1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) { 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 adap->flags &= ~CXGB4_FW_OK; 202 } 203 } 204 205 /* 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 207 */ 208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 209 u32 mbox_addr) 210 { 211 for ( ; nflit; nflit--, mbox_addr += 8) 212 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 213 } 214 215 /* 216 * Handle a FW assertion reported in a mailbox. 217 */ 218 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 219 { 220 struct fw_debug_cmd asrt; 221 222 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 223 dev_alert(adap->pdev_dev, 224 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 225 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 226 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 227 } 228 229 /** 230 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 231 * @adapter: the adapter 232 * @cmd: the Firmware Mailbox Command or Reply 233 * @size: command length in bytes 234 * @access: the time (ms) needed to access the Firmware Mailbox 235 * @execute: the time (ms) the command spent being executed 236 */ 237 static void t4_record_mbox(struct adapter *adapter, 238 const __be64 *cmd, unsigned int size, 239 int access, int execute) 240 { 241 struct mbox_cmd_log *log = adapter->mbox_log; 242 struct mbox_cmd *entry; 243 int i; 244 245 entry = mbox_cmd_log_entry(log, log->cursor++); 246 if (log->cursor == log->size) 247 log->cursor = 0; 248 249 for (i = 0; i < size / 8; i++) 250 entry->cmd[i] = be64_to_cpu(cmd[i]); 251 while (i < MBOX_LEN / 8) 252 entry->cmd[i++] = 0; 253 entry->timestamp = jiffies; 254 entry->seqno = log->seqno++; 255 entry->access = access; 256 entry->execute = execute; 257 } 258 259 /** 260 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 261 * @adap: the adapter 262 * @mbox: index of the mailbox to use 263 * @cmd: the command to write 264 * @size: command length in bytes 265 * @rpl: where to optionally store the reply 266 * @sleep_ok: if true we may sleep while awaiting command completion 267 * @timeout: time to wait for command to finish before timing out 268 * 269 * Sends the given command to FW through the selected mailbox and waits 270 * for the FW to execute the command. If @rpl is not %NULL it is used to 271 * store the FW's reply to the command. The command and its optional 272 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 273 * to respond. @sleep_ok determines whether we may sleep while awaiting 274 * the response. If sleeping is allowed we use progressive backoff 275 * otherwise we spin. 276 * 277 * The return value is 0 on success or a negative errno on failure. A 278 * failure can happen either because we are not able to execute the 279 * command or FW executes it but signals an error. In the latter case 280 * the return value is the error code indicated by FW (negated). 281 */ 282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 283 int size, void *rpl, bool sleep_ok, int timeout) 284 { 285 static const int delay[] = { 286 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 287 }; 288 289 struct mbox_list entry; 290 u16 access = 0; 291 u16 execute = 0; 292 u32 v; 293 u64 res; 294 int i, ms, delay_idx, ret; 295 const __be64 *p = cmd; 296 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 297 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 298 __be64 cmd_rpl[MBOX_LEN / 8]; 299 u32 pcie_fw; 300 301 if ((size & 15) || size > MBOX_LEN) 302 return -EINVAL; 303 304 /* 305 * If the device is off-line, as in EEH, commands will time out. 306 * Fail them early so we don't waste time waiting. 307 */ 308 if (adap->pdev->error_state != pci_channel_io_normal) 309 return -EIO; 310 311 /* If we have a negative timeout, that implies that we can't sleep. */ 312 if (timeout < 0) { 313 sleep_ok = false; 314 timeout = -timeout; 315 } 316 317 /* Queue ourselves onto the mailbox access list. When our entry is at 318 * the front of the list, we have rights to access the mailbox. So we 319 * wait [for a while] till we're at the front [or bail out with an 320 * EBUSY] ... 321 */ 322 spin_lock_bh(&adap->mbox_lock); 323 list_add_tail(&entry.list, &adap->mlist.list); 324 spin_unlock_bh(&adap->mbox_lock); 325 326 delay_idx = 0; 327 ms = delay[0]; 328 329 for (i = 0; ; i += ms) { 330 /* If we've waited too long, return a busy indication. This 331 * really ought to be based on our initial position in the 332 * mailbox access list but this is a start. We very rarely 333 * contend on access to the mailbox ... 334 */ 335 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 336 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 337 spin_lock_bh(&adap->mbox_lock); 338 list_del(&entry.list); 339 spin_unlock_bh(&adap->mbox_lock); 340 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 341 t4_record_mbox(adap, cmd, size, access, ret); 342 return ret; 343 } 344 345 /* If we're at the head, break out and start the mailbox 346 * protocol. 347 */ 348 if (list_first_entry(&adap->mlist.list, struct mbox_list, 349 list) == &entry) 350 break; 351 352 /* Delay for a bit before checking again ... */ 353 if (sleep_ok) { 354 ms = delay[delay_idx]; /* last element may repeat */ 355 if (delay_idx < ARRAY_SIZE(delay) - 1) 356 delay_idx++; 357 msleep(ms); 358 } else { 359 mdelay(ms); 360 } 361 } 362 363 /* Loop trying to get ownership of the mailbox. Return an error 364 * if we can't gain ownership. 365 */ 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 368 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 369 if (v != MBOX_OWNER_DRV) { 370 spin_lock_bh(&adap->mbox_lock); 371 list_del(&entry.list); 372 spin_unlock_bh(&adap->mbox_lock); 373 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 374 t4_record_mbox(adap, cmd, size, access, ret); 375 return ret; 376 } 377 378 /* Copy in the new mailbox command and send it on its way ... */ 379 t4_record_mbox(adap, cmd, size, access, 0); 380 for (i = 0; i < size; i += 8) 381 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 382 383 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 384 t4_read_reg(adap, ctl_reg); /* flush write */ 385 386 delay_idx = 0; 387 ms = delay[0]; 388 389 for (i = 0; 390 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 391 i < timeout; 392 i += ms) { 393 if (sleep_ok) { 394 ms = delay[delay_idx]; /* last element may repeat */ 395 if (delay_idx < ARRAY_SIZE(delay) - 1) 396 delay_idx++; 397 msleep(ms); 398 } else 399 mdelay(ms); 400 401 v = t4_read_reg(adap, ctl_reg); 402 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 403 if (!(v & MBMSGVALID_F)) { 404 t4_write_reg(adap, ctl_reg, 0); 405 continue; 406 } 407 408 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 409 res = be64_to_cpu(cmd_rpl[0]); 410 411 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 412 fw_asrt(adap, data_reg); 413 res = FW_CMD_RETVAL_V(EIO); 414 } else if (rpl) { 415 memcpy(rpl, cmd_rpl, size); 416 } 417 418 t4_write_reg(adap, ctl_reg, 0); 419 420 execute = i + ms; 421 t4_record_mbox(adap, cmd_rpl, 422 MBOX_LEN, access, execute); 423 spin_lock_bh(&adap->mbox_lock); 424 list_del(&entry.list); 425 spin_unlock_bh(&adap->mbox_lock); 426 return -FW_CMD_RETVAL_G((int)res); 427 } 428 } 429 430 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 431 t4_record_mbox(adap, cmd, size, access, ret); 432 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 433 *(const u8 *)cmd, mbox); 434 t4_report_fw_error(adap); 435 spin_lock_bh(&adap->mbox_lock); 436 list_del(&entry.list); 437 spin_unlock_bh(&adap->mbox_lock); 438 t4_fatal_err(adap); 439 return ret; 440 } 441 442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 443 void *rpl, bool sleep_ok) 444 { 445 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 446 FW_CMD_MAX_TIMEOUT); 447 } 448 449 static int t4_edc_err_read(struct adapter *adap, int idx) 450 { 451 u32 edc_ecc_err_addr_reg; 452 u32 rdata_reg; 453 454 if (is_t4(adap->params.chip)) { 455 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 456 return 0; 457 } 458 if (idx != 0 && idx != 1) { 459 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 460 return 0; 461 } 462 463 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 464 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 465 466 CH_WARN(adap, 467 "edc%d err addr 0x%x: 0x%x.\n", 468 idx, edc_ecc_err_addr_reg, 469 t4_read_reg(adap, edc_ecc_err_addr_reg)); 470 CH_WARN(adap, 471 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 472 rdata_reg, 473 (unsigned long long)t4_read_reg64(adap, rdata_reg), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 480 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 481 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 482 483 return 0; 484 } 485 486 /** 487 * t4_memory_rw_init - Get memory window relative offset, base, and size. 488 * @adap: the adapter 489 * @win: PCI-E Memory Window to use 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC 491 * @mem_off: memory relative offset with respect to @mtype. 492 * @mem_base: configured memory base address. 493 * @mem_aperture: configured memory window aperture. 494 * 495 * Get the configured memory window's relative offset, base, and size. 496 */ 497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off, 498 u32 *mem_base, u32 *mem_aperture) 499 { 500 u32 edc_size, mc_size, mem_reg; 501 502 /* Offset into the region of memory which is being accessed 503 * MEM_EDC0 = 0 504 * MEM_EDC1 = 1 505 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 506 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 507 * MEM_HMA = 4 508 */ 509 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 510 if (mtype == MEM_HMA) { 511 *mem_off = 2 * (edc_size * 1024 * 1024); 512 } else if (mtype != MEM_MC1) { 513 *mem_off = (mtype * (edc_size * 1024 * 1024)); 514 } else { 515 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 516 MA_EXT_MEMORY0_BAR_A)); 517 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 518 } 519 520 /* Each PCI-E Memory Window is programmed with a window size -- or 521 * "aperture" -- which controls the granularity of its mapping onto 522 * adapter memory. We need to grab that aperture in order to know 523 * how to use the specified window. The window is also programmed 524 * with the base address of the Memory Window in BAR0's address 525 * space. For T4 this is an absolute PCI-E Bus Address. For T5 526 * the address is relative to BAR0. 527 */ 528 mem_reg = t4_read_reg(adap, 529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 530 win)); 531 /* a dead adapter will return 0xffffffff for PIO reads */ 532 if (mem_reg == 0xffffffff) 533 return -ENXIO; 534 535 *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 536 *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 537 if (is_t4(adap->params.chip)) 538 *mem_base -= adap->t4_bar0; 539 540 return 0; 541 } 542 543 /** 544 * t4_memory_update_win - Move memory window to specified address. 545 * @adap: the adapter 546 * @win: PCI-E Memory Window to use 547 * @addr: location to move. 548 * 549 * Move memory window to specified address. 550 */ 551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr) 552 { 553 t4_write_reg(adap, 554 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 555 addr); 556 /* Read it back to ensure that changes propagate before we 557 * attempt to use the new value. 558 */ 559 t4_read_reg(adap, 560 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 561 } 562 563 /** 564 * t4_memory_rw_residual - Read/Write residual data. 565 * @adap: the adapter 566 * @off: relative offset within residual to start read/write. 567 * @addr: address within indicated memory type. 568 * @buf: host memory buffer 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 570 * 571 * Read/Write residual data less than 32-bits. 572 */ 573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf, 574 int dir) 575 { 576 union { 577 u32 word; 578 char byte[4]; 579 } last; 580 unsigned char *bp; 581 int i; 582 583 if (dir == T4_MEMORY_READ) { 584 last.word = le32_to_cpu((__force __le32) 585 t4_read_reg(adap, addr)); 586 for (bp = (unsigned char *)buf, i = off; i < 4; i++) 587 bp[i] = last.byte[i]; 588 } else { 589 last.word = *buf; 590 for (i = off; i < 4; i++) 591 last.byte[i] = 0; 592 t4_write_reg(adap, addr, 593 (__force u32)cpu_to_le32(last.word)); 594 } 595 } 596 597 /** 598 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 599 * @adap: the adapter 600 * @win: PCI-E Memory Window to use 601 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 602 * @addr: address within indicated memory type 603 * @len: amount of memory to transfer 604 * @hbuf: host memory buffer 605 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 606 * 607 * Reads/writes an [almost] arbitrary memory region in the firmware: the 608 * firmware memory address and host buffer must be aligned on 32-bit 609 * boundaries; the length may be arbitrary. The memory is transferred as 610 * a raw byte sequence from/to the firmware's memory. If this memory 611 * contains data structures which contain multi-byte integers, it's the 612 * caller's responsibility to perform appropriate byte order conversions. 613 */ 614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 615 u32 len, void *hbuf, int dir) 616 { 617 u32 pos, offset, resid, memoffset; 618 u32 win_pf, mem_aperture, mem_base; 619 u32 *buf; 620 int ret; 621 622 /* Argument sanity checks ... 623 */ 624 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 625 return -EINVAL; 626 buf = (u32 *)hbuf; 627 628 /* It's convenient to be able to handle lengths which aren't a 629 * multiple of 32-bits because we often end up transferring files to 630 * the firmware. So we'll handle that by normalizing the length here 631 * and then handling any residual transfer at the end. 632 */ 633 resid = len & 0x3; 634 len -= resid; 635 636 ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base, 637 &mem_aperture); 638 if (ret) 639 return ret; 640 641 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 642 addr = addr + memoffset; 643 644 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 645 646 /* Calculate our initial PCI-E Memory Window Position and Offset into 647 * that Window. 648 */ 649 pos = addr & ~(mem_aperture - 1); 650 offset = addr - pos; 651 652 /* Set up initial PCI-E Memory Window to cover the start of our 653 * transfer. 654 */ 655 t4_memory_update_win(adap, win, pos | win_pf); 656 657 /* Transfer data to/from the adapter as long as there's an integral 658 * number of 32-bit transfers to complete. 659 * 660 * A note on Endianness issues: 661 * 662 * The "register" reads and writes below from/to the PCI-E Memory 663 * Window invoke the standard adapter Big-Endian to PCI-E Link 664 * Little-Endian "swizzel." As a result, if we have the following 665 * data in adapter memory: 666 * 667 * Memory: ... | b0 | b1 | b2 | b3 | ... 668 * Address: i+0 i+1 i+2 i+3 669 * 670 * Then a read of the adapter memory via the PCI-E Memory Window 671 * will yield: 672 * 673 * x = readl(i) 674 * 31 0 675 * [ b3 | b2 | b1 | b0 ] 676 * 677 * If this value is stored into local memory on a Little-Endian system 678 * it will show up correctly in local memory as: 679 * 680 * ( ..., b0, b1, b2, b3, ... ) 681 * 682 * But on a Big-Endian system, the store will show up in memory 683 * incorrectly swizzled as: 684 * 685 * ( ..., b3, b2, b1, b0, ... ) 686 * 687 * So we need to account for this in the reads and writes to the 688 * PCI-E Memory Window below by undoing the register read/write 689 * swizzels. 690 */ 691 while (len > 0) { 692 if (dir == T4_MEMORY_READ) 693 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 694 mem_base + offset)); 695 else 696 t4_write_reg(adap, mem_base + offset, 697 (__force u32)cpu_to_le32(*buf++)); 698 offset += sizeof(__be32); 699 len -= sizeof(__be32); 700 701 /* If we've reached the end of our current window aperture, 702 * move the PCI-E Memory Window on to the next. Note that 703 * doing this here after "len" may be 0 allows us to set up 704 * the PCI-E Memory Window for a possible final residual 705 * transfer below ... 706 */ 707 if (offset == mem_aperture) { 708 pos += mem_aperture; 709 offset = 0; 710 t4_memory_update_win(adap, win, pos | win_pf); 711 } 712 } 713 714 /* If the original transfer had a length which wasn't a multiple of 715 * 32-bits, now's where we need to finish off the transfer of the 716 * residual amount. The PCI-E Memory Window has already been moved 717 * above (if necessary) to cover this final transfer. 718 */ 719 if (resid) 720 t4_memory_rw_residual(adap, resid, mem_base + offset, 721 (u8 *)buf, dir); 722 723 return 0; 724 } 725 726 /* Return the specified PCI-E Configuration Space register from our Physical 727 * Function. We try first via a Firmware LDST Command since we prefer to let 728 * the firmware own all of these registers, but if that fails we go for it 729 * directly ourselves. 730 */ 731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 732 { 733 u32 val, ldst_addrspace; 734 735 /* If fw_attach != 0, construct and send the Firmware LDST Command to 736 * retrieve the specified PCI-E Configuration Space register. 737 */ 738 struct fw_ldst_cmd ldst_cmd; 739 int ret; 740 741 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 742 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 743 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 744 FW_CMD_REQUEST_F | 745 FW_CMD_READ_F | 746 ldst_addrspace); 747 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 748 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 749 ldst_cmd.u.pcie.ctrl_to_fn = 750 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 751 ldst_cmd.u.pcie.r = reg; 752 753 /* If the LDST Command succeeds, return the result, otherwise 754 * fall through to reading it directly ourselves ... 755 */ 756 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 757 &ldst_cmd); 758 if (ret == 0) 759 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 760 else 761 /* Read the desired Configuration Space register via the PCI-E 762 * Backdoor mechanism. 763 */ 764 t4_hw_pci_read_cfg4(adap, reg, &val); 765 return val; 766 } 767 768 /* Get the window based on base passed to it. 769 * Window aperture is currently unhandled, but there is no use case for it 770 * right now 771 */ 772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 773 u32 memwin_base) 774 { 775 u32 ret; 776 777 if (is_t4(adap->params.chip)) { 778 u32 bar0; 779 780 /* Truncation intentional: we only read the bottom 32-bits of 781 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 782 * mechanism to read BAR0 instead of using 783 * pci_resource_start() because we could be operating from 784 * within a Virtual Machine which is trapping our accesses to 785 * our Configuration Space and we need to set up the PCI-E 786 * Memory Window decoders with the actual addresses which will 787 * be coming across the PCI-E link. 788 */ 789 bar0 = t4_read_pcie_cfg4(adap, pci_base); 790 bar0 &= pci_mask; 791 adap->t4_bar0 = bar0; 792 793 ret = bar0 + memwin_base; 794 } else { 795 /* For T5, only relative offset inside the PCIe BAR is passed */ 796 ret = memwin_base; 797 } 798 return ret; 799 } 800 801 /* Get the default utility window (win0) used by everyone */ 802 u32 t4_get_util_window(struct adapter *adap) 803 { 804 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 805 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 806 } 807 808 /* Set up memory window for accessing adapter memory ranges. (Read 809 * back MA register to ensure that changes propagate before we attempt 810 * to use the new values.) 811 */ 812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 813 { 814 t4_write_reg(adap, 815 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 816 memwin_base | BIR_V(0) | 817 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 818 t4_read_reg(adap, 819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 820 } 821 822 /** 823 * t4_get_regs_len - return the size of the chips register set 824 * @adapter: the adapter 825 * 826 * Returns the size of the chip's BAR0 register space. 827 */ 828 unsigned int t4_get_regs_len(struct adapter *adapter) 829 { 830 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 831 832 switch (chip_version) { 833 case CHELSIO_T4: 834 return T4_REGMAP_SIZE; 835 836 case CHELSIO_T5: 837 case CHELSIO_T6: 838 return T5_REGMAP_SIZE; 839 } 840 841 dev_err(adapter->pdev_dev, 842 "Unsupported chip version %d\n", chip_version); 843 return 0; 844 } 845 846 /** 847 * t4_get_regs - read chip registers into provided buffer 848 * @adap: the adapter 849 * @buf: register buffer 850 * @buf_size: size (in bytes) of register buffer 851 * 852 * If the provided register buffer isn't large enough for the chip's 853 * full register range, the register dump will be truncated to the 854 * register buffer's size. 855 */ 856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 857 { 858 static const unsigned int t4_reg_ranges[] = { 859 0x1008, 0x1108, 860 0x1180, 0x1184, 861 0x1190, 0x1194, 862 0x11a0, 0x11a4, 863 0x11b0, 0x11b4, 864 0x11fc, 0x123c, 865 0x1300, 0x173c, 866 0x1800, 0x18fc, 867 0x3000, 0x30d8, 868 0x30e0, 0x30e4, 869 0x30ec, 0x5910, 870 0x5920, 0x5924, 871 0x5960, 0x5960, 872 0x5968, 0x5968, 873 0x5970, 0x5970, 874 0x5978, 0x5978, 875 0x5980, 0x5980, 876 0x5988, 0x5988, 877 0x5990, 0x5990, 878 0x5998, 0x5998, 879 0x59a0, 0x59d4, 880 0x5a00, 0x5ae0, 881 0x5ae8, 0x5ae8, 882 0x5af0, 0x5af0, 883 0x5af8, 0x5af8, 884 0x6000, 0x6098, 885 0x6100, 0x6150, 886 0x6200, 0x6208, 887 0x6240, 0x6248, 888 0x6280, 0x62b0, 889 0x62c0, 0x6338, 890 0x6370, 0x638c, 891 0x6400, 0x643c, 892 0x6500, 0x6524, 893 0x6a00, 0x6a04, 894 0x6a14, 0x6a38, 895 0x6a60, 0x6a70, 896 0x6a78, 0x6a78, 897 0x6b00, 0x6b0c, 898 0x6b1c, 0x6b84, 899 0x6bf0, 0x6bf8, 900 0x6c00, 0x6c0c, 901 0x6c1c, 0x6c84, 902 0x6cf0, 0x6cf8, 903 0x6d00, 0x6d0c, 904 0x6d1c, 0x6d84, 905 0x6df0, 0x6df8, 906 0x6e00, 0x6e0c, 907 0x6e1c, 0x6e84, 908 0x6ef0, 0x6ef8, 909 0x6f00, 0x6f0c, 910 0x6f1c, 0x6f84, 911 0x6ff0, 0x6ff8, 912 0x7000, 0x700c, 913 0x701c, 0x7084, 914 0x70f0, 0x70f8, 915 0x7100, 0x710c, 916 0x711c, 0x7184, 917 0x71f0, 0x71f8, 918 0x7200, 0x720c, 919 0x721c, 0x7284, 920 0x72f0, 0x72f8, 921 0x7300, 0x730c, 922 0x731c, 0x7384, 923 0x73f0, 0x73f8, 924 0x7400, 0x7450, 925 0x7500, 0x7530, 926 0x7600, 0x760c, 927 0x7614, 0x761c, 928 0x7680, 0x76cc, 929 0x7700, 0x7798, 930 0x77c0, 0x77fc, 931 0x7900, 0x79fc, 932 0x7b00, 0x7b58, 933 0x7b60, 0x7b84, 934 0x7b8c, 0x7c38, 935 0x7d00, 0x7d38, 936 0x7d40, 0x7d80, 937 0x7d8c, 0x7ddc, 938 0x7de4, 0x7e04, 939 0x7e10, 0x7e1c, 940 0x7e24, 0x7e38, 941 0x7e40, 0x7e44, 942 0x7e4c, 0x7e78, 943 0x7e80, 0x7ea4, 944 0x7eac, 0x7edc, 945 0x7ee8, 0x7efc, 946 0x8dc0, 0x8e04, 947 0x8e10, 0x8e1c, 948 0x8e30, 0x8e78, 949 0x8ea0, 0x8eb8, 950 0x8ec0, 0x8f6c, 951 0x8fc0, 0x9008, 952 0x9010, 0x9058, 953 0x9060, 0x9060, 954 0x9068, 0x9074, 955 0x90fc, 0x90fc, 956 0x9400, 0x9408, 957 0x9410, 0x9458, 958 0x9600, 0x9600, 959 0x9608, 0x9638, 960 0x9640, 0x96bc, 961 0x9800, 0x9808, 962 0x9820, 0x983c, 963 0x9850, 0x9864, 964 0x9c00, 0x9c6c, 965 0x9c80, 0x9cec, 966 0x9d00, 0x9d6c, 967 0x9d80, 0x9dec, 968 0x9e00, 0x9e6c, 969 0x9e80, 0x9eec, 970 0x9f00, 0x9f6c, 971 0x9f80, 0x9fec, 972 0xd004, 0xd004, 973 0xd010, 0xd03c, 974 0xdfc0, 0xdfe0, 975 0xe000, 0xea7c, 976 0xf000, 0x11110, 977 0x11118, 0x11190, 978 0x19040, 0x1906c, 979 0x19078, 0x19080, 980 0x1908c, 0x190e4, 981 0x190f0, 0x190f8, 982 0x19100, 0x19110, 983 0x19120, 0x19124, 984 0x19150, 0x19194, 985 0x1919c, 0x191b0, 986 0x191d0, 0x191e8, 987 0x19238, 0x1924c, 988 0x193f8, 0x1943c, 989 0x1944c, 0x19474, 990 0x19490, 0x194e0, 991 0x194f0, 0x194f8, 992 0x19800, 0x19c08, 993 0x19c10, 0x19c90, 994 0x19ca0, 0x19ce4, 995 0x19cf0, 0x19d40, 996 0x19d50, 0x19d94, 997 0x19da0, 0x19de8, 998 0x19df0, 0x19e40, 999 0x19e50, 0x19e90, 1000 0x19ea0, 0x19f4c, 1001 0x1a000, 0x1a004, 1002 0x1a010, 0x1a06c, 1003 0x1a0b0, 0x1a0e4, 1004 0x1a0ec, 0x1a0f4, 1005 0x1a100, 0x1a108, 1006 0x1a114, 0x1a120, 1007 0x1a128, 0x1a130, 1008 0x1a138, 0x1a138, 1009 0x1a190, 0x1a1c4, 1010 0x1a1fc, 0x1a1fc, 1011 0x1e040, 0x1e04c, 1012 0x1e284, 0x1e28c, 1013 0x1e2c0, 0x1e2c0, 1014 0x1e2e0, 0x1e2e0, 1015 0x1e300, 0x1e384, 1016 0x1e3c0, 0x1e3c8, 1017 0x1e440, 0x1e44c, 1018 0x1e684, 0x1e68c, 1019 0x1e6c0, 0x1e6c0, 1020 0x1e6e0, 0x1e6e0, 1021 0x1e700, 0x1e784, 1022 0x1e7c0, 0x1e7c8, 1023 0x1e840, 0x1e84c, 1024 0x1ea84, 0x1ea8c, 1025 0x1eac0, 0x1eac0, 1026 0x1eae0, 0x1eae0, 1027 0x1eb00, 0x1eb84, 1028 0x1ebc0, 0x1ebc8, 1029 0x1ec40, 0x1ec4c, 1030 0x1ee84, 0x1ee8c, 1031 0x1eec0, 0x1eec0, 1032 0x1eee0, 0x1eee0, 1033 0x1ef00, 0x1ef84, 1034 0x1efc0, 0x1efc8, 1035 0x1f040, 0x1f04c, 1036 0x1f284, 0x1f28c, 1037 0x1f2c0, 0x1f2c0, 1038 0x1f2e0, 0x1f2e0, 1039 0x1f300, 0x1f384, 1040 0x1f3c0, 0x1f3c8, 1041 0x1f440, 0x1f44c, 1042 0x1f684, 0x1f68c, 1043 0x1f6c0, 0x1f6c0, 1044 0x1f6e0, 0x1f6e0, 1045 0x1f700, 0x1f784, 1046 0x1f7c0, 0x1f7c8, 1047 0x1f840, 0x1f84c, 1048 0x1fa84, 0x1fa8c, 1049 0x1fac0, 0x1fac0, 1050 0x1fae0, 0x1fae0, 1051 0x1fb00, 0x1fb84, 1052 0x1fbc0, 0x1fbc8, 1053 0x1fc40, 0x1fc4c, 1054 0x1fe84, 0x1fe8c, 1055 0x1fec0, 0x1fec0, 1056 0x1fee0, 0x1fee0, 1057 0x1ff00, 0x1ff84, 1058 0x1ffc0, 0x1ffc8, 1059 0x20000, 0x2002c, 1060 0x20100, 0x2013c, 1061 0x20190, 0x201a0, 1062 0x201a8, 0x201b8, 1063 0x201c4, 0x201c8, 1064 0x20200, 0x20318, 1065 0x20400, 0x204b4, 1066 0x204c0, 0x20528, 1067 0x20540, 0x20614, 1068 0x21000, 0x21040, 1069 0x2104c, 0x21060, 1070 0x210c0, 0x210ec, 1071 0x21200, 0x21268, 1072 0x21270, 0x21284, 1073 0x212fc, 0x21388, 1074 0x21400, 0x21404, 1075 0x21500, 0x21500, 1076 0x21510, 0x21518, 1077 0x2152c, 0x21530, 1078 0x2153c, 0x2153c, 1079 0x21550, 0x21554, 1080 0x21600, 0x21600, 1081 0x21608, 0x2161c, 1082 0x21624, 0x21628, 1083 0x21630, 0x21634, 1084 0x2163c, 0x2163c, 1085 0x21700, 0x2171c, 1086 0x21780, 0x2178c, 1087 0x21800, 0x21818, 1088 0x21820, 0x21828, 1089 0x21830, 0x21848, 1090 0x21850, 0x21854, 1091 0x21860, 0x21868, 1092 0x21870, 0x21870, 1093 0x21878, 0x21898, 1094 0x218a0, 0x218a8, 1095 0x218b0, 0x218c8, 1096 0x218d0, 0x218d4, 1097 0x218e0, 0x218e8, 1098 0x218f0, 0x218f0, 1099 0x218f8, 0x21a18, 1100 0x21a20, 0x21a28, 1101 0x21a30, 0x21a48, 1102 0x21a50, 0x21a54, 1103 0x21a60, 0x21a68, 1104 0x21a70, 0x21a70, 1105 0x21a78, 0x21a98, 1106 0x21aa0, 0x21aa8, 1107 0x21ab0, 0x21ac8, 1108 0x21ad0, 0x21ad4, 1109 0x21ae0, 0x21ae8, 1110 0x21af0, 0x21af0, 1111 0x21af8, 0x21c18, 1112 0x21c20, 0x21c20, 1113 0x21c28, 0x21c30, 1114 0x21c38, 0x21c38, 1115 0x21c80, 0x21c98, 1116 0x21ca0, 0x21ca8, 1117 0x21cb0, 0x21cc8, 1118 0x21cd0, 0x21cd4, 1119 0x21ce0, 0x21ce8, 1120 0x21cf0, 0x21cf0, 1121 0x21cf8, 0x21d7c, 1122 0x21e00, 0x21e04, 1123 0x22000, 0x2202c, 1124 0x22100, 0x2213c, 1125 0x22190, 0x221a0, 1126 0x221a8, 0x221b8, 1127 0x221c4, 0x221c8, 1128 0x22200, 0x22318, 1129 0x22400, 0x224b4, 1130 0x224c0, 0x22528, 1131 0x22540, 0x22614, 1132 0x23000, 0x23040, 1133 0x2304c, 0x23060, 1134 0x230c0, 0x230ec, 1135 0x23200, 0x23268, 1136 0x23270, 0x23284, 1137 0x232fc, 0x23388, 1138 0x23400, 0x23404, 1139 0x23500, 0x23500, 1140 0x23510, 0x23518, 1141 0x2352c, 0x23530, 1142 0x2353c, 0x2353c, 1143 0x23550, 0x23554, 1144 0x23600, 0x23600, 1145 0x23608, 0x2361c, 1146 0x23624, 0x23628, 1147 0x23630, 0x23634, 1148 0x2363c, 0x2363c, 1149 0x23700, 0x2371c, 1150 0x23780, 0x2378c, 1151 0x23800, 0x23818, 1152 0x23820, 0x23828, 1153 0x23830, 0x23848, 1154 0x23850, 0x23854, 1155 0x23860, 0x23868, 1156 0x23870, 0x23870, 1157 0x23878, 0x23898, 1158 0x238a0, 0x238a8, 1159 0x238b0, 0x238c8, 1160 0x238d0, 0x238d4, 1161 0x238e0, 0x238e8, 1162 0x238f0, 0x238f0, 1163 0x238f8, 0x23a18, 1164 0x23a20, 0x23a28, 1165 0x23a30, 0x23a48, 1166 0x23a50, 0x23a54, 1167 0x23a60, 0x23a68, 1168 0x23a70, 0x23a70, 1169 0x23a78, 0x23a98, 1170 0x23aa0, 0x23aa8, 1171 0x23ab0, 0x23ac8, 1172 0x23ad0, 0x23ad4, 1173 0x23ae0, 0x23ae8, 1174 0x23af0, 0x23af0, 1175 0x23af8, 0x23c18, 1176 0x23c20, 0x23c20, 1177 0x23c28, 0x23c30, 1178 0x23c38, 0x23c38, 1179 0x23c80, 0x23c98, 1180 0x23ca0, 0x23ca8, 1181 0x23cb0, 0x23cc8, 1182 0x23cd0, 0x23cd4, 1183 0x23ce0, 0x23ce8, 1184 0x23cf0, 0x23cf0, 1185 0x23cf8, 0x23d7c, 1186 0x23e00, 0x23e04, 1187 0x24000, 0x2402c, 1188 0x24100, 0x2413c, 1189 0x24190, 0x241a0, 1190 0x241a8, 0x241b8, 1191 0x241c4, 0x241c8, 1192 0x24200, 0x24318, 1193 0x24400, 0x244b4, 1194 0x244c0, 0x24528, 1195 0x24540, 0x24614, 1196 0x25000, 0x25040, 1197 0x2504c, 0x25060, 1198 0x250c0, 0x250ec, 1199 0x25200, 0x25268, 1200 0x25270, 0x25284, 1201 0x252fc, 0x25388, 1202 0x25400, 0x25404, 1203 0x25500, 0x25500, 1204 0x25510, 0x25518, 1205 0x2552c, 0x25530, 1206 0x2553c, 0x2553c, 1207 0x25550, 0x25554, 1208 0x25600, 0x25600, 1209 0x25608, 0x2561c, 1210 0x25624, 0x25628, 1211 0x25630, 0x25634, 1212 0x2563c, 0x2563c, 1213 0x25700, 0x2571c, 1214 0x25780, 0x2578c, 1215 0x25800, 0x25818, 1216 0x25820, 0x25828, 1217 0x25830, 0x25848, 1218 0x25850, 0x25854, 1219 0x25860, 0x25868, 1220 0x25870, 0x25870, 1221 0x25878, 0x25898, 1222 0x258a0, 0x258a8, 1223 0x258b0, 0x258c8, 1224 0x258d0, 0x258d4, 1225 0x258e0, 0x258e8, 1226 0x258f0, 0x258f0, 1227 0x258f8, 0x25a18, 1228 0x25a20, 0x25a28, 1229 0x25a30, 0x25a48, 1230 0x25a50, 0x25a54, 1231 0x25a60, 0x25a68, 1232 0x25a70, 0x25a70, 1233 0x25a78, 0x25a98, 1234 0x25aa0, 0x25aa8, 1235 0x25ab0, 0x25ac8, 1236 0x25ad0, 0x25ad4, 1237 0x25ae0, 0x25ae8, 1238 0x25af0, 0x25af0, 1239 0x25af8, 0x25c18, 1240 0x25c20, 0x25c20, 1241 0x25c28, 0x25c30, 1242 0x25c38, 0x25c38, 1243 0x25c80, 0x25c98, 1244 0x25ca0, 0x25ca8, 1245 0x25cb0, 0x25cc8, 1246 0x25cd0, 0x25cd4, 1247 0x25ce0, 0x25ce8, 1248 0x25cf0, 0x25cf0, 1249 0x25cf8, 0x25d7c, 1250 0x25e00, 0x25e04, 1251 0x26000, 0x2602c, 1252 0x26100, 0x2613c, 1253 0x26190, 0x261a0, 1254 0x261a8, 0x261b8, 1255 0x261c4, 0x261c8, 1256 0x26200, 0x26318, 1257 0x26400, 0x264b4, 1258 0x264c0, 0x26528, 1259 0x26540, 0x26614, 1260 0x27000, 0x27040, 1261 0x2704c, 0x27060, 1262 0x270c0, 0x270ec, 1263 0x27200, 0x27268, 1264 0x27270, 0x27284, 1265 0x272fc, 0x27388, 1266 0x27400, 0x27404, 1267 0x27500, 0x27500, 1268 0x27510, 0x27518, 1269 0x2752c, 0x27530, 1270 0x2753c, 0x2753c, 1271 0x27550, 0x27554, 1272 0x27600, 0x27600, 1273 0x27608, 0x2761c, 1274 0x27624, 0x27628, 1275 0x27630, 0x27634, 1276 0x2763c, 0x2763c, 1277 0x27700, 0x2771c, 1278 0x27780, 0x2778c, 1279 0x27800, 0x27818, 1280 0x27820, 0x27828, 1281 0x27830, 0x27848, 1282 0x27850, 0x27854, 1283 0x27860, 0x27868, 1284 0x27870, 0x27870, 1285 0x27878, 0x27898, 1286 0x278a0, 0x278a8, 1287 0x278b0, 0x278c8, 1288 0x278d0, 0x278d4, 1289 0x278e0, 0x278e8, 1290 0x278f0, 0x278f0, 1291 0x278f8, 0x27a18, 1292 0x27a20, 0x27a28, 1293 0x27a30, 0x27a48, 1294 0x27a50, 0x27a54, 1295 0x27a60, 0x27a68, 1296 0x27a70, 0x27a70, 1297 0x27a78, 0x27a98, 1298 0x27aa0, 0x27aa8, 1299 0x27ab0, 0x27ac8, 1300 0x27ad0, 0x27ad4, 1301 0x27ae0, 0x27ae8, 1302 0x27af0, 0x27af0, 1303 0x27af8, 0x27c18, 1304 0x27c20, 0x27c20, 1305 0x27c28, 0x27c30, 1306 0x27c38, 0x27c38, 1307 0x27c80, 0x27c98, 1308 0x27ca0, 0x27ca8, 1309 0x27cb0, 0x27cc8, 1310 0x27cd0, 0x27cd4, 1311 0x27ce0, 0x27ce8, 1312 0x27cf0, 0x27cf0, 1313 0x27cf8, 0x27d7c, 1314 0x27e00, 0x27e04, 1315 }; 1316 1317 static const unsigned int t5_reg_ranges[] = { 1318 0x1008, 0x10c0, 1319 0x10cc, 0x10f8, 1320 0x1100, 0x1100, 1321 0x110c, 0x1148, 1322 0x1180, 0x1184, 1323 0x1190, 0x1194, 1324 0x11a0, 0x11a4, 1325 0x11b0, 0x11b4, 1326 0x11fc, 0x123c, 1327 0x1280, 0x173c, 1328 0x1800, 0x18fc, 1329 0x3000, 0x3028, 1330 0x3060, 0x30b0, 1331 0x30b8, 0x30d8, 1332 0x30e0, 0x30fc, 1333 0x3140, 0x357c, 1334 0x35a8, 0x35cc, 1335 0x35ec, 0x35ec, 1336 0x3600, 0x5624, 1337 0x56cc, 0x56ec, 1338 0x56f4, 0x5720, 1339 0x5728, 0x575c, 1340 0x580c, 0x5814, 1341 0x5890, 0x589c, 1342 0x58a4, 0x58ac, 1343 0x58b8, 0x58bc, 1344 0x5940, 0x59c8, 1345 0x59d0, 0x59dc, 1346 0x59fc, 0x5a18, 1347 0x5a60, 0x5a70, 1348 0x5a80, 0x5a9c, 1349 0x5b94, 0x5bfc, 1350 0x6000, 0x6020, 1351 0x6028, 0x6040, 1352 0x6058, 0x609c, 1353 0x60a8, 0x614c, 1354 0x7700, 0x7798, 1355 0x77c0, 0x78fc, 1356 0x7b00, 0x7b58, 1357 0x7b60, 0x7b84, 1358 0x7b8c, 0x7c54, 1359 0x7d00, 0x7d38, 1360 0x7d40, 0x7d80, 1361 0x7d8c, 0x7ddc, 1362 0x7de4, 0x7e04, 1363 0x7e10, 0x7e1c, 1364 0x7e24, 0x7e38, 1365 0x7e40, 0x7e44, 1366 0x7e4c, 0x7e78, 1367 0x7e80, 0x7edc, 1368 0x7ee8, 0x7efc, 1369 0x8dc0, 0x8de0, 1370 0x8df8, 0x8e04, 1371 0x8e10, 0x8e84, 1372 0x8ea0, 0x8f84, 1373 0x8fc0, 0x9058, 1374 0x9060, 0x9060, 1375 0x9068, 0x90f8, 1376 0x9400, 0x9408, 1377 0x9410, 0x9470, 1378 0x9600, 0x9600, 1379 0x9608, 0x9638, 1380 0x9640, 0x96f4, 1381 0x9800, 0x9808, 1382 0x9820, 0x983c, 1383 0x9850, 0x9864, 1384 0x9c00, 0x9c6c, 1385 0x9c80, 0x9cec, 1386 0x9d00, 0x9d6c, 1387 0x9d80, 0x9dec, 1388 0x9e00, 0x9e6c, 1389 0x9e80, 0x9eec, 1390 0x9f00, 0x9f6c, 1391 0x9f80, 0xa020, 1392 0xd004, 0xd004, 1393 0xd010, 0xd03c, 1394 0xdfc0, 0xdfe0, 1395 0xe000, 0x1106c, 1396 0x11074, 0x11088, 1397 0x1109c, 0x1117c, 1398 0x11190, 0x11204, 1399 0x19040, 0x1906c, 1400 0x19078, 0x19080, 1401 0x1908c, 0x190e8, 1402 0x190f0, 0x190f8, 1403 0x19100, 0x19110, 1404 0x19120, 0x19124, 1405 0x19150, 0x19194, 1406 0x1919c, 0x191b0, 1407 0x191d0, 0x191e8, 1408 0x19238, 0x19290, 1409 0x193f8, 0x19428, 1410 0x19430, 0x19444, 1411 0x1944c, 0x1946c, 1412 0x19474, 0x19474, 1413 0x19490, 0x194cc, 1414 0x194f0, 0x194f8, 1415 0x19c00, 0x19c08, 1416 0x19c10, 0x19c60, 1417 0x19c94, 0x19ce4, 1418 0x19cf0, 0x19d40, 1419 0x19d50, 0x19d94, 1420 0x19da0, 0x19de8, 1421 0x19df0, 0x19e10, 1422 0x19e50, 0x19e90, 1423 0x19ea0, 0x19f24, 1424 0x19f34, 0x19f34, 1425 0x19f40, 0x19f50, 1426 0x19f90, 0x19fb4, 1427 0x19fc4, 0x19fe4, 1428 0x1a000, 0x1a004, 1429 0x1a010, 0x1a06c, 1430 0x1a0b0, 0x1a0e4, 1431 0x1a0ec, 0x1a0f8, 1432 0x1a100, 0x1a108, 1433 0x1a114, 0x1a120, 1434 0x1a128, 0x1a130, 1435 0x1a138, 0x1a138, 1436 0x1a190, 0x1a1c4, 1437 0x1a1fc, 0x1a1fc, 1438 0x1e008, 0x1e00c, 1439 0x1e040, 0x1e044, 1440 0x1e04c, 0x1e04c, 1441 0x1e284, 0x1e290, 1442 0x1e2c0, 0x1e2c0, 1443 0x1e2e0, 0x1e2e0, 1444 0x1e300, 0x1e384, 1445 0x1e3c0, 0x1e3c8, 1446 0x1e408, 0x1e40c, 1447 0x1e440, 0x1e444, 1448 0x1e44c, 0x1e44c, 1449 0x1e684, 0x1e690, 1450 0x1e6c0, 0x1e6c0, 1451 0x1e6e0, 0x1e6e0, 1452 0x1e700, 0x1e784, 1453 0x1e7c0, 0x1e7c8, 1454 0x1e808, 0x1e80c, 1455 0x1e840, 0x1e844, 1456 0x1e84c, 0x1e84c, 1457 0x1ea84, 0x1ea90, 1458 0x1eac0, 0x1eac0, 1459 0x1eae0, 0x1eae0, 1460 0x1eb00, 0x1eb84, 1461 0x1ebc0, 0x1ebc8, 1462 0x1ec08, 0x1ec0c, 1463 0x1ec40, 0x1ec44, 1464 0x1ec4c, 0x1ec4c, 1465 0x1ee84, 0x1ee90, 1466 0x1eec0, 0x1eec0, 1467 0x1eee0, 0x1eee0, 1468 0x1ef00, 0x1ef84, 1469 0x1efc0, 0x1efc8, 1470 0x1f008, 0x1f00c, 1471 0x1f040, 0x1f044, 1472 0x1f04c, 0x1f04c, 1473 0x1f284, 0x1f290, 1474 0x1f2c0, 0x1f2c0, 1475 0x1f2e0, 0x1f2e0, 1476 0x1f300, 0x1f384, 1477 0x1f3c0, 0x1f3c8, 1478 0x1f408, 0x1f40c, 1479 0x1f440, 0x1f444, 1480 0x1f44c, 0x1f44c, 1481 0x1f684, 0x1f690, 1482 0x1f6c0, 0x1f6c0, 1483 0x1f6e0, 0x1f6e0, 1484 0x1f700, 0x1f784, 1485 0x1f7c0, 0x1f7c8, 1486 0x1f808, 0x1f80c, 1487 0x1f840, 0x1f844, 1488 0x1f84c, 0x1f84c, 1489 0x1fa84, 0x1fa90, 1490 0x1fac0, 0x1fac0, 1491 0x1fae0, 0x1fae0, 1492 0x1fb00, 0x1fb84, 1493 0x1fbc0, 0x1fbc8, 1494 0x1fc08, 0x1fc0c, 1495 0x1fc40, 0x1fc44, 1496 0x1fc4c, 0x1fc4c, 1497 0x1fe84, 0x1fe90, 1498 0x1fec0, 0x1fec0, 1499 0x1fee0, 0x1fee0, 1500 0x1ff00, 0x1ff84, 1501 0x1ffc0, 0x1ffc8, 1502 0x30000, 0x30030, 1503 0x30100, 0x30144, 1504 0x30190, 0x301a0, 1505 0x301a8, 0x301b8, 1506 0x301c4, 0x301c8, 1507 0x301d0, 0x301d0, 1508 0x30200, 0x30318, 1509 0x30400, 0x304b4, 1510 0x304c0, 0x3052c, 1511 0x30540, 0x3061c, 1512 0x30800, 0x30828, 1513 0x30834, 0x30834, 1514 0x308c0, 0x30908, 1515 0x30910, 0x309ac, 1516 0x30a00, 0x30a14, 1517 0x30a1c, 0x30a2c, 1518 0x30a44, 0x30a50, 1519 0x30a74, 0x30a74, 1520 0x30a7c, 0x30afc, 1521 0x30b08, 0x30c24, 1522 0x30d00, 0x30d00, 1523 0x30d08, 0x30d14, 1524 0x30d1c, 0x30d20, 1525 0x30d3c, 0x30d3c, 1526 0x30d48, 0x30d50, 1527 0x31200, 0x3120c, 1528 0x31220, 0x31220, 1529 0x31240, 0x31240, 1530 0x31600, 0x3160c, 1531 0x31a00, 0x31a1c, 1532 0x31e00, 0x31e20, 1533 0x31e38, 0x31e3c, 1534 0x31e80, 0x31e80, 1535 0x31e88, 0x31ea8, 1536 0x31eb0, 0x31eb4, 1537 0x31ec8, 0x31ed4, 1538 0x31fb8, 0x32004, 1539 0x32200, 0x32200, 1540 0x32208, 0x32240, 1541 0x32248, 0x32280, 1542 0x32288, 0x322c0, 1543 0x322c8, 0x322fc, 1544 0x32600, 0x32630, 1545 0x32a00, 0x32abc, 1546 0x32b00, 0x32b10, 1547 0x32b20, 0x32b30, 1548 0x32b40, 0x32b50, 1549 0x32b60, 0x32b70, 1550 0x33000, 0x33028, 1551 0x33030, 0x33048, 1552 0x33060, 0x33068, 1553 0x33070, 0x3309c, 1554 0x330f0, 0x33128, 1555 0x33130, 0x33148, 1556 0x33160, 0x33168, 1557 0x33170, 0x3319c, 1558 0x331f0, 0x33238, 1559 0x33240, 0x33240, 1560 0x33248, 0x33250, 1561 0x3325c, 0x33264, 1562 0x33270, 0x332b8, 1563 0x332c0, 0x332e4, 1564 0x332f8, 0x33338, 1565 0x33340, 0x33340, 1566 0x33348, 0x33350, 1567 0x3335c, 0x33364, 1568 0x33370, 0x333b8, 1569 0x333c0, 0x333e4, 1570 0x333f8, 0x33428, 1571 0x33430, 0x33448, 1572 0x33460, 0x33468, 1573 0x33470, 0x3349c, 1574 0x334f0, 0x33528, 1575 0x33530, 0x33548, 1576 0x33560, 0x33568, 1577 0x33570, 0x3359c, 1578 0x335f0, 0x33638, 1579 0x33640, 0x33640, 1580 0x33648, 0x33650, 1581 0x3365c, 0x33664, 1582 0x33670, 0x336b8, 1583 0x336c0, 0x336e4, 1584 0x336f8, 0x33738, 1585 0x33740, 0x33740, 1586 0x33748, 0x33750, 1587 0x3375c, 0x33764, 1588 0x33770, 0x337b8, 1589 0x337c0, 0x337e4, 1590 0x337f8, 0x337fc, 1591 0x33814, 0x33814, 1592 0x3382c, 0x3382c, 1593 0x33880, 0x3388c, 1594 0x338e8, 0x338ec, 1595 0x33900, 0x33928, 1596 0x33930, 0x33948, 1597 0x33960, 0x33968, 1598 0x33970, 0x3399c, 1599 0x339f0, 0x33a38, 1600 0x33a40, 0x33a40, 1601 0x33a48, 0x33a50, 1602 0x33a5c, 0x33a64, 1603 0x33a70, 0x33ab8, 1604 0x33ac0, 0x33ae4, 1605 0x33af8, 0x33b10, 1606 0x33b28, 0x33b28, 1607 0x33b3c, 0x33b50, 1608 0x33bf0, 0x33c10, 1609 0x33c28, 0x33c28, 1610 0x33c3c, 0x33c50, 1611 0x33cf0, 0x33cfc, 1612 0x34000, 0x34030, 1613 0x34100, 0x34144, 1614 0x34190, 0x341a0, 1615 0x341a8, 0x341b8, 1616 0x341c4, 0x341c8, 1617 0x341d0, 0x341d0, 1618 0x34200, 0x34318, 1619 0x34400, 0x344b4, 1620 0x344c0, 0x3452c, 1621 0x34540, 0x3461c, 1622 0x34800, 0x34828, 1623 0x34834, 0x34834, 1624 0x348c0, 0x34908, 1625 0x34910, 0x349ac, 1626 0x34a00, 0x34a14, 1627 0x34a1c, 0x34a2c, 1628 0x34a44, 0x34a50, 1629 0x34a74, 0x34a74, 1630 0x34a7c, 0x34afc, 1631 0x34b08, 0x34c24, 1632 0x34d00, 0x34d00, 1633 0x34d08, 0x34d14, 1634 0x34d1c, 0x34d20, 1635 0x34d3c, 0x34d3c, 1636 0x34d48, 0x34d50, 1637 0x35200, 0x3520c, 1638 0x35220, 0x35220, 1639 0x35240, 0x35240, 1640 0x35600, 0x3560c, 1641 0x35a00, 0x35a1c, 1642 0x35e00, 0x35e20, 1643 0x35e38, 0x35e3c, 1644 0x35e80, 0x35e80, 1645 0x35e88, 0x35ea8, 1646 0x35eb0, 0x35eb4, 1647 0x35ec8, 0x35ed4, 1648 0x35fb8, 0x36004, 1649 0x36200, 0x36200, 1650 0x36208, 0x36240, 1651 0x36248, 0x36280, 1652 0x36288, 0x362c0, 1653 0x362c8, 0x362fc, 1654 0x36600, 0x36630, 1655 0x36a00, 0x36abc, 1656 0x36b00, 0x36b10, 1657 0x36b20, 0x36b30, 1658 0x36b40, 0x36b50, 1659 0x36b60, 0x36b70, 1660 0x37000, 0x37028, 1661 0x37030, 0x37048, 1662 0x37060, 0x37068, 1663 0x37070, 0x3709c, 1664 0x370f0, 0x37128, 1665 0x37130, 0x37148, 1666 0x37160, 0x37168, 1667 0x37170, 0x3719c, 1668 0x371f0, 0x37238, 1669 0x37240, 0x37240, 1670 0x37248, 0x37250, 1671 0x3725c, 0x37264, 1672 0x37270, 0x372b8, 1673 0x372c0, 0x372e4, 1674 0x372f8, 0x37338, 1675 0x37340, 0x37340, 1676 0x37348, 0x37350, 1677 0x3735c, 0x37364, 1678 0x37370, 0x373b8, 1679 0x373c0, 0x373e4, 1680 0x373f8, 0x37428, 1681 0x37430, 0x37448, 1682 0x37460, 0x37468, 1683 0x37470, 0x3749c, 1684 0x374f0, 0x37528, 1685 0x37530, 0x37548, 1686 0x37560, 0x37568, 1687 0x37570, 0x3759c, 1688 0x375f0, 0x37638, 1689 0x37640, 0x37640, 1690 0x37648, 0x37650, 1691 0x3765c, 0x37664, 1692 0x37670, 0x376b8, 1693 0x376c0, 0x376e4, 1694 0x376f8, 0x37738, 1695 0x37740, 0x37740, 1696 0x37748, 0x37750, 1697 0x3775c, 0x37764, 1698 0x37770, 0x377b8, 1699 0x377c0, 0x377e4, 1700 0x377f8, 0x377fc, 1701 0x37814, 0x37814, 1702 0x3782c, 0x3782c, 1703 0x37880, 0x3788c, 1704 0x378e8, 0x378ec, 1705 0x37900, 0x37928, 1706 0x37930, 0x37948, 1707 0x37960, 0x37968, 1708 0x37970, 0x3799c, 1709 0x379f0, 0x37a38, 1710 0x37a40, 0x37a40, 1711 0x37a48, 0x37a50, 1712 0x37a5c, 0x37a64, 1713 0x37a70, 0x37ab8, 1714 0x37ac0, 0x37ae4, 1715 0x37af8, 0x37b10, 1716 0x37b28, 0x37b28, 1717 0x37b3c, 0x37b50, 1718 0x37bf0, 0x37c10, 1719 0x37c28, 0x37c28, 1720 0x37c3c, 0x37c50, 1721 0x37cf0, 0x37cfc, 1722 0x38000, 0x38030, 1723 0x38100, 0x38144, 1724 0x38190, 0x381a0, 1725 0x381a8, 0x381b8, 1726 0x381c4, 0x381c8, 1727 0x381d0, 0x381d0, 1728 0x38200, 0x38318, 1729 0x38400, 0x384b4, 1730 0x384c0, 0x3852c, 1731 0x38540, 0x3861c, 1732 0x38800, 0x38828, 1733 0x38834, 0x38834, 1734 0x388c0, 0x38908, 1735 0x38910, 0x389ac, 1736 0x38a00, 0x38a14, 1737 0x38a1c, 0x38a2c, 1738 0x38a44, 0x38a50, 1739 0x38a74, 0x38a74, 1740 0x38a7c, 0x38afc, 1741 0x38b08, 0x38c24, 1742 0x38d00, 0x38d00, 1743 0x38d08, 0x38d14, 