1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~CXGB4_FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rarely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boundaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9810, 0x9864,
1383 		0x9c00, 0x9c6c,
1384 		0x9c80, 0x9cec,
1385 		0x9d00, 0x9d6c,
1386 		0x9d80, 0x9dec,
1387 		0x9e00, 0x9e6c,
1388 		0x9e80, 0x9eec,
1389 		0x9f00, 0x9f6c,
1390 		0x9f80, 0xa020,
1391 		0xd000, 0xd004,
1392 		0xd010, 0xd03c,
1393 		0xdfc0, 0xdfe0,
1394 		0xe000, 0x1106c,
1395 		0x11074, 0x11088,
1396 		0x1109c, 0x1117c,
1397 		0x11190, 0x11204,
1398 		0x19040, 0x1906c,
1399 		0x19078, 0x19080,
1400 		0x1908c, 0x190e8,
1401 		0x190f0, 0x190f8,
1402 		0x19100, 0x19110,
1403 		0x19120, 0x19124,
1404 		0x19150, 0x19194,
1405 		0x1919c, 0x191b0,
1406 		0x191d0, 0x191e8,
1407 		0x19238, 0x19290,
1408 		0x193f8, 0x19428,
1409 		0x19430, 0x19444,
1410 		0x1944c, 0x1946c,
1411 		0x19474, 0x19474,
1412 		0x19490, 0x194cc,
1413 		0x194f0, 0x194f8,
1414 		0x19c00, 0x19c08,
1415 		0x19c10, 0x19c60,
1416 		0x19c94, 0x19ce4,
1417 		0x19cf0, 0x19d40,
1418 		0x19d50, 0x19d94,
1419 		0x19da0, 0x19de8,
1420 		0x19df0, 0x19e10,
1421 		0x19e50, 0x19e90,
1422 		0x19ea0, 0x19f24,
1423 		0x19f34, 0x19f34,
1424 		0x19f40, 0x19f50,
1425 		0x19f90, 0x19fb4,
1426 		0x19fc4, 0x19fe4,
1427 		0x1a000, 0x1a004,
1428 		0x1a010, 0x1a06c,
1429 		0x1a0b0, 0x1a0e4,
1430 		0x1a0ec, 0x1a0f8,
1431 		0x1a100, 0x1a108,
1432 		0x1a114, 0x1a130,
1433 		0x1a138, 0x1a1c4,
1434 		0x1a1fc, 0x1a1fc,
1435 		0x1e008, 0x1e00c,
1436 		0x1e040, 0x1e044,
1437 		0x1e04c, 0x1e04c,
1438 		0x1e284, 0x1e290,
1439 		0x1e2c0, 0x1e2c0,
1440 		0x1e2e0, 0x1e2e0,
1441 		0x1e300, 0x1e384,
1442 		0x1e3c0, 0x1e3c8,
1443 		0x1e408, 0x1e40c,
1444 		0x1e440, 0x1e444,
1445 		0x1e44c, 0x1e44c,
1446 		0x1e684, 0x1e690,
1447 		0x1e6c0, 0x1e6c0,
1448 		0x1e6e0, 0x1e6e0,
1449 		0x1e700, 0x1e784,
1450 		0x1e7c0, 0x1e7c8,
1451 		0x1e808, 0x1e80c,
1452 		0x1e840, 0x1e844,
1453 		0x1e84c, 0x1e84c,
1454 		0x1ea84, 0x1ea90,
1455 		0x1eac0, 0x1eac0,
1456 		0x1eae0, 0x1eae0,
1457 		0x1eb00, 0x1eb84,
1458 		0x1ebc0, 0x1ebc8,
1459 		0x1ec08, 0x1ec0c,
1460 		0x1ec40, 0x1ec44,
1461 		0x1ec4c, 0x1ec4c,
1462 		0x1ee84, 0x1ee90,
1463 		0x1eec0, 0x1eec0,
1464 		0x1eee0, 0x1eee0,
1465 		0x1ef00, 0x1ef84,
1466 		0x1efc0, 0x1efc8,
1467 		0x1f008, 0x1f00c,
1468 		0x1f040, 0x1f044,
1469 		0x1f04c, 0x1f04c,
1470 		0x1f284, 0x1f290,
1471 		0x1f2c0, 0x1f2c0,
1472 		0x1f2e0, 0x1f2e0,
1473 		0x1f300, 0x1f384,
1474 		0x1f3c0, 0x1f3c8,
1475 		0x1f408, 0x1f40c,
