	/**
10651 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10652 	 * with the on-adapter option ROM file
10653 	 */
10654 	if (ret || size == 0)
10655 		goto out;
10656 	/* Retrieve adapter's device ID */
10657 	pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id);
10658        /* Want to deal with PF 0 so I strip off PF 4 indicator */
10659 	device_id = device_id & 0xf0ff;
10660 
10661 	 /* Check PCIE Device ID */
10662 	if (le16_to_cpu(pcir_header->device_id) != device_id) {
10663 		/**
10664 		 * Change the device ID in the Boot BIOS image to match
10665 		 * the Device ID of the current adapter.
10666 		 */
10667 		modify_device_id(device_id, boot_data);
10668 	}
10669 
10670 	/**
10671 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10672 	 * we finish copying the rest of the boot image. This will ensure
10673 	 * that the BIOS boot header will only be written if the boot image
10674 	 * was written in full.
10675 	 */
10676 	addr = boot_sector;
10677 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10678 		addr += SF_PAGE_SIZE;
10679 		boot_data += SF_PAGE_SIZE;
10680 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data);
10681 		if (ret)
10682 			goto out;
10683 	}
10684 
10685 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10686 			     (const u8 *)header);
10687 
10688 out:
10689 	if (ret)
10690 		dev_err(adap->pdev_dev, "boot image load failed, error %d\n",
10691 			ret);
10692 	return ret;
10693 }
10694 
10695 /**
10696  *	t4_flash_bootcfg_addr - return the address of the flash
10697  *	optionrom configuration
10698  *	@adapter: the adapter
10699  *
10700  *	Return the address within the flash where the OptionROM Configuration
10701  *	is stored, or an error if the device FLASH is too small to contain
10702  *	a OptionROM Configuration.
10703  */
10704 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10705 {
10706 	/**
10707 	 * If the device FLASH isn't large enough to hold a Firmware
10708 	 * Configuration File, return an error.
10709 	 */
10710 	if (adapter->params.sf_size <
10711 	    FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10712 		return -ENOSPC;
10713 
10714 	return FLASH_BOOTCFG_START;
10715 }
10716 
10717 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10718 {
10719 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10720 	struct cxgb4_bootcfg_data *header;
10721 	unsigned int flash_cfg_start_sec;
10722 	unsigned int addr, npad;
10723 	int ret, i, n, cfg_addr;
10724 
10725 	cfg_addr = t4_flash_bootcfg_addr(adap);
10726 	if (cfg_addr < 0)
10727 		return cfg_addr;
10728 
10729 	addr = cfg_addr;
10730 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10731 
10732 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10733 		dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n",
10734 			FLASH_BOOTCFG_MAX_SIZE);
10735 		return -EFBIG;
10736 	}
10737 
10738 	header = (struct cxgb4_bootcfg_data *)cfg_data;
10739 	if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) {
10740 		dev_err(adap->pdev_dev, "Wrong bootcfg signature\n");
10741 		ret = -EINVAL;
10742 		goto out;
10743 	}
10744 
10745 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,
10746 			 sf_sec_size);
10747 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10748 				     flash_cfg_start_sec + i - 1);
10749 
10750 	/**
10751 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10752 	 * with the on-adapter OptionROM Configuration File.
10753 	 */
10754 	if (ret || size == 0)
10755 		goto out;
10756 
10757 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10758 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10759 		n = min_t(u32, size - i, SF_PAGE_SIZE);
10760 
10761 		ret = t4_write_flash(adap, addr, n, cfg_data);
10762 		if (ret)
10763 			goto out;
10764 
10765 		addr += SF_PAGE_SIZE;
10766 		cfg_data += SF_PAGE_SIZE;
10767 	}
10768 
10769 	npad = ((size + 4 - 1) & ~3) - size;
10770 	for (i = 0; i < npad; i++) {
10771 		u8 data = 0;
10772 
10773 		ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data);
10774 		if (ret)
10775 			goto out;
10776 	}
10777 
10778 out:
10779 	if (ret)
10780 		dev_err(adap->pdev_dev, "boot config data %s failed %d\n",
10781 			(size == 0 ? "clear" : "download"), ret);
10782 	return ret;
10783 }
10784