1744 0x38d1c, 0x38d20, 1745 0x38d3c, 0x38d3c, 1746 0x38d48, 0x38d50, 1747 0x39200, 0x3920c, 1748 0x39220, 0x39220, 1749 0x39240, 0x39240, 1750 0x39600, 0x3960c, 1751 0x39a00, 0x39a1c, 1752 0x39e00, 0x39e20, 1753 0x39e38, 0x39e3c, 1754 0x39e80, 0x39e80, 1755 0x39e88, 0x39ea8, 1756 0x39eb0, 0x39eb4, 1757 0x39ec8, 0x39ed4, 1758 0x39fb8, 0x3a004, 1759 0x3a200, 0x3a200, 1760 0x3a208, 0x3a240, 1761 0x3a248, 0x3a280, 1762 0x3a288, 0x3a2c0, 1763 0x3a2c8, 0x3a2fc, 1764 0x3a600, 0x3a630, 1765 0x3aa00, 0x3aabc, 1766 0x3ab00, 0x3ab10, 1767 0x3ab20, 0x3ab30, 1768 0x3ab40, 0x3ab50, 1769 0x3ab60, 0x3ab70, 1770 0x3b000, 0x3b028, 1771 0x3b030, 0x3b048, 1772 0x3b060, 0x3b068, 1773 0x3b070, 0x3b09c, 1774 0x3b0f0, 0x3b128, 1775 0x3b130, 0x3b148, 1776 0x3b160, 0x3b168, 1777 0x3b170, 0x3b19c, 1778 0x3b1f0, 0x3b238, 1779 0x3b240, 0x3b240, 1780 0x3b248, 0x3b250, 1781 0x3b25c, 0x3b264, 1782 0x3b270, 0x3b2b8, 1783 0x3b2c0, 0x3b2e4, 1784 0x3b2f8, 0x3b338, 1785 0x3b340, 0x3b340, 1786 0x3b348, 0x3b350, 1787 0x3b35c, 0x3b364, 1788 0x3b370, 0x3b3b8, 1789 0x3b3c0, 0x3b3e4, 1790 0x3b3f8, 0x3b428, 1791 0x3b430, 0x3b448, 1792 0x3b460, 0x3b468, 1793 0x3b470, 0x3b49c, 1794 0x3b4f0, 0x3b528, 1795 0x3b530, 0x3b548, 1796 0x3b560, 0x3b568, 1797 0x3b570, 0x3b59c, 1798 0x3b5f0, 0x3b638, 1799 0x3b640, 0x3b640, 1800 0x3b648, 0x3b650, 1801 0x3b65c, 0x3b664, 1802 0x3b670, 0x3b6b8, 1803 0x3b6c0, 0x3b6e4, 1804 0x3b6f8, 0x3b738, 1805 0x3b740, 0x3b740, 1806 0x3b748, 0x3b750, 1807 0x3b75c, 0x3b764, 1808 0x3b770, 0x3b7b8, 1809 0x3b7c0, 0x3b7e4, 1810 0x3b7f8, 0x3b7fc, 1811 0x3b814, 0x3b814, 1812 0x3b82c, 0x3b82c, 1813 0x3b880, 0x3b88c, 1814 0x3b8e8, 0x3b8ec, 1815 0x3b900, 0x3b928, 1816 0x3b930, 0x3b948, 1817 0x3b960, 0x3b968, 1818 0x3b970, 0x3b99c, 1819 0x3b9f0, 0x3ba38, 1820 0x3ba40, 0x3ba40, 1821 0x3ba48, 0x3ba50, 1822 0x3ba5c, 0x3ba64, 1823 0x3ba70, 0x3bab8, 1824 0x3bac0, 0x3bae4, 1825 0x3baf8, 0x3bb10, 1826 0x3bb28, 0x3bb28, 1827 0x3bb3c, 0x3bb50, 1828 0x3bbf0, 0x3bc10, 1829 0x3bc28, 0x3bc28, 1830 0x3bc3c, 0x3bc50, 1831 0x3bcf0, 0x3bcfc, 1832 0x3c000, 0x3c030, 1833 0x3c100, 0x3c144, 1834 0x3c190, 0x3c1a0, 1835 0x3c1a8, 0x3c1b8, 1836 0x3c1c4, 0x3c1c8, 1837 0x3c1d0, 0x3c1d0, 1838 0x3c200, 0x3c318, 1839 0x3c400, 0x3c4b4, 1840 0x3c4c0, 0x3c52c, 1841 0x3c540, 0x3c61c, 1842 0x3c800, 0x3c828, 1843 0x3c834, 0x3c834, 1844 0x3c8c0, 0x3c908, 1845 0x3c910, 0x3c9ac, 1846 0x3ca00, 0x3ca14, 1847 0x3ca1c, 0x3ca2c, 1848 0x3ca44, 0x3ca50, 1849 0x3ca74, 0x3ca74, 1850 0x3ca7c, 0x3cafc, 1851 0x3cb08, 0x3cc24, 1852 0x3cd00, 0x3cd00, 1853 0x3cd08, 0x3cd14, 1854 0x3cd1c, 0x3cd20, 1855 0x3cd3c, 0x3cd3c, 1856 0x3cd48, 0x3cd50, 1857 0x3d200, 0x3d20c, 1858 0x3d220, 0x3d220, 1859 0x3d240, 0x3d240, 1860 0x3d600, 0x3d60c, 1861 0x3da00, 0x3da1c, 1862 0x3de00, 0x3de20, 1863 0x3de38, 0x3de3c, 1864 0x3de80, 0x3de80, 1865 0x3de88, 0x3dea8, 1866 0x3deb0, 0x3deb4, 1867 0x3dec8, 0x3ded4, 1868 0x3dfb8, 0x3e004, 1869 0x3e200, 0x3e200, 1870 0x3e208, 0x3e240, 1871 0x3e248, 0x3e280, 1872 0x3e288, 0x3e2c0, 1873 0x3e2c8, 0x3e2fc, 1874 0x3e600, 0x3e630, 1875 0x3ea00, 0x3eabc, 1876 0x3eb00, 0x3eb10, 1877 0x3eb20, 0x3eb30, 1878 0x3eb40, 0x3eb50, 1879 0x3eb60, 0x3eb70, 1880 0x3f000, 0x3f028, 1881 0x3f030, 0x3f048, 1882 0x3f060, 0x3f068, 1883 0x3f070, 0x3f09c, 1884 0x3f0f0, 0x3f128, 1885 0x3f130, 0x3f148, 1886 0x3f160, 0x3f168, 1887 0x3f170, 0x3f19c, 1888 0x3f1f0, 0x3f238, 1889 0x3f240, 0x3f240, 1890 0x3f248, 0x3f250, 1891 0x3f25c, 0x3f264, 1892 0x3f270, 0x3f2b8, 1893 0x3f2c0, 0x3f2e4, 1894 0x3f2f8, 0x3f338, 1895 0x3f340, 0x3f340, 1896 0x3f348, 0x3f350, 1897 0x3f35c, 0x3f364, 1898 0x3f370, 0x3f3b8, 1899 0x3f3c0, 0x3f3e4, 1900 0x3f3f8, 0x3f428, 1901 0x3f430, 0x3f448, 1902 0x3f460, 0x3f468, 1903 0x3f470, 0x3f49c, 1904 0x3f4f0, 0x3f528, 1905 0x3f530, 0x3f548, 1906 0x3f560, 0x3f568, 1907 0x3f570, 0x3f59c, 1908 0x3f5f0, 0x3f638, 1909 0x3f640, 0x3f640, 1910 0x3f648, 0x3f650, 1911 0x3f65c, 0x3f664, 1912 0x3f670, 0x3f6b8, 1913 0x3f6c0, 0x3f6e4, 1914 0x3f6f8, 0x3f738, 1915 0x3f740, 0x3f740, 1916 0x3f748, 0x3f750, 1917 0x3f75c, 0x3f764, 1918 0x3f770, 0x3f7b8, 1919 0x3f7c0, 0x3f7e4, 1920 0x3f7f8, 0x3f7fc, 1921 0x3f814, 0x3f814, 1922 0x3f82c, 0x3f82c, 1923 0x3f880, 0x3f88c, 1924 0x3f8e8, 0x3f8ec, 1925 0x3f900, 0x3f928, 1926 0x3f930, 0x3f948, 1927 0x3f960, 0x3f968, 1928 0x3f970, 0x3f99c, 1929 0x3f9f0, 0x3fa38, 1930 0x3fa40, 0x3fa40, 1931 0x3fa48, 0x3fa50, 1932 0x3fa5c, 0x3fa64, 1933 0x3fa70, 0x3fab8, 1934 0x3fac0, 0x3fae4, 1935 0x3faf8, 0x3fb10, 1936 0x3fb28, 0x3fb28, 1937 0x3fb3c, 0x3fb50, 1938 0x3fbf0, 0x3fc10, 1939 0x3fc28, 0x3fc28, 1940 0x3fc3c, 0x3fc50, 1941 0x3fcf0, 0x3fcfc, 1942 0x40000, 0x4000c, 1943 0x40040, 0x40050, 1944 0x40060, 0x40068, 1945 0x4007c, 0x4008c, 1946 0x40094, 0x400b0, 1947 0x400c0, 0x40144, 1948 0x40180, 0x4018c, 1949 0x40200, 0x40254, 1950 0x40260, 0x40264, 1951 0x40270, 0x40288, 1952 0x40290, 0x40298, 1953 0x402ac, 0x402c8, 1954 0x402d0, 0x402e0, 1955 0x402f0, 0x402f0, 1956 0x40300, 0x4033c, 1957 0x403f8, 0x403fc, 1958 0x41304, 0x413c4, 1959 0x41400, 0x4140c, 1960 0x41414, 0x4141c, 1961 0x41480, 0x414d0, 1962 0x44000, 0x44054, 1963 0x4405c, 0x44078, 1964 0x440c0, 0x44174, 1965 0x44180, 0x441ac, 1966 0x441b4, 0x441b8, 1967 0x441c0, 0x44254, 1968 0x4425c, 0x44278, 1969 0x442c0, 0x44374, 1970 0x44380, 0x443ac, 1971 0x443b4, 0x443b8, 1972 0x443c0, 0x44454, 1973 0x4445c, 0x44478, 1974 0x444c0, 0x44574, 1975 0x44580, 0x445ac, 1976 0x445b4, 0x445b8, 1977 0x445c0, 0x44654, 1978 0x4465c, 0x44678, 1979 0x446c0, 0x44774, 1980 0x44780, 0x447ac, 1981 0x447b4, 0x447b8, 1982 0x447c0, 0x44854, 1983 0x4485c, 0x44878, 1984 0x448c0, 0x44974, 1985 0x44980, 0x449ac, 1986 0x449b4, 0x449b8, 1987 0x449c0, 0x449fc, 1988 0x45000, 0x45004, 1989 0x45010, 0x45030, 1990 0x45040, 0x45060, 1991 0x45068, 0x45068, 1992 0x45080, 0x45084, 1993 0x450a0, 0x450b0, 1994 0x45200, 0x45204, 1995 0x45210, 0x45230, 1996 0x45240, 0x45260, 1997 0x45268, 0x45268, 1998 0x45280, 0x45284, 1999 0x452a0, 0x452b0, 2000 0x460c0, 0x460e4, 2001 0x47000, 0x4703c, 2002 0x47044, 0x4708c, 2003 0x47200, 0x47250, 2004 0x47400, 0x47408, 2005 0x47414, 0x47420, 2006 0x47600, 0x47618, 2007 0x47800, 0x47814, 2008 0x48000, 0x4800c, 2009 0x48040, 0x48050, 2010 0x48060, 0x48068, 2011 0x4807c, 0x4808c, 2012 0x48094, 0x480b0, 2013 0x480c0, 0x48144, 2014 0x48180, 0x4818c, 2015 0x48200, 0x48254, 2016 0x48260, 0x48264, 2017 0x48270, 0x48288, 2018 0x48290, 0x48298, 2019 0x482ac, 0x482c8, 2020 0x482d0, 0x482e0, 2021 0x482f0, 0x482f0, 2022 0x48300, 0x4833c, 2023 0x483f8, 0x483fc, 2024 0x49304, 0x493c4, 2025 0x49400, 0x4940c, 2026 0x49414, 0x4941c, 2027 0x49480, 0x494d0, 2028 0x4c000, 0x4c054, 2029 0x4c05c, 0x4c078, 2030 0x4c0c0, 0x4c174, 2031 0x4c180, 0x4c1ac, 2032 0x4c1b4, 0x4c1b8, 2033 0x4c1c0, 0x4c254, 2034 0x4c25c, 0x4c278, 2035 0x4c2c0, 0x4c374, 2036 0x4c380, 0x4c3ac, 2037 0x4c3b4, 0x4c3b8, 2038 0x4c3c0, 0x4c454, 2039 0x4c45c, 0x4c478, 2040 0x4c4c0, 0x4c574, 2041 0x4c580, 0x4c5ac, 2042 0x4c5b4, 0x4c5b8, 2043 0x4c5c0, 0x4c654, 2044 0x4c65c, 0x4c678, 2045 0x4c6c0, 0x4c774, 2046 0x4c780, 0x4c7ac, 2047 0x4c7b4, 0x4c7b8, 2048 0x4c7c0, 0x4c854, 2049 0x4c85c, 0x4c878, 2050 0x4c8c0, 0x4c974, 2051 0x4c980, 0x4c9ac, 2052 0x4c9b4, 0x4c9b8, 2053 0x4c9c0, 0x4c9fc, 2054 0x4d000, 0x4d004, 2055 0x4d010, 0x4d030, 2056 0x4d040, 0x4d060, 2057 0x4d068, 0x4d068, 2058 0x4d080, 0x4d084, 2059 0x4d0a0, 0x4d0b0, 2060 0x4d200, 0x4d204, 2061 0x4d210, 0x4d230, 2062 0x4d240, 0x4d260, 2063 0x4d268, 0x4d268, 2064 0x4d280, 0x4d284, 2065 0x4d2a0, 0x4d2b0, 2066 0x4e0c0, 0x4e0e4, 2067 0x4f000, 0x4f03c, 2068 0x4f044, 0x4f08c, 2069 0x4f200, 0x4f250, 2070 0x4f400, 0x4f408, 2071 0x4f414, 0x4f420, 2072 0x4f600, 0x4f618, 2073 0x4f800, 0x4f814, 2074 0x50000, 0x50084, 2075 0x50090, 0x500cc, 2076 0x50400, 0x50400, 2077 0x50800, 0x50884, 2078 0x50890, 0x508cc, 2079 0x50c00, 0x50c00, 2080 0x51000, 0x5101c, 2081 0x51300, 0x51308, 2082 }; 2083 2084 static const unsigned int t6_reg_ranges[] = { 2085 0x1008, 0x101c, 2086 0x1024, 0x10a8, 2087 0x10b4, 0x10f8, 2088 0x1100, 0x1114, 2089 0x111c, 0x112c, 2090 0x1138, 0x113c, 2091 0x1144, 0x114c, 2092 0x1180, 0x1184, 2093 0x1190, 0x1194, 2094 0x11a0, 0x11a4, 2095 0x11b0, 0x11b4, 2096 0x11fc, 0x1274, 2097 0x1280, 0x133c, 2098 0x1800, 0x18fc, 2099 0x3000, 0x302c, 2100 0x3060, 0x30b0, 2101 0x30b8, 0x30d8, 2102 0x30e0, 0x30fc, 2103 0x3140, 0x357c, 2104 0x35a8, 0x35cc, 2105 0x35ec, 0x35ec, 2106 0x3600, 0x5624, 2107 0x56cc, 0x56ec, 2108 0x56f4, 0x5720, 2109 0x5728, 0x575c, 2110 0x580c, 0x5814, 2111 0x5890, 0x589c, 2112 0x58a4, 0x58ac, 2113 0x58b8, 0x58bc, 2114 0x5940, 0x595c, 2115 0x5980, 0x598c, 2116 0x59b0, 0x59c8, 2117 0x59d0, 0x59dc, 2118 0x59fc, 0x5a18, 2119 0x5a60, 0x5a6c, 2120 0x5a80, 0x5a8c, 2121 0x5a94, 0x5a9c, 2122 0x5b94, 0x5bfc, 2123 0x5c10, 0x5e48, 2124 0x5e50, 0x5e94, 2125 0x5ea0, 0x5eb0, 2126 0x5ec0, 0x5ec0, 2127 0x5ec8, 0x5ed0, 2128 0x5ee0, 0x5ee0, 2129 0x5ef0, 0x5ef0, 2130 0x5f00, 0x5f00, 2131 0x6000, 0x6020, 2132 0x6028, 0x6040, 2133 0x6058, 0x609c, 2134 0x60a8, 0x619c, 2135 0x7700, 0x7798, 2136 0x77c0, 0x7880, 2137 0x78cc, 0x78fc, 2138 0x7b00, 0x7b58, 2139 0x7b60, 0x7b84, 2140 0x7b8c, 0x7c54, 2141 0x7d00, 0x7d38, 2142 0x7d40, 0x7d84, 2143 0x7d8c, 0x7ddc, 2144 0x7de4, 0x7e04, 2145 0x7e10, 0x7e1c, 2146 0x7e24, 0x7e38, 2147 0x7e40, 0x7e44, 2148 0x7e4c, 0x7e78, 2149 0x7e80, 0x7edc, 2150 0x7ee8, 0x7efc, 2151 0x8dc0, 0x8de4, 2152 0x8df8, 0x8e04, 2153 0x8e10, 0x8e84, 2154 0x8ea0, 0x8f88, 2155 0x8fb8, 0x9058, 2156 0x9060, 0x9060, 2157 0x9068, 0x90f8, 2158 0x9100, 0x9124, 2159 0x9400, 0x9470, 2160 0x9600, 0x9600, 2161 0x9608, 0x9638, 2162 0x9640, 0x9704, 2163 0x9710, 0x971c, 2164 0x9800, 0x9808, 2165 0x9820, 0x983c, 2166 0x9850, 0x9864, 2167 0x9c00, 0x9c6c, 2168 0x9c80, 0x9cec, 2169 0x9d00, 0x9d6c, 2170 0x9d80, 0x9dec, 2171 0x9e00, 0x9e6c, 2172 0x9e80, 0x9eec, 2173 0x9f00, 0x9f6c, 2174 0x9f80, 0xa020, 2175 0xd004, 0xd03c, 2176 0xd100, 0xd118, 2177 0xd200, 0xd214, 2178 0xd220, 0xd234, 2179 0xd240, 0xd254, 2180 0xd260, 0xd274, 2181 0xd280, 0xd294, 2182 0xd2a0, 0xd2b4, 2183 0xd2c0, 0xd2d4, 2184 0xd2e0, 0xd2f4, 2185 0xd300, 0xd31c, 2186 0xdfc0, 0xdfe0, 2187 0xe000, 0xf008, 2188 0xf010, 0xf018, 2189 0xf020, 0xf028, 2190 0x11000, 0x11014, 2191 0x11048, 0x1106c, 2192 0x11074, 0x11088, 2193 0x11098, 0x11120, 2194 0x1112c, 0x1117c, 2195 0x11190, 0x112e0, 2196 0x11300, 0x1130c, 2197 0x12000, 0x1206c, 2198 0x19040, 0x1906c, 2199 0x19078, 0x19080, 2200 0x1908c, 0x190e8, 2201 0x190f0, 0x190f8, 2202 0x19100, 0x19110, 2203 0x19120, 0x19124, 2204 0x19150, 0x19194, 2205 0x1919c, 0x191b0, 2206 0x191d0, 0x191e8, 2207 0x19238, 0x19290, 2208 0x192a4, 0x192b0, 2209 0x192bc, 0x192bc, 2210 0x19348, 0x1934c, 2211 0x193f8, 0x19418, 2212 0x19420, 0x19428, 2213 0x19430, 0x19444, 2214 0x1944c, 0x1946c, 2215 0x19474, 0x19474, 2216 0x19490, 0x194cc, 2217 0x194f0, 0x194f8, 2218 0x19c00, 0x19c48, 2219 0x19c50, 0x19c80, 2220 0x19c94, 0x19c98, 2221 0x19ca0, 0x19cbc, 2222 0x19ce4, 0x19ce4, 2223 0x19cf0, 0x19cf8, 2224 0x19d00, 0x19d28, 2225 0x19d50, 0x19d78, 2226 0x19d94, 0x19d98, 2227 0x19da0, 0x19dc8, 2228 0x19df0, 0x19e10, 2229 0x19e50, 0x19e6c, 2230 0x19ea0, 0x19ebc, 2231 0x19ec4, 0x19ef4, 2232 0x19f04, 0x19f2c, 2233 0x19f34, 0x19f34, 2234 0x19f40, 0x19f50, 2235 0x19f90, 0x19fac, 2236 0x19fc4, 0x19fc8, 2237 0x19fd0, 0x19fe4, 2238 0x1a000, 0x1a004, 2239 0x1a010, 0x1a06c, 2240 0x1a0b0, 0x1a0e4, 2241 0x1a0ec, 0x1a0f8, 2242 0x1a100, 0x1a108, 2243 0x1a114, 0x1a120, 2244 0x1a128, 0x1a130, 2245 0x1a138, 0x1a138, 2246 0x1a190, 0x1a1c4, 2247 0x1a1fc, 0x1a1fc, 2248 0x1e008, 0x1e00c, 2249 0x1e040, 0x1e044, 2250 0x1e04c, 0x1e04c, 2251 0x1e284, 0x1e290, 2252 0x1e2c0, 0x1e2c0, 2253 0x1e2e0, 0x1e2e0, 2254 0x1e300, 0x1e384, 2255 0x1e3c0, 0x1e3c8, 2256 0x1e408, 0x1e40c, 2257 0x1e440, 0x1e444, 2258 0x1e44c, 0x1e44c, 2259 0x1e684, 0x1e690, 2260 0x1e6c0, 0x1e6c0, 2261 0x1e6e0, 0x1e6e0, 2262 0x1e700, 0x1e784, 2263 0x1e7c0, 0x1e7c8, 2264 0x1e808, 0x1e80c, 2265 0x1e840, 0x1e844, 2266 0x1e84c, 0x1e84c, 2267 0x1ea84, 0x1ea90, 2268 0x1eac0, 0x1eac0, 2269 0x1eae0, 0x1eae0, 2270 0x1eb00, 0x1eb84, 2271 0x1ebc0, 0x1ebc8, 2272 0x1ec08, 0x1ec0c, 2273 0x1ec40, 0x1ec44, 2274 0x1ec4c, 0x1ec4c, 2275 0x1ee84, 0x1ee90, 2276 0x1eec0, 0x1eec0, 2277 0x1eee0, 0x1eee0, 2278 0x1ef00, 0x1ef84, 2279 0x1efc0, 0x1efc8, 2280 0x1f008, 0x1f00c, 2281 0x1f040, 0x1f044, 2282 0x1f04c, 0x1f04c, 2283 0x1f284, 0x1f290, 2284 0x1f2c0, 0x1f2c0, 2285 0x1f2e0, 0x1f2e0, 2286 0x1f300, 0x1f384, 2287 0x1f3c0, 0x1f3c8, 2288 0x1f408, 0x1f40c, 2289 0x1f440, 0x1f444, 2290 0x1f44c, 0x1f44c, 2291 0x1f684, 0x1f690, 2292 0x1f6c0, 0x1f6c0, 2293 0x1f6e0, 0x1f6e0, 2294 0x1f700, 0x1f784, 2295 0x1f7c0, 0x1f7c8, 2296 0x1f808, 0x1f80c, 2297 0x1f840, 0x1f844, 2298 0x1f84c, 0x1f84c, 2299 0x1fa84, 0x1fa90, 2300 0x1fac0, 0x1fac0, 2301 0x1fae0, 0x1fae0, 2302 0x1fb00, 0x1fb84, 2303 0x1fbc0, 0x1fbc8, 2304 0x1fc08, 0x1fc0c, 2305 0x1fc40, 0x1fc44, 2306 0x1fc4c, 0x1fc4c, 2307 0x1fe84, 0x1fe90, 2308 0x1fec0, 0x1fec0, 2309 0x1fee0, 0x1fee0, 2310 0x1ff00, 0x1ff84, 2311 0x1ffc0, 0x1ffc8, 2312 0x30000, 0x30030, 2313 0x30100, 0x30168, 2314 0x30190, 0x301a0, 2315 0x301a8, 0x301b8, 2316 0x301c4, 0x301c8, 2317 0x301d0, 0x301d0, 2318 0x30200, 0x30320, 2319 0x30400, 0x304b4, 2320 0x304c0, 0x3052c, 2321 0x30540, 0x3061c, 2322 0x30800, 0x308a0, 2323 0x308c0, 0x30908, 2324 0x30910, 0x309b8, 2325 0x30a00, 0x30a04, 2326 0x30a0c, 0x30a14, 2327 0x30a1c, 0x30a2c, 2328 0x30a44, 0x30a50, 2329 0x30a74, 0x30a74, 2330 0x30a7c, 0x30afc, 2331 0x30b08, 0x30c24, 2332 0x30d00, 0x30d14, 2333 0x30d1c, 0x30d3c, 2334 0x30d44, 0x30d4c, 2335 0x30d54, 0x30d74, 2336 0x30d7c, 0x30d7c, 2337 0x30de0, 0x30de0, 2338 0x30e00, 0x30ed4, 2339 0x30f00, 0x30fa4, 2340 0x30fc0, 0x30fc4, 2341 0x31000, 0x31004, 2342 0x31080, 0x310fc, 2343 0x31208, 0x31220, 2344 0x3123c, 0x31254, 2345 0x31300, 0x31300, 2346 0x31308, 0x3131c, 2347 0x31338, 0x3133c, 2348 0x31380, 0x31380, 2349 0x31388, 0x313a8, 2350 0x313b4, 0x313b4, 2351 0x31400, 0x31420, 2352 0x31438, 0x3143c, 2353 0x31480, 0x31480, 2354 0x314a8, 0x314a8, 2355 0x314b0, 0x314b4, 2356 0x314c8, 0x314d4, 2357 0x31a40, 0x31a4c, 2358 0x31af0, 0x31b20, 2359 0x31b38, 0x31b3c, 2360 0x31b80, 0x31b80, 2361 0x31ba8, 0x31ba8, 2362 0x31bb0, 0x31bb4, 2363 0x31bc8, 0x31bd4, 2364 0x32140, 0x3218c, 2365 0x321f0, 0x321f4, 2366 0x32200, 0x32200, 2367 0x32218, 0x32218, 2368 0x32400, 0x32400, 2369 0x32408, 0x3241c, 2370 0x32618, 0x32620, 2371 0x32664, 0x32664, 2372 0x326a8, 0x326a8, 2373 0x326ec, 0x326ec, 2374 0x32a00, 0x32abc, 2375 0x32b00, 0x32b18, 2376 0x32b20, 0x32b38, 2377 0x32b40, 0x32b58, 2378 0x32b60, 0x32b78, 2379 0x32c00, 0x32c00, 2380 0x32c08, 0x32c3c, 2381 0x33000, 0x3302c, 2382 0x33034, 0x33050, 2383 0x33058, 0x33058, 2384 0x33060, 0x3308c, 2385 0x3309c, 0x330ac, 2386 0x330c0, 0x330c0, 2387 0x330c8, 0x330d0, 2388 0x330d8, 0x330e0, 2389 0x330ec, 0x3312c, 2390 0x33134, 0x33150, 2391 0x33158, 0x33158, 2392 0x33160, 0x3318c, 2393 0x3319c, 0x331ac, 2394 0x331c0, 0x331c0, 2395 0x331c8, 0x331d0, 2396 0x331d8, 0x331e0, 2397 0x331ec, 0x33290, 2398 0x33298, 0x332c4, 2399 0x332e4, 0x33390, 2400 0x33398, 0x333c4, 2401 0x333e4, 0x3342c, 2402 0x33434, 0x33450, 2403 0x33458, 0x33458, 2404 0x33460, 0x3348c, 2405 0x3349c, 0x334ac, 2406 0x334c0, 0x334c0, 2407 0x334c8, 0x334d0, 2408 0x334d8, 0x334e0, 2409 0x334ec, 0x3352c, 2410 0x33534, 0x33550, 2411 0x33558, 0x33558, 2412 0x33560, 0x3358c, 2413 0x3359c, 0x335ac, 2414 0x335c0, 0x335c0, 2415 0x335c8, 0x335d0, 2416 0x335d8, 0x335e0, 2417 0x335ec, 0x33690, 2418 0x33698, 0x336c4, 2419 0x336e4, 0x33790, 2420 0x33798, 0x337c4, 2421 0x337e4, 0x337fc, 2422 0x33814, 0x33814, 2423 0x33854, 0x33868, 2424 0x33880, 0x3388c, 2425 0x338c0, 0x338d0, 2426 0x338e8, 0x338ec, 2427 0x33900, 0x3392c, 2428 0x33934, 0x33950, 2429 0x33958, 0x33958, 2430 0x33960, 0x3398c, 2431 0x3399c, 0x339ac, 2432 0x339c0, 0x339c0, 2433 0x339c8, 0x339d0, 2434 0x339d8, 0x339e0, 2435 0x339ec, 0x33a90, 2436 0x33a98, 0x33ac4, 2437 0x33ae4, 0x33b10, 2438 0x33b24, 0x33b28, 2439 0x33b38, 0x33b50, 2440 0x33bf0, 0x33c10, 2441 0x33c24, 0x33c28, 2442 0x33c38, 0x33c50, 2443 0x33cf0, 0x33cfc, 2444 0x34000, 0x34030, 2445 0x34100, 0x34168, 2446 0x34190, 0x341a0, 2447 0x341a8, 0x341b8, 2448 0x341c4, 0x341c8, 2449 0x341d0, 0x341d0, 2450 0x34200, 0x34320, 2451 0x34400, 0x344b4, 2452 0x344c0, 0x3452c, 2453 0x34540, 0x3461c, 2454 0x34800, 0x348a0, 2455 0x348c0, 0x34908, 2456 0x34910, 0x349b8, 2457 0x34a00, 0x34a04, 2458 0x34a0c, 0x34a14, 2459 0x34a1c, 0x34a2c, 2460 0x34a44, 0x34a50, 2461 0x34a74, 0x34a74, 2462 0x34a7c, 0x34afc, 2463 0x34b08, 0x34c24, 2464 0x34d00, 0x34d14, 2465 0x34d1c, 0x34d3c, 2466 0x34d44, 0x34d4c, 2467 0x34d54, 0x34d74, 2468 0x34d7c, 0x34d7c, 2469 0x34de0, 0x34de0, 2470 0x34e00, 0x34ed4, 2471 0x34f00, 0x34fa4, 2472 0x34fc0, 0x34fc4, 2473 0x35000, 0x35004, 2474 0x35080, 0x350fc, 2475 0x35208, 0x35220, 2476 0x3523c, 0x35254, 2477 0x35300, 0x35300, 2478 0x35308, 0x3531c, 2479 0x35338, 0x3533c, 2480 0x35380, 0x35380, 2481 0x35388, 0x353a8, 2482 0x353b4, 0x353b4, 2483 0x35400, 0x35420, 2484 0x35438, 0x3543c, 2485 0x35480, 0x35480, 2486 0x354a8, 0x354a8, 2487 0x354b0, 0x354b4, 2488 0x354c8, 0x354d4, 2489 0x35a40, 0x35a4c, 2490 0x35af0, 0x35b20, 2491 0x35b38, 0x35b3c, 2492 0x35b80, 0x35b80, 2493 0x35ba8, 0x35ba8, 2494 0x35bb0, 0x35bb4, 2495 0x35bc8, 0x35bd4, 2496 0x36140, 0x3618c, 2497 0x361f0, 0x361f4, 2498 0x36200, 0x36200, 2499 0x36218, 0x36218, 2500 0x36400, 0x36400, 2501 0x36408, 0x3641c, 2502 0x36618, 0x36620, 2503 0x36664, 0x36664, 2504 0x366a8, 0x366a8, 2505 0x366ec, 0x366ec, 2506 0x36a00, 0x36abc, 2507 0x36b00, 0x36b18, 2508 0x36b20, 0x36b38, 2509 0x36b40, 0x36b58, 2510 0x36b60, 0x36b78, 2511 0x36c00, 0x36c00, 2512 0x36c08, 0x36c3c, 2513 0x37000, 0x3702c, 2514 0x37034, 0x37050, 2515 0x37058, 0x37058, 2516 0x37060, 0x3708c, 2517 0x3709c, 0x370ac, 2518 0x370c0, 0x370c0, 2519 0x370c8, 0x370d0, 2520 0x370d8, 0x370e0, 2521 0x370ec, 0x3712c, 2522 0x37134, 0x37150, 2523 0x37158, 0x37158, 2524 0x37160, 0x3718c, 2525 0x3719c, 0x371ac, 2526 0x371c0, 0x371c0, 2527 0x371c8, 0x371d0, 2528 0x371d8, 0x371e0, 2529 0x371ec, 0x37290, 2530 0x37298, 0x372c4, 2531 0x372e4, 0x37390, 2532 0x37398, 0x373c4, 2533 0x373e4, 0x3742c, 2534 0x37434, 0x37450, 2535 0x37458, 0x37458, 2536 0x37460, 0x3748c, 2537 0x3749c, 0x374ac, 2538 0x374c0, 0x374c0, 2539 0x374c8, 0x374d0, 2540 0x374d8, 0x374e0, 2541 0x374ec, 0x3752c, 2542 0x37534, 0x37550, 2543 0x37558, 0x37558, 2544 0x37560, 0x3758c, 2545 0x3759c, 0x375ac, 2546 0x375c0, 0x375c0, 2547 0x375c8, 0x375d0, 2548 0x375d8, 0x375e0, 2549 0x375ec, 0x37690, 2550 0x37698, 0x376c4, 2551 0x376e4, 0x37790, 2552 0x37798, 0x377c4, 2553 0x377e4, 0x377fc, 2554 0x37814, 0x37814, 2555 0x37854, 0x37868, 2556 0x37880, 0x3788c, 2557 0x378c0, 0x378d0, 2558 0x378e8, 0x378ec, 2559 0x37900, 0x3792c, 2560 0x37934, 0x37950, 2561 0x37958, 0x37958, 2562 0x37960, 0x3798c, 2563 0x3799c, 0x379ac, 2564 0x379c0, 0x379c0, 2565 0x379c8, 0x379d0, 2566 0x379d8, 0x379e0, 2567 0x379ec, 0x37a90, 2568 0x37a98, 0x37ac4, 2569 0x37ae4, 0x37b10, 2570 0x37b24, 0x37b28, 2571 0x37b38, 0x37b50, 2572 0x37bf0, 0x37c10, 2573 0x37c24, 0x37c28, 2574 0x37c38, 0x37c50, 2575 0x37cf0, 0x37cfc, 2576 0x40040, 0x40040, 2577 0x40080, 0x40084, 2578 0x40100, 0x40100, 2579 0x40140, 0x401bc, 2580 0x40200, 0x40214, 2581 0x40228, 0x40228, 2582 0x40240, 0x40258, 2583 0x40280, 0x40280, 2584 0x40304, 0x40304, 2585 0x40330, 0x4033c, 2586 0x41304, 0x413c8, 2587 0x413d0, 0x413dc, 2588 0x413f0, 0x413f0, 2589 0x41400, 0x4140c, 2590 0x41414, 0x4141c, 2591 0x41480, 0x414d0, 2592 0x44000, 0x4407c, 2593 0x440c0, 0x441ac, 2594 0x441b4, 0x4427c, 2595 0x442c0, 0x443ac, 2596 0x443b4, 0x4447c, 2597 0x444c0, 0x445ac, 2598 0x445b4, 0x4467c, 2599 0x446c0, 0x447ac, 2600 0x447b4, 0x4487c, 2601 0x448c0, 0x449ac, 2602 0x449b4, 0x44a7c, 2603 0x44ac0, 0x44bac, 2604 0x44bb4, 0x44c7c, 2605 0x44cc0, 0x44dac, 2606 0x44db4, 0x44e7c, 2607 0x44ec0, 0x44fac, 2608 0x44fb4, 0x4507c, 2609 0x450c0, 0x451ac, 2610 0x451b4, 0x451fc, 2611 0x45800, 0x45804, 2612 0x45810, 0x45830, 2613 0x45840, 0x45860, 2614 0x45868, 0x45868, 2615 0x45880, 0x45884, 2616 0x458a0, 0x458b0, 2617 0x45a00, 0x45a04, 2618 0x45a10, 0x45a30, 2619 0x45a40, 0x45a60, 2620 0x45a68, 0x45a68, 2621 0x45a80, 0x45a84, 2622 0x45aa0, 0x45ab0, 2623 0x460c0, 0x460e4, 2624 0x47000, 0x4703c, 2625 0x47044, 0x4708c, 2626 0x47200, 0x47250, 2627 0x47400, 0x47408, 2628 0x47414, 0x47420, 2629 0x47600, 0x47618, 2630 0x47800, 0x47814, 2631 0x47820, 0x4782c, 2632 0x50000, 0x50084, 2633 0x50090, 0x500cc, 2634 0x50300, 0x50384, 2635 0x50400, 0x50400, 2636 0x50800, 0x50884, 2637 0x50890, 0x508cc, 2638 0x50b00, 0x50b84, 2639 0x50c00, 0x50c00, 2640 0x51000, 0x51020, 2641 0x51028, 0x510b0, 2642 0x51300, 0x51324, 2643 }; 2644 2645 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2646 const unsigned int *reg_ranges; 2647 int reg_ranges_size, range; 2648 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2649 2650 /* Select the right set of register ranges to dump depending on the 2651 * adapter chip type. 2652 */ 2653 switch (chip_version) { 2654 case CHELSIO_T4: 2655 reg_ranges = t4_reg_ranges; 2656 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2657 break; 2658 2659 case CHELSIO_T5: 2660 reg_ranges = t5_reg_ranges; 2661 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2662 break; 2663 2664 case CHELSIO_T6: 2665 reg_ranges = t6_reg_ranges; 2666 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2667 break; 2668 2669 default: 2670 dev_err(adap->pdev_dev, 2671 "Unsupported chip version %d\n", chip_version); 2672 return; 2673 } 2674 2675 /* Clear the register buffer and insert the appropriate register 2676 * values selected by the above register ranges. 2677 */ 2678 memset(buf, 0, buf_size); 2679 for (range = 0; range < reg_ranges_size; range += 2) { 2680 unsigned int reg = reg_ranges[range]; 2681 unsigned int last_reg = reg_ranges[range + 1]; 2682 u32 *bufp = (u32 *)((char *)buf + reg); 2683 2684 /* Iterate across the register range filling in the register 2685 * buffer but don't write past the end of the register buffer. 2686 */ 2687 while (reg <= last_reg && bufp < buf_end) { 2688 *bufp++ = t4_read_reg(adap, reg); 2689 reg += sizeof(u32); 2690 } 2691 } 2692 } 2693 2694 #define EEPROM_STAT_ADDR 0x7bfc 2695 #define VPD_BASE 0x400 2696 #define VPD_BASE_OLD 0 2697 #define VPD_LEN 1024 2698 #define CHELSIO_VPD_UNIQUE_ID 0x82 2699 2700 /** 2701 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2702 * @phys_addr: the physical EEPROM address 2703 * @fn: the PCI function number 2704 * @sz: size of function-specific area 2705 * 2706 * Translate a physical EEPROM address to virtual. The first 1K is 2707 * accessed through virtual addresses starting at 31K, the rest is 2708 * accessed through virtual addresses starting at 0. 2709 * 2710 * The mapping is as follows: 2711 * [0..1K) -> [31K..32K) 2712 * [1K..1K+A) -> [31K-A..31K) 2713 * [1K+A..ES) -> [0..ES-A-1K) 2714 * 2715 * where A = @fn * @sz, and ES = EEPROM size. 2716 */ 2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2718 { 2719 fn *= sz; 2720 if (phys_addr < 1024) 2721 return phys_addr + (31 << 10); 2722 if (phys_addr < 1024 + fn) 2723 return 31744 - fn + phys_addr - 1024; 2724 if (phys_addr < EEPROMSIZE) 2725 return phys_addr - 1024 - fn; 2726 return -EINVAL; 2727 } 2728 2729 /** 2730 * t4_seeprom_wp - enable/disable EEPROM write protection 2731 * @adapter: the adapter 2732 * @enable: whether to enable or disable write protection 2733 * 2734 * Enables or disables write protection on the serial EEPROM. 2735 */ 2736 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2737 { 2738 unsigned int v = enable ? 0xc : 0; 2739 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2740 return ret < 0 ? ret : 0; 2741 } 2742 2743 /** 2744 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2745 * @adapter: adapter to read 2746 * @p: where to store the parameters 2747 * 2748 * Reads card parameters stored in VPD EEPROM. 2749 */ 2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2751 { 2752 int i, ret = 0, addr; 2753 int ec, sn, pn, na; 2754 u8 *vpd, csum; 2755 unsigned int vpdr_len, kw_offset, id_len; 2756 2757 vpd = vmalloc(VPD_LEN); 2758 if (!vpd) 2759 return -ENOMEM; 2760 2761 /* Card information normally starts at VPD_BASE but early cards had 2762 * it at 0. 2763 */ 2764 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2765 if (ret < 0) 2766 goto out; 2767 2768 /* The VPD shall have a unique identifier specified by the PCI SIG. 2769 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2770 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2771 * is expected to automatically put this entry at the 2772 * beginning of the VPD. 2773 */ 2774 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2775 2776 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2777 if (ret < 0) 2778 goto out; 2779 2780 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2781 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2782 ret = -EINVAL; 2783 goto out; 2784 } 2785 2786 id_len = pci_vpd_lrdt_size(vpd); 2787 if (id_len > ID_LEN) 2788 id_len = ID_LEN; 2789 2790 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2791 if (i < 0) { 2792 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2793 ret = -EINVAL; 2794 goto out; 2795 } 2796 2797 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2798 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2799 if (vpdr_len + kw_offset > VPD_LEN) { 2800 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2801 ret = -EINVAL; 2802 goto out; 2803 } 2804 2805 #define FIND_VPD_KW(var, name) do { \ 2806 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2807 if (var < 0) { \ 2808 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2809 ret = -EINVAL; \ 2810 goto out; \ 2811 } \ 2812 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2813 } while (0) 2814 2815 FIND_VPD_KW(i, "RV"); 2816 for (csum = 0; i >= 0; i--) 2817 csum += vpd[i]; 2818 2819 if (csum) { 2820 dev_err(adapter->pdev_dev, 2821 "corrupted VPD EEPROM, actual csum %u\n", csum); 2822 ret = -EINVAL; 2823 goto out; 2824 } 2825 2826 FIND_VPD_KW(ec, "EC"); 2827 FIND_VPD_KW(sn, "SN"); 2828 FIND_VPD_KW(pn, "PN"); 2829 FIND_VPD_KW(na, "NA"); 2830 #undef FIND_VPD_KW 2831 2832 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2833 strim(p->id); 2834 memcpy(p->ec, vpd + ec, EC_LEN); 2835 strim(p->ec); 2836 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2837 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2838 strim(p->sn); 2839 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2840 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2841 strim(p->pn); 2842 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2843 strim((char *)p->na); 2844 2845 out: 2846 vfree(vpd); 2847 return ret < 0 ? ret : 0; 2848 } 2849 2850 /** 2851 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2852 * @adapter: adapter to read 2853 * @p: where to store the parameters 2854 * 2855 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2856 * Clock. This can only be called after a connection to the firmware 2857 * is established. 2858 */ 2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2860 { 2861 u32 cclk_param, cclk_val; 2862 int ret; 2863 2864 /* Grab the raw VPD parameters. 2865 */ 2866 ret = t4_get_raw_vpd_params(adapter, p); 2867 if (ret) 2868 return ret; 2869 2870 /* Ask firmware for the Core Clock since it knows how to translate the 2871 * Reference Clock ('V2') VPD field into a Core Clock value ... 2872 */ 2873 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2874 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2875 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2876 1, &cclk_param, &cclk_val); 2877 2878 if (ret) 2879 return ret; 2880 p->cclk = cclk_val; 2881 2882 return 0; 2883 } 2884 2885 /** 2886 * t4_get_pfres - retrieve VF resource limits 2887 * @adapter: the adapter 2888 * 2889 * Retrieves configured resource limits and capabilities for a physical 2890 * function. The results are stored in @adapter->pfres. 2891 */ 2892 int t4_get_pfres(struct adapter *adapter) 2893 { 2894 struct pf_resources *pfres = &adapter->params.pfres; 2895 struct fw_pfvf_cmd cmd, rpl; 2896 int v; 2897 u32 word; 2898 2899 /* Execute PFVF Read command to get VF resource limits; bail out early 2900 * with error on command failure. 2901 */ 2902 memset(&cmd, 0, sizeof(cmd)); 2903 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 2904 FW_CMD_REQUEST_F | 2905 FW_CMD_READ_F | 2906 FW_PFVF_CMD_PFN_V(adapter->pf) | 2907 FW_PFVF_CMD_VFN_V(0)); 2908 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 2909 v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl); 2910 if (v != FW_SUCCESS) 2911 return v; 2912 2913 /* Extract PF resource limits and return success. 2914 */ 2915 word = be32_to_cpu(rpl.niqflint_niq); 2916 pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); 2917 pfres->niq = FW_PFVF_CMD_NIQ_G(word); 2918 2919 word = be32_to_cpu(rpl.type_to_neq); 2920 pfres->neq = FW_PFVF_CMD_NEQ_G(word); 2921 pfres->pmask = FW_PFVF_CMD_PMASK_G(word); 2922 2923 word = be32_to_cpu(rpl.tc_to_nexactf); 2924 pfres->tc = FW_PFVF_CMD_TC_G(word); 2925 pfres->nvi = FW_PFVF_CMD_NVI_G(word); 2926 pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); 2927 2928 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 2929 pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); 2930 pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); 2931 pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); 2932 2933 return 0; 2934 } 2935 2936 /* serial flash and firmware constants */ 2937 enum { 2938 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2939 2940 /* flash command opcodes */ 2941 SF_PROG_PAGE = 2, /* program page */ 2942 SF_WR_DISABLE = 4, /* disable writes */ 2943 SF_RD_STATUS = 5, /* read status register */ 2944 SF_WR_ENABLE = 6, /* enable writes */ 2945 SF_RD_DATA_FAST = 0xb, /* read flash */ 2946 SF_RD_ID = 0x9f, /* read ID */ 2947 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2948 }; 2949 2950 /** 2951 * sf1_read - read data from the serial flash 2952 * @adapter: the adapter 2953 * @byte_cnt: number of bytes to read 2954 * @cont: whether another operation will be chained 2955 * @lock: whether to lock SF for PL access only 2956 * @valp: where to store the read data 2957 * 2958 * Reads up to 4 bytes of data from the serial flash. The location of 2959 * the read needs to be specified prior to calling this by issuing the 2960 * appropriate commands to the serial flash. 2961 */ 2962 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2963 int lock, u32 *valp) 2964 { 2965 int ret; 2966 2967 if (!byte_cnt || byte_cnt > 4) 2968 return -EINVAL; 2969 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2970 return -EBUSY; 2971 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2972 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2973 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2974 if (!ret) 2975 *valp = t4_read_reg(adapter, SF_DATA_A); 2976 return ret; 2977 } 2978 2979 /** 2980 * sf1_write - write data to the serial flash 2981 * @adapter: the adapter 2982 * @byte_cnt: number of bytes to write 2983 * @cont: whether another operation will be chained 2984 * @lock: whether to lock SF for PL access only 2985 * @val: value to write 2986 * 2987 * Writes up to 4 bytes of data to the serial flash. The location of 2988 * the write needs to be specified prior to calling this by issuing the 2989 * appropriate commands to the serial flash. 2990 */ 2991 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2992 int lock, u32 val) 2993 { 2994 if (!byte_cnt || byte_cnt > 4) 2995 return -EINVAL; 2996 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2997 return -EBUSY; 2998 t4_write_reg(adapter, SF_DATA_A, val); 2999 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 3000 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 3001 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 3002 } 3003 3004 /** 3005 * flash_wait_op - wait for a flash operation to complete 3006 * @adapter: the adapter 3007 * @attempts: max number of polls of the status register 3008 * @delay: delay between polls in ms 3009 * 3010 * Wait for a flash operation to complete by polling the status register. 3011 */ 3012 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 3013 { 3014 int ret; 3015 u32 status; 3016 3017 while (1) { 3018 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 3019 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 3020 return ret; 3021 if (!(status & 1)) 3022 return 0; 3023 if (--attempts == 0) 3024 return -EAGAIN; 3025 if (delay) 3026 msleep(delay); 3027 } 3028 } 3029 3030 /** 3031 * t4_read_flash - read words from serial flash 3032 * @adapter: the adapter 3033 * @addr: the start address for the read 3034 * @nwords: how many 32-bit words to read 3035 * @data: where to store the read data 3036 * @byte_oriented: whether to store data as bytes or as words 3037 * 3038 * Read the specified number of 32-bit words from the serial flash. 3039 * If @byte_oriented is set the read data is stored as a byte array 3040 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3041 * natural endianness. 3042 */ 3043 int t4_read_flash(struct adapter *adapter, unsigned int addr, 3044 unsigned int nwords, u32 *data, int byte_oriented) 3045 { 3046 int ret; 3047 3048 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3049 return -EINVAL; 3050 3051 addr = swab32(addr) | SF_RD_DATA_FAST; 3052 3053 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3054 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3055 return ret; 3056 3057 for ( ; nwords; nwords--, data++) { 3058 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3059 if (nwords == 1) 3060 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3061 if (ret) 3062 return ret; 3063 if (byte_oriented) 3064 *data = (__force __u32)(cpu_to_be32(*data)); 3065 } 3066 return 0; 3067 } 3068 3069 /** 3070 * t4_write_flash - write up to a page of data to the serial flash 3071 * @adapter: the adapter 3072 * @addr: the start address to write 3073 * @n: length of data to write in bytes 3074 * @data: the data to write 3075 * 3076 * Writes up to a page of data (256 bytes) to the serial flash starting 3077 * at the given address. All the data must be written to the same page. 3078 */ 3079 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 3080 unsigned int n, const u8 *data) 3081 { 3082 int ret; 3083 u32 buf[64]; 3084 unsigned int i, c, left, val, offset = addr & 0xff; 3085 3086 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3087 return -EINVAL; 3088 3089 val = swab32(addr) | SF_PROG_PAGE; 3090 3091 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3092 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3093 goto unlock; 3094 3095 for (left = n; left; left -= c) { 3096 c = min(left, 4U); 3097 for (val = 0, i = 0; i < c; ++i) 3098 val = (val << 8) + *data++; 3099 3100 ret = sf1_write(adapter, c, c != left, 1, val); 3101 if (ret) 3102 goto unlock; 3103 } 3104 ret = flash_wait_op(adapter, 8, 1); 3105 if (ret) 3106 goto unlock; 3107 3108 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3109 3110 /* Read the page to verify the write succeeded */ 3111 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 3112 if (ret) 3113 return ret; 3114 3115 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3116 dev_err(adapter->pdev_dev, 3117 "failed to correctly write the flash page at %#x\n", 3118 addr); 3119 return -EIO; 3120 } 3121 return 0; 3122 3123 unlock: 3124 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3125 return ret; 3126 } 3127 3128 /** 3129 * t4_get_fw_version - read the firmware version 3130 * @adapter: the adapter 3131 * @vers: where to place the version 3132 * 3133 * Reads the FW version from flash. 3134 */ 3135 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3136 { 3137 return t4_read_flash(adapter, FLASH_FW_START + 3138 offsetof(struct fw_hdr, fw_ver), 1, 3139 vers, 0); 3140 } 3141 3142 /** 3143 * t4_get_bs_version - read the firmware bootstrap version 3144 * @adapter: the adapter 3145 * @vers: where to place the version 3146 * 3147 * Reads the FW Bootstrap version from flash. 3148 */ 3149 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3150 { 3151 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3152 offsetof(struct fw_hdr, fw_ver), 1, 3153 vers, 0); 3154 } 3155 3156 /** 3157 * t4_get_tp_version - read the TP microcode version 3158 * @adapter: the adapter 3159 * @vers: where to place the version 3160 * 3161 * Reads the TP microcode version from flash. 3162 */ 3163 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3164 { 3165 return t4_read_flash(adapter, FLASH_FW_START + 3166 offsetof(struct fw_hdr, tp_microcode_ver), 3167 1, vers, 0); 3168 } 3169 3170 /** 3171 * t4_get_exprom_version - return the Expansion ROM version (if any) 3172 * @adapter: the adapter 3173 * @vers: where to place the version 3174 * 3175 * Reads the Expansion ROM header from FLASH and returns the version 3176 * number (if present) through the @vers return value pointer. We return 3177 * this in the Firmware Version Format since it's convenient. Return 3178 * 0 on success, -ENOENT if no Expansion ROM is present. 3179 */ 3180 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3181 { 3182 struct exprom_header { 3183 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3184 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3185 } *hdr; 3186 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3187 sizeof(u32))]; 3188 int ret; 3189 3190 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3191 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3192 0); 3193 if (ret) 3194 return ret; 3195 3196 hdr = (struct exprom_header *)exprom_header_buf; 3197 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3198 return -ENOENT; 3199 3200 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3201 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3202 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3203 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3204 return 0; 3205 } 3206 3207 /** 3208 * t4_get_vpd_version - return the VPD version 3209 * @adapter: the adapter 3210 * @vers: where to place the version 3211 * 3212 * Reads the VPD via the Firmware interface (thus this can only be called 3213 * once we're ready to issue Firmware commands). The format of the 3214 * VPD version is adapter specific. Returns 0 on success, an error on 3215 * failure. 3216 * 3217 * Note that early versions of the Firmware didn't include the ability 3218 * to retrieve the VPD version, so we zero-out the return-value parameter 3219 * in that case to avoid leaving it with garbage in it. 3220 * 3221 * Also note that the Firmware will return its cached copy of the VPD 3222 * Revision ID, not the actual Revision ID as written in the Serial 3223 * EEPROM. This is only an issue if a new VPD has been written and the 3224 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3225 * to defer calling this routine till after a FW_RESET_CMD has been issued 3226 * if the Host Driver will be performing a full adapter initialization. 3227 */ 3228 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3229 { 3230 u32 vpdrev_param; 3231 int ret; 3232 3233 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3234 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3235 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3236 1, &vpdrev_param, vers); 3237 if (ret) 3238 *vers = 0; 3239 return ret; 3240 } 3241 3242 /** 3243 * t4_get_scfg_version - return the Serial Configuration version 3244 * @adapter: the adapter 3245 * @vers: where to place the version 3246 * 3247 * Reads the Serial Configuration Version via the Firmware interface 3248 * (thus this can only be called once we're ready to issue Firmware 3249 * commands). The format of the Serial Configuration version is 3250 * adapter specific. Returns 0 on success, an error on failure. 3251 * 3252 * Note that early versions of the Firmware didn't include the ability 3253 * to retrieve the Serial Configuration version, so we zero-out the 3254 * return-value parameter in that case to avoid leaving it with 3255 * garbage in it. 3256 * 3257 * Also note that the Firmware will return its cached copy of the Serial 3258 * Initialization Revision ID, not the actual Revision ID as written in 3259 * the Serial EEPROM. This is only an issue if a new VPD has been written 3260 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3261 * it's best to defer calling this routine till after a FW_RESET_CMD has 3262 * been issued if the Host Driver will be performing a full adapter 3263 * initialization. 