1476 		0x1f440, 0x1f444,
1477 		0x1f44c, 0x1f44c,
1478 		0x1f684, 0x1f690,
1479 		0x1f6c0, 0x1f6c0,
1480 		0x1f6e0, 0x1f6e0,
1481 		0x1f700, 0x1f784,
1482 		0x1f7c0, 0x1f7c8,
1483 		0x1f808, 0x1f80c,
1484 		0x1f840, 0x1f844,
1485 		0x1f84c, 0x1f84c,
1486 		0x1fa84, 0x1fa90,
1487 		0x1fac0, 0x1fac0,
1488 		0x1fae0, 0x1fae0,
1489 		0x1fb00, 0x1fb84,
1490 		0x1fbc0, 0x1fbc8,
1491 		0x1fc08, 0x1fc0c,
1492 		0x1fc40, 0x1fc44,
1493 		0x1fc4c, 0x1fc4c,
1494 		0x1fe84, 0x1fe90,
1495 		0x1fec0, 0x1fec0,
1496 		0x1fee0, 0x1fee0,
1497 		0x1ff00, 0x1ff84,
1498 		0x1ffc0, 0x1ffc8,
1499 		0x30000, 0x30030,
1500 		0x30100, 0x30144,
1501 		0x30190, 0x301a0,
1502 		0x301a8, 0x301b8,
1503 		0x301c4, 0x301c8,
1504 		0x301d0, 0x301d0,
1505 		0x30200, 0x30318,
1506 		0x30400, 0x304b4,
1507 		0x304c0, 0x3052c,
1508 		0x30540, 0x3061c,
1509 		0x30800, 0x30828,
1510 		0x30834, 0x30834,
1511 		0x308c0, 0x30908,
1512 		0x30910, 0x309ac,
1513 		0x30a00, 0x30a14,
1514 		0x30a1c, 0x30a2c,
1515 		0x30a44, 0x30a50,
1516 		0x30a74, 0x30a74,
1517 		0x30a7c, 0x30afc,
1518 		0x30b08, 0x30c24,
1519 		0x30d00, 0x30d00,
1520 		0x30d08, 0x30d14,
1521 		0x30d1c, 0x30d20,
1522 		0x30d3c, 0x30d3c,
1523 		0x30d48, 0x30d50,
1524 		0x31200, 0x3120c,
1525 		0x31220, 0x31220,
1526 		0x31240, 0x31240,
1527 		0x31600, 0x3160c,
1528 		0x31a00, 0x31a1c,
1529 		0x31e00, 0x31e20,
1530 		0x31e38, 0x31e3c,
1531 		0x31e80, 0x31e80,
1532 		0x31e88, 0x31ea8,
1533 		0x31eb0, 0x31eb4,
1534 		0x31ec8, 0x31ed4,
1535 		0x31fb8, 0x32004,
1536 		0x32200, 0x32200,
1537 		0x32208, 0x32240,
1538 		0x32248, 0x32280,
1539 		0x32288, 0x322c0,
1540 		0x322c8, 0x322fc,
1541 		0x32600, 0x32630,
1542 		0x32a00, 0x32abc,
1543 		0x32b00, 0x32b10,
1544 		0x32b20, 0x32b30,
1545 		0x32b40, 0x32b50,
1546 		0x32b60, 0x32b70,
1547 		0x33000, 0x33028,
1548 		0x33030, 0x33048,
1549 		0x33060, 0x33068,
1550 		0x33070, 0x3309c,
1551 		0x330f0, 0x33128,
1552 		0x33130, 0x33148,
1553 		0x33160, 0x33168,
1554 		0x33170, 0x3319c,
1555 		0x331f0, 0x33238,
1556 		0x33240, 0x33240,
1557 		0x33248, 0x33250,
1558 		0x3325c, 0x33264,
1559 		0x33270, 0x332b8,
1560 		0x332c0, 0x332e4,
1561 		0x332f8, 0x33338,
1562 		0x33340, 0x33340,
1563 		0x33348, 0x33350,
1564 		0x3335c, 0x33364,
1565 		0x33370, 0x333b8,
1566 		0x333c0, 0x333e4,
1567 		0x333f8, 0x33428,
1568 		0x33430, 0x33448,
1569 		0x33460, 0x33468,
1570 		0x33470, 0x3349c,
1571 		0x334f0, 0x33528,
1572 		0x33530, 0x33548,
1573 		0x33560, 0x33568,
1574 		0x33570, 0x3359c,
1575 		0x335f0, 0x33638,
1576 		0x33640, 0x33640,
1577 		0x33648, 0x33650,
