1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~CXGB4_FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rarely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boundaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9820, 0x983c,
1383 		0x9850, 0x9864,
1384 		0x9c00, 0x9c6c,
1385 		0x9c80, 0x9cec,
1386 		0x9d00, 0x9d6c,
1387 		0x9d80, 0x9dec,
1388 		0x9e00, 0x9e6c,
1389 		0x9e80, 0x9eec,
1390 		0x9f00, 0x9f6c,
1391 		0x9f80, 0xa020,
1392 		0xd004, 0xd004,
1393 		0xd010, 0xd03c,
1394 		0xdfc0, 0xdfe0,
1395 		0xe000, 0x1106c,
1396 		0x11074, 0x11088,
1397 		0x1109c, 0x1117c,
1398 		0x11190, 0x11204,
1399 		0x19040, 0x1906c,
1400 		0x19078, 0x19080,
1401 		0x1908c, 0x190e8,
1402 		0x190f0, 0x190f8,
1403 		0x19100, 0x19110,
1404 		0x19120, 0x19124,
1405 		0x19150, 0x19194,
1406 		0x1919c, 0x191b0,
1407 		0x191d0, 0x191e8,
1408 		0x19238, 0x19290,
1409 		0x193f8, 0x19428,
1410 		0x19430, 0x19444,
1411 		0x1944c, 0x1946c,
1412 		0x19474, 0x19474,
1413 		0x19490, 0x194cc,
1414 		0x194f0, 0x194f8,
1415 		0x19c00, 0x19c08,
1416 		0x19c10, 0x19c60,
1417 		0x19c94, 0x19ce4,
1418 		0x19cf0, 0x19d40,
1419 		0x19d50, 0x19d94,
1420 		0x19da0, 0x19de8,
1421 		0x19df0, 0x19e10,
1422 		0x19e50, 0x19e90,
1423 		0x19ea0, 0x19f24,
1424 		0x19f34, 0x19f34,
1425 		0x19f40, 0x19f50,
1426 		0x19f90, 0x19fb4,
1427 		0x19fc4, 0x19fe4,
1428 		0x1a000, 0x1a004,
1429 		0x1a010, 0x1a06c,
1430 		0x1a0b0, 0x1a0e4,
1431 		0x1a0ec, 0x1a0f8,
1432 		0x1a100, 0x1a108,
1433 		0x1a114, 0x1a120,
1434 		0x1a128, 0x1a130,
1435 		0x1a138, 0x1a138,
1436 		0x1a190, 0x1a1c4,
1437 		0x1a1fc, 0x1a1fc,
1438 		0x1e008, 0x1e00c,
1439 		0x1e040, 0x1e044,
1440 		0x1e04c, 0x1e04c,
1441 		0x1e284, 0x1e290,
1442 		0x1e2c0, 0x1e2c0,
1443 		0x1e2e0, 0x1e2e0,
1444 		0x1e300, 0x1e384,
1445 		0x1e3c0, 0x1e3c8,
1446 		0x1e408, 0x1e40c,
1447 		0x1e440, 0x1e444,
1448 		0x1e44c, 0x1e44c,
1449 		0x1e684, 0x1e690,
1450 		0x1e6c0, 0x1e6c0,
1451 		0x1e6e0, 0x1e6e0,
1452 		0x1e700, 0x1e784,
1453 		0x1e7c0, 0x1e7c8,
1454 		0x1e808, 0x1e80c,
1455 		0x1e840, 0x1e844,
1456 		0x1e84c, 0x1e84c,
1457 		0x1ea84, 0x1ea90,
1458 		0x1eac0, 0x1eac0,
1459 		0x1eae0, 0x1eae0,
1460 		0x1eb00, 0x1eb84,
1461 		0x1ebc0, 0x1ebc8,
1462 		0x1ec08, 0x1ec0c,
1463 		0x1ec40, 0x1ec44,
1464 		0x1ec4c, 0x1ec4c,
1465 		0x1ee84, 0x1ee90,
1466 		0x1eec0, 0x1eec0,
1467 		0x1eee0, 0x1eee0,
1468 		0x1ef00, 0x1ef84,
1469 		0x1efc0, 0x1efc8,
1470 		0x1f008, 0x1f00c,
1471 		0x1f040, 0x1f044,
1472 		0x1f04c, 0x1f04c,
1473 		0x1f284, 0x1f290,
1474 		0x1f2c0, 0x1f2c0,
1475 		0x1f2e0, 0x1f2e0,
1476 		0x1f300, 0x1f384,
1477 		0x1f3c0, 0x1f3c8,
1478 		0x1f408, 0x1f40c,
1479 		0x1f440, 0x1f444,
1480 		0x1f44c, 0x1f44c,
1481 		0x1f684, 0x1f690,
1482 		0x1f6c0, 0x1f6c0,
1483 		0x1f6e0, 0x1f6e0,
1484 		0x1f700, 0x1f784,
1485 		0x1f7c0, 0x1f7c8,
1486 		0x1f808, 0x1f80c,
1487 		0x1f840, 0x1f844,
1488 		0x1f84c, 0x1f84c,
1489 		0x1fa84, 0x1fa90,
1490 		0x1fac0, 0x1fac0,
1491 		0x1fae0, 0x1fae0,
1492 		0x1fb00, 0x1fb84,
1493 		0x1fbc0, 0x1fbc8,
1494 		0x1fc08, 0x1fc0c,
1495 		0x1fc40, 0x1fc44,
1496 		0x1fc4c, 0x1fc4c,
1497 		0x1fe84, 0x1fe90,
1498 		0x1fec0, 0x1fec0,
1499 		0x1fee0, 0x1fee0,
1500 		0x1ff00, 0x1ff84,
1501 		0x1ffc0, 0x1ffc8,
1502 		0x30000, 0x30030,
1503 		0x30100, 0x30144,
1504 		0x30190, 0x301a0,
1505 		0x301a8, 0x301b8,
1506 		0x301c4, 0x301c8,
1507 		0x301d0, 0x301d0,
1508 		0x30200, 0x30318,
1509 		0x30400, 0x304b4,
1510 		0x304c0, 0x3052c,
1511 		0x30540, 0x3061c,
1512 		0x30800, 0x30828,
1513 		0x30834, 0x30834,
1514 		0x308c0, 0x30908,
1515 		0x30910, 0x309ac,
1516 		0x30a00, 0x30a14,
1517 		0x30a1c, 0x30a2c,
1518 		0x30a44, 0x30a50,
1519 		0x30a74, 0x30a74,
1520 		0x30a7c, 0x30afc,
1521 		0x30b08, 0x30c24,
1522 		0x30d00, 0x30d00,
1523 		0x30d08, 0x30d14,
1524 		0x30d1c, 0x30d20,
1525 		0x30d3c, 0x30d3c,
1526 		0x30d48, 0x30d50,
1527 		0x31200, 0x3120c,
1528 		0x31220, 0x31220,
1529 		0x31240, 0x31240,
1530 		0x31600, 0x3160c,
1531 		0x31a00, 0x31a1c,
1532 		0x31e00, 0x31e20,
1533 		0x31e38, 0x31e3c,
1534 		0x31e80, 0x31e80,
1535 		0x31e88, 0x31ea8,
1536 		0x31eb0, 0x31eb4,
1537 		0x31ec8, 0x31ed4,
1538 		0x31fb8, 0x32004,
1539 		0x32200, 0x32200,
1540 		0x32208, 0x32240,
1541 		0x32248, 0x32280,
1542 		0x32288, 0x322c0,
1543 		0x322c8, 0x322fc,
1544 		0x32600, 0x32630,
1545 		0x32a00, 0x32abc,
1546 		0x32b00, 0x32b10,
1547 		0x32b20, 0x32b30,
1548 		0x32b40, 0x32b50,
1549 		0x32b60, 0x32b70,
1550 		0x33000, 0x33028,
1551 		0x33030, 0x33048,
1552 		0x33060, 0x33068,
1553 		0x33070, 0x3309c,
1554 		0x330f0, 0x33128,
1555 		0x33130, 0x33148,
1556 		0x33160, 0x33168,
1557 		0x33170, 0x3319c,
1558 		0x331f0, 0x33238,
1559 		0x33240, 0x33240,
1560 		0x33248, 0x33250,
1561 		0x3325c, 0x33264,
1562 		0x33270, 0x332b8,
1563 		0x332c0, 0x332e4,
1564 		0x332f8, 0x33338,
1565 		0x33340, 0x33340,
1566 		0x33348, 0x33350,
1567 		0x3335c, 0x33364,
1568 		0x33370, 0x333b8,
1569 		0x333c0, 0x333e4,
1570 		0x333f8, 0x33428,
1571 		0x33430, 0x33448,
1572 		0x33460, 0x33468,
1573 		0x33470, 0x3349c,
1574 		0x334f0, 0x33528,
1575 		0x33530, 0x33548,
1576 		0x33560, 0x33568,
1577 		0x33570, 0x3359c,
1578 		0x335f0, 0x33638,
1579 		0x33640, 0x33640,
1580 		0x33648, 0x33650,
1581 		0x3365c, 0x33664,
1582 		0x33670, 0x336b8,
1583 		0x336c0, 0x336e4,
1584 		0x336f8, 0x33738,
1585 		0x33740, 0x33740,
1586 		0x33748, 0x33750,
1587 		0x3375c, 0x33764,
1588 		0x33770, 0x337b8,
1589 		0x337c0, 0x337e4,
1590 		0x337f8, 0x337fc,
1591 		0x33814, 0x33814,
1592 		0x3382c, 0x3382c,
1593 		0x33880, 0x3388c,
1594 		0x338e8, 0x338ec,
1595 		0x33900, 0x33928,
1596 		0x33930, 0x33948,
1597 		0x33960, 0x33968,
1598 		0x33970, 0x3399c,
1599 		0x339f0, 0x33a38,
1600 		0x33a40, 0x33a40,
1601 		0x33a48, 0x33a50,
1602 		0x33a5c, 0x33a64,
1603 		0x33a70, 0x33ab8,
1604 		0x33ac0, 0x33ae4,
1605 		0x33af8, 0x33b10,
1606 		0x33b28, 0x33b28,
1607 		0x33b3c, 0x33b50,
1608 		0x33bf0, 0x33c10,
1609 		0x33c28, 0x33c28,
1610 		0x33c3c, 0x33c50,
1611 		0x33cf0, 0x33cfc,
1612 		0x34000, 0x34030,
1613 		0x34100, 0x34144,
1614 		0x34190, 0x341a0,
1615 		0x341a8, 0x341b8,
1616 		0x341c4, 0x341c8,
1617 		0x341d0, 0x341d0,
1618 		0x34200, 0x34318,
1619 		0x34400, 0x344b4,
1620 		0x344c0, 0x3452c,
1621 		0x34540, 0x3461c,
1622 		0x34800, 0x34828,
1623 		0x34834, 0x34834,
1624 		0x348c0, 0x34908,
1625 		0x34910, 0x349ac,
1626 		0x34a00, 0x34a14,
1627 		0x34a1c, 0x34a2c,
1628 		0x34a44, 0x34a50,
1629 		0x34a74, 0x34a74,
1630 		0x34a7c, 0x34afc,
1631 		0x34b08, 0x34c24,
1632 		0x34d00, 0x34d00,
1633 		0x34d08, 0x34d14,
1634 		0x34d1c, 0x34d20,
1635 		0x34d3c, 0x34d3c,
1636 		0x34d48, 0x34d50,
1637 		0x35200, 0x3520c,
1638 		0x35220, 0x35220,
1639 		0x35240, 0x35240,
1640 		0x35600, 0x3560c,
1641 		0x35a00, 0x35a1c,
1642 		0x35e00, 0x35e20,
1643 		0x35e38, 0x35e3c,
1644 		0x35e80, 0x35e80,
1645 		0x35e88, 0x35ea8,
1646 		0x35eb0, 0x35eb4,
1647 		0x35ec8, 0x35ed4,
1648 		0x35fb8, 0x36004,
1649 		0x36200, 0x36200,
1650 		0x36208, 0x36240,
1651 		0x36248, 0x36280,
1652 		0x36288, 0x362c0,
1653 		0x362c8, 0x362fc,
1654 		0x36600, 0x36630,
1655 		0x36a00, 0x36abc,
1656 		0x36b00, 0x36b10,
1657 		0x36b20, 0x36b30,
1658 		0x36b40, 0x36b50,
1659 		0x36b60, 0x36b70,
1660 		0x37000, 0x37028,
1661 		0x37030, 0x37048,
1662 		0x37060, 0x37068,
1663 		0x37070, 0x3709c,
1664 		0x370f0, 0x37128,
1665 		0x37130, 0x37148,
1666 		0x37160, 0x37168,
1667 		0x37170, 0x3719c,
1668 		0x371f0, 0x37238,
1669 		0x37240, 0x37240,
1670 		0x37248, 0x37250,
1671 		0x3725c, 0x37264,
1672 		0x37270, 0x372b8,
1673 		0x372c0, 0x372e4,
1674 		0x372f8, 0x37338,
1675 		0x37340, 0x37340,
1676 		0x37348, 0x37350,
1677 		0x3735c, 0x37364,
1678 		0x37370, 0x373b8,
1679 		0x373c0, 0x373e4,
1680 		0x373f8, 0x37428,
1681 		0x37430, 0x37448,
1682 		0x37460, 0x37468,
1683 		0x37470, 0x3749c,
1684 		0x374f0, 0x37528,
1685 		0x37530, 0x37548,
1686 		0x37560, 0x37568,
1687 		0x37570, 0x3759c,
1688 		0x375f0, 0x37638,
1689 		0x37640, 0x37640,
1690 		0x37648, 0x37650,
1691 		0x3765c, 0x37664,
1692 		0x37670, 0x376b8,
1693 		0x376c0, 0x376e4,
1694 		0x376f8, 0x37738,
1695 		0x37740, 0x37740,
1696 		0x37748, 0x37750,
1697 		0x3775c, 0x37764,
1698 		0x37770, 0x377b8,
1699 		0x377c0, 0x377e4,
1700 		0x377f8, 0x377fc,
1701 		0x37814, 0x37814,
1702 		0x3782c, 0x3782c,
1703 		0x37880, 0x3788c,
1704 		0x378e8, 0x378ec,
1705 		0x37900, 0x37928,
1706 		0x37930, 0x37948,
1707 		0x37960, 0x37968,
1708 		0x37970, 0x3799c,
1709 		0x379f0, 0x37a38,
1710 		0x37a40, 0x37a40,
1711 		0x37a48, 0x37a50,
1712 		0x37a5c, 0x37a64,
1713 		0x37a70, 0x37ab8,
1714 		0x37ac0, 0x37ae4,
1715 		0x37af8, 0x37b10,
1716 		0x37b28, 0x37b28,
1717 		0x37b3c, 0x37b50,
1718 		0x37bf0, 0x37c10,
1719 		0x37c28, 0x37c28,
1720 		0x37c3c, 0x37c50,
1721 		0x37cf0, 0x37cfc,
1722 		0x38000, 0x38030,
1723 		0x38100, 0x38144,
1724 		0x38190, 0x381a0,
1725 		0x381a8, 0x381b8,
1726 		0x381c4, 0x381c8,
1727 		0x381d0, 0x381d0,
1728 		0x38200, 0x38318,
1729 		0x38400, 0x384b4,
1730 		0x384c0, 0x3852c,
1731 		0x38540, 0x3861c,
1732 		0x38800, 0x38828,
1733 		0x38834, 0x38834,
1734 		0x388c0, 0x38908,
1735 		0x38910, 0x389ac,
1736 		0x38a00, 0x38a14,
1737 		0x38a1c, 0x38a2c,
1738 		0x38a44, 0x38a50,
1739 		0x38a74, 0x38a74,
1740 		0x38a7c, 0x38afc,
1741 		0x38b08, 0x38c24,
1742 		0x38d00, 0x38d00,
1743 		0x38d08, 0x38d14,
1744 		0x38d1c, 0x38d20,
1745 		0x38d3c, 0x38d3c,
1746 		0x38d48, 0x38d50,
1747 		0x39200, 0x3920c,
1748 		0x39220, 0x39220,
1749 		0x39240, 0x39240,
1750 		0x39600, 0x3960c,
1751 		0x39a00, 0x39a1c,
1752 		0x39e00, 0x39e20,
1753 		0x39e38, 0x39e3c,
1754 		0x39e80, 0x39e80,
1755 		0x39e88, 0x39ea8,
1756 		0x39eb0, 0x39eb4,
1757 		0x39ec8, 0x39ed4,
1758 		0x39fb8, 0x3a004,
1759 		0x3a200, 0x3a200,
1760 		0x3a208, 0x3a240,
1761 		0x3a248, 0x3a280,
1762 		0x3a288, 0x3a2c0,
1763 		0x3a2c8, 0x3a2fc,
1764 		0x3a600, 0x3a630,
1765 		0x3aa00, 0x3aabc,
1766 		0x3ab00, 0x3ab10,
1767 		0x3ab20, 0x3ab30,
1768 		0x3ab40, 0x3ab50,
1769 		0x3ab60, 0x3ab70,
1770 		0x3b000, 0x3b028,
1771 		0x3b030, 0x3b048,
1772 		0x3b060, 0x3b068,
1773 		0x3b070, 0x3b09c,
1774 		0x3b0f0, 0x3b128,
1775 		0x3b130, 0x3b148,
1776 		0x3b160, 0x3b168,
1777 		0x3b170, 0x3b19c,
1778 		0x3b1f0, 0x3b238,
1779 		0x3b240, 0x3b240,
1780 		0x3b248, 0x3b250,
1781 		0x3b25c, 0x3b264,
1782 		0x3b270, 0x3b2b8,
1783 		0x3b2c0, 0x3b2e4,
1784 		0x3b2f8, 0x3b338,
1785 		0x3b340, 0x3b340,
1786 		0x3b348, 0x3b350,
1787 		0x3b35c, 0x3b364,
1788 		0x3b370, 0x3b3b8,
1789 		0x3b3c0, 0x3b3e4,
1790 		0x3b3f8, 0x3b428,
1791 		0x3b430, 0x3b448,
1792 		0x3b460, 0x3b468,
1793 		0x3b470, 0x3b49c,
1794 		0x3b4f0, 0x3b528,
1795 		0x3b530, 0x3b548,
1796 		0x3b560, 0x3b568,
1797 		0x3b570, 0x3b59c,
1798 		0x3b5f0, 0x3b638,
1799 		0x3b640, 0x3b640,
1800 		0x3b648, 0x3b650,
1801 		0x3b65c, 0x3b664,
1802 		0x3b670, 0x3b6b8,
1803 		0x3b6c0, 0x3b6e4,
1804 		0x3b6f8, 0x3b738,
1805 		0x3b740, 0x3b740,
1806 		0x3b748, 0x3b750,
1807 		0x3b75c, 0x3b764,
1808 		0x3b770, 0x3b7b8,
1809 		0x3b7c0, 0x3b7e4,
1810 		0x3b7f8, 0x3b7fc,
1811 		0x3b814, 0x3b814,
1812 		0x3b82c, 0x3b82c,
1813 		0x3b880, 0x3b88c,
1814 		0x3b8e8, 0x3b8ec,
1815 		0x3b900, 0x3b928,
1816 		0x3b930, 0x3b948,
1817 		0x3b960, 0x3b968,
1818 		0x3b970, 0x3b99c,
1819 		0x3b9f0, 0x3ba38,
1820 		0x3ba40, 0x3ba40,
1821 		0x3ba48, 0x3ba50,
1822 		0x3ba5c, 0x3ba64,
1823 		0x3ba70, 0x3bab8,
1824 		0x3bac0, 0x3bae4,
1825 		0x3baf8, 0x3bb10,
1826 		0x3bb28, 0x3bb28,
1827 		0x3bb3c, 0x3bb50,
1828 		0x3bbf0, 0x3bc10,
1829 		0x3bc28, 0x3bc28,
1830 		0x3bc3c, 0x3bc50,
1831 		0x3bcf0, 0x3bcfc,
1832 		0x3c000, 0x3c030,
1833 		0x3c100, 0x3c144,
1834 		0x3c190, 0x3c1a0,
1835 		0x3c1a8, 0x3c1b8,
1836 		0x3c1c4, 0x3c1c8,
1837 		0x3c1d0, 0x3c1d0,
1838 		0x3c200, 0x3c318,
1839 		0x3c400, 0x3c4b4,
1840 		0x3c4c0, 0x3c52c,
1841 		0x3c540, 0x3c61c,
1842 		0x3c800, 0x3c828,
1843 		0x3c834, 0x3c834,
1844 		0x3c8c0, 0x3c908,
1845 		0x3c910, 0x3c9ac,
1846 		0x3ca00, 0x3ca14,
1847 		0x3ca1c, 0x3ca2c,
1848 		0x3ca44, 0x3ca50,
1849 		0x3ca74, 0x3ca74,
1850 		0x3ca7c, 0x3cafc,
1851 		0x3cb08, 0x3cc24,
1852 		0x3cd00, 0x3cd00,
1853 		0x3cd08, 0x3cd14,
1854 		0x3cd1c, 0x3cd20,
1855 		0x3cd3c, 0x3cd3c,
1856 		0x3cd48, 0x3cd50,
1857 		0x3d200, 0x3d20c,
1858 		0x3d220, 0x3d220,
1859 		0x3d240, 0x3d240,
1860 		0x3d600, 0x3d60c,
1861 		0x3da00, 0x3da1c,
1862 		0x3de00, 0x3de20,
1863 		0x3de38, 0x3de3c,
1864 		0x3de80, 0x3de80,
1865 		0x3de88, 0x3dea8,
1866 		0x3deb0, 0x3deb4,
1867 		0x3dec8, 0x3ded4,
1868 		0x3dfb8, 0x3e004,
1869 		0x3e200, 0x3e200,
1870 		0x3e208, 0x3e240,
1871 		0x3e248, 0x3e280,
1872 		0x3e288, 0x3e2c0,
1873 		0x3e2c8, 0x3e2fc,
1874 		0x3e600, 0x3e630,
1875 		0x3ea00, 0x3eabc,
1876 		0x3eb00, 0x3eb10,
1877 		0x3eb20, 0x3eb30,
1878 		0x3eb40, 0x3eb50,
1879 		0x3eb60, 0x3eb70,
1880 		0x3f000, 0x3f028,
1881 		0x3f030, 0x3f048,
1882 		0x3f060, 0x3f068,
1883 		0x3f070, 0x3f09c,
1884 		0x3f0f0, 0x3f128,
1885 		0x3f130, 0x3f148,
1886 		0x3f160, 0x3f168,
1887 		0x3f170, 0x3f19c,
1888 		0x3f1f0, 0x3f238,
1889 		0x3f240, 0x3f240,
1890 		0x3f248, 0x3f250,
1891 		0x3f25c, 0x3f264,
1892 		0x3f270, 0x3f2b8,
1893 		0x3f2c0, 0x3f2e4,
1894 		0x3f2f8, 0x3f338,
1895 		0x3f340, 0x3f340,
1896 		0x3f348, 0x3f350,
1897 		0x3f35c, 0x3f364,
1898 		0x3f370, 0x3f3b8,
1899 		0x3f3c0, 0x3f3e4,
1900 		0x3f3f8, 0x3f428,
1901 		0x3f430, 0x3f448,
1902 		0x3f460, 0x3f468,
1903 		0x3f470, 0x3f49c,
1904 		0x3f4f0, 0x3f528,
1905 		0x3f530, 0x3f548,
1906 		0x3f560, 0x3f568,
1907 		0x3f570, 0x3f59c,
1908 		0x3f5f0, 0x3f638,
1909 		0x3f640, 0x3f640,
1910 		0x3f648, 0x3f650,
1911 		0x3f65c, 0x3f664,
1912 		0x3f670, 0x3f6b8,
1913 		0x3f6c0, 0x3f6e4,
1914 		0x3f6f8, 0x3f738,
1915 		0x3f740, 0x3f740,
1916 		0x3f748, 0x3f750,
1917 		0x3f75c, 0x3f764,
1918 		0x3f770, 0x3f7b8,
1919 		0x3f7c0, 0x3f7e4,
1920 		0x3f7f8, 0x3f7fc,
1921 		0x3f814, 0x3f814,
1922 		0x3f82c, 0x3f82c,
1923 		0x3f880, 0x3f88c,
1924 		0x3f8e8, 0x3f8ec,
1925 		0x3f900, 0x3f928,
1926 		0x3f930, 0x3f948,
1927 		0x3f960, 0x3f968,
1928 		0x3f970, 0x3f99c,
1929 		0x3f9f0, 0x3fa38,
1930 		0x3fa40, 0x3fa40,
1931 		0x3fa48, 0x3fa50,
1932 		0x3fa5c, 0x3fa64,
1933 		0x3fa70, 0x3fab8,
1934 		0x3fac0, 0x3fae4,
1935 		0x3faf8, 0x3fb10,
1936 		0x3fb28, 0x3fb28,
1937 		0x3fb3c, 0x3fb50,
1938 		0x3fbf0, 0x3fc10,
1939 		0x3fc28, 0x3fc28,
1940 		0x3fc3c, 0x3fc50,
1941 		0x3fcf0, 0x3fcfc,
1942 		0x40000, 0x4000c,
1943 		0x40040, 0x40050,
1944 		0x40060, 0x40068,
1945 		0x4007c, 0x4008c,
1946 		0x40094, 0x400b0,
1947 		0x400c0, 0x40144,
1948 		0x40180, 0x4018c,
1949 		0x40200, 0x40254,
1950 		0x40260, 0x40264,
1951 		0x40270, 0x40288,
1952 		0x40290, 0x40298,
1953 		0x402ac, 0x402c8,
1954 		0x402d0, 0x402e0,
1955 		0x402f0, 0x402f0,
1956 		0x40300, 0x4033c,
1957 		0x403f8, 0x403fc,
1958 		0x41304, 0x413c4,
1959 		0x41400, 0x4140c,
1960 		0x41414, 0x4141c,
1961 		0x41480, 0x414d0,
1962 		0x44000, 0x44054,
1963 		0x4405c, 0x44078,
1964 		0x440c0, 0x44174,
1965 		0x44180, 0x441ac,
1966 		0x441b4, 0x441b8,
1967 		0x441c0, 0x44254,
1968 		0x4425c, 0x44278,
1969 		0x442c0, 0x44374,
1970 		0x44380, 0x443ac,
1971 		0x443b4, 0x443b8,
1972 		0x443c0, 0x44454,
1973 		0x4445c, 0x44478,
1974 		0x444c0, 0x44574,
1975 		0x44580, 0x445ac,
1976 		0x445b4, 0x445b8,
1977 		0x445c0, 0x44654,
1978 		0x4465c, 0x44678,
1979 		0x446c0, 0x44774,
1980 		0x44780, 0x447ac,
1981 		0x447b4, 0x447b8,
1982 		0x447c0, 0x44854,
1983 		0x4485c, 0x44878,
1984 		0x448c0, 0x44974,
1985 		0x44980, 0x449ac,
1986 		0x449b4, 0x449b8,
1987 		0x449c0, 0x449fc,
1988 		0x45000, 0x45004,
1989 		0x45010, 0x45030,
1990 		0x45040, 0x45060,
1991 		0x45068, 0x45068,
1992 		0x45080, 0x45084,
1993 		0x450a0, 0x450b0,
1994 		0x45200, 0x45204,
1995 		0x45210, 0x45230,
1996 		0x45240, 0x45260,
1997 		0x45268, 0x45268,
1998 		0x45280, 0x45284,
1999 		0x452a0, 0x452b0,
2000 		0x460c0, 0x460e4,
2001 		0x47000, 0x4703c,
2002 		0x47044, 0x4708c,
2003 		0x47200, 0x47250,
2004 		0x47400, 0x47408,
2005 		0x47414, 0x47420,
2006 		0x47600, 0x47618,
2007 		0x47800, 0x47814,
2008 		0x48000, 0x4800c,
2009 		0x48040, 0x48050,
2010 		0x48060, 0x48068,
2011 		0x4807c, 0x4808c,
2012 		0x48094, 0x480b0,
2013 		0x480c0, 0x48144,
2014 		0x48180, 0x4818c,
2015 		0x48200, 0x48254,
2016 		0x48260, 0x48264,
2017 		0x48270, 0x48288,
2018 		0x48290, 0x48298,
2019 		0x482ac, 0x482c8,
2020 		0x482d0, 0x482e0,
2021 		0x482f0, 0x482f0,
2022 		0x48300, 0x4833c,
2023 		0x483f8, 0x483fc,
2024 		0x49304, 0x493c4,
2025 		0x49400, 0x4940c,
2026 		0x49414, 0x4941c,
2027 		0x49480, 0x494d0,
2028 		0x4c000, 0x4c054,
2029 		0x4c05c, 0x4c078,
2030 		0x4c0c0, 0x4c174,
2031 		0x4c180, 0x4c1ac,
2032 		0x4c1b4, 0x4c1b8,
2033 		0x4c1c0, 0x4c254,
2034 		0x4c25c, 0x4c278,
2035 		0x4c2c0, 0x4c374,
2036 		0x4c380, 0x4c3ac,
2037 		0x4c3b4, 0x4c3b8,
2038 		0x4c3c0, 0x4c454,
2039 		0x4c45c, 0x4c478,
2040 		0x4c4c0, 0x4c574,
2041 		0x4c580, 0x4c5ac,
2042 		0x4c5b4, 0x4c5b8,
2043 		0x4c5c0, 0x4c654,
2044 		0x4c65c, 0x4c678,
2045 		0x4c6c0, 0x4c774,
2046 		0x4c780, 0x4c7ac,
2047 		0x4c7b4, 0x4c7b8,
2048 		0x4c7c0, 0x4c854,
2049 		0x4c85c, 0x4c878,
2050 		0x4c8c0, 0x4c974,
2051 		0x4c980, 0x4c9ac,
2052 		0x4c9b4, 0x4c9b8,
2053 		0x4c9c0, 0x4c9fc,
2054 		0x4d000, 0x4d004,
2055 		0x4d010, 0x4d030,
2056 		0x4d040, 0x4d060,
2057 		0x4d068, 0x4d068,
2058 		0x4d080, 0x4d084,
2059 		0x4d0a0, 0x4d0b0,
2060 		0x4d200, 0x4d204,
2061 		0x4d210, 0x4d230,
2062 		0x4d240, 0x4d260,
2063 		0x4d268, 0x4d268,
2064 		0x4d280, 0x4d284,
2065 		0x4d2a0, 0x4d2b0,
2066 		0x4e0c0, 0x4e0e4,
2067 		0x4f000, 0x4f03c,
2068 		0x4f044, 0x4f08c,
2069 		0x4f200, 0x4f250,
2070 		0x4f400, 0x4f408,
2071 		0x4f414, 0x4f420,
2072 		0x4f600, 0x4f618,
2073 		0x4f800, 0x4f814,
2074 		0x50000, 0x50084,
2075 		0x50090, 0x500cc,
2076 		0x50400, 0x50400,
2077 		0x50800, 0x50884,
2078 		0x50890, 0x508cc,
2079 		0x50c00, 0x50c00,
2080 		0x51000, 0x5101c,
2081 		0x51300, 0x51308,
2082 	};
2083 
2084 	static const unsigned int t6_reg_ranges[] = {
2085 		0x1008, 0x101c,
2086 		0x1024, 0x10a8,
2087 		0x10b4, 0x10f8,
2088 		0x1100, 0x1114,
2089 		0x111c, 0x112c,
2090 		0x1138, 0x113c,
2091 		0x1144, 0x114c,
2092 		0x1180, 0x1184,
2093 		0x1190, 0x1194,
2094 		0x11a0, 0x11a4,
2095 		0x11b0, 0x11b4,
2096 		0x11fc, 0x1274,
2097 		0x1280, 0x133c,
2098 		0x1800, 0x18fc,
2099 		0x3000, 0x302c,
2100 		0x3060, 0x30b0,
2101 		0x30b8, 0x30d8,
2102 		0x30e0, 0x30fc,
2103 		0x3140, 0x357c,
2104 		0x35a8, 0x35cc,
2105 		0x35ec, 0x35ec,
2106 		0x3600, 0x5624,
2107 		0x56cc, 0x56ec,
2108 		0x56f4, 0x5720,
2109 		0x5728, 0x575c,
2110 		0x580c, 0x5814,
2111 		0x5890, 0x589c,
2112 		0x58a4, 0x58ac,
2113 		0x58b8, 0x58bc,
2114 		0x5940, 0x595c,
2115 		0x5980, 0x598c,
2116 		0x59b0, 0x59c8,
2117 		0x59d0, 0x59dc,
2118 		0x59fc, 0x5a18,
2119 		0x5a60, 0x5a6c,
2120 		0x5a80, 0x5a8c,
2121 		0x5a94, 0x5a9c,
2122 		0x5b94, 0x5bfc,
2123 		0x5c10, 0x5e48,
2124 		0x5e50, 0x5e94,
2125 		0x5ea0, 0x5eb0,
2126 		0x5ec0, 0x5ec0,
2127 		0x5ec8, 0x5ed0,
2128 		0x5ee0, 0x5ee0,
2129 		0x5ef0, 0x5ef0,
2130 		0x5f00, 0x5f00,
2131 		0x6000, 0x6020,
2132 		0x6028, 0x6040,
2133 		0x6058, 0x609c,
2134 		0x60a8, 0x619c,
2135 		0x7700, 0x7798,
2136 		0x77c0, 0x7880,
2137 		0x78cc, 0x78fc,
2138 		0x7b00, 0x7b58,
2139 		0x7b60, 0x7b84,
2140 		0x7b8c, 0x7c54,
2141 		0x7d00, 0x7d38,
2142 		0x7d40, 0x7d84,
2143 		0x7d8c, 0x7ddc,
2144 		0x7de4, 0x7e04,
2145 		0x7e10, 0x7e1c,
2146 		0x7e24, 0x7e38,
2147 		0x7e40, 0x7e44,
2148 		0x7e4c, 0x7e78,
2149 		0x7e80, 0x7edc,
2150 		0x7ee8, 0x7efc,
2151 		0x8dc0, 0x8de4,
2152 		0x8df8, 0x8e04,
2153 		0x8e10, 0x8e84,
2154 		0x8ea0, 0x8f88,
2155 		0x8fb8, 0x9058,
2156 		0x9060, 0x9060,
2157 		0x9068, 0x90f8,
2158 		0x9100, 0x9124,
2159 		0x9400, 0x9470,
2160 		0x9600, 0x9600,
2161 		0x9608, 0x9638,
2162 		0x9640, 0x9704,
2163 		0x9710, 0x971c,
2164 		0x9800, 0x9808,
2165 		0x9820, 0x983c,
2166 		0x9850, 0x9864,
2167 		0x9c00, 0x9c6c,
2168 		0x9c80, 0x9cec,
2169 		0x9d00, 0x9d6c,
2170 		0x9d80, 0x9dec,
2171 		0x9e00, 0x9e6c,
2172 		0x9e80, 0x9eec,
2173 		0x9f00, 0x9f6c,
2174 		0x9f80, 0xa020,
2175 		0xd004, 0xd03c,
2176 		0xd100, 0xd118,
2177 		0xd200, 0xd214,
2178 		0xd220, 0xd234,
2179 		0xd240, 0xd254,
2180 		0xd260, 0xd274,
2181 		0xd280, 0xd294,
2182 		0xd2a0, 0xd2b4,
2183 		0xd2c0, 0xd2d4,
2184 		0xd2e0, 0xd2f4,
2185 		0xd300, 0xd31c,
2186 		0xdfc0, 0xdfe0,
2187 		0xe000, 0xf008,
2188 		0xf010, 0xf018,
2189 		0xf020, 0xf028,
2190 		0x11000, 0x11014,
2191 		0x11048, 0x1106c,
2192 		0x11074, 0x11088,
2193 		0x11098, 0x11120,
2194 		0x1112c, 0x1117c,
2195 		0x11190, 0x112e0,
2196 		0x11300, 0x1130c,
2197 		0x12000, 0x1206c,
2198 		0x19040, 0x1906c,
2199 		0x19078, 0x19080,
2200 		0x1908c, 0x190e8,
2201 		0x190f0, 0x190f8,
2202 		0x19100, 0x19110,
2203 		0x19120, 0x19124,
2204 		0x19150, 0x19194,
2205 		0x1919c, 0x191b0,
2206 		0x191d0, 0x191e8,
2207 		0x19238, 0x19290,
2208 		0x192a4, 0x192b0,
2209 		0x192bc, 0x192bc,
2210 		0x19348, 0x1934c,
2211 		0x193f8, 0x19418,
2212 		0x19420, 0x19428,
2213 		0x19430, 0x19444,
2214 		0x1944c, 0x1946c,
2215 		0x19474, 0x19474,
2216 		0x19490, 0x194cc,
2217 		0x194f0, 0x194f8,
2218 		0x19c00, 0x19c48,
2219 		0x19c50, 0x19c80,
2220 		0x19c94, 0x19c98,
2221 		0x19ca0, 0x19cbc,
2222 		0x19ce4, 0x19ce4,
2223 		0x19cf0, 0x19cf8,
2224 		0x19d00, 0x19d28,
2225 		0x19d50, 0x19d78,
2226 		0x19d94, 0x19d98,
2227 		0x19da0, 0x19dc8,
2228 		0x19df0, 0x19e10,
2229 		0x19e50, 0x19e6c,
2230 		0x19ea0, 0x19ebc,
2231 		0x19ec4, 0x19ef4,
2232 		0x19f04, 0x19f2c,
2233 		0x19f34, 0x19f34,
2234 		0x19f40, 0x19f50,
2235 		0x19f90, 0x19fac,
2236 		0x19fc4, 0x19fc8,
2237 		0x19fd0, 0x19fe4,
2238 		0x1a000, 0x1a004,
2239 		0x1a010, 0x1a06c,
2240 		0x1a0b0, 0x1a0e4,
2241 		0x1a0ec, 0x1a0f8,
2242 		0x1a100, 0x1a108,
2243 		0x1a114, 0x1a120,
2244 		0x1a128, 0x1a130,
2245 		0x1a138, 0x1a138,
2246 		0x1a190, 0x1a1c4,
2247 		0x1a1fc, 0x1a1fc,
2248 		0x1e008, 0x1e00c,
2249 		0x1e040, 0x1e044,
2250 		0x1e04c, 0x1e04c,
2251 		0x1e284, 0x1e290,
2252 		0x1e2c0, 0x1e2c0,
2253 		0x1e2e0, 0x1e2e0,
2254 		0x1e300, 0x1e384,
2255 		0x1e3c0, 0x1e3c8,
2256 		0x1e408, 0x1e40c,
2257 		0x1e440, 0x1e444,
2258 		0x1e44c, 0x1e44c,
2259 		0x1e684, 0x1e690,
2260 		0x1e6c0, 0x1e6c0,
2261 		0x1e6e0, 0x1e6e0,
2262 		0x1e700, 0x1e784,
2263 		0x1e7c0, 0x1e7c8,
2264 		0x1e808, 0x1e80c,
2265 		0x1e840, 0x1e844,
2266 		0x1e84c, 0x1e84c,
2267 		0x1ea84, 0x1ea90,
2268 		0x1eac0, 0x1eac0,
2269 		0x1eae0, 0x1eae0,
2270 		0x1eb00, 0x1eb84,
2271 		0x1ebc0, 0x1ebc8,
2272 		0x1ec08, 0x1ec0c,
2273 		0x1ec40, 0x1ec44,
2274 		0x1ec4c, 0x1ec4c,
2275 		0x1ee84, 0x1ee90,
2276 		0x1eec0, 0x1eec0,
2277 		0x1eee0, 0x1eee0,
2278 		0x1ef00, 0x1ef84,
2279 		0x1efc0, 0x1efc8,
2280 		0x1f008, 0x1f00c,
2281 		0x1f040, 0x1f044,
2282 		0x1f04c, 0x1f04c,
2283 		0x1f284, 0x1f290,
2284 		0x1f2c0, 0x1f2c0,
2285 		0x1f2e0, 0x1f2e0,
2286 		0x1f300, 0x1f384,
2287 		0x1f3c0, 0x1f3c8,
2288 		0x1f408, 0x1f40c,
2289 		0x1f440, 0x1f444,
2290 		0x1f44c, 0x1f44c,
2291 		0x1f684, 0x1f690,
2292 		0x1f6c0, 0x1f6c0,
2293 		0x1f6e0, 0x1f6e0,
2294 		0x1f700, 0x1f784,
2295 		0x1f7c0, 0x1f7c8,
2296 		0x1f808, 0x1f80c,
2297 		0x1f840, 0x1f844,
2298 		0x1f84c, 0x1f84c,
2299 		0x1fa84, 0x1fa90,
2300 		0x1fac0, 0x1fac0,
2301 		0x1fae0, 0x1fae0,
2302 		0x1fb00, 0x1fb84,
2303 		0x1fbc0, 0x1fbc8,
2304 		0x1fc08, 0x1fc0c,
2305 		0x1fc40, 0x1fc44,
2306 		0x1fc4c, 0x1fc4c,
2307 		0x1fe84, 0x1fe90,
2308 		0x1fec0, 0x1fec0,
2309 		0x1fee0, 0x1fee0,
2310 		0x1ff00, 0x1ff84,
2311 		0x1ffc0, 0x1ffc8,
2312 		0x30000, 0x30030,
2313 		0x30100, 0x30168,
2314 		0x30190, 0x301a0,
2315 		0x301a8, 0x301b8,
2316 		0x301c4, 0x301c8,
2317 		0x301d0, 0x301d0,
2318 		0x30200, 0x30320,
2319 		0x30400, 0x304b4,
2320 		0x304c0, 0x3052c,
2321 		0x30540, 0x3061c,
2322 		0x30800, 0x308a0,
2323 		0x308c0, 0x30908,
2324 		0x30910, 0x309b8,
2325 		0x30a00, 0x30a04,
2326 		0x30a0c, 0x30a14,
2327 		0x30a1c, 0x30a2c,
2328 		0x30a44, 0x30a50,
2329 		0x30a74, 0x30a74,
2330 		0x30a7c, 0x30afc,
2331 		0x30b08, 0x30c24,
2332 		0x30d00, 0x30d14,
2333 		0x30d1c, 0x30d3c,
2334 		0x30d44, 0x30d4c,
2335 		0x30d54, 0x30d74,
2336 		0x30d7c, 0x30d7c,
2337 		0x30de0, 0x30de0,
2338 		0x30e00, 0x30ed4,
2339 		0x30f00, 0x30fa4,
2340 		0x30fc0, 0x30fc4,
2341 		0x31000, 0x31004,
2342 		0x31080, 0x310fc,
2343 		0x31208, 0x31220,
2344 		0x3123c, 0x31254,
2345 		0x31300, 0x31300,
2346 		0x31308, 0x3131c,
2347 		0x31338, 0x3133c,
2348 		0x31380, 0x31380,
2349 		0x31388, 0x313a8,
2350 		0x313b4, 0x313b4,
2351 		0x31400, 0x31420,
2352 		0x31438, 0x3143c,
2353 		0x31480, 0x31480,
2354 		0x314a8, 0x314a8,
2355 		0x314b0, 0x314b4,
2356 		0x314c8, 0x314d4,