3264 */ 3265 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3266 { 3267 u32 scfgrev_param; 3268 int ret; 3269 3270 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3271 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3272 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3273 1, &scfgrev_param, vers); 3274 if (ret) 3275 *vers = 0; 3276 return ret; 3277 } 3278 3279 /** 3280 * t4_get_version_info - extract various chip/firmware version information 3281 * @adapter: the adapter 3282 * 3283 * Reads various chip/firmware version numbers and stores them into the 3284 * adapter Adapter Parameters structure. If any of the efforts fails 3285 * the first failure will be returned, but all of the version numbers 3286 * will be read. 3287 */ 3288 int t4_get_version_info(struct adapter *adapter) 3289 { 3290 int ret = 0; 3291 3292 #define FIRST_RET(__getvinfo) \ 3293 do { \ 3294 int __ret = __getvinfo; \ 3295 if (__ret && !ret) \ 3296 ret = __ret; \ 3297 } while (0) 3298 3299 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3300 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3301 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3302 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3303 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3304 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3305 3306 #undef FIRST_RET 3307 return ret; 3308 } 3309 3310 /** 3311 * t4_dump_version_info - dump all of the adapter configuration IDs 3312 * @adapter: the adapter 3313 * 3314 * Dumps all of the various bits of adapter configuration version/revision 3315 * IDs information. This is typically called at some point after 3316 * t4_get_version_info() has been called. 3317 */ 3318 void t4_dump_version_info(struct adapter *adapter) 3319 { 3320 /* Device information */ 3321 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3322 adapter->params.vpd.id, 3323 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3324 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3325 adapter->params.vpd.sn, adapter->params.vpd.pn); 3326 3327 /* Firmware Version */ 3328 if (!adapter->params.fw_vers) 3329 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3330 else 3331 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3332 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3333 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3334 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3335 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3336 3337 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3338 * Firmware, so dev_info() is more appropriate here.) 3339 */ 3340 if (!adapter->params.bs_vers) 3341 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3342 else 3343 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3344 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3345 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3346 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3347 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3348 3349 /* TP Microcode Version */ 3350 if (!adapter->params.tp_vers) 3351 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3352 else 3353 dev_info(adapter->pdev_dev, 3354 "TP Microcode version: %u.%u.%u.%u\n", 3355 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3356 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3357 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3358 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3359 3360 /* Expansion ROM version */ 3361 if (!adapter->params.er_vers) 3362 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3363 else 3364 dev_info(adapter->pdev_dev, 3365 "Expansion ROM version: %u.%u.%u.%u\n", 3366 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3367 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3368 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3369 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3370 3371 /* Serial Configuration version */ 3372 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3373 adapter->params.scfg_vers); 3374 3375 /* VPD Version */ 3376 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3377 adapter->params.vpd_vers); 3378 } 3379 3380 /** 3381 * t4_check_fw_version - check if the FW is supported with this driver 3382 * @adap: the adapter 3383 * 3384 * Checks if an adapter's FW is compatible with the driver. Returns 0 3385 * if there's exact match, a negative error if the version could not be 3386 * read or there's a major version mismatch 3387 */ 3388 int t4_check_fw_version(struct adapter *adap) 3389 { 3390 int i, ret, major, minor, micro; 3391 int exp_major, exp_minor, exp_micro; 3392 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3393 3394 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3395 /* Try multiple times before returning error */ 3396 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3397 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3398 3399 if (ret) 3400 return ret; 3401 3402 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3403 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3404 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3405 3406 switch (chip_version) { 3407 case CHELSIO_T4: 3408 exp_major = T4FW_MIN_VERSION_MAJOR; 3409 exp_minor = T4FW_MIN_VERSION_MINOR; 3410 exp_micro = T4FW_MIN_VERSION_MICRO; 3411 break; 3412 case CHELSIO_T5: 3413 exp_major = T5FW_MIN_VERSION_MAJOR; 3414 exp_minor = T5FW_MIN_VERSION_MINOR; 3415 exp_micro = T5FW_MIN_VERSION_MICRO; 3416 break; 3417 case CHELSIO_T6: 3418 exp_major = T6FW_MIN_VERSION_MAJOR; 3419 exp_minor = T6FW_MIN_VERSION_MINOR; 3420 exp_micro = T6FW_MIN_VERSION_MICRO; 3421 break; 3422 default: 3423 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3424 adap->chip); 3425 return -EINVAL; 3426 } 3427 3428 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3429 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3430 dev_err(adap->pdev_dev, 3431 "Card has firmware version %u.%u.%u, minimum " 3432 "supported firmware is %u.%u.%u.\n", major, minor, 3433 micro, exp_major, exp_minor, exp_micro); 3434 return -EFAULT; 3435 } 3436 return 0; 3437 } 3438 3439 /* Is the given firmware API compatible with the one the driver was compiled 3440 * with? 3441 */ 3442 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3443 { 3444 3445 /* short circuit if it's the exact same firmware version */ 3446 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3447 return 1; 3448 3449 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3450 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3451 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3452 return 1; 3453 #undef SAME_INTF 3454 3455 return 0; 3456 } 3457 3458 /* The firmware in the filesystem is usable, but should it be installed? 3459 * This routine explains itself in detail if it indicates the filesystem 3460 * firmware should be installed. 3461 */ 3462 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3463 int k, int c) 3464 { 3465 const char *reason; 3466 3467 if (!card_fw_usable) { 3468 reason = "incompatible or unusable"; 3469 goto install; 3470 } 3471 3472 if (k > c) { 3473 reason = "older than the version supported with this driver"; 3474 goto install; 3475 } 3476 3477 return 0; 3478 3479 install: 3480 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3481 "installing firmware %u.%u.%u.%u on card.\n", 3482 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3483 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3484 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3485 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3486 3487 return 1; 3488 } 3489 3490 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3491 const u8 *fw_data, unsigned int fw_size, 3492 struct fw_hdr *card_fw, enum dev_state state, 3493 int *reset) 3494 { 3495 int ret, card_fw_usable, fs_fw_usable; 3496 const struct fw_hdr *fs_fw; 3497 const struct fw_hdr *drv_fw; 3498 3499 drv_fw = &fw_info->fw_hdr; 3500 3501 /* Read the header of the firmware on the card */ 3502 ret = -t4_read_flash(adap, FLASH_FW_START, 3503 sizeof(*card_fw) / sizeof(uint32_t), 3504 (uint32_t *)card_fw, 1); 3505 if (ret == 0) { 3506 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3507 } else { 3508 dev_err(adap->pdev_dev, 3509 "Unable to read card's firmware header: %d\n", ret); 3510 card_fw_usable = 0; 3511 } 3512 3513 if (fw_data != NULL) { 3514 fs_fw = (const void *)fw_data; 3515 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3516 } else { 3517 fs_fw = NULL; 3518 fs_fw_usable = 0; 3519 } 3520 3521 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3522 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3523 /* Common case: the firmware on the card is an exact match and 3524 * the filesystem one is an exact match too, or the filesystem 3525 * one is absent/incompatible. 3526 */ 3527 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3528 should_install_fs_fw(adap, card_fw_usable, 3529 be32_to_cpu(fs_fw->fw_ver), 3530 be32_to_cpu(card_fw->fw_ver))) { 3531 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 3532 fw_size, 0); 3533 if (ret != 0) { 3534 dev_err(adap->pdev_dev, 3535 "failed to install firmware: %d\n", ret); 3536 goto bye; 3537 } 3538 3539 /* Installed successfully, update the cached header too. */ 3540 *card_fw = *fs_fw; 3541 card_fw_usable = 1; 3542 *reset = 0; /* already reset as part of load_fw */ 3543 } 3544 3545 if (!card_fw_usable) { 3546 uint32_t d, c, k; 3547 3548 d = be32_to_cpu(drv_fw->fw_ver); 3549 c = be32_to_cpu(card_fw->fw_ver); 3550 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3551 3552 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3553 "chip state %d, " 3554 "driver compiled with %d.%d.%d.%d, " 3555 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3556 state, 3557 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3558 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3559 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3560 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3561 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3562 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3563 ret = EINVAL; 3564 goto bye; 3565 } 3566 3567 /* We're using whatever's on the card and it's known to be good. */ 3568 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3569 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3570 3571 bye: 3572 return ret; 3573 } 3574 3575 /** 3576 * t4_flash_erase_sectors - erase a range of flash sectors 3577 * @adapter: the adapter 3578 * @start: the first sector to erase 3579 * @end: the last sector to erase 3580 * 3581 * Erases the sectors in the given inclusive range. 3582 */ 3583 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3584 { 3585 int ret = 0; 3586 3587 if (end >= adapter->params.sf_nsec) 3588 return -EINVAL; 3589 3590 while (start <= end) { 3591 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3592 (ret = sf1_write(adapter, 4, 0, 1, 3593 SF_ERASE_SECTOR | (start << 8))) != 0 || 3594 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3595 dev_err(adapter->pdev_dev, 3596 "erase of flash sector %d failed, error %d\n", 3597 start, ret); 3598 break; 3599 } 3600 start++; 3601 } 3602 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3603 return ret; 3604 } 3605 3606 /** 3607 * t4_flash_cfg_addr - return the address of the flash configuration file 3608 * @adapter: the adapter 3609 * 3610 * Return the address within the flash where the Firmware Configuration 3611 * File is stored. 3612 */ 3613 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3614 { 3615 if (adapter->params.sf_size == 0x100000) 3616 return FLASH_FPGA_CFG_START; 3617 else 3618 return FLASH_CFG_START; 3619 } 3620 3621 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3622 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3623 * and emit an error message for mismatched firmware to save our caller the 3624 * effort ... 3625 */ 3626 static bool t4_fw_matches_chip(const struct adapter *adap, 3627 const struct fw_hdr *hdr) 3628 { 3629 /* The expression below will return FALSE for any unsupported adapter 3630 * which will keep us "honest" in the future ... 3631 */ 3632 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3633 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3634 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3635 return true; 3636 3637 dev_err(adap->pdev_dev, 3638 "FW image (%d) is not suitable for this adapter (%d)\n", 3639 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3640 return false; 3641 } 3642 3643 /** 3644 * t4_load_fw - download firmware 3645 * @adap: the adapter 3646 * @fw_data: the firmware image to write 3647 * @size: image size 3648 * 3649 * Write the supplied firmware image to the card's serial flash. 3650 */ 3651 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3652 { 3653 u32 csum; 3654 int ret, addr; 3655 unsigned int i; 3656 u8 first_page[SF_PAGE_SIZE]; 3657 const __be32 *p = (const __be32 *)fw_data; 3658 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3659 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3660 unsigned int fw_start_sec = FLASH_FW_START_SEC; 3661 unsigned int fw_size = FLASH_FW_MAX_SIZE; 3662 unsigned int fw_start = FLASH_FW_START; 3663 3664 if (!size) { 3665 dev_err(adap->pdev_dev, "FW image has no data\n"); 3666 return -EINVAL; 3667 } 3668 if (size & 511) { 3669 dev_err(adap->pdev_dev, 3670 "FW image size not multiple of 512 bytes\n"); 3671 return -EINVAL; 3672 } 3673 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3674 dev_err(adap->pdev_dev, 3675 "FW image size differs from size in FW header\n"); 3676 return -EINVAL; 3677 } 3678 if (size > fw_size) { 3679 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3680 fw_size); 3681 return -EFBIG; 3682 } 3683 if (!t4_fw_matches_chip(adap, hdr)) 3684 return -EINVAL; 3685 3686 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3687 csum += be32_to_cpu(p[i]); 3688 3689 if (csum != 0xffffffff) { 3690 dev_err(adap->pdev_dev, 3691 "corrupted firmware image, checksum %#x\n", csum); 3692 return -EINVAL; 3693 } 3694 3695 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3696 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3697 if (ret) 3698 goto out; 3699 3700 /* 3701 * We write the correct version at the end so the driver can see a bad 3702 * version if the FW write fails. Start by writing a copy of the 3703 * first page with a bad version. 3704 */ 3705 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3706 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3707 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page); 3708 if (ret) 3709 goto out; 3710 3711 addr = fw_start; 3712 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3713 addr += SF_PAGE_SIZE; 3714 fw_data += SF_PAGE_SIZE; 3715 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3716 if (ret) 3717 goto out; 3718 } 3719 3720 ret = t4_write_flash(adap, 3721 fw_start + offsetof(struct fw_hdr, fw_ver), 3722 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3723 out: 3724 if (ret) 3725 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3726 ret); 3727 else 3728 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3729 return ret; 3730 } 3731 3732 /** 3733 * t4_phy_fw_ver - return current PHY firmware version 3734 * @adap: the adapter 3735 * @phy_fw_ver: return value buffer for PHY firmware version 3736 * 3737 * Returns the current version of external PHY firmware on the 3738 * adapter. 3739 */ 3740 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3741 { 3742 u32 param, val; 3743 int ret; 3744 3745 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3746 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3747 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3748 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3749 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3750 ¶m, &val); 3751 if (ret < 0) 3752 return ret; 3753 *phy_fw_ver = val; 3754 return 0; 3755 } 3756 3757 /** 3758 * t4_load_phy_fw - download port PHY firmware 3759 * @adap: the adapter 3760 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3761 * @win_lock: the lock to use to guard the memory copy 3762 * @phy_fw_version: function to check PHY firmware versions 3763 * @phy_fw_data: the PHY firmware image to write 3764 * @phy_fw_size: image size 3765 * 3766 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3767 * @phy_fw_version is supplied, then it will be used to determine if 3768 * it's necessary to perform the transfer by comparing the version 3769 * of any existing adapter PHY firmware with that of the passed in 3770 * PHY firmware image. If @win_lock is non-NULL then it will be used 3771 * around the call to t4_memory_rw() which transfers the PHY firmware 3772 * to the adapter. 3773 * 3774 * A negative error number will be returned if an error occurs. If 3775 * version number support is available and there's no need to upgrade 3776 * the firmware, 0 will be returned. If firmware is successfully 3777 * transferred to the adapter, 1 will be returned. 3778 * 3779 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3780 * a result, a RESET of the adapter would cause that RAM to lose its 3781 * contents. Thus, loading PHY firmware on such adapters must happen 3782 * after any FW_RESET_CMDs ... 3783 */ 3784 int t4_load_phy_fw(struct adapter *adap, 3785 int win, spinlock_t *win_lock, 3786 int (*phy_fw_version)(const u8 *, size_t), 3787 const u8 *phy_fw_data, size_t phy_fw_size) 3788 { 3789 unsigned long mtype = 0, maddr = 0; 3790 u32 param, val; 3791 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3792 int ret; 3793 3794 /* If we have version number support, then check to see if the adapter 3795 * already has up-to-date PHY firmware loaded. 3796 */ 3797 if (phy_fw_version) { 3798 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3799 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3800 if (ret < 0) 3801 return ret; 3802 3803 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3804 CH_WARN(adap, "PHY Firmware already up-to-date, " 3805 "version %#x\n", cur_phy_fw_ver); 3806 return 0; 3807 } 3808 } 3809 3810 /* Ask the firmware where it wants us to copy the PHY firmware image. 3811 * The size of the file requires a special version of the READ command 3812 * which will pass the file size via the values field in PARAMS_CMD and 3813 * retrieve the return value from firmware and place it in the same 3814 * buffer values 3815 */ 3816 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3817 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3818 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3819 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3820 val = phy_fw_size; 3821 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3822 ¶m, &val, 1, true); 3823 if (ret < 0) 3824 return ret; 3825 mtype = val >> 8; 3826 maddr = (val & 0xff) << 16; 3827 3828 /* Copy the supplied PHY Firmware image to the adapter memory location 3829 * allocated by the adapter firmware. 3830 */ 3831 if (win_lock) 3832 spin_lock_bh(win_lock); 3833 ret = t4_memory_rw(adap, win, mtype, maddr, 3834 phy_fw_size, (__be32 *)phy_fw_data, 3835 T4_MEMORY_WRITE); 3836 if (win_lock) 3837 spin_unlock_bh(win_lock); 3838 if (ret) 3839 return ret; 3840 3841 /* Tell the firmware that the PHY firmware image has been written to 3842 * RAM and it can now start copying it over to the PHYs. The chip 3843 * firmware will RESET the affected PHYs as part of this operation 3844 * leaving them running the new PHY firmware image. 3845 */ 3846 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3847 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3848 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3849 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3850 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3851 ¶m, &val, 30000); 3852 3853 /* If we have version number support, then check to see that the new 3854 * firmware got loaded properly. 3855 */ 3856 if (phy_fw_version) { 3857 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3858 if (ret < 0) 3859 return ret; 3860 3861 if (cur_phy_fw_ver != new_phy_fw_vers) { 3862 CH_WARN(adap, "PHY Firmware did not update: " 3863 "version on adapter %#x, " 3864 "version flashed %#x\n", 3865 cur_phy_fw_ver, new_phy_fw_vers); 3866 return -ENXIO; 3867 } 3868 } 3869 3870 return 1; 3871 } 3872 3873 /** 3874 * t4_fwcache - firmware cache operation 3875 * @adap: the adapter 3876 * @op : the operation (flush or flush and invalidate) 3877 */ 3878 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3879 { 3880 struct fw_params_cmd c; 3881 3882 memset(&c, 0, sizeof(c)); 3883 c.op_to_vfn = 3884 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3885 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3886 FW_PARAMS_CMD_PFN_V(adap->pf) | 3887 FW_PARAMS_CMD_VFN_V(0)); 3888 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3889 c.param[0].mnem = 3890 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3891 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3892 c.param[0].val = cpu_to_be32(op); 3893 3894 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3895 } 3896 3897 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3898 unsigned int *pif_req_wrptr, 3899 unsigned int *pif_rsp_wrptr) 3900 { 3901 int i, j; 3902 u32 cfg, val, req, rsp; 3903 3904 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3905 if (cfg & LADBGEN_F) 3906 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3907 3908 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3909 req = POLADBGWRPTR_G(val); 3910 rsp = PILADBGWRPTR_G(val); 3911 if (pif_req_wrptr) 3912 *pif_req_wrptr = req; 3913 if (pif_rsp_wrptr) 3914 *pif_rsp_wrptr = rsp; 3915 3916 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3917 for (j = 0; j < 6; j++) { 3918 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3919 PILADBGRDPTR_V(rsp)); 3920 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3921 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3922 req++; 3923 rsp++; 3924 } 3925 req = (req + 2) & POLADBGRDPTR_M; 3926 rsp = (rsp + 2) & PILADBGRDPTR_M; 3927 } 3928 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3929 } 3930 3931 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3932 { 3933 u32 cfg; 3934 int i, j, idx; 3935 3936 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3937 if (cfg & LADBGEN_F) 3938 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3939 3940 for (i = 0; i < CIM_MALA_SIZE; i++) { 3941 for (j = 0; j < 5; j++) { 3942 idx = 8 * i + j; 3943 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3944 PILADBGRDPTR_V(idx)); 3945 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3946 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3947 } 3948 } 3949 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3950 } 3951 3952 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3953 { 3954 unsigned int i, j; 3955 3956 for (i = 0; i < 8; i++) { 3957 u32 *p = la_buf + i; 3958 3959 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3960 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3961 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3962 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3963 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3964 } 3965 } 3966 3967 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port 3968 * Capabilities which we control with separate controls -- see, for instance, 3969 * Pause Frames and Forward Error Correction. In order to determine what the 3970 * full set of Advertised Port Capabilities are, the base Advertised Port 3971 * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised 3972 * Port Capabilities associated with those other controls. See 3973 * t4_link_acaps() for how this is done. 3974 */ 3975 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3976 FW_PORT_CAP32_ANEG) 3977 3978 /** 3979 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3980 * @caps16: a 16-bit Port Capabilities value 3981 * 3982 * Returns the equivalent 32-bit Port Capabilities value. 3983 */ 3984 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3985 { 3986 fw_port_cap32_t caps32 = 0; 3987 3988 #define CAP16_TO_CAP32(__cap) \ 3989 do { \ 3990 if (caps16 & FW_PORT_CAP_##__cap) \ 3991 caps32 |= FW_PORT_CAP32_##__cap; \ 3992 } while (0) 3993 3994 CAP16_TO_CAP32(SPEED_100M); 3995 CAP16_TO_CAP32(SPEED_1G); 3996 CAP16_TO_CAP32(SPEED_25G); 3997 CAP16_TO_CAP32(SPEED_10G); 3998 CAP16_TO_CAP32(SPEED_40G); 3999 CAP16_TO_CAP32(SPEED_100G); 4000 CAP16_TO_CAP32(FC_RX); 4001 CAP16_TO_CAP32(FC_TX); 4002 CAP16_TO_CAP32(ANEG); 4003 CAP16_TO_CAP32(FORCE_PAUSE); 4004 CAP16_TO_CAP32(MDIAUTO); 4005 CAP16_TO_CAP32(MDISTRAIGHT); 4006 CAP16_TO_CAP32(FEC_RS); 4007 CAP16_TO_CAP32(FEC_BASER_RS); 4008 CAP16_TO_CAP32(802_3_PAUSE); 4009 CAP16_TO_CAP32(802_3_ASM_DIR); 4010 4011 #undef CAP16_TO_CAP32 4012 4013 return caps32; 4014 } 4015 4016 /** 4017 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 4018 * @caps32: a 32-bit Port Capabilities value 4019 * 4020 * Returns the equivalent 16-bit Port Capabilities value. Note that 4021 * not all 32-bit Port Capabilities can be represented in the 16-bit 4022 * Port Capabilities and some fields/values may not make it. 4023 */ 4024 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 4025 { 4026 fw_port_cap16_t caps16 = 0; 4027 4028 #define CAP32_TO_CAP16(__cap) \ 4029 do { \ 4030 if (caps32 & FW_PORT_CAP32_##__cap) \ 4031 caps16 |= FW_PORT_CAP_##__cap; \ 4032 } while (0) 4033 4034 CAP32_TO_CAP16(SPEED_100M); 4035 CAP32_TO_CAP16(SPEED_1G); 4036 CAP32_TO_CAP16(SPEED_10G); 4037 CAP32_TO_CAP16(SPEED_25G); 4038 CAP32_TO_CAP16(SPEED_40G); 4039 CAP32_TO_CAP16(SPEED_100G); 4040 CAP32_TO_CAP16(FC_RX); 4041 CAP32_TO_CAP16(FC_TX); 4042 CAP32_TO_CAP16(802_3_PAUSE); 4043 CAP32_TO_CAP16(802_3_ASM_DIR); 4044 CAP32_TO_CAP16(ANEG); 4045 CAP32_TO_CAP16(FORCE_PAUSE); 4046 CAP32_TO_CAP16(MDIAUTO); 4047 CAP32_TO_CAP16(MDISTRAIGHT); 4048 CAP32_TO_CAP16(FEC_RS); 4049 CAP32_TO_CAP16(FEC_BASER_RS); 4050 4051 #undef CAP32_TO_CAP16 4052 4053 return caps16; 4054 } 4055 4056 /* Translate Firmware Port Capabilities Pause specification to Common Code */ 4057 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 4058 { 4059 enum cc_pause cc_pause = 0; 4060 4061 if (fw_pause & FW_PORT_CAP32_FC_RX) 4062 cc_pause |= PAUSE_RX; 4063 if (fw_pause & FW_PORT_CAP32_FC_TX) 4064 cc_pause |= PAUSE_TX; 4065 4066 return cc_pause; 4067 } 4068 4069 /* Translate Common Code Pause specification into Firmware Port Capabilities */ 4070 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 4071 { 4072 /* Translate orthogonal RX/TX Pause Controls for L1 Configure 4073 * commands, etc. 4074 */ 4075 fw_port_cap32_t fw_pause = 0; 4076 4077 if (cc_pause & PAUSE_RX) 4078 fw_pause |= FW_PORT_CAP32_FC_RX; 4079 if (cc_pause & PAUSE_TX) 4080 fw_pause |= FW_PORT_CAP32_FC_TX; 4081 if (!(cc_pause & PAUSE_AUTONEG)) 4082 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE; 4083 4084 /* Translate orthogonal Pause controls into IEEE 802.3 Pause, 4085 * Asymmetrical Pause for use in reporting to upper layer OS code, etc. 4086 * Note that these bits are ignored in L1 Configure commands. 4087 */ 4088 if (cc_pause & PAUSE_RX) { 4089 if (cc_pause & PAUSE_TX) 4090 fw_pause |= FW_PORT_CAP32_802_3_PAUSE; 4091 else 4092 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR | 4093 FW_PORT_CAP32_802_3_PAUSE; 4094 } else if (cc_pause & PAUSE_TX) { 4095 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR; 4096 } 4097 4098 return fw_pause; 4099 } 4100 4101 /* Translate Firmware Forward Error Correction specification to Common Code */ 4102 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 4103 { 4104 enum cc_fec cc_fec = 0; 4105 4106 if (fw_fec & FW_PORT_CAP32_FEC_RS) 4107 cc_fec |= FEC_RS; 4108 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 4109 cc_fec |= FEC_BASER_RS; 4110 4111 return cc_fec; 4112 } 4113 4114 /* Translate Common Code Forward Error Correction specification to Firmware */ 4115 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 4116 { 4117 fw_port_cap32_t fw_fec = 0; 4118 4119 if (cc_fec & FEC_RS) 4120 fw_fec |= FW_PORT_CAP32_FEC_RS; 4121 if (cc_fec & FEC_BASER_RS) 4122 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 4123 4124 return fw_fec; 4125 } 4126 4127 /** 4128 * t4_link_acaps - compute Link Advertised Port Capabilities 4129 * @adapter: the adapter 4130 * @port: the Port ID 4131 * @lc: the Port's Link Configuration 4132 * 4133 * Synthesize the Advertised Port Capabilities we'll be using based on 4134 * the base Advertised Port Capabilities (which have been filtered by 4135 * ADVERT_MASK) plus the individual controls for things like Pause 4136 * Frames, Forward Error Correction, MDI, etc. 4137 */ 4138 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port, 4139 struct link_config *lc) 4140 { 4141 fw_port_cap32_t fw_fc, fw_fec, acaps; 4142 unsigned int fw_mdi; 4143 char cc_fec; 4144 4145 fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps); 4146 4147 /* Convert driver coding of Pause Frame Flow Control settings into the 4148 * Firmware's API. 4149 */ 4150 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4151 4152 /* Convert Common Code Forward Error Control settings into the 4153 * Firmware's API. If the current Requested FEC has "Automatic" 4154 * (IEEE 802.3) specified, then we use whatever the Firmware 4155 * sent us as part of its IEEE 802.3-based interpretation of 4156 * the Transceiver Module EPROM FEC parameters. Otherwise we 4157 * use whatever is in the current Requested FEC settings. 4158 */ 4159 if (lc->requested_fec & FEC_AUTO) 4160 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4161 else 4162 cc_fec = lc->requested_fec; 4163 fw_fec = cc_to_fwcap_fec(cc_fec); 4164 4165 /* Figure out what our Requested Port Capabilities are going to be. 4166 * Note parallel structure in t4_handle_get_port_info() and 4167 * init_link_config(). 4168 */ 4169 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4170 acaps = lc->acaps | fw_fc | fw_fec; 4171 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4172 lc->fec = cc_fec; 4173 } else if (lc->autoneg == AUTONEG_DISABLE) { 4174 acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4175 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4176 lc->fec = cc_fec; 4177 } else { 4178 acaps = lc->acaps | fw_fc | fw_fec | fw_mdi; 4179 } 4180 4181 /* Some Requested Port Capabilities are trivially wrong if they exceed 4182 * the Physical Port Capabilities. We can check that here and provide 4183 * moderately useful feedback in the system log. 4184 * 4185 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so 4186 * we need to exclude this from this check in order to maintain 4187 * compatibility ... 4188 */ 4189 if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) { 4190 dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n", 4191 acaps, lc->pcaps); 4192 return -EINVAL; 4193 } 4194 4195 return acaps; 4196 } 4197 4198 /** 4199 * t4_link_l1cfg_core - apply link configuration to MAC/PHY 4200 * @adapter: the adapter 4201 * @mbox: the Firmware Mailbox to use 4202 * @port: the Port ID 4203 * @lc: the Port's Link Configuration 4204 * @sleep_ok: if true we may sleep while awaiting command completion 4205 * @timeout: time to wait for command to finish before timing out 4206 * (negative implies @sleep_ok=false) 4207 * 4208 * Set up a port's MAC and PHY according to a desired link configuration. 4209 * - If the PHY can auto-negotiate first decide what to advertise, then 4210 * enable/disable auto-negotiation as desired, and reset. 4211 * - If the PHY does not auto-negotiate just reset it. 4212 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4213 * otherwise do it later based on the outcome of auto-negotiation. 4214 */ 4215 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox, 4216 unsigned int port, struct link_config *lc, 4217 u8 sleep_ok, int timeout) 4218 { 4219 unsigned int fw_caps = adapter->params.fw_caps_support; 4220 struct fw_port_cmd cmd; 4221 fw_port_cap32_t rcap; 4222 int ret; 4223 4224 if (!(lc->pcaps & FW_PORT_CAP32_ANEG) && 4225 lc->autoneg == AUTONEG_ENABLE) { 4226 return -EINVAL; 4227 } 4228 4229 /* Compute our Requested Port Capabilities and send that on to the 4230 * Firmware. 4231 */ 4232 rcap = t4_link_acaps(adapter, port, lc); 4233 memset(&cmd, 0, sizeof(cmd)); 4234 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4235 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4236 FW_PORT_CMD_PORTID_V(port)); 4237 cmd.action_to_len16 = 4238 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4239 ? FW_PORT_ACTION_L1_CFG 4240 : FW_PORT_ACTION_L1_CFG32) | 4241 FW_LEN16(cmd)); 4242 if (fw_caps == FW_CAPS16) 4243 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4244 else 4245 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4246 4247 ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL, 4248 sleep_ok, timeout); 4249 4250 /* Unfortunately, even if the Requested Port Capabilities "fit" within 4251 * the Physical Port Capabilities, some combinations of features may 4252 * still not be legal. For example, 40Gb/s and Reed-Solomon Forward 4253 * Error Correction. So if the Firmware rejects the L1 Configure 4254 * request, flag that here. 4255 */ 4256 if (ret) { 4257 dev_err(adapter->pdev_dev, 4258 "Requested Port Capabilities %#x rejected, error %d\n", 4259 rcap, -ret); 4260 return ret; 4261 } 4262 return 0; 4263 } 4264 4265 /** 4266 * t4_restart_aneg - restart autonegotiation 4267 * @adap: the adapter 4268 * @mbox: mbox to use for the FW command 4269 * @port: the port id 4270 * 4271 * Restarts autonegotiation for the selected port. 4272 */ 4273 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4274 { 4275 unsigned int fw_caps = adap->params.fw_caps_support; 4276 struct fw_port_cmd c; 4277 4278 memset(&c, 0, sizeof(c)); 4279 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4280 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4281 FW_PORT_CMD_PORTID_V(port)); 4282 c.action_to_len16 = 4283 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4284 ? FW_PORT_ACTION_L1_CFG 4285 : FW_PORT_ACTION_L1_CFG32) | 4286 FW_LEN16(c)); 4287 if (fw_caps == FW_CAPS16) 4288 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 4289 else 4290 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG); 4291 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4292 } 4293 4294 typedef void (*int_handler_t)(struct adapter *adap); 4295 4296 struct intr_info { 4297 unsigned int mask; /* bits to check in interrupt status */ 4298 const char *msg; /* message to print or NULL */ 4299 short stat_idx; /* stat counter to increment or -1 */ 4300 unsigned short fatal; /* whether the condition reported is fatal */ 4301 int_handler_t int_handler; /* platform-specific int handler */ 4302 }; 4303 4304 /** 4305 * t4_handle_intr_status - table driven interrupt handler 4306 * @adapter: the adapter that generated the interrupt 4307 * @reg: the interrupt status register to process 4308 * @acts: table of interrupt actions 4309 * 4310 * A table driven interrupt handler that applies a set of masks to an 4311 * interrupt status word and performs the corresponding actions if the 4312 * interrupts described by the mask have occurred. The actions include 4313 * optionally emitting a warning or alert message. The table is terminated 4314 * by an entry specifying mask 0. Returns the number of fatal interrupt 4315 * conditions. 4316 */ 4317 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4318 const struct intr_info *acts) 4319 { 4320 int fatal = 0; 4321 unsigned int mask = 0; 4322 unsigned int status = t4_read_reg(adapter, reg); 4323 4324 for ( ; acts->mask; ++acts) { 4325 if (!(status & acts->mask)) 4326 continue; 4327 if (acts->fatal) { 4328 fatal++; 4329 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4330 status & acts->mask); 4331 } else if (acts->msg && printk_ratelimit()) 4332 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4333 status & acts->mask); 4334 if (acts->int_handler) 4335 acts->int_handler(adapter); 4336 mask |= acts->mask; 4337 } 4338 status &= mask; 4339 if (status) /* clear processed interrupts */ 4340 t4_write_reg(adapter, reg, status); 4341 return fatal; 4342 } 4343 4344 /* 4345 * Interrupt handler for the PCIE module. 4346 */ 4347 static void pcie_intr_handler(struct adapter *adapter) 4348 { 4349 static const struct intr_info sysbus_intr_info[] = { 4350 { RNPP_F, "RXNP array parity error", -1, 1 }, 4351 { RPCP_F, "RXPC array parity error", -1, 1 }, 4352 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4353 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4354 { RFTP_F, "RXFT array parity error", -1, 1 }, 4355 { 0 } 4356 }; 4357 static const struct intr_info pcie_port_intr_info[] = { 4358 { TPCP_F, "TXPC array parity error", -1, 1 }, 4359 { TNPP_F, "TXNP array parity error", -1, 1 }, 4360 { TFTP_F, "TXFT array parity error", -1, 1 }, 4361 { TCAP_F, "TXCA array parity error", -1, 1 }, 4362 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4363 { RCAP_F, "RXCA array parity error", -1, 1 }, 4364 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4365 { RDPE_F, "Rx data parity error", -1, 1 }, 4366 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4367 { 0 } 4368 }; 4369 static const struct intr_info pcie_intr_info[] = { 4370 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4371 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4372 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4373 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4374 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4375 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4376 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4377 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4378 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4379 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4380 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4381 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4382 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4383 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4384 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4385 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4386 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4387 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4388 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4389 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4390 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4391 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4392 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4393 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4394 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4395 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4396 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4397 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4398 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4399 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4400 -1, 0 }, 4401 { 0 } 4402 }; 4403 4404 static struct intr_info t5_pcie_intr_info[] = { 4405 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4406 -1, 1 }, 4407 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4408 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4409 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4410 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4411 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4412 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4413 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4414 -1, 1 }, 4415 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4416 -1, 1 }, 4417 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4418 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4419 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4420 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4421 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4422 -1, 1 }, 4423 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4424 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4425 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4426 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4427 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4428 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4429 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4430 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4431 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4432 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4433 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4434 -1, 1 }, 4435 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4436 -1, 1 }, 4437 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4438 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4439 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4440 { READRSPERR_F, "Outbound read error", -1, 0 }, 4441 { 0 } 4442 }; 4443 4444 int fat; 4445 4446 if (is_t4(adapter->params.chip)) 4447 fat = t4_handle_intr_status(adapter, 4448 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4449 sysbus_intr_info) + 4450 t4_handle_intr_status(adapter, 4451 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4452 pcie_port_intr_info) + 4453 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4454 pcie_intr_info); 4455 else 4456 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4457 t5_pcie_intr_info); 4458 4459 if (fat) 4460 t4_fatal_err(adapter); 4461 } 4462 4463 /* 4464 * TP interrupt handler. 