1578 		0x3365c, 0x33664,
1579 		0x33670, 0x336b8,
1580 		0x336c0, 0x336e4,
1581 		0x336f8, 0x33738,
1582 		0x33740, 0x33740,
1583 		0x33748, 0x33750,
1584 		0x3375c, 0x33764,
1585 		0x33770, 0x337b8,
1586 		0x337c0, 0x337e4,
1587 		0x337f8, 0x337fc,
1588 		0x33814, 0x33814,
1589 		0x3382c, 0x3382c,
1590 		0x33880, 0x3388c,
1591 		0x338e8, 0x338ec,
1592 		0x33900, 0x33928,
1593 		0x33930, 0x33948,
1594 		0x33960, 0x33968,
1595 		0x33970, 0x3399c,
1596 		0x339f0, 0x33a38,
1597 		0x33a40, 0x33a40,
1598 		0x33a48, 0x33a50,
1599 		0x33a5c, 0x33a64,
1600 		0x33a70, 0x33ab8,
1601 		0x33ac0, 0x33ae4,
1602 		0x33af8, 0x33b10,
1603 		0x33b28, 0x33b28,
1604 		0x33b3c, 0x33b50,
1605 		0x33bf0, 0x33c10,
1606 		0x33c28, 0x33c28,
1607 		0x33c3c, 0x33c50,
1608 		0x33cf0, 0x33cfc,
1609 		0x34000, 0x34030,
1610 		0x34100, 0x34144,
1611 		0x34190, 0x341a0,
1612 		0x341a8, 0x341b8,
1613 		0x341c4, 0x341c8,
1614 		0x341d0, 0x341d0,
1615 		0x34200, 0x34318,
1616 		0x34400, 0x344b4,
1617 		0x344c0, 0x3452c,
1618 		0x34540, 0x3461c,
1619 		0x34800, 0x34828,
1620 		0x34834, 0x34834,
1621 		0x348c0, 0x34908,
1622 		0x34910, 0x349ac,
1623 		0x34a00, 0x34a14,
1624 		0x34a1c, 0x34a2c,
1625 		0x34a44, 0x34a50,
1626 		0x34a74, 0x34a74,
1627 		0x34a7c, 0x34afc,
1628 		0x34b08, 0x34c24,
1629 		0x34d00, 0x34d00,
1630 		0x34d08, 0x34d14,
1631 		0x34d1c, 0x34d20,
1632 		0x34d3c, 0x34d3c,
1633 		0x34d48, 0x34d50,
1634 		0x35200, 0x3520c,
1635 		0x35220, 0x35220,
1636 		0x35240, 0x35240,
1637 		0x35600, 0x3560c,
1638 		0x35a00, 0x35a1c,
1639 		0x35e00, 0x35e20,
1640 		0x35e38, 0x35e3c,
1641 		0x35e80, 0x35e80,
1642 		0x35e88, 0x35ea8,
1643 		0x35eb0, 0x35eb4,
1644 		0x35ec8, 0x35ed4,
1645 		0x35fb8, 0x36004,
1646 		0x36200, 0x36200,
1647 		0x36208, 0x36240,
1648 		0x36248, 0x36280,
1649 		0x36288, 0x362c0,
1650 		0x362c8, 0x362fc,
1651 		0x36600, 0x36630,
1652 		0x36a00, 0x36abc,
1653 		0x36b00, 0x36b10,
1654 		0x36b20, 0x36b30,
1655 		0x36b40, 0x36b50,
1656 		0x36b60, 0x36b70,
1657 		0x37000, 0x37028,
1658 		0x37030, 0x37048,
1659 		0x37060, 0x37068,
1660 		0x37070, 0x3709c,
1661 		0x370f0, 0x37128,
1662 		0x37130, 0x37148,
1663 		0x37160, 0x37168,
1664 		0x37170, 0x3719c,
1665 		0x371f0, 0x37238,
1666 		0x37240, 0x37240,
1667 		0x37248, 0x37250,
1668 		0x3725c, 0x37264,
1669 		0x37270, 0x372b8,
1670 		0x372c0, 0x372e4,
1671 		0x372f8, 0x37338,
1672 		0x37340, 0x37340,
1673 		0x37348, 0x37350,
1674 		0x3735c, 0x37364,
1675 		0x37370, 0x373b8,
1676 		0x373c0, 0x373e4,
1677 		0x373f8, 0x37428,
1678 		0x37430, 0x37448,
1679 		0x37460, 0x37468,