2357 		0x31a40, 0x31a4c,
2358 		0x31af0, 0x31b20,
2359 		0x31b38, 0x31b3c,
2360 		0x31b80, 0x31b80,
2361 		0x31ba8, 0x31ba8,
2362 		0x31bb0, 0x31bb4,
2363 		0x31bc8, 0x31bd4,
2364 		0x32140, 0x3218c,
2365 		0x321f0, 0x321f4,
2366 		0x32200, 0x32200,
2367 		0x32218, 0x32218,
2368 		0x32400, 0x32400,
2369 		0x32408, 0x3241c,
2370 		0x32618, 0x32620,
2371 		0x32664, 0x32664,
2372 		0x326a8, 0x326a8,
2373 		0x326ec, 0x326ec,
2374 		0x32a00, 0x32abc,
2375 		0x32b00, 0x32b18,
2376 		0x32b20, 0x32b38,
2377 		0x32b40, 0x32b58,
2378 		0x32b60, 0x32b78,
2379 		0x32c00, 0x32c00,
2380 		0x32c08, 0x32c3c,
2381 		0x33000, 0x3302c,
2382 		0x33034, 0x33050,
2383 		0x33058, 0x33058,
2384 		0x33060, 0x3308c,
2385 		0x3309c, 0x330ac,
2386 		0x330c0, 0x330c0,
2387 		0x330c8, 0x330d0,
2388 		0x330d8, 0x330e0,
2389 		0x330ec, 0x3312c,
2390 		0x33134, 0x33150,
2391 		0x33158, 0x33158,
2392 		0x33160, 0x3318c,
2393 		0x3319c, 0x331ac,
2394 		0x331c0, 0x331c0,
2395 		0x331c8, 0x331d0,
2396 		0x331d8, 0x331e0,
2397 		0x331ec, 0x33290,
2398 		0x33298, 0x332c4,
2399 		0x332e4, 0x33390,
2400 		0x33398, 0x333c4,
2401 		0x333e4, 0x3342c,
2402 		0x33434, 0x33450,
2403 		0x33458, 0x33458,
2404 		0x33460, 0x3348c,
2405 		0x3349c, 0x334ac,
2406 		0x334c0, 0x334c0,
2407 		0x334c8, 0x334d0,
2408 		0x334d8, 0x334e0,
2409 		0x334ec, 0x3352c,
2410 		0x33534, 0x33550,
2411 		0x33558, 0x33558,
2412 		0x33560, 0x3358c,
2413 		0x3359c, 0x335ac,
2414 		0x335c0, 0x335c0,
2415 		0x335c8, 0x335d0,
2416 		0x335d8, 0x335e0,
2417 		0x335ec, 0x33690,
2418 		0x33698, 0x336c4,
2419 		0x336e4, 0x33790,
2420 		0x33798, 0x337c4,
2421 		0x337e4, 0x337fc,
2422 		0x33814, 0x33814,
2423 		0x33854, 0x33868,
2424 		0x33880, 0x3388c,
2425 		0x338c0, 0x338d0,
2426 		0x338e8, 0x338ec,
2427 		0x33900, 0x3392c,
2428 		0x33934, 0x33950,
2429 		0x33958, 0x33958,
2430 		0x33960, 0x3398c,
2431 		0x3399c, 0x339ac,
2432 		0x339c0, 0x339c0,
2433 		0x339c8, 0x339d0,
2434 		0x339d8, 0x339e0,
2435 		0x339ec, 0x33a90,
2436 		0x33a98, 0x33ac4,
2437 		0x33ae4, 0x33b10,
2438 		0x33b24, 0x33b28,
2439 		0x33b38, 0x33b50,
2440 		0x33bf0, 0x33c10,
2441 		0x33c24, 0x33c28,
2442 		0x33c38, 0x33c50,
2443 		0x33cf0, 0x33cfc,
2444 		0x34000, 0x34030,
2445 		0x34100, 0x34168,
2446 		0x34190, 0x341a0,
2447 		0x341a8, 0x341b8,
2448 		0x341c4, 0x341c8,
2449 		0x341d0, 0x341d0,
2450 		0x34200, 0x34320,
2451 		0x34400, 0x344b4,
2452 		0x344c0, 0x3452c,
2453 		0x34540, 0x3461c,
2454 		0x34800, 0x348a0,
2455 		0x348c0, 0x34908,
2456 		0x34910, 0x349b8,
2457 		0x34a00, 0x34a04,
2458 		0x34a0c, 0x34a14,
2459 		0x34a1c, 0x34a2c,
2460 		0x34a44, 0x34a50,
2461 		0x34a74, 0x34a74,
2462 		0x34a7c, 0x34afc,
2463 		0x34b08, 0x34c24,
2464 		0x34d00, 0x34d14,
2465 		0x34d1c, 0x34d3c,
2466 		0x34d44, 0x34d4c,
2467 		0x34d54, 0x34d74,
2468 		0x34d7c, 0x34d7c,
2469 		0x34de0, 0x34de0,
2470 		0x34e00, 0x34ed4,
2471 		0x34f00, 0x34fa4,
2472 		0x34fc0, 0x34fc4,
2473 		0x35000, 0x35004,
2474 		0x35080, 0x350fc,
2475 		0x35208, 0x35220,
2476 		0x3523c, 0x35254,
2477 		0x35300, 0x35300,
2478 		0x35308, 0x3531c,
2479 		0x35338, 0x3533c,
2480 		0x35380, 0x35380,
2481 		0x35388, 0x353a8,
2482 		0x353b4, 0x353b4,
2483 		0x35400, 0x35420,
2484 		0x35438, 0x3543c,
2485 		0x35480, 0x35480,
2486 		0x354a8, 0x354a8,
2487 		0x354b0, 0x354b4,
2488 		0x354c8, 0x354d4,
2489 		0x35a40, 0x35a4c,
2490 		0x35af0, 0x35b20,
2491 		0x35b38, 0x35b3c,
2492 		0x35b80, 0x35b80,
2493 		0x35ba8, 0x35ba8,
2494 		0x35bb0, 0x35bb4,
2495 		0x35bc8, 0x35bd4,
2496 		0x36140, 0x3618c,
2497 		0x361f0, 0x361f4,
2498 		0x36200, 0x36200,
2499 		0x36218, 0x36218,
2500 		0x36400, 0x36400,
2501 		0x36408, 0x3641c,
2502 		0x36618, 0x36620,
2503 		0x36664, 0x36664,
2504 		0x366a8, 0x366a8,
2505 		0x366ec, 0x366ec,
2506 		0x36a00, 0x36abc,
2507 		0x36b00, 0x36b18,
2508 		0x36b20, 0x36b38,
2509 		0x36b40, 0x36b58,
2510 		0x36b60, 0x36b78,
2511 		0x36c00, 0x36c00,
2512 		0x36c08, 0x36c3c,
2513 		0x37000, 0x3702c,
2514 		0x37034, 0x37050,
2515 		0x37058, 0x37058,
2516 		0x37060, 0x3708c,
2517 		0x3709c, 0x370ac,
2518 		0x370c0, 0x370c0,
2519 		0x370c8, 0x370d0,
2520 		0x370d8, 0x370e0,
2521 		0x370ec, 0x3712c,
2522 		0x37134, 0x37150,
2523 		0x37158, 0x37158,
2524 		0x37160, 0x3718c,
2525 		0x3719c, 0x371ac,
2526 		0x371c0, 0x371c0,
2527 		0x371c8, 0x371d0,
2528 		0x371d8, 0x371e0,
2529 		0x371ec, 0x37290,
2530 		0x37298, 0x372c4,
2531 		0x372e4, 0x37390,
2532 		0x37398, 0x373c4,
2533 		0x373e4, 0x3742c,
2534 		0x37434, 0x37450,
2535 		0x37458, 0x37458,
2536 		0x37460, 0x3748c,
2537 		0x3749c, 0x374ac,
2538 		0x374c0, 0x374c0,
2539 		0x374c8, 0x374d0,
2540 		0x374d8, 0x374e0,
2541 		0x374ec, 0x3752c,
2542 		0x37534, 0x37550,
2543 		0x37558, 0x37558,
2544 		0x37560, 0x3758c,
2545 		0x3759c, 0x375ac,
2546 		0x375c0, 0x375c0,
2547 		0x375c8, 0x375d0,
2548 		0x375d8, 0x375e0,
2549 		0x375ec, 0x37690,
2550 		0x37698, 0x376c4,
2551 		0x376e4, 0x37790,
2552 		0x37798, 0x377c4,
2553 		0x377e4, 0x377fc,
2554 		0x37814, 0x37814,
2555 		0x37854, 0x37868,
2556 		0x37880, 0x3788c,
2557 		0x378c0, 0x378d0,
2558 		0x378e8, 0x378ec,
2559 		0x37900, 0x3792c,
2560 		0x37934, 0x37950,
2561 		0x37958, 0x37958,
2562 		0x37960, 0x3798c,
2563 		0x3799c, 0x379ac,
2564 		0x379c0, 0x379c0,
2565 		0x379c8, 0x379d0,
2566 		0x379d8, 0x379e0,
2567 		0x379ec, 0x37a90,
2568 		0x37a98, 0x37ac4,
2569 		0x37ae4, 0x37b10,
2570 		0x37b24, 0x37b28,
2571 		0x37b38, 0x37b50,
2572 		0x37bf0, 0x37c10,
2573 		0x37c24, 0x37c28,
2574 		0x37c38, 0x37c50,
2575 		0x37cf0, 0x37cfc,
2576 		0x40040, 0x40040,
2577 		0x40080, 0x40084,
2578 		0x40100, 0x40100,
2579 		0x40140, 0x401bc,
2580 		0x40200, 0x40214,
2581 		0x40228, 0x40228,
2582 		0x40240, 0x40258,
2583 		0x40280, 0x40280,
2584 		0x40304, 0x40304,
2585 		0x40330, 0x4033c,
2586 		0x41304, 0x413c8,
2587 		0x413d0, 0x413dc,
2588 		0x413f0, 0x413f0,
2589 		0x41400, 0x4140c,
2590 		0x41414, 0x4141c,
2591 		0x41480, 0x414d0,
2592 		0x44000, 0x4407c,
2593 		0x440c0, 0x441ac,
2594 		0x441b4, 0x4427c,
2595 		0x442c0, 0x443ac,
2596 		0x443b4, 0x4447c,
2597 		0x444c0, 0x445ac,
2598 		0x445b4, 0x4467c,
2599 		0x446c0, 0x447ac,
2600 		0x447b4, 0x4487c,
2601 		0x448c0, 0x449ac,
2602 		0x449b4, 0x44a7c,
2603 		0x44ac0, 0x44bac,
2604 		0x44bb4, 0x44c7c,
2605 		0x44cc0, 0x44dac,
2606 		0x44db4, 0x44e7c,
2607 		0x44ec0, 0x44fac,
2608 		0x44fb4, 0x4507c,
2609 		0x450c0, 0x451ac,
2610 		0x451b4, 0x451fc,
2611 		0x45800, 0x45804,
2612 		0x45810, 0x45830,
2613 		0x45840, 0x45860,
2614 		0x45868, 0x45868,
2615 		0x45880, 0x45884,
2616 		0x458a0, 0x458b0,
2617 		0x45a00, 0x45a04,
2618 		0x45a10, 0x45a30,
2619 		0x45a40, 0x45a60,
2620 		0x45a68, 0x45a68,
2621 		0x45a80, 0x45a84,
2622 		0x45aa0, 0x45ab0,
2623 		0x460c0, 0x460e4,
2624 		0x47000, 0x4703c,
2625 		0x47044, 0x4708c,
2626 		0x47200, 0x47250,
2627 		0x47400, 0x47408,
2628 		0x47414, 0x47420,
2629 		0x47600, 0x47618,
2630 		0x47800, 0x47814,
2631 		0x47820, 0x4782c,
2632 		0x50000, 0x50084,
2633 		0x50090, 0x500cc,
2634 		0x50300, 0x50384,
2635 		0x50400, 0x50400,
2636 		0x50800, 0x50884,
2637 		0x50890, 0x508cc,
2638 		0x50b00, 0x50b84,
2639 		0x50c00, 0x50c00,
2640 		0x51000, 0x51020,
2641 		0x51028, 0x510b0,
2642 		0x51300, 0x51324,
2643 	};
2644 
2645 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2646 	const unsigned int *reg_ranges;
2647 	int reg_ranges_size, range;
2648 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2649 
2650 	/* Select the right set of register ranges to dump depending on the
2651 	 * adapter chip type.
2652 	 */
2653 	switch (chip_version) {
2654 	case CHELSIO_T4:
2655 		reg_ranges = t4_reg_ranges;
2656 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2657 		break;
2658 
2659 	case CHELSIO_T5:
2660 		reg_ranges = t5_reg_ranges;
2661 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2662 		break;
2663 
2664 	case CHELSIO_T6:
2665 		reg_ranges = t6_reg_ranges;
2666 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2667 		break;
2668 
2669 	default:
2670 		dev_err(adap->pdev_dev,
2671 			"Unsupported chip version %d\n", chip_version);
2672 		return;
2673 	}
2674 
2675 	/* Clear the register buffer and insert the appropriate register
2676 	 * values selected by the above register ranges.
2677 	 */
2678 	memset(buf, 0, buf_size);
2679 	for (range = 0; range < reg_ranges_size; range += 2) {
2680 		unsigned int reg = reg_ranges[range];
2681 		unsigned int last_reg = reg_ranges[range + 1];
2682 		u32 *bufp = (u32 *)((char *)buf + reg);
2683 
2684 		/* Iterate across the register range filling in the register
2685 		 * buffer but don't write past the end of the register buffer.
2686 		 */
2687 		while (reg <= last_reg && bufp < buf_end) {
2688 			*bufp++ = t4_read_reg(adap, reg);
2689 			reg += sizeof(u32);
2690 		}
2691 	}
2692 }
2693 
2694 #define EEPROM_STAT_ADDR   0x7bfc
2695 #define VPD_BASE           0x400
2696 #define VPD_BASE_OLD       0
2697 #define VPD_LEN            1024
2698 #define CHELSIO_VPD_UNIQUE_ID 0x82
2699 
2700 /**
2701  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2702  * @phys_addr: the physical EEPROM address
2703  * @fn: the PCI function number
2704  * @sz: size of function-specific area
2705  *
2706  * Translate a physical EEPROM address to virtual.  The first 1K is
2707  * accessed through virtual addresses starting at 31K, the rest is
2708  * accessed through virtual addresses starting at 0.
2709  *
2710  * The mapping is as follows:
2711  * [0..1K) -> [31K..32K)
2712  * [1K..1K+A) -> [31K-A..31K)
2713  * [1K+A..ES) -> [0..ES-A-1K)
2714  *
2715  * where A = @fn * @sz, and ES = EEPROM size.
2716  */
2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2718 {
2719 	fn *= sz;
2720 	if (phys_addr < 1024)
2721 		return phys_addr + (31 << 10);
2722 	if (phys_addr < 1024 + fn)
2723 		return 31744 - fn + phys_addr - 1024;
2724 	if (phys_addr < EEPROMSIZE)
2725 		return phys_addr - 1024 - fn;
2726 	return -EINVAL;
2727 }
2728 
2729 /**
2730  *	t4_seeprom_wp - enable/disable EEPROM write protection
2731  *	@adapter: the adapter
2732  *	@enable: whether to enable or disable write protection
2733  *
2734  *	Enables or disables write protection on the serial EEPROM.
2735  */
2736 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2737 {
2738 	unsigned int v = enable ? 0xc : 0;
2739 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2740 	return ret < 0 ? ret : 0;
2741 }
2742 
2743 /**
2744  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2745  *	@adapter: adapter to read
2746  *	@p: where to store the parameters
2747  *
2748  *	Reads card parameters stored in VPD EEPROM.
2749  */
2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2751 {
2752 	int i, ret = 0, addr;
2753 	int ec, sn, pn, na;
2754 	u8 *vpd, csum;
2755 	unsigned int vpdr_len, kw_offset, id_len;
2756 
2757 	vpd = vmalloc(VPD_LEN);
2758 	if (!vpd)
2759 		return -ENOMEM;
2760 
2761 	/* Card information normally starts at VPD_BASE but early cards had
2762 	 * it at 0.
2763 	 */
2764 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2765 	if (ret < 0)
2766 		goto out;
2767 
2768 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2769 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2770 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2771 	 * is expected to automatically put this entry at the
2772 	 * beginning of the VPD.
2773 	 */
2774 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2775 
2776 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2777 	if (ret < 0)
2778 		goto out;
2779 
2780 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2781 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2782 		ret = -EINVAL;
2783 		goto out;
2784 	}
2785 
2786 	id_len = pci_vpd_lrdt_size(vpd);
2787 	if (id_len > ID_LEN)
2788 		id_len = ID_LEN;
2789 
2790 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2791 	if (i < 0) {
2792 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2793 		ret = -EINVAL;
2794 		goto out;
2795 	}
2796 
2797 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2798 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2799 	if (vpdr_len + kw_offset > VPD_LEN) {
2800 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2801 		ret = -EINVAL;
2802 		goto out;
2803 	}
2804 
2805 #define FIND_VPD_KW(var, name) do { \
2806 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2807 	if (var < 0) { \
2808 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2809 		ret = -EINVAL; \
2810 		goto out; \
2811 	} \
2812 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2813 } while (0)
2814 
2815 	FIND_VPD_KW(i, "RV");
2816 	for (csum = 0; i >= 0; i--)
2817 		csum += vpd[i];
2818 
2819 	if (csum) {
2820 		dev_err(adapter->pdev_dev,
2821 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2822 		ret = -EINVAL;
2823 		goto out;
2824 	}
2825 
2826 	FIND_VPD_KW(ec, "EC");
2827 	FIND_VPD_KW(sn, "SN");
2828 	FIND_VPD_KW(pn, "PN");
2829 	FIND_VPD_KW(na, "NA");
2830 #undef FIND_VPD_KW
2831 
2832 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2833 	strim(p->id);
2834 	memcpy(p->ec, vpd + ec, EC_LEN);
2835 	strim(p->ec);
2836 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2837 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2838 	strim(p->sn);
2839 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2840 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2841 	strim(p->pn);
2842 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2843 	strim((char *)p->na);
2844 
2845 out:
2846 	vfree(vpd);
2847 	return ret < 0 ? ret : 0;
2848 }
2849 
2850 /**
2851  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2852  *	@adapter: adapter to read
2853  *	@p: where to store the parameters
2854  *
2855  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2856  *	Clock.  This can only be called after a connection to the firmware
2857  *	is established.
2858  */
2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2860 {
2861 	u32 cclk_param, cclk_val;
2862 	int ret;
2863 
2864 	/* Grab the raw VPD parameters.
2865 	 */
2866 	ret = t4_get_raw_vpd_params(adapter, p);
2867 	if (ret)
2868 		return ret;
2869 
2870 	/* Ask firmware for the Core Clock since it knows how to translate the
2871 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2872 	 */
2873 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2874 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2875 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2876 			      1, &cclk_param, &cclk_val);
2877 
2878 	if (ret)
2879 		return ret;
2880 	p->cclk = cclk_val;
2881 
2882 	return 0;
2883 }
2884 
2885 /**
2886  *	t4_get_pfres - retrieve VF resource limits
2887  *	@adapter: the adapter
2888  *
2889  *	Retrieves configured resource limits and capabilities for a physical
2890  *	function.  The results are stored in @adapter->pfres.
2891  */
2892 int t4_get_pfres(struct adapter *adapter)
2893 {
2894 	struct pf_resources *pfres = &adapter->params.pfres;
2895 	struct fw_pfvf_cmd cmd, rpl;
2896 	int v;
2897 	u32 word;
2898 
2899 	/* Execute PFVF Read command to get VF resource limits; bail out early
2900 	 * with error on command failure.
2901 	 */
2902 	memset(&cmd, 0, sizeof(cmd));
2903 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2904 				    FW_CMD_REQUEST_F |
2905 				    FW_CMD_READ_F |
2906 				    FW_PFVF_CMD_PFN_V(adapter->pf) |
2907 				    FW_PFVF_CMD_VFN_V(0));
2908 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2909 	v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2910 	if (v != FW_SUCCESS)
2911 		return v;
2912 
2913 	/* Extract PF resource limits and return success.
2914 	 */
2915 	word = be32_to_cpu(rpl.niqflint_niq);
2916 	pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2917 	pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2918 
2919 	word = be32_to_cpu(rpl.type_to_neq);
2920 	pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2921 	pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2922 
2923 	word = be32_to_cpu(rpl.tc_to_nexactf);
2924 	pfres->tc = FW_PFVF_CMD_TC_G(word);
2925 	pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2926 	pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2927 
2928 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2929 	pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2930 	pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2931 	pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2932 
2933 	return 0;
2934 }
2935 
2936 /* serial flash and firmware constants */
2937 enum {
2938 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2939 
2940 	/* flash command opcodes */
2941 	SF_PROG_PAGE    = 2,          /* program page */
2942 	SF_WR_DISABLE   = 4,          /* disable writes */
2943 	SF_RD_STATUS    = 5,          /* read status register */
2944 	SF_WR_ENABLE    = 6,          /* enable writes */
2945 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2946 	SF_RD_ID        = 0x9f,       /* read ID */
2947 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2948 };
2949 
2950 /**
2951  *	sf1_read - read data from the serial flash
2952  *	@adapter: the adapter
2953  *	@byte_cnt: number of bytes to read
2954  *	@cont: whether another operation will be chained
2955  *	@lock: whether to lock SF for PL access only
2956  *	@valp: where to store the read data
2957  *
2958  *	Reads up to 4 bytes of data from the serial flash.  The location of
2959  *	the read needs to be specified prior to calling this by issuing the
2960  *	appropriate commands to the serial flash.
2961  */
2962 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2963 		    int lock, u32 *valp)
2964 {
2965 	int ret;
2966 
2967 	if (!byte_cnt || byte_cnt > 4)
2968 		return -EINVAL;
2969 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2970 		return -EBUSY;
2971 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2972 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2973 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2974 	if (!ret)
2975 		*valp = t4_read_reg(adapter, SF_DATA_A);
2976 	return ret;
2977 }
2978 
2979 /**
2980  *	sf1_write - write data to the serial flash
2981  *	@adapter: the adapter
2982  *	@byte_cnt: number of bytes to write
2983  *	@cont: whether another operation will be chained
2984  *	@lock: whether to lock SF for PL access only
2985  *	@val: value to write
2986  *
2987  *	Writes up to 4 bytes of data to the serial flash.  The location of
2988  *	the write needs to be specified prior to calling this by issuing the
2989  *	appropriate commands to the serial flash.
2990  */
2991 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2992 		     int lock, u32 val)
2993 {
2994 	if (!byte_cnt || byte_cnt > 4)
2995 		return -EINVAL;
2996 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2997 		return -EBUSY;
2998 	t4_write_reg(adapter, SF_DATA_A, val);
2999 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
3000 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
3001 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
3002 }
3003 
3004 /**
3005  *	flash_wait_op - wait for a flash operation to complete
3006  *	@adapter: the adapter
3007  *	@attempts: max number of polls of the status register
3008  *	@delay: delay between polls in ms
3009  *
3010  *	Wait for a flash operation to complete by polling the status register.
3011  */
3012 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3013 {
3014 	int ret;
3015 	u32 status;
3016 
3017 	while (1) {
3018 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3019 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3020 			return ret;
3021 		if (!(status & 1))
3022 			return 0;
3023 		if (--attempts == 0)
3024 			return -EAGAIN;
3025 		if (delay)
3026 			msleep(delay);
3027 	}
3028 }
3029 
3030 /**
3031  *	t4_read_flash - read words from serial flash
3032  *	@adapter: the adapter
3033  *	@addr: the start address for the read
3034  *	@nwords: how many 32-bit words to read
3035  *	@data: where to store the read data
3036  *	@byte_oriented: whether to store data as bytes or as words
3037  *
3038  *	Read the specified number of 32-bit words from the serial flash.
3039  *	If @byte_oriented is set the read data is stored as a byte array
3040  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3041  *	natural endianness.
3042  */
3043 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3044 		  unsigned int nwords, u32 *data, int byte_oriented)
3045 {
3046 	int ret;
3047 
3048 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3049 		return -EINVAL;
3050 
3051 	addr = swab32(addr) | SF_RD_DATA_FAST;
3052 
3053 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3054 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3055 		return ret;
3056 
3057 	for ( ; nwords; nwords--, data++) {
3058 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3059 		if (nwords == 1)
3060 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3061 		if (ret)
3062 			return ret;
3063 		if (byte_oriented)
3064 			*data = (__force __u32)(cpu_to_be32(*data));
3065 	}
3066 	return 0;
3067 }
3068 
3069 /**
3070  *	t4_write_flash - write up to a page of data to the serial flash
3071  *	@adapter: the adapter
3072  *	@addr: the start address to write
3073  *	@n: length of data to write in bytes
3074  *	@data: the data to write
3075  *
3076  *	Writes up to a page of data (256 bytes) to the serial flash starting
3077  *	at the given address.  All the data must be written to the same page.
3078  */
3079 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3080 			  unsigned int n, const u8 *data)
3081 {
3082 	int ret;
3083 	u32 buf[64];
3084 	unsigned int i, c, left, val, offset = addr & 0xff;
3085 
3086 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3087 		return -EINVAL;
3088 
3089 	val = swab32(addr) | SF_PROG_PAGE;
3090 
3091 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3092 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3093 		goto unlock;
3094 
3095 	for (left = n; left; left -= c) {
3096 		c = min(left, 4U);
3097 		for (val = 0, i = 0; i < c; ++i)
3098 			val = (val << 8) + *data++;
3099 
3100 		ret = sf1_write(adapter, c, c != left, 1, val);
3101 		if (ret)
3102 			goto unlock;
3103 	}
3104 	ret = flash_wait_op(adapter, 8, 1);
3105 	if (ret)
3106 		goto unlock;
3107 
3108 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3109 
3110 	/* Read the page to verify the write succeeded */
3111 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3112 	if (ret)
3113 		return ret;
3114 
3115 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3116 		dev_err(adapter->pdev_dev,
3117 			"failed to correctly write the flash page at %#x\n",
3118 			addr);
3119 		return -EIO;
3120 	}
3121 	return 0;
3122 
3123 unlock:
3124 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3125 	return ret;
3126 }
3127 
3128 /**
3129  *	t4_get_fw_version - read the firmware version
3130  *	@adapter: the adapter
3131  *	@vers: where to place the version
3132  *
3133  *	Reads the FW version from flash.
3134  */
3135 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3136 {
3137 	return t4_read_flash(adapter, FLASH_FW_START +
3138 			     offsetof(struct fw_hdr, fw_ver), 1,
3139 			     vers, 0);
3140 }
3141 
3142 /**
3143  *	t4_get_bs_version - read the firmware bootstrap version
3144  *	@adapter: the adapter
3145  *	@vers: where to place the version
3146  *
3147  *	Reads the FW Bootstrap version from flash.
3148  */
3149 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3150 {
3151 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3152 			     offsetof(struct fw_hdr, fw_ver), 1,
3153 			     vers, 0);
3154 }
3155 
3156 /**
3157  *	t4_get_tp_version - read the TP microcode version
3158  *	@adapter: the adapter
3159  *	@vers: where to place the version
3160  *
3161  *	Reads the TP microcode version from flash.
3162  */
3163 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3164 {
3165 	return t4_read_flash(adapter, FLASH_FW_START +
3166 			     offsetof(struct fw_hdr, tp_microcode_ver),
3167 			     1, vers, 0);
3168 }
3169 
3170 /**
3171  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3172  *	@adapter: the adapter
3173  *	@vers: where to place the version
3174  *
3175  *	Reads the Expansion ROM header from FLASH and returns the version
3176  *	number (if present) through the @vers return value pointer.  We return
3177  *	this in the Firmware Version Format since it's convenient.  Return
3178  *	0 on success, -ENOENT if no Expansion ROM is present.