4465 */ 4466 static void tp_intr_handler(struct adapter *adapter) 4467 { 4468 static const struct intr_info tp_intr_info[] = { 4469 { 0x3fffffff, "TP parity error", -1, 1 }, 4470 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4471 { 0 } 4472 }; 4473 4474 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4475 t4_fatal_err(adapter); 4476 } 4477 4478 /* 4479 * SGE interrupt handler. 4480 */ 4481 static void sge_intr_handler(struct adapter *adapter) 4482 { 4483 u64 v; 4484 u32 err; 4485 4486 static const struct intr_info sge_intr_info[] = { 4487 { ERR_CPL_EXCEED_IQE_SIZE_F, 4488 "SGE received CPL exceeding IQE size", -1, 1 }, 4489 { ERR_INVALID_CIDX_INC_F, 4490 "SGE GTS CIDX increment too large", -1, 0 }, 4491 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4492 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4493 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4494 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4495 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4496 0 }, 4497 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4498 0 }, 4499 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4500 0 }, 4501 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4502 0 }, 4503 { ERR_ING_CTXT_PRIO_F, 4504 "SGE too many priority ingress contexts", -1, 0 }, 4505 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4506 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4507 { 0 } 4508 }; 4509 4510 static struct intr_info t4t5_sge_intr_info[] = { 4511 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4512 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4513 { ERR_EGR_CTXT_PRIO_F, 4514 "SGE too many priority egress contexts", -1, 0 }, 4515 { 0 } 4516 }; 4517 4518 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | 4519 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); 4520 if (v) { 4521 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 4522 (unsigned long long)v); 4523 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); 4524 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); 4525 } 4526 4527 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4528 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4529 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4530 t4t5_sge_intr_info); 4531 4532 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4533 if (err & ERROR_QID_VALID_F) { 4534 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4535 ERROR_QID_G(err)); 4536 if (err & UNCAPTURED_ERROR_F) 4537 dev_err(adapter->pdev_dev, 4538 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4539 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4540 UNCAPTURED_ERROR_F); 4541 } 4542 4543 if (v != 0) 4544 t4_fatal_err(adapter); 4545 } 4546 4547 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4548 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4549 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4550 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4551 4552 /* 4553 * CIM interrupt handler. 4554 */ 4555 static void cim_intr_handler(struct adapter *adapter) 4556 { 4557 static const struct intr_info cim_intr_info[] = { 4558 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4559 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4560 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4561 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4562 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4563 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4564 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4565 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4566 { 0 } 4567 }; 4568 static const struct intr_info cim_upintr_info[] = { 4569 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4570 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4571 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4572 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4573 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4574 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4575 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4576 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4577 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4578 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4579 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4580 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4581 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4582 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4583 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4584 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4585 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4586 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4587 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4588 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4589 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4590 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4591 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4592 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4593 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4594 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4595 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4596 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4597 { 0 } 4598 }; 4599 4600 u32 val, fw_err; 4601 int fat; 4602 4603 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4604 if (fw_err & PCIE_FW_ERR_F) 4605 t4_report_fw_error(adapter); 4606 4607 /* When the Firmware detects an internal error which normally 4608 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4609 * in order to make sure the Host sees the Firmware Crash. So 4610 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4611 * ignore the Timer0 interrupt. 4612 */ 4613 4614 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4615 if (val & TIMER0INT_F) 4616 if (!(fw_err & PCIE_FW_ERR_F) || 4617 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4618 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4619 TIMER0INT_F); 4620 4621 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4622 cim_intr_info) + 4623 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4624 cim_upintr_info); 4625 if (fat) 4626 t4_fatal_err(adapter); 4627 } 4628 4629 /* 4630 * ULP RX interrupt handler. 4631 */ 4632 static void ulprx_intr_handler(struct adapter *adapter) 4633 { 4634 static const struct intr_info ulprx_intr_info[] = { 4635 { 0x1800000, "ULPRX context error", -1, 1 }, 4636 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4637 { 0 } 4638 }; 4639 4640 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4641 t4_fatal_err(adapter); 4642 } 4643 4644 /* 4645 * ULP TX interrupt handler. 4646 */ 4647 static void ulptx_intr_handler(struct adapter *adapter) 4648 { 4649 static const struct intr_info ulptx_intr_info[] = { 4650 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4651 0 }, 4652 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4653 0 }, 4654 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4655 0 }, 4656 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4657 0 }, 4658 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4659 { 0 } 4660 }; 4661 4662 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4663 t4_fatal_err(adapter); 4664 } 4665 4666 /* 4667 * PM TX interrupt handler. 4668 */ 4669 static void pmtx_intr_handler(struct adapter *adapter) 4670 { 4671 static const struct intr_info pmtx_intr_info[] = { 4672 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4673 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4674 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4675 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4676 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4677 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4678 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4679 -1, 1 }, 4680 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4681 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4682 { 0 } 4683 }; 4684 4685 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4686 t4_fatal_err(adapter); 4687 } 4688 4689 /* 4690 * PM RX interrupt handler. 4691 */ 4692 static void pmrx_intr_handler(struct adapter *adapter) 4693 { 4694 static const struct intr_info pmrx_intr_info[] = { 4695 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4696 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4697 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4698 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4699 -1, 1 }, 4700 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4701 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4702 { 0 } 4703 }; 4704 4705 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4706 t4_fatal_err(adapter); 4707 } 4708 4709 /* 4710 * CPL switch interrupt handler. 4711 */ 4712 static void cplsw_intr_handler(struct adapter *adapter) 4713 { 4714 static const struct intr_info cplsw_intr_info[] = { 4715 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4716 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4717 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4718 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4719 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4720 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4721 { 0 } 4722 }; 4723 4724 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4725 t4_fatal_err(adapter); 4726 } 4727 4728 /* 4729 * LE interrupt handler. 4730 */ 4731 static void le_intr_handler(struct adapter *adap) 4732 { 4733 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4734 static const struct intr_info le_intr_info[] = { 4735 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4736 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4737 { PARITYERR_F, "LE parity error", -1, 1 }, 4738 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4739 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4740 { 0 } 4741 }; 4742 4743 static struct intr_info t6_le_intr_info[] = { 4744 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4745 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4746 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4747 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4748 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4749 { 0 } 4750 }; 4751 4752 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4753 (chip <= CHELSIO_T5) ? 4754 le_intr_info : t6_le_intr_info)) 4755 t4_fatal_err(adap); 4756 } 4757 4758 /* 4759 * MPS interrupt handler. 4760 */ 4761 static void mps_intr_handler(struct adapter *adapter) 4762 { 4763 static const struct intr_info mps_rx_intr_info[] = { 4764 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4765 { 0 } 4766 }; 4767 static const struct intr_info mps_tx_intr_info[] = { 4768 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4769 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4770 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4771 -1, 1 }, 4772 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4773 -1, 1 }, 4774 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4775 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4776 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4777 { 0 } 4778 }; 4779 static const struct intr_info t6_mps_tx_intr_info[] = { 4780 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4781 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4782 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4783 -1, 1 }, 4784 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4785 -1, 1 }, 4786 /* MPS Tx Bubble is normal for T6 */ 4787 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4788 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4789 { 0 } 4790 }; 4791 static const struct intr_info mps_trc_intr_info[] = { 4792 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4793 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4794 -1, 1 }, 4795 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4796 { 0 } 4797 }; 4798 static const struct intr_info mps_stat_sram_intr_info[] = { 4799 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4800 { 0 } 4801 }; 4802 static const struct intr_info mps_stat_tx_intr_info[] = { 4803 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4804 { 0 } 4805 }; 4806 static const struct intr_info mps_stat_rx_intr_info[] = { 4807 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4808 { 0 } 4809 }; 4810 static const struct intr_info mps_cls_intr_info[] = { 4811 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4812 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4813 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4814 { 0 } 4815 }; 4816 4817 int fat; 4818 4819 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4820 mps_rx_intr_info) + 4821 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4822 is_t6(adapter->params.chip) 4823 ? t6_mps_tx_intr_info 4824 : mps_tx_intr_info) + 4825 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4826 mps_trc_intr_info) + 4827 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4828 mps_stat_sram_intr_info) + 4829 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4830 mps_stat_tx_intr_info) + 4831 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4832 mps_stat_rx_intr_info) + 4833 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4834 mps_cls_intr_info); 4835 4836 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4837 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4838 if (fat) 4839 t4_fatal_err(adapter); 4840 } 4841 4842 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4843 ECC_UE_INT_CAUSE_F) 4844 4845 /* 4846 * EDC/MC interrupt handler. 4847 */ 4848 static void mem_intr_handler(struct adapter *adapter, int idx) 4849 { 4850 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4851 4852 unsigned int addr, cnt_addr, v; 4853 4854 if (idx <= MEM_EDC1) { 4855 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4856 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4857 } else if (idx == MEM_MC) { 4858 if (is_t4(adapter->params.chip)) { 4859 addr = MC_INT_CAUSE_A; 4860 cnt_addr = MC_ECC_STATUS_A; 4861 } else { 4862 addr = MC_P_INT_CAUSE_A; 4863 cnt_addr = MC_P_ECC_STATUS_A; 4864 } 4865 } else { 4866 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4867 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4868 } 4869 4870 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4871 if (v & PERR_INT_CAUSE_F) 4872 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4873 name[idx]); 4874 if (v & ECC_CE_INT_CAUSE_F) { 4875 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4876 4877 t4_edc_err_read(adapter, idx); 4878 4879 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4880 if (printk_ratelimit()) 4881 dev_warn(adapter->pdev_dev, 4882 "%u %s correctable ECC data error%s\n", 4883 cnt, name[idx], cnt > 1 ? "s" : ""); 4884 } 4885 if (v & ECC_UE_INT_CAUSE_F) 4886 dev_alert(adapter->pdev_dev, 4887 "%s uncorrectable ECC data error\n", name[idx]); 4888 4889 t4_write_reg(adapter, addr, v); 4890 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4891 t4_fatal_err(adapter); 4892 } 4893 4894 /* 4895 * MA interrupt handler. 4896 */ 4897 static void ma_intr_handler(struct adapter *adap) 4898 { 4899 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4900 4901 if (status & MEM_PERR_INT_CAUSE_F) { 4902 dev_alert(adap->pdev_dev, 4903 "MA parity error, parity status %#x\n", 4904 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4905 if (is_t5(adap->params.chip)) 4906 dev_alert(adap->pdev_dev, 4907 "MA parity error, parity status %#x\n", 4908 t4_read_reg(adap, 4909 MA_PARITY_ERROR_STATUS2_A)); 4910 } 4911 if (status & MEM_WRAP_INT_CAUSE_F) { 4912 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4913 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4914 "client %u to address %#x\n", 4915 MEM_WRAP_CLIENT_NUM_G(v), 4916 MEM_WRAP_ADDRESS_G(v) << 4); 4917 } 4918 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4919 t4_fatal_err(adap); 4920 } 4921 4922 /* 4923 * SMB interrupt handler. 4924 */ 4925 static void smb_intr_handler(struct adapter *adap) 4926 { 4927 static const struct intr_info smb_intr_info[] = { 4928 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4929 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4930 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4931 { 0 } 4932 }; 4933 4934 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4935 t4_fatal_err(adap); 4936 } 4937 4938 /* 4939 * NC-SI interrupt handler. 4940 */ 4941 static void ncsi_intr_handler(struct adapter *adap) 4942 { 4943 static const struct intr_info ncsi_intr_info[] = { 4944 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4945 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4946 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4947 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4948 { 0 } 4949 }; 4950 4951 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4952 t4_fatal_err(adap); 4953 } 4954 4955 /* 4956 * XGMAC interrupt handler. 4957 */ 4958 static void xgmac_intr_handler(struct adapter *adap, int port) 4959 { 4960 u32 v, int_cause_reg; 4961 4962 if (is_t4(adap->params.chip)) 4963 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4964 else 4965 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4966 4967 v = t4_read_reg(adap, int_cause_reg); 4968 4969 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4970 if (!v) 4971 return; 4972 4973 if (v & TXFIFO_PRTY_ERR_F) 4974 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4975 port); 4976 if (v & RXFIFO_PRTY_ERR_F) 4977 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4978 port); 4979 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4980 t4_fatal_err(adap); 4981 } 4982 4983 /* 4984 * PL interrupt handler. 4985 */ 4986 static void pl_intr_handler(struct adapter *adap) 4987 { 4988 static const struct intr_info pl_intr_info[] = { 4989 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4990 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4991 { 0 } 4992 }; 4993 4994 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4995 t4_fatal_err(adap); 4996 } 4997 4998 #define PF_INTR_MASK (PFSW_F) 4999 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 5000 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 5001 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 5002 5003 /** 5004 * t4_slow_intr_handler - control path interrupt handler 5005 * @adapter: the adapter 5006 * 5007 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 5008 * The designation 'slow' is because it involves register reads, while 5009 * data interrupts typically don't involve any MMIOs. 5010 */ 5011 int t4_slow_intr_handler(struct adapter *adapter) 5012 { 5013 /* There are rare cases where a PL_INT_CAUSE bit may end up getting 5014 * set when the corresponding PL_INT_ENABLE bit isn't set. It's 5015 * easiest just to mask that case here. 5016 */ 5017 u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 5018 u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A); 5019 u32 cause = raw_cause & enable; 5020 5021 if (!(cause & GLBL_INTR_MASK)) 5022 return 0; 5023 if (cause & CIM_F) 5024 cim_intr_handler(adapter); 5025 if (cause & MPS_F) 5026 mps_intr_handler(adapter); 5027 if (cause & NCSI_F) 5028 ncsi_intr_handler(adapter); 5029 if (cause & PL_F) 5030 pl_intr_handler(adapter); 5031 if (cause & SMB_F) 5032 smb_intr_handler(adapter); 5033 if (cause & XGMAC0_F) 5034 xgmac_intr_handler(adapter, 0); 5035 if (cause & XGMAC1_F) 5036 xgmac_intr_handler(adapter, 1); 5037 if (cause & XGMAC_KR0_F) 5038 xgmac_intr_handler(adapter, 2); 5039 if (cause & XGMAC_KR1_F) 5040 xgmac_intr_handler(adapter, 3); 5041 if (cause & PCIE_F) 5042 pcie_intr_handler(adapter); 5043 if (cause & MC_F) 5044 mem_intr_handler(adapter, MEM_MC); 5045 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 5046 mem_intr_handler(adapter, MEM_MC1); 5047 if (cause & EDC0_F) 5048 mem_intr_handler(adapter, MEM_EDC0); 5049 if (cause & EDC1_F) 5050 mem_intr_handler(adapter, MEM_EDC1); 5051 if (cause & LE_F) 5052 le_intr_handler(adapter); 5053 if (cause & TP_F) 5054 tp_intr_handler(adapter); 5055 if (cause & MA_F) 5056 ma_intr_handler(adapter); 5057 if (cause & PM_TX_F) 5058 pmtx_intr_handler(adapter); 5059 if (cause & PM_RX_F) 5060 pmrx_intr_handler(adapter); 5061 if (cause & ULP_RX_F) 5062 ulprx_intr_handler(adapter); 5063 if (cause & CPL_SWITCH_F) 5064 cplsw_intr_handler(adapter); 5065 if (cause & SGE_F) 5066 sge_intr_handler(adapter); 5067 if (cause & ULP_TX_F) 5068 ulptx_intr_handler(adapter); 5069 5070 /* Clear the interrupts just processed for which we are the master. */ 5071 t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK); 5072 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 5073 return 1; 5074 } 5075 5076 /** 5077 * t4_intr_enable - enable interrupts 5078 * @adapter: the adapter whose interrupts should be enabled 5079 * 5080 * Enable PF-specific interrupts for the calling function and the top-level 5081 * interrupt concentrator for global interrupts. Interrupts are already 5082 * enabled at each module, here we just enable the roots of the interrupt 5083 * hierarchies. 5084 * 5085 * Note: this function should be called only when the driver manages 5086 * non PF-specific interrupts from the various HW modules. Only one PCI 5087 * function at a time should be doing this. 5088 */ 5089 void t4_intr_enable(struct adapter *adapter) 5090 { 5091 u32 val = 0; 5092 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5093 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5094 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5095 5096 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 5097 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 5098 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 5099 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 5100 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 5101 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 5102 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 5103 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 5104 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 5105 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 5106 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 5107 } 5108 5109 /** 5110 * t4_intr_disable - disable interrupts 5111 * @adapter: the adapter whose interrupts should be disabled 5112 * 5113 * Disable interrupts. We only disable the top-level interrupt 5114 * concentrators. The caller must be a PCI function managing global 5115 * interrupts. 5116 */ 5117 void t4_intr_disable(struct adapter *adapter) 5118 { 5119 u32 whoami, pf; 5120 5121 if (pci_channel_offline(adapter->pdev)) 5122 return; 5123 5124 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5125 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5126 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5127 5128 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 5129 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 5130 } 5131 5132 unsigned int t4_chip_rss_size(struct adapter *adap) 5133 { 5134 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 5135 return RSS_NENTRIES; 5136 else 5137 return T6_RSS_NENTRIES; 5138 } 5139 5140 /** 5141 * t4_config_rss_range - configure a portion of the RSS mapping table 5142 * @adapter: the adapter 5143 * @mbox: mbox to use for the FW command 5144 * @viid: virtual interface whose RSS subtable is to be written 5145 * @start: start entry in the table to write 5146 * @n: how many table entries to write 5147 * @rspq: values for the response queue lookup table 5148 * @nrspq: number of values in @rspq 5149 * 5150 * Programs the selected part of the VI's RSS mapping table with the 5151 * provided values. If @nrspq < @n the supplied values are used repeatedly 5152 * until the full table range is populated. 5153 * 5154 * The caller must ensure the values in @rspq are in the range allowed for 5155 * @viid. 5156 */ 5157 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5158 int start, int n, const u16 *rspq, unsigned int nrspq) 5159 { 5160 int ret; 5161 const u16 *rsp = rspq; 5162 const u16 *rsp_end = rspq + nrspq; 5163 struct fw_rss_ind_tbl_cmd cmd; 5164 5165 memset(&cmd, 0, sizeof(cmd)); 5166 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 5167 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5168 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 5169 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5170 5171 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 5172 while (n > 0) { 5173 int nq = min(n, 32); 5174 __be32 *qp = &cmd.iq0_to_iq2; 5175 5176 cmd.niqid = cpu_to_be16(nq); 5177 cmd.startidx = cpu_to_be16(start); 5178 5179 start += nq; 5180 n -= nq; 5181 5182 while (nq > 0) { 5183 unsigned int v; 5184 5185 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 5186 if (++rsp >= rsp_end) 5187 rsp = rspq; 5188 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 5189 if (++rsp >= rsp_end) 5190 rsp = rspq; 5191 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 5192 if (++rsp >= rsp_end) 5193 rsp = rspq; 5194 5195 *qp++ = cpu_to_be32(v); 5196 nq -= 3; 5197 } 5198 5199 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5200 if (ret) 5201 return ret; 5202 } 5203 return 0; 5204 } 5205 5206 /** 5207 * t4_config_glbl_rss - configure the global RSS mode 5208 * @adapter: the adapter 5209 * @mbox: mbox to use for the FW command 5210 * @mode: global RSS mode 5211 * @flags: mode-specific flags 5212 * 5213 * Sets the global RSS mode. 5214 */ 5215 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5216 unsigned int flags) 5217 { 5218 struct fw_rss_glb_config_cmd c; 5219 5220 memset(&c, 0, sizeof(c)); 5221 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5222 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5223 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5224 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5225 c.u.manual.mode_pkd = 5226 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5227 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5228 c.u.basicvirtual.mode_pkd = 5229 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5230 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5231 } else 5232 return -EINVAL; 5233 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5234 } 5235 5236 /** 5237 * t4_config_vi_rss - configure per VI RSS settings 5238 * @adapter: the adapter 5239 * @mbox: mbox to use for the FW command 5240 * @viid: the VI id 5241 * @flags: RSS flags 5242 * @defq: id of the default RSS queue for the VI. 5243 * 5244 * Configures VI-specific RSS properties. 5245 */ 5246 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5247 unsigned int flags, unsigned int defq) 5248 { 5249 struct fw_rss_vi_config_cmd c; 5250 5251 memset(&c, 0, sizeof(c)); 5252 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5253 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5254 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5255 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5256 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5257 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5258 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5259 } 5260 5261 /* Read an RSS table row */ 5262 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5263 { 5264 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5265 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5266 5, 0, val); 5267 } 5268 5269 /** 5270 * t4_read_rss - read the contents of the RSS mapping table 5271 * @adapter: the adapter 5272 * @map: holds the contents of the RSS mapping table 5273 * 5274 * Reads the contents of the RSS hash->queue mapping table. 5275 */ 5276 int t4_read_rss(struct adapter *adapter, u16 *map) 5277 { 5278 int i, ret, nentries; 5279 u32 val; 5280 5281 nentries = t4_chip_rss_size(adapter); 5282 for (i = 0; i < nentries / 2; ++i) { 5283 ret = rd_rss_row(adapter, i, &val); 5284 if (ret) 5285 return ret; 5286 *map++ = LKPTBLQUEUE0_G(val); 5287 *map++ = LKPTBLQUEUE1_G(val); 5288 } 5289 return 0; 5290 } 5291 5292 static unsigned int t4_use_ldst(struct adapter *adap) 5293 { 5294 return (adap->flags & CXGB4_FW_OK) && !adap->use_bd; 5295 } 5296 5297 /** 5298 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5299 * @adap: the adapter 5300 * @cmd: TP fw ldst address space type 5301 * @vals: where the indirect register values are stored/written 5302 * @nregs: how many indirect registers to read/write 5303 * @start_idx: index of first indirect register to read/write 5304 * @rw: Read (1) or Write (0) 5305 * @sleep_ok: if true we may sleep while awaiting command completion 5306 * 5307 * Access TP indirect registers through LDST 5308 */ 5309 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5310 unsigned int nregs, unsigned int start_index, 5311 unsigned int rw, bool sleep_ok) 5312 { 5313 int ret = 0; 5314 unsigned int i; 5315 struct fw_ldst_cmd c; 5316 5317 for (i = 0; i < nregs; i++) { 5318 memset(&c, 0, sizeof(c)); 5319 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5320 FW_CMD_REQUEST_F | 5321 (rw ? FW_CMD_READ_F : 5322 FW_CMD_WRITE_F) | 5323 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5324 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5325 5326 c.u.addrval.addr = cpu_to_be32(start_index + i); 5327 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5328 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5329 sleep_ok); 5330 if (ret) 5331 return ret; 5332 5333 if (rw) 5334 vals[i] = be32_to_cpu(c.u.addrval.val); 5335 } 5336 return 0; 5337 } 5338 5339 /** 5340 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5341 * @adap: the adapter 5342 * @reg_addr: Address Register 5343 * @reg_data: Data register 5344 * @buff: where the indirect register values are stored/written 5345 * @nregs: how many indirect registers to read/write 5346 * @start_index: index of first indirect register to read/write 5347 * @rw: READ(1) or WRITE(0) 5348 * @sleep_ok: if true we may sleep while awaiting command completion 5349 * 5350 * Read/Write TP indirect registers through LDST if possible. 5351 * Else, use backdoor access 5352 **/ 5353 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5354 u32 *buff, u32 nregs, u32 start_index, int rw, 5355 bool sleep_ok) 5356 { 5357 int rc = -EINVAL; 5358 int cmd; 5359 5360 switch (reg_addr) { 5361 case TP_PIO_ADDR_A: 5362 cmd = FW_LDST_ADDRSPC_TP_PIO; 5363 break; 5364 case TP_TM_PIO_ADDR_A: 5365 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5366 break; 5367 case TP_MIB_INDEX_A: 5368 cmd = FW_LDST_ADDRSPC_TP_MIB; 5369 break; 5370 default: 5371 goto indirect_access; 5372 } 5373 5374 if (t4_use_ldst(adap)) 5375 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5376 sleep_ok); 5377 5378 indirect_access: 5379 5380 if (rc) { 5381 if (rw) 5382 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5383 start_index); 5384 else 5385 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5386 start_index); 5387 } 5388 } 5389 5390 /** 5391 * t4_tp_pio_read - Read TP PIO registers 5392 * @adap: the adapter 5393 * @buff: where the indirect register values are written 5394 * @nregs: how many indirect registers to read 5395 * @start_index: index of first indirect register to read 5396 * @sleep_ok: if true we may sleep while awaiting command completion 5397 * 5398 * Read TP PIO Registers 5399 **/ 5400 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5401 u32 start_index, bool sleep_ok) 5402 { 5403 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5404 start_index, 1, sleep_ok); 5405 } 5406 5407 /** 5408 * t4_tp_pio_write - Write TP PIO registers 5409 * @adap: the adapter 5410 * @buff: where the indirect register values are stored 5411 * @nregs: how many indirect registers to write 5412 * @start_index: index of first indirect register to write 5413 * @sleep_ok: if true we may sleep while awaiting command completion 5414 * 5415 * Write TP PIO Registers 5416 **/ 5417 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5418 u32 start_index, bool sleep_ok) 5419 { 5420 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5421 start_index, 0, sleep_ok); 5422 } 5423 5424 /** 5425 * t4_tp_tm_pio_read - Read TP TM PIO registers 5426 * @adap: the adapter 5427 * @buff: where the indirect register values are written 5428 * @nregs: how many indirect registers to read 5429 * @start_index: index of first indirect register to read 5430 * @sleep_ok: if true we may sleep while awaiting command completion 5431 * 5432 * Read TP TM PIO Registers 5433 **/ 5434 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5435 u32 start_index, bool sleep_ok) 5436 { 5437 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5438 nregs, start_index, 1, sleep_ok); 5439 } 5440 5441 /** 5442 * t4_tp_mib_read - Read TP MIB registers 5443 * @adap: the adapter 5444 * @buff: where the indirect register values are written 5445 * @nregs: how many indirect registers to read 5446 * @start_index: index of first indirect register to read 5447 * @sleep_ok: if true we may sleep while awaiting command completion 5448 * 5449 * Read TP MIB Registers 5450 **/ 5451 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5452 bool sleep_ok) 5453 { 5454 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5455 start_index, 1, sleep_ok); 5456 } 5457 5458 /** 5459 * t4_read_rss_key - read the global RSS key 5460 * @adap: the adapter 5461 * @key: 10-entry array holding the 320-bit RSS key 5462 * @sleep_ok: if true we may sleep while awaiting command completion 5463 * 5464 * Reads the global 320-bit RSS key. 5465 */ 5466 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5467 { 5468 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5469 } 5470 5471 /** 5472 * t4_write_rss_key - program one of the RSS keys 5473 * @adap: the adapter 5474 * @key: 10-entry array holding the 320-bit RSS key 5475 * @idx: which RSS key to write 5476 * @sleep_ok: if true we may sleep while awaiting command completion 5477 * 5478 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5479 * 0..15 the corresponding entry in the RSS key table is written, 5480 * otherwise the global RSS key is written. 5481 */ 5482 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5483 bool sleep_ok) 5484 { 5485 u8 rss_key_addr_cnt = 16; 5486 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5487 5488 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5489 * allows access to key addresses 16-63 by using KeyWrAddrX 5490 * as index[5:4](upper 2) into key table 5491 */ 5492 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5493 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5494 rss_key_addr_cnt = 32; 5495 5496 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5497 5498 if (idx >= 0 && idx < rss_key_addr_cnt) { 5499 if (rss_key_addr_cnt > 16) 5500 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5501 KEYWRADDRX_V(idx >> 4) | 5502 T6_VFWRADDR_V(idx) | KEYWREN_F); 5503 else 5504 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5505 KEYWRADDR_V(idx) | KEYWREN_F); 5506 } 5507 } 5508 5509 /** 5510 * t4_read_rss_pf_config - read PF RSS Configuration Table 5511 * @adapter: the adapter 5512 * @index: the entry in the PF RSS table to read 5513 * @valp: where to store the returned value 5514 * @sleep_ok: if true we may sleep while awaiting command completion 5515 * 5516 * Reads the PF RSS Configuration Table at the specified index and returns 5517 * the value found there. 5518 */ 5519 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5520 u32 *valp, bool sleep_ok) 5521 { 5522 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5523 } 5524 5525 /** 5526 * t4_read_rss_vf_config - read VF RSS Configuration Table 5527 * @adapter: the adapter 5528 * @index: the entry in the VF RSS table to read 5529 * @vfl: where to store the returned VFL 5530 * @vfh: where to store the returned VFH 5531 * @sleep_ok: if true we may sleep while awaiting command completion 5532 * 5533 * Reads the VF RSS Configuration Table at the specified index and returns 5534 * the (VFL, VFH) values found there. 5535 */ 5536 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5537 u32 *vfl, u32 *vfh, bool sleep_ok) 5538 { 5539 u32 vrt, mask, data; 5540 5541 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5542 mask = VFWRADDR_V(VFWRADDR_M); 5543 data = VFWRADDR_V(index); 5544 } else { 5545 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5546 data = T6_VFWRADDR_V(index); 5547 } 5548 5549 /* Request that the index'th VF Table values be read into VFL/VFH. 5550 */ 5551 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5552 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5553 vrt |= data | VFRDEN_F; 5554 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5555 5556 /* Grab the VFL/VFH values ... 5557 */ 5558 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5559 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5560 } 5561 5562 /** 5563 * t4_read_rss_pf_map - read PF RSS Map 5564 * @adapter: the adapter 5565 * @sleep_ok: if true we may sleep while awaiting command completion 5566 * 5567 * Reads the PF RSS Map register and returns its value. 5568 */ 5569 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5570 { 5571 u32 pfmap; 5572 5573 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5574 return pfmap; 5575 } 5576 5577 /** 5578 * t4_read_rss_pf_mask - read PF RSS Mask 5579 * @adapter: the adapter 5580 * @sleep_ok: if true we may sleep while awaiting command completion 5581 * 5582 * Reads the PF RSS Mask register and returns its value. 5583 */ 5584 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5585 { 5586 u32 pfmask; 5587 5588 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5589 return pfmask; 5590 } 5591 5592 /** 5593 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5594 * @adap: the adapter 5595 * @v4: holds the TCP/IP counter values 5596 * @v6: holds the TCP/IPv6 counter values 5597 * @sleep_ok: if true we may sleep while awaiting command completion 5598 * 5599 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5600 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5601 */ 5602 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5603 struct tp_tcp_stats *v6, bool sleep_ok) 5604 { 5605 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5606 5607 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5608 #define STAT(x) val[STAT_IDX(x)] 5609 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5610 5611 if (v4) { 5612 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5613 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5614 v4->tcp_out_rsts = STAT(OUT_RST); 5615 v4->tcp_in_segs = STAT64(IN_SEG); 5616 v4->tcp_out_segs = STAT64(OUT_SEG); 5617 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5618 } 5619 if (v6) { 5620 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5621 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5622 v6->tcp_out_rsts = STAT(OUT_RST); 5623 v6->tcp_in_segs = STAT64(IN_SEG); 5624 v6->tcp_out_segs = STAT64(OUT_SEG); 5625 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5626 } 5627 #undef STAT64 5628 #undef STAT 5629 #undef STAT_IDX 5630 } 5631 5632 /** 5633 * t4_tp_get_err_stats - read TP's error MIB counters 5634 * @adap: the adapter 5635 * @st: holds the counter values 5636 * @sleep_ok: if true we may sleep while awaiting command completion 5637 * 5638 * Returns the values of TP's error counters. 5639 */ 5640 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5641 bool sleep_ok) 5642 { 5643 int nchan = adap->params.arch.nchan; 5644 5645 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5646 sleep_ok); 5647 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5648 sleep_ok); 5649 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5650 sleep_ok); 5651 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5652 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5653 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5654 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5655 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5656 sleep_ok); 5657 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5658 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5659 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5660 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5661 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5662 sleep_ok); 5663 } 5664 5665 /** 5666 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5667 * @adap: the adapter 5668 * @st: holds the counter values 5669 * @sleep_ok: if true we may sleep while awaiting command completion 5670 * 5671 * Returns the values of TP's CPL counters. 