1680 		0x37470, 0x3749c,
1681 		0x374f0, 0x37528,
1682 		0x37530, 0x37548,
1683 		0x37560, 0x37568,
1684 		0x37570, 0x3759c,
1685 		0x375f0, 0x37638,
1686 		0x37640, 0x37640,
1687 		0x37648, 0x37650,
1688 		0x3765c, 0x37664,
1689 		0x37670, 0x376b8,
1690 		0x376c0, 0x376e4,
1691 		0x376f8, 0x37738,
1692 		0x37740, 0x37740,
1693 		0x37748, 0x37750,
1694 		0x3775c, 0x37764,
1695 		0x37770, 0x377b8,
1696 		0x377c0, 0x377e4,
1697 		0x377f8, 0x377fc,
1698 		0x37814, 0x37814,
1699 		0x3782c, 0x3782c,
1700 		0x37880, 0x3788c,
1701 		0x378e8, 0x378ec,
1702 		0x37900, 0x37928,
1703 		0x37930, 0x37948,
1704 		0x37960, 0x37968,
1705 		0x37970, 0x3799c,
1706 		0x379f0, 0x37a38,
1707 		0x37a40, 0x37a40,
1708 		0x37a48, 0x37a50,
1709 		0x37a5c, 0x37a64,
1710 		0x37a70, 0x37ab8,
1711 		0x37ac0, 0x37ae4,
1712 		0x37af8, 0x37b10,
1713 		0x37b28, 0x37b28,
1714 		0x37b3c, 0x37b50,
1715 		0x37bf0, 0x37c10,
1716 		0x37c28, 0x37c28,
1717 		0x37c3c, 0x37c50,
1718 		0x37cf0, 0x37cfc,
1719 		0x38000, 0x38030,
1720 		0x38100, 0x38144,
1721 		0x38190, 0x381a0,
1722 		0x381a8, 0x381b8,
1723 		0x381c4, 0x381c8,
1724 		0x381d0, 0x381d0,
1725 		0x38200, 0x38318,
1726 		0x38400, 0x384b4,
1727 		0x384c0, 0x3852c,
1728 		0x38540, 0x3861c,
1729 		0x38800, 0x38828,
1730 		0x38834, 0x38834,
1731 		0x388c0, 0x38908,
1732 		0x38910, 0x389ac,
1733 		0x38a00, 0x38a14,
1734 		0x38a1c, 0x38a2c,
1735 		0x38a44, 0x38a50,
1736 		0x38a74, 0x38a74,
1737 		0x38a7c, 0x38afc,
1738 		0x38b08, 0x38c24,
1739 		0x38d00, 0x38d00,
1740 		0x38d08, 0x38d14,
1741 		0x38d1c, 0x38d20,
1742 		0x38d3c, 0x38d3c,
1743 		0x38d48, 0x38d50,
1744 		0x39200, 0x3920c,
1745 		0x39220, 0x39220,
1746 		0x39240, 0x39240,
1747 		0x39600, 0x3960c,
1748 		0x39a00, 0x39a1c,
1749 		0x39e00, 0x39e20,
1750 		0x39e38, 0x39e3c,
1751 		0x39e80, 0x39e80,
1752 		0x39e88, 0x39ea8,
1753 		0x39eb0, 0x39eb4,
1754 		0x39ec8, 0x39ed4,
1755 		0x39fb8, 0x3a004,
1756 		0x3a200, 0x3a200,
1757 		0x3a208, 0x3a240,
1758 		0x3a248, 0x3a280,
1759 		0x3a288, 0x3a2c0,
1760 		0x3a2c8, 0x3a2fc,
1761 		0x3a600, 0x3a630,
1762 		0x3aa00, 0x3aabc,
1763 		0x3ab00, 0x3ab10,
1764 		0x3ab20, 0x3ab30,
1765 		0x3ab40, 0x3ab50,
1766 		0x3ab60, 0x3ab70,
1767 		0x3b000, 0x3b028,
1768 		0x3b030, 0x3b048,
1769 		0x3b060, 0x3b068,
1770 		0x3b070, 0x3b09c,
1771 		0x3b0f0, 0x3b128,
1772 		0x3b130, 0x3b148,
1773 		0x3b160, 0x3b168,
1774 		0x3b170, 0x3b19c,
1775 		0x3b1f0, 0x3b238,
1776 		0x3b240, 0x3b240,
1777 		0x3b248, 0x3b250,
1778 		0x3b25c, 0x3b264,
1779 		0x3b270, 0x3b2b8,
1780 		0x3b2c0, 0x3b2e4,
1781 		0x3b2f8, 0x3b338,