3179  */
3180 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3181 {
3182 	struct exprom_header {
3183 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3184 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3185 	} *hdr;
3186 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3187 					   sizeof(u32))];
3188 	int ret;
3189 
3190 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3191 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3192 			    0);
3193 	if (ret)
3194 		return ret;
3195 
3196 	hdr = (struct exprom_header *)exprom_header_buf;
3197 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3198 		return -ENOENT;
3199 
3200 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3201 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3202 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3203 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3204 	return 0;
3205 }
3206 
3207 /**
3208  *      t4_get_vpd_version - return the VPD version
3209  *      @adapter: the adapter
3210  *      @vers: where to place the version
3211  *
3212  *      Reads the VPD via the Firmware interface (thus this can only be called
3213  *      once we're ready to issue Firmware commands).  The format of the
3214  *      VPD version is adapter specific.  Returns 0 on success, an error on
3215  *      failure.
3216  *
3217  *      Note that early versions of the Firmware didn't include the ability
3218  *      to retrieve the VPD version, so we zero-out the return-value parameter
3219  *      in that case to avoid leaving it with garbage in it.
3220  *
3221  *      Also note that the Firmware will return its cached copy of the VPD
3222  *      Revision ID, not the actual Revision ID as written in the Serial
3223  *      EEPROM.  This is only an issue if a new VPD has been written and the
3224  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3225  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3226  *      if the Host Driver will be performing a full adapter initialization.
3227  */
3228 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3229 {
3230 	u32 vpdrev_param;
3231 	int ret;
3232 
3233 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3234 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3235 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3236 			      1, &vpdrev_param, vers);
3237 	if (ret)
3238 		*vers = 0;
3239 	return ret;
3240 }
3241 
3242 /**
3243  *      t4_get_scfg_version - return the Serial Configuration version
3244  *      @adapter: the adapter
3245  *      @vers: where to place the version
3246  *
3247  *      Reads the Serial Configuration Version via the Firmware interface
3248  *      (thus this can only be called once we're ready to issue Firmware
3249  *      commands).  The format of the Serial Configuration version is
3250  *      adapter specific.  Returns 0 on success, an error on failure.
3251  *
3252  *      Note that early versions of the Firmware didn't include the ability
3253  *      to retrieve the Serial Configuration version, so we zero-out the
3254  *      return-value parameter in that case to avoid leaving it with
3255  *      garbage in it.
3256  *
3257  *      Also note that the Firmware will return its cached copy of the Serial
3258  *      Initialization Revision ID, not the actual Revision ID as written in
3259  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3260  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3261  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3262  *      been issued if the Host Driver will be performing a full adapter
3263  *      initialization.
3264  */
3265 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3266 {
3267 	u32 scfgrev_param;
3268 	int ret;
3269 
3270 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3271 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3272 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3273 			      1, &scfgrev_param, vers);
3274 	if (ret)
3275 		*vers = 0;
3276 	return ret;
3277 }
3278 
3279 /**
3280  *      t4_get_version_info - extract various chip/firmware version information
3281  *      @adapter: the adapter
3282  *
3283  *      Reads various chip/firmware version numbers and stores them into the
3284  *      adapter Adapter Parameters structure.  If any of the efforts fails
3285  *      the first failure will be returned, but all of the version numbers
3286  *      will be read.
3287  */
3288 int t4_get_version_info(struct adapter *adapter)
3289 {
3290 	int ret = 0;
3291 
3292 	#define FIRST_RET(__getvinfo) \
3293 	do { \
3294 		int __ret = __getvinfo; \
3295 		if (__ret && !ret) \
3296 			ret = __ret; \
3297 	} while (0)
3298 
3299 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3300 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3301 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3302 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3303 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3304 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3305 
3306 	#undef FIRST_RET
3307 	return ret;
3308 }
3309 
3310 /**
3311  *      t4_dump_version_info - dump all of the adapter configuration IDs
3312  *      @adapter: the adapter
3313  *
3314  *      Dumps all of the various bits of adapter configuration version/revision
3315  *      IDs information.  This is typically called at some point after
3316  *      t4_get_version_info() has been called.
3317  */
3318 void t4_dump_version_info(struct adapter *adapter)
3319 {
3320 	/* Device information */
3321 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3322 		 adapter->params.vpd.id,
3323 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3324 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3325 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3326 
3327 	/* Firmware Version */
3328 	if (!adapter->params.fw_vers)
3329 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3330 	else
3331 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3332 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3333 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3334 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3335 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3336 
3337 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3338 	 * Firmware, so dev_info() is more appropriate here.)
3339 	 */
3340 	if (!adapter->params.bs_vers)
3341 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3342 	else
3343 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3344 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3345 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3346 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3347 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3348 
3349 	/* TP Microcode Version */
3350 	if (!adapter->params.tp_vers)
3351 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3352 	else
3353 		dev_info(adapter->pdev_dev,
3354 			 "TP Microcode version: %u.%u.%u.%u\n",
3355 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3356 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3357 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3358 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3359 
3360 	/* Expansion ROM version */
3361 	if (!adapter->params.er_vers)
3362 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3363 	else
3364 		dev_info(adapter->pdev_dev,
3365 			 "Expansion ROM version: %u.%u.%u.%u\n",
3366 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3367 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3368 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3369 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3370 
3371 	/* Serial Configuration version */
3372 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3373 		 adapter->params.scfg_vers);
3374 
3375 	/* VPD Version */
3376 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3377 		 adapter->params.vpd_vers);
3378 }
3379 
3380 /**
3381  *	t4_check_fw_version - check if the FW is supported with this driver
3382  *	@adap: the adapter
3383  *
3384  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3385  *	if there's exact match, a negative error if the version could not be
3386  *	read or there's a major version mismatch
3387  */
3388 int t4_check_fw_version(struct adapter *adap)
3389 {
3390 	int i, ret, major, minor, micro;
3391 	int exp_major, exp_minor, exp_micro;
3392 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3393 
3394 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3395 	/* Try multiple times before returning error */
3396 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3397 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3398 
3399 	if (ret)
3400 		return ret;
3401 
3402 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3403 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3404 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3405 
3406 	switch (chip_version) {
3407 	case CHELSIO_T4:
3408 		exp_major = T4FW_MIN_VERSION_MAJOR;
3409 		exp_minor = T4FW_MIN_VERSION_MINOR;
3410 		exp_micro = T4FW_MIN_VERSION_MICRO;
3411 		break;
3412 	case CHELSIO_T5:
3413 		exp_major = T5FW_MIN_VERSION_MAJOR;
3414 		exp_minor = T5FW_MIN_VERSION_MINOR;
3415 		exp_micro = T5FW_MIN_VERSION_MICRO;
3416 		break;
3417 	case CHELSIO_T6:
3418 		exp_major = T6FW_MIN_VERSION_MAJOR;
3419 		exp_minor = T6FW_MIN_VERSION_MINOR;
3420 		exp_micro = T6FW_MIN_VERSION_MICRO;
3421 		break;
3422 	default:
3423 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3424 			adap->chip);
3425 		return -EINVAL;
3426 	}
3427 
3428 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3429 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3430 		dev_err(adap->pdev_dev,
3431 			"Card has firmware version %u.%u.%u, minimum "
3432 			"supported firmware is %u.%u.%u.\n", major, minor,
3433 			micro, exp_major, exp_minor, exp_micro);
3434 		return -EFAULT;
3435 	}
3436 	return 0;
3437 }
3438 
3439 /* Is the given firmware API compatible with the one the driver was compiled
3440  * with?
3441  */
3442 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3443 {
3444 
3445 	/* short circuit if it's the exact same firmware version */
3446 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3447 		return 1;
3448 
3449 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3450 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3451 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3452 		return 1;
3453 #undef SAME_INTF
3454 
3455 	return 0;
3456 }
3457 
3458 /* The firmware in the filesystem is usable, but should it be installed?
3459  * This routine explains itself in detail if it indicates the filesystem
3460  * firmware should be installed.
3461  */
3462 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3463 				int k, int c)
3464 {
3465 	const char *reason;
3466 
3467 	if (!card_fw_usable) {
3468 		reason = "incompatible or unusable";
3469 		goto install;
3470 	}
3471 
3472 	if (k > c) {
3473 		reason = "older than the version supported with this driver";
3474 		goto install;
3475 	}
3476 
3477 	return 0;
3478 
3479 install:
3480 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3481 		"installing firmware %u.%u.%u.%u on card.\n",
3482 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3483 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3484 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3485 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3486 
3487 	return 1;
3488 }
3489 
3490 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3491 	       const u8 *fw_data, unsigned int fw_size,
3492 	       struct fw_hdr *card_fw, enum dev_state state,
3493 	       int *reset)
3494 {
3495 	int ret, card_fw_usable, fs_fw_usable;
3496 	const struct fw_hdr *fs_fw;
3497 	const struct fw_hdr *drv_fw;
3498 
3499 	drv_fw = &fw_info->fw_hdr;
3500 
3501 	/* Read the header of the firmware on the card */
3502 	ret = -t4_read_flash(adap, FLASH_FW_START,
3503 			    sizeof(*card_fw) / sizeof(uint32_t),
3504 			    (uint32_t *)card_fw, 1);
3505 	if (ret == 0) {
3506 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3507 	} else {
3508 		dev_err(adap->pdev_dev,
3509 			"Unable to read card's firmware header: %d\n", ret);
3510 		card_fw_usable = 0;
3511 	}
3512 
3513 	if (fw_data != NULL) {
3514 		fs_fw = (const void *)fw_data;
3515 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3516 	} else {
3517 		fs_fw = NULL;
3518 		fs_fw_usable = 0;
3519 	}
3520 
3521 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3522 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3523 		/* Common case: the firmware on the card is an exact match and
3524 		 * the filesystem one is an exact match too, or the filesystem
3525 		 * one is absent/incompatible.
3526 		 */
3527 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3528 		   should_install_fs_fw(adap, card_fw_usable,
3529 					be32_to_cpu(fs_fw->fw_ver),
3530 					be32_to_cpu(card_fw->fw_ver))) {
3531 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3532 				     fw_size, 0);
3533 		if (ret != 0) {
3534 			dev_err(adap->pdev_dev,
3535 				"failed to install firmware: %d\n", ret);
3536 			goto bye;
3537 		}
3538 
3539 		/* Installed successfully, update the cached header too. */
3540 		*card_fw = *fs_fw;
3541 		card_fw_usable = 1;
3542 		*reset = 0;	/* already reset as part of load_fw */
3543 	}
3544 
3545 	if (!card_fw_usable) {
3546 		uint32_t d, c, k;
3547 
3548 		d = be32_to_cpu(drv_fw->fw_ver);
3549 		c = be32_to_cpu(card_fw->fw_ver);
3550 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3551 
3552 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3553 			"chip state %d, "
3554 			"driver compiled with %d.%d.%d.%d, "
3555 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3556 			state,
3557 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3558 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3559 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3560 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3561 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3562 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3563 		ret = EINVAL;
3564 		goto bye;
3565 	}
3566 
3567 	/* We're using whatever's on the card and it's known to be good. */
3568 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3569 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3570 
3571 bye:
3572 	return ret;
3573 }
3574 
3575 /**
3576  *	t4_flash_erase_sectors - erase a range of flash sectors
3577  *	@adapter: the adapter
3578  *	@start: the first sector to erase
3579  *	@end: the last sector to erase
3580  *
3581  *	Erases the sectors in the given inclusive range.
3582  */
3583 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3584 {
3585 	int ret = 0;
3586 
3587 	if (end >= adapter->params.sf_nsec)
3588 		return -EINVAL;
3589 
3590 	while (start <= end) {
3591 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3592 		    (ret = sf1_write(adapter, 4, 0, 1,
3593 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3594 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3595 			dev_err(adapter->pdev_dev,
3596 				"erase of flash sector %d failed, error %d\n",
3597 				start, ret);
3598 			break;
3599 		}
3600 		start++;
3601 	}
3602 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3603 	return ret;
3604 }
3605 
3606 /**
3607  *	t4_flash_cfg_addr - return the address of the flash configuration file
3608  *	@adapter: the adapter
3609  *
3610  *	Return the address within the flash where the Firmware Configuration
3611  *	File is stored.
3612  */
3613 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3614 {
3615 	if (adapter->params.sf_size == 0x100000)
3616 		return FLASH_FPGA_CFG_START;
3617 	else
3618 		return FLASH_CFG_START;
3619 }
3620 
3621 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3622  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3623  * and emit an error message for mismatched firmware to save our caller the
3624  * effort ...
3625  */
3626 static bool t4_fw_matches_chip(const struct adapter *adap,
3627 			       const struct fw_hdr *hdr)
3628 {
3629 	/* The expression below will return FALSE for any unsupported adapter
3630 	 * which will keep us "honest" in the future ...
3631 	 */
3632 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3633 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3634 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3635 		return true;
3636 
3637 	dev_err(adap->pdev_dev,
3638 		"FW image (%d) is not suitable for this adapter (%d)\n",
3639 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3640 	return false;
3641 }
3642 
3643 /**
3644  *	t4_load_fw - download firmware
3645  *	@adap: the adapter
3646  *	@fw_data: the firmware image to write
3647  *	@size: image size
3648  *
3649  *	Write the supplied firmware image to the card's serial flash.
3650  */
3651 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3652 {
3653 	u32 csum;
3654 	int ret, addr;
3655 	unsigned int i;
3656 	u8 first_page[SF_PAGE_SIZE];
3657 	const __be32 *p = (const __be32 *)fw_data;
3658 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3659 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3660 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3661 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3662 	unsigned int fw_start = FLASH_FW_START;
3663 
3664 	if (!size) {
3665 		dev_err(adap->pdev_dev, "FW image has no data\n");
3666 		return -EINVAL;
3667 	}
3668 	if (size & 511) {
3669 		dev_err(adap->pdev_dev,
3670 			"FW image size not multiple of 512 bytes\n");
3671 		return -EINVAL;
3672 	}
3673 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3674 		dev_err(adap->pdev_dev,
3675 			"FW image size differs from size in FW header\n");
3676 		return -EINVAL;
3677 	}
3678 	if (size > fw_size) {
3679 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3680 			fw_size);
3681 		return -EFBIG;
3682 	}
3683 	if (!t4_fw_matches_chip(adap, hdr))
3684 		return -EINVAL;
3685 
3686 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3687 		csum += be32_to_cpu(p[i]);
3688 
3689 	if (csum != 0xffffffff) {
3690 		dev_err(adap->pdev_dev,
3691 			"corrupted firmware image, checksum %#x\n", csum);
3692 		return -EINVAL;
3693 	}
3694 
3695 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3696 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3697 	if (ret)
3698 		goto out;
3699 
3700 	/*
3701 	 * We write the correct version at the end so the driver can see a bad
3702 	 * version if the FW write fails.  Start by writing a copy of the
3703 	 * first page with a bad version.
3704 	 */
3705 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3706 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3707 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3708 	if (ret)
3709 		goto out;
3710 
3711 	addr = fw_start;
3712 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3713 		addr += SF_PAGE_SIZE;
3714 		fw_data += SF_PAGE_SIZE;
3715 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3716 		if (ret)
3717 			goto out;
3718 	}
3719 
3720 	ret = t4_write_flash(adap,
3721 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3722 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3723 out:
3724 	if (ret)
3725 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3726 			ret);
3727 	else
3728 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3729 	return ret;
3730 }
3731 
3732 /**
3733  *	t4_phy_fw_ver - return current PHY firmware version
3734  *	@adap: the adapter
3735  *	@phy_fw_ver: return value buffer for PHY firmware version
3736  *
3737  *	Returns the current version of external PHY firmware on the
3738  *	adapter.
3739  */
3740 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3741 {
3742 	u32 param, val;
3743 	int ret;
3744 
3745 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3746 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3747 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3748 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3749 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3750 			      &param, &val);
3751 	if (ret < 0)
3752 		return ret;
3753 	*phy_fw_ver = val;
3754 	return 0;
3755 }
3756 
3757 /**
3758  *	t4_load_phy_fw - download port PHY firmware
3759  *	@adap: the adapter
3760  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3761  *	@win_lock: the lock to use to guard the memory copy
3762  *	@phy_fw_version: function to check PHY firmware versions
3763  *	@phy_fw_data: the PHY firmware image to write
3764  *	@phy_fw_size: image size
3765  *
3766  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3767  *	@phy_fw_version is supplied, then it will be used to determine if
3768  *	it's necessary to perform the transfer by comparing the version
3769  *	of any existing adapter PHY firmware with that of the passed in
3770  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3771  *	around the call to t4_memory_rw() which transfers the PHY firmware
3772  *	to the adapter.
3773  *
3774  *	A negative error number will be returned if an error occurs.  If
3775  *	version number support is available and there's no need to upgrade
3776  *	the firmware, 0 will be returned.  If firmware is successfully
3777  *	transferred to the adapter, 1 will be returned.
3778  *
3779  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3780  *	a result, a RESET of the adapter would cause that RAM to lose its
3781  *	contents.  Thus, loading PHY firmware on such adapters must happen
3782  *	after any FW_RESET_CMDs ...
3783  */
3784 int t4_load_phy_fw(struct adapter *adap,
3785 		   int win, spinlock_t *win_lock,
3786 		   int (*phy_fw_version)(const u8 *, size_t),
3787 		   const u8 *phy_fw_data, size_t phy_fw_size)
3788 {
3789 	unsigned long mtype = 0, maddr = 0;
3790 	u32 param, val;
3791 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3792 	int ret;
3793 
3794 	/* If we have version number support, then check to see if the adapter
3795 	 * already has up-to-date PHY firmware loaded.
3796 	 */
3797 	if (phy_fw_version) {
3798 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3799 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3800 		if (ret < 0)
3801 			return ret;
3802 
3803 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3804 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3805 				"version %#x\n", cur_phy_fw_ver);
3806 			return 0;
3807 		}
3808 	}
3809 
3810 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3811 	 * The size of the file requires a special version of the READ command
3812 	 * which will pass the file size via the values field in PARAMS_CMD and
3813 	 * retrieve the return value from firmware and place it in the same
3814 	 * buffer values
3815 	 */
3816 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3817 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3818 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3819 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3820 	val = phy_fw_size;
3821 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3822 				 &param, &val, 1, true);
3823 	if (ret < 0)
3824 		return ret;
3825 	mtype = val >> 8;
3826 	maddr = (val & 0xff) << 16;
3827 
3828 	/* Copy the supplied PHY Firmware image to the adapter memory location
3829 	 * allocated by the adapter firmware.
3830 	 */
3831 	if (win_lock)
3832 		spin_lock_bh(win_lock);
3833 	ret = t4_memory_rw(adap, win, mtype, maddr,
3834 			   phy_fw_size, (__be32 *)phy_fw_data,
3835 			   T4_MEMORY_WRITE);
3836 	if (win_lock)
3837 		spin_unlock_bh(win_lock);
3838 	if (ret)
3839 		return ret;
3840 
3841 	/* Tell the firmware that the PHY firmware image has been written to
3842 	 * RAM and it can now start copying it over to the PHYs.  The chip
3843 	 * firmware will RESET the affected PHYs as part of this operation
3844 	 * leaving them running the new PHY firmware image.
3845 	 */
3846 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3847 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3848 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3849 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3850 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3851 				    &param, &val, 30000);
3852 
3853 	/* If we have version number support, then check to see that the new
3854 	 * firmware got loaded properly.
3855 	 */
3856 	if (phy_fw_version) {
3857 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3858 		if (ret < 0)
3859 			return ret;
3860 
3861 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3862 			CH_WARN(adap, "PHY Firmware did not update: "
3863 				"version on adapter %#x, "
3864 				"version flashed %#x\n",
3865 				cur_phy_fw_ver, new_phy_fw_vers);
3866 			return -ENXIO;
3867 		}
3868 	}
3869 
3870 	return 1;
3871 }
3872 
3873 /**
3874  *	t4_fwcache - firmware cache operation
3875  *	@adap: the adapter
3876  *	@op  : the operation (flush or flush and invalidate)
3877  */
3878 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3879 {
3880 	struct fw_params_cmd c;
3881 
3882 	memset(&c, 0, sizeof(c));
3883 	c.op_to_vfn =
3884 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3885 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3886 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3887 			    FW_PARAMS_CMD_VFN_V(0));
3888 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3889 	c.param[0].mnem =
3890 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3891 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3892 	c.param[0].val = cpu_to_be32(op);
3893 
3894 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3895 }
3896 
3897 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3898 			unsigned int *pif_req_wrptr,
3899 			unsigned int *pif_rsp_wrptr)
3900 {
3901 	int i, j;
3902 	u32 cfg, val, req, rsp;
3903 
3904 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3905 	if (cfg & LADBGEN_F)
3906 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3907 
3908 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3909 	req = POLADBGWRPTR_G(val);
3910 	rsp = PILADBGWRPTR_G(val);
3911 	if (pif_req_wrptr)
3912 		*pif_req_wrptr = req;
3913 	if (pif_rsp_wrptr)
3914 		*pif_rsp_wrptr = rsp;
3915 
3916 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3917 		for (j = 0; j < 6; j++) {
3918 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3919 				     PILADBGRDPTR_V(rsp));
3920 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3921 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3922 			req++;
3923 			rsp++;
3924 		}
3925 		req = (req + 2) & POLADBGRDPTR_M;
3926 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3927 	}
3928 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3929 }
3930 
3931 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3932 {
3933 	u32 cfg;
3934 	int i, j, idx;
3935 
3936 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3937 	if (cfg & LADBGEN_F)
3938 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3939 
3940 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3941 		for (j = 0; j < 5; j++) {
3942 			idx = 8 * i + j;
3943 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3944 				     PILADBGRDPTR_V(idx));
3945 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3946 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3947 		}
3948 	}
3949 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3950 }
3951 
3952 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3953 {
3954 	unsigned int i, j;
3955 
3956 	for (i = 0; i < 8; i++) {
3957 		u32 *p = la_buf + i;
3958 
3959 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3960 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3961 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3962 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3963 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3964 	}
3965 }
3966 
3967 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3968  * Capabilities which we control with separate controls -- see, for instance,
3969  * Pause Frames and Forward Error Correction.  In order to determine what the
3970  * full set of Advertised Port Capabilities are, the base Advertised Port
3971  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3972  * Port Capabilities associated with those other controls.  See
3973  * t4_link_acaps() for how this is done.
3974  */
3975 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3976 		     FW_PORT_CAP32_ANEG)
3977 
3978 /**
3979  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3980  *	@caps16: a 16-bit Port Capabilities value
3981  *
3982  *	Returns the equivalent 32-bit Port Capabilities value.
3983  */
3984 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3985 {
3986 	fw_port_cap32_t caps32 = 0;
3987 
3988 	#define CAP16_TO_CAP32(__cap) \
3989 		do { \
3990 			if (caps16 & FW_PORT_CAP_##__cap) \
3991 				caps32 |= FW_PORT_CAP32_##__cap; \
3992 		} while (0)
3993 
3994 	CAP16_TO_CAP32(SPEED_100M);
3995 	CAP16_TO_CAP32(SPEED_1G);
3996 	CAP16_TO_CAP32(SPEED_25G);
3997 	CAP16_TO_CAP32(SPEED_10G);
3998 	CAP16_TO_CAP32(SPEED_40G);
3999 	CAP16_TO_CAP32(SPEED_100G);
4000 	CAP16_TO_CAP32(FC_RX);
4001 	CAP16_TO_CAP32(FC_TX);
4002 	CAP16_TO_CAP32(ANEG);
4003 	CAP16_TO_CAP32(FORCE_PAUSE);
4004 	CAP16_TO_CAP32(MDIAUTO);
4005 	CAP16_TO_CAP32(MDISTRAIGHT);
4006 	CAP16_TO_CAP32(FEC_RS);
4007 	CAP16_TO_CAP32(FEC_BASER_RS);
4008 	CAP16_TO_CAP32(802_3_PAUSE);
4009 	CAP16_TO_CAP32(802_3_ASM_DIR);
4010 
4011 	#undef CAP16_TO_CAP32
4012 
4013 	return caps32;
4014 }
4015 
4016 /**
4017  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4018  *	@caps32: a 32-bit Port Capabilities value
4019  *
4020  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
4021  *	not all 32-bit Port Capabilities can be represented in the 16-bit
4022  *	Port Capabilities and some fields/values may not make it.
4023  */
4024 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4025 {
4026 	fw_port_cap16_t caps16 = 0;
4027 
4028 	#define CAP32_TO_CAP16(__cap) \
4029 		do { \
4030 			if (caps32 & FW_PORT_CAP32_##__cap) \
4031 				caps16 |= FW_PORT_CAP_##__cap; \
4032 		} while (0)
4033 
4034 	CAP32_TO_CAP16(SPEED_100M);
4035 	CAP32_TO_CAP16(SPEED_1G);
4036 	CAP32_TO_CAP16(SPEED_10G);
4037 	CAP32_TO_CAP16(SPEED_25G);
4038 	CAP32_TO_CAP16(SPEED_40G);
4039 	CAP32_TO_CAP16(SPEED_100G);
4040 	CAP32_TO_CAP16(FC_RX);
4041 	CAP32_TO_CAP16(FC_TX);
4042 	CAP32_TO_CAP16(802_3_PAUSE);
4043 	CAP32_TO_CAP16(802_3_ASM_DIR);
4044 	CAP32_TO_CAP16(ANEG);
4045 	CAP32_TO_CAP16(FORCE_PAUSE);
4046 	CAP32_TO_CAP16(MDIAUTO);
4047 	CAP32_TO_CAP16(MDISTRAIGHT);
4048 	CAP32_TO_CAP16(FEC_RS);
4049 	CAP32_TO_CAP16(FEC_BASER_RS);
4050 
4051 	#undef CAP32_TO_CAP16
4052 
4053 	return caps16;
4054 }
4055 
4056 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4057 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4058 {
4059 	enum cc_pause cc_pause = 0;
4060 
4061 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4062 		cc_pause |= PAUSE_RX;
4063 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4064 		cc_pause |= PAUSE_TX;
4065 
4066 	return cc_pause;
4067 }
4068 
4069 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4070 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4071 {
4072 	/* Translate orthogonal RX/TX Pause Controls for L1 Configure
4073 	 * commands, etc.
4074 	 */
4075 	fw_port_cap32_t fw_pause = 0;
4076 
4077 	if (cc_pause & PAUSE_RX)
4078 		fw_pause |= FW_PORT_CAP32_FC_RX;
4079 	if (cc_pause & PAUSE_TX)
4080 		fw_pause |= FW_PORT_CAP32_FC_TX;
4081 	if (!(cc_pause & PAUSE_AUTONEG))
4082 		fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4083 
4084 	/* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4085 	 * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4086 	 * Note that these bits are ignored in L1 Configure commands.
4087 	 */
4088 	if (cc_pause & PAUSE_RX) {
4089 		if (cc_pause & PAUSE_TX)
4090 			fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4091 		else
4092 			fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4093 				    FW_PORT_CAP32_802_3_PAUSE;
4094 	} else if (cc_pause & PAUSE_TX) {
4095 		fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4096 	}
4097 
4098 	return fw_pause;
4099 }
4100 
4101 /* Translate Firmware Forward Error Correction specification to Common Code */
4102 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4103 {
4104 	enum cc_fec cc_fec = 0;
4105 
4106 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4107 		cc_fec |= FEC_RS;
4108 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4109 		cc_fec |= FEC_BASER_RS;
4110 
4111 	return cc_fec;
4112 }
4113 
4114 /* Translate Common Code Forward Error Correction specification to Firmware */
4115 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4116 {
4117 	fw_port_cap32_t fw_fec = 0;
4118 
4119 	if (cc_fec & FEC_RS)
4120 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4121 	if (cc_fec & FEC_BASER_RS)
4122 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4123 
4124 	return fw_fec;
4125 }
4126 
4127 /**
4128  *	t4_link_acaps - compute Link Advertised Port Capabilities
4129  *	@adapter: the adapter
4130  *	@port: the Port ID
4131  *	@lc: the Port's Link Configuration
4132  *
4133  *	Synthesize the Advertised Port Capabilities we'll be using based on
4134  *	the base Advertised Port Capabilities (which have been filtered by
4135  *	ADVERT_MASK) plus the individual controls for things like Pause
4136  *	Frames, Forward Error Correction, MDI, etc.
4137  */
4138 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4139 			      struct link_config *lc)
4140 {
4141 	fw_port_cap32_t fw_fc, fw_fec, acaps;
4142 	unsigned int fw_mdi;
4143 	char cc_fec;
4144 
4145 	fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4146 
4147 	/* Convert driver coding of Pause Frame Flow Control settings into the
4148 	 * Firmware's API.
4149 	 */
4150 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4151 
4152 	/* Convert Common Code Forward Error Control settings into the
4153 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4154 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4155 	 * sent us as part of its IEEE 802.3-based interpretation of
4156 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4157 	 * use whatever is in the current Requested FEC settings.
4158 	 */
4159 	if (lc->requested_fec & FEC_AUTO)
4160 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4161 	else
4162 		cc_fec = lc->requested_fec;
4163 	fw_fec = cc_to_fwcap_fec(cc_fec);
4164 
4165 	/* Figure out what our Requested Port Capabilities are going to be.
4166 	 * Note parallel structure in t4_handle_get_port_info() and
4167 	 * init_link_config().
4168 	 */
4169 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4170 		acaps = lc->acaps | fw_fc | fw_fec;
4171 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4172 		lc->fec = cc_fec;
4173 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4174 		acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4175 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4176 		lc->fec = cc_fec;
4177 	} else {
4178 		acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4179 	}
4180 
4181 	/* Some Requested Port Capabilities are trivially wrong if they exceed
4182 	 * the Physical Port Capabilities.  We can check that here and provide
4183 	 * moderately useful feedback in the system log.
4184 	 *
4185 	 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4186 	 * we need to exclude this from this check in order to maintain
4187 	 * compatibility ...
4188 	 */
4189 	if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4190 		dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4191 			acaps, lc->pcaps);
4192 		return -EINVAL;
4193 	}
4194 
4195 	return acaps;
4196 }
4197 
4198 /**
4199  *	t4_link_l1cfg_core - apply link configuration to MAC/PHY
4200  *	@adapter: the adapter
4201  *	@mbox: the Firmware Mailbox to use
4202  *	@port: the Port ID
4203  *	@lc: the Port's Link Configuration
4204  *	@sleep_ok: if true we may sleep while awaiting command completion
4205  *	@timeout: time to wait for command to finish before timing out
4206  *		(negative implies @sleep_ok=false)
4207  *
4208  *	Set up a port's MAC and PHY according to a desired link configuration.
4209  *	- If the PHY can auto-negotiate first decide what to advertise, then
4210  *	  enable/disable auto-negotiation as desired, and reset.
4211  *	- If the PHY does not auto-negotiate just reset it.
4212  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4213  *	  otherwise do it later based on the outcome of auto-negotiation.
4214  */
4215 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4216 		       unsigned int port, struct link_config *lc,
4217 		       u8 sleep_ok, int timeout)
4218 {
4219 	unsigned int fw_caps = adapter->params.fw_caps_support;
4220 	struct fw_port_cmd cmd;
4221 	fw_port_cap32_t rcap;
4222 	int ret;
4223 
4224 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4225 	    lc->autoneg == AUTONEG_ENABLE) {
4226 		return -EINVAL;
4227 	}
4228 
4229 	/* Compute our Requested Port Capabilities and send that on to the
4230 	 * Firmware.
4231 	 */
4232 	rcap = t4_link_acaps(adapter, port, lc);
4233 	memset(&cmd, 0, sizeof(cmd));
4234 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4235 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4236 				       FW_PORT_CMD_PORTID_V(port));
4237 	cmd.action_to_len16 =
4238 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4239 						 ? FW_PORT_ACTION_L1_CFG
4240 						 : FW_PORT_ACTION_L1_CFG32) |
4241 						 FW_LEN16(cmd));
4242 	if (fw_caps == FW_CAPS16)
4243 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4244 	else
4245 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4246 
4247 	ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4248 				      sleep_ok, timeout);
4249 
4250 	/* Unfortunately, even if the Requested Port Capabilities "fit" within
4251 	 * the Physical Port Capabilities, some combinations of features may
4252 	 * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4253 	 * Error Correction.  So if the Firmware rejects the L1 Configure
4254 	 * request, flag that here.
4255 	 */
4256 	if (ret) {
4257 		dev_err(adapter->pdev_dev,
4258 			"Requested Port Capabilities %#x rejected, error %d\n",
4259 			rcap, -ret);
4260 		return ret;
4261 	}
4262 	return 0;
4263 }
4264 
4265 /**
4266  *	t4_restart_aneg - restart autonegotiation
4267  *	@adap: the adapter
4268  *	@mbox: mbox to use for the FW command
4269  *	@port: the port id
4270  *
4271  *	Restarts autonegotiation for the selected port.
4272  */
4273 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4274 {
4275 	unsigned int fw_caps = adap->params.fw_caps_support;
4276 	struct fw_port_cmd c;
4277 
4278 	memset(&c, 0, sizeof(c));
4279 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4280 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4281 				     FW_PORT_CMD_PORTID_V(port));
4282 	c.action_to_len16 =
4283 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4284 						 ? FW_PORT_ACTION_L1_CFG
4285 						 : FW_PORT_ACTION_L1_CFG32) |
4286 			    FW_LEN16(c));
4287 	if (fw_caps == FW_CAPS16)
4288 		c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4289 	else
4290 		c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4291 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4292 }
4293 
4294 typedef void (*int_handler_t)(struct adapter *adap);
4295 
4296 struct intr_info {
4297 	unsigned int mask;       /* bits to check in interrupt status */
4298 	const char *msg;         /* message to print or NULL */
4299 	short stat_idx;          /* stat counter to increment or -1 */
4300 	unsigned short fatal;    /* whether the condition reported is fatal */
4301 	int_handler_t int_handler; /* platform-specific int handler */
4302 };
4303 
4304 /**
4305  *	t4_handle_intr_status - table driven interrupt handler
4306  *	@adapter: the adapter that generated the interrupt
4307  *	@reg: the interrupt status register to process
4308  *	@acts: table of interrupt actions
4309  *
4310  *	A table driven interrupt handler that applies a set of masks to an
4311  *	interrupt status word and performs the corresponding actions if the
4312  *	interrupts described by the mask have occurred.  The actions include
4313  *	optionally emitting a warning or alert message.  The table is terminated
4314  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4315  *	conditions.
4316  */
4317 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4318 				 const struct intr_info *acts)
4319 {
4320 	int fatal = 0;
4321 	unsigned int mask = 0;
4322 	unsigned int status = t4_read_reg(adapter, reg);
4323 
4324 	for ( ; acts->mask; ++acts) {
4325 		if (!(status & acts->mask))
4326 			continue;
4327 		if (acts->fatal) {
4328 			fatal++;
4329 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4330 				  status & acts->mask);
4331 		} else if (acts->msg && printk_ratelimit())
4332 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4333 				 status & acts->mask);
4334 		if (acts->int_handler)
4335 			acts->int_handler(adapter);
4336 		mask |= acts->mask;
4337 	}
4338 	status &= mask;
4339 	if (status)                           /* clear processed interrupts */
4340 		t4_write_reg(adapter, reg, status);
4341 	return fatal;
4342 }
4343 
4344 /*
4345  * Interrupt handler for the PCIE module.