5672 */ 5673 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5674 bool sleep_ok) 5675 { 5676 int nchan = adap->params.arch.nchan; 5677 5678 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5679 5680 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5681 } 5682 5683 /** 5684 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5685 * @adap: the adapter 5686 * @st: holds the counter values 5687 * @sleep_ok: if true we may sleep while awaiting command completion 5688 * 5689 * Returns the values of TP's RDMA counters. 5690 */ 5691 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5692 bool sleep_ok) 5693 { 5694 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5695 sleep_ok); 5696 } 5697 5698 /** 5699 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5700 * @adap: the adapter 5701 * @idx: the port index 5702 * @st: holds the counter values 5703 * @sleep_ok: if true we may sleep while awaiting command completion 5704 * 5705 * Returns the values of TP's FCoE counters for the selected port. 5706 */ 5707 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5708 struct tp_fcoe_stats *st, bool sleep_ok) 5709 { 5710 u32 val[2]; 5711 5712 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5713 sleep_ok); 5714 5715 t4_tp_mib_read(adap, &st->frames_drop, 1, 5716 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5717 5718 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5719 sleep_ok); 5720 5721 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5722 } 5723 5724 /** 5725 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5726 * @adap: the adapter 5727 * @st: holds the counter values 5728 * @sleep_ok: if true we may sleep while awaiting command completion 5729 * 5730 * Returns the values of TP's counters for non-TCP directly-placed packets. 5731 */ 5732 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5733 bool sleep_ok) 5734 { 5735 u32 val[4]; 5736 5737 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5738 st->frames = val[0]; 5739 st->drops = val[1]; 5740 st->octets = ((u64)val[2] << 32) | val[3]; 5741 } 5742 5743 /** 5744 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5745 * @adap: the adapter 5746 * @mtus: where to store the MTU values 5747 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5748 * 5749 * Reads the HW path MTU table. 5750 */ 5751 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5752 { 5753 u32 v; 5754 int i; 5755 5756 for (i = 0; i < NMTUS; ++i) { 5757 t4_write_reg(adap, TP_MTU_TABLE_A, 5758 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5759 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5760 mtus[i] = MTUVALUE_G(v); 5761 if (mtu_log) 5762 mtu_log[i] = MTUWIDTH_G(v); 5763 } 5764 } 5765 5766 /** 5767 * t4_read_cong_tbl - reads the congestion control table 5768 * @adap: the adapter 5769 * @incr: where to store the alpha values 5770 * 5771 * Reads the additive increments programmed into the HW congestion 5772 * control table. 5773 */ 5774 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5775 { 5776 unsigned int mtu, w; 5777 5778 for (mtu = 0; mtu < NMTUS; ++mtu) 5779 for (w = 0; w < NCCTRL_WIN; ++w) { 5780 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5781 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5782 incr[mtu][w] = (u16)t4_read_reg(adap, 5783 TP_CCTRL_TABLE_A) & 0x1fff; 5784 } 5785 } 5786 5787 /** 5788 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5789 * @adap: the adapter 5790 * @addr: the indirect TP register address 5791 * @mask: specifies the field within the register to modify 5792 * @val: new value for the field 5793 * 5794 * Sets a field of an indirect TP register to the given value. 5795 */ 5796 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5797 unsigned int mask, unsigned int val) 5798 { 5799 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5800 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5801 t4_write_reg(adap, TP_PIO_DATA_A, val); 5802 } 5803 5804 /** 5805 * init_cong_ctrl - initialize congestion control parameters 5806 * @a: the alpha values for congestion control 5807 * @b: the beta values for congestion control 5808 * 5809 * Initialize the congestion control parameters. 5810 */ 5811 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5812 { 5813 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5814 a[9] = 2; 5815 a[10] = 3; 5816 a[11] = 4; 5817 a[12] = 5; 5818 a[13] = 6; 5819 a[14] = 7; 5820 a[15] = 8; 5821 a[16] = 9; 5822 a[17] = 10; 5823 a[18] = 14; 5824 a[19] = 17; 5825 a[20] = 21; 5826 a[21] = 25; 5827 a[22] = 30; 5828 a[23] = 35; 5829 a[24] = 45; 5830 a[25] = 60; 5831 a[26] = 80; 5832 a[27] = 100; 5833 a[28] = 200; 5834 a[29] = 300; 5835 a[30] = 400; 5836 a[31] = 500; 5837 5838 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5839 b[9] = b[10] = 1; 5840 b[11] = b[12] = 2; 5841 b[13] = b[14] = b[15] = b[16] = 3; 5842 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5843 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5844 b[28] = b[29] = 6; 5845 b[30] = b[31] = 7; 5846 } 5847 5848 /* The minimum additive increment value for the congestion control table */ 5849 #define CC_MIN_INCR 2U 5850 5851 /** 5852 * t4_load_mtus - write the MTU and congestion control HW tables 5853 * @adap: the adapter 5854 * @mtus: the values for the MTU table 5855 * @alpha: the values for the congestion control alpha parameter 5856 * @beta: the values for the congestion control beta parameter 5857 * 5858 * Write the HW MTU table with the supplied MTUs and the high-speed 5859 * congestion control table with the supplied alpha, beta, and MTUs. 5860 * We write the two tables together because the additive increments 5861 * depend on the MTUs. 5862 */ 5863 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5864 const unsigned short *alpha, const unsigned short *beta) 5865 { 5866 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5867 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5868 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5869 28672, 40960, 57344, 81920, 114688, 163840, 229376 5870 }; 5871 5872 unsigned int i, w; 5873 5874 for (i = 0; i < NMTUS; ++i) { 5875 unsigned int mtu = mtus[i]; 5876 unsigned int log2 = fls(mtu); 5877 5878 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5879 log2--; 5880 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5881 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5882 5883 for (w = 0; w < NCCTRL_WIN; ++w) { 5884 unsigned int inc; 5885 5886 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5887 CC_MIN_INCR); 5888 5889 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5890 (w << 16) | (beta[w] << 13) | inc); 5891 } 5892 } 5893 } 5894 5895 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5896 * clocks. The formula is 5897 * 5898 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5899 * 5900 * which is equivalent to 5901 * 5902 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5903 */ 5904 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5905 { 5906 u64 v = bytes256 * adap->params.vpd.cclk; 5907 5908 return v * 62 + v / 2; 5909 } 5910 5911 /** 5912 * t4_get_chan_txrate - get the current per channel Tx rates 5913 * @adap: the adapter 5914 * @nic_rate: rates for NIC traffic 5915 * @ofld_rate: rates for offloaded traffic 5916 * 5917 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5918 * for each channel. 5919 */ 5920 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5921 { 5922 u32 v; 5923 5924 v = t4_read_reg(adap, TP_TX_TRATE_A); 5925 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5926 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5927 if (adap->params.arch.nchan == NCHAN) { 5928 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5929 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5930 } 5931 5932 v = t4_read_reg(adap, TP_TX_ORATE_A); 5933 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5934 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5935 if (adap->params.arch.nchan == NCHAN) { 5936 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5937 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5938 } 5939 } 5940 5941 /** 5942 * t4_set_trace_filter - configure one of the tracing filters 5943 * @adap: the adapter 5944 * @tp: the desired trace filter parameters 5945 * @idx: which filter to configure 5946 * @enable: whether to enable or disable the filter 5947 * 5948 * Configures one of the tracing filters available in HW. If @enable is 5949 * %0 @tp is not examined and may be %NULL. The user is responsible to 5950 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5951 */ 5952 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5953 int idx, int enable) 5954 { 5955 int i, ofst = idx * 4; 5956 u32 data_reg, mask_reg, cfg; 5957 5958 if (!enable) { 5959 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5960 return 0; 5961 } 5962 5963 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5964 if (cfg & TRCMULTIFILTER_F) { 5965 /* If multiple tracers are enabled, then maximum 5966 * capture size is 2.5KB (FIFO size of a single channel) 5967 * minus 2 flits for CPL_TRACE_PKT header. 5968 */ 5969 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5970 return -EINVAL; 5971 } else { 5972 /* If multiple tracers are disabled, to avoid deadlocks 5973 * maximum packet capture size of 9600 bytes is recommended. 5974 * Also in this mode, only trace0 can be enabled and running. 5975 */ 5976 if (tp->snap_len > 9600 || idx) 5977 return -EINVAL; 5978 } 5979 5980 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5981 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5982 tp->min_len > TFMINPKTSIZE_M) 5983 return -EINVAL; 5984 5985 /* stop the tracer we'll be changing */ 5986 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5987 5988 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5989 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5990 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5991 5992 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5993 t4_write_reg(adap, data_reg, tp->data[i]); 5994 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5995 } 5996 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5997 TFCAPTUREMAX_V(tp->snap_len) | 5998 TFMINPKTSIZE_V(tp->min_len)); 5999 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 6000 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 6001 (is_t4(adap->params.chip) ? 6002 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 6003 T5_TFPORT_V(tp->port) | T5_TFEN_F | 6004 T5_TFINVERTMATCH_V(tp->invert))); 6005 6006 return 0; 6007 } 6008 6009 /** 6010 * t4_get_trace_filter - query one of the tracing filters 6011 * @adap: the adapter 6012 * @tp: the current trace filter parameters 6013 * @idx: which trace filter to query 6014 * @enabled: non-zero if the filter is enabled 6015 * 6016 * Returns the current settings of one of the HW tracing filters. 6017 */ 6018 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 6019 int *enabled) 6020 { 6021 u32 ctla, ctlb; 6022 int i, ofst = idx * 4; 6023 u32 data_reg, mask_reg; 6024 6025 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 6026 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 6027 6028 if (is_t4(adap->params.chip)) { 6029 *enabled = !!(ctla & TFEN_F); 6030 tp->port = TFPORT_G(ctla); 6031 tp->invert = !!(ctla & TFINVERTMATCH_F); 6032 } else { 6033 *enabled = !!(ctla & T5_TFEN_F); 6034 tp->port = T5_TFPORT_G(ctla); 6035 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 6036 } 6037 tp->snap_len = TFCAPTUREMAX_G(ctlb); 6038 tp->min_len = TFMINPKTSIZE_G(ctlb); 6039 tp->skip_ofst = TFOFFSET_G(ctla); 6040 tp->skip_len = TFLENGTH_G(ctla); 6041 6042 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 6043 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 6044 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 6045 6046 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6047 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 6048 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 6049 } 6050 } 6051 6052 /** 6053 * t4_pmtx_get_stats - returns the HW stats from PMTX 6054 * @adap: the adapter 6055 * @cnt: where to store the count statistics 6056 * @cycles: where to store the cycle statistics 6057 * 6058 * Returns performance statistics from PMTX. 6059 */ 6060 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6061 { 6062 int i; 6063 u32 data[2]; 6064 6065 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6066 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 6067 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 6068 if (is_t4(adap->params.chip)) { 6069 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 6070 } else { 6071 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 6072 PM_TX_DBG_DATA_A, data, 2, 6073 PM_TX_DBG_STAT_MSB_A); 6074 cycles[i] = (((u64)data[0] << 32) | data[1]); 6075 } 6076 } 6077 } 6078 6079 /** 6080 * t4_pmrx_get_stats - returns the HW stats from PMRX 6081 * @adap: the adapter 6082 * @cnt: where to store the count statistics 6083 * @cycles: where to store the cycle statistics 6084 * 6085 * Returns performance statistics from PMRX. 6086 */ 6087 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6088 { 6089 int i; 6090 u32 data[2]; 6091 6092 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6093 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 6094 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 6095 if (is_t4(adap->params.chip)) { 6096 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 6097 } else { 6098 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 6099 PM_RX_DBG_DATA_A, data, 2, 6100 PM_RX_DBG_STAT_MSB_A); 6101 cycles[i] = (((u64)data[0] << 32) | data[1]); 6102 } 6103 } 6104 } 6105 6106 /** 6107 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 6108 * @adap: the adapter 6109 * @pidx: the port index 6110 * 6111 * Computes and returns a bitmap indicating which MPS buffer groups are 6112 * associated with the given Port. Bit i is set if buffer group i is 6113 * used by the Port. 6114 */ 6115 static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 6116 int pidx) 6117 { 6118 unsigned int chip_version, nports; 6119 6120 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6121 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6122 6123 switch (chip_version) { 6124 case CHELSIO_T4: 6125 case CHELSIO_T5: 6126 switch (nports) { 6127 case 1: return 0xf; 6128 case 2: return 3 << (2 * pidx); 6129 case 4: return 1 << pidx; 6130 } 6131 break; 6132 6133 case CHELSIO_T6: 6134 switch (nports) { 6135 case 2: return 1 << (2 * pidx); 6136 } 6137 break; 6138 } 6139 6140 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 6141 chip_version, nports); 6142 6143 return 0; 6144 } 6145 6146 /** 6147 * t4_get_mps_bg_map - return the buffer groups associated with a port 6148 * @adapter: the adapter 6149 * @pidx: the port index 6150 * 6151 * Returns a bitmap indicating which MPS buffer groups are associated 6152 * with the given Port. Bit i is set if buffer group i is used by the 6153 * Port. 6154 */ 6155 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 6156 { 6157 u8 *mps_bg_map; 6158 unsigned int nports; 6159 6160 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6161 if (pidx >= nports) { 6162 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 6163 pidx, nports); 6164 return 0; 6165 } 6166 6167 /* If we've already retrieved/computed this, just return the result. 6168 */ 6169 mps_bg_map = adapter->params.mps_bg_map; 6170 if (mps_bg_map[pidx]) 6171 return mps_bg_map[pidx]; 6172 6173 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 6174 * If we're talking to such Firmware, let it tell us. If the new 6175 * API isn't supported, revert back to old hardcoded way. The value 6176 * obtained from Firmware is encoded in below format: 6177 * 6178 * val = (( MPSBGMAP[Port 3] << 24 ) | 6179 * ( MPSBGMAP[Port 2] << 16 ) | 6180 * ( MPSBGMAP[Port 1] << 8 ) | 6181 * ( MPSBGMAP[Port 0] << 0 )) 6182 */ 6183 if (adapter->flags & CXGB4_FW_OK) { 6184 u32 param, val; 6185 int ret; 6186 6187 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6188 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 6189 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6190 0, 1, ¶m, &val); 6191 if (!ret) { 6192 int p; 6193 6194 /* Store the BG Map for all of the Ports in order to 6195 * avoid more calls to the Firmware in the future. 6196 */ 6197 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 6198 mps_bg_map[p] = val & 0xff; 6199 6200 return mps_bg_map[pidx]; 6201 } 6202 } 6203 6204 /* Either we're not talking to the Firmware or we're dealing with 6205 * older Firmware which doesn't support the new API to get the MPS 6206 * Buffer Group Map. Fall back to computing it ourselves. 6207 */ 6208 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 6209 return mps_bg_map[pidx]; 6210 } 6211 6212 /** 6213 * t4_get_tp_e2c_map - return the E2C channel map associated with a port 6214 * @adapter: the adapter 6215 * @pidx: the port index 6216 */ 6217 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx) 6218 { 6219 unsigned int nports; 6220 u32 param, val = 0; 6221 int ret; 6222 6223 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6224 if (pidx >= nports) { 6225 CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n", 6226 pidx, nports); 6227 return 0; 6228 } 6229 6230 /* FW version >= 1.16.44.0 can determine E2C channel map using 6231 * FW_PARAMS_PARAM_DEV_TPCHMAP API. 6232 */ 6233 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6234 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP)); 6235 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6236 0, 1, ¶m, &val); 6237 if (!ret) 6238 return (val >> (8 * pidx)) & 0xff; 6239 6240 return 0; 6241 } 6242 6243 /** 6244 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6245 * @adapter: the adapter 6246 * @pidx: the port index 6247 * 6248 * Returns a bitmap indicating which TP Ingress Channels are associated 6249 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6250 * the Port. 6251 */ 6252 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6253 { 6254 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6255 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6256 6257 if (pidx >= nports) { 6258 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6259 pidx, nports); 6260 return 0; 6261 } 6262 6263 switch (chip_version) { 6264 case CHELSIO_T4: 6265 case CHELSIO_T5: 6266 /* Note that this happens to be the same values as the MPS 6267 * Buffer Group Map for these Chips. But we replicate the code 6268 * here because they're really separate concepts. 6269 */ 6270 switch (nports) { 6271 case 1: return 0xf; 6272 case 2: return 3 << (2 * pidx); 6273 case 4: return 1 << pidx; 6274 } 6275 break; 6276 6277 case CHELSIO_T6: 6278 switch (nports) { 6279 case 1: 6280 case 2: return 1 << pidx; 6281 } 6282 break; 6283 } 6284 6285 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6286 chip_version, nports); 6287 return 0; 6288 } 6289 6290 /** 6291 * t4_get_port_type_description - return Port Type string description 6292 * @port_type: firmware Port Type enumeration 6293 */ 6294 const char *t4_get_port_type_description(enum fw_port_type port_type) 6295 { 6296 static const char *const port_type_description[] = { 6297 "Fiber_XFI", 6298 "Fiber_XAUI", 6299 "BT_SGMII", 6300 "BT_XFI", 6301 "BT_XAUI", 6302 "KX4", 6303 "CX4", 6304 "KX", 6305 "KR", 6306 "SFP", 6307 "BP_AP", 6308 "BP4_AP", 6309 "QSFP_10G", 6310 "QSA", 6311 "QSFP", 6312 "BP40_BA", 6313 "KR4_100G", 6314 "CR4_QSFP", 6315 "CR_QSFP", 6316 "CR2_QSFP", 6317 "SFP28", 6318 "KR_SFP28", 6319 "KR_XLAUI" 6320 }; 6321 6322 if (port_type < ARRAY_SIZE(port_type_description)) 6323 return port_type_description[port_type]; 6324 return "UNKNOWN"; 6325 } 6326 6327 /** 6328 * t4_get_port_stats_offset - collect port stats relative to a previous 6329 * snapshot 6330 * @adap: The adapter 6331 * @idx: The port 6332 * @stats: Current stats to fill 6333 * @offset: Previous stats snapshot 6334 */ 6335 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6336 struct port_stats *stats, 6337 struct port_stats *offset) 6338 { 6339 u64 *s, *o; 6340 int i; 6341 6342 t4_get_port_stats(adap, idx, stats); 6343 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6344 i < (sizeof(struct port_stats) / sizeof(u64)); 6345 i++, s++, o++) 6346 *s -= *o; 6347 } 6348 6349 /** 6350 * t4_get_port_stats - collect port statistics 6351 * @adap: the adapter 6352 * @idx: the port index 6353 * @p: the stats structure to fill 6354 * 6355 * Collect statistics related to the given port from HW. 6356 */ 6357 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6358 { 6359 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6360 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6361 6362 #define GET_STAT(name) \ 6363 t4_read_reg64(adap, \ 6364 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6365 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6366 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6367 6368 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6369 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6370 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6371 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6372 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6373 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6374 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6375 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6376 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6377 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6378 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6379 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6380 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6381 p->tx_drop = GET_STAT(TX_PORT_DROP); 6382 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6383 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6384 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6385 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6386 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6387 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6388 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6389 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6390 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6391 6392 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6393 if (stat_ctl & COUNTPAUSESTATTX_F) 6394 p->tx_frames_64 -= p->tx_pause; 6395 if (stat_ctl & COUNTPAUSEMCTX_F) 6396 p->tx_mcast_frames -= p->tx_pause; 6397 } 6398 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6399 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6400 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6401 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6402 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6403 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6404 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6405 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6406 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6407 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6408 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6409 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6410 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6411 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6412 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6413 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6414 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6415 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6416 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6417 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6418 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6419 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6420 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6421 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6422 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6423 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6424 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6425 6426 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6427 if (stat_ctl & COUNTPAUSESTATRX_F) 6428 p->rx_frames_64 -= p->rx_pause; 6429 if (stat_ctl & COUNTPAUSEMCRX_F) 6430 p->rx_mcast_frames -= p->rx_pause; 6431 } 6432 6433 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6434 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6435 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6436 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6437 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6438 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6439 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6440 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6441 6442 #undef GET_STAT 6443 #undef GET_STAT_COM 6444 } 6445 6446 /** 6447 * t4_get_lb_stats - collect loopback port statistics 6448 * @adap: the adapter 6449 * @idx: the loopback port index 6450 * @p: the stats structure to fill 6451 * 6452 * Return HW statistics for the given loopback port. 6453 */ 6454 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6455 { 6456 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6457 6458 #define GET_STAT(name) \ 6459 t4_read_reg64(adap, \ 6460 (is_t4(adap->params.chip) ? \ 6461 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6462 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6463 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6464 6465 p->octets = GET_STAT(BYTES); 6466 p->frames = GET_STAT(FRAMES); 6467 p->bcast_frames = GET_STAT(BCAST); 6468 p->mcast_frames = GET_STAT(MCAST); 6469 p->ucast_frames = GET_STAT(UCAST); 6470 p->error_frames = GET_STAT(ERROR); 6471 6472 p->frames_64 = GET_STAT(64B); 6473 p->frames_65_127 = GET_STAT(65B_127B); 6474 p->frames_128_255 = GET_STAT(128B_255B); 6475 p->frames_256_511 = GET_STAT(256B_511B); 6476 p->frames_512_1023 = GET_STAT(512B_1023B); 6477 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6478 p->frames_1519_max = GET_STAT(1519B_MAX); 6479 p->drop = GET_STAT(DROP_FRAMES); 6480 6481 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6482 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6483 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6484 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6485 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6486 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6487 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6488 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6489 6490 #undef GET_STAT 6491 #undef GET_STAT_COM 6492 } 6493 6494 /* t4_mk_filtdelwr - create a delete filter WR 6495 * @ftid: the filter ID 6496 * @wr: the filter work request to populate 6497 * @qid: ingress queue to receive the delete notification 6498 * 6499 * Creates a filter work request to delete the supplied filter. If @qid is 6500 * negative the delete notification is suppressed. 6501 */ 6502 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6503 { 6504 memset(wr, 0, sizeof(*wr)); 6505 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6506 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6507 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6508 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6509 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6510 if (qid >= 0) 6511 wr->rx_chan_rx_rpl_iq = 6512 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6513 } 6514 6515 #define INIT_CMD(var, cmd, rd_wr) do { \ 6516 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6517 FW_CMD_REQUEST_F | \ 6518 FW_CMD_##rd_wr##_F); \ 6519 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6520 } while (0) 6521 6522 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6523 u32 addr, u32 val) 6524 { 6525 u32 ldst_addrspace; 6526 struct fw_ldst_cmd c; 6527 6528 memset(&c, 0, sizeof(c)); 6529 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6530 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6531 FW_CMD_REQUEST_F | 6532 FW_CMD_WRITE_F | 6533 ldst_addrspace); 6534 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6535 c.u.addrval.addr = cpu_to_be32(addr); 6536 c.u.addrval.val = cpu_to_be32(val); 6537 6538 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6539 } 6540 6541 /** 6542 * t4_mdio_rd - read a PHY register through MDIO 6543 * @adap: the adapter 6544 * @mbox: mailbox to use for the FW command 6545 * @phy_addr: the PHY address 6546 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6547 * @reg: the register to read 6548 * @valp: where to store the value 6549 * 6550 * Issues a FW command through the given mailbox to read a PHY register. 6551 */ 6552 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6553 unsigned int mmd, unsigned int reg, u16 *valp) 6554 { 6555 int ret; 6556 u32 ldst_addrspace; 6557 struct fw_ldst_cmd c; 6558 6559 memset(&c, 0, sizeof(c)); 6560 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6561 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6562 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6563 ldst_addrspace); 6564 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6565 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6566 FW_LDST_CMD_MMD_V(mmd)); 6567 c.u.mdio.raddr = cpu_to_be16(reg); 6568 6569 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6570 if (ret == 0) 6571 *valp = be16_to_cpu(c.u.mdio.rval); 6572 return ret; 6573 } 6574 6575 /** 6576 * t4_mdio_wr - write a PHY register through MDIO 6577 * @adap: the adapter 6578 * @mbox: mailbox to use for the FW command 6579 * @phy_addr: the PHY address 6580 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6581 * @reg: the register to write 6582 * @valp: value to write 6583 * 6584 * Issues a FW command through the given mailbox to write a PHY register. 6585 */ 6586 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6587 unsigned int mmd, unsigned int reg, u16 val) 6588 { 6589 u32 ldst_addrspace; 6590 struct fw_ldst_cmd c; 6591 6592 memset(&c, 0, sizeof(c)); 6593 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6594 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6595 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6596 ldst_addrspace); 6597 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6598 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6599 FW_LDST_CMD_MMD_V(mmd)); 6600 c.u.mdio.raddr = cpu_to_be16(reg); 6601 c.u.mdio.rval = cpu_to_be16(val); 6602 6603 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6604 } 6605 6606 /** 6607 * t4_sge_decode_idma_state - decode the idma state 6608 * @adap: the adapter 6609 * @state: the state idma is stuck in 6610 */ 6611 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6612 { 6613 static const char * const t4_decode[] = { 6614 "IDMA_IDLE", 6615 "IDMA_PUSH_MORE_CPL_FIFO", 6616 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6617 "Not used", 6618 "IDMA_PHYSADDR_SEND_PCIEHDR", 6619 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6620 "IDMA_PHYSADDR_SEND_PAYLOAD", 6621 "IDMA_SEND_FIFO_TO_IMSG", 6622 "IDMA_FL_REQ_DATA_FL_PREP", 6623 "IDMA_FL_REQ_DATA_FL", 6624 "IDMA_FL_DROP", 6625 "IDMA_FL_H_REQ_HEADER_FL", 6626 "IDMA_FL_H_SEND_PCIEHDR", 6627 "IDMA_FL_H_PUSH_CPL_FIFO", 6628 "IDMA_FL_H_SEND_CPL", 6629 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6630 "IDMA_FL_H_SEND_IP_HDR", 6631 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6632 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6633 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6634 "IDMA_FL_D_SEND_PCIEHDR", 6635 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6636 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6637 "IDMA_FL_SEND_PCIEHDR", 6638 "IDMA_FL_PUSH_CPL_FIFO", 6639 "IDMA_FL_SEND_CPL", 6640 "IDMA_FL_SEND_PAYLOAD_FIRST", 6641 "IDMA_FL_SEND_PAYLOAD", 6642 "IDMA_FL_REQ_NEXT_DATA_FL", 6643 "IDMA_FL_SEND_NEXT_PCIEHDR", 6644 "IDMA_FL_SEND_PADDING", 6645 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6646 "IDMA_FL_SEND_FIFO_TO_IMSG", 6647 "IDMA_FL_REQ_DATAFL_DONE", 6648 "IDMA_FL_REQ_HEADERFL_DONE", 6649 }; 6650 static const char * const t5_decode[] = { 6651 "IDMA_IDLE", 6652 "IDMA_ALMOST_IDLE", 6653 "IDMA_PUSH_MORE_CPL_FIFO", 6654 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6655 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6656 "IDMA_PHYSADDR_SEND_PCIEHDR", 6657 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6658 "IDMA_PHYSADDR_SEND_PAYLOAD", 6659 "IDMA_SEND_FIFO_TO_IMSG", 6660 "IDMA_FL_REQ_DATA_FL", 6661 "IDMA_FL_DROP", 6662 "IDMA_FL_DROP_SEND_INC", 6663 "IDMA_FL_H_REQ_HEADER_FL", 6664 "IDMA_FL_H_SEND_PCIEHDR", 6665 "IDMA_FL_H_PUSH_CPL_FIFO", 6666 "IDMA_FL_H_SEND_CPL", 6667 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6668 "IDMA_FL_H_SEND_IP_HDR", 6669 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6670 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6671 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6672 "IDMA_FL_D_SEND_PCIEHDR", 6673 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6674 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6675 "IDMA_FL_SEND_PCIEHDR", 6676 "IDMA_FL_PUSH_CPL_FIFO", 6677 "IDMA_FL_SEND_CPL", 6678 "IDMA_FL_SEND_PAYLOAD_FIRST", 6679 "IDMA_FL_SEND_PAYLOAD", 6680 "IDMA_FL_REQ_NEXT_DATA_FL", 6681 "IDMA_FL_SEND_NEXT_PCIEHDR", 6682 "IDMA_FL_SEND_PADDING", 6683 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6684 }; 6685 static const char * const t6_decode[] = { 6686 "IDMA_IDLE", 6687 "IDMA_PUSH_MORE_CPL_FIFO", 6688 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6689 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6690 "IDMA_PHYSADDR_SEND_PCIEHDR", 6691 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6692 "IDMA_PHYSADDR_SEND_PAYLOAD", 6693 "IDMA_FL_REQ_DATA_FL", 6694 "IDMA_FL_DROP", 6695 "IDMA_FL_DROP_SEND_INC", 6696 "IDMA_FL_H_REQ_HEADER_FL", 6697 "IDMA_FL_H_SEND_PCIEHDR", 6698 "IDMA_FL_H_PUSH_CPL_FIFO", 6699 "IDMA_FL_H_SEND_CPL", 6700 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6701 "IDMA_FL_H_SEND_IP_HDR", 6702 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6703 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6704 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6705 "IDMA_FL_D_SEND_PCIEHDR", 6706 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6707 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6708 "IDMA_FL_SEND_PCIEHDR", 6709 "IDMA_FL_PUSH_CPL_FIFO", 6710 "IDMA_FL_SEND_CPL", 6711 "IDMA_FL_SEND_PAYLOAD_FIRST", 6712 "IDMA_FL_SEND_PAYLOAD", 6713 "IDMA_FL_REQ_NEXT_DATA_FL", 6714 "IDMA_FL_SEND_NEXT_PCIEHDR", 6715 "IDMA_FL_SEND_PADDING", 6716 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6717 }; 6718 static const u32 sge_regs[] = { 6719 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6720 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6721 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6722 }; 6723 const char **sge_idma_decode; 6724 int sge_idma_decode_nstates; 6725 int i; 6726 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6727 6728 /* Select the right set of decode strings to dump depending on the 6729 * adapter chip type. 6730 */ 6731 switch (chip_version) { 6732 case CHELSIO_T4: 6733 sge_idma_decode = (const char **)t4_decode; 6734 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6735 break; 6736 6737 case CHELSIO_T5: 6738 sge_idma_decode = (const char **)t5_decode; 6739 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6740 break; 6741 6742 case CHELSIO_T6: 6743 sge_idma_decode = (const char **)t6_decode; 6744 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6745 break; 6746 6747 default: 6748 dev_err(adapter->pdev_dev, 6749 "Unsupported chip version %d\n", chip_version); 6750 return; 6751 } 6752 6753 if (is_t4(adapter->params.chip)) { 6754 sge_idma_decode = (const char **)t4_decode; 6755 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6756 } else { 6757 sge_idma_decode = (const char **)t5_decode; 6758 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6759 } 6760 6761 if (state < sge_idma_decode_nstates) 6762 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6763 else 6764 CH_WARN(adapter, "idma state %d unknown\n", state); 6765 6766 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6767 CH_WARN(adapter, "SGE register %#x value %#x\n", 6768 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6769 } 6770 6771 /** 6772 * t4_sge_ctxt_flush - flush the SGE context cache 6773 * @adap: the adapter 6774 * @mbox: mailbox to use for the FW command 6775 * @ctx_type: Egress or Ingress 6776 * 6777 * Issues a FW command through the given mailbox to flush the 6778 * SGE context cache. 6779 */ 6780 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 6781 { 6782 int ret; 6783 u32 ldst_addrspace; 6784 struct fw_ldst_cmd c; 6785 6786 memset(&c, 0, sizeof(c)); 6787 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ? 6788 FW_LDST_ADDRSPC_SGE_EGRC : 6789 FW_LDST_ADDRSPC_SGE_INGC); 6790 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6791 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6792 ldst_addrspace); 6793 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6794 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6795 6796 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6797 return ret; 6798 } 6799 6800 /** 6801 * t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values 6802 * @adap - the adapter 6803 * @ndbqtimers: size of the provided SGE Doorbell Queue Timer table 6804 * @dbqtimers: SGE Doorbell Queue Timer table 6805 * 6806 * Reads the SGE Doorbell Queue Timer values into the provided table. 6807 * Returns 0 on success (Firmware and Hardware support this feature), 6808 * an error on failure. 6809 */ 6810 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers, 6811 u16 *dbqtimers) 6812 { 6813 int ret, dbqtimerix; 6814 6815 ret = 0; 6816 dbqtimerix = 0; 6817 while (dbqtimerix < ndbqtimers) { 6818 int nparams, param; 6819 u32 params[7], vals[7]; 6820 6821 nparams = ndbqtimers - dbqtimerix; 6822 if (nparams > ARRAY_SIZE(params)) 6823 nparams = ARRAY_SIZE(params); 6824 6825 for (param = 0; param < nparams; param++) 6826 params[param] = 6827 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6828 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) | 6829 FW_PARAMS_PARAM_Y_V(dbqtimerix + param)); 6830 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6831 nparams, params, vals); 6832 if (ret) 6833 break; 6834 6835 for (param = 0; param < nparams; param++) 6836 dbqtimers[dbqtimerix++] = vals[param]; 6837 } 6838 return ret; 6839 } 6840 6841 /** 6842 * t4_fw_hello - establish communication with FW 6843 * @adap: the adapter 6844 * @mbox: mailbox to use for the FW command 6845 * @evt_mbox: mailbox to receive async FW events 6846 * @master: specifies the caller's willingness to be the device master 6847 * @state: returns the current device state (if non-NULL) 6848 * 6849 * Issues a command to establish communication with FW. Returns either 6850 * an error (negative integer) or the mailbox of the Master PF. 6851 */ 6852 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6853 enum dev_master master, enum dev_state *state) 6854 { 6855 int ret; 6856 struct fw_hello_cmd c; 6857 u32 v; 6858 unsigned int master_mbox; 6859 int retries = FW_CMD_HELLO_RETRIES; 6860 6861 retry: 6862 memset(&c, 0, sizeof(c)); 6863 INIT_CMD(c, HELLO, WRITE); 6864 c.err_to_clearinit = cpu_to_be32( 6865 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6866 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6867 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6868 mbox : FW_HELLO_CMD_MBMASTER_M) | 6869 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6870 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6871 FW_HELLO_CMD_CLEARINIT_F); 6872 6873 /* 6874 * Issue the HELLO command to the firmware. If it's not successful 6875 * but indicates that we got a "busy" or "timeout" condition, retry 6876 * the HELLO until we exhaust our retry limit. If we do exceed our 6877 * retry limit, check to see if the firmware left us any error 6878 * information and report that if so. 6879 */ 6880 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6881 if (ret < 0) { 6882 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6883 goto retry; 6884 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6885 t4_report_fw_error(adap); 6886 return ret; 6887 } 6888 6889 v = be32_to_cpu(c.err_to_clearinit); 6890 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6891 if (state) { 6892 if (v & FW_HELLO_CMD_ERR_F) 6893 *state = DEV_STATE_ERR; 6894 else if (v & FW_HELLO_CMD_INIT_F) 6895 *state = DEV_STATE_INIT; 6896 else 6897 *state = DEV_STATE_UNINIT; 6898 } 6899 6900 /* 6901 * If we're not the Master PF then we need to wait around for the 6902 * Master PF Driver to finish setting up the adapter. 