4346  */
4347 static void pcie_intr_handler(struct adapter *adapter)
4348 {
4349 	static const struct intr_info sysbus_intr_info[] = {
4350 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4351 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4352 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4353 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4354 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4355 		{ 0 }
4356 	};
4357 	static const struct intr_info pcie_port_intr_info[] = {
4358 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4359 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4360 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4361 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4362 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4363 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4364 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4365 		{ RDPE_F, "Rx data parity error", -1, 1 },
4366 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4367 		{ 0 }
4368 	};
4369 	static const struct intr_info pcie_intr_info[] = {
4370 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4371 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4372 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4373 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4374 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4375 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4376 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4377 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4378 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4379 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4380 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4381 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4382 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4383 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4384 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4385 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4386 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4387 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4388 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4389 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4390 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4391 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4392 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4393 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4394 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4395 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4396 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4397 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4398 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4399 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4400 		  -1, 0 },
4401 		{ 0 }
4402 	};
4403 
4404 	static struct intr_info t5_pcie_intr_info[] = {
4405 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4406 		  -1, 1 },
4407 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4408 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4409 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4410 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4411 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4412 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4413 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4414 		  -1, 1 },
4415 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4416 		  -1, 1 },
4417 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4418 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4419 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4420 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4421 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4422 		  -1, 1 },
4423 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4424 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4425 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4426 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4427 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4428 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4429 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4430 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4431 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4432 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4433 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4434 		  -1, 1 },
4435 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4436 		  -1, 1 },
4437 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4438 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4439 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4440 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4441 		{ 0 }
4442 	};
4443 
4444 	int fat;
4445 
4446 	if (is_t4(adapter->params.chip))
4447 		fat = t4_handle_intr_status(adapter,
4448 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4449 				sysbus_intr_info) +
4450 			t4_handle_intr_status(adapter,
4451 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4452 					pcie_port_intr_info) +
4453 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4454 					      pcie_intr_info);
4455 	else
4456 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4457 					    t5_pcie_intr_info);
4458 
4459 	if (fat)
4460 		t4_fatal_err(adapter);
4461 }
4462 
4463 /*
4464  * TP interrupt handler.
4465  */
4466 static void tp_intr_handler(struct adapter *adapter)
4467 {
4468 	static const struct intr_info tp_intr_info[] = {
4469 		{ 0x3fffffff, "TP parity error", -1, 1 },
4470 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4471 		{ 0 }
4472 	};
4473 
4474 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4475 		t4_fatal_err(adapter);
4476 }
4477 
4478 /*
4479  * SGE interrupt handler.
4480  */
4481 static void sge_intr_handler(struct adapter *adapter)
4482 {
4483 	u64 v;
4484 	u32 err;
4485 
4486 	static const struct intr_info sge_intr_info[] = {
4487 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4488 		  "SGE received CPL exceeding IQE size", -1, 1 },
4489 		{ ERR_INVALID_CIDX_INC_F,
4490 		  "SGE GTS CIDX increment too large", -1, 0 },
4491 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4492 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4493 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4494 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4495 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4496 		  0 },
4497 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4498 		  0 },
4499 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4500 		  0 },
4501 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4502 		  0 },
4503 		{ ERR_ING_CTXT_PRIO_F,
4504 		  "SGE too many priority ingress contexts", -1, 0 },
4505 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4506 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4507 		{ 0 }
4508 	};
4509 
4510 	static struct intr_info t4t5_sge_intr_info[] = {
4511 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4512 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4513 		{ ERR_EGR_CTXT_PRIO_F,
4514 		  "SGE too many priority egress contexts", -1, 0 },
4515 		{ 0 }
4516 	};
4517 
4518 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4519 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
4520 	if (v) {
4521 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4522 				(unsigned long long)v);
4523 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4524 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4525 	}
4526 
4527 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4528 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4529 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4530 					   t4t5_sge_intr_info);
4531 
4532 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4533 	if (err & ERROR_QID_VALID_F) {
4534 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4535 			ERROR_QID_G(err));
4536 		if (err & UNCAPTURED_ERROR_F)
4537 			dev_err(adapter->pdev_dev,
4538 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4539 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4540 			     UNCAPTURED_ERROR_F);
4541 	}
4542 
4543 	if (v != 0)
4544 		t4_fatal_err(adapter);
4545 }
4546 
4547 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4548 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4549 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4550 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4551 
4552 /*
4553  * CIM interrupt handler.
4554  */
4555 static void cim_intr_handler(struct adapter *adapter)
4556 {
4557 	static const struct intr_info cim_intr_info[] = {
4558 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4559 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4560 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4561 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4562 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4563 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4564 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4565 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4566 		{ 0 }
4567 	};
4568 	static const struct intr_info cim_upintr_info[] = {
4569 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4570 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4571 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4572 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4573 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4574 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4575 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4576 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4577 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4578 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4579 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4580 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4581 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4582 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4583 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4584 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4585 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4586 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4587 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4588 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4589 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4590 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4591 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4592 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4593 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4594 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4595 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4596 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4597 		{ 0 }
4598 	};
4599 
4600 	u32 val, fw_err;
4601 	int fat;
4602 
4603 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4604 	if (fw_err & PCIE_FW_ERR_F)
4605 		t4_report_fw_error(adapter);
4606 
4607 	/* When the Firmware detects an internal error which normally
4608 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4609 	 * in order to make sure the Host sees the Firmware Crash.  So
4610 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4611 	 * ignore the Timer0 interrupt.
4612 	 */
4613 
4614 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4615 	if (val & TIMER0INT_F)
4616 		if (!(fw_err & PCIE_FW_ERR_F) ||
4617 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4618 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4619 				     TIMER0INT_F);
4620 
4621 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4622 				    cim_intr_info) +
4623 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4624 				    cim_upintr_info);
4625 	if (fat)
4626 		t4_fatal_err(adapter);
4627 }
4628 
4629 /*
4630  * ULP RX interrupt handler.
4631  */
4632 static void ulprx_intr_handler(struct adapter *adapter)
4633 {
4634 	static const struct intr_info ulprx_intr_info[] = {
4635 		{ 0x1800000, "ULPRX context error", -1, 1 },
4636 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4637 		{ 0 }
4638 	};
4639 
4640 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4641 		t4_fatal_err(adapter);
4642 }
4643 
4644 /*
4645  * ULP TX interrupt handler.
4646  */
4647 static void ulptx_intr_handler(struct adapter *adapter)
4648 {
4649 	static const struct intr_info ulptx_intr_info[] = {
4650 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4651 		  0 },
4652 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4653 		  0 },
4654 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4655 		  0 },
4656 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4657 		  0 },
4658 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4659 		{ 0 }
4660 	};
4661 
4662 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4663 		t4_fatal_err(adapter);
4664 }
4665 
4666 /*
4667  * PM TX interrupt handler.
4668  */
4669 static void pmtx_intr_handler(struct adapter *adapter)
4670 {
4671 	static const struct intr_info pmtx_intr_info[] = {
4672 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4673 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4674 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4675 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4676 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4677 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4678 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4679 		  -1, 1 },
4680 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4681 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4682 		{ 0 }
4683 	};
4684 
4685 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4686 		t4_fatal_err(adapter);
4687 }
4688 
4689 /*
4690  * PM RX interrupt handler.
4691  */
4692 static void pmrx_intr_handler(struct adapter *adapter)
4693 {
4694 	static const struct intr_info pmrx_intr_info[] = {
4695 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4696 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4697 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4698 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4699 		  -1, 1 },
4700 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4701 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4702 		{ 0 }
4703 	};
4704 
4705 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4706 		t4_fatal_err(adapter);
4707 }
4708 
4709 /*
4710  * CPL switch interrupt handler.
4711  */
4712 static void cplsw_intr_handler(struct adapter *adapter)
4713 {
4714 	static const struct intr_info cplsw_intr_info[] = {
4715 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4716 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4717 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4718 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4719 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4720 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4721 		{ 0 }
4722 	};
4723 
4724 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4725 		t4_fatal_err(adapter);
4726 }
4727 
4728 /*
4729  * LE interrupt handler.
4730  */
4731 static void le_intr_handler(struct adapter *adap)
4732 {
4733 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4734 	static const struct intr_info le_intr_info[] = {
4735 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4736 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4737 		{ PARITYERR_F, "LE parity error", -1, 1 },
4738 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4739 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4740 		{ 0 }
4741 	};
4742 
4743 	static struct intr_info t6_le_intr_info[] = {
4744 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4745 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4746 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4747 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4748 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4749 		{ 0 }
4750 	};
4751 
4752 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4753 				  (chip <= CHELSIO_T5) ?
4754 				  le_intr_info : t6_le_intr_info))
4755 		t4_fatal_err(adap);
4756 }
4757 
4758 /*
4759  * MPS interrupt handler.
4760  */
4761 static void mps_intr_handler(struct adapter *adapter)
4762 {
4763 	static const struct intr_info mps_rx_intr_info[] = {
4764 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4765 		{ 0 }
4766 	};
4767 	static const struct intr_info mps_tx_intr_info[] = {
4768 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4769 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4770 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4771 		  -1, 1 },
4772 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4773 		  -1, 1 },
4774 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4775 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4776 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4777 		{ 0 }
4778 	};
4779 	static const struct intr_info t6_mps_tx_intr_info[] = {
4780 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4781 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4782 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4783 		  -1, 1 },
4784 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4785 		  -1, 1 },
4786 		/* MPS Tx Bubble is normal for T6 */
4787 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4788 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4789 		{ 0 }
4790 	};
4791 	static const struct intr_info mps_trc_intr_info[] = {
4792 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4793 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4794 		  -1, 1 },
4795 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4796 		{ 0 }
4797 	};
4798 	static const struct intr_info mps_stat_sram_intr_info[] = {
4799 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4800 		{ 0 }
4801 	};
4802 	static const struct intr_info mps_stat_tx_intr_info[] = {
4803 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4804 		{ 0 }
4805 	};
4806 	static const struct intr_info mps_stat_rx_intr_info[] = {
4807 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4808 		{ 0 }
4809 	};
4810 	static const struct intr_info mps_cls_intr_info[] = {
4811 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4812 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4813 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4814 		{ 0 }
4815 	};
4816 
4817 	int fat;
4818 
4819 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4820 				    mps_rx_intr_info) +
4821 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4822 				    is_t6(adapter->params.chip)
4823 				    ? t6_mps_tx_intr_info
4824 				    : mps_tx_intr_info) +
4825 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4826 				    mps_trc_intr_info) +
4827 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4828 				    mps_stat_sram_intr_info) +
4829 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4830 				    mps_stat_tx_intr_info) +
4831 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4832 				    mps_stat_rx_intr_info) +
4833 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4834 				    mps_cls_intr_info);
4835 
4836 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4837 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4838 	if (fat)
4839 		t4_fatal_err(adapter);
4840 }
4841 
4842 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4843 		      ECC_UE_INT_CAUSE_F)
4844 
4845 /*
4846  * EDC/MC interrupt handler.
4847  */
4848 static void mem_intr_handler(struct adapter *adapter, int idx)
4849 {
4850 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4851 
4852 	unsigned int addr, cnt_addr, v;
4853 
4854 	if (idx <= MEM_EDC1) {
4855 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4856 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4857 	} else if (idx == MEM_MC) {
4858 		if (is_t4(adapter->params.chip)) {
4859 			addr = MC_INT_CAUSE_A;
4860 			cnt_addr = MC_ECC_STATUS_A;
4861 		} else {
4862 			addr = MC_P_INT_CAUSE_A;
4863 			cnt_addr = MC_P_ECC_STATUS_A;
4864 		}
4865 	} else {
4866 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4867 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4868 	}
4869 
4870 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4871 	if (v & PERR_INT_CAUSE_F)
4872 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4873 			  name[idx]);
4874 	if (v & ECC_CE_INT_CAUSE_F) {
4875 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4876 
4877 		t4_edc_err_read(adapter, idx);
4878 
4879 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4880 		if (printk_ratelimit())
4881 			dev_warn(adapter->pdev_dev,
4882 				 "%u %s correctable ECC data error%s\n",
4883 				 cnt, name[idx], cnt > 1 ? "s" : "");
4884 	}
4885 	if (v & ECC_UE_INT_CAUSE_F)
4886 		dev_alert(adapter->pdev_dev,
4887 			  "%s uncorrectable ECC data error\n", name[idx]);
4888 
4889 	t4_write_reg(adapter, addr, v);
4890 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4891 		t4_fatal_err(adapter);
4892 }
4893 
4894 /*
4895  * MA interrupt handler.
4896  */
4897 static void ma_intr_handler(struct adapter *adap)
4898 {
4899 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4900 
4901 	if (status & MEM_PERR_INT_CAUSE_F) {
4902 		dev_alert(adap->pdev_dev,
4903 			  "MA parity error, parity status %#x\n",
4904 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4905 		if (is_t5(adap->params.chip))
4906 			dev_alert(adap->pdev_dev,
4907 				  "MA parity error, parity status %#x\n",
4908 				  t4_read_reg(adap,
4909 					      MA_PARITY_ERROR_STATUS2_A));
4910 	}
4911 	if (status & MEM_WRAP_INT_CAUSE_F) {
4912 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4913 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4914 			  "client %u to address %#x\n",
4915 			  MEM_WRAP_CLIENT_NUM_G(v),
4916 			  MEM_WRAP_ADDRESS_G(v) << 4);
4917 	}
4918 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4919 	t4_fatal_err(adap);
4920 }
4921 
4922 /*
4923  * SMB interrupt handler.
4924  */
4925 static void smb_intr_handler(struct adapter *adap)
4926 {
4927 	static const struct intr_info smb_intr_info[] = {
4928 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4929 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4930 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4931 		{ 0 }
4932 	};
4933 
4934 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4935 		t4_fatal_err(adap);
4936 }
4937 
4938 /*
4939  * NC-SI interrupt handler.
4940  */
4941 static void ncsi_intr_handler(struct adapter *adap)
4942 {
4943 	static const struct intr_info ncsi_intr_info[] = {
4944 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4945 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4946 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4947 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4948 		{ 0 }
4949 	};
4950 
4951 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4952 		t4_fatal_err(adap);
4953 }
4954 
4955 /*
4956  * XGMAC interrupt handler.
4957  */
4958 static void xgmac_intr_handler(struct adapter *adap, int port)
4959 {
4960 	u32 v, int_cause_reg;
4961 
4962 	if (is_t4(adap->params.chip))
4963 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4964 	else
4965 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4966 
4967 	v = t4_read_reg(adap, int_cause_reg);
4968 
4969 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4970 	if (!v)
4971 		return;
4972 
4973 	if (v & TXFIFO_PRTY_ERR_F)
4974 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4975 			  port);
4976 	if (v & RXFIFO_PRTY_ERR_F)
4977 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4978 			  port);
4979 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4980 	t4_fatal_err(adap);
4981 }
4982 
4983 /*
4984  * PL interrupt handler.
4985  */
4986 static void pl_intr_handler(struct adapter *adap)
4987 {
4988 	static const struct intr_info pl_intr_info[] = {
4989 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4990 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4991 		{ 0 }
4992 	};
4993 
4994 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4995 		t4_fatal_err(adap);
4996 }
4997 
4998 #define PF_INTR_MASK (PFSW_F)
4999 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
5000 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
5001 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
5002 
5003 /**
5004  *	t4_slow_intr_handler - control path interrupt handler
5005  *	@adapter: the adapter
5006  *
5007  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5008  *	The designation 'slow' is because it involves register reads, while
5009  *	data interrupts typically don't involve any MMIOs.
5010  */
5011 int t4_slow_intr_handler(struct adapter *adapter)
5012 {
5013 	/* There are rare cases where a PL_INT_CAUSE bit may end up getting
5014 	 * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5015 	 * easiest just to mask that case here.
5016 	 */
5017 	u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5018 	u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5019 	u32 cause = raw_cause & enable;
5020 
5021 	if (!(cause & GLBL_INTR_MASK))
5022 		return 0;
5023 	if (cause & CIM_F)
5024 		cim_intr_handler(adapter);
5025 	if (cause & MPS_F)
5026 		mps_intr_handler(adapter);
5027 	if (cause & NCSI_F)
5028 		ncsi_intr_handler(adapter);
5029 	if (cause & PL_F)
5030 		pl_intr_handler(adapter);
5031 	if (cause & SMB_F)
5032 		smb_intr_handler(adapter);
5033 	if (cause & XGMAC0_F)
5034 		xgmac_intr_handler(adapter, 0);
5035 	if (cause & XGMAC1_F)
5036 		xgmac_intr_handler(adapter, 1);
5037 	if (cause & XGMAC_KR0_F)
5038 		xgmac_intr_handler(adapter, 2);
5039 	if (cause & XGMAC_KR1_F)
5040 		xgmac_intr_handler(adapter, 3);
5041 	if (cause & PCIE_F)
5042 		pcie_intr_handler(adapter);
5043 	if (cause & MC_F)
5044 		mem_intr_handler(adapter, MEM_MC);
5045 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
5046 		mem_intr_handler(adapter, MEM_MC1);
5047 	if (cause & EDC0_F)
5048 		mem_intr_handler(adapter, MEM_EDC0);
5049 	if (cause & EDC1_F)
5050 		mem_intr_handler(adapter, MEM_EDC1);
5051 	if (cause & LE_F)
5052 		le_intr_handler(adapter);
5053 	if (cause & TP_F)
5054 		tp_intr_handler(adapter);
5055 	if (cause & MA_F)
5056 		ma_intr_handler(adapter);
5057 	if (cause & PM_TX_F)
5058 		pmtx_intr_handler(adapter);
5059 	if (cause & PM_RX_F)
5060 		pmrx_intr_handler(adapter);
5061 	if (cause & ULP_RX_F)
5062 		ulprx_intr_handler(adapter);
5063 	if (cause & CPL_SWITCH_F)
5064 		cplsw_intr_handler(adapter);
5065 	if (cause & SGE_F)
5066 		sge_intr_handler(adapter);
5067 	if (cause & ULP_TX_F)
5068 		ulptx_intr_handler(adapter);
5069 
5070 	/* Clear the interrupts just processed for which we are the master. */
5071 	t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5072 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5073 	return 1;
5074 }
5075 
5076 /**
5077  *	t4_intr_enable - enable interrupts
5078  *	@adapter: the adapter whose interrupts should be enabled
5079  *
5080  *	Enable PF-specific interrupts for the calling function and the top-level
5081  *	interrupt concentrator for global interrupts.  Interrupts are already
5082  *	enabled at each module,	here we just enable the roots of the interrupt
5083  *	hierarchies.
5084  *
5085  *	Note: this function should be called only when the driver manages
5086  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5087  *	function at a time should be doing this.
5088  */
5089 void t4_intr_enable(struct adapter *adapter)
5090 {
5091 	u32 val = 0;
5092 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5093 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5094 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5095 
5096 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5097 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5098 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5099 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5100 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5101 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5102 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5103 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5104 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5105 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5106 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5107 }
5108 
5109 /**
5110  *	t4_intr_disable - disable interrupts
5111  *	@adapter: the adapter whose interrupts should be disabled
5112  *
5113  *	Disable interrupts.  We only disable the top-level interrupt
5114  *	concentrators.  The caller must be a PCI function managing global
5115  *	interrupts.
5116  */
5117 void t4_intr_disable(struct adapter *adapter)
5118 {
5119 	u32 whoami, pf;
5120 
5121 	if (pci_channel_offline(adapter->pdev))
5122 		return;
5123 
5124 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5125 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5126 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5127 
5128 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5129 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5130 }
5131 
5132 unsigned int t4_chip_rss_size(struct adapter *adap)
5133 {
5134 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5135 		return RSS_NENTRIES;
5136 	else
5137 		return T6_RSS_NENTRIES;
5138 }
5139 
5140 /**
5141  *	t4_config_rss_range - configure a portion of the RSS mapping table
5142  *	@adapter: the adapter
5143  *	@mbox: mbox to use for the FW command
5144  *	@viid: virtual interface whose RSS subtable is to be written
5145  *	@start: start entry in the table to write
5146  *	@n: how many table entries to write
5147  *	@rspq: values for the response queue lookup table
5148  *	@nrspq: number of values in @rspq
5149  *
5150  *	Programs the selected part of the VI's RSS mapping table with the
5151  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5152  *	until the full table range is populated.
5153  *
5154  *	The caller must ensure the values in @rspq are in the range allowed for
5155  *	@viid.
5156  */
5157 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5158 			int start, int n, const u16 *rspq, unsigned int nrspq)
5159 {
5160 	int ret;
5161 	const u16 *rsp = rspq;
5162 	const u16 *rsp_end = rspq + nrspq;
5163 	struct fw_rss_ind_tbl_cmd cmd;
5164 
5165 	memset(&cmd, 0, sizeof(cmd));
5166 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5167 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5168 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5169 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5170 
5171 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5172 	while (n > 0) {
5173 		int nq = min(n, 32);
5174 		__be32 *qp = &cmd.iq0_to_iq2;
5175 
5176 		cmd.niqid = cpu_to_be16(nq);
5177 		cmd.startidx = cpu_to_be16(start);
5178 
5179 		start += nq;
5180 		n -= nq;
5181 
5182 		while (nq > 0) {
5183 			unsigned int v;
5184 
5185 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5186 			if (++rsp >= rsp_end)
5187 				rsp = rspq;
5188 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5189 			if (++rsp >= rsp_end)
5190 				rsp = rspq;
5191 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5192 			if (++rsp >= rsp_end)
5193 				rsp = rspq;
5194 
5195 			*qp++ = cpu_to_be32(v);
5196 			nq -= 3;
5197 		}
5198 
5199 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5200 		if (ret)
5201 			return ret;
5202 	}
5203 	return 0;
5204 }
5205 
5206 /**
5207  *	t4_config_glbl_rss - configure the global RSS mode
5208  *	@adapter: the adapter
5209  *	@mbox: mbox to use for the FW command
5210  *	@mode: global RSS mode
5211  *	@flags: mode-specific flags
5212  *
5213  *	Sets the global RSS mode.
5214  */
5215 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5216 		       unsigned int flags)
5217 {
5218 	struct fw_rss_glb_config_cmd c;
5219 
5220 	memset(&c, 0, sizeof(c));
5221 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5222 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5223 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5224 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5225 		c.u.manual.mode_pkd =
5226 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5227 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5228 		c.u.basicvirtual.mode_pkd =
5229 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5230 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5231 	} else
5232 		return -EINVAL;
5233 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5234 }
5235 
5236 /**
5237  *	t4_config_vi_rss - configure per VI RSS settings
5238  *	@adapter: the adapter
5239  *	@mbox: mbox to use for the FW command
5240  *	@viid: the VI id
5241  *	@flags: RSS flags
5242  *	@defq: id of the default RSS queue for the VI.
5243  *
5244  *	Configures VI-specific RSS properties.
5245  */
5246 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5247 		     unsigned int flags, unsigned int defq)
5248 {
5249 	struct fw_rss_vi_config_cmd c;
5250 
5251 	memset(&c, 0, sizeof(c));
5252 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5253 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5254 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5255 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5256 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5257 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5258 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5259 }
5260 
5261 /* Read an RSS table row */
5262 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5263 {
5264 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5265 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5266 				   5, 0, val);
5267 }
5268 
5269 /**
5270  *	t4_read_rss - read the contents of the RSS mapping table
5271  *	@adapter: the adapter
5272  *	@map: holds the contents of the RSS mapping table
5273  *
5274  *	Reads the contents of the RSS hash->queue mapping table.
5275  */
5276 int t4_read_rss(struct adapter *adapter, u16 *map)
5277 {
5278 	int i, ret, nentries;
5279 	u32 val;
5280 
5281 	nentries = t4_chip_rss_size(adapter);
5282 	for (i = 0; i < nentries / 2; ++i) {
5283 		ret = rd_rss_row(adapter, i, &val);
5284 		if (ret)
5285 			return ret;
5286 		*map++ = LKPTBLQUEUE0_G(val);
5287 		*map++ = LKPTBLQUEUE1_G(val);
5288 	}
5289 	return 0;
5290 }
5291 
5292 static unsigned int t4_use_ldst(struct adapter *adap)
5293 {
5294 	return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5295 }
5296 
5297 /**
5298  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5299  * @adap: the adapter
5300  * @cmd: TP fw ldst address space type
5301  * @vals: where the indirect register values are stored/written
5302  * @nregs: how many indirect registers to read/write
5303  * @start_idx: index of first indirect register to read/write
5304  * @rw: Read (1) or Write (0)
5305  * @sleep_ok: if true we may sleep while awaiting command completion
5306  *
5307  * Access TP indirect registers through LDST
5308  */
5309 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5310 			    unsigned int nregs, unsigned int start_index,
5311 			    unsigned int rw, bool sleep_ok)
5312 {
5313 	int ret = 0;
5314 	unsigned int i;
5315 	struct fw_ldst_cmd c;
5316 
5317 	for (i = 0; i < nregs; i++) {
5318 		memset(&c, 0, sizeof(c));
5319 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5320 						FW_CMD_REQUEST_F |
5321 						(rw ? FW_CMD_READ_F :
5322 						      FW_CMD_WRITE_F) |
5323 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5324 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5325 
5326 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5327 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5328 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5329 				      sleep_ok);
5330 		if (ret)
5331 			return ret;
5332 
5333 		if (rw)
5334 			vals[i] = be32_to_cpu(c.u.addrval.val);
5335 	}
5336 	return 0;
5337 }
5338 
5339 /**
5340  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5341  * @adap: the adapter
5342  * @reg_addr: Address Register
5343  * @reg_data: Data register
5344  * @buff: where the indirect register values are stored/written
5345  * @nregs: how many indirect registers to read/write
5346  * @start_index: index of first indirect register to read/write
5347  * @rw: READ(1) or WRITE(0)
5348  * @sleep_ok: if true we may sleep while awaiting command completion
5349  *
5350  * Read/Write TP indirect registers through LDST if possible.
5351  * Else, use backdoor access
5352  **/
5353 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5354 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5355 			      bool sleep_ok)
5356 {
5357 	int rc = -EINVAL;
5358 	int cmd;
5359 
5360 	switch (reg_addr) {
5361 	case TP_PIO_ADDR_A:
5362 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5363 		break;
5364 	case TP_TM_PIO_ADDR_A:
5365 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5366 		break;
5367 	case TP_MIB_INDEX_A:
5368 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5369 		break;
5370 	default:
5371 		goto indirect_access;
5372 	}
5373 
5374 	if (t4_use_ldst(adap))
5375 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5376 				      sleep_ok);
5377 
5378 indirect_access:
5379 
5380 	if (rc) {
5381 		if (rw)
5382 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5383 					 start_index);
5384 		else
5385 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5386 					  start_index);
5387 	}
5388 }
5389 
5390 /**
5391  * t4_tp_pio_read - Read TP PIO registers
5392  * @adap: the adapter
5393  * @buff: where the indirect register values are written
5394  * @nregs: how many indirect registers to read
5395  * @start_index: index of first indirect register to read
5396  * @sleep_ok: if true we may sleep while awaiting command completion
5397  *
5398  * Read TP PIO Registers
5399  **/
5400 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5401 		    u32 start_index, bool sleep_ok)
5402 {
5403 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5404 			  start_index, 1, sleep_ok);
5405 }
5406 
5407 /**
5408  * t4_tp_pio_write - Write TP PIO registers
5409  * @adap: the adapter
5410  * @buff: where the indirect register values are stored
5411  * @nregs: how many indirect registers to write
5412  * @start_index: index of first indirect register to write
5413  * @sleep_ok: if true we may sleep while awaiting command completion
5414  *
5415  * Write TP PIO Registers
5416  **/
5417 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5418 			    u32 start_index, bool sleep_ok)
5419 {
5420 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5421 			  start_index, 0, sleep_ok);
5422 }
5423 
5424 /**
5425  * t4_tp_tm_pio_read - Read TP TM PIO registers
5426  * @adap: the adapter
5427  * @buff: where the indirect register values are written
5428  * @nregs: how many indirect registers to read
5429  * @start_index: index of first indirect register to read
5430  * @sleep_ok: if true we may sleep while awaiting command completion
5431  *
5432  * Read TP TM PIO Registers
5433  **/
5434 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5435 		       u32 start_index, bool sleep_ok)
5436 {
5437 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5438 			  nregs, start_index, 1, sleep_ok);
5439 }
5440 
5441 /**
5442  * t4_tp_mib_read - Read TP MIB registers
5443  * @adap: the adapter
5444  * @buff: where the indirect register values are written
5445  * @nregs: how many indirect registers to read
5446  * @start_index: index of first indirect register to read
5447  * @sleep_ok: if true we may sleep while awaiting command completion
5448  *
5449  * Read TP MIB Registers
5450  **/
5451 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5452 		    bool sleep_ok)
5453 {
5454 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5455 			  start_index, 1, sleep_ok);
5456 }
5457 
5458 /**
5459  *	t4_read_rss_key - read the global RSS key
5460  *	@adap: the adapter
5461  *	@key: 10-entry array holding the 320-bit RSS key
5462  *      @sleep_ok: if true we may sleep while awaiting command completion
5463  *
5464  *	Reads the global 320-bit RSS key.
5465  */
5466 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5467 {
5468 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5469 }
5470 
5471 /**
5472  *	t4_write_rss_key - program one of the RSS keys
5473  *	@adap: the adapter
5474  *	@key: 10-entry array holding the 320-bit RSS key
5475  *	@idx: which RSS key to write
5476  *      @sleep_ok: if true we may sleep while awaiting command completion
5477  *
5478  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5479  *	0..15 the corresponding entry in the RSS key table is written,
5480  *	otherwise the global RSS key is written.
5481  */
5482 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5483 		      bool sleep_ok)
5484 {
5485 	u8 rss_key_addr_cnt = 16;
5486 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5487 
5488 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5489 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5490 	 * as index[5:4](upper 2) into key table
5491 	 */
5492 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5493 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5494 		rss_key_addr_cnt = 32;
5495 
5496 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5497 
5498 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5499 		if (rss_key_addr_cnt > 16)
5500 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5501 				     KEYWRADDRX_V(idx >> 4) |
5502 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5503 		else
5504 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5505 				     KEYWRADDR_V(idx) | KEYWREN_F);
5506 	}
5507 }
5508 
5509 /**
5510  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5511  *	@adapter: the adapter
5512  *	@index: the entry in the PF RSS table to read
5513  *	@valp: where to store the returned value
5514  *      @sleep_ok: if true we may sleep while awaiting command completion
5515  *
5516  *	Reads the PF RSS Configuration Table at the specified index and returns
5517  *	the value found there.
5518  */
5519 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5520 			   u32 *valp, bool sleep_ok)
5521 {
5522 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5523 }
5524 
5525 /**
5526  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5527  *	@adapter: the adapter
5528  *	@index: the entry in the VF RSS table to read
5529  *	@vfl: where to store the returned VFL
5530  *	@vfh: where to store the returned VFH
5531  *      @sleep_ok: if true we may sleep while awaiting command completion
5532  *
5533  *	Reads the VF RSS Configuration Table at the specified index and returns
5534  *	the (VFL, VFH) values found there.
5535  */
5536 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5537 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5538 {
5539 	u32 vrt, mask, data;
5540 
5541 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5542 		mask = VFWRADDR_V(VFWRADDR_M);
5543 		data = VFWRADDR_V(index);
5544 	} else {
5545 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5546 		 data = T6_VFWRADDR_V(index);
5547 	}
5548 
5549 	/* Request that the index'th VF Table values be read into VFL/VFH.
5550 	 */
5551 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5552 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5553 	vrt |= data | VFRDEN_F;
5554 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5555 
5556 	/* Grab the VFL/VFH values ...
5557 	 */
5558 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5559 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5560 }
5561 
5562 /**
5563  *	t4_read_rss_pf_map - read PF RSS Map
5564  *	@adapter: the adapter
5565  *      @sleep_ok: if true we may sleep while awaiting command completion
5566  *
5567  *	Reads the PF RSS Map register and returns its value.
5568  */
5569 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5570 {
5571 	u32 pfmap;
5572 
5573 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5574 	return pfmap;
5575 }
5576 
5577 /**
5578  *	t4_read_rss_pf_mask - read PF RSS Mask
5579  *	@adapter: the adapter
5580  *      @sleep_ok: if true we may sleep while awaiting command completion
5581  *
5582  *	Reads the PF RSS Mask register and returns its value.
5583  */
5584 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5585 {
5586 	u32 pfmask;
5587 
5588 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5589 	return pfmask;
5590 }
5591 
5592 /**
5593  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5594  *	@adap: the adapter
5595  *	@v4: holds the TCP/IP counter values
5596  *	@v6: holds the TCP/IPv6 counter values
5597  *      @sleep_ok: if true we may sleep while awaiting command completion
5598  *
5599  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5600  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5601  */
5602 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5603 			 struct tp_tcp_stats *v6, bool sleep_ok)
5604 {
5605 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5606 
5607 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5608 #define STAT(x)     val[STAT_IDX(x)]
5609 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5610 
5611 	if (v4) {
5612 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5613 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5614 		v4->tcp_out_rsts = STAT(OUT_RST);
5615 		v4->tcp_in_segs  = STAT64(IN_SEG);
5616 		v4->tcp_out_segs = STAT64(OUT_SEG);
5617 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5618 	}
5619 	if (v6) {
5620 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5621 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5622 		v6->tcp_out_rsts = STAT(OUT_RST);
5623 		v6->tcp_in_segs  = STAT64(IN_SEG);
5624 		v6->tcp_out_segs = STAT64(OUT_SEG);
5625 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5626 	}
5627 #undef STAT64
5628 #undef STAT
5629 #undef STAT_IDX
5630 }
5631 
5632 /**
5633  *	t4_tp_get_err_stats - read TP's error MIB counters
5634  *	@adap: the adapter
5635  *	@st: holds the counter values
5636  *      @sleep_ok: if true we may sleep while awaiting command completion
5637  *
5638  *	Returns the values of TP's error counters.
5639  */
5640 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5641 			 bool sleep_ok)
5642 {
5643 	int nchan = adap->params.arch.nchan;
5644 
5645 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5646 		       sleep_ok);
5647 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5648 		       sleep_ok);
5649 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5650 		       sleep_ok);
5651 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5652 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5653 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5654 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5655 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5656 		       sleep_ok);
5657 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5658 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5659 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5660 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5661 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5662 		       sleep_ok);
5663 }
5664 
5665 /**
5666  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5667  *	@adap: the adapter
5668  *	@st: holds the counter values
5669  *      @sleep_ok: if true we may sleep while awaiting command completion
5670  *
5671  *	Returns the values of TP's CPL counters.
5672  */
5673 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5674 			 bool sleep_ok)
5675 {
5676 	int nchan = adap->params.arch.nchan;
5677 
5678 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5679 
5680 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5681 }
5682 
5683 /**
5684  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5685  *	@adap: the adapter
5686  *	@st: holds the counter values
5687  *      @sleep_ok: if true we may sleep while awaiting command completion
5688  *
5689  *	Returns the values of TP's RDMA counters.
5690  */
5691 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5692 			  bool sleep_ok)
5693 {
5694 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5695 		       sleep_ok);
5696 }
5697 
5698 /**
5699  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5700  *	@adap: the adapter
5701  *	@idx: the port index
5702  *	@st: holds the counter values
5703  *      @sleep_ok: if true we may sleep while awaiting command completion
5704  *
5705  *	Returns the values of TP's FCoE counters for the selected port.
5706  */
5707 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5708 		       struct tp_fcoe_stats *st, bool sleep_ok)
5709 {
5710 	u32 val[2];
5711 
5712 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5713 		       sleep_ok);
5714 
5715 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5716 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5717 
5718 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5719 		       sleep_ok);
5720 
5721 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5722 }
5723 
5724 /**
5725  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5726  *	@adap: the adapter
5727  *	@st: holds the counter values
5728  *      @sleep_ok: if true we may sleep while awaiting command completion
5729  *
5730  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5731  */
5732 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5733 		      bool sleep_ok)
5734 {
5735 	u32 val[4];
5736 
5737 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5738 	st->frames = val[0];
5739 	st->drops = val[1];
5740 	st->octets = ((u64)val[2] << 32) | val[3];
5741 }
5742 
5743 /**
5744  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5745  *	@adap: the adapter
5746  *	@mtus: where to store the MTU values
5747  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5748  *
5749  *	Reads the HW path MTU table.
5750  */
5751 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5752 {
5753 	u32 v;
5754 	int i;
5755 
5756 	for (i = 0; i < NMTUS; ++i) {
5757 		t4_write_reg(adap, TP_MTU_TABLE_A,
5758 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5759 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5760 		mtus[i] = MTUVALUE_G(v);
5761 		if (mtu_log)
5762 			mtu_log[i] = MTUWIDTH_G(v);
5763 	}
5764 }
5765 
5766 /**
5767  *	t4_read_cong_tbl - reads the congestion control table
5768  *	@adap: the adapter
5769  *	@incr: where to store the alpha values
5770  *
5771  *	Reads the additive increments programmed into the HW congestion
5772  *	control table.
5773  */
5774 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5775 {
5776 	unsigned int mtu, w;
5777 
5778 	for (mtu = 0; mtu < NMTUS; ++mtu)
5779 		for (w = 0; w < NCCTRL_WIN; ++w) {
5780 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5781 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5782 			incr[mtu][w] = (u16)t4_read_reg(adap,
5783 						TP_CCTRL_TABLE_A) & 0x1fff;
5784 		}
5785 }
5786 
5787 /**
5788  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5789  *	@adap: the adapter
5790  *	@addr: the indirect TP register address
5791  *	@mask: specifies the field within the register to modify
5792  *	@val: new value for the field
5793  *
5794  *	Sets a field of an indirect TP register to the given value.
5795  */
5796 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5797 			    unsigned int mask, unsigned int val)
5798 {
5799 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5800 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5801 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5802 }
5803 
5804 /**
5805  *	init_cong_ctrl - initialize congestion control parameters
5806  *	@a: the alpha values for congestion control
5807  *	@b: the beta values for congestion control
5808  *
5809  *	Initialize the congestion control parameters.
5810  */
5811 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5812 {
5813 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5814 	a[9] = 2;
5815 	a[10] = 3;
5816 	a[11] = 4;
5817 	a[12] = 5;
5818 	a[13] = 6;
5819 	a[14] = 7;
5820 	a[15] = 8;
5821 	a[16] = 9;
5822 	a[17] = 10;
5823 	a[18] = 14;
5824 	a[19] = 17;
5825 	a[20] = 21;
5826 	a[21] = 25;
5827 	a[22] = 30;
5828 	a[23] = 35;
5829 	a[24] = 45;
5830 	a[25] = 60;
5831 	a[26] = 80;
5832 	a[27] = 100;
5833 	a[28] = 200;
5834 	a[29] = 300;
5835 	a[30] = 400;
5836 	a[31] = 500;
5837 
5838 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5839 	b[9] = b[10] = 1;
5840 	b[11] = b[12] = 2;
5841 	b[13] = b[14] = b[15] = b[16] = 3;
5842 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5843 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5844 	b[28] = b[29] = 6;
5845 	b[30] = b[31] = 7;
5846 }
5847 
5848 /* The minimum additive increment value for the congestion control table */
5849 #define CC_MIN_INCR 2U
5850 
5851 /**
5852  *	t4_load_mtus - write the MTU and congestion control HW tables
5853  *	@adap: the adapter
5854  *	@mtus: the values for the MTU table
5855  *	@alpha: the values for the congestion control alpha parameter
5856  *	@beta: the values for the congestion control beta parameter
5857  *
5858  *	Write the HW MTU table with the supplied MTUs and the high-speed
5859  *	congestion control table with the supplied alpha, beta, and MTUs.
5860  *	We write the two tables together because the additive increments
5861  *	depend on the MTUs.
5862  */
5863 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5864 		  const unsigned short *alpha, const unsigned short *beta)
5865 {
5866 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5867 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5868 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5869 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5870 	};
5871 
5872 	unsigned int i, w;
5873 
5874 	for (i = 0; i < NMTUS; ++i) {
5875 		unsigned int mtu = mtus[i];
5876 		unsigned int log2 = fls(mtu);
5877 
5878 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5879 			log2--;
5880 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5881 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5882 
5883 		for (w = 0; w < NCCTRL_WIN; ++w) {
5884 			unsigned int inc;
5885 
5886 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5887 				  CC_MIN_INCR);
5888 
5889 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5890 				     (w << 16) | (beta[w] << 13) | inc);
5891 		}
5892 	}
5893 }
5894 
5895 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5896  * clocks.  The formula is
5897  *
5898  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5899  *
5900  * which is equivalent to
5901  *
5902  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5903  */
5904 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5905 {
5906 	u64 v = bytes256 * adap->params.vpd.cclk;
5907 
5908 	return v * 62 + v / 2;
5909 }
5910 
5911 /**
5912  *	t4_get_chan_txrate - get the current per channel Tx rates
5913  *	@adap: the adapter
5914  *	@nic_rate: rates for NIC traffic
5915  *	@ofld_rate: rates for offloaded traffic
5916  *
5917  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5918  *	for each channel.
5919  */
5920 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5921 {
5922 	u32 v;
5923 
5924 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5925 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5926 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5927 	if (adap->params.arch.nchan == NCHAN) {
5928 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5929 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5930 	}
5931 
5932 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5933 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5934 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5935 	if (adap->params.arch.nchan == NCHAN) {
5936 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5937 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5938 	}
5939 }
5940 
5941 /**
5942  *	t4_set_trace_filter - configure one of the tracing filters
5943  *	@adap: the adapter
5944  *	@tp: the desired trace filter parameters
5945  *	@idx: which filter to configure
5946  *	@enable: whether to enable or disable the filter
5947  *
5948  *	Configures one of the tracing filters available in HW.  If @enable is
5949  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5950  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5951  */
5952 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5953 			int idx, int enable)
5954 {
5955 	int i, ofst = idx * 4;
5956 	u32 data_reg, mask_reg, cfg;
5957 
5958 	if (!enable) {
5959 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5960 		return 0;
5961 	}
5962 
5963 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5964 	if (cfg & TRCMULTIFILTER_F) {
5965 		/* If multiple tracers are enabled, then maximum
5966 		 * capture size is 2.5KB (FIFO size of a single channel)
5967 		 * minus 2 flits for CPL_TRACE_PKT header.
5968 		 */
5969 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5970 			return -EINVAL;
5971 	} else {
5972 		/* If multiple tracers are disabled, to avoid deadlocks
5973 		 * maximum packet capture size of 9600 bytes is recommended.
5974 		 * Also in this mode, only trace0 can be enabled and running.
5975 		 */
5976 		if (tp->snap_len > 9600 || idx)
5977 			return -EINVAL;
5978 	}
5979 
5980 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5981 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5982 	    tp->min_len > TFMINPKTSIZE_M)
5983 		return -EINVAL;
5984 
5985 	/* stop the tracer we'll be changing */
5986 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5987 
5988 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5989 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5990 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5991 
5992 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5993 		t4_write_reg(adap, data_reg, tp->data[i]);
5994 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5995 	}
5996 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5997 		     TFCAPTUREMAX_V(tp->snap_len) |
5998 		     TFMINPKTSIZE_V(tp->min_len));
5999 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
6000 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
6001 		     (is_t4(adap->params.chip) ?
6002 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
6003 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
6004 		     T5_TFINVERTMATCH_V(tp->invert)));
6005 
6006 	return 0;
6007 }
6008 
6009 /**
6010  *	t4_get_trace_filter - query one of the tracing filters
6011  *	@adap: the adapter
6012  *	@tp: the current trace filter parameters
6013  *	@idx: which trace filter to query
6014  *	@enabled: non-zero if the filter is enabled
6015  *
6016  *	Returns the current settings of one of the HW tracing filters.
6017  */
6018 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6019 			 int *enabled)
6020 {
6021 	u32 ctla, ctlb;
6022 	int i, ofst = idx * 4;
6023 	u32 data_reg, mask_reg;
6024 
6025 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6026 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6027 
6028 	if (is_t4(adap->params.chip)) {
6029 		*enabled = !!(ctla & TFEN_F);
6030 		tp->port =  TFPORT_G(ctla);
6031 		tp->invert = !!(ctla & TFINVERTMATCH_F);
6032 	} else {
6033 		*enabled = !!(ctla & T5_TFEN_F);
6034 		tp->port = T5_TFPORT_G(ctla);
6035 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6036 	}
6037 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
6038 	tp->min_len = TFMINPKTSIZE_G(ctlb);
6039 	tp->skip_ofst = TFOFFSET_G(ctla);
6040 	tp->skip_len = TFLENGTH_G(ctla);
6041 
6042 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6043 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6044 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6045 
6046 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6047 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6048 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6049 	}
6050 }
6051 
6052 /**
6053  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6054  *	@adap: the adapter
6055  *	@cnt: where to store the count statistics
6056  *	@cycles: where to store the cycle statistics
6057  *
6058  *	Returns performance statistics from PMTX.
6059  */
6060 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6061 {
6062 	int i;
6063 	u32 data[2];
6064 
6065 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6066 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6067 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6068 		if (is_t4(adap->params.chip)) {
6069 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6070 		} else {
6071 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6072 					 PM_TX_DBG_DATA_A, data, 2,
6073 					 PM_TX_DBG_STAT_MSB_A);
6074 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6075 		}
6076 	}
6077 }
6078 
6079 /**
6080  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6081  *	@adap: the adapter
6082  *	@cnt: where to store the count statistics
6083  *	@cycles: where to store the cycle statistics
6084  *
6085  *	Returns performance statistics from PMRX.
6086  */
6087 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6088 {
6089 	int i;
6090 	u32 data[2];
6091 
6092 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6093 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6094 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6095 		if (is_t4(adap->params.chip)) {
6096 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6097 		} else {
6098 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6099 					 PM_RX_DBG_DATA_A, data, 2,
6100 					 PM_RX_DBG_STAT_MSB_A);
6101 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6102 		}
6103 	}
6104 }
6105 
6106 /**
6107  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6108  *	@adap: the adapter
6109  *	@pidx: the port index
6110  *
6111  *	Computes and returns a bitmap indicating which MPS buffer groups are
6112  *	associated with the given Port.  Bit i is set if buffer group i is
6113  *	used by the Port.
6114  */
6115 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6116 					      int pidx)
6117 {
6118 	unsigned int chip_version, nports;
6119 
6120 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6121 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6122 
6123 	switch (chip_version) {
6124 	case CHELSIO_T4:
6125 	case CHELSIO_T5:
6126 		switch (nports) {
6127 		case 1: return 0xf;
6128 		case 2: return 3 << (2 * pidx);
6129 		case 4: return 1 << pidx;
6130 		}
6131 		break;
6132 
6133 	case CHELSIO_T6:
6134 		switch (nports) {
6135 		case 2: return 1 << (2 * pidx);
6136 		}
6137 		break;
6138 	}
6139 
6140 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6141 		chip_version, nports);
6142 
6143 	return 0;
6144 }
6145 
6146 /**
6147  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6148  *	@adapter: the adapter
6149  *	@pidx: the port index
6150  *
6151  *	Returns a bitmap indicating which MPS buffer groups are associated
6152  *	with the given Port.  Bit i is set if buffer group i is used by the
6153  *	Port.
6154  */
6155 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6156 {
6157 	u8 *mps_bg_map;
6158 	unsigned int nports;
6159 
6160 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6161 	if (pidx >= nports) {
6162 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6163 			pidx, nports);
6164 		return 0;
6165 	}
6166 
6167 	/* If we've already retrieved/computed this, just return the result.
6168 	 */
6169 	mps_bg_map = adapter->params.mps_bg_map;
6170 	if (mps_bg_map[pidx])
6171 		return mps_bg_map[pidx];
6172 
6173 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6174 	 * If we're talking to such Firmware, let it tell us.  If the new
6175 	 * API isn't supported, revert back to old hardcoded way.  The value
6176 	 * obtained from Firmware is encoded in below format:
6177 	 *
6178 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6179 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6180 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6181 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6182 	 */
6183 	if (adapter->flags & CXGB4_FW_OK) {
6184 		u32 param, val;
6185 		int ret;
6186 
6187 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6188 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6189 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6190 					 0, 1, &param, &val);
6191 		if (!ret) {
6192 			int p;
6193 
6194 			/* Store the BG Map for all of the Ports in order to
6195 			 * avoid more calls to the Firmware in the future.
6196 			 */
6197 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6198 				mps_bg_map[p] = val & 0xff;
6199 
6200 			return mps_bg_map[pidx];
6201 		}
6202 	}
6203 
6204 	/* Either we're not talking to the Firmware or we're dealing with
6205 	 * older Firmware which doesn't support the new API to get the MPS
6206 	 * Buffer Group Map.  Fall back to computing it ourselves.
6207 	 */
6208 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6209 	return mps_bg_map[pidx];
6210 }
6211 
6212 /**
6213  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6214  *      @adapter: the adapter
6215  *      @pidx: the port index
6216  */
6217 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6218 {
6219 	unsigned int nports;
6220 	u32 param, val = 0;
6221 	int ret;
6222 
6223 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6224 	if (pidx >= nports) {
6225 		CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6226 			pidx, nports);
6227 		return 0;
6228 	}
6229 
6230 	/* FW version >= 1.16.44.0 can determine E2C channel map using
6231 	 * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6232 	 */
6233 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6234 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6235 	ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6236 				 0, 1, &param, &val);
6237 	if (!ret)
6238 		return (val >> (8 * pidx)) & 0xff;
6239 
6240 	return 0;
6241 }
6242 
6243 /**
6244  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6245  *	@adapter: the adapter
6246  *	@pidx: the port index
6247  *
6248  *	Returns a bitmap indicating which TP Ingress Channels are associated
6249  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6250  *	the Port.
6251  */
6252 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6253 {
6254 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6255 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6256 
6257 	if (pidx >= nports) {
6258 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6259 			 pidx, nports);
6260 		return 0;
6261 	}
6262 
6263 	switch (chip_version) {
6264 	case CHELSIO_T4:
6265 	case CHELSIO_T5:
6266 		/* Note that this happens to be the same values as the MPS
6267 		 * Buffer Group Map for these Chips.  But we replicate the code
6268 		 * here because they're really separate concepts.
6269 		 */
6270 		switch (nports) {
6271 		case 1: return 0xf;
6272 		case 2: return 3 << (2 * pidx);
6273 		case 4: return 1 << pidx;
6274 		}
6275 		break;
6276 
6277 	case CHELSIO_T6:
6278 		switch (nports) {
6279 		case 1:
6280 		case 2: return 1 << pidx;
6281 		}
6282 		break;
6283 	}
6284 
6285 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6286 		chip_version, nports);
6287 	return 0;
6288 }
6289 
6290 /**
6291  *      t4_get_port_type_description - return Port Type string description
6292  *      @port_type: firmware Port Type enumeration
6293  */
6294 const char *t4_get_port_type_description(enum fw_port_type port_type)
6295 {
6296 	static const char *const port_type_description[] = {
6297 		"Fiber_XFI",
6298 		"Fiber_XAUI",
6299 		"BT_SGMII",
6300 		"BT_XFI",
6301 		"BT_XAUI",
6302 		"KX4",
6303 		"CX4",
6304 		"KX",
6305 		"KR",
6306 		"SFP",
6307 		"BP_AP",
6308 		"BP4_AP",
6309 		"QSFP_10G",
6310 		"QSA",
6311 		"QSFP",
6312 		"BP40_BA",
6313 		"KR4_100G",
6314 		"CR4_QSFP",
6315 		"CR_QSFP",
6316 		"CR2_QSFP",
6317 		"SFP28",
6318 		"KR_SFP28",
6319 		"KR_XLAUI"
6320 	};
6321 
6322 	if (port_type < ARRAY_SIZE(port_type_description))
6323 		return port_type_description[port_type];
6324 	return "UNKNOWN";
6325 }
6326 
6327 /**
6328  *      t4_get_port_stats_offset - collect port stats relative to a previous
6329  *                                 snapshot
6330  *      @adap: The adapter
6331  *      @idx: The port
6332  *      @stats: Current stats to fill
6333  *      @offset: Previous stats snapshot
6334  */
6335 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6336 			      struct port_stats *stats,
6337 			      struct port_stats *offset)
6338 {
6339 	u64 *s, *o;
6340 	int i;
6341 
6342 	t4_get_port_stats(adap, idx, stats);
6343 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6344 			i < (sizeof(struct port_stats) / sizeof(u64));
6345 			i++, s++, o++)
6346 		*s -= *o;
6347 }
6348 
6349 /**
6350  *	t4_get_port_stats - collect port statistics
6351  *	@adap: the adapter
6352  *	@idx: the port index
6353  *	@p: the stats structure to fill
6354  *
6355  *	Collect statistics related to the given port from HW.
6356  */
6357 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6358 {
6359 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6360 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6361 
6362 #define GET_STAT(name) \
6363 	t4_read_reg64(adap, \
6364 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6365 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6366 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6367 
6368 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6369 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6370 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6371 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6372 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6373 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6374 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6375 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6376 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6377 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6378 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6379 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6380 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6381 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6382 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6383 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6384 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6385 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6386 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6387 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6388 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6389 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6390 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6391 
6392 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6393 		if (stat_ctl & COUNTPAUSESTATTX_F)
6394 			p->tx_frames_64 -= p->tx_pause;
6395 		if (stat_ctl & COUNTPAUSEMCTX_F)
6396 			p->tx_mcast_frames -= p->tx_pause;
6397 	}
6398 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6399 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6400 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6401 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6402 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6403 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6404 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6405 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6406 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6407 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6408 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6409 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6410 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6411 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6412 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6413 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6414 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6415 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6416 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6417 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6418 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6419 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6420 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6421 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6422 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6423 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6424 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6425 
6426 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6427 		if (stat_ctl & COUNTPAUSESTATRX_F)
6428 			p->rx_frames_64 -= p->rx_pause;
6429 		if (stat_ctl & COUNTPAUSEMCRX_F)
6430 			p->rx_mcast_frames -= p->rx_pause;
6431 	}
6432 
6433 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6434 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6435 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6436 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6437 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6438 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6439 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6440 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6441 
6442 #undef GET_STAT
6443 #undef GET_STAT_COM
6444 }
6445 
6446 /**
6447  *	t4_get_lb_stats - collect loopback port statistics
6448  *	@adap: the adapter
6449  *	@idx: the loopback port index
6450  *	@p: the stats structure to fill
6451  *
6452  *	Return HW statistics for the given loopback port.
6453  */
6454 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6455 {
6456 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6457 
6458 #define GET_STAT(name) \
6459 	t4_read_reg64(adap, \
6460 	(is_t4(adap->params.chip) ? \
6461 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6462 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6463 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6464 
6465 	p->octets           = GET_STAT(BYTES);
6466 	p->frames           = GET_STAT(FRAMES);
6467 	p->bcast_frames     = GET_STAT(BCAST);
6468 	p->mcast_frames     = GET_STAT(MCAST);
6469 	p->ucast_frames     = GET_STAT(UCAST);
6470 	p->error_frames     = GET_STAT(ERROR);
6471 
6472 	p->frames_64        = GET_STAT(64B);
6473 	p->frames_65_127    = GET_STAT(65B_127B);
6474 	p->frames_128_255   = GET_STAT(128B_255B);
6475 	p->frames_256_511   = GET_STAT(256B_511B);
6476 	p->frames_512_1023  = GET_STAT(512B_1023B);
6477 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6478 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6479 	p->drop             = GET_STAT(DROP_FRAMES);
6480 
6481 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6482 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6483 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6484 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6485 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6486 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6487 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6488 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6489 
6490 #undef GET_STAT
6491 #undef GET_STAT_COM
6492 }
6493 
6494 /*     t4_mk_filtdelwr - create a delete filter WR
6495  *     @ftid: the filter ID
6496  *     @wr: the filter work request to populate
6497  *     @qid: ingress queue to receive the delete notification
6498  *
6499  *     Creates a filter work request to delete the supplied filter.  If @qid is
6500  *     negative the delete notification is suppressed.
6501  */
6502 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6503 {
6504 	memset(wr, 0, sizeof(*wr));
6505 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6506 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6507 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6508 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6509 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6510 	if (qid >= 0)
6511 		wr->rx_chan_rx_rpl_iq =
6512 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6513 }
6514 
6515 #define INIT_CMD(var, cmd, rd_wr) do { \
6516 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6517 					FW_CMD_REQUEST_F | \
6518 					FW_CMD_##rd_wr##_F); \
6519 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6520 } while (0)
6521 
6522 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6523 			  u32 addr, u32 val)
6524 {
6525 	u32 ldst_addrspace;
6526 	struct fw_ldst_cmd c;
6527 
6528 	memset(&c, 0, sizeof(c));
6529 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6530 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6531 					FW_CMD_REQUEST_F |
6532 					FW_CMD_WRITE_F |
6533 					ldst_addrspace);
6534 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6535 	c.u.addrval.addr = cpu_to_be32(addr);
6536 	c.u.addrval.val = cpu_to_be32(val);
6537 
6538 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6539 }
6540 
6541 /**
6542  *	t4_mdio_rd - read a PHY register through MDIO
6543  *	@adap: the adapter
6544  *	@mbox: mailbox to use for the FW command
6545  *	@phy_addr: the PHY address
6546  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6547  *	@reg: the register to read
6548  *	@valp: where to store the value
6549  *
6550  *	Issues a FW command through the given mailbox to read a PHY register.
6551  */
6552 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6553 	       unsigned int mmd, unsigned int reg, u16 *valp)
6554 {
6555 	int ret;
6556 	u32 ldst_addrspace;
6557 	struct fw_ldst_cmd c;
6558 
6559 	memset(&c, 0, sizeof(c));
6560 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6561 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6562 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6563 					ldst_addrspace);
6564 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6565 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6566 					 FW_LDST_CMD_MMD_V(mmd));
6567 	c.u.mdio.raddr = cpu_to_be16(reg);
6568 
6569 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6570 	if (ret == 0)
6571 		*valp = be16_to_cpu(c.u.mdio.rval);
6572 	return ret;
6573 }
6574 
6575 /**
6576  *	t4_mdio_wr - write a PHY register through MDIO
6577  *	@adap: the adapter
6578  *	@mbox: mailbox to use for the FW command
6579  *	@phy_addr: the PHY address
6580  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6581  *	@reg: the register to write
6582  *	@valp: value to write
6583  *
6584  *	Issues a FW command through the given mailbox to write a PHY register.
6585  */
6586 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6587 	       unsigned int mmd, unsigned int reg, u16 val)
6588 {
6589 	u32 ldst_addrspace;
6590 	struct fw_ldst_cmd c;
6591 
6592 	memset(&c, 0, sizeof(c));
6593 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6594 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6595 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6596 					ldst_addrspace);
6597 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6598 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6599 					 FW_LDST_CMD_MMD_V(mmd));
6600 	c.u.mdio.raddr = cpu_to_be16(reg);
6601 	c.u.mdio.rval = cpu_to_be16(val);
6602 
6603 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6604 }
6605 
6606 /**
6607  *	t4_sge_decode_idma_state - decode the idma state
6608  *	@adap: the adapter
6609  *	@state: the state idma is stuck in
6610  */
6611 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6612 {
6613 	static const char * const t4_decode[] = {
6614 		"IDMA_IDLE",
6615 		"IDMA_PUSH_MORE_CPL_FIFO",
6616 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6617 		"Not used",
6618 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6619 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6620 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6621 		"IDMA_SEND_FIFO_TO_IMSG",
6622 		"IDMA_FL_REQ_DATA_FL_PREP",
6623 		"IDMA_FL_REQ_DATA_FL",
6624 		"IDMA_FL_DROP",
6625 		"IDMA_FL_H_REQ_HEADER_FL",
6626 		"IDMA_FL_H_SEND_PCIEHDR",
6627 		"IDMA_FL_H_PUSH_CPL_FIFO",
6628 		"IDMA_FL_H_SEND_CPL",
6629 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6630 		"IDMA_FL_H_SEND_IP_HDR",
6631 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6632 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6633 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6634 		"IDMA_FL_D_SEND_PCIEHDR",
6635 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6636 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6637 		"IDMA_FL_SEND_PCIEHDR",
6638 		"IDMA_FL_PUSH_CPL_FIFO",
6639 		"IDMA_FL_SEND_CPL",
6640 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6641 		"IDMA_FL_SEND_PAYLOAD",
6642 		"IDMA_FL_REQ_NEXT_DATA_FL",
6643 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6644 		"IDMA_FL_SEND_PADDING",
6645 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6646 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6647 		"IDMA_FL_REQ_DATAFL_DONE",
6648 		"IDMA_FL_REQ_HEADERFL_DONE",
6649 	};
6650 	static const char * const t5_decode[] = {
6651 		"IDMA_IDLE",
6652 		"IDMA_ALMOST_IDLE",
6653 		"IDMA_PUSH_MORE_CPL_FIFO",
6654 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6655 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6656 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6657 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6658 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6659 		"IDMA_SEND_FIFO_TO_IMSG",
6660 		"IDMA_FL_REQ_DATA_FL",
6661 		"IDMA_FL_DROP",
6662 		"IDMA_FL_DROP_SEND_INC",
6663 		"IDMA_FL_H_REQ_HEADER_FL",
6664 		"IDMA_FL_H_SEND_PCIEHDR",
6665 		"IDMA_FL_H_PUSH_CPL_FIFO",
6666 		"IDMA_FL_H_SEND_CPL",
6667 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6668 		"IDMA_FL_H_SEND_IP_HDR",
6669 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6670 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6671 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6672 		"IDMA_FL_D_SEND_PCIEHDR",
6673 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6674 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6675 		"IDMA_FL_SEND_PCIEHDR",
6676 		"IDMA_FL_PUSH_CPL_FIFO",
6677 		"IDMA_FL_SEND_CPL",
6678 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6679 		"IDMA_FL_SEND_PAYLOAD",
6680 		"IDMA_FL_REQ_NEXT_DATA_FL",
6681 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6682 		"IDMA_FL_SEND_PADDING",
6683 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6684 	};
6685 	static const char * const t6_decode[] = {
6686 		"IDMA_IDLE",
6687 		"IDMA_PUSH_MORE_CPL_FIFO",
6688 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6689 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6690 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6691 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6692 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6693 		"IDMA_FL_REQ_DATA_FL",
6694 		"IDMA_FL_DROP",
6695 		"IDMA_FL_DROP_SEND_INC",
6696 		"IDMA_FL_H_REQ_HEADER_FL",
6697 		"IDMA_FL_H_SEND_PCIEHDR",
6698 		"IDMA_FL_H_PUSH_CPL_FIFO",
6699 		"IDMA_FL_H_SEND_CPL",
6700 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6701 		"IDMA_FL_H_SEND_IP_HDR",
6702 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6703 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6704 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6705 		"IDMA_FL_D_SEND_PCIEHDR",
6706 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6707 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6708 		"IDMA_FL_SEND_PCIEHDR",
6709 		"IDMA_FL_PUSH_CPL_FIFO",
6710 		"IDMA_FL_SEND_CPL",
6711 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6712 		"IDMA_FL_SEND_PAYLOAD",
6713 		"IDMA_FL_REQ_NEXT_DATA_FL",
6714 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6715 		"IDMA_FL_SEND_PADDING",
6716 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6717 	};
6718 	static const u32 sge_regs[] = {
6719 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6720 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6721 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6722 	};
6723 	const char **sge_idma_decode;
6724 	int sge_idma_decode_nstates;
6725 	int i;
6726 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6727 
6728 	/* Select the right set of decode strings to dump depending on the
6729 	 * adapter chip type.
6730 	 */
6731 	switch (chip_version) {
6732 	case CHELSIO_T4:
6733 		sge_idma_decode = (const char **)t4_decode;
6734 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6735 		break;
6736 
6737 	case CHELSIO_T5:
6738 		sge_idma_decode = (const char **)t5_decode;
6739 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6740 		break;
6741 
6742 	case CHELSIO_T6:
6743 		sge_idma_decode = (const char **)t6_decode;
6744 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6745 		break;
6746 
6747 	default:
6748 		dev_err(adapter->pdev_dev,
6749 			"Unsupported chip version %d\n", chip_version);
6750 		return;
6751 	}
6752 
6753 	if (is_t4(adapter->params.chip)) {
6754 		sge_idma_decode = (const char **)t4_decode;
6755 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6756 	} else {
6757 		sge_idma_decode = (const char **)t5_decode;
6758 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6759 	}
6760 
6761 	if (state < sge_idma_decode_nstates)
6762 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6763 	else
6764 		CH_WARN(adapter, "idma state %d unknown\n", state);
6765 
6766 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6767 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6768 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6769 }
6770 
6771 /**
6772  *      t4_sge_ctxt_flush - flush the SGE context cache
6773  *      @adap: the adapter
6774  *      @mbox: mailbox to use for the FW command
6775  *      @ctx_type: Egress or Ingress
6776  *
6777  *      Issues a FW command through the given mailbox to flush the
6778  *      SGE context cache.
6779  */
6780 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6781 {
6782 	int ret;
6783 	u32 ldst_addrspace;
6784 	struct fw_ldst_cmd c;
6785 
6786 	memset(&c, 0, sizeof(c));
6787 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6788 						 FW_LDST_ADDRSPC_SGE_EGRC :
6789 						 FW_LDST_ADDRSPC_SGE_INGC);
6790 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6791 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6792 					ldst_addrspace);
6793 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6794 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6795 
6796 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6797 	return ret;
6798 }
6799 
6800 /**
6801  *	t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6802  *	@adap - the adapter
6803  *	@ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6804  *	@dbqtimers: SGE Doorbell Queue Timer table
6805  *
6806  *	Reads the SGE Doorbell Queue Timer values into the provided table.
6807  *	Returns 0 on success (Firmware and Hardware support this feature),
6808  *	an error on failure.
6809  */
6810 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6811 			  u16 *dbqtimers)
6812 {
6813 	int ret, dbqtimerix;
6814 
6815 	ret = 0;
6816 	dbqtimerix = 0;
6817 	while (dbqtimerix < ndbqtimers) {
6818 		int nparams, param;
6819 		u32 params[7], vals[7];
6820 
6821 		nparams = ndbqtimers - dbqtimerix;
6822 		if (nparams > ARRAY_SIZE(params))
6823 			nparams = ARRAY_SIZE(params);
6824 
6825 		for (param = 0; param < nparams; param++)
6826 			params[param] =
6827 			  (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6828 			   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6829 			   FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6830 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6831 				      nparams, params, vals);
6832 		if (ret)
6833 			break;
6834 
6835 		for (param = 0; param < nparams; param++)
6836 			dbqtimers[dbqtimerix++] = vals[param];
6837 	}
6838 	return ret;
6839 }
6840 
6841 /**
6842  *      t4_fw_hello - establish communication with FW
6843  *      @adap: the adapter
6844  *      @mbox: mailbox to use for the FW command
6845  *      @evt_mbox: mailbox to receive async FW events
6846  *      @master: specifies the caller's willingness to be the device master
6847  *	@state: returns the current device state (if non-NULL)
6848  *
6849  *	Issues a command to establish communication with FW.  Returns either
6850  *	an error (negative integer) or the mailbox of the Master PF.
6851  */
6852 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6853 		enum dev_master master, enum dev_state *state)
6854 {
6855 	int ret;
6856 	struct fw_hello_cmd c;
6857 	u32 v;
6858 	unsigned int master_mbox;
6859 	int retries = FW_CMD_HELLO_RETRIES;
6860 
6861 retry:
6862 	memset(&c, 0, sizeof(c));
6863 	INIT_CMD(c, HELLO, WRITE);
6864 	c.err_to_clearinit = cpu_to_be32(
6865 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6866 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6867 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6868 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6869 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6870 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6871 		FW_HELLO_CMD_CLEARINIT_F);
6872 
6873 	/*
6874 	 * Issue the HELLO command to the firmware.  If it's not successful
6875 	 * but indicates that we got a "busy" or "timeout" condition, retry
6876 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6877 	 * retry limit, check to see if the firmware left us any error
6878 	 * information and report that if so.
6879 	 */
6880 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6881 	if (ret < 0) {
6882 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6883 			goto retry;
6884 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6885 			t4_report_fw_error(adap);
6886 		return ret;
6887 	}
6888 
6889 	v = be32_to_cpu(c.err_to_clearinit);
6890 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6891 	if (state) {
6892 		if (v & FW_HELLO_CMD_ERR_F)
6893 			*state = DEV_STATE_ERR;
6894 		else if (v & FW_HELLO_CMD_INIT_F)
6895 			*state = DEV_STATE_INIT;
6896 		else
6897 			*state = DEV_STATE_UNINIT;
6898 	}
6899 
6900 	/*
6901 	 * If we're not the Master PF then we need to wait around for the
6902 	 * Master PF Driver to finish setting up the adapter.
6903 	 *
6904 	 * Note that we also do this wait if we're a non-Master-capable PF and
6905 	 * there is no current Master PF; a Master PF may show up momentarily
6906 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6907 	 * OS loads lots of different drivers rapidly at the same time).  In
6908 	 * this case, the Master PF returned by the firmware will be
6909 	 * PCIE_FW_MASTER_M so the test below will work ...
6910 	 */
6911 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6912 	    master_mbox != mbox) {
6913 		int waiting = FW_CMD_HELLO_TIMEOUT;
6914 
6915 		/*
6916 		 * Wait for the firmware to either indicate an error or
6917 		 * initialized state.  If we see either of these we bail out
6918 		 * and report the issue to the caller.  If we exhaust the
6919 		 * "hello timeout" and we haven't exhausted our retries, try
6920 		 * again.  Otherwise bail with a timeout error.
6921 		 */
6922 		for (;;) {
6923 			u32 pcie_fw;
6924 
6925 			msleep(50);
6926 			waiting -= 50;
6927 
6928 			/*
6929 			 * If neither Error nor Initialized are indicated
6930 			 * by the firmware keep waiting till we exhaust our
6931 			 * timeout ... and then retry if we haven't exhausted
6932 			 * our retries ...
6933 			 */
6934 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6935 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6936 				if (waiting <= 0) {
6937 					if (retries-- > 0)
6938 						goto retry;
6939 
6940 					return -ETIMEDOUT;
6941 				}
6942 				continue;
6943 			}
6944 
6945 			/*
6946 			 * We either have an Error or Initialized condition
6947 			 * report errors preferentially.
6948 			 */
6949 			if (state) {
6950 				if (pcie_fw & PCIE_FW_ERR_F)
6951 					*state = DEV_STATE_ERR;
6952 				else if (pcie_fw & PCIE_FW_INIT_F)
6953 					*state = DEV_STATE_INIT;
6954 			}
6955 
6956 			/*
6957 			 * If we arrived before a Master PF was selected and
6958 			 * there's not a valid Master PF, grab its identity
6959 			 * for our caller.
6960 			 */
6961 			if (master_mbox == PCIE_FW_MASTER_M &&
6962 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6963 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6964 			break;
6965 		}
6966 	}
6967 
6968 	return master_mbox;
6969 }
6970 
6971 /**
6972  *	t4_fw_bye - end communication with FW
6973  *	@adap: the adapter
6974  *	@mbox: mailbox to use for the FW command
6975  *
6976  *	Issues a command to terminate communication with FW.
6977  */
6978 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6979 {
6980 	struct fw_bye_cmd c;
6981 
6982 	memset(&c, 0, sizeof(c));
6983 	INIT_CMD(c, BYE, WRITE);
6984 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6985 }
6986 
6987 /**
6988  *	t4_init_cmd - ask FW to initialize the device
6989  *	@adap: the adapter
6990  *	@mbox: mailbox to use for the FW command
6991  *
6992  *	Issues a command to FW to partially initialize the device.  This
6993  *	performs initialization that generally doesn't depend on user input.