6903 * 6904 * Note that we also do this wait if we're a non-Master-capable PF and 6905 * there is no current Master PF; a Master PF may show up momentarily 6906 * and we wouldn't want to fail pointlessly. (This can happen when an 6907 * OS loads lots of different drivers rapidly at the same time). In 6908 * this case, the Master PF returned by the firmware will be 6909 * PCIE_FW_MASTER_M so the test below will work ... 6910 */ 6911 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6912 master_mbox != mbox) { 6913 int waiting = FW_CMD_HELLO_TIMEOUT; 6914 6915 /* 6916 * Wait for the firmware to either indicate an error or 6917 * initialized state. If we see either of these we bail out 6918 * and report the issue to the caller. If we exhaust the 6919 * "hello timeout" and we haven't exhausted our retries, try 6920 * again. Otherwise bail with a timeout error. 6921 */ 6922 for (;;) { 6923 u32 pcie_fw; 6924 6925 msleep(50); 6926 waiting -= 50; 6927 6928 /* 6929 * If neither Error nor Initialized are indicated 6930 * by the firmware keep waiting till we exhaust our 6931 * timeout ... and then retry if we haven't exhausted 6932 * our retries ... 6933 */ 6934 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6935 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6936 if (waiting <= 0) { 6937 if (retries-- > 0) 6938 goto retry; 6939 6940 return -ETIMEDOUT; 6941 } 6942 continue; 6943 } 6944 6945 /* 6946 * We either have an Error or Initialized condition 6947 * report errors preferentially. 6948 */ 6949 if (state) { 6950 if (pcie_fw & PCIE_FW_ERR_F) 6951 *state = DEV_STATE_ERR; 6952 else if (pcie_fw & PCIE_FW_INIT_F) 6953 *state = DEV_STATE_INIT; 6954 } 6955 6956 /* 6957 * If we arrived before a Master PF was selected and 6958 * there's not a valid Master PF, grab its identity 6959 * for our caller. 6960 */ 6961 if (master_mbox == PCIE_FW_MASTER_M && 6962 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6963 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6964 break; 6965 } 6966 } 6967 6968 return master_mbox; 6969 } 6970 6971 /** 6972 * t4_fw_bye - end communication with FW 6973 * @adap: the adapter 6974 * @mbox: mailbox to use for the FW command 6975 * 6976 * Issues a command to terminate communication with FW. 6977 */ 6978 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6979 { 6980 struct fw_bye_cmd c; 6981 6982 memset(&c, 0, sizeof(c)); 6983 INIT_CMD(c, BYE, WRITE); 6984 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6985 } 6986 6987 /** 6988 * t4_init_cmd - ask FW to initialize the device 6989 * @adap: the adapter 6990 * @mbox: mailbox to use for the FW command 6991 * 6992 * Issues a command to FW to partially initialize the device. This 6993 * performs initialization that generally doesn't depend on user input. 6994 */ 6995 int t4_early_init(struct adapter *adap, unsigned int mbox) 6996 { 6997 struct fw_initialize_cmd c; 6998 6999 memset(&c, 0, sizeof(c)); 7000 INIT_CMD(c, INITIALIZE, WRITE); 7001 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7002 } 7003 7004 /** 7005 * t4_fw_reset - issue a reset to FW 7006 * @adap: the adapter 7007 * @mbox: mailbox to use for the FW command 7008 * @reset: specifies the type of reset to perform 7009 * 7010 * Issues a reset command of the specified type to FW. 7011 */ 7012 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 7013 { 7014 struct fw_reset_cmd c; 7015 7016 memset(&c, 0, sizeof(c)); 7017 INIT_CMD(c, RESET, WRITE); 7018 c.val = cpu_to_be32(reset); 7019 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7020 } 7021 7022 /** 7023 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 7024 * @adap: the adapter 7025 * @mbox: mailbox to use for the FW RESET command (if desired) 7026 * @force: force uP into RESET even if FW RESET command fails 7027 * 7028 * Issues a RESET command to firmware (if desired) with a HALT indication 7029 * and then puts the microprocessor into RESET state. The RESET command 7030 * will only be issued if a legitimate mailbox is provided (mbox <= 7031 * PCIE_FW_MASTER_M). 7032 * 7033 * This is generally used in order for the host to safely manipulate the 7034 * adapter without fear of conflicting with whatever the firmware might 7035 * be doing. The only way out of this state is to RESTART the firmware 7036 * ... 7037 */ 7038 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 7039 { 7040 int ret = 0; 7041 7042 /* 7043 * If a legitimate mailbox is provided, issue a RESET command 7044 * with a HALT indication. 7045 */ 7046 if (mbox <= PCIE_FW_MASTER_M) { 7047 struct fw_reset_cmd c; 7048 7049 memset(&c, 0, sizeof(c)); 7050 INIT_CMD(c, RESET, WRITE); 7051 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 7052 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 7053 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7054 } 7055 7056 /* 7057 * Normally we won't complete the operation if the firmware RESET 7058 * command fails but if our caller insists we'll go ahead and put the 7059 * uP into RESET. This can be useful if the firmware is hung or even 7060 * missing ... We'll have to take the risk of putting the uP into 7061 * RESET without the cooperation of firmware in that case. 7062 * 7063 * We also force the firmware's HALT flag to be on in case we bypassed 7064 * the firmware RESET command above or we're dealing with old firmware 7065 * which doesn't have the HALT capability. This will serve as a flag 7066 * for the incoming firmware to know that it's coming out of a HALT 7067 * rather than a RESET ... if it's new enough to understand that ... 7068 */ 7069 if (ret == 0 || force) { 7070 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 7071 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 7072 PCIE_FW_HALT_F); 7073 } 7074 7075 /* 7076 * And we always return the result of the firmware RESET command 7077 * even when we force the uP into RESET ... 7078 */ 7079 return ret; 7080 } 7081 7082 /** 7083 * t4_fw_restart - restart the firmware by taking the uP out of RESET 7084 * @adap: the adapter 7085 * @reset: if we want to do a RESET to restart things 7086 * 7087 * Restart firmware previously halted by t4_fw_halt(). On successful 7088 * return the previous PF Master remains as the new PF Master and there 7089 * is no need to issue a new HELLO command, etc. 7090 * 7091 * We do this in two ways: 7092 * 7093 * 1. If we're dealing with newer firmware we'll simply want to take 7094 * the chip's microprocessor out of RESET. This will cause the 7095 * firmware to start up from its start vector. And then we'll loop 7096 * until the firmware indicates it's started again (PCIE_FW.HALT 7097 * reset to 0) or we timeout. 7098 * 7099 * 2. If we're dealing with older firmware then we'll need to RESET 7100 * the chip since older firmware won't recognize the PCIE_FW.HALT 7101 * flag and automatically RESET itself on startup. 7102 */ 7103 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 7104 { 7105 if (reset) { 7106 /* 7107 * Since we're directing the RESET instead of the firmware 7108 * doing it automatically, we need to clear the PCIE_FW.HALT 7109 * bit. 7110 */ 7111 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 7112 7113 /* 7114 * If we've been given a valid mailbox, first try to get the 7115 * firmware to do the RESET. If that works, great and we can 7116 * return success. Otherwise, if we haven't been given a 7117 * valid mailbox or the RESET command failed, fall back to 7118 * hitting the chip with a hammer. 7119 */ 7120 if (mbox <= PCIE_FW_MASTER_M) { 7121 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7122 msleep(100); 7123 if (t4_fw_reset(adap, mbox, 7124 PIORST_F | PIORSTMODE_F) == 0) 7125 return 0; 7126 } 7127 7128 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 7129 msleep(2000); 7130 } else { 7131 int ms; 7132 7133 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7134 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 7135 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 7136 return 0; 7137 msleep(100); 7138 ms += 100; 7139 } 7140 return -ETIMEDOUT; 7141 } 7142 return 0; 7143 } 7144 7145 /** 7146 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7147 * @adap: the adapter 7148 * @mbox: mailbox to use for the FW RESET command (if desired) 7149 * @fw_data: the firmware image to write 7150 * @size: image size 7151 * @force: force upgrade even if firmware doesn't cooperate 7152 * 7153 * Perform all of the steps necessary for upgrading an adapter's 7154 * firmware image. Normally this requires the cooperation of the 7155 * existing firmware in order to halt all existing activities 7156 * but if an invalid mailbox token is passed in we skip that step 7157 * (though we'll still put the adapter microprocessor into RESET in 7158 * that case). 7159 * 7160 * On successful return the new firmware will have been loaded and 7161 * the adapter will have been fully RESET losing all previous setup 7162 * state. On unsuccessful return the adapter may be completely hosed ... 7163 * positive errno indicates that the adapter is ~probably~ intact, a 7164 * negative errno indicates that things are looking bad ... 7165 */ 7166 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7167 const u8 *fw_data, unsigned int size, int force) 7168 { 7169 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7170 int reset, ret; 7171 7172 if (!t4_fw_matches_chip(adap, fw_hdr)) 7173 return -EINVAL; 7174 7175 /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag 7176 * set wont be sent when we are flashing FW. 7177 */ 7178 adap->flags &= ~CXGB4_FW_OK; 7179 7180 ret = t4_fw_halt(adap, mbox, force); 7181 if (ret < 0 && !force) 7182 goto out; 7183 7184 ret = t4_load_fw(adap, fw_data, size); 7185 if (ret < 0) 7186 goto out; 7187 7188 /* 7189 * If there was a Firmware Configuration File stored in FLASH, 7190 * there's a good chance that it won't be compatible with the new 7191 * Firmware. In order to prevent difficult to diagnose adapter 7192 * initialization issues, we clear out the Firmware Configuration File 7193 * portion of the FLASH . The user will need to re-FLASH a new 7194 * Firmware Configuration File which is compatible with the new 7195 * Firmware if that's desired. 7196 */ 7197 (void)t4_load_cfg(adap, NULL, 0); 7198 7199 /* 7200 * Older versions of the firmware don't understand the new 7201 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 7202 * restart. So for newly loaded older firmware we'll have to do the 7203 * RESET for it so it starts up on a clean slate. We can tell if 7204 * the newly loaded firmware will handle this right by checking 7205 * its header flags to see if it advertises the capability. 7206 */ 7207 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 7208 ret = t4_fw_restart(adap, mbox, reset); 7209 7210 /* Grab potentially new Firmware Device Log parameters so we can see 7211 * how healthy the new Firmware is. It's okay to contact the new 7212 * Firmware for these parameters even though, as far as it's 7213 * concerned, we've never said "HELLO" to it ... 7214 */ 7215 (void)t4_init_devlog_params(adap); 7216 out: 7217 adap->flags |= CXGB4_FW_OK; 7218 return ret; 7219 } 7220 7221 /** 7222 * t4_fl_pkt_align - return the fl packet alignment 7223 * @adap: the adapter 7224 * 7225 * T4 has a single field to specify the packing and padding boundary. 7226 * T5 onwards has separate fields for this and hence the alignment for 7227 * next packet offset is maximum of these two. 7228 * 7229 */ 7230 int t4_fl_pkt_align(struct adapter *adap) 7231 { 7232 u32 sge_control, sge_control2; 7233 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 7234 7235 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 7236 7237 /* T4 uses a single control field to specify both the PCIe Padding and 7238 * Packing Boundary. T5 introduced the ability to specify these 7239 * separately. The actual Ingress Packet Data alignment boundary 7240 * within Packed Buffer Mode is the maximum of these two 7241 * specifications. (Note that it makes no real practical sense to 7242 * have the Padding Boundary be larger than the Packing Boundary but you 7243 * could set the chip up that way and, in fact, legacy T4 code would 7244 * end doing this because it would initialize the Padding Boundary and 7245 * leave the Packing Boundary initialized to 0 (16 bytes).) 7246 * Padding Boundary values in T6 starts from 8B, 7247 * where as it is 32B for T4 and T5. 7248 */ 7249 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 7250 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 7251 else 7252 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 7253 7254 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 7255 7256 fl_align = ingpadboundary; 7257 if (!is_t4(adap->params.chip)) { 7258 /* T5 has a weird interpretation of one of the PCIe Packing 7259 * Boundary values. No idea why ... 7260 */ 7261 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 7262 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 7263 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 7264 ingpackboundary = 16; 7265 else 7266 ingpackboundary = 1 << (ingpackboundary + 7267 INGPACKBOUNDARY_SHIFT_X); 7268 7269 fl_align = max(ingpadboundary, ingpackboundary); 7270 } 7271 return fl_align; 7272 } 7273 7274 /** 7275 * t4_fixup_host_params - fix up host-dependent parameters 7276 * @adap: the adapter 7277 * @page_size: the host's Base Page Size 7278 * @cache_line_size: the host's Cache Line Size 7279 * 7280 * Various registers in T4 contain values which are dependent on the 7281 * host's Base Page and Cache Line Sizes. This function will fix all of 7282 * those registers with the appropriate values as passed in ... 7283 */ 7284 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 7285 unsigned int cache_line_size) 7286 { 7287 unsigned int page_shift = fls(page_size) - 1; 7288 unsigned int sge_hps = page_shift - 10; 7289 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7290 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7291 unsigned int fl_align_log = fls(fl_align) - 1; 7292 7293 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 7294 HOSTPAGESIZEPF0_V(sge_hps) | 7295 HOSTPAGESIZEPF1_V(sge_hps) | 7296 HOSTPAGESIZEPF2_V(sge_hps) | 7297 HOSTPAGESIZEPF3_V(sge_hps) | 7298 HOSTPAGESIZEPF4_V(sge_hps) | 7299 HOSTPAGESIZEPF5_V(sge_hps) | 7300 HOSTPAGESIZEPF6_V(sge_hps) | 7301 HOSTPAGESIZEPF7_V(sge_hps)); 7302 7303 if (is_t4(adap->params.chip)) { 7304 t4_set_reg_field(adap, SGE_CONTROL_A, 7305 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7306 EGRSTATUSPAGESIZE_F, 7307 INGPADBOUNDARY_V(fl_align_log - 7308 INGPADBOUNDARY_SHIFT_X) | 7309 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7310 } else { 7311 unsigned int pack_align; 7312 unsigned int ingpad, ingpack; 7313 7314 /* T5 introduced the separation of the Free List Padding and 7315 * Packing Boundaries. Thus, we can select a smaller Padding 7316 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7317 * Bandwidth, and use a Packing Boundary which is large enough 7318 * to avoid false sharing between CPUs, etc. 7319 * 7320 * For the PCI Link, the smaller the Padding Boundary the 7321 * better. For the Memory Controller, a smaller Padding 7322 * Boundary is better until we cross under the Memory Line 7323 * Size (the minimum unit of transfer to/from Memory). If we 7324 * have a Padding Boundary which is smaller than the Memory 7325 * Line Size, that'll involve a Read-Modify-Write cycle on the 7326 * Memory Controller which is never good. 7327 */ 7328 7329 /* We want the Packing Boundary to be based on the Cache Line 7330 * Size in order to help avoid False Sharing performance 7331 * issues between CPUs, etc. We also want the Packing 7332 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7333 * get best performance when the Packing Boundary is a 7334 * multiple of the Maximum Payload Size. 7335 */ 7336 pack_align = fl_align; 7337 if (pci_is_pcie(adap->pdev)) { 7338 unsigned int mps, mps_log; 7339 u16 devctl; 7340 7341 /* The PCIe Device Control Maximum Payload Size field 7342 * [bits 7:5] encodes sizes as powers of 2 starting at 7343 * 128 bytes. 7344 */ 7345 pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL, 7346 &devctl); 7347 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7348 mps = 1 << mps_log; 7349 if (mps > pack_align) 7350 pack_align = mps; 7351 } 7352 7353 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7354 * value for the Packing Boundary. This corresponds to 16 7355 * bytes instead of the expected 32 bytes. So if we want 32 7356 * bytes, the best we can really do is 64 bytes ... 7357 */ 7358 if (pack_align <= 16) { 7359 ingpack = INGPACKBOUNDARY_16B_X; 7360 fl_align = 16; 7361 } else if (pack_align == 32) { 7362 ingpack = INGPACKBOUNDARY_64B_X; 7363 fl_align = 64; 7364 } else { 7365 unsigned int pack_align_log = fls(pack_align) - 1; 7366 7367 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7368 fl_align = pack_align; 7369 } 7370 7371 /* Use the smallest Ingress Padding which isn't smaller than 7372 * the Memory Controller Read/Write Size. We'll take that as 7373 * being 8 bytes since we don't know of any system with a 7374 * wider Memory Controller Bus Width. 7375 */ 7376 if (is_t5(adap->params.chip)) 7377 ingpad = INGPADBOUNDARY_32B_X; 7378 else 7379 ingpad = T6_INGPADBOUNDARY_8B_X; 7380 7381 t4_set_reg_field(adap, SGE_CONTROL_A, 7382 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7383 EGRSTATUSPAGESIZE_F, 7384 INGPADBOUNDARY_V(ingpad) | 7385 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7386 t4_set_reg_field(adap, SGE_CONTROL2_A, 7387 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7388 INGPACKBOUNDARY_V(ingpack)); 7389 } 7390 /* 7391 * Adjust various SGE Free List Host Buffer Sizes. 7392 * 7393 * This is something of a crock since we're using fixed indices into 7394 * the array which are also known by the sge.c code and the T4 7395 * Firmware Configuration File. We need to come up with a much better 7396 * approach to managing this array. For now, the first four entries 7397 * are: 7398 * 7399 * 0: Host Page Size 7400 * 1: 64KB 7401 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7402 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7403 * 7404 * For the single-MTU buffers in unpacked mode we need to include 7405 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7406 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7407 * Padding boundary. All of these are accommodated in the Factory 7408 * Default Firmware Configuration File but we need to adjust it for 7409 * this host's cache line size. 7410 */ 7411 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7412 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7413 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7414 & ~(fl_align-1)); 7415 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7416 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7417 & ~(fl_align-1)); 7418 7419 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7420 7421 return 0; 7422 } 7423 7424 /** 7425 * t4_fw_initialize - ask FW to initialize the device 7426 * @adap: the adapter 7427 * @mbox: mailbox to use for the FW command 7428 * 7429 * Issues a command to FW to partially initialize the device. This 7430 * performs initialization that generally doesn't depend on user input. 7431 */ 7432 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7433 { 7434 struct fw_initialize_cmd c; 7435 7436 memset(&c, 0, sizeof(c)); 7437 INIT_CMD(c, INITIALIZE, WRITE); 7438 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7439 } 7440 7441 /** 7442 * t4_query_params_rw - query FW or device parameters 7443 * @adap: the adapter 7444 * @mbox: mailbox to use for the FW command 7445 * @pf: the PF 7446 * @vf: the VF 7447 * @nparams: the number of parameters 7448 * @params: the parameter names 7449 * @val: the parameter values 7450 * @rw: Write and read flag 7451 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7452 * 7453 * Reads the value of FW or device parameters. Up to 7 parameters can be 7454 * queried at once. 7455 */ 7456 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7457 unsigned int vf, unsigned int nparams, const u32 *params, 7458 u32 *val, int rw, bool sleep_ok) 7459 { 7460 int i, ret; 7461 struct fw_params_cmd c; 7462 __be32 *p = &c.param[0].mnem; 7463 7464 if (nparams > 7) 7465 return -EINVAL; 7466 7467 memset(&c, 0, sizeof(c)); 7468 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7469 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7470 FW_PARAMS_CMD_PFN_V(pf) | 7471 FW_PARAMS_CMD_VFN_V(vf)); 7472 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7473 7474 for (i = 0; i < nparams; i++) { 7475 *p++ = cpu_to_be32(*params++); 7476 if (rw) 7477 *p = cpu_to_be32(*(val + i)); 7478 p++; 7479 } 7480 7481 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7482 if (ret == 0) 7483 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7484 *val++ = be32_to_cpu(*p); 7485 return ret; 7486 } 7487 7488 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7489 unsigned int vf, unsigned int nparams, const u32 *params, 7490 u32 *val) 7491 { 7492 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7493 true); 7494 } 7495 7496 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7497 unsigned int vf, unsigned int nparams, const u32 *params, 7498 u32 *val) 7499 { 7500 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7501 false); 7502 } 7503 7504 /** 7505 * t4_set_params_timeout - sets FW or device parameters 7506 * @adap: the adapter 7507 * @mbox: mailbox to use for the FW command 7508 * @pf: the PF 7509 * @vf: the VF 7510 * @nparams: the number of parameters 7511 * @params: the parameter names 7512 * @val: the parameter values 7513 * @timeout: the timeout time 7514 * 7515 * Sets the value of FW or device parameters. Up to 7 parameters can be 7516 * specified at once. 7517 */ 7518 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7519 unsigned int pf, unsigned int vf, 7520 unsigned int nparams, const u32 *params, 7521 const u32 *val, int timeout) 7522 { 7523 struct fw_params_cmd c; 7524 __be32 *p = &c.param[0].mnem; 7525 7526 if (nparams > 7) 7527 return -EINVAL; 7528 7529 memset(&c, 0, sizeof(c)); 7530 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7531 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7532 FW_PARAMS_CMD_PFN_V(pf) | 7533 FW_PARAMS_CMD_VFN_V(vf)); 7534 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7535 7536 while (nparams--) { 7537 *p++ = cpu_to_be32(*params++); 7538 *p++ = cpu_to_be32(*val++); 7539 } 7540 7541 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7542 } 7543 7544 /** 7545 * t4_set_params - sets FW or device parameters 7546 * @adap: the adapter 7547 * @mbox: mailbox to use for the FW command 7548 * @pf: the PF 7549 * @vf: the VF 7550 * @nparams: the number of parameters 7551 * @params: the parameter names 7552 * @val: the parameter values 7553 * 7554 * Sets the value of FW or device parameters. Up to 7 parameters can be 7555 * specified at once. 7556 */ 7557 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7558 unsigned int vf, unsigned int nparams, const u32 *params, 7559 const u32 *val) 7560 { 7561 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7562 FW_CMD_MAX_TIMEOUT); 7563 } 7564 7565 /** 7566 * t4_cfg_pfvf - configure PF/VF resource limits 7567 * @adap: the adapter 7568 * @mbox: mailbox to use for the FW command 7569 * @pf: the PF being configured 7570 * @vf: the VF being configured 7571 * @txq: the max number of egress queues 7572 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7573 * @rxqi: the max number of interrupt-capable ingress queues 7574 * @rxq: the max number of interruptless ingress queues 7575 * @tc: the PCI traffic class 7576 * @vi: the max number of virtual interfaces 7577 * @cmask: the channel access rights mask for the PF/VF 7578 * @pmask: the port access rights mask for the PF/VF 7579 * @nexact: the maximum number of exact MPS filters 7580 * @rcaps: read capabilities 7581 * @wxcaps: write/execute capabilities 7582 * 7583 * Configures resource limits and capabilities for a physical or virtual 7584 * function. 7585 */ 7586 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7587 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7588 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7589 unsigned int vi, unsigned int cmask, unsigned int pmask, 7590 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7591 { 7592 struct fw_pfvf_cmd c; 7593 7594 memset(&c, 0, sizeof(c)); 7595 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7596 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7597 FW_PFVF_CMD_VFN_V(vf)); 7598 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7599 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7600 FW_PFVF_CMD_NIQ_V(rxq)); 7601 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7602 FW_PFVF_CMD_PMASK_V(pmask) | 7603 FW_PFVF_CMD_NEQ_V(txq)); 7604 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7605 FW_PFVF_CMD_NVI_V(vi) | 7606 FW_PFVF_CMD_NEXACTF_V(nexact)); 7607 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7608 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7609 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7610 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7611 } 7612 7613 /** 7614 * t4_alloc_vi - allocate a virtual interface 7615 * @adap: the adapter 7616 * @mbox: mailbox to use for the FW command 7617 * @port: physical port associated with the VI 7618 * @pf: the PF owning the VI 7619 * @vf: the VF owning the VI 7620 * @nmac: number of MAC addresses needed (1 to 5) 7621 * @mac: the MAC addresses of the VI 7622 * @rss_size: size of RSS table slice associated with this VI 7623 * 7624 * Allocates a virtual interface for the given physical port. If @mac is 7625 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7626 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7627 * stored consecutively so the space needed is @nmac * 6 bytes. 7628 * Returns a negative error number or the non-negative VI id. 7629 */ 7630 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7631 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7632 unsigned int *rss_size, u8 *vivld, u8 *vin) 7633 { 7634 int ret; 7635 struct fw_vi_cmd c; 7636 7637 memset(&c, 0, sizeof(c)); 7638 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7639 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7640 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7641 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7642 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7643 c.nmac = nmac - 1; 7644 7645 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7646 if (ret) 7647 return ret; 7648 7649 if (mac) { 7650 memcpy(mac, c.mac, sizeof(c.mac)); 7651 switch (nmac) { 7652 case 5: 7653 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7654 /* Fall through */ 7655 case 4: 7656 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7657 /* Fall through */ 7658 case 3: 7659 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7660 /* Fall through */ 7661 case 2: 7662 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7663 } 7664 } 7665 if (rss_size) 7666 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7667 7668 if (vivld) 7669 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16)); 7670 7671 if (vin) 7672 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16)); 7673 7674 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7675 } 7676 7677 /** 7678 * t4_free_vi - free a virtual interface 7679 * @adap: the adapter 7680 * @mbox: mailbox to use for the FW command 7681 * @pf: the PF owning the VI 7682 * @vf: the VF owning the VI 7683 * @viid: virtual interface identifiler 7684 * 7685 * Free a previously allocated virtual interface. 7686 */ 7687 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7688 unsigned int vf, unsigned int viid) 7689 { 7690 struct fw_vi_cmd c; 7691 7692 memset(&c, 0, sizeof(c)); 7693 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7694 FW_CMD_REQUEST_F | 7695 FW_CMD_EXEC_F | 7696 FW_VI_CMD_PFN_V(pf) | 7697 FW_VI_CMD_VFN_V(vf)); 7698 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7699 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7700 7701 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7702 } 7703 7704 /** 7705 * t4_set_rxmode - set Rx properties of a virtual interface 7706 * @adap: the adapter 7707 * @mbox: mailbox to use for the FW command 7708 * @viid: the VI id 7709 * @mtu: the new MTU or -1 7710 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7711 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7712 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7713 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7714 * @sleep_ok: if true we may sleep while awaiting command completion 7715 * 7716 * Sets Rx properties of a virtual interface. 7717 */ 7718 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7719 int mtu, int promisc, int all_multi, int bcast, int vlanex, 7720 bool sleep_ok) 7721 { 7722 struct fw_vi_rxmode_cmd c; 7723 7724 /* convert to FW values */ 7725 if (mtu < 0) 7726 mtu = FW_RXMODE_MTU_NO_CHG; 7727 if (promisc < 0) 7728 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7729 if (all_multi < 0) 7730 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7731 if (bcast < 0) 7732 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7733 if (vlanex < 0) 7734 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7735 7736 memset(&c, 0, sizeof(c)); 7737 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7738 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7739 FW_VI_RXMODE_CMD_VIID_V(viid)); 7740 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7741 c.mtu_to_vlanexen = 7742 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7743 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7744 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7745 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7746 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7747 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7748 } 7749 7750 /** 7751 * t4_free_encap_mac_filt - frees MPS entry at given index 7752 * @adap: the adapter 7753 * @viid: the VI id 7754 * @idx: index of MPS entry to be freed 7755 * @sleep_ok: call is allowed to sleep 7756 * 7757 * Frees the MPS entry at supplied index 7758 * 7759 * Returns a negative error number or zero on success 7760 */ 7761 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, 7762 int idx, bool sleep_ok) 7763 { 7764 struct fw_vi_mac_exact *p; 7765 u8 addr[] = {0, 0, 0, 0, 0, 0}; 7766 struct fw_vi_mac_cmd c; 7767 int ret = 0; 7768 u32 exact; 7769 7770 memset(&c, 0, sizeof(c)); 7771 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7772 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7773 FW_CMD_EXEC_V(0) | 7774 FW_VI_MAC_CMD_VIID_V(viid)); 7775 exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC); 7776 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7777 exact | 7778 FW_CMD_LEN16_V(1)); 7779 p = c.u.exact; 7780 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7781 FW_VI_MAC_CMD_IDX_V(idx)); 7782 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7783 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7784 return ret; 7785 } 7786 7787 /** 7788 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam 7789 * @adap: the adapter 7790 * @viid: the VI id 7791 * @addr: the MAC address 7792 * @mask: the mask 7793 * @idx: index of the entry in mps tcam 7794 * @lookup_type: MAC address for inner (1) or outer (0) header 7795 * @port_id: the port index 7796 * @sleep_ok: call is allowed to sleep 7797 * 7798 * Removes the mac entry at the specified index using raw mac interface. 7799 * 7800 * Returns a negative error number on failure. 7801 */ 7802 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, 7803 const u8 *addr, const u8 *mask, unsigned int idx, 7804 u8 lookup_type, u8 port_id, bool sleep_ok) 7805 { 7806 struct fw_vi_mac_cmd c; 7807 struct fw_vi_mac_raw *p = &c.u.raw; 7808 u32 val; 7809 7810 memset(&c, 0, sizeof(c)); 7811 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7812 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7813 FW_CMD_EXEC_V(0) | 7814 FW_VI_MAC_CMD_VIID_V(viid)); 7815 val = FW_CMD_LEN16_V(1) | 7816 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7817 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7818 FW_CMD_LEN16_V(val)); 7819 7820 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) | 7821 FW_VI_MAC_ID_BASED_FREE); 7822 7823 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7824 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7825 DATAPORTNUM_V(port_id)); 7826 /* Lookup mask and port mask */ 7827 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7828 DATAPORTNUM_V(DATAPORTNUM_M)); 7829 7830 /* Copy the address and the mask */ 7831 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7832 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7833 7834 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7835 } 7836 7837 /** 7838 * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support 7839 * @adap: the adapter 7840 * @viid: the VI id 7841 * @mac: the MAC address 7842 * @mask: the mask 7843 * @vni: the VNI id for the tunnel protocol 7844 * @vni_mask: mask for the VNI id 7845 * @dip_hit: to enable DIP match for the MPS entry 7846 * @lookup_type: MAC address for inner (1) or outer (0) header 7847 * @sleep_ok: call is allowed to sleep 7848 * 7849 * Allocates an MPS entry with specified MAC address and VNI value. 7850 * 7851 * Returns a negative error number or the allocated index for this mac. 7852 */ 7853 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, 7854 const u8 *addr, const u8 *mask, unsigned int vni, 7855 unsigned int vni_mask, u8 dip_hit, u8 lookup_type, 7856 bool sleep_ok) 7857 { 7858 struct fw_vi_mac_cmd c; 7859 struct fw_vi_mac_vni *p = c.u.exact_vni; 7860 int ret = 0; 7861 u32 val; 7862 7863 memset(&c, 0, sizeof(c)); 7864 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7865 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7866 FW_VI_MAC_CMD_VIID_V(viid)); 7867 val = FW_CMD_LEN16_V(1) | 7868 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI); 7869 c.freemacs_to_len16 = cpu_to_be32(val); 7870 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7871 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 7872 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7873 memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); 7874 7875 p->lookup_type_to_vni = 7876 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) | 7877 FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) | 7878 FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type)); 7879 p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask)); 7880 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7881 if (ret == 0) 7882 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7883 return ret; 7884 } 7885 7886 /** 7887 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam 7888 * @adap: the adapter 7889 * @viid: the VI id 7890 * @mac: the MAC address 7891 * @mask: the mask 7892 * @idx: index at which to add this entry 7893 * @port_id: the port index 7894 * @lookup_type: MAC address for inner (1) or outer (0) header 7895 * @sleep_ok: call is allowed to sleep 7896 * 7897 * Adds the mac entry at the specified index using raw mac interface. 7898 * 7899 * Returns a negative error number or the allocated index for this mac. 7900 */ 7901 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, 7902 const u8 *addr, const u8 *mask, unsigned int idx, 7903 u8 lookup_type, u8 port_id, bool sleep_ok) 7904 { 7905 int ret = 0; 7906 struct fw_vi_mac_cmd c; 7907 struct fw_vi_mac_raw *p = &c.u.raw; 7908 u32 val; 7909 7910 memset(&c, 0, sizeof(c)); 7911 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7912 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7913 FW_VI_MAC_CMD_VIID_V(viid)); 7914 val = FW_CMD_LEN16_V(1) | 7915 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7916 c.freemacs_to_len16 = cpu_to_be32(val); 7917 7918 /* Specify that this is an inner mac address */ 7919 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx)); 7920 7921 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7922 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7923 DATAPORTNUM_V(port_id)); 7924 /* Lookup mask and port mask */ 7925 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7926 DATAPORTNUM_V(DATAPORTNUM_M)); 7927 7928 /* Copy the address and the mask */ 7929 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7930 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7931 7932 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7933 if (ret == 0) { 7934 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd)); 7935 if (ret != idx) 7936 ret = -ENOMEM; 7937 } 7938 7939 return ret; 7940 } 7941 7942 /** 7943 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7944 * @adap: the adapter 7945 * @mbox: mailbox to use for the FW command 7946 * @viid: the VI id 7947 * @free: if true any existing filters for this VI id are first removed 7948 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7949 * @addr: the MAC address(es) 7950 * @idx: where to store the index of each allocated filter 7951 * @hash: pointer to hash address filter bitmap 7952 * @sleep_ok: call is allowed to sleep 7953 * 7954 * Allocates an exact-match filter for each of the supplied addresses and 7955 * sets it to the corresponding address. If @idx is not %NULL it should 7956 * have at least @naddr entries, each of which will be set to the index of 7957 * the filter allocated for the corresponding MAC address. If a filter 7958 * could not be allocated for an address its index is set to 0xffff. 7959 * If @hash is not %NULL addresses that fail to allocate an exact filter 7960 * are hashed and update the hash filter bitmap pointed at by @hash. 7961 * 7962 * Returns a negative error number or the number of filters allocated. 7963 */ 7964 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7965 unsigned int viid, bool free, unsigned int naddr, 7966 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7967 { 7968 int offset, ret = 0; 7969 struct fw_vi_mac_cmd c; 7970 unsigned int nfilters = 0; 7971 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 7972 unsigned int rem = naddr; 7973 7974 if (naddr > max_naddr) 7975 return -EINVAL; 7976 7977 for (offset = 0; offset < naddr ; /**/) { 7978 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 7979 rem : ARRAY_SIZE(c.u.exact)); 7980 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7981 u.exact[fw_naddr]), 16); 7982 struct fw_vi_mac_exact *p; 7983 int i; 7984 7985 memset(&c, 0, sizeof(c)); 7986 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7987 FW_CMD_REQUEST_F | 7988 FW_CMD_WRITE_F | 7989 FW_CMD_EXEC_V(free) | 7990 FW_VI_MAC_CMD_VIID_V(viid)); 7991 c.freemacs_to_len16 = 7992 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 7993 FW_CMD_LEN16_V(len16)); 7994 7995 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7996 p->valid_to_idx = 7997 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7998 FW_VI_MAC_CMD_IDX_V( 7999 FW_VI_MAC_ADD_MAC)); 8000 memcpy(p->macaddr, addr[offset + i], 8001 sizeof(p->macaddr)); 8002 } 8003 8004 /* It's okay if we run out of space in our MAC address arena. 8005 * Some of the addresses we submit may get stored so we need 8006 * to run through the reply to see what the results were ... 8007 */ 8008 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8009 if (ret && ret != -FW_ENOMEM) 8010 break; 8011 8012 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8013 u16 index = FW_VI_MAC_CMD_IDX_G( 8014 be16_to_cpu(p->valid_to_idx)); 8015 8016 if (idx) 8017 idx[offset + i] = (index >= max_naddr ? 8018 0xffff : index); 8019 if (index < max_naddr) 8020 nfilters++; 8021 else if (hash) 8022 *hash |= (1ULL << 8023 hash_mac_addr(addr[offset + i])); 8024 } 8025 8026 free = false; 8027 offset += fw_naddr; 8028 rem -= fw_naddr; 8029 } 8030 8031 if (ret == 0 || ret == -FW_ENOMEM) 8032 ret = nfilters; 8033 return ret; 8034 } 8035 8036 /** 8037 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 8038 * @adap: the adapter 8039 * @mbox: mailbox to use for the FW command 8040 * @viid: the VI id 8041 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 8042 * @addr: the MAC address(es) 8043 * @sleep_ok: call is allowed to sleep 8044 * 8045 * Frees the exact-match filter for each of the supplied addresses 8046 * 8047 * Returns a negative error number or the number of filters freed. 8048 */ 8049 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 8050 unsigned int viid, unsigned int naddr, 8051 const u8 **addr, bool sleep_ok) 8052 { 8053 int offset, ret = 0; 8054 struct fw_vi_mac_cmd c; 8055 unsigned int nfilters = 0; 8056 unsigned int max_naddr = is_t4(adap->params.chip) ? 8057 NUM_MPS_CLS_SRAM_L_INSTANCES : 8058 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8059 unsigned int rem = naddr; 8060 8061 if (naddr > max_naddr) 8062 return -EINVAL; 8063 8064 for (offset = 0; offset < (int)naddr ; /**/) { 8065 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 8066 ? rem 8067 : ARRAY_SIZE(c.u.exact)); 8068 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8069 u.exact[fw_naddr]), 16); 8070 struct fw_vi_mac_exact *p; 8071 int i; 8072 8073 memset(&c, 0, sizeof(c)); 8074 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8075 FW_CMD_REQUEST_F | 8076 FW_CMD_WRITE_F | 8077 FW_CMD_EXEC_V(0) | 8078 FW_VI_MAC_CMD_VIID_V(viid)); 8079 c.freemacs_to_len16 = 8080 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 8081 FW_CMD_LEN16_V(len16)); 8082 8083 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 8084 p->valid_to_idx = cpu_to_be16( 8085 FW_VI_MAC_CMD_VALID_F | 8086 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 8087 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 8088 } 8089 8090 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8091 if (ret) 8092 break; 8093 8094 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8095 u16 index = FW_VI_MAC_CMD_IDX_G( 8096 be16_to_cpu(p->valid_to_idx)); 8097 8098 if (index < max_naddr) 8099 nfilters++; 8100 } 8101 8102 offset += fw_naddr; 8103 rem -= fw_naddr; 8104 } 8105 8106 if (ret == 0) 8107 ret = nfilters; 8108 return ret; 8109 } 8110 8111 /** 8112 * t4_change_mac - modifies the exact-match filter for a MAC address 8113 * @adap: the adapter 8114 * @mbox: mailbox to use for the FW command 8115 * @viid: the VI id 8116 * @idx: index of existing filter for old value of MAC address, or -1 8117 * @addr: the new MAC address value 8118 * @persist: whether a new MAC allocation should be persistent 8119 * @add_smt: if true also add the address to the HW SMT 8120 * 8121 * Modifies an exact-match filter and sets it to the new MAC address. 8122 * Note that in general it is not possible to modify the value of a given 8123 * filter so the generic way to modify an address filter is to free the one 8124 * being used by the old address value and allocate a new filter for the 8125 * new address value. @idx can be -1 if the address is a new addition. 8126 * 8127 * Returns a negative error number or the index of the filter with the new 8128 * MAC value. 8129 */ 8130 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 8131 int idx, const u8 *addr, bool persist, u8 *smt_idx) 8132 { 8133 int ret, mode; 8134 struct fw_vi_mac_cmd c; 8135 struct fw_vi_mac_exact *p = c.u.exact; 8136 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 8137 8138 if (idx < 0) /* new allocation */ 8139 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 8140 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 8141 8142 memset(&c, 0, sizeof(c)); 8143 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8144 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8145 FW_VI_MAC_CMD_VIID_V(viid)); 8146 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 8147 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8148 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 8149 FW_VI_MAC_CMD_IDX_V(idx)); 8150 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8151 8152 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8153 if (ret == 0) { 8154 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 8155 if (ret >= max_mac_addr) 8156 ret = -ENOMEM; 8157 if (smt_idx) { 8158 if (adap->params.viid_smt_extn_support) { 8159 *smt_idx = FW_VI_MAC_CMD_SMTID_G 8160 (be32_to_cpu(c.op_to_viid)); 8161 } else { 8162 /* In T4/T5, SMT contains 256 SMAC entries 8163 * organized in 128 rows of 2 entries each. 8164 * In T6, SMT contains 256 SMAC entries in 8165 * 256 rows. 8166 */ 8167 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= 8168 CHELSIO_T5) 8169 *smt_idx = (viid & FW_VIID_VIN_M) << 1; 8170 else 8171 *smt_idx = (viid & FW_VIID_VIN_M); 8172 } 8173 } 8174 } 8175 return ret; 8176 } 8177 8178 /** 8179 * t4_set_addr_hash - program the MAC inexact-match hash filter 8180 * @adap: the adapter 8181 * @mbox: mailbox to use for the FW command 8182 * @viid: the VI id 8183 * @ucast: whether the hash filter should also match unicast addresses 8184 * @vec: the value to be written to the hash filter 8185 * @sleep_ok: call is allowed to sleep 8186 * 8187 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8188 */ 8189 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8190 bool ucast, u64 vec, bool sleep_ok) 8191 { 8192 struct fw_vi_mac_cmd c; 8193 8194 memset(&c, 0, sizeof(c)); 8195 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8196 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8197 FW_VI_ENABLE_CMD_VIID_V(viid)); 8198 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 8199 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 8200 FW_CMD_LEN16_V(1)); 8201 c.u.hash.hashvec = cpu_to_be64(vec); 8202 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8203 } 8204 8205 /** 8206 * t4_enable_vi_params - enable/disable a virtual interface 8207 * @adap: the adapter 8208 * @mbox: mailbox to use for the FW command 8209 * @viid: the VI id 8210 * @rx_en: 1=enable Rx, 0=disable Rx 8211 * @tx_en: 1=enable Tx, 0=disable Tx 8212 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8213 * 8214 * Enables/disables a virtual interface. Note that setting DCB Enable 8215 * only makes sense when enabling a Virtual Interface ... 8216 */ 8217 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8218 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8219 { 8220 struct fw_vi_enable_cmd c; 8221 8222 memset(&c, 0, sizeof(c)); 8223 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8224 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8225 FW_VI_ENABLE_CMD_VIID_V(viid)); 8226 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 8227 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 8228 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 8229 FW_LEN16(c)); 8230 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8231 } 8232 8233 /** 8234 * t4_enable_vi - enable/disable a virtual interface 8235 * @adap: the adapter 8236 * @mbox: mailbox to use for the FW command 8237 * @viid: the VI id 8238 * @rx_en: 1=enable Rx, 0=disable Rx 8239 * @tx_en: 1=enable Tx, 0=disable Tx 8240 * 8241 * Enables/disables a virtual interface. 8242 */ 8243 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8244 bool rx_en, bool tx_en) 8245 { 8246 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8247 } 8248 8249 /** 8250 * t4_enable_pi_params - enable/disable a Port's Virtual Interface 8251 * @adap: the adapter 8252 * @mbox: mailbox to use for the FW command 8253 * @pi: the Port Information structure 8254 * @rx_en: 1=enable Rx, 0=disable Rx 8255 * @tx_en: 1=enable Tx, 0=disable Tx 8256 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8257 * 8258 * Enables/disables a Port's Virtual Interface. Note that setting DCB 8259 * Enable only makes sense when enabling a Virtual Interface ... 8260 * If the Virtual Interface enable/disable operation is successful, 8261 * we notify the OS-specific code of a potential Link Status change 8262 * via the OS Contract API t4_os_link_changed(). 8263 */ 8264 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox, 8265 struct port_info *pi, 8266 bool rx_en, bool tx_en, bool dcb_en) 8267 { 8268 int ret = t4_enable_vi_params(adap, mbox, pi->viid, 8269 rx_en, tx_en, dcb_en); 8270 if (ret) 8271 return ret; 8272 t4_os_link_changed(adap, pi->port_id, 8273 rx_en && tx_en && pi->link_cfg.link_ok); 8274 return 0; 8275 } 8276 8277 /** 8278 * t4_identify_port - identify a VI's port by blinking its LED 8279 * @adap: the adapter 8280 * @mbox: mailbox to use for the FW command 8281 * @viid: the VI id 8282 * @nblinks: how many times to blink LED at 2.5 Hz 8283 * 8284 * Identifies a VI's port by blinking its LED. 8285 */ 8286 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8287 unsigned int nblinks) 8288 { 8289 struct fw_vi_enable_cmd c; 8290 8291 memset(&c, 0, sizeof(c)); 8292 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8293 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8294 FW_VI_ENABLE_CMD_VIID_V(viid)); 8295 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 8296 c.blinkdur = cpu_to_be16(nblinks); 8297 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8298 } 8299 8300 /** 8301 * t4_iq_stop - stop an ingress queue and its FLs 8302 * @adap: the adapter 8303 * @mbox: mailbox to use for the FW command 8304 * @pf: the PF owning the queues 8305 * @vf: the VF owning the queues 8306 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8307 * @iqid: ingress queue id 8308 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8309 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8310 * 8311 * Stops an ingress queue and its associated FLs, if any. This causes 8312 * any current or future data/messages destined for these queues to be 8313 * tossed. 8314 */ 8315 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8316 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8317 unsigned int fl0id, unsigned int fl1id) 8318 { 8319 struct fw_iq_cmd c; 8320 8321 memset(&c, 0, sizeof(c)); 8322 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8323 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8324 FW_IQ_CMD_VFN_V(vf)); 8325 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 8326 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8327 c.iqid = cpu_to_be16(iqid); 8328 c.fl0id = cpu_to_be16(fl0id); 8329 c.fl1id = cpu_to_be16(fl1id); 8330 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8331 } 8332 8333 /** 8334 * t4_iq_free - free an ingress queue and its FLs 8335 * @adap: the adapter 8336 * @mbox: mailbox to use for the FW command 8337 * @pf: the PF owning the queues 8338 * @vf: the VF owning the queues 8339 * @iqtype: the ingress queue type 8340 * @iqid: ingress queue id 8341 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8342 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8343 * 8344 * Frees an ingress queue and its associated FLs, if any. 8345 */ 8346 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8347 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8348 unsigned int fl0id, unsigned int fl1id) 8349 { 8350 struct fw_iq_cmd c; 8351 8352 memset(&c, 0, sizeof(c)); 8353 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8354 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8355 FW_IQ_CMD_VFN_V(vf)); 8356 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 8357 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8358 c.iqid = cpu_to_be16(iqid); 8359 c.fl0id = cpu_to_be16(fl0id); 8360 c.fl1id = cpu_to_be16(fl1id); 8361 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8362 } 8363 8364 /** 8365 * t4_eth_eq_free - free an Ethernet egress queue 8366 * @adap: the adapter 8367 * @mbox: mailbox to use for the FW command 8368 * @pf: the PF owning the queue 8369 * @vf: the VF owning the queue 8370 * @eqid: egress queue id 8371 * 8372 * Frees an Ethernet egress queue. 8373 */ 8374 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8375 unsigned int vf, unsigned int eqid) 8376 { 8377 struct fw_eq_eth_cmd c; 8378 8379 memset(&c, 0, sizeof(c)); 8380 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 8381 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8382 FW_EQ_ETH_CMD_PFN_V(pf) | 8383 FW_EQ_ETH_CMD_VFN_V(vf)); 8384 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 8385 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 8386 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8387 } 8388 8389 /** 8390 * t4_ctrl_eq_free - free a control egress queue 8391 * @adap: the adapter 8392 * @mbox: mailbox to use for the FW command 8393 * @pf: the PF owning the queue 8394 * @vf: the VF owning the queue 8395 * @eqid: egress queue id 8396 * 8397 * Frees a control egress queue. 8398 */ 8399 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8400 unsigned int vf, unsigned int eqid) 8401 { 8402 struct fw_eq_ctrl_cmd c; 8403 8404 memset(&c, 0, sizeof(c)); 8405 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 8406 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8407 FW_EQ_CTRL_CMD_PFN_V(pf) | 8408 FW_EQ_CTRL_CMD_VFN_V(vf)); 8409 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 8410 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 8411 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8412 } 8413 8414 /** 8415 * t4_ofld_eq_free - free an offload egress queue 8416 * @adap: the adapter 8417 * @mbox: mailbox to use for the FW command 8418 * @pf: the PF owning the queue 8419 * @vf: the VF owning the queue 8420 * @eqid: egress queue id 8421 * 8422 * Frees a control egress queue. 8423 */ 8424 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8425 unsigned int vf, unsigned int eqid) 8426 { 8427 struct fw_eq_ofld_cmd c; 8428 8429 memset(&c, 0, sizeof(c)); 8430 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 8431 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8432 FW_EQ_OFLD_CMD_PFN_V(pf) | 8433 FW_EQ_OFLD_CMD_VFN_V(vf)); 8434 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 8435 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 8436 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8437 } 8438 8439 /** 8440 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8441 * @adap: the adapter 8442 * @link_down_rc: Link Down Reason Code 8443 * 8444 * Returns a string representation of the Link Down Reason Code. 8445 */ 8446 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 8447 { 8448 static const char * const reason[] = { 8449 "Link Down", 8450 "Remote Fault", 8451 "Auto-negotiation Failure", 8452 "Reserved", 8453 "Insufficient Airflow", 8454 "Unable To Determine Reason", 8455 "No RX Signal Detected", 8456 "Reserved", 8457 }; 8458 8459 if (link_down_rc >= ARRAY_SIZE(reason)) 8460 return "Bad Reason Code"; 8461 8462 return reason[link_down_rc]; 8463 } 8464 8465 /** 8466 * Return the highest speed set in the port capabilities, in Mb/s. 8467 */ 8468 static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 8469 { 8470 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8471 do { \ 8472 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8473 return __speed; \ 8474 } while (0) 8475 8476 TEST_SPEED_RETURN(400G, 400000); 8477 TEST_SPEED_RETURN(200G, 200000); 8478 TEST_SPEED_RETURN(100G, 100000); 8479 TEST_SPEED_RETURN(50G, 50000); 8480 TEST_SPEED_RETURN(40G, 40000); 8481 TEST_SPEED_RETURN(25G, 25000); 8482 TEST_SPEED_RETURN(10G, 10000); 8483 TEST_SPEED_RETURN(1G, 1000); 8484 TEST_SPEED_RETURN(100M, 100); 8485 8486 #undef TEST_SPEED_RETURN 8487 8488 return 0; 8489 } 8490 8491 /** 8492 * fwcap_to_fwspeed - return highest speed in Port Capabilities 8493 * @acaps: advertised Port Capabilities 8494 * 8495 * Get the highest speed for the port from the advertised Port 8496 * Capabilities. It will be either the highest speed from the list of 8497 * speeds or whatever user has set using ethtool. 8498 */ 8499 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 8500 { 8501 #define TEST_SPEED_RETURN(__caps_speed) \ 8502 do { \ 8503 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8504 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8505 } while (0) 8506 8507 TEST_SPEED_RETURN(400G); 8508 TEST_SPEED_RETURN(200G); 8509 TEST_SPEED_RETURN(100G); 8510 TEST_SPEED_RETURN(50G); 8511 TEST_SPEED_RETURN(40G); 8512 TEST_SPEED_RETURN(25G); 8513 TEST_SPEED_RETURN(10G); 8514 TEST_SPEED_RETURN(1G); 8515 TEST_SPEED_RETURN(100M); 8516 8517 #undef TEST_SPEED_RETURN 8518 8519 return 0; 8520 } 8521 8522 /** 8523 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8524 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8525 * 8526 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8527 * 32-bit Port Capabilities value. 8528 */ 8529 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 8530 { 8531 fw_port_cap32_t linkattr = 0; 8532 8533 /* Unfortunately the format of the Link Status in the old 8534 * 16-bit Port Information message isn't the same as the 8535 * 16-bit Port Capabilities bitfield used everywhere else ... 8536 */ 8537 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8538 linkattr |= FW_PORT_CAP32_FC_RX; 8539 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8540 linkattr |= FW_PORT_CAP32_FC_TX; 8541 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8542 linkattr |= FW_PORT_CAP32_SPEED_100M; 8543 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8544 linkattr |= FW_PORT_CAP32_SPEED_1G; 8545 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8546 linkattr |= FW_PORT_CAP32_SPEED_10G; 8547 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8548 linkattr |= FW_PORT_CAP32_SPEED_25G; 8549 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8550 linkattr |= FW_PORT_CAP32_SPEED_40G; 8551 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8552 linkattr |= FW_PORT_CAP32_SPEED_100G; 8553 8554 return linkattr; 8555 } 8556 8557 /** 8558 * t4_handle_get_port_info - process a FW reply message 8559 * @pi: the port info 8560 * @rpl: start of the FW message 8561 * 8562 * Processes a GET_PORT_INFO FW reply message. 8563 */ 8564 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8565 { 8566 const struct fw_port_cmd *cmd = (const void *)rpl; 8567 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8568 struct link_config *lc = &pi->link_cfg; 8569 struct adapter *adapter = pi->adapter; 8570 unsigned int speed, fc, fec, adv_fc; 8571 enum fw_port_module_type mod_type; 8572 int action, link_ok, linkdnrc; 8573 enum fw_port_type port_type; 8574 8575 /* Extract the various fields from the Port Information message. 8576 */ 8577 action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8578 switch (action) { 8579 case FW_PORT_ACTION_GET_PORT_INFO: { 8580 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8581 8582 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8583 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8584 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8585 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8586 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8587 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8588 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8589 linkattr = lstatus_to_fwcap(lstatus); 8590 break; 8591 } 8592 8593 case FW_PORT_ACTION_GET_PORT_INFO32: { 8594 u32 lstatus32; 8595 8596 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8597 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8598 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8599 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8600 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8601 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8602 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8603 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8604 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8605 break; 8606 } 8607 8608 default: 8609 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8610 be32_to_cpu(cmd->action_to_len16)); 8611 return; 8612 } 8613 8614 fec = fwcap_to_cc_fec(acaps); 8615 adv_fc = fwcap_to_cc_pause(acaps); 8616 fc = fwcap_to_cc_pause(linkattr); 8617 speed = fwcap_to_speed(linkattr); 8618 8619 /* Reset state for communicating new Transceiver Module status and 8620 * whether the OS-dependent layer wants us to redo the current 8621 * "sticky" L1 Configure Link Parameters. 8622 */ 8623 lc->new_module = false; 8624 lc->redo_l1cfg = false; 8625 8626 if (mod_type != pi->mod_type) { 8627 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8628 * various fundamental Port Capabilities which used to be 8629 * immutable can now change radically. We can now have 8630 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8631 * all change based on what Transceiver Module is inserted. 8632 * So we need to record the Physical "Port" Capabilities on 8633 * every Transceiver Module change. 8634 */ 8635 lc->pcaps = pcaps; 8636 8637 /* When a new Transceiver Module is inserted, the Firmware 8638 * will examine its i2c EPROM to determine its type and 8639 * general operating parameters including things like Forward 8640 * Error Control, etc. Various IEEE 802.3 standards dictate 8641 * how to interpret these i2c values to determine default 8642 * "sutomatic" settings. We record these for future use when 8643 * the user explicitly requests these standards-based values. 8644 */ 8645 lc->def_acaps = acaps; 8646 8647 /* Some versions of the early T6 Firmware "cheated" when 8648 * handling different Transceiver Modules by changing the 8649 * underlaying Port Type reported to the Host Drivers. As 8650 * such we need to capture whatever Port Type the Firmware 8651 * sends us and record it in case it's different from what we 8652 * were told earlier. Unfortunately, since Firmware is 8653 * forever, we'll need to keep this code here forever, but in 8654 * later T6 Firmware it should just be an assignment of the 8655 * same value already recorded. 8656 */ 8657 pi->port_type = port_type; 8658 8659 /* Record new Module Type information. 8660 */ 8661 pi->mod_type = mod_type; 8662 8663 /* Let the OS-dependent layer know if we have a new 8664 * Transceiver Module inserted. 8665 */ 8666 lc->new_module = t4_is_inserted_mod_type(mod_type); 8667 8668 t4_os_portmod_changed(adapter, pi->port_id); 8669 } 8670 8671 if (link_ok != lc->link_ok || speed != lc->speed || 8672 fc != lc->fc || adv_fc != lc->advertised_fc || 8673 fec != lc->fec) { 8674 /* something changed */ 8675 if (!link_ok && lc->link_ok) { 8676 lc->link_down_rc = linkdnrc; 8677 dev_warn_ratelimited(adapter->pdev_dev, 8678 "Port %d link down, reason: %s\n", 8679 pi->tx_chan, 8680 t4_link_down_rc_str(linkdnrc)); 8681 } 8682 lc->link_ok = link_ok; 8683 lc->speed = speed; 8684 lc->advertised_fc = adv_fc; 8685 lc->fc = fc; 8686 lc->fec = fec; 8687 8688 lc->lpacaps = lpacaps; 8689 lc->acaps = acaps & ADVERT_MASK; 8690 8691 /* If we're not physically capable of Auto-Negotiation, note 8692 * this as Auto-Negotiation disabled. Otherwise, we track 8693 * what Auto-Negotiation settings we have. Note parallel 8694 * structure in t4_link_l1cfg_core() and init_link_config(). 8695 */ 8696 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) { 8697 lc->autoneg = AUTONEG_DISABLE; 8698 } else if (lc->acaps & FW_PORT_CAP32_ANEG) { 8699 lc->autoneg = AUTONEG_ENABLE; 8700 } else { 8701 /* When Autoneg is disabled, user needs to set 8702 * single speed. 8703 * Similar to cxgb4_ethtool.c: set_link_ksettings 8704 */ 8705 lc->acaps = 0; 8706 lc->speed_caps = fwcap_to_fwspeed(acaps); 8707 lc->autoneg = AUTONEG_DISABLE; 8708 } 8709 8710 t4_os_link_changed(adapter, pi->port_id, link_ok); 8711 } 8712 8713 /* If we have a new Transceiver Module and the OS-dependent code has 8714 * told us that it wants us to redo whatever "sticky" L1 Configuration 8715 * Link Parameters are set, do that now. 8716 */ 8717 if (lc->new_module && lc->redo_l1cfg) { 8718 struct link_config old_lc; 8719 int ret; 8720 8721 /* Save the current L1 Configuration and restore it if an 8722 * error occurs. We probably should fix the l1_cfg*() 8723 * routines not to change the link_config when an error 8724 * occurs ... 8725 */ 8726 old_lc = *lc; 8727 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc); 8728 if (ret) { 8729 *lc = old_lc; 8730 dev_warn(adapter->pdev_dev, 8731 "Attempt to update new Transceiver Module settings failed\n"); 8732 } 8733 } 8734 lc->new_module = false; 8735 lc->redo_l1cfg = false; 8736 } 8737 8738 /** 8739 * t4_update_port_info - retrieve and update port information if changed 8740 * @pi: the port_info 8741 * 8742 * We issue a Get Port Information Command to the Firmware and, if 8743 * successful, we check to see if anything is different from what we 8744 * last recorded and update things accordingly. 8745 */ 8746 int t4_update_port_info(struct port_info *pi) 8747 { 8748 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8749 struct fw_port_cmd port_cmd; 8750 int ret; 8751 8752 memset(&port_cmd, 0, sizeof(port_cmd)); 8753 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8754 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8755 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8756 port_cmd.action_to_len16 = cpu_to_be32( 8757 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8758 ? FW_PORT_ACTION_GET_PORT_INFO 8759 : FW_PORT_ACTION_GET_PORT_INFO32) | 8760 FW_LEN16(port_cmd)); 8761 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8762 &port_cmd, sizeof(port_cmd), &port_cmd); 8763 if (ret) 8764 return ret; 8765 8766 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8767 return 0; 8768 } 8769 8770 /** 8771 * t4_get_link_params - retrieve basic link parameters for given port 8772 * @pi: the port 8773 * @link_okp: value return pointer for link up/down 8774 * @speedp: value return pointer for speed (Mb/s) 8775 * @mtup: value return pointer for mtu 8776 * 8777 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8778 * and MTU for a specified port. A negative error is returned on 8779 * failure; 0 on success. 8780 */ 8781 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8782 unsigned int *speedp, unsigned int *mtup) 8783 { 8784 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8785 unsigned int action, link_ok, mtu; 8786 struct fw_port_cmd port_cmd; 8787 fw_port_cap32_t linkattr; 8788 int ret; 8789 8790 memset(&port_cmd, 0, sizeof(port_cmd)); 8791 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8792 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8793 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8794 action = (fw_caps == FW_CAPS16 8795 ? FW_PORT_ACTION_GET_PORT_INFO 8796 : FW_PORT_ACTION_GET_PORT_INFO32); 8797 port_cmd.action_to_len16 = cpu_to_be32( 8798 FW_PORT_CMD_ACTION_V(action) | 8799 FW_LEN16(port_cmd)); 8800 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8801 &port_cmd, sizeof(port_cmd), &port_cmd); 8802 if (ret) 8803 return ret; 8804 8805 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8806 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8807 8808 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8809 linkattr = lstatus_to_fwcap(lstatus); 8810 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8811 } else { 8812 u32 lstatus32 = 8813 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8814 8815 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8816 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8817 mtu = FW_PORT_CMD_MTU32_G( 8818 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8819 } 8820 8821 if (link_okp) 8822 *link_okp = link_ok; 8823 if (speedp) 8824 *speedp = fwcap_to_speed(linkattr); 8825 if (mtup) 8826 *mtup = mtu; 8827 8828 return 0; 8829 } 8830 8831 /** 8832 * t4_handle_fw_rpl - process a FW reply message 8833 * @adap: the adapter 8834 * @rpl: start of the FW message 8835 * 8836 * Processes a FW message, such as link state change messages. 8837 */ 8838 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8839 { 8840 u8 opcode = *(const u8 *)rpl; 8841 8842 /* This might be a port command ... this simplifies the following 8843 * conditionals ... We can get away with pre-dereferencing 8844 * action_to_len16 because it's in the first 16 bytes and all messages 8845 * will be at least that long. 8846 */ 8847 const struct fw_port_cmd *p = (const void *)rpl; 8848 unsigned int action = 8849 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8850 8851 if (opcode == FW_PORT_CMD && 8852 (action == FW_PORT_ACTION_GET_PORT_INFO || 8853 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8854 int i; 8855 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8856 struct port_info *pi = NULL; 8857 8858 for_each_port(adap, i) { 8859 pi = adap2pinfo(adap, i); 8860 if (pi->tx_chan == chan) 8861 break; 8862 } 8863 8864 t4_handle_get_port_info(pi, rpl); 8865 } else { 8866 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8867 opcode); 8868 return -EINVAL; 8869 } 8870 return 0; 8871 } 8872 8873 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8874 { 8875 u16 val; 8876 8877 if (pci_is_pcie(adapter->pdev)) { 8878 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8879 p->speed = val & PCI_EXP_LNKSTA_CLS; 8880 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8881 } 8882 } 8883 8884 /** 8885 * init_link_config - initialize a link's SW state 8886 * @lc: pointer to structure holding the link state 8887 * @pcaps: link Port Capabilities 8888 * @acaps: link current Advertised Port Capabilities 8889 * 8890 * Initializes the SW state maintained for each link, including the link's 8891 * capabilities and default speed/flow-control/autonegotiation settings. 8892 */ 8893 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8894 fw_port_cap32_t acaps) 8895 { 8896 lc->pcaps = pcaps; 8897 lc->def_acaps = acaps; 8898 lc->lpacaps = 0; 8899 lc->speed_caps = 0; 8900 lc->speed = 0; 8901 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8902 8903 /* For Forward Error Control, we default to whatever the Firmware 8904 * tells us the Link is currently advertising. 8905 */ 8906 lc->requested_fec = FEC_AUTO; 8907 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8908 8909 /* If the Port is capable of Auto-Negtotiation, initialize it as 8910 * "enabled" and copy over all of the Physical Port Capabilities 8911 * to the Advertised Port Capabilities. Otherwise mark it as 8912 * Auto-Negotiate disabled and select the highest supported speed 8913 * for the link. Note parallel structure in t4_link_l1cfg_core() 8914 * and t4_handle_get_port_info(). 8915 */ 8916 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8917 lc->acaps = lc->pcaps & ADVERT_MASK; 8918 lc->autoneg = AUTONEG_ENABLE; 8919 lc->requested_fc |= PAUSE_AUTONEG; 8920 } else { 8921 lc->acaps = 0; 8922 lc->autoneg = AUTONEG_DISABLE; 8923 lc->speed_caps = fwcap_to_fwspeed(acaps); 8924 } 8925 } 8926 8927 #define CIM_PF_NOACCESS 0xeeeeeeee 8928 8929 int t4_wait_dev_ready(void __iomem *regs) 8930 { 8931 u32 whoami; 8932 8933 whoami = readl(regs + PL_WHOAMI_A); 8934 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8935 return 0; 8936 8937 msleep(500); 8938 whoami = readl(regs + PL_WHOAMI_A); 8939 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8940 } 8941 8942 struct flash_desc { 8943 u32 vendor_and_model_id; 8944 u32 size_mb; 8945 }; 8946 8947 static int t4_get_flash_params(struct adapter *adap) 8948 { 8949 /* Table for non-Numonix supported flash parts. Numonix parts are left 8950 * to the preexisting code. All flash parts have 64KB sectors. 8951 */ 8952 static struct flash_desc supported_flash[] = { 8953 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8954 }; 8955 8956 unsigned int part, manufacturer; 8957 unsigned int density, size = 0; 8958 u32 flashid = 0; 8959 int ret; 8960 8961 /* Issue a Read ID Command to the Flash part. We decode supported 8962 * Flash parts and their sizes from this. There's a newer Query 8963 * Command which can retrieve detailed geometry information but many 8964 * Flash parts don't support it. 8965 */ 8966 8967 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8968 if (!ret) 8969 ret = sf1_read(adap, 3, 0, 1, &flashid); 8970 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8971 if (ret) 8972 return ret; 8973 8974 /* Check to see if it's one of our non-standard supported Flash parts. 8975 */ 8976 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8977 if (supported_flash[part].vendor_and_model_id == flashid) { 8978 adap->params.sf_size = supported_flash[part].size_mb; 8979 adap->params.sf_nsec = 8980 adap->params.sf_size / SF_SEC_SIZE; 8981 goto found; 8982 } 8983 8984 /* Decode Flash part size. The code below looks repetitive with 8985 * common encodings, but that's not guaranteed in the JEDEC 8986 * specification for the Read JEDEC ID command. The only thing that 8987 * we're guaranteed by the JEDEC specification is where the 8988 * Manufacturer ID is in the returned result. After that each 8989 * Manufacturer ~could~ encode things completely differently. 8990 * Note, all Flash parts must have 64KB sectors. 8991 */ 8992 manufacturer = flashid & 0xff; 8993 switch (manufacturer) { 8994 case 0x20: { /* Micron/Numonix */ 8995 /* This Density -> Size decoding table is taken from Micron 8996 * Data Sheets. 8997 */ 8998 density = (flashid >> 16) & 0xff; 8999 switch (density) { 9000 case 0x14: /* 1MB */ 9001 size = 1 << 20; 9002 break; 9003 case 0x15: /* 2MB */ 9004 size = 1 << 21; 9005 break; 9006 case 0x16: /* 4MB */ 9007 size = 1 << 22; 9008 break; 9009 case 0x17: /* 8MB */ 9010 size = 1 << 23; 9011 break; 9012 case 0x18: /* 16MB */ 9013 size = 1 << 24; 9014 break; 9015 case 0x19: /* 32MB */ 9016 size = 1 << 25; 9017 break; 9018 case 0x20: /* 64MB */ 9019 size = 1 << 26; 9020 break; 9021 case 0x21: /* 128MB */ 9022 size = 1 << 27; 9023 break; 9024 case 0x22: /* 256MB */ 9025 size = 1 << 28; 9026 break; 9027 } 9028 break; 9029 } 9030 case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ 9031 /* This Density -> Size decoding table is taken from ISSI 9032 * Data Sheets. 9033 */ 9034 density = (flashid >> 16) & 0xff; 9035 switch (density) { 9036 case 0x16: /* 32 MB */ 9037 size = 1 << 25; 9038 break; 9039 case 0x17: /* 64MB */ 9040 size = 1 << 26; 9041 break; 9042 } 9043 break; 9044 } 9045 case 0xc2: { /* Macronix */ 9046 /* This Density -> Size decoding table is taken from Macronix 9047 * Data Sheets. 9048 */ 9049 density = (flashid >> 16) & 0xff; 9050 switch (density) { 9051 case 0x17: /* 8MB */ 9052 size = 1 << 23; 9053 break; 9054 case 0x18: /* 16MB */ 9055 size = 1 << 24; 9056 break; 9057 } 9058 break; 9059 } 9060 case 0xef: { /* Winbond */ 9061 /* This Density -> Size decoding table is taken from Winbond 9062 * Data Sheets. 9063 */ 9064 density = (flashid >> 16) & 0xff; 9065 switch (density) { 9066 case 0x17: /* 8MB */ 9067 size = 1 << 23; 9068 break; 9069 case 0x18: /* 16MB */ 9070 size = 1 << 24; 9071 break; 9072 } 9073 break; 9074 } 9075 } 9076 9077 /* If we didn't recognize the FLASH part, that's no real issue: the 9078 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 9079 * use a FLASH part which is at least 4MB in size and has 64KB 9080 * sectors. The unrecognized FLASH part is likely to be much larger 9081 * than 4MB, but that's all we really need. 9082 */ 9083 if (size == 0) { 9084 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n", 9085 flashid); 9086 size = 1 << 22; 9087 } 9088 9089 /* Store decoded Flash size and fall through into vetting code. */ 9090 adap->params.sf_size = size; 9091 adap->params.sf_nsec = size / SF_SEC_SIZE; 9092 9093 found: 9094 if (adap->params.sf_size < FLASH_MIN_SIZE) 9095 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 9096 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 9097 return 0; 9098 } 9099 9100 /** 9101 * t4_prep_adapter - prepare SW and HW for operation 9102 * @adapter: the adapter 9103 * @reset: if true perform a HW reset 9104 * 9105 * Initialize adapter SW state for the various HW modules, set initial 9106 * values for some adapter tunables, take PHYs out of reset, and 9107 * initialize the MDIO interface. 9108 */ 9109 int t4_prep_adapter(struct adapter *adapter) 9110 { 9111 int ret, ver; 9112 uint16_t device_id; 9113 u32 pl_rev; 9114 9115 get_pci_mode(adapter, &adapter->params.pci); 9116 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 9117 9118 ret = t4_get_flash_params(adapter); 9119 if (ret < 0) { 9120 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 9121 return ret; 9122 } 9123 9124 /* Retrieve adapter's device ID 9125 */ 9126 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 9127 ver = device_id >> 12; 9128 adapter->params.chip = 0; 9129 switch (ver) { 9130 case CHELSIO_T4: 9131 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 9132 adapter->params.arch.sge_fl_db = DBPRIO_F; 9133 adapter->params.arch.mps_tcam_size = 9134 NUM_MPS_CLS_SRAM_L_INSTANCES; 9135 adapter->params.arch.mps_rplc_size = 128; 9136 adapter->params.arch.nchan = NCHAN; 9137 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9138 adapter->params.arch.vfcount = 128; 9139 /* Congestion map is for 4 channels so that 9140 * MPS can have 4 priority per port. 9141 */ 9142 adapter->params.arch.cng_ch_bits_log = 2; 9143 break; 9144 case CHELSIO_T5: 9145 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 9146 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 9147 adapter->params.arch.mps_tcam_size = 9148 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9149 adapter->params.arch.mps_rplc_size = 128; 9150 adapter->params.arch.nchan = NCHAN; 9151 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9152 adapter->params.arch.vfcount = 128; 9153 adapter->params.arch.cng_ch_bits_log = 2; 9154 break; 9155 case CHELSIO_T6: 9156 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 9157 adapter->params.arch.sge_fl_db = 0; 9158 adapter->params.arch.mps_tcam_size = 9159 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9160 adapter->params.arch.mps_rplc_size = 256; 9161 adapter->params.arch.nchan = 2; 9162 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 9163 adapter->params.arch.vfcount = 256; 9164 /* Congestion map will be for 2 channels so that 9165 * MPS can have 8 priority per port. 9166 */ 9167 adapter->params.arch.cng_ch_bits_log = 3; 9168 break; 9169 default: 9170 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 9171 device_id); 9172 return -EINVAL; 9173 } 9174 9175 adapter->params.cim_la_size = CIMLA_SIZE; 9176 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 9177 9178 /* 9179 * Default port for debugging in case we can't reach FW. 9180 */ 9181 adapter->params.nports = 1; 9182 adapter->params.portvec = 1; 9183 adapter->params.vpd.cclk = 50000; 9184 9185 /* Set PCIe completion timeout to 4 seconds. */ 9186 pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2, 9187 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); 9188 return 0; 9189 } 9190 9191 /** 9192 * t4_shutdown_adapter - shut down adapter, host & wire 9193 * @adapter: the adapter 9194 * 9195 * Perform an emergency shutdown of the adapter and stop it from 9196 * continuing any further communication on the ports or DMA to the 9197 * host. This is typically used when the adapter and/or firmware 9198 * have crashed and we want to prevent any further accidental 9199 * communication with the rest of the world. This will also force 9200 * the port Link Status to go down -- if register writes work -- 9201 * which should help our peers figure out that we're down. 9202 */ 9203 int t4_shutdown_adapter(struct adapter *adapter) 9204 { 9205 int port; 9206 9207 t4_intr_disable(adapter); 9208 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 9209 for_each_port(adapter, port) { 9210 u32 a_port_cfg = is_t4(adapter->params.chip) ? 9211 PORT_REG(port, XGMAC_PORT_CFG_A) : 9212 T5_PORT_REG(port, MAC_PORT_CFG_A); 9213 9214 t4_write_reg(adapter, a_port_cfg, 9215 t4_read_reg(adapter, a_port_cfg) 9216 & ~SIGNAL_DET_V(1)); 9217 } 9218 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 9219 9220 return 0; 9221 } 9222 9223 /** 9224 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 9225 * @adapter: the adapter 9226 * @qid: the Queue ID 9227 * @qtype: the Ingress or Egress type for @qid 9228 * @user: true if this request is for a user mode queue 9229 * @pbar2_qoffset: BAR2 Queue Offset 9230 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 9231 * 9232 * Returns the BAR2 SGE Queue Registers information associated with the 9233 * indicated Absolute Queue ID. These are passed back in return value 9234 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 9235 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 9236 * 9237 * This may return an error which indicates that BAR2 SGE Queue 9238 * registers aren't available. If an error is not returned, then the 9239 * following values are returned: 9240 * 9241 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 9242 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 9243 * 9244 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 9245 * require the "Inferred Queue ID" ability may be used. E.g. the 9246 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 9247 * then these "Inferred Queue ID" register may not be used. 9248 */ 9249 int t4_bar2_sge_qregs(struct adapter *adapter, 9250 unsigned int qid, 9251 enum t4_bar2_qtype qtype, 9252 int user, 9253 u64 *pbar2_qoffset, 9254 unsigned int *pbar2_qid) 9255 { 9256 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9257 u64 bar2_page_offset, bar2_qoffset; 9258 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9259 9260 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 9261 if (!user && is_t4(adapter->params.chip)) 9262 return -EINVAL; 9263 9264 /* Get our SGE Page Size parameters. 