6994  */
6995 int t4_early_init(struct adapter *adap, unsigned int mbox)
6996 {
6997 	struct fw_initialize_cmd c;
6998 
6999 	memset(&c, 0, sizeof(c));
7000 	INIT_CMD(c, INITIALIZE, WRITE);
7001 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7002 }
7003 
7004 /**
7005  *	t4_fw_reset - issue a reset to FW
7006  *	@adap: the adapter
7007  *	@mbox: mailbox to use for the FW command
7008  *	@reset: specifies the type of reset to perform
7009  *
7010  *	Issues a reset command of the specified type to FW.
7011  */
7012 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7013 {
7014 	struct fw_reset_cmd c;
7015 
7016 	memset(&c, 0, sizeof(c));
7017 	INIT_CMD(c, RESET, WRITE);
7018 	c.val = cpu_to_be32(reset);
7019 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7020 }
7021 
7022 /**
7023  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7024  *	@adap: the adapter
7025  *	@mbox: mailbox to use for the FW RESET command (if desired)
7026  *	@force: force uP into RESET even if FW RESET command fails
7027  *
7028  *	Issues a RESET command to firmware (if desired) with a HALT indication
7029  *	and then puts the microprocessor into RESET state.  The RESET command
7030  *	will only be issued if a legitimate mailbox is provided (mbox <=
7031  *	PCIE_FW_MASTER_M).
7032  *
7033  *	This is generally used in order for the host to safely manipulate the
7034  *	adapter without fear of conflicting with whatever the firmware might
7035  *	be doing.  The only way out of this state is to RESTART the firmware
7036  *	...
7037  */
7038 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7039 {
7040 	int ret = 0;
7041 
7042 	/*
7043 	 * If a legitimate mailbox is provided, issue a RESET command
7044 	 * with a HALT indication.
7045 	 */
7046 	if (mbox <= PCIE_FW_MASTER_M) {
7047 		struct fw_reset_cmd c;
7048 
7049 		memset(&c, 0, sizeof(c));
7050 		INIT_CMD(c, RESET, WRITE);
7051 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7052 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7053 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7054 	}
7055 
7056 	/*
7057 	 * Normally we won't complete the operation if the firmware RESET
7058 	 * command fails but if our caller insists we'll go ahead and put the
7059 	 * uP into RESET.  This can be useful if the firmware is hung or even
7060 	 * missing ...  We'll have to take the risk of putting the uP into
7061 	 * RESET without the cooperation of firmware in that case.
7062 	 *
7063 	 * We also force the firmware's HALT flag to be on in case we bypassed
7064 	 * the firmware RESET command above or we're dealing with old firmware
7065 	 * which doesn't have the HALT capability.  This will serve as a flag
7066 	 * for the incoming firmware to know that it's coming out of a HALT
7067 	 * rather than a RESET ... if it's new enough to understand that ...
7068 	 */
7069 	if (ret == 0 || force) {
7070 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7071 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7072 				 PCIE_FW_HALT_F);
7073 	}
7074 
7075 	/*
7076 	 * And we always return the result of the firmware RESET command
7077 	 * even when we force the uP into RESET ...
7078 	 */
7079 	return ret;
7080 }
7081 
7082 /**
7083  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7084  *	@adap: the adapter
7085  *	@reset: if we want to do a RESET to restart things
7086  *
7087  *	Restart firmware previously halted by t4_fw_halt().  On successful
7088  *	return the previous PF Master remains as the new PF Master and there
7089  *	is no need to issue a new HELLO command, etc.
7090  *
7091  *	We do this in two ways:
7092  *
7093  *	 1. If we're dealing with newer firmware we'll simply want to take
7094  *	    the chip's microprocessor out of RESET.  This will cause the
7095  *	    firmware to start up from its start vector.  And then we'll loop
7096  *	    until the firmware indicates it's started again (PCIE_FW.HALT
7097  *	    reset to 0) or we timeout.
7098  *
7099  *	 2. If we're dealing with older firmware then we'll need to RESET
7100  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
7101  *	    flag and automatically RESET itself on startup.
7102  */
7103 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7104 {
7105 	if (reset) {
7106 		/*
7107 		 * Since we're directing the RESET instead of the firmware
7108 		 * doing it automatically, we need to clear the PCIE_FW.HALT
7109 		 * bit.
7110 		 */
7111 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7112 
7113 		/*
7114 		 * If we've been given a valid mailbox, first try to get the
7115 		 * firmware to do the RESET.  If that works, great and we can
7116 		 * return success.  Otherwise, if we haven't been given a
7117 		 * valid mailbox or the RESET command failed, fall back to
7118 		 * hitting the chip with a hammer.
7119 		 */
7120 		if (mbox <= PCIE_FW_MASTER_M) {
7121 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7122 			msleep(100);
7123 			if (t4_fw_reset(adap, mbox,
7124 					PIORST_F | PIORSTMODE_F) == 0)
7125 				return 0;
7126 		}
7127 
7128 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7129 		msleep(2000);
7130 	} else {
7131 		int ms;
7132 
7133 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7134 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7135 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7136 				return 0;
7137 			msleep(100);
7138 			ms += 100;
7139 		}
7140 		return -ETIMEDOUT;
7141 	}
7142 	return 0;
7143 }
7144 
7145 /**
7146  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7147  *	@adap: the adapter
7148  *	@mbox: mailbox to use for the FW RESET command (if desired)
7149  *	@fw_data: the firmware image to write
7150  *	@size: image size
7151  *	@force: force upgrade even if firmware doesn't cooperate
7152  *
7153  *	Perform all of the steps necessary for upgrading an adapter's
7154  *	firmware image.  Normally this requires the cooperation of the
7155  *	existing firmware in order to halt all existing activities
7156  *	but if an invalid mailbox token is passed in we skip that step
7157  *	(though we'll still put the adapter microprocessor into RESET in
7158  *	that case).
7159  *
7160  *	On successful return the new firmware will have been loaded and
7161  *	the adapter will have been fully RESET losing all previous setup
7162  *	state.  On unsuccessful return the adapter may be completely hosed ...
7163  *	positive errno indicates that the adapter is ~probably~ intact, a
7164  *	negative errno indicates that things are looking bad ...
7165  */
7166 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7167 		  const u8 *fw_data, unsigned int size, int force)
7168 {
7169 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7170 	int reset, ret;
7171 
7172 	if (!t4_fw_matches_chip(adap, fw_hdr))
7173 		return -EINVAL;
7174 
7175 	/* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7176 	 * set wont be sent when we are flashing FW.
7177 	 */
7178 	adap->flags &= ~CXGB4_FW_OK;
7179 
7180 	ret = t4_fw_halt(adap, mbox, force);
7181 	if (ret < 0 && !force)
7182 		goto out;
7183 
7184 	ret = t4_load_fw(adap, fw_data, size);
7185 	if (ret < 0)
7186 		goto out;
7187 
7188 	/*
7189 	 * If there was a Firmware Configuration File stored in FLASH,
7190 	 * there's a good chance that it won't be compatible with the new
7191 	 * Firmware.  In order to prevent difficult to diagnose adapter
7192 	 * initialization issues, we clear out the Firmware Configuration File
7193 	 * portion of the FLASH .  The user will need to re-FLASH a new
7194 	 * Firmware Configuration File which is compatible with the new
7195 	 * Firmware if that's desired.
7196 	 */
7197 	(void)t4_load_cfg(adap, NULL, 0);
7198 
7199 	/*
7200 	 * Older versions of the firmware don't understand the new
7201 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7202 	 * restart.  So for newly loaded older firmware we'll have to do the
7203 	 * RESET for it so it starts up on a clean slate.  We can tell if
7204 	 * the newly loaded firmware will handle this right by checking
7205 	 * its header flags to see if it advertises the capability.
7206 	 */
7207 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7208 	ret = t4_fw_restart(adap, mbox, reset);
7209 
7210 	/* Grab potentially new Firmware Device Log parameters so we can see
7211 	 * how healthy the new Firmware is.  It's okay to contact the new
7212 	 * Firmware for these parameters even though, as far as it's
7213 	 * concerned, we've never said "HELLO" to it ...
7214 	 */
7215 	(void)t4_init_devlog_params(adap);
7216 out:
7217 	adap->flags |= CXGB4_FW_OK;
7218 	return ret;
7219 }
7220 
7221 /**
7222  *	t4_fl_pkt_align - return the fl packet alignment
7223  *	@adap: the adapter
7224  *
7225  *	T4 has a single field to specify the packing and padding boundary.
7226  *	T5 onwards has separate fields for this and hence the alignment for
7227  *	next packet offset is maximum of these two.
7228  *
7229  */
7230 int t4_fl_pkt_align(struct adapter *adap)
7231 {
7232 	u32 sge_control, sge_control2;
7233 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7234 
7235 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7236 
7237 	/* T4 uses a single control field to specify both the PCIe Padding and
7238 	 * Packing Boundary.  T5 introduced the ability to specify these
7239 	 * separately.  The actual Ingress Packet Data alignment boundary
7240 	 * within Packed Buffer Mode is the maximum of these two
7241 	 * specifications.  (Note that it makes no real practical sense to
7242 	 * have the Padding Boundary be larger than the Packing Boundary but you
7243 	 * could set the chip up that way and, in fact, legacy T4 code would
7244 	 * end doing this because it would initialize the Padding Boundary and
7245 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7246 	 * Padding Boundary values in T6 starts from 8B,
7247 	 * where as it is 32B for T4 and T5.
7248 	 */
7249 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7250 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7251 	else
7252 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7253 
7254 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7255 
7256 	fl_align = ingpadboundary;
7257 	if (!is_t4(adap->params.chip)) {
7258 		/* T5 has a weird interpretation of one of the PCIe Packing
7259 		 * Boundary values.  No idea why ...
7260 		 */
7261 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7262 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7263 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7264 			ingpackboundary = 16;
7265 		else
7266 			ingpackboundary = 1 << (ingpackboundary +
7267 						INGPACKBOUNDARY_SHIFT_X);
7268 
7269 		fl_align = max(ingpadboundary, ingpackboundary);
7270 	}
7271 	return fl_align;
7272 }
7273 
7274 /**
7275  *	t4_fixup_host_params - fix up host-dependent parameters
7276  *	@adap: the adapter
7277  *	@page_size: the host's Base Page Size
7278  *	@cache_line_size: the host's Cache Line Size
7279  *
7280  *	Various registers in T4 contain values which are dependent on the
7281  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7282  *	those registers with the appropriate values as passed in ...
7283  */
7284 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7285 			 unsigned int cache_line_size)
7286 {
7287 	unsigned int page_shift = fls(page_size) - 1;
7288 	unsigned int sge_hps = page_shift - 10;
7289 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7290 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7291 	unsigned int fl_align_log = fls(fl_align) - 1;
7292 
7293 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7294 		     HOSTPAGESIZEPF0_V(sge_hps) |
7295 		     HOSTPAGESIZEPF1_V(sge_hps) |
7296 		     HOSTPAGESIZEPF2_V(sge_hps) |
7297 		     HOSTPAGESIZEPF3_V(sge_hps) |
7298 		     HOSTPAGESIZEPF4_V(sge_hps) |
7299 		     HOSTPAGESIZEPF5_V(sge_hps) |
7300 		     HOSTPAGESIZEPF6_V(sge_hps) |
7301 		     HOSTPAGESIZEPF7_V(sge_hps));
7302 
7303 	if (is_t4(adap->params.chip)) {
7304 		t4_set_reg_field(adap, SGE_CONTROL_A,
7305 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7306 				 EGRSTATUSPAGESIZE_F,
7307 				 INGPADBOUNDARY_V(fl_align_log -
7308 						  INGPADBOUNDARY_SHIFT_X) |
7309 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7310 	} else {
7311 		unsigned int pack_align;
7312 		unsigned int ingpad, ingpack;
7313 
7314 		/* T5 introduced the separation of the Free List Padding and
7315 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7316 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7317 		 * Bandwidth, and use a Packing Boundary which is large enough
7318 		 * to avoid false sharing between CPUs, etc.
7319 		 *
7320 		 * For the PCI Link, the smaller the Padding Boundary the
7321 		 * better.  For the Memory Controller, a smaller Padding
7322 		 * Boundary is better until we cross under the Memory Line
7323 		 * Size (the minimum unit of transfer to/from Memory).  If we
7324 		 * have a Padding Boundary which is smaller than the Memory
7325 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7326 		 * Memory Controller which is never good.
7327 		 */
7328 
7329 		/* We want the Packing Boundary to be based on the Cache Line
7330 		 * Size in order to help avoid False Sharing performance
7331 		 * issues between CPUs, etc.  We also want the Packing
7332 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7333 		 * get best performance when the Packing Boundary is a
7334 		 * multiple of the Maximum Payload Size.
7335 		 */
7336 		pack_align = fl_align;
7337 		if (pci_is_pcie(adap->pdev)) {
7338 			unsigned int mps, mps_log;
7339 			u16 devctl;
7340 
7341 			/* The PCIe Device Control Maximum Payload Size field
7342 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7343 			 * 128 bytes.
7344 			 */
7345 			pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7346 						  &devctl);
7347 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7348 			mps = 1 << mps_log;
7349 			if (mps > pack_align)
7350 				pack_align = mps;
7351 		}
7352 
7353 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7354 		 * value for the Packing Boundary.  This corresponds to 16
7355 		 * bytes instead of the expected 32 bytes.  So if we want 32
7356 		 * bytes, the best we can really do is 64 bytes ...
7357 		 */
7358 		if (pack_align <= 16) {
7359 			ingpack = INGPACKBOUNDARY_16B_X;
7360 			fl_align = 16;
7361 		} else if (pack_align == 32) {
7362 			ingpack = INGPACKBOUNDARY_64B_X;
7363 			fl_align = 64;
7364 		} else {
7365 			unsigned int pack_align_log = fls(pack_align) - 1;
7366 
7367 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7368 			fl_align = pack_align;
7369 		}
7370 
7371 		/* Use the smallest Ingress Padding which isn't smaller than
7372 		 * the Memory Controller Read/Write Size.  We'll take that as
7373 		 * being 8 bytes since we don't know of any system with a
7374 		 * wider Memory Controller Bus Width.
7375 		 */
7376 		if (is_t5(adap->params.chip))
7377 			ingpad = INGPADBOUNDARY_32B_X;
7378 		else
7379 			ingpad = T6_INGPADBOUNDARY_8B_X;
7380 
7381 		t4_set_reg_field(adap, SGE_CONTROL_A,
7382 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7383 				 EGRSTATUSPAGESIZE_F,
7384 				 INGPADBOUNDARY_V(ingpad) |
7385 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7386 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7387 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7388 				 INGPACKBOUNDARY_V(ingpack));
7389 	}
7390 	/*
7391 	 * Adjust various SGE Free List Host Buffer Sizes.
7392 	 *
7393 	 * This is something of a crock since we're using fixed indices into
7394 	 * the array which are also known by the sge.c code and the T4
7395 	 * Firmware Configuration File.  We need to come up with a much better
7396 	 * approach to managing this array.  For now, the first four entries
7397 	 * are:
7398 	 *
7399 	 *   0: Host Page Size
7400 	 *   1: 64KB
7401 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7402 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7403 	 *
7404 	 * For the single-MTU buffers in unpacked mode we need to include
7405 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7406 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7407 	 * Padding boundary.  All of these are accommodated in the Factory
7408 	 * Default Firmware Configuration File but we need to adjust it for
7409 	 * this host's cache line size.
7410 	 */
7411 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7412 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7413 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7414 		     & ~(fl_align-1));
7415 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7416 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7417 		     & ~(fl_align-1));
7418 
7419 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7420 
7421 	return 0;
7422 }
7423 
7424 /**
7425  *	t4_fw_initialize - ask FW to initialize the device
7426  *	@adap: the adapter
7427  *	@mbox: mailbox to use for the FW command
7428  *
7429  *	Issues a command to FW to partially initialize the device.  This
7430  *	performs initialization that generally doesn't depend on user input.
7431  */
7432 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7433 {
7434 	struct fw_initialize_cmd c;
7435 
7436 	memset(&c, 0, sizeof(c));
7437 	INIT_CMD(c, INITIALIZE, WRITE);
7438 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7439 }
7440 
7441 /**
7442  *	t4_query_params_rw - query FW or device parameters
7443  *	@adap: the adapter
7444  *	@mbox: mailbox to use for the FW command
7445  *	@pf: the PF
7446  *	@vf: the VF
7447  *	@nparams: the number of parameters
7448  *	@params: the parameter names
7449  *	@val: the parameter values
7450  *	@rw: Write and read flag
7451  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7452  *
7453  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7454  *	queried at once.
7455  */
7456 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7457 		       unsigned int vf, unsigned int nparams, const u32 *params,
7458 		       u32 *val, int rw, bool sleep_ok)
7459 {
7460 	int i, ret;
7461 	struct fw_params_cmd c;
7462 	__be32 *p = &c.param[0].mnem;
7463 
7464 	if (nparams > 7)
7465 		return -EINVAL;
7466 
7467 	memset(&c, 0, sizeof(c));
7468 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7469 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7470 				  FW_PARAMS_CMD_PFN_V(pf) |
7471 				  FW_PARAMS_CMD_VFN_V(vf));
7472 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7473 
7474 	for (i = 0; i < nparams; i++) {
7475 		*p++ = cpu_to_be32(*params++);
7476 		if (rw)
7477 			*p = cpu_to_be32(*(val + i));
7478 		p++;
7479 	}
7480 
7481 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7482 	if (ret == 0)
7483 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7484 			*val++ = be32_to_cpu(*p);
7485 	return ret;
7486 }
7487 
7488 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7489 		    unsigned int vf, unsigned int nparams, const u32 *params,
7490 		    u32 *val)
7491 {
7492 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7493 				  true);
7494 }
7495 
7496 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7497 		       unsigned int vf, unsigned int nparams, const u32 *params,
7498 		       u32 *val)
7499 {
7500 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7501 				  false);
7502 }
7503 
7504 /**
7505  *      t4_set_params_timeout - sets FW or device parameters
7506  *      @adap: the adapter
7507  *      @mbox: mailbox to use for the FW command
7508  *      @pf: the PF
7509  *      @vf: the VF
7510  *      @nparams: the number of parameters
7511  *      @params: the parameter names
7512  *      @val: the parameter values
7513  *      @timeout: the timeout time
7514  *
7515  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7516  *      specified at once.
7517  */
7518 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7519 			  unsigned int pf, unsigned int vf,
7520 			  unsigned int nparams, const u32 *params,
7521 			  const u32 *val, int timeout)
7522 {
7523 	struct fw_params_cmd c;
7524 	__be32 *p = &c.param[0].mnem;
7525 
7526 	if (nparams > 7)
7527 		return -EINVAL;
7528 
7529 	memset(&c, 0, sizeof(c));
7530 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7531 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7532 				  FW_PARAMS_CMD_PFN_V(pf) |
7533 				  FW_PARAMS_CMD_VFN_V(vf));
7534 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7535 
7536 	while (nparams--) {
7537 		*p++ = cpu_to_be32(*params++);
7538 		*p++ = cpu_to_be32(*val++);
7539 	}
7540 
7541 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7542 }
7543 
7544 /**
7545  *	t4_set_params - sets FW or device parameters
7546  *	@adap: the adapter
7547  *	@mbox: mailbox to use for the FW command
7548  *	@pf: the PF
7549  *	@vf: the VF
7550  *	@nparams: the number of parameters
7551  *	@params: the parameter names
7552  *	@val: the parameter values
7553  *
7554  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7555  *	specified at once.
7556  */
7557 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7558 		  unsigned int vf, unsigned int nparams, const u32 *params,
7559 		  const u32 *val)
7560 {
7561 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7562 				     FW_CMD_MAX_TIMEOUT);
7563 }
7564 
7565 /**
7566  *	t4_cfg_pfvf - configure PF/VF resource limits
7567  *	@adap: the adapter
7568  *	@mbox: mailbox to use for the FW command
7569  *	@pf: the PF being configured
7570  *	@vf: the VF being configured
7571  *	@txq: the max number of egress queues
7572  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7573  *	@rxqi: the max number of interrupt-capable ingress queues
7574  *	@rxq: the max number of interruptless ingress queues
7575  *	@tc: the PCI traffic class
7576  *	@vi: the max number of virtual interfaces
7577  *	@cmask: the channel access rights mask for the PF/VF
7578  *	@pmask: the port access rights mask for the PF/VF
7579  *	@nexact: the maximum number of exact MPS filters
7580  *	@rcaps: read capabilities
7581  *	@wxcaps: write/execute capabilities
7582  *
7583  *	Configures resource limits and capabilities for a physical or virtual
7584  *	function.
7585  */
7586 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7587 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7588 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7589 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7590 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7591 {
7592 	struct fw_pfvf_cmd c;
7593 
7594 	memset(&c, 0, sizeof(c));
7595 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7596 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7597 				  FW_PFVF_CMD_VFN_V(vf));
7598 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7599 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7600 				     FW_PFVF_CMD_NIQ_V(rxq));
7601 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7602 				    FW_PFVF_CMD_PMASK_V(pmask) |
7603 				    FW_PFVF_CMD_NEQ_V(txq));
7604 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7605 				      FW_PFVF_CMD_NVI_V(vi) |
7606 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7607 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7608 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7609 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7610 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7611 }
7612 
7613 /**
7614  *	t4_alloc_vi - allocate a virtual interface
7615  *	@adap: the adapter
7616  *	@mbox: mailbox to use for the FW command
7617  *	@port: physical port associated with the VI
7618  *	@pf: the PF owning the VI
7619  *	@vf: the VF owning the VI
7620  *	@nmac: number of MAC addresses needed (1 to 5)
7621  *	@mac: the MAC addresses of the VI
7622  *	@rss_size: size of RSS table slice associated with this VI
7623  *
7624  *	Allocates a virtual interface for the given physical port.  If @mac is
7625  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7626  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7627  *	stored consecutively so the space needed is @nmac * 6 bytes.
7628  *	Returns a negative error number or the non-negative VI id.
7629  */
7630 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7631 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7632 		unsigned int *rss_size, u8 *vivld, u8 *vin)
7633 {
7634 	int ret;
7635 	struct fw_vi_cmd c;
7636 
7637 	memset(&c, 0, sizeof(c));
7638 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7639 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7640 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7641 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7642 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7643 	c.nmac = nmac - 1;
7644 
7645 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7646 	if (ret)
7647 		return ret;
7648 
7649 	if (mac) {
7650 		memcpy(mac, c.mac, sizeof(c.mac));
7651 		switch (nmac) {
7652 		case 5:
7653 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7654 			/* Fall through */
7655 		case 4:
7656 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7657 			/* Fall through */
7658 		case 3:
7659 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7660 			/* Fall through */
7661 		case 2:
7662 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7663 		}
7664 	}
7665 	if (rss_size)
7666 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7667 
7668 	if (vivld)
7669 		*vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7670 
7671 	if (vin)
7672 		*vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7673 
7674 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7675 }
7676 
7677 /**
7678  *	t4_free_vi - free a virtual interface
7679  *	@adap: the adapter
7680  *	@mbox: mailbox to use for the FW command
7681  *	@pf: the PF owning the VI
7682  *	@vf: the VF owning the VI
7683  *	@viid: virtual interface identifiler
7684  *
7685  *	Free a previously allocated virtual interface.
7686  */
7687 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7688 	       unsigned int vf, unsigned int viid)
7689 {
7690 	struct fw_vi_cmd c;
7691 
7692 	memset(&c, 0, sizeof(c));
7693 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7694 				  FW_CMD_REQUEST_F |
7695 				  FW_CMD_EXEC_F |
7696 				  FW_VI_CMD_PFN_V(pf) |
7697 				  FW_VI_CMD_VFN_V(vf));
7698 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7699 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7700 
7701 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7702 }
7703 
7704 /**
7705  *	t4_set_rxmode - set Rx properties of a virtual interface
7706  *	@adap: the adapter
7707  *	@mbox: mailbox to use for the FW command
7708  *	@viid: the VI id
7709  *	@mtu: the new MTU or -1
7710  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7711  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7712  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7713  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7714  *	@sleep_ok: if true we may sleep while awaiting command completion
7715  *
7716  *	Sets Rx properties of a virtual interface.
7717  */
7718 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7719 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7720 		  bool sleep_ok)
7721 {
7722 	struct fw_vi_rxmode_cmd c;
7723 
7724 	/* convert to FW values */
7725 	if (mtu < 0)
7726 		mtu = FW_RXMODE_MTU_NO_CHG;
7727 	if (promisc < 0)
7728 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7729 	if (all_multi < 0)
7730 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7731 	if (bcast < 0)
7732 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7733 	if (vlanex < 0)
7734 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7735 
7736 	memset(&c, 0, sizeof(c));
7737 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7738 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7739 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7740 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7741 	c.mtu_to_vlanexen =
7742 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7743 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7744 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7745 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7746 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7747 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7748 }
7749 
7750 /**
7751  *      t4_free_encap_mac_filt - frees MPS entry at given index
7752  *      @adap: the adapter
7753  *      @viid: the VI id
7754  *      @idx: index of MPS entry to be freed
7755  *      @sleep_ok: call is allowed to sleep
7756  *
7757  *      Frees the MPS entry at supplied index
7758  *
7759  *      Returns a negative error number or zero on success
7760  */
7761 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7762 			   int idx, bool sleep_ok)
7763 {
7764 	struct fw_vi_mac_exact *p;
7765 	u8 addr[] = {0, 0, 0, 0, 0, 0};
7766 	struct fw_vi_mac_cmd c;
7767 	int ret = 0;
7768 	u32 exact;
7769 
7770 	memset(&c, 0, sizeof(c));
7771 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7772 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7773 				   FW_CMD_EXEC_V(0) |
7774 				   FW_VI_MAC_CMD_VIID_V(viid));
7775 	exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7776 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7777 					  exact |
7778 					  FW_CMD_LEN16_V(1));
7779 	p = c.u.exact;
7780 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7781 				      FW_VI_MAC_CMD_IDX_V(idx));
7782 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7783 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7784 	return ret;
7785 }
7786 
7787 /**
7788  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7789  *	@adap: the adapter
7790  *	@viid: the VI id
7791  *	@addr: the MAC address
7792  *	@mask: the mask
7793  *	@idx: index of the entry in mps tcam
7794  *	@lookup_type: MAC address for inner (1) or outer (0) header
7795  *	@port_id: the port index
7796  *	@sleep_ok: call is allowed to sleep
7797  *
7798  *	Removes the mac entry at the specified index using raw mac interface.
7799  *
7800  *	Returns a negative error number on failure.
7801  */
7802 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7803 			 const u8 *addr, const u8 *mask, unsigned int idx,
7804 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7805 {
7806 	struct fw_vi_mac_cmd c;
7807 	struct fw_vi_mac_raw *p = &c.u.raw;
7808 	u32 val;
7809 
7810 	memset(&c, 0, sizeof(c));
7811 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7812 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7813 				   FW_CMD_EXEC_V(0) |
7814 				   FW_VI_MAC_CMD_VIID_V(viid));
7815 	val = FW_CMD_LEN16_V(1) |
7816 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7817 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7818 					  FW_CMD_LEN16_V(val));
7819 
7820 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7821 				     FW_VI_MAC_ID_BASED_FREE);
7822 
7823 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7824 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7825 				   DATAPORTNUM_V(port_id));
7826 	/* Lookup mask and port mask */
7827 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7828 				    DATAPORTNUM_V(DATAPORTNUM_M));
7829 
7830 	/* Copy the address and the mask */
7831 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7832 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7833 
7834 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7835 }
7836 
7837 /**
7838  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7839  *      @adap: the adapter
7840  *      @viid: the VI id
7841  *      @mac: the MAC address
7842  *      @mask: the mask
7843  *      @vni: the VNI id for the tunnel protocol
7844  *      @vni_mask: mask for the VNI id
7845  *      @dip_hit: to enable DIP match for the MPS entry
7846  *      @lookup_type: MAC address for inner (1) or outer (0) header
7847  *      @sleep_ok: call is allowed to sleep
7848  *
7849  *      Allocates an MPS entry with specified MAC address and VNI value.
7850  *
7851  *      Returns a negative error number or the allocated index for this mac.
7852  */
7853 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7854 			    const u8 *addr, const u8 *mask, unsigned int vni,
7855 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7856 			    bool sleep_ok)
7857 {
7858 	struct fw_vi_mac_cmd c;
7859 	struct fw_vi_mac_vni *p = c.u.exact_vni;
7860 	int ret = 0;
7861 	u32 val;
7862 
7863 	memset(&c, 0, sizeof(c));
7864 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7865 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7866 				   FW_VI_MAC_CMD_VIID_V(viid));
7867 	val = FW_CMD_LEN16_V(1) |
7868 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7869 	c.freemacs_to_len16 = cpu_to_be32(val);
7870 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7871 				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7872 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7873 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7874 
7875 	p->lookup_type_to_vni =
7876 		cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7877 			    FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7878 			    FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7879 	p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7880 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7881 	if (ret == 0)
7882 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7883 	return ret;
7884 }
7885 
7886 /**
7887  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7888  *	@adap: the adapter
7889  *	@viid: the VI id
7890  *	@mac: the MAC address
7891  *	@mask: the mask
7892  *	@idx: index at which to add this entry
7893  *	@port_id: the port index
7894  *	@lookup_type: MAC address for inner (1) or outer (0) header
7895  *	@sleep_ok: call is allowed to sleep
7896  *
7897  *	Adds the mac entry at the specified index using raw mac interface.
7898  *
7899  *	Returns a negative error number or the allocated index for this mac.
7900  */
7901 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7902 			  const u8 *addr, const u8 *mask, unsigned int idx,
7903 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7904 {
7905 	int ret = 0;
7906 	struct fw_vi_mac_cmd c;
7907 	struct fw_vi_mac_raw *p = &c.u.raw;
7908 	u32 val;
7909 
7910 	memset(&c, 0, sizeof(c));
7911 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7912 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7913 				   FW_VI_MAC_CMD_VIID_V(viid));
7914 	val = FW_CMD_LEN16_V(1) |
7915 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7916 	c.freemacs_to_len16 = cpu_to_be32(val);
7917 
7918 	/* Specify that this is an inner mac address */
7919 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7920 
7921 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7922 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7923 				   DATAPORTNUM_V(port_id));
7924 	/* Lookup mask and port mask */
7925 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7926 				    DATAPORTNUM_V(DATAPORTNUM_M));
7927 
7928 	/* Copy the address and the mask */
7929 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7930 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7931 
7932 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7933 	if (ret == 0) {
7934 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7935 		if (ret != idx)
7936 			ret = -ENOMEM;
7937 	}
7938 
7939 	return ret;
7940 }
7941 
7942 /**
7943  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7944  *	@adap: the adapter
7945  *	@mbox: mailbox to use for the FW command
7946  *	@viid: the VI id
7947  *	@free: if true any existing filters for this VI id are first removed
7948  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7949  *	@addr: the MAC address(es)
7950  *	@idx: where to store the index of each allocated filter
7951  *	@hash: pointer to hash address filter bitmap
7952  *	@sleep_ok: call is allowed to sleep
7953  *
7954  *	Allocates an exact-match filter for each of the supplied addresses and
7955  *	sets it to the corresponding address.  If @idx is not %NULL it should
7956  *	have at least @naddr entries, each of which will be set to the index of
7957  *	the filter allocated for the corresponding MAC address.  If a filter
7958  *	could not be allocated for an address its index is set to 0xffff.
7959  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7960  *	are hashed and update the hash filter bitmap pointed at by @hash.
7961  *
7962  *	Returns a negative error number or the number of filters allocated.
7963  */
7964 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7965 		      unsigned int viid, bool free, unsigned int naddr,
7966 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7967 {
7968 	int offset, ret = 0;
7969 	struct fw_vi_mac_cmd c;
7970 	unsigned int nfilters = 0;
7971 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7972 	unsigned int rem = naddr;
7973 
7974 	if (naddr > max_naddr)
7975 		return -EINVAL;
7976 
7977 	for (offset = 0; offset < naddr ; /**/) {
7978 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7979 					 rem : ARRAY_SIZE(c.u.exact));
7980 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7981 						     u.exact[fw_naddr]), 16);
7982 		struct fw_vi_mac_exact *p;
7983 		int i;
7984 
7985 		memset(&c, 0, sizeof(c));
7986 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7987 					   FW_CMD_REQUEST_F |
7988 					   FW_CMD_WRITE_F |
7989 					   FW_CMD_EXEC_V(free) |
7990 					   FW_VI_MAC_CMD_VIID_V(viid));
7991 		c.freemacs_to_len16 =
7992 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7993 				    FW_CMD_LEN16_V(len16));
7994 
7995 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7996 			p->valid_to_idx =
7997 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7998 					    FW_VI_MAC_CMD_IDX_V(
7999 						    FW_VI_MAC_ADD_MAC));
8000 			memcpy(p->macaddr, addr[offset + i],
8001 			       sizeof(p->macaddr));
8002 		}
8003 
8004 		/* It's okay if we run out of space in our MAC address arena.
8005 		 * Some of the addresses we submit may get stored so we need
8006 		 * to run through the reply to see what the results were ...
8007 		 */
8008 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8009 		if (ret && ret != -FW_ENOMEM)
8010 			break;
8011 
8012 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8013 			u16 index = FW_VI_MAC_CMD_IDX_G(
8014 					be16_to_cpu(p->valid_to_idx));
8015 
8016 			if (idx)
8017 				idx[offset + i] = (index >= max_naddr ?
8018 						   0xffff : index);
8019 			if (index < max_naddr)
8020 				nfilters++;
8021 			else if (hash)
8022 				*hash |= (1ULL <<
8023 					  hash_mac_addr(addr[offset + i]));
8024 		}
8025 
8026 		free = false;
8027 		offset += fw_naddr;
8028 		rem -= fw_naddr;
8029 	}
8030 
8031 	if (ret == 0 || ret == -FW_ENOMEM)
8032 		ret = nfilters;
8033 	return ret;
8034 }
8035 
8036 /**
8037  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8038  *	@adap: the adapter
8039  *	@mbox: mailbox to use for the FW command
8040  *	@viid: the VI id
8041  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8042  *	@addr: the MAC address(es)
8043  *	@sleep_ok: call is allowed to sleep
8044  *
8045  *	Frees the exact-match filter for each of the supplied addresses
8046  *
8047  *	Returns a negative error number or the number of filters freed.
8048  */
8049 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8050 		     unsigned int viid, unsigned int naddr,
8051 		     const u8 **addr, bool sleep_ok)
8052 {
8053 	int offset, ret = 0;
8054 	struct fw_vi_mac_cmd c;
8055 	unsigned int nfilters = 0;
8056 	unsigned int max_naddr = is_t4(adap->params.chip) ?
8057 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
8058 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8059 	unsigned int rem = naddr;
8060 
8061 	if (naddr > max_naddr)
8062 		return -EINVAL;
8063 
8064 	for (offset = 0; offset < (int)naddr ; /**/) {
8065 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8066 					 ? rem
8067 					 : ARRAY_SIZE(c.u.exact));
8068 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8069 						     u.exact[fw_naddr]), 16);
8070 		struct fw_vi_mac_exact *p;
8071 		int i;
8072 
8073 		memset(&c, 0, sizeof(c));
8074 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8075 				     FW_CMD_REQUEST_F |
8076 				     FW_CMD_WRITE_F |
8077 				     FW_CMD_EXEC_V(0) |
8078 				     FW_VI_MAC_CMD_VIID_V(viid));
8079 		c.freemacs_to_len16 =
8080 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8081 					    FW_CMD_LEN16_V(len16));
8082 
8083 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8084 			p->valid_to_idx = cpu_to_be16(
8085 				FW_VI_MAC_CMD_VALID_F |
8086 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8087 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8088 		}
8089 
8090 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8091 		if (ret)
8092 			break;
8093 
8094 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8095 			u16 index = FW_VI_MAC_CMD_IDX_G(
8096 						be16_to_cpu(p->valid_to_idx));
8097 
8098 			if (index < max_naddr)
8099 				nfilters++;
8100 		}
8101 
8102 		offset += fw_naddr;
8103 		rem -= fw_naddr;
8104 	}
8105 
8106 	if (ret == 0)
8107 		ret = nfilters;
8108 	return ret;
8109 }
8110 
8111 /**
8112  *	t4_change_mac - modifies the exact-match filter for a MAC address
8113  *	@adap: the adapter
8114  *	@mbox: mailbox to use for the FW command
8115  *	@viid: the VI id
8116  *	@idx: index of existing filter for old value of MAC address, or -1
8117  *	@addr: the new MAC address value
8118  *	@persist: whether a new MAC allocation should be persistent
8119  *	@add_smt: if true also add the address to the HW SMT
8120  *
8121  *	Modifies an exact-match filter and sets it to the new MAC address.