9265 */ 9266 page_shift = adapter->params.sge.hps + 10; 9267 page_size = 1 << page_shift; 9268 9269 /* Get the right Queues per Page parameters for our Queue. 9270 */ 9271 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9272 ? adapter->params.sge.eq_qpp 9273 : adapter->params.sge.iq_qpp); 9274 qpp_mask = (1 << qpp_shift) - 1; 9275 9276 /* Calculate the basics of the BAR2 SGE Queue register area: 9277 * o The BAR2 page the Queue registers will be in. 9278 * o The BAR2 Queue ID. 9279 * o The BAR2 Queue ID Offset into the BAR2 page. 9280 */ 9281 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9282 bar2_qid = qid & qpp_mask; 9283 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9284 9285 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9286 * hardware will infer the Absolute Queue ID simply from the writes to 9287 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9288 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9289 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9290 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9291 * from the BAR2 Page and BAR2 Queue ID. 9292 * 9293 * One important censequence of this is that some BAR2 SGE registers 9294 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9295 * there. But other registers synthesize the SGE Queue ID purely 9296 * from the writes to the registers -- the Write Combined Doorbell 9297 * Buffer is a good example. These BAR2 SGE Registers are only 9298 * available for those BAR2 SGE Register areas where the SGE Absolute 9299 * Queue ID can be inferred from simple writes. 9300 */ 9301 bar2_qoffset = bar2_page_offset; 9302 bar2_qinferred = (bar2_qid_offset < page_size); 9303 if (bar2_qinferred) { 9304 bar2_qoffset += bar2_qid_offset; 9305 bar2_qid = 0; 9306 } 9307 9308 *pbar2_qoffset = bar2_qoffset; 9309 *pbar2_qid = bar2_qid; 9310 return 0; 9311 } 9312 9313 /** 9314 * t4_init_devlog_params - initialize adapter->params.devlog 9315 * @adap: the adapter 9316 * 9317 * Initialize various fields of the adapter's Firmware Device Log 9318 * Parameters structure. 9319 */ 9320 int t4_init_devlog_params(struct adapter *adap) 9321 { 9322 struct devlog_params *dparams = &adap->params.devlog; 9323 u32 pf_dparams; 9324 unsigned int devlog_meminfo; 9325 struct fw_devlog_cmd devlog_cmd; 9326 int ret; 9327 9328 /* If we're dealing with newer firmware, the Device Log Parameters 9329 * are stored in a designated register which allows us to access the 9330 * Device Log even if we can't talk to the firmware. 9331 */ 9332 pf_dparams = 9333 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 9334 if (pf_dparams) { 9335 unsigned int nentries, nentries128; 9336 9337 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 9338 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 9339 9340 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 9341 nentries = (nentries128 + 1) * 128; 9342 dparams->size = nentries * sizeof(struct fw_devlog_e); 9343 9344 return 0; 9345 } 9346 9347 /* Otherwise, ask the firmware for it's Device Log Parameters. 9348 */ 9349 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 9350 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 9351 FW_CMD_REQUEST_F | FW_CMD_READ_F); 9352 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9353 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9354 &devlog_cmd); 9355 if (ret) 9356 return ret; 9357 9358 devlog_meminfo = 9359 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9360 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 9361 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 9362 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9363 9364 return 0; 9365 } 9366 9367 /** 9368 * t4_init_sge_params - initialize adap->params.sge 9369 * @adapter: the adapter 9370 * 9371 * Initialize various fields of the adapter's SGE Parameters structure. 9372 */ 9373 int t4_init_sge_params(struct adapter *adapter) 9374 { 9375 struct sge_params *sge_params = &adapter->params.sge; 9376 u32 hps, qpp; 9377 unsigned int s_hps, s_qpp; 9378 9379 /* Extract the SGE Page Size for our PF. 9380 */ 9381 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 9382 s_hps = (HOSTPAGESIZEPF0_S + 9383 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 9384 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 9385 9386 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 9387 */ 9388 s_qpp = (QUEUESPERPAGEPF0_S + 9389 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 9390 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 9391 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9392 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 9393 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9394 9395 return 0; 9396 } 9397 9398 /** 9399 * t4_init_tp_params - initialize adap->params.tp 9400 * @adap: the adapter 9401 * @sleep_ok: if true we may sleep while awaiting command completion 9402 * 9403 * Initialize various fields of the adapter's TP Parameters structure. 9404 */ 9405 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9406 { 9407 u32 param, val, v; 9408 int chan, ret; 9409 9410 9411 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 9412 adap->params.tp.tre = TIMERRESOLUTION_G(v); 9413 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 9414 9415 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9416 for (chan = 0; chan < NCHAN; chan++) 9417 adap->params.tp.tx_modq[chan] = chan; 9418 9419 /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress 9420 * Configuration. 9421 */ 9422 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 9423 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) | 9424 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK)); 9425 9426 /* Read current value */ 9427 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 9428 ¶m, &val); 9429 if (ret == 0) { 9430 dev_info(adap->pdev_dev, 9431 "Current filter mode/mask 0x%x:0x%x\n", 9432 FW_PARAMS_PARAM_FILTER_MODE_G(val), 9433 FW_PARAMS_PARAM_FILTER_MASK_G(val)); 9434 adap->params.tp.vlan_pri_map = 9435 FW_PARAMS_PARAM_FILTER_MODE_G(val); 9436 adap->params.tp.filter_mask = 9437 FW_PARAMS_PARAM_FILTER_MASK_G(val); 9438 } else { 9439 dev_info(adap->pdev_dev, 9440 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n"); 9441 9442 /* Incase of older-fw (which doesn't expose the api 9443 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses 9444 * the fw api) combination, fall-back to older method of reading 9445 * the filter mode from indirect-register 9446 */ 9447 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 9448 TP_VLAN_PRI_MAP_A, sleep_ok); 9449 9450 /* With the older-fw and newer-driver combination we might run 9451 * into an issue when user wants to use hash filter region but 9452 * the filter_mask is zero, in this case filter_mask validation 9453 * is tough. To avoid that we set the filter_mask same as filter 9454 * mode, which will behave exactly as the older way of ignoring 9455 * the filter mask validation. 9456 */ 9457 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map; 9458 } 9459 9460 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 9461 TP_INGRESS_CONFIG_A, sleep_ok); 9462 9463 /* For T6, cache the adapter's compressed error vector 9464 * and passing outer header info for encapsulated packets. 9465 */ 9466 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 9467 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 9468 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 9469 } 9470 9471 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9472 * shift positions of several elements of the Compressed Filter Tuple 9473 * for this adapter which we need frequently ... 9474 */ 9475 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 9476 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 9477 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 9478 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 9479 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 9480 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 9481 PROTOCOL_F); 9482 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 9483 ETHERTYPE_F); 9484 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 9485 MACMATCH_F); 9486 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 9487 MPSHITTYPE_F); 9488 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 9489 FRAGMENTATION_F); 9490 9491 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 9492 * represents the presence of an Outer VLAN instead of a VNIC ID. 9493 */ 9494 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 9495 adap->params.tp.vnic_shift = -1; 9496 9497 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 9498 adap->params.tp.hash_filter_mask = v; 9499 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 9500 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 9501 return 0; 9502 } 9503 9504 /** 9505 * t4_filter_field_shift - calculate filter field shift 9506 * @adap: the adapter 9507 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9508 * 9509 * Return the shift position of a filter field within the Compressed 9510 * Filter Tuple. The filter field is specified via its selection bit 9511 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9512 */ 9513 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9514 { 9515 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9516 unsigned int sel; 9517 int field_shift; 9518 9519 if ((filter_mode & filter_sel) == 0) 9520 return -1; 9521 9522 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9523 switch (filter_mode & sel) { 9524 case FCOE_F: 9525 field_shift += FT_FCOE_W; 9526 break; 9527 case PORT_F: 9528 field_shift += FT_PORT_W; 9529 break; 9530 case VNIC_ID_F: 9531 field_shift += FT_VNIC_ID_W; 9532 break; 9533 case VLAN_F: 9534 field_shift += FT_VLAN_W; 9535 break; 9536 case TOS_F: 9537 field_shift += FT_TOS_W; 9538 break; 9539 case PROTOCOL_F: 9540 field_shift += FT_PROTOCOL_W; 9541 break; 9542 case ETHERTYPE_F: 9543 field_shift += FT_ETHERTYPE_W; 9544 break; 9545 case MACMATCH_F: 9546 field_shift += FT_MACMATCH_W; 9547 break; 9548 case MPSHITTYPE_F: 9549 field_shift += FT_MPSHITTYPE_W; 9550 break; 9551 case FRAGMENTATION_F: 9552 field_shift += FT_FRAGMENTATION_W; 9553 break; 9554 } 9555 } 9556 return field_shift; 9557 } 9558 9559 int t4_init_rss_mode(struct adapter *adap, int mbox) 9560 { 9561 int i, ret; 9562 struct fw_rss_vi_config_cmd rvc; 9563 9564 memset(&rvc, 0, sizeof(rvc)); 9565 9566 for_each_port(adap, i) { 9567 struct port_info *p = adap2pinfo(adap, i); 9568 9569 rvc.op_to_viid = 9570 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 9571 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9572 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 9573 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 9574 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 9575 if (ret) 9576 return ret; 9577 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 9578 } 9579 return 0; 9580 } 9581 9582 /** 9583 * t4_init_portinfo - allocate a virtual interface and initialize port_info 9584 * @pi: the port_info 9585 * @mbox: mailbox to use for the FW command 9586 * @port: physical port associated with the VI 9587 * @pf: the PF owning the VI 9588 * @vf: the VF owning the VI 9589 * @mac: the MAC address of the VI 9590 * 9591 * Allocates a virtual interface for the given physical port. If @mac is 9592 * not %NULL it contains the MAC address of the VI as assigned by FW. 9593 * @mac should be large enough to hold an Ethernet address. 9594 * Returns < 0 on error. 9595 */ 9596 int t4_init_portinfo(struct port_info *pi, int mbox, 9597 int port, int pf, int vf, u8 mac[]) 9598 { 9599 struct adapter *adapter = pi->adapter; 9600 unsigned int fw_caps = adapter->params.fw_caps_support; 9601 struct fw_port_cmd cmd; 9602 unsigned int rss_size; 9603 enum fw_port_type port_type; 9604 int mdio_addr; 9605 fw_port_cap32_t pcaps, acaps; 9606 u8 vivld = 0, vin = 0; 9607 int ret; 9608 9609 /* If we haven't yet determined whether we're talking to Firmware 9610 * which knows the new 32-bit Port Capabilities, it's time to find 9611 * out now. This will also tell new Firmware to send us Port Status 9612 * Updates using the new 32-bit Port Capabilities version of the 9613 * Port Information message. 9614 */ 9615 if (fw_caps == FW_CAPS_UNKNOWN) { 9616 u32 param, val; 9617 9618 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 9619 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 9620 val = 1; 9621 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 9622 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 9623 adapter->params.fw_caps_support = fw_caps; 9624 } 9625 9626 memset(&cmd, 0, sizeof(cmd)); 9627 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 9628 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9629 FW_PORT_CMD_PORTID_V(port)); 9630 cmd.action_to_len16 = cpu_to_be32( 9631 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9632 ? FW_PORT_ACTION_GET_PORT_INFO 9633 : FW_PORT_ACTION_GET_PORT_INFO32) | 9634 FW_LEN16(cmd)); 9635 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9636 if (ret) 9637 return ret; 9638 9639 /* Extract the various fields from the Port Information message. 9640 */ 9641 if (fw_caps == FW_CAPS16) { 9642 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9643 9644 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9645 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9646 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9647 : -1); 9648 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9649 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9650 } else { 9651 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9652 9653 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9654 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9655 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9656 : -1); 9657 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9658 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9659 } 9660 9661 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size, 9662 &vivld, &vin); 9663 if (ret < 0) 9664 return ret; 9665 9666 pi->viid = ret; 9667 pi->tx_chan = port; 9668 pi->lport = port; 9669 pi->rss_size = rss_size; 9670 pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port); 9671 9672 /* If fw supports returning the VIN as part of FW_VI_CMD, 9673 * save the returned values. 9674 */ 9675 if (adapter->params.viid_smt_extn_support) { 9676 pi->vivld = vivld; 9677 pi->vin = vin; 9678 } else { 9679 /* Retrieve the values from VIID */ 9680 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 9681 pi->vin = FW_VIID_VIN_G(pi->viid); 9682 } 9683 9684 pi->port_type = port_type; 9685 pi->mdio_addr = mdio_addr; 9686 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9687 9688 init_link_config(&pi->link_cfg, pcaps, acaps); 9689 return 0; 9690 } 9691 9692 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9693 { 9694 u8 addr[6]; 9695 int ret, i, j = 0; 9696 9697 for_each_port(adap, i) { 9698 struct port_info *pi = adap2pinfo(adap, i); 9699 9700 while ((adap->params.portvec & (1 << j)) == 0) 9701 j++; 9702 9703 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9704 if (ret) 9705 return ret; 9706 9707 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 9708 j++; 9709 } 9710 return 0; 9711 } 9712 9713 /** 9714 * t4_read_cimq_cfg - read CIM queue configuration 9715 * @adap: the adapter 9716 * @base: holds the queue base addresses in bytes 9717 * @size: holds the queue sizes in bytes 9718 * @thres: holds the queue full thresholds in bytes 9719 * 9720 * Returns the current configuration of the CIM queues, starting with 9721 * the IBQs, then the OBQs. 9722 */ 9723 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9724 { 9725 unsigned int i, v; 9726 int cim_num_obq = is_t4(adap->params.chip) ? 9727 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9728 9729 for (i = 0; i < CIM_NUM_IBQ; i++) { 9730 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9731 QUENUMSELECT_V(i)); 9732 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9733 /* value is in 256-byte units */ 9734 *base++ = CIMQBASE_G(v) * 256; 9735 *size++ = CIMQSIZE_G(v) * 256; 9736 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9737 } 9738 for (i = 0; i < cim_num_obq; i++) { 9739 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9740 QUENUMSELECT_V(i)); 9741 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9742 /* value is in 256-byte units */ 9743 *base++ = CIMQBASE_G(v) * 256; 9744 *size++ = CIMQSIZE_G(v) * 256; 9745 } 9746 } 9747 9748 /** 9749 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9750 * @adap: the adapter 9751 * @qid: the queue index 9752 * @data: where to store the queue contents 9753 * @n: capacity of @data in 32-bit words 9754 * 9755 * Reads the contents of the selected CIM queue starting at address 0 up 9756 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9757 * error and the number of 32-bit words actually read on success. 9758 */ 9759 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9760 { 9761 int i, err, attempts; 9762 unsigned int addr; 9763 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9764 9765 if (qid > 5 || (n & 3)) 9766 return -EINVAL; 9767 9768 addr = qid * nwords; 9769 if (n > nwords) 9770 n = nwords; 9771 9772 /* It might take 3-10ms before the IBQ debug read access is allowed. 9773 * Wait for 1 Sec with a delay of 1 usec. 9774 */ 9775 attempts = 1000000; 9776 9777 for (i = 0; i < n; i++, addr++) { 9778 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9779 IBQDBGEN_F); 9780 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9781 attempts, 1); 9782 if (err) 9783 return err; 9784 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9785 } 9786 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9787 return i; 9788 } 9789 9790 /** 9791 * t4_read_cim_obq - read the contents of a CIM outbound queue 9792 * @adap: the adapter 9793 * @qid: the queue index 9794 * @data: where to store the queue contents 9795 * @n: capacity of @data in 32-bit words 9796 * 9797 * Reads the contents of the selected CIM queue starting at address 0 up 9798 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9799 * error and the number of 32-bit words actually read on success. 9800 */ 9801 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9802 { 9803 int i, err; 9804 unsigned int addr, v, nwords; 9805 int cim_num_obq = is_t4(adap->params.chip) ? 9806 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9807 9808 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9809 return -EINVAL; 9810 9811 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9812 QUENUMSELECT_V(qid)); 9813 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9814 9815 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9816 nwords = CIMQSIZE_G(v) * 64; /* same */ 9817 if (n > nwords) 9818 n = nwords; 9819 9820 for (i = 0; i < n; i++, addr++) { 9821 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9822 OBQDBGEN_F); 9823 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9824 2, 1); 9825 if (err) 9826 return err; 9827 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9828 } 9829 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9830 return i; 9831 } 9832 9833 /** 9834 * t4_cim_read - read a block from CIM internal address space 9835 * @adap: the adapter 9836 * @addr: the start address within the CIM address space 9837 * @n: number of words to read 9838 * @valp: where to store the result 9839 * 9840 * Reads a block of 4-byte words from the CIM intenal address space. 9841 */ 9842 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9843 unsigned int *valp) 9844 { 9845 int ret = 0; 9846 9847 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9848 return -EBUSY; 9849 9850 for ( ; !ret && n--; addr += 4) { 9851 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9852 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9853 0, 5, 2); 9854 if (!ret) 9855 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9856 } 9857 return ret; 9858 } 9859 9860 /** 9861 * t4_cim_write - write a block into CIM internal address space 9862 * @adap: the adapter 9863 * @addr: the start address within the CIM address space 9864 * @n: number of words to write 9865 * @valp: set of values to write 9866 * 9867 * Writes a block of 4-byte words into the CIM intenal address space. 9868 */ 9869 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9870 const unsigned int *valp) 9871 { 9872 int ret = 0; 9873 9874 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9875 return -EBUSY; 9876 9877 for ( ; !ret && n--; addr += 4) { 9878 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9879 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9880 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9881 0, 5, 2); 9882 } 9883 return ret; 9884 } 9885 9886 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9887 unsigned int val) 9888 { 9889 return t4_cim_write(adap, addr, 1, &val); 9890 } 9891 9892 /** 9893 * t4_cim_read_la - read CIM LA capture buffer 9894 * @adap: the adapter 9895 * @la_buf: where to store the LA data 9896 * @wrptr: the HW write pointer within the capture buffer 9897 * 9898 * Reads the contents of the CIM LA buffer with the most recent entry at 9899 * the end of the returned data and with the entry at @wrptr first. 9900 * We try to leave the LA in the running state we find it in. 9901 */ 9902 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9903 { 9904 int i, ret; 9905 unsigned int cfg, val, idx; 9906 9907 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9908 if (ret) 9909 return ret; 9910 9911 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9912 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9913 if (ret) 9914 return ret; 9915 } 9916 9917 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9918 if (ret) 9919 goto restart; 9920 9921 idx = UPDBGLAWRPTR_G(val); 9922 if (wrptr) 9923 *wrptr = idx; 9924 9925 for (i = 0; i < adap->params.cim_la_size; i++) { 9926 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9927 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9928 if (ret) 9929 break; 9930 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9931 if (ret) 9932 break; 9933 if (val & UPDBGLARDEN_F) { 9934 ret = -ETIMEDOUT; 9935 break; 9936 } 9937 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9938 if (ret) 9939 break; 9940 9941 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9942 * identify the 32-bit portion of the full 312-bit data 9943 */ 9944 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9945 idx = (idx & 0xff0) + 0x10; 9946 else 9947 idx++; 9948 /* address can't exceed 0xfff */ 9949 idx &= UPDBGLARDPTR_M; 9950 } 9951 restart: 9952 if (cfg & UPDBGLAEN_F) { 9953 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9954 cfg & ~UPDBGLARDEN_F); 9955 if (!ret) 9956 ret = r; 9957 } 9958 return ret; 9959 } 9960 9961 /** 9962 * t4_tp_read_la - read TP LA capture buffer 9963 * @adap: the adapter 9964 * @la_buf: where to store the LA data 9965 * @wrptr: the HW write pointer within the capture buffer 9966 * 9967 * Reads the contents of the TP LA buffer with the most recent entry at 9968 * the end of the returned data and with the entry at @wrptr first. 9969 * We leave the LA in the running state we find it in. 9970 */ 9971 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9972 { 9973 bool last_incomplete; 9974 unsigned int i, cfg, val, idx; 9975 9976 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 9977 if (cfg & DBGLAENABLE_F) /* freeze LA */ 9978 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9979 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 9980 9981 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 9982 idx = DBGLAWPTR_G(val); 9983 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 9984 if (last_incomplete) 9985 idx = (idx + 1) & DBGLARPTR_M; 9986 if (wrptr) 9987 *wrptr = idx; 9988 9989 val &= 0xffff; 9990 val &= ~DBGLARPTR_V(DBGLARPTR_M); 9991 val |= adap->params.tp.la_mask; 9992 9993 for (i = 0; i < TPLA_SIZE; i++) { 9994 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 9995 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 9996 idx = (idx + 1) & DBGLARPTR_M; 9997 } 9998 9999 /* Wipe out last entry if it isn't valid */ 10000 if (last_incomplete) 10001 la_buf[TPLA_SIZE - 1] = ~0ULL; 10002 10003 if (cfg & DBGLAENABLE_F) /* restore running state */ 10004 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 10005 cfg | adap->params.tp.la_mask); 10006 } 10007 10008 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 10009 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 10010 * state for more than the Warning Threshold then we'll issue a warning about 10011 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 10012 * appears to be hung every Warning Repeat second till the situation clears. 10013 * If the situation clears, we'll note that as well. 10014 */ 10015 #define SGE_IDMA_WARN_THRESH 1 10016 #define SGE_IDMA_WARN_REPEAT 300 10017 10018 /** 10019 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 10020 * @adapter: the adapter 10021 * @idma: the adapter IDMA Monitor state 10022 * 10023 * Initialize the state of an SGE Ingress DMA Monitor. 10024 */ 10025 void t4_idma_monitor_init(struct adapter *adapter, 10026 struct sge_idma_monitor_state *idma) 10027 { 10028 /* Initialize the state variables for detecting an SGE Ingress DMA 10029 * hang. The SGE has internal counters which count up on each clock 10030 * tick whenever the SGE finds its Ingress DMA State Engines in the 10031 * same state they were on the previous clock tick. The clock used is 10032 * the Core Clock so we have a limit on the maximum "time" they can 10033 * record; typically a very small number of seconds. For instance, 10034 * with a 600MHz Core Clock, we can only count up to a bit more than 10035 * 7s. So we'll synthesize a larger counter in order to not run the 10036 * risk of having the "timers" overflow and give us the flexibility to 10037 * maintain a Hung SGE State Machine of our own which operates across 10038 * a longer time frame. 10039 */ 10040 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 10041 idma->idma_stalled[0] = 0; 10042 idma->idma_stalled[1] = 0; 10043 } 10044 10045 /** 10046 * t4_idma_monitor - monitor SGE Ingress DMA state 10047 * @adapter: the adapter 10048 * @idma: the adapter IDMA Monitor state 10049 * @hz: number of ticks/second 10050 * @ticks: number of ticks since the last IDMA Monitor call 10051 */ 10052 void t4_idma_monitor(struct adapter *adapter, 10053 struct sge_idma_monitor_state *idma, 10054 int hz, int ticks) 10055 { 10056 int i, idma_same_state_cnt[2]; 10057 10058 /* Read the SGE Debug Ingress DMA Same State Count registers. These 10059 * are counters inside the SGE which count up on each clock when the 10060 * SGE finds its Ingress DMA State Engines in the same states they 10061 * were in the previous clock. The counters will peg out at 10062 * 0xffffffff without wrapping around so once they pass the 1s 10063 * threshold they'll stay above that till the IDMA state changes. 10064 */ 10065 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 10066 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 10067 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10068 10069 for (i = 0; i < 2; i++) { 10070 u32 debug0, debug11; 10071 10072 /* If the Ingress DMA Same State Counter ("timer") is less 10073 * than 1s, then we can reset our synthesized Stall Timer and 10074 * continue. If we have previously emitted warnings about a 10075 * potential stalled Ingress Queue, issue a note indicating 10076 * that the Ingress Queue has resumed forward progress. 10077 */ 10078 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 10079 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 10080 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 10081 "resumed after %d seconds\n", 10082 i, idma->idma_qid[i], 10083 idma->idma_stalled[i] / hz); 10084 idma->idma_stalled[i] = 0; 10085 continue; 10086 } 10087 10088 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 10089 * domain. The first time we get here it'll be because we 10090 * passed the 1s Threshold; each additional time it'll be 10091 * because the RX Timer Callback is being fired on its regular 10092 * schedule. 10093 * 10094 * If the stall is below our Potential Hung Ingress Queue 10095 * Warning Threshold, continue. 10096 */ 10097 if (idma->idma_stalled[i] == 0) { 10098 idma->idma_stalled[i] = hz; 10099 idma->idma_warn[i] = 0; 10100 } else { 10101 idma->idma_stalled[i] += ticks; 10102 idma->idma_warn[i] -= ticks; 10103 } 10104 10105 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 10106 continue; 10107 10108 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 10109 */ 10110 if (idma->idma_warn[i] > 0) 10111 continue; 10112 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 10113 10114 /* Read and save the SGE IDMA State and Queue ID information. 10115 * We do this every time in case it changes across time ... 10116 * can't be too careful ... 10117 */ 10118 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 10119 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10120 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 10121 10122 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 10123 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10124 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 10125 10126 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 10127 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 10128 i, idma->idma_qid[i], idma->idma_state[i], 10129 idma->idma_stalled[i] / hz, 10130 debug0, debug11); 10131 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 10132 } 10133 } 10134 10135 /** 10136 * t4_load_cfg - download config file 10137 * @adap: the adapter 10138 * @cfg_data: the cfg text file to write 10139 * @size: text file size 10140 * 10141 * Write the supplied config text file to the card's serial flash. 10142 */ 10143 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10144 { 10145 int ret, i, n, cfg_addr; 10146 unsigned int addr; 10147 unsigned int flash_cfg_start_sec; 10148 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10149 10150 cfg_addr = t4_flash_cfg_addr(adap); 10151 if (cfg_addr < 0) 10152 return cfg_addr; 10153 10154 addr = cfg_addr; 10155 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10156 10157 if (size > FLASH_CFG_MAX_SIZE) { 10158 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 10159 FLASH_CFG_MAX_SIZE); 10160 return -EFBIG; 10161 } 10162 10163 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 10164 sf_sec_size); 10165 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10166 flash_cfg_start_sec + i - 1); 10167 /* If size == 0 then we're simply erasing the FLASH sectors associated 10168 * with the on-adapter Firmware Configuration File. 10169 */ 10170 if (ret || size == 0) 10171 goto out; 10172 10173 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10174 for (i = 0; i < size; i += SF_PAGE_SIZE) { 10175 if ((size - i) < SF_PAGE_SIZE) 10176 n = size - i; 10177 else 10178 n = SF_PAGE_SIZE; 10179 ret = t4_write_flash(adap, addr, n, cfg_data); 10180 if (ret) 10181 goto out; 10182 10183 addr += SF_PAGE_SIZE; 10184 cfg_data += SF_PAGE_SIZE; 10185 } 10186 10187 out: 10188 if (ret) 10189 dev_err(adap->pdev_dev, "config file %s failed %d\n", 10190 (size == 0 ? "clear" : "download"), ret); 10191 return ret; 10192 } 10193 10194 /** 10195 * t4_set_vf_mac - Set MAC address for the specified VF 10196 * @adapter: The adapter 10197 * @vf: one of the VFs instantiated by the specified PF 10198 * @naddr: the number of MAC addresses 10199 * @addr: the MAC address(es) to be set to the specified VF 10200 */ 10201 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 10202 unsigned int naddr, u8 *addr) 10203 { 10204 struct fw_acl_mac_cmd cmd; 10205 10206 memset(&cmd, 0, sizeof(cmd)); 10207 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 10208 FW_CMD_REQUEST_F | 10209 FW_CMD_WRITE_F | 10210 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 10211 FW_ACL_MAC_CMD_VFN_V(vf)); 10212 10213 /* Note: Do not enable the ACL */ 10214 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 10215 cmd.nmac = naddr; 10216 10217 switch (adapter->pf) { 10218 case 3: 10219 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 10220 break; 10221 case 2: 10222 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 10223 break; 10224 case 1: 10225 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 10226 break; 10227 case 0: 10228 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 10229 break; 10230 } 10231 10232 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 10233 } 10234 10235 /** 10236 * t4_read_pace_tbl - read the pace table 10237 * @adap: the adapter 10238 * @pace_vals: holds the returned values 10239 * 10240 * Returns the values of TP's pace table in microseconds. 10241 */ 10242 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 10243 { 10244 unsigned int i, v; 10245 10246 for (i = 0; i < NTX_SCHED; i++) { 10247 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 10248 v = t4_read_reg(adap, TP_PACE_TABLE_A); 10249 pace_vals[i] = dack_ticks_to_usec(adap, v); 10250 } 10251 } 10252 10253 /** 10254 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 10255 * @adap: the adapter 10256 * @sched: the scheduler index 10257 * @kbps: the byte rate in Kbps 10258 * @ipg: the interpacket delay in tenths of nanoseconds 10259 * @sleep_ok: if true we may sleep while awaiting command completion 10260 * 10261 * Return the current configuration of a HW Tx scheduler. 10262 */ 10263 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 10264 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 10265 { 10266 unsigned int v, addr, bpt, cpt; 10267 10268 if (kbps) { 10269 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 10270 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10271 if (sched & 1) 10272 v >>= 16; 10273 bpt = (v >> 8) & 0xff; 10274 cpt = v & 0xff; 10275 if (!cpt) { 10276 *kbps = 0; /* scheduler disabled */ 10277 } else { 10278 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 10279 *kbps = (v * bpt) / 125; 10280 } 10281 } 10282 if (ipg) { 10283 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 10284 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10285 if (sched & 1) 10286 v >>= 16; 10287 v &= 0xffff; 10288 *ipg = (10000 * v) / core_ticks_per_usec(adap); 10289 } 10290 } 10291 10292 /* t4_sge_ctxt_rd - read an SGE context through FW 10293 * @adap: the adapter 10294 * @mbox: mailbox to use for the FW command 10295 * @cid: the context id 10296 * @ctype: the context type 10297 * @data: where to store the context data 10298 * 10299 * Issues a FW command through the given mailbox to read an SGE context. 10300 */ 10301 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 10302 enum ctxt_type ctype, u32 *data) 10303 { 10304 struct fw_ldst_cmd c; 10305 int ret; 10306 10307 if (ctype == CTXT_FLM) 10308 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10309 else 10310 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10311 10312 memset(&c, 0, sizeof(c)); 10313 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10314 FW_CMD_REQUEST_F | FW_CMD_READ_F | 10315 FW_LDST_CMD_ADDRSPACE_V(ret)); 10316 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10317 c.u.idctxt.physid = cpu_to_be32(cid); 10318 10319 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10320 if (ret == 0) { 10321 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10322 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10323 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10324 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10325 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10326 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10327 } 10328 return ret; 10329 } 10330 10331 /** 10332 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10333 * @adap: the adapter 10334 * @cid: the context id 10335 * @ctype: the context type 10336 * @data: where to store the context data 10337 * 10338 * Reads an SGE context directly, bypassing FW. This is only for 10339 * debugging when FW is unavailable. 10340 */ 10341 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 10342 enum ctxt_type ctype, u32 *data) 10343 { 10344 int i, ret; 10345 10346 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 10347 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 10348 if (!ret) 10349 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 10350 *data++ = t4_read_reg(adap, i); 10351 return ret; 10352 } 10353 10354 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 10355 int rateunit, int ratemode, int channel, int class, 10356 int minrate, int maxrate, int weight, int pktsize) 10357 { 10358 struct fw_sched_cmd cmd; 10359 10360 memset(&cmd, 0, sizeof(cmd)); 10361 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 10362 FW_CMD_REQUEST_F | 10363 FW_CMD_WRITE_F); 10364 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10365 10366 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10367 cmd.u.params.type = type; 10368 cmd.u.params.level = level; 10369 cmd.u.params.mode = mode; 10370 cmd.u.params.ch = channel; 10371 cmd.u.params.cl = class; 10372 cmd.u.params.unit = rateunit; 10373 cmd.u.params.rate = ratemode; 10374 cmd.u.params.min = cpu_to_be32(minrate); 10375 cmd.u.params.max = cpu_to_be32(maxrate); 10376 cmd.u.params.weight = cpu_to_be16(weight); 10377 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10378 10379 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 10380 NULL, 1); 10381 } 10382 10383 /** 10384 * t4_i2c_rd - read I2C data from adapter 10385 * @adap: the adapter 10386 * @port: Port number if per-port device; <0 if not 10387 * @devid: per-port device ID or absolute device ID 10388 * @offset: byte offset into device I2C space 10389 * @len: byte length of I2C space data 10390 * @buf: buffer in which to return I2C data 10391 * 10392 * Reads the I2C data from the indicated device and location. 10393 */ 10394 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, 10395 unsigned int devid, unsigned int offset, 10396 unsigned int len, u8 *buf) 10397 { 10398 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 10399 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 10400 int ret = 0; 10401 10402 if (len > I2C_PAGE_SIZE) 10403 return -EINVAL; 10404 10405 /* Dont allow reads that spans multiple pages */ 10406 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 10407 return -EINVAL; 10408 10409 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10410 ldst_cmd.op_to_addrspace = 10411 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10412 FW_CMD_REQUEST_F | 10413 FW_CMD_READ_F | 10414 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C)); 10415 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 10416 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 10417 ldst_cmd.u.i2c.did = devid; 10418 10419 while (len > 0) { 10420 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 10421 10422 ldst_cmd.u.i2c.boffset = offset; 10423 ldst_cmd.u.i2c.blen = i2c_len; 10424 10425 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 10426 &ldst_rpl); 10427 if (ret) 10428 break; 10429 10430 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 10431 offset += i2c_len; 10432 buf += i2c_len; 10433 len -= i2c_len; 10434 } 10435 10436 return ret; 10437 } 10438 10439 /** 10440 * t4_set_vlan_acl - Set a VLAN id for the specified VF 10441 * @adapter: the adapter 10442 * @mbox: mailbox to use for the FW command 10443 * @vf: one of the VFs instantiated by the specified PF 10444 * @vlan: The vlanid to be set 10445 */ 10446 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, 10447 u16 vlan) 10448 { 10449 struct fw_acl_vlan_cmd vlan_cmd; 10450 unsigned int enable; 10451 10452 enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0); 10453 memset(&vlan_cmd, 0, sizeof(vlan_cmd)); 10454 vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | 10455 FW_CMD_REQUEST_F | 10456 FW_CMD_WRITE_F | 10457 FW_CMD_EXEC_F | 10458 FW_ACL_VLAN_CMD_PFN_V(adap->pf) | 10459 FW_ACL_VLAN_CMD_VFN_V(vf)); 10460 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); 10461 /* Drop all packets that donot match vlan id */ 10462 vlan_cmd.dropnovlan_fm = (enable 10463 ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F | 10464 FW_ACL_VLAN_CMD_FM_F) : 0); 10465 if (enable != 0) { 10466 vlan_cmd.nvlan = 1; 10467 vlan_cmd.vlanid[0] = cpu_to_be16(vlan); 10468 } 10469 10470 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); 10471 } 10472