8122  *	Note that in general it is not possible to modify the value of a given
8123  *	filter so the generic way to modify an address filter is to free the one
8124  *	being used by the old address value and allocate a new filter for the
8125  *	new address value.  @idx can be -1 if the address is a new addition.
8126  *
8127  *	Returns a negative error number or the index of the filter with the new
8128  *	MAC value.
8129  */
8130 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8131 		  int idx, const u8 *addr, bool persist, u8 *smt_idx)
8132 {
8133 	int ret, mode;
8134 	struct fw_vi_mac_cmd c;
8135 	struct fw_vi_mac_exact *p = c.u.exact;
8136 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8137 
8138 	if (idx < 0)                             /* new allocation */
8139 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8140 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8141 
8142 	memset(&c, 0, sizeof(c));
8143 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8144 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8145 				   FW_VI_MAC_CMD_VIID_V(viid));
8146 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8147 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8148 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8149 				      FW_VI_MAC_CMD_IDX_V(idx));
8150 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8151 
8152 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8153 	if (ret == 0) {
8154 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8155 		if (ret >= max_mac_addr)
8156 			ret = -ENOMEM;
8157 		if (smt_idx) {
8158 			if (adap->params.viid_smt_extn_support) {
8159 				*smt_idx = FW_VI_MAC_CMD_SMTID_G
8160 						    (be32_to_cpu(c.op_to_viid));
8161 			} else {
8162 				/* In T4/T5, SMT contains 256 SMAC entries
8163 				 * organized in 128 rows of 2 entries each.
8164 				 * In T6, SMT contains 256 SMAC entries in
8165 				 * 256 rows.
8166 				 */
8167 				if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8168 								     CHELSIO_T5)
8169 					*smt_idx = (viid & FW_VIID_VIN_M) << 1;
8170 				else
8171 					*smt_idx = (viid & FW_VIID_VIN_M);
8172 			}
8173 		}
8174 	}
8175 	return ret;
8176 }
8177 
8178 /**
8179  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8180  *	@adap: the adapter
8181  *	@mbox: mailbox to use for the FW command
8182  *	@viid: the VI id
8183  *	@ucast: whether the hash filter should also match unicast addresses
8184  *	@vec: the value to be written to the hash filter
8185  *	@sleep_ok: call is allowed to sleep
8186  *
8187  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8188  */
8189 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8190 		     bool ucast, u64 vec, bool sleep_ok)
8191 {
8192 	struct fw_vi_mac_cmd c;
8193 
8194 	memset(&c, 0, sizeof(c));
8195 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8196 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8197 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8198 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8199 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8200 					  FW_CMD_LEN16_V(1));
8201 	c.u.hash.hashvec = cpu_to_be64(vec);
8202 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8203 }
8204 
8205 /**
8206  *      t4_enable_vi_params - enable/disable a virtual interface
8207  *      @adap: the adapter
8208  *      @mbox: mailbox to use for the FW command
8209  *      @viid: the VI id
8210  *      @rx_en: 1=enable Rx, 0=disable Rx
8211  *      @tx_en: 1=enable Tx, 0=disable Tx
8212  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8213  *
8214  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8215  *      only makes sense when enabling a Virtual Interface ...
8216  */
8217 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8218 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8219 {
8220 	struct fw_vi_enable_cmd c;
8221 
8222 	memset(&c, 0, sizeof(c));
8223 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8224 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8225 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8226 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8227 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8228 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8229 				     FW_LEN16(c));
8230 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8231 }
8232 
8233 /**
8234  *	t4_enable_vi - enable/disable a virtual interface
8235  *	@adap: the adapter
8236  *	@mbox: mailbox to use for the FW command
8237  *	@viid: the VI id
8238  *	@rx_en: 1=enable Rx, 0=disable Rx
8239  *	@tx_en: 1=enable Tx, 0=disable Tx
8240  *
8241  *	Enables/disables a virtual interface.
8242  */
8243 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8244 		 bool rx_en, bool tx_en)
8245 {
8246 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8247 }
8248 
8249 /**
8250  *	t4_enable_pi_params - enable/disable a Port's Virtual Interface
8251  *      @adap: the adapter
8252  *      @mbox: mailbox to use for the FW command
8253  *      @pi: the Port Information structure
8254  *      @rx_en: 1=enable Rx, 0=disable Rx
8255  *      @tx_en: 1=enable Tx, 0=disable Tx
8256  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8257  *
8258  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8259  *	Enable only makes sense when enabling a Virtual Interface ...
8260  *	If the Virtual Interface enable/disable operation is successful,
8261  *	we notify the OS-specific code of a potential Link Status change
8262  *	via the OS Contract API t4_os_link_changed().
8263  */
8264 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8265 			struct port_info *pi,
8266 			bool rx_en, bool tx_en, bool dcb_en)
8267 {
8268 	int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8269 				      rx_en, tx_en, dcb_en);
8270 	if (ret)
8271 		return ret;
8272 	t4_os_link_changed(adap, pi->port_id,
8273 			   rx_en && tx_en && pi->link_cfg.link_ok);
8274 	return 0;
8275 }
8276 
8277 /**
8278  *	t4_identify_port - identify a VI's port by blinking its LED
8279  *	@adap: the adapter
8280  *	@mbox: mailbox to use for the FW command
8281  *	@viid: the VI id
8282  *	@nblinks: how many times to blink LED at 2.5 Hz
8283  *
8284  *	Identifies a VI's port by blinking its LED.
8285  */
8286 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8287 		     unsigned int nblinks)
8288 {
8289 	struct fw_vi_enable_cmd c;
8290 
8291 	memset(&c, 0, sizeof(c));
8292 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8293 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8294 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8295 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8296 	c.blinkdur = cpu_to_be16(nblinks);
8297 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8298 }
8299 
8300 /**
8301  *	t4_iq_stop - stop an ingress queue and its FLs
8302  *	@adap: the adapter
8303  *	@mbox: mailbox to use for the FW command
8304  *	@pf: the PF owning the queues
8305  *	@vf: the VF owning the queues
8306  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8307  *	@iqid: ingress queue id
8308  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8309  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8310  *
8311  *	Stops an ingress queue and its associated FLs, if any.  This causes
8312  *	any current or future data/messages destined for these queues to be
8313  *	tossed.
8314  */
8315 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8316 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8317 	       unsigned int fl0id, unsigned int fl1id)
8318 {
8319 	struct fw_iq_cmd c;
8320 
8321 	memset(&c, 0, sizeof(c));
8322 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8323 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8324 				  FW_IQ_CMD_VFN_V(vf));
8325 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8326 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8327 	c.iqid = cpu_to_be16(iqid);
8328 	c.fl0id = cpu_to_be16(fl0id);
8329 	c.fl1id = cpu_to_be16(fl1id);
8330 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8331 }
8332 
8333 /**
8334  *	t4_iq_free - free an ingress queue and its FLs
8335  *	@adap: the adapter
8336  *	@mbox: mailbox to use for the FW command
8337  *	@pf: the PF owning the queues
8338  *	@vf: the VF owning the queues
8339  *	@iqtype: the ingress queue type
8340  *	@iqid: ingress queue id
8341  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8342  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8343  *
8344  *	Frees an ingress queue and its associated FLs, if any.
8345  */
8346 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8347 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8348 	       unsigned int fl0id, unsigned int fl1id)
8349 {
8350 	struct fw_iq_cmd c;
8351 
8352 	memset(&c, 0, sizeof(c));
8353 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8354 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8355 				  FW_IQ_CMD_VFN_V(vf));
8356 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8357 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8358 	c.iqid = cpu_to_be16(iqid);
8359 	c.fl0id = cpu_to_be16(fl0id);
8360 	c.fl1id = cpu_to_be16(fl1id);
8361 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8362 }
8363 
8364 /**
8365  *	t4_eth_eq_free - free an Ethernet egress queue
8366  *	@adap: the adapter
8367  *	@mbox: mailbox to use for the FW command
8368  *	@pf: the PF owning the queue
8369  *	@vf: the VF owning the queue
8370  *	@eqid: egress queue id
8371  *
8372  *	Frees an Ethernet egress queue.
8373  */
8374 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8375 		   unsigned int vf, unsigned int eqid)
8376 {
8377 	struct fw_eq_eth_cmd c;
8378 
8379 	memset(&c, 0, sizeof(c));
8380 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8381 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8382 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8383 				  FW_EQ_ETH_CMD_VFN_V(vf));
8384 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8385 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8386 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8387 }
8388 
8389 /**
8390  *	t4_ctrl_eq_free - free a control egress queue
8391  *	@adap: the adapter
8392  *	@mbox: mailbox to use for the FW command
8393  *	@pf: the PF owning the queue
8394  *	@vf: the VF owning the queue
8395  *	@eqid: egress queue id
8396  *
8397  *	Frees a control egress queue.
8398  */
8399 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8400 		    unsigned int vf, unsigned int eqid)
8401 {
8402 	struct fw_eq_ctrl_cmd c;
8403 
8404 	memset(&c, 0, sizeof(c));
8405 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8406 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8407 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8408 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8409 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8410 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8411 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8412 }
8413 
8414 /**
8415  *	t4_ofld_eq_free - free an offload egress queue
8416  *	@adap: the adapter
8417  *	@mbox: mailbox to use for the FW command
8418  *	@pf: the PF owning the queue
8419  *	@vf: the VF owning the queue
8420  *	@eqid: egress queue id
8421  *
8422  *	Frees a control egress queue.
8423  */
8424 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8425 		    unsigned int vf, unsigned int eqid)
8426 {
8427 	struct fw_eq_ofld_cmd c;
8428 
8429 	memset(&c, 0, sizeof(c));
8430 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8431 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8432 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8433 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8434 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8435 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8436 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8437 }
8438 
8439 /**
8440  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8441  *	@adap: the adapter
8442  *	@link_down_rc: Link Down Reason Code
8443  *
8444  *	Returns a string representation of the Link Down Reason Code.
8445  */
8446 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8447 {
8448 	static const char * const reason[] = {
8449 		"Link Down",
8450 		"Remote Fault",
8451 		"Auto-negotiation Failure",
8452 		"Reserved",
8453 		"Insufficient Airflow",
8454 		"Unable To Determine Reason",
8455 		"No RX Signal Detected",
8456 		"Reserved",
8457 	};
8458 
8459 	if (link_down_rc >= ARRAY_SIZE(reason))
8460 		return "Bad Reason Code";
8461 
8462 	return reason[link_down_rc];
8463 }
8464 
8465 /**
8466  * Return the highest speed set in the port capabilities, in Mb/s.
8467  */
8468 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8469 {
8470 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8471 		do { \
8472 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8473 				return __speed; \
8474 		} while (0)
8475 
8476 	TEST_SPEED_RETURN(400G, 400000);
8477 	TEST_SPEED_RETURN(200G, 200000);
8478 	TEST_SPEED_RETURN(100G, 100000);
8479 	TEST_SPEED_RETURN(50G,   50000);
8480 	TEST_SPEED_RETURN(40G,   40000);
8481 	TEST_SPEED_RETURN(25G,   25000);
8482 	TEST_SPEED_RETURN(10G,   10000);
8483 	TEST_SPEED_RETURN(1G,     1000);
8484 	TEST_SPEED_RETURN(100M,    100);
8485 
8486 	#undef TEST_SPEED_RETURN
8487 
8488 	return 0;
8489 }
8490 
8491 /**
8492  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8493  *	@acaps: advertised Port Capabilities
8494  *
8495  *	Get the highest speed for the port from the advertised Port
8496  *	Capabilities.  It will be either the highest speed from the list of
8497  *	speeds or whatever user has set using ethtool.
8498  */
8499 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8500 {
8501 	#define TEST_SPEED_RETURN(__caps_speed) \
8502 		do { \
8503 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8504 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8505 		} while (0)
8506 
8507 	TEST_SPEED_RETURN(400G);
8508 	TEST_SPEED_RETURN(200G);
8509 	TEST_SPEED_RETURN(100G);
8510 	TEST_SPEED_RETURN(50G);
8511 	TEST_SPEED_RETURN(40G);
8512 	TEST_SPEED_RETURN(25G);
8513 	TEST_SPEED_RETURN(10G);
8514 	TEST_SPEED_RETURN(1G);
8515 	TEST_SPEED_RETURN(100M);
8516 
8517 	#undef TEST_SPEED_RETURN
8518 
8519 	return 0;
8520 }
8521 
8522 /**
8523  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8524  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8525  *
8526  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8527  *	32-bit Port Capabilities value.
8528  */
8529 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8530 {
8531 	fw_port_cap32_t linkattr = 0;
8532 
8533 	/* Unfortunately the format of the Link Status in the old
8534 	 * 16-bit Port Information message isn't the same as the
8535 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8536 	 */
8537 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8538 		linkattr |= FW_PORT_CAP32_FC_RX;
8539 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8540 		linkattr |= FW_PORT_CAP32_FC_TX;
8541 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8542 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8543 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8544 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8545 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8546 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8547 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8548 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8549 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8550 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8551 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8552 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8553 
8554 	return linkattr;
8555 }
8556 
8557 /**
8558  *	t4_handle_get_port_info - process a FW reply message
8559  *	@pi: the port info
8560  *	@rpl: start of the FW message
8561  *
8562  *	Processes a GET_PORT_INFO FW reply message.
8563  */
8564 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8565 {
8566 	const struct fw_port_cmd *cmd = (const void *)rpl;
8567 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8568 	struct link_config *lc = &pi->link_cfg;
8569 	struct adapter *adapter = pi->adapter;
8570 	unsigned int speed, fc, fec, adv_fc;
8571 	enum fw_port_module_type mod_type;
8572 	int action, link_ok, linkdnrc;
8573 	enum fw_port_type port_type;
8574 
8575 	/* Extract the various fields from the Port Information message.
8576 	 */
8577 	action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8578 	switch (action) {
8579 	case FW_PORT_ACTION_GET_PORT_INFO: {
8580 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8581 
8582 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8583 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8584 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8585 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8586 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8587 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8588 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8589 		linkattr = lstatus_to_fwcap(lstatus);
8590 		break;
8591 	}
8592 
8593 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8594 		u32 lstatus32;
8595 
8596 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8597 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8598 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8599 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8600 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8601 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8602 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8603 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8604 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8605 		break;
8606 	}
8607 
8608 	default:
8609 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8610 			be32_to_cpu(cmd->action_to_len16));
8611 		return;
8612 	}
8613 
8614 	fec = fwcap_to_cc_fec(acaps);
8615 	adv_fc = fwcap_to_cc_pause(acaps);
8616 	fc = fwcap_to_cc_pause(linkattr);
8617 	speed = fwcap_to_speed(linkattr);
8618 
8619 	/* Reset state for communicating new Transceiver Module status and
8620 	 * whether the OS-dependent layer wants us to redo the current
8621 	 * "sticky" L1 Configure Link Parameters.
8622 	 */
8623 	lc->new_module = false;
8624 	lc->redo_l1cfg = false;
8625 
8626 	if (mod_type != pi->mod_type) {
8627 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8628 		 * various fundamental Port Capabilities which used to be
8629 		 * immutable can now change radically.  We can now have
8630 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8631 		 * all change based on what Transceiver Module is inserted.
8632 		 * So we need to record the Physical "Port" Capabilities on
8633 		 * every Transceiver Module change.
8634 		 */
8635 		lc->pcaps = pcaps;
8636 
8637 		/* When a new Transceiver Module is inserted, the Firmware
8638 		 * will examine its i2c EPROM to determine its type and
8639 		 * general operating parameters including things like Forward
8640 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8641 		 * how to interpret these i2c values to determine default
8642 		 * "sutomatic" settings.  We record these for future use when
8643 		 * the user explicitly requests these standards-based values.
8644 		 */
8645 		lc->def_acaps = acaps;
8646 
8647 		/* Some versions of the early T6 Firmware "cheated" when
8648 		 * handling different Transceiver Modules by changing the
8649 		 * underlaying Port Type reported to the Host Drivers.  As
8650 		 * such we need to capture whatever Port Type the Firmware
8651 		 * sends us and record it in case it's different from what we
8652 		 * were told earlier.  Unfortunately, since Firmware is
8653 		 * forever, we'll need to keep this code here forever, but in
8654 		 * later T6 Firmware it should just be an assignment of the
8655 		 * same value already recorded.
8656 		 */
8657 		pi->port_type = port_type;
8658 
8659 		/* Record new Module Type information.
8660 		 */
8661 		pi->mod_type = mod_type;
8662 
8663 		/* Let the OS-dependent layer know if we have a new
8664 		 * Transceiver Module inserted.
8665 		 */
8666 		lc->new_module = t4_is_inserted_mod_type(mod_type);
8667 
8668 		t4_os_portmod_changed(adapter, pi->port_id);
8669 	}
8670 
8671 	if (link_ok != lc->link_ok || speed != lc->speed ||
8672 	    fc != lc->fc || adv_fc != lc->advertised_fc ||
8673 	    fec != lc->fec) {
8674 		/* something changed */
8675 		if (!link_ok && lc->link_ok) {
8676 			lc->link_down_rc = linkdnrc;
8677 			dev_warn_ratelimited(adapter->pdev_dev,
8678 					     "Port %d link down, reason: %s\n",
8679 					     pi->tx_chan,
8680 					     t4_link_down_rc_str(linkdnrc));
8681 		}
8682 		lc->link_ok = link_ok;
8683 		lc->speed = speed;
8684 		lc->advertised_fc = adv_fc;
8685 		lc->fc = fc;
8686 		lc->fec = fec;
8687 
8688 		lc->lpacaps = lpacaps;
8689 		lc->acaps = acaps & ADVERT_MASK;
8690 
8691 		/* If we're not physically capable of Auto-Negotiation, note
8692 		 * this as Auto-Negotiation disabled.  Otherwise, we track
8693 		 * what Auto-Negotiation settings we have.  Note parallel
8694 		 * structure in t4_link_l1cfg_core() and init_link_config().
8695 		 */
8696 		if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8697 			lc->autoneg = AUTONEG_DISABLE;
8698 		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8699 			lc->autoneg = AUTONEG_ENABLE;
8700 		} else {
8701 			/* When Autoneg is disabled, user needs to set
8702 			 * single speed.
8703 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8704 			 */
8705 			lc->acaps = 0;
8706 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8707 			lc->autoneg = AUTONEG_DISABLE;
8708 		}
8709 
8710 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8711 	}
8712 
8713 	/* If we have a new Transceiver Module and the OS-dependent code has
8714 	 * told us that it wants us to redo whatever "sticky" L1 Configuration
8715 	 * Link Parameters are set, do that now.
8716 	 */
8717 	if (lc->new_module && lc->redo_l1cfg) {
8718 		struct link_config old_lc;
8719 		int ret;
8720 
8721 		/* Save the current L1 Configuration and restore it if an
8722 		 * error occurs.  We probably should fix the l1_cfg*()
8723 		 * routines not to change the link_config when an error
8724 		 * occurs ...
8725 		 */
8726 		old_lc = *lc;
8727 		ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8728 		if (ret) {
8729 			*lc = old_lc;
8730 			dev_warn(adapter->pdev_dev,
8731 				 "Attempt to update new Transceiver Module settings failed\n");
8732 		}
8733 	}
8734 	lc->new_module = false;
8735 	lc->redo_l1cfg = false;
8736 }
8737 
8738 /**
8739  *	t4_update_port_info - retrieve and update port information if changed
8740  *	@pi: the port_info
8741  *
8742  *	We issue a Get Port Information Command to the Firmware and, if
8743  *	successful, we check to see if anything is different from what we
8744  *	last recorded and update things accordingly.
8745  */
8746 int t4_update_port_info(struct port_info *pi)
8747 {
8748 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8749 	struct fw_port_cmd port_cmd;
8750 	int ret;
8751 
8752 	memset(&port_cmd, 0, sizeof(port_cmd));
8753 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8754 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8755 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8756 	port_cmd.action_to_len16 = cpu_to_be32(
8757 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8758 				     ? FW_PORT_ACTION_GET_PORT_INFO
8759 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8760 		FW_LEN16(port_cmd));
8761 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8762 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8763 	if (ret)
8764 		return ret;
8765 
8766 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8767 	return 0;
8768 }
8769 
8770 /**
8771  *	t4_get_link_params - retrieve basic link parameters for given port
8772  *	@pi: the port
8773  *	@link_okp: value return pointer for link up/down
8774  *	@speedp: value return pointer for speed (Mb/s)
8775  *	@mtup: value return pointer for mtu
8776  *
8777  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8778  *	and MTU for a specified port.  A negative error is returned on
8779  *	failure; 0 on success.
8780  */
8781 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8782 		       unsigned int *speedp, unsigned int *mtup)
8783 {
8784 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8785 	unsigned int action, link_ok, mtu;
8786 	struct fw_port_cmd port_cmd;
8787 	fw_port_cap32_t linkattr;
8788 	int ret;
8789 
8790 	memset(&port_cmd, 0, sizeof(port_cmd));
8791 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8792 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8793 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8794 	action = (fw_caps == FW_CAPS16
8795 		  ? FW_PORT_ACTION_GET_PORT_INFO
8796 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8797 	port_cmd.action_to_len16 = cpu_to_be32(
8798 		FW_PORT_CMD_ACTION_V(action) |
8799 		FW_LEN16(port_cmd));
8800 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8801 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8802 	if (ret)
8803 		return ret;
8804 
8805 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8806 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8807 
8808 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8809 		linkattr = lstatus_to_fwcap(lstatus);
8810 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8811 	} else {
8812 		u32 lstatus32 =
8813 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8814 
8815 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8816 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8817 		mtu = FW_PORT_CMD_MTU32_G(
8818 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8819 	}
8820 
8821 	if (link_okp)
8822 		*link_okp = link_ok;
8823 	if (speedp)
8824 		*speedp = fwcap_to_speed(linkattr);
8825 	if (mtup)
8826 		*mtup = mtu;
8827 
8828 	return 0;
8829 }
8830 
8831 /**
8832  *      t4_handle_fw_rpl - process a FW reply message
8833  *      @adap: the adapter
8834  *      @rpl: start of the FW message
8835  *
8836  *      Processes a FW message, such as link state change messages.
8837  */
8838 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8839 {
8840 	u8 opcode = *(const u8 *)rpl;
8841 
8842 	/* This might be a port command ... this simplifies the following
8843 	 * conditionals ...  We can get away with pre-dereferencing
8844 	 * action_to_len16 because it's in the first 16 bytes and all messages
8845 	 * will be at least that long.
8846 	 */
8847 	const struct fw_port_cmd *p = (const void *)rpl;
8848 	unsigned int action =
8849 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8850 
8851 	if (opcode == FW_PORT_CMD &&
8852 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8853 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8854 		int i;
8855 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8856 		struct port_info *pi = NULL;
8857 
8858 		for_each_port(adap, i) {
8859 			pi = adap2pinfo(adap, i);
8860 			if (pi->tx_chan == chan)
8861 				break;
8862 		}
8863 
8864 		t4_handle_get_port_info(pi, rpl);
8865 	} else {
8866 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8867 			 opcode);
8868 		return -EINVAL;
8869 	}
8870 	return 0;
8871 }
8872 
8873 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8874 {
8875 	u16 val;
8876 
8877 	if (pci_is_pcie(adapter->pdev)) {
8878 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8879 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8880 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8881 	}
8882 }
8883 
8884 /**
8885  *	init_link_config - initialize a link's SW state
8886  *	@lc: pointer to structure holding the link state
8887  *	@pcaps: link Port Capabilities
8888  *	@acaps: link current Advertised Port Capabilities
8889  *
8890  *	Initializes the SW state maintained for each link, including the link's
8891  *	capabilities and default speed/flow-control/autonegotiation settings.
8892  */
8893 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8894 			     fw_port_cap32_t acaps)
8895 {
8896 	lc->pcaps = pcaps;
8897 	lc->def_acaps = acaps;
8898 	lc->lpacaps = 0;
8899 	lc->speed_caps = 0;
8900 	lc->speed = 0;
8901 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8902 
8903 	/* For Forward Error Control, we default to whatever the Firmware
8904 	 * tells us the Link is currently advertising.
8905 	 */
8906 	lc->requested_fec = FEC_AUTO;
8907 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8908 
8909 	/* If the Port is capable of Auto-Negtotiation, initialize it as
8910 	 * "enabled" and copy over all of the Physical Port Capabilities
8911 	 * to the Advertised Port Capabilities.  Otherwise mark it as
8912 	 * Auto-Negotiate disabled and select the highest supported speed
8913 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
8914 	 * and t4_handle_get_port_info().
8915 	 */
8916 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8917 		lc->acaps = lc->pcaps & ADVERT_MASK;
8918 		lc->autoneg = AUTONEG_ENABLE;
8919 		lc->requested_fc |= PAUSE_AUTONEG;
8920 	} else {
8921 		lc->acaps = 0;
8922 		lc->autoneg = AUTONEG_DISABLE;
8923 		lc->speed_caps = fwcap_to_fwspeed(acaps);
8924 	}
8925 }
8926 
8927 #define CIM_PF_NOACCESS 0xeeeeeeee
8928 
8929 int t4_wait_dev_ready(void __iomem *regs)
8930 {
8931 	u32 whoami;
8932 
8933 	whoami = readl(regs + PL_WHOAMI_A);
8934 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8935 		return 0;
8936 
8937 	msleep(500);
8938 	whoami = readl(regs + PL_WHOAMI_A);
8939 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8940 }
8941 
8942 struct flash_desc {
8943 	u32 vendor_and_model_id;
8944 	u32 size_mb;
8945 };
8946 
8947 static int t4_get_flash_params(struct adapter *adap)
8948 {
8949 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8950 	 * to the preexisting code.  All flash parts have 64KB sectors.
8951 	 */
8952 	static struct flash_desc supported_flash[] = {
8953 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8954 	};
8955 
8956 	unsigned int part, manufacturer;
8957 	unsigned int density, size = 0;
8958 	u32 flashid = 0;
8959 	int ret;
8960 
8961 	/* Issue a Read ID Command to the Flash part.  We decode supported
8962 	 * Flash parts and their sizes from this.  There's a newer Query
8963 	 * Command which can retrieve detailed geometry information but many
8964 	 * Flash parts don't support it.
8965 	 */
8966 
8967 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8968 	if (!ret)
8969 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8970 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8971 	if (ret)
8972 		return ret;
8973 
8974 	/* Check to see if it's one of our non-standard supported Flash parts.
8975 	 */
8976 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8977 		if (supported_flash[part].vendor_and_model_id == flashid) {
8978 			adap->params.sf_size = supported_flash[part].size_mb;
8979 			adap->params.sf_nsec =
8980 				adap->params.sf_size / SF_SEC_SIZE;
8981 			goto found;
8982 		}
8983 
8984 	/* Decode Flash part size.  The code below looks repetitive with
8985 	 * common encodings, but that's not guaranteed in the JEDEC
8986 	 * specification for the Read JEDEC ID command.  The only thing that
8987 	 * we're guaranteed by the JEDEC specification is where the
8988 	 * Manufacturer ID is in the returned result.  After that each
8989 	 * Manufacturer ~could~ encode things completely differently.
8990 	 * Note, all Flash parts must have 64KB sectors.
8991 	 */
8992 	manufacturer = flashid & 0xff;
8993 	switch (manufacturer) {
8994 	case 0x20: { /* Micron/Numonix */
8995 		/* This Density -> Size decoding table is taken from Micron
8996 		 * Data Sheets.
8997 		 */
8998 		density = (flashid >> 16) & 0xff;
8999 		switch (density) {
9000 		case 0x14: /* 1MB */
9001 			size = 1 << 20;
9002 			break;
9003 		case 0x15: /* 2MB */
9004 			size = 1 << 21;
9005 			break;
9006 		case 0x16: /* 4MB */
9007 			size = 1 << 22;
9008 			break;
9009 		case 0x17: /* 8MB */
9010 			size = 1 << 23;
9011 			break;
9012 		case 0x18: /* 16MB */
9013 			size = 1 << 24;
9014 			break;
9015 		case 0x19: /* 32MB */
9016 			size = 1 << 25;
9017 			break;
9018 		case 0x20: /* 64MB */
9019 			size = 1 << 26;
9020 			break;
9021 		case 0x21: /* 128MB */
9022 			size = 1 << 27;
9023 			break;
9024 		case 0x22: /* 256MB */
9025 			size = 1 << 28;
9026 			break;
9027 		}
9028 		break;
9029 	}
9030 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9031 		/* This Density -> Size decoding table is taken from ISSI
9032 		 * Data Sheets.
9033 		 */
9034 		density = (flashid >> 16) & 0xff;
9035 		switch (density) {
9036 		case 0x16: /* 32 MB */
9037 			size = 1 << 25;
9038 			break;
9039 		case 0x17: /* 64MB */
9040 			size = 1 << 26;
9041 			break;
9042 		}
9043 		break;
9044 	}
9045 	case 0xc2: { /* Macronix */
9046 		/* This Density -> Size decoding table is taken from Macronix
9047 		 * Data Sheets.
9048 		 */
9049 		density = (flashid >> 16) & 0xff;
9050 		switch (density) {
9051 		case 0x17: /* 8MB */
9052 			size = 1 << 23;
9053 			break;
9054 		case 0x18: /* 16MB */
9055 			size = 1 << 24;
9056 			break;
9057 		}
9058 		break;
9059 	}
9060 	case 0xef: { /* Winbond */
9061 		/* This Density -> Size decoding table is taken from Winbond
9062 		 * Data Sheets.
9063 		 */
9064 		density = (flashid >> 16) & 0xff;
9065 		switch (density) {
9066 		case 0x17: /* 8MB */
9067 			size = 1 << 23;
9068 			break;
9069 		case 0x18: /* 16MB */
9070 			size = 1 << 24;
9071 			break;
9072 		}
9073 		break;
9074 	}
9075 	}
9076 
9077 	/* If we didn't recognize the FLASH part, that's no real issue: the
9078 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9079 	 * use a FLASH part which is at least 4MB in size and has 64KB
9080 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9081 	 * than 4MB, but that's all we really need.
9082 	 */
9083 	if (size == 0) {
9084 		dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9085 			 flashid);
9086 		size = 1 << 22;
9087 	}
9088 
9089 	/* Store decoded Flash size and fall through into vetting code. */
9090 	adap->params.sf_size = size;
9091 	adap->params.sf_nsec = size / SF_SEC_SIZE;
9092 
9093 found:
9094 	if (adap->params.sf_size < FLASH_MIN_SIZE)
9095 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9096 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9097 	return 0;
9098 }
9099 
9100 /**
9101  *	t4_prep_adapter - prepare SW and HW for operation
9102  *	@adapter: the adapter
9103  *	@reset: if true perform a HW reset
9104  *
9105  *	Initialize adapter SW state for the various HW modules, set initial
9106  *	values for some adapter tunables, take PHYs out of reset, and
9107  *	initialize the MDIO interface.
9108  */
9109 int t4_prep_adapter(struct adapter *adapter)
9110 {
9111 	int ret, ver;
9112 	uint16_t device_id;
9113 	u32 pl_rev;
9114 
9115 	get_pci_mode(adapter, &adapter->params.pci);
9116 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9117 
9118 	ret = t4_get_flash_params(adapter);
9119 	if (ret < 0) {
9120 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9121 		return ret;
9122 	}
9123 
9124 	/* Retrieve adapter's device ID
9125 	 */
9126 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9127 	ver = device_id >> 12;
9128 	adapter->params.chip = 0;
9129 	switch (ver) {
9130 	case CHELSIO_T4:
9131 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9132 		adapter->params.arch.sge_fl_db = DBPRIO_F;
9133 		adapter->params.arch.mps_tcam_size =
9134 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
9135 		adapter->params.arch.mps_rplc_size = 128;
9136 		adapter->params.arch.nchan = NCHAN;
9137 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9138 		adapter->params.arch.vfcount = 128;
9139 		/* Congestion map is for 4 channels so that
9140 		 * MPS can have 4 priority per port.
9141 		 */
9142 		adapter->params.arch.cng_ch_bits_log = 2;
9143 		break;
9144 	case CHELSIO_T5:
9145 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9146 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9147 		adapter->params.arch.mps_tcam_size =
9148 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9149 		adapter->params.arch.mps_rplc_size = 128;
9150 		adapter->params.arch.nchan = NCHAN;
9151 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9152 		adapter->params.arch.vfcount = 128;
9153 		adapter->params.arch.cng_ch_bits_log = 2;
9154 		break;
9155 	case CHELSIO_T6:
9156 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9157 		adapter->params.arch.sge_fl_db = 0;
9158 		adapter->params.arch.mps_tcam_size =
9159 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9160 		adapter->params.arch.mps_rplc_size = 256;
9161 		adapter->params.arch.nchan = 2;
9162 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9163 		adapter->params.arch.vfcount = 256;
9164 		/* Congestion map will be for 2 channels so that
9165 		 * MPS can have 8 priority per port.
9166 		 */
9167 		adapter->params.arch.cng_ch_bits_log = 3;
9168 		break;
9169 	default:
9170 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9171 			device_id);
9172 		return -EINVAL;
9173 	}
9174 
9175 	adapter->params.cim_la_size = CIMLA_SIZE;
9176 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9177 
9178 	/*
9179 	 * Default port for debugging in case we can't reach FW.
9180 	 */
9181 	adapter->params.nports = 1;
9182 	adapter->params.portvec = 1;
9183 	adapter->params.vpd.cclk = 50000;
9184 
9185 	/* Set PCIe completion timeout to 4 seconds. */
9186 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9187 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9188 	return 0;
9189 }
9190 
9191 /**
9192  *	t4_shutdown_adapter - shut down adapter, host & wire
9193  *	@adapter: the adapter
9194  *
9195  *	Perform an emergency shutdown of the adapter and stop it from
9196  *	continuing any further communication on the ports or DMA to the
9197  *	host.  This is typically used when the adapter and/or firmware
9198  *	have crashed and we want to prevent any further accidental
9199  *	communication with the rest of the world.  This will also force
9200  *	the port Link Status to go down -- if register writes work --
9201  *	which should help our peers figure out that we're down.
9202  */
9203 int t4_shutdown_adapter(struct adapter *adapter)
9204 {
9205 	int port;
9206 
9207 	t4_intr_disable(adapter);
9208 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9209 	for_each_port(adapter, port) {
9210 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
9211 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
9212 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
9213 
9214 		t4_write_reg(adapter, a_port_cfg,
9215 			     t4_read_reg(adapter, a_port_cfg)
9216 			     & ~SIGNAL_DET_V(1));
9217 	}
9218 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9219 
9220 	return 0;
9221 }
9222 
9223 /**
9224  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9225  *	@adapter: the adapter
9226  *	@qid: the Queue ID
9227  *	@qtype: the Ingress or Egress type for @qid
9228  *	@user: true if this request is for a user mode queue
9229  *	@pbar2_qoffset: BAR2 Queue Offset
9230  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9231  *
9232  *	Returns the BAR2 SGE Queue Registers information associated with the
9233  *	indicated Absolute Queue ID.  These are passed back in return value
9234  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9235  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9236  *
9237  *	This may return an error which indicates that BAR2 SGE Queue
9238  *	registers aren't available.  If an error is not returned, then the
9239  *	following values are returned:
9240  *
9241  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9242  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9243  *
9244  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9245  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9246  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9247  *	then these "Inferred Queue ID" register may not be used.
9248  */
9249 int t4_bar2_sge_qregs(struct adapter *adapter,
9250 		      unsigned int qid,
9251 		      enum t4_bar2_qtype qtype,
9252 		      int user,
9253 		      u64 *pbar2_qoffset,
9254 		      unsigned int *pbar2_qid)
9255 {
9256 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9257 	u64 bar2_page_offset, bar2_qoffset;
9258 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9259 
9260 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9261 	if (!user && is_t4(adapter->params.chip))
9262 		return -EINVAL;
9263 
9264 	/* Get our SGE Page Size parameters.
9265 	 */
9266 	page_shift = adapter->params.sge.hps + 10;
9267 	page_size = 1 << page_shift;
9268 
9269 	/* Get the right Queues per Page parameters for our Queue.
9270 	 */
9271 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9272 		     ? adapter->params.sge.eq_qpp
9273 		     : adapter->params.sge.iq_qpp);
9274 	qpp_mask = (1 << qpp_shift) - 1;
9275 
9276 	/*  Calculate the basics of the BAR2 SGE Queue register area:
9277 	 *  o The BAR2 page the Queue registers will be in.
9278 	 *  o The BAR2 Queue ID.
9279 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9280 	 */
9281 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9282 	bar2_qid = qid & qpp_mask;
9283 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9284 
9285 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9286 	 * hardware will infer the Absolute Queue ID simply from the writes to
9287 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9288 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9289 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9290 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9291 	 * from the BAR2 Page and BAR2 Queue ID.
9292 	 *
9293 	 * One important censequence of this is that some BAR2 SGE registers
9294 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9295 	 * there.  But other registers synthesize the SGE Queue ID purely
9296 	 * from the writes to the registers -- the Write Combined Doorbell
9297 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9298 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9299 	 * Queue ID can be inferred from simple writes.
9300 	 */
9301 	bar2_qoffset = bar2_page_offset;
9302 	bar2_qinferred = (bar2_qid_offset < page_size);
9303 	if (bar2_qinferred) {
9304 		bar2_qoffset += bar2_qid_offset;
9305 		bar2_qid = 0;
9306 	}
9307 
9308 	*pbar2_qoffset = bar2_qoffset;
9309 	*pbar2_qid = bar2_qid;
9310 	return 0;
9311 }
9312 
9313 /**
9314  *	t4_init_devlog_params - initialize adapter->params.devlog
9315  *	@adap: the adapter
9316  *
9317  *	Initialize various fields of the adapter's Firmware Device Log
9318  *	Parameters structure.
9319  */
9320 int t4_init_devlog_params(struct adapter *adap)
9321 {
9322 	struct devlog_params *dparams = &adap->params.devlog;
9323 	u32 pf_dparams;
9324 	unsigned int devlog_meminfo;
9325 	struct fw_devlog_cmd devlog_cmd;
9326 	int ret;
9327 
9328 	/* If we're dealing with newer firmware, the Device Log Parameters
9329 	 * are stored in a designated register which allows us to access the
9330 	 * Device Log even if we can't talk to the firmware.
9331 	 */
9332 	pf_dparams =
9333 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9334 	if (pf_dparams) {
9335 		unsigned int nentries, nentries128;
9336 
9337 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9338 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9339 
9340 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9341 		nentries = (nentries128 + 1) * 128;
9342 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9343 
9344 		return 0;
9345 	}
9346 
9347 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9348 	 */
9349 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9350 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9351 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
9352 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9353 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9354 			 &devlog_cmd);
9355 	if (ret)
9356 		return ret;
9357 
9358 	devlog_meminfo =
9359 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9360 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9361 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9362 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9363 
9364 	return 0;
9365 }
9366 
9367 /**
9368  *	t4_init_sge_params - initialize adap->params.sge
9369  *	@adapter: the adapter
9370  *
9371  *	Initialize various fields of the adapter's SGE Parameters structure.
9372  */
9373 int t4_init_sge_params(struct adapter *adapter)
9374 {
9375 	struct sge_params *sge_params = &adapter->params.sge;
9376 	u32 hps, qpp;
9377 	unsigned int s_hps, s_qpp;
9378 
9379 	/* Extract the SGE Page Size for our PF.
9380 	 */
9381 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9382 	s_hps = (HOSTPAGESIZEPF0_S +
9383 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9384 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9385 
9386 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9387 	 */
9388 	s_qpp = (QUEUESPERPAGEPF0_S +
9389 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9390 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9391 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9392 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9393 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9394 
9395 	return 0;
9396 }
9397 
9398 /**
9399  *      t4_init_tp_params - initialize adap->params.tp
9400  *      @adap: the adapter
9401  *      @sleep_ok: if true we may sleep while awaiting command completion
9402  *
9403  *      Initialize various fields of the adapter's TP Parameters structure.
9404  */
9405 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9406 {
9407 	u32 param, val, v;
9408 	int chan, ret;
9409 
9410 
9411 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9412 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
9413 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9414 
9415 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9416 	for (chan = 0; chan < NCHAN; chan++)
9417 		adap->params.tp.tx_modq[chan] = chan;
9418 
9419 	/* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9420 	 * Configuration.
9421 	 */
9422 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9423 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9424 		 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9425 
9426 	/* Read current value */
9427 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9428 			      &param, &val);
9429 	if (ret == 0) {
9430 		dev_info(adap->pdev_dev,
9431 			 "Current filter mode/mask 0x%x:0x%x\n",
9432 			 FW_PARAMS_PARAM_FILTER_MODE_G(val),
9433 			 FW_PARAMS_PARAM_FILTER_MASK_G(val));
9434 		adap->params.tp.vlan_pri_map =
9435 			FW_PARAMS_PARAM_FILTER_MODE_G(val);
9436 		adap->params.tp.filter_mask =
9437 			FW_PARAMS_PARAM_FILTER_MASK_G(val);
9438 	} else {
9439 		dev_info(adap->pdev_dev,
9440 			 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9441 
9442 		/* Incase of older-fw (which doesn't expose the api
9443 		 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9444 		 * the fw api) combination, fall-back to older method of reading
9445 		 * the filter mode from indirect-register
9446 		 */
9447 		t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9448 			       TP_VLAN_PRI_MAP_A, sleep_ok);
9449 
9450 		/* With the older-fw and newer-driver combination we might run
9451 		 * into an issue when user wants to use hash filter region but
9452 		 * the filter_mask is zero, in this case filter_mask validation
9453 		 * is tough. To avoid that we set the filter_mask same as filter
9454 		 * mode, which will behave exactly as the older way of ignoring
9455 		 * the filter mask validation.
9456 		 */
9457 		adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9458 	}
9459 
9460 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9461 		       TP_INGRESS_CONFIG_A, sleep_ok);
9462 
9463 	/* For T6, cache the adapter's compressed error vector
9464 	 * and passing outer header info for encapsulated packets.
9465 	 */
9466 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9467 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9468 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9469 	}
9470 
9471 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9472 	 * shift positions of several elements of the Compressed Filter Tuple
9473 	 * for this adapter which we need frequently ...
9474 	 */
9475 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9476 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9477 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9478 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9479 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9480 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9481 							       PROTOCOL_F);
9482 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9483 								ETHERTYPE_F);
9484 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9485 							       MACMATCH_F);
9486 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9487 								MPSHITTYPE_F);
9488 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9489 							   FRAGMENTATION_F);
9490 
9491 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9492 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9493 	 */
9494 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9495 		adap->params.tp.vnic_shift = -1;
9496 
9497 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9498 	adap->params.tp.hash_filter_mask = v;
9499 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9500 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9501 	return 0;
9502 }
9503 
9504 /**
9505  *      t4_filter_field_shift - calculate filter field shift
9506  *      @adap: the adapter
9507  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9508  *
9509  *      Return the shift position of a filter field within the Compressed
9510  *      Filter Tuple.  The filter field is specified via its selection bit
9511  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9512  */
9513 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9514 {
9515 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9516 	unsigned int sel;
9517 	int field_shift;
9518 
9519 	if ((filter_mode & filter_sel) == 0)
9520 		return -1;
9521 
9522 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9523 		switch (filter_mode & sel) {
9524 		case FCOE_F:
9525 			field_shift += FT_FCOE_W;
9526 			break;
9527 		case PORT_F:
9528 			field_shift += FT_PORT_W;
9529 			break;
9530 		case VNIC_ID_F:
9531 			field_shift += FT_VNIC_ID_W;
9532 			break;
9533 		case VLAN_F:
9534 			field_shift += FT_VLAN_W;
9535 			break;
9536 		case TOS_F:
9537 			field_shift += FT_TOS_W;
9538 			break;
9539 		case PROTOCOL_F:
9540 			field_shift += FT_PROTOCOL_W;
9541 			break;
9542 		case ETHERTYPE_F:
9543 			field_shift += FT_ETHERTYPE_W;
9544 			break;
9545 		case MACMATCH_F:
9546 			field_shift += FT_MACMATCH_W;
9547 			break;
9548 		case MPSHITTYPE_F:
9549 			field_shift += FT_MPSHITTYPE_W;
9550 			break;
9551 		case FRAGMENTATION_F:
9552 			field_shift += FT_FRAGMENTATION_W;
9553 			break;
9554 		}
9555 	}
9556 	return field_shift;
9557 }
9558 
9559 int t4_init_rss_mode(struct adapter *adap, int mbox)
9560 {
9561 	int i, ret;
9562 	struct fw_rss_vi_config_cmd rvc;
9563 
9564 	memset(&rvc, 0, sizeof(rvc));
9565 
9566 	for_each_port(adap, i) {
9567 		struct port_info *p = adap2pinfo(adap, i);
9568 
9569 		rvc.op_to_viid =
9570 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9571 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9572 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9573 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9574 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9575 		if (ret)
9576 			return ret;
9577 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9578 	}
9579 	return 0;
9580 }
9581 
9582 /**
9583  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9584  *	@pi: the port_info
9585  *	@mbox: mailbox to use for the FW command
9586  *	@port: physical port associated with the VI
9587  *	@pf: the PF owning the VI
9588  *	@vf: the VF owning the VI
9589  *	@mac: the MAC address of the VI
9590  *
9591  *	Allocates a virtual interface for the given physical port.  If @mac is
9592  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9593  *	@mac should be large enough to hold an Ethernet address.
9594  *	Returns < 0 on error.
9595  */
9596 int t4_init_portinfo(struct port_info *pi, int mbox,
9597 		     int port, int pf, int vf, u8 mac[])
9598 {
9599 	struct adapter *adapter = pi->adapter;
9600 	unsigned int fw_caps = adapter->params.fw_caps_support;
9601 	struct fw_port_cmd cmd;
9602 	unsigned int rss_size;
9603 	enum fw_port_type port_type;
9604 	int mdio_addr;
9605 	fw_port_cap32_t pcaps, acaps;
9606 	u8 vivld = 0, vin = 0;
9607 	int ret;
9608 
9609 	/* If we haven't yet determined whether we're talking to Firmware
9610 	 * which knows the new 32-bit Port Capabilities, it's time to find
9611 	 * out now.  This will also tell new Firmware to send us Port Status
9612 	 * Updates using the new 32-bit Port Capabilities version of the
9613 	 * Port Information message.
9614 	 */
9615 	if (fw_caps == FW_CAPS_UNKNOWN) {
9616 		u32 param, val;
9617 
9618 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9619 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9620 		val = 1;
9621 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9622 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9623 		adapter->params.fw_caps_support = fw_caps;
9624 	}
9625 
9626 	memset(&cmd, 0, sizeof(cmd));
9627 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9628 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9629 				       FW_PORT_CMD_PORTID_V(port));
9630 	cmd.action_to_len16 = cpu_to_be32(
9631 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9632 				     ? FW_PORT_ACTION_GET_PORT_INFO
9633 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9634 		FW_LEN16(cmd));
9635 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9636 	if (ret)
9637 		return ret;
9638 
9639 	/* Extract the various fields from the Port Information message.
9640 	 */
9641 	if (fw_caps == FW_CAPS16) {
9642 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9643 
9644 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9645 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9646 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9647 			     : -1);
9648 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9649 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9650 	} else {
9651 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9652 
9653 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9654 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9655 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9656 			     : -1);
9657 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9658 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9659 	}
9660 
9661 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9662 			  &vivld, &vin);
9663 	if (ret < 0)
9664 		return ret;
9665 
9666 	pi->viid = ret;
9667 	pi->tx_chan = port;
9668 	pi->lport = port;
9669 	pi->rss_size = rss_size;
9670 	pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9671 
9672 	/* If fw supports returning the VIN as part of FW_VI_CMD,
9673 	 * save the returned values.
9674 	 */
9675 	if (adapter->params.viid_smt_extn_support) {
9676 		pi->vivld = vivld;
9677 		pi->vin = vin;
9678 	} else {
9679 		/* Retrieve the values from VIID */
9680 		pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9681 		pi->vin =  FW_VIID_VIN_G(pi->viid);
9682 	}
9683 
9684 	pi->port_type = port_type;
9685 	pi->mdio_addr = mdio_addr;
9686 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9687 
9688 	init_link_config(&pi->link_cfg, pcaps, acaps);
9689 	return 0;
9690 }
9691 
9692 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9693 {
9694 	u8 addr[6];
9695 	int ret, i, j = 0;
9696 
9697 	for_each_port(adap, i) {
9698 		struct port_info *pi = adap2pinfo(adap, i);
9699 
9700 		while ((adap->params.portvec & (1 << j)) == 0)
9701 			j++;
9702 
9703 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9704 		if (ret)
9705 			return ret;
9706 
9707 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9708 		j++;
9709 	}
9710 	return 0;
9711 }
9712 
9713 /**
9714  *	t4_read_cimq_cfg - read CIM queue configuration
9715  *	@adap: the adapter
9716  *	@base: holds the queue base addresses in bytes
9717  *	@size: holds the queue sizes in bytes
9718  *	@thres: holds the queue full thresholds in bytes
9719  *
9720  *	Returns the current configuration of the CIM queues, starting with
9721  *	the IBQs, then the OBQs.
9722  */
9723 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9724 {
9725 	unsigned int i, v;
9726 	int cim_num_obq = is_t4(adap->params.chip) ?
9727 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9728 
9729 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9730 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9731 			     QUENUMSELECT_V(i));
9732 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9733 		/* value is in 256-byte units */
9734 		*base++ = CIMQBASE_G(v) * 256;
9735 		*size++ = CIMQSIZE_G(v) * 256;
9736 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9737 	}
9738 	for (i = 0; i < cim_num_obq; i++) {
9739 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9740 			     QUENUMSELECT_V(i));
9741 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9742 		/* value is in 256-byte units */
9743 		*base++ = CIMQBASE_G(v) * 256;
9744 		*size++ = CIMQSIZE_G(v) * 256;
9745 	}
9746 }
9747 
9748 /**
9749  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9750  *	@adap: the adapter
9751  *	@qid: the queue index
9752  *	@data: where to store the queue contents
9753  *	@n: capacity of @data in 32-bit words
9754  *
9755  *	Reads the contents of the selected CIM queue starting at address 0 up
9756  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9757  *	error and the number of 32-bit words actually read on success.
9758  */
9759 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9760 {
9761 	int i, err, attempts;
9762 	unsigned int addr;
9763 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9764 
9765 	if (qid > 5 || (n & 3))
9766 		return -EINVAL;
9767 
9768 	addr = qid * nwords;
9769 	if (n > nwords)
9770 		n = nwords;
9771 
9772 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9773 	 * Wait for 1 Sec with a delay of 1 usec.
9774 	 */
9775 	attempts = 1000000;
9776 
9777 	for (i = 0; i < n; i++, addr++) {
9778 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9779 			     IBQDBGEN_F);
9780 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9781 				      attempts, 1);
9782 		if (err)
9783 			return err;
9784 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9785 	}
9786 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9787 	return i;
9788 }
9789 
9790 /**
9791  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9792  *	@adap: the adapter
9793  *	@qid: the queue index
9794  *	@data: where to store the queue contents
9795  *	@n: capacity of @data in 32-bit words
9796  *
9797  *	Reads the contents of the selected CIM queue starting at address 0 up
9798  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9799  *	error and the number of 32-bit words actually read on success.
9800  */
9801 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9802 {
9803 	int i, err;
9804 	unsigned int addr, v, nwords;
9805 	int cim_num_obq = is_t4(adap->params.chip) ?
9806 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9807 
9808 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9809 		return -EINVAL;
9810 
9811 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9812 		     QUENUMSELECT_V(qid));
9813 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9814 
9815 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9816 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9817 	if (n > nwords)
9818 		n = nwords;
9819 
9820 	for (i = 0; i < n; i++, addr++) {
9821 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9822 			     OBQDBGEN_F);
9823 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9824 				      2, 1);
9825 		if (err)
9826 			return err;
9827 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9828 	}
9829 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9830 	return i;
9831 }
9832 
9833 /**
9834  *	t4_cim_read - read a block from CIM internal address space
9835  *	@adap: the adapter
9836  *	@addr: the start address within the CIM address space
9837  *	@n: number of words to read
9838  *	@valp: where to store the result
9839  *
9840  *	Reads a block of 4-byte words from the CIM intenal address space.
9841  */
9842 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9843 		unsigned int *valp)
9844 {
9845 	int ret = 0;
9846 
9847 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9848 		return -EBUSY;
9849 
9850 	for ( ; !ret && n--; addr += 4) {
9851 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9852 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9853 				      0, 5, 2);
9854 		if (!ret)
9855 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9856 	}
9857 	return ret;
9858 }
9859 
9860 /**
9861  *	t4_cim_write - write a block into CIM internal address space
9862  *	@adap: the adapter
9863  *	@addr: the start address within the CIM address space
9864  *	@n: number of words to write
9865  *	@valp: set of values to write
9866  *
9867  *	Writes a block of 4-byte words into the CIM intenal address space.
9868  */
9869 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9870 		 const unsigned int *valp)
9871 {
9872 	int ret = 0;
9873 
9874 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9875 		return -EBUSY;
9876 
9877 	for ( ; !ret && n--; addr += 4) {
9878 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9879 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9880 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9881 				      0, 5, 2);
9882 	}
9883 	return ret;
9884 }
9885 
9886 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9887 			 unsigned int val)
9888 {
9889 	return t4_cim_write(adap, addr, 1, &val);
9890 }
9891 
9892 /**
9893  *	t4_cim_read_la - read CIM LA capture buffer
9894  *	@adap: the adapter
9895  *	@la_buf: where to store the LA data
9896  *	@wrptr: the HW write pointer within the capture buffer
9897  *
9898  *	Reads the contents of the CIM LA buffer with the most recent entry at
9899  *	the end	of the returned data and with the entry at @wrptr first.
9900  *	We try to leave the LA in the running state we find it in.
9901  */
9902 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9903 {
9904 	int i, ret;
9905 	unsigned int cfg, val, idx;
9906 
9907 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9908 	if (ret)
9909 		return ret;
9910 
9911 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9912 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9913 		if (ret)
9914 			return ret;
9915 	}
9916 
9917 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9918 	if (ret)
9919 		goto restart;
9920 
9921 	idx = UPDBGLAWRPTR_G(val);
9922 	if (wrptr)
9923 		*wrptr = idx;
9924 
9925 	for (i = 0; i < adap->params.cim_la_size; i++) {
9926 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9927 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9928 		if (ret)
9929 			break;
9930 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9931 		if (ret)
9932 			break;
9933 		if (val & UPDBGLARDEN_F) {
9934 			ret = -ETIMEDOUT;
9935 			break;
9936 		}
9937 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9938 		if (ret)
9939 			break;
9940 
9941 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9942 		 * identify the 32-bit portion of the full 312-bit data
9943 		 */
9944 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9945 			idx = (idx & 0xff0) + 0x10;
9946 		else
9947 			idx++;
9948 		/* address can't exceed 0xfff */
9949 		idx &= UPDBGLARDPTR_M;
9950 	}
9951 restart:
9952 	if (cfg & UPDBGLAEN_F) {
9953 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9954 				      cfg & ~UPDBGLARDEN_F);
9955 		if (!ret)
9956 			ret = r;
9957 	}
9958 	return ret;
9959 }
9960 
9961 /**
9962  *	t4_tp_read_la - read TP LA capture buffer
9963  *	@adap: the adapter
9964  *	@la_buf: where to store the LA data
9965  *	@wrptr: the HW write pointer within the capture buffer
9966  *
9967  *	Reads the contents of the TP LA buffer with the most recent entry at
9968  *	the end	of the returned data and with the entry at @wrptr first.
9969  *	We leave the LA in the running state we find it in.
9970  */
9971 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9972 {
9973 	bool last_incomplete;
9974 	unsigned int i, cfg, val, idx;
9975 
9976 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9977 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9978 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9979 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9980 
9981 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9982 	idx = DBGLAWPTR_G(val);
9983 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9984 	if (last_incomplete)
9985 		idx = (idx + 1) & DBGLARPTR_M;
9986 	if (wrptr)
9987 		*wrptr = idx;
9988 
9989 	val &= 0xffff;
9990 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
9991 	val |= adap->params.tp.la_mask;
9992 
9993 	for (i = 0; i < TPLA_SIZE; i++) {
9994 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
9995 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
9996 		idx = (idx + 1) & DBGLARPTR_M;
9997 	}
9998 
9999 	/* Wipe out last entry if it isn't valid */
10000 	if (last_incomplete)
10001 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10002 
10003 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
10004 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10005 			     cfg | adap->params.tp.la_mask);
10006 }
10007 
10008 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10009  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10010  * state for more than the Warning Threshold then we'll issue a warning about
10011  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10012  * appears to be hung every Warning Repeat second till the situation clears.
10013  * If the situation clears, we'll note that as well.
10014  */
10015 #define SGE_IDMA_WARN_THRESH 1
10016 #define SGE_IDMA_WARN_REPEAT 300
10017 
10018 /**
10019  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10020  *	@adapter: the adapter
10021  *	@idma: the adapter IDMA Monitor state
10022  *
10023  *	Initialize the state of an SGE Ingress DMA Monitor.
10024  */
10025 void t4_idma_monitor_init(struct adapter *adapter,
10026 			  struct sge_idma_monitor_state *idma)
10027 {
10028 	/* Initialize the state variables for detecting an SGE Ingress DMA
10029 	 * hang.  The SGE has internal counters which count up on each clock
10030 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10031 	 * same state they were on the previous clock tick.  The clock used is
10032 	 * the Core Clock so we have a limit on the maximum "time" they can
10033 	 * record; typically a very small number of seconds.  For instance,
10034 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10035 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10036 	 * risk of having the "timers" overflow and give us the flexibility to
10037 	 * maintain a Hung SGE State Machine of our own which operates across
10038 	 * a longer time frame.
10039 	 */
10040 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10041 	idma->idma_stalled[0] = 0;
10042 	idma->idma_stalled[1] = 0;
10043 }
10044 
10045 /**
10046  *	t4_idma_monitor - monitor SGE Ingress DMA state
10047  *	@adapter: the adapter
10048  *	@idma: the adapter IDMA Monitor state
10049  *	@hz: number of ticks/second
10050  *	@ticks: number of ticks since the last IDMA Monitor call
10051  */
10052 void t4_idma_monitor(struct adapter *adapter,
10053 		     struct sge_idma_monitor_state *idma,
10054 		     int hz, int ticks)
10055 {
10056 	int i, idma_same_state_cnt[2];
10057 
10058 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10059 	  * are counters inside the SGE which count up on each clock when the
10060 	  * SGE finds its Ingress DMA State Engines in the same states they
10061 	  * were in the previous clock.  The counters will peg out at
10062 	  * 0xffffffff without wrapping around so once they pass the 1s
10063 	  * threshold they'll stay above that till the IDMA state changes.
10064 	  */
10065 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10066 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10067 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10068 
10069 	for (i = 0; i < 2; i++) {
10070 		u32 debug0, debug11;
10071 
10072 		/* If the Ingress DMA Same State Counter ("timer") is less
10073 		 * than 1s, then we can reset our synthesized Stall Timer and
10074 		 * continue.  If we have previously emitted warnings about a
10075 		 * potential stalled Ingress Queue, issue a note indicating
10076 		 * that the Ingress Queue has resumed forward progress.
10077 		 */
10078 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10079 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10080 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10081 					 "resumed after %d seconds\n",
10082 					 i, idma->idma_qid[i],
10083 					 idma->idma_stalled[i] / hz);
10084 			idma->idma_stalled[i] = 0;
10085 			continue;
10086 		}
10087 
10088 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10089 		 * domain.  The first time we get here it'll be because we
10090 		 * passed the 1s Threshold; each additional time it'll be
10091 		 * because the RX Timer Callback is being fired on its regular
10092 		 * schedule.
10093 		 *
10094 		 * If the stall is below our Potential Hung Ingress Queue
10095 		 * Warning Threshold, continue.
10096 		 */
10097 		if (idma->idma_stalled[i] == 0) {
10098 			idma->idma_stalled[i] = hz;
10099 			idma->idma_warn[i] = 0;
10100 		} else {
10101 			idma->idma_stalled[i] += ticks;
10102 			idma->idma_warn[i] -= ticks;
10103 		}
10104 
10105 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10106 			continue;
10107 
10108 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10109 		 */
10110 		if (idma->idma_warn[i] > 0)
10111 			continue;
10112 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10113 
10114 		/* Read and save the SGE IDMA State and Queue ID information.
10115 		 * We do this every time in case it changes across time ...
10116 		 * can't be too careful ...
10117 		 */
10118 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10119 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10120 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10121 
10122 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10123 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10124 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10125 
10126 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10127 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10128 			 i, idma->idma_qid[i], idma->idma_state[i],
10129 			 idma->idma_stalled[i] / hz,
10130 			 debug0, debug11);
10131 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10132 	}
10133 }
10134 
10135 /**
10136  *	t4_load_cfg - download config file
10137  *	@adap: the adapter
10138  *	@cfg_data: the cfg text file to write
10139  *	@size: text file size
10140  *
10141  *	Write the supplied config text file to the card's serial flash.
10142  */
10143 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10144 {
10145 	int ret, i, n, cfg_addr;
10146 	unsigned int addr;
10147 	unsigned int flash_cfg_start_sec;
10148 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10149 
10150 	cfg_addr = t4_flash_cfg_addr(adap);
10151 	if (cfg_addr < 0)
10152 		return cfg_addr;
10153 
10154 	addr = cfg_addr;
10155 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10156 
10157 	if (size > FLASH_CFG_MAX_SIZE) {
10158 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10159 			FLASH_CFG_MAX_SIZE);
10160 		return -EFBIG;
10161 	}
10162 
10163 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10164 			 sf_sec_size);
10165 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10166 				     flash_cfg_start_sec + i - 1);
10167 	/* If size == 0 then we're simply erasing the FLASH sectors associated
10168 	 * with the on-adapter Firmware Configuration File.
10169 	 */
10170 	if (ret || size == 0)
10171 		goto out;
10172 
10173 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10174 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10175 		if ((size - i) <  SF_PAGE_SIZE)
10176 			n = size - i;
10177 		else
10178 			n = SF_PAGE_SIZE;
10179 		ret = t4_write_flash(adap, addr, n, cfg_data);
10180 		if (ret)
10181 			goto out;
10182 
10183 		addr += SF_PAGE_SIZE;
10184 		cfg_data += SF_PAGE_SIZE;
10185 	}
10186 
10187 out:
10188 	if (ret)
10189 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
10190 			(size == 0 ? "clear" : "download"), ret);
10191 	return ret;
10192 }
10193 
10194 /**
10195  *	t4_set_vf_mac - Set MAC address for the specified VF
10196  *	@adapter: The adapter
10197  *	@vf: one of the VFs instantiated by the specified PF
10198  *	@naddr: the number of MAC addresses
10199  *	@addr: the MAC address(es) to be set to the specified VF
10200  */
10201 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10202 		      unsigned int naddr, u8 *addr)
10203 {
10204 	struct fw_acl_mac_cmd cmd;
10205 
10206 	memset(&cmd, 0, sizeof(cmd));
10207 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10208 				    FW_CMD_REQUEST_F |
10209 				    FW_CMD_WRITE_F |
10210 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10211 				    FW_ACL_MAC_CMD_VFN_V(vf));
10212 
10213 	/* Note: Do not enable the ACL */
10214 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10215 	cmd.nmac = naddr;
10216 
10217 	switch (adapter->pf) {
10218 	case 3:
10219 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10220 		break;
10221 	case 2:
10222 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10223 		break;
10224 	case 1:
10225 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10226 		break;
10227 	case 0:
10228 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10229 		break;
10230 	}
10231 
10232 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10233 }
10234 
10235 /**
10236  * t4_read_pace_tbl - read the pace table
10237  * @adap: the adapter
10238  * @pace_vals: holds the returned values
10239  *
10240  * Returns the values of TP's pace table in microseconds.
10241  */
10242 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10243 {
10244 	unsigned int i, v;
10245 
10246 	for (i = 0; i < NTX_SCHED; i++) {
10247 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10248 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
10249 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10250 	}
10251 }
10252 
10253 /**
10254  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10255  * @adap: the adapter
10256  * @sched: the scheduler index
10257  * @kbps: the byte rate in Kbps
10258  * @ipg: the interpacket delay in tenths of nanoseconds
10259  * @sleep_ok: if true we may sleep while awaiting command completion
10260  *
10261  * Return the current configuration of a HW Tx scheduler.
10262  */
10263 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10264 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10265 {
10266 	unsigned int v, addr, bpt, cpt;
10267 
10268 	if (kbps) {
10269 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10270 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10271 		if (sched & 1)
10272 			v >>= 16;
10273 		bpt = (v >> 8) & 0xff;
10274 		cpt = v & 0xff;
10275 		if (!cpt) {
10276 			*kbps = 0;	/* scheduler disabled */
10277 		} else {
10278 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10279 			*kbps = (v * bpt) / 125;
10280 		}
10281 	}
10282 	if (ipg) {
10283 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10284 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10285 		if (sched & 1)
10286 			v >>= 16;
10287 		v &= 0xffff;
10288 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10289 	}
10290 }
10291 
10292 /* t4_sge_ctxt_rd - read an SGE context through FW
10293  * @adap: the adapter
10294  * @mbox: mailbox to use for the FW command
10295  * @cid: the context id
10296  * @ctype: the context type
10297  * @data: where to store the context data
10298  *
10299  * Issues a FW command through the given mailbox to read an SGE context.
10300  */
10301 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10302 		   enum ctxt_type ctype, u32 *data)
10303 {
10304 	struct fw_ldst_cmd c;
10305 	int ret;
10306 
10307 	if (ctype == CTXT_FLM)
10308 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10309 	else
10310 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10311 
10312 	memset(&c, 0, sizeof(c));
10313 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10314 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
10315 					FW_LDST_CMD_ADDRSPACE_V(ret));
10316 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10317 	c.u.idctxt.physid = cpu_to_be32(cid);
10318 
10319 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10320 	if (ret == 0) {
10321 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10322 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10323 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10324 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10325 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10326 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10327 	}
10328 	return ret;
10329 }
10330 
10331 /**
10332  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10333  * @adap: the adapter
10334  * @cid: the context id
10335  * @ctype: the context type
10336  * @data: where to store the context data
10337  *
10338  * Reads an SGE context directly, bypassing FW.  This is only for
10339  * debugging when FW is unavailable.
10340  */
10341 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10342 		      enum ctxt_type ctype, u32 *data)
10343 {
10344 	int i, ret;
10345 
10346 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10347 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10348 	if (!ret)
10349 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10350 			*data++ = t4_read_reg(adap, i);
10351 	return ret;
10352 }
10353 
10354 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10355 		    int rateunit, int ratemode, int channel, int class,
10356 		    int minrate, int maxrate, int weight, int pktsize)
10357 {
10358 	struct fw_sched_cmd cmd;
10359 
10360 	memset(&cmd, 0, sizeof(cmd));
10361 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10362 				      FW_CMD_REQUEST_F |
10363 				      FW_CMD_WRITE_F);
10364 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10365 
10366 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10367 	cmd.u.params.type = type;
10368 	cmd.u.params.level = level;
10369 	cmd.u.params.mode = mode;
10370 	cmd.u.params.ch = channel;
10371 	cmd.u.params.cl = class;
10372 	cmd.u.params.unit = rateunit;
10373 	cmd.u.params.rate = ratemode;
10374 	cmd.u.params.min = cpu_to_be32(minrate);
10375 	cmd.u.params.max = cpu_to_be32(maxrate);
10376 	cmd.u.params.weight = cpu_to_be16(weight);
10377 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10378 
10379 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10380 			       NULL, 1);
10381 }
10382 
10383 /**
10384  *	t4_i2c_rd - read I2C data from adapter
10385  *	@adap: the adapter
10386  *	@port: Port number if per-port device; <0 if not
10387  *	@devid: per-port device ID or absolute device ID
10388  *	@offset: byte offset into device I2C space
10389  *	@len: byte length of I2C space data
10390  *	@buf: buffer in which to return I2C data
10391  *
10392  *	Reads the I2C data from the indicated device and location.
10393  */
10394 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10395 	      unsigned int devid, unsigned int offset,
10396 	      unsigned int len, u8 *buf)
10397 {
10398 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10399 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10400 	int ret = 0;
10401 
10402 	if (len > I2C_PAGE_SIZE)
10403 		return -EINVAL;
10404 
10405 	/* Dont allow reads that spans multiple pages */
10406 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10407 		return -EINVAL;
10408 
10409 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10410 	ldst_cmd.op_to_addrspace =
10411 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10412 			    FW_CMD_REQUEST_F |
10413 			    FW_CMD_READ_F |
10414 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10415 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10416 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10417 	ldst_cmd.u.i2c.did = devid;
10418 
10419 	while (len > 0) {
10420 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10421 
10422 		ldst_cmd.u.i2c.boffset = offset;
10423 		ldst_cmd.u.i2c.blen = i2c_len;
10424 
10425 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10426 				 &ldst_rpl);
10427 		if (ret)
10428 			break;
10429 
10430 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10431 		offset += i2c_len;
10432 		buf += i2c_len;
10433 		len -= i2c_len;
10434 	}
10435 
10436 	return ret;
10437 }
10438 
10439 /**
10440  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10441  *      @adapter: the adapter
10442  *      @mbox: mailbox to use for the FW command
10443  *      @vf: one of the VFs instantiated by the specified PF
10444  *      @vlan: The vlanid to be set
10445  */
10446 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10447 		    u16 vlan)
10448 {
10449 	struct fw_acl_vlan_cmd vlan_cmd;
10450 	unsigned int enable;
10451 
10452 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10453 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10454 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10455 					 FW_CMD_REQUEST_F |
10456 					 FW_CMD_WRITE_F |
10457 					 FW_CMD_EXEC_F |
10458 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10459 					 FW_ACL_VLAN_CMD_VFN_V(vf));
10460 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10461 	/* Drop all packets that donot match vlan id */
10462 	vlan_cmd.dropnovlan_fm = (enable
10463 				  ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10464 				     FW_ACL_VLAN_CMD_FM_F) : 0);
10465 	if (enable != 0) {
10466 		vlan_cmd.nvlan = 1;
10467 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10468 	}
10469 
10470 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10471 }
10472