1782 		0x3b340, 0x3b340,
1783 		0x3b348, 0x3b350,
1784 		0x3b35c, 0x3b364,
1785 		0x3b370, 0x3b3b8,
1786 		0x3b3c0, 0x3b3e4,
1787 		0x3b3f8, 0x3b428,
1788 		0x3b430, 0x3b448,
1789 		0x3b460, 0x3b468,
1790 		0x3b470, 0x3b49c,
1791 		0x3b4f0, 0x3b528,
1792 		0x3b530, 0x3b548,
1793 		0x3b560, 0x3b568,
1794 		0x3b570, 0x3b59c,
1795 		0x3b5f0, 0x3b638,
1796 		0x3b640, 0x3b640,
1797 		0x3b648, 0x3b650,
1798 		0x3b65c, 0x3b664,
1799 		0x3b670, 0x3b6b8,
1800 		0x3b6c0, 0x3b6e4,
1801 		0x3b6f8, 0x3b738,
1802 		0x3b740, 0x3b740,
1803 		0x3b748, 0x3b750,
1804 		0x3b75c, 0x3b764,
1805 		0x3b770, 0x3b7b8,
1806 		0x3b7c0, 0x3b7e4,
1807 		0x3b7f8, 0x3b7fc,
1808 		0x3b814, 0x3b814,
1809 		0x3b82c, 0x3b82c,
1810 		0x3b880, 0x3b88c,
1811 		0x3b8e8, 0x3b8ec,
1812 		0x3b900, 0x3b928,
1813 		0x3b930, 0x3b948,
1814 		0x3b960, 0x3b968,
1815 		0x3b970, 0x3b99c,
1816 		0x3b9f0, 0x3ba38,
1817 		0x3ba40, 0x3ba40,
1818 		0x3ba48, 0x3ba50,
1819 		0x3ba5c, 0x3ba64,
1820 		0x3ba70, 0x3bab8,
1821 		0x3bac0, 0x3bae4,
1822 		0x3baf8, 0x3bb10,
1823 		0x3bb28, 0x3bb28,
1824 		0x3bb3c, 0x3bb50,
1825 		0x3bbf0, 0x3bc10,
1826 		0x3bc28, 0x3bc28,
1827 		0x3bc3c, 0x3bc50,
1828 		0x3bcf0, 0x3bcfc,
1829 		0x3c000, 0x3c030,
1830 		0x3c100, 0x3c144,
1831 		0x3c190, 0x3c1a0,
1832 		0x3c1a8, 0x3c1b8,
1833 		0x3c1c4, 0x3c1c8,
1834 		0x3c1d0, 0x3c1d0,
1835 		0x3c200, 0x3c318,
1836 		0x3c400, 0x3c4b4,
1837 		0x3c4c0, 0x3c52c,
1838 		0x3c540, 0x3c61c,
1839 		0x3c800, 0x3c828,
1840 		0x3c834, 0x3c834,
1841 		0x3c8c0, 0x3c908,
1842 		0x3c910, 0x3c9ac,
1843 		0x3ca00, 0x3ca14,
1844 		0x3ca1c, 0x3ca2c,
1845 		0x3ca44, 0x3ca50,
1846 		0x3ca74, 0x3ca74,
1847 		0x3ca7c, 0x3cafc,
1848 		0x3cb08, 0x3cc24,
1849 		0x3cd00, 0x3cd00,
1850 		0x3cd08, 0x3cd14,
1851 		0x3cd1c, 0x3cd20,
1852 		0x3cd3c, 0x3cd3c,
1853 		0x3cd48, 0x3cd50,
1854 		0x3d200, 0x3d20c,
1855 		0x3d220, 0x3d220,
1856 		0x3d240, 0x3d240,
1857 		0x3d600, 0x3d60c,
1858 		0x3da00, 0x3da1c,
1859 		0x3de00, 0x3de20,
1860 		0x3de38, 0x3de3c,
1861 		0x3de80, 0x3de80,
1862 		0x3de88, 0x3dea8,
1863 		0x3deb0, 0x3deb4,
1864 		0x3dec8, 0x3ded4,
1865 		0x3dfb8, 0x3e004,
1866 		0x3e200, 0x3e200,
1867 		0x3e208, 0x3e240,
1868 		0x3e248, 0x3e280,
1869 		0x3e288, 0x3e2c0,
1870 		0x3e2c8, 0x3e2fc,
1871 		0x3e600, 0x3e630,
1872 		0x3ea00, 0x3eabc,
1873 		0x3eb00, 0x3eb10,
1874 		0x3eb20, 0x3eb30,
1875 		0x3eb40, 0x3eb50,
1876 		0x3eb60, 0x3eb70,
1877 		0x3f000, 0x3f028,
1878 		0x3f030, 0x3f048,
1879 		0x3f060, 0x3f068,
1880 		0x3f070, 0x3f09c,
1881 		0x3f0f0, 0x3f128,
1882 		0x3f130, 0x3f148,
1883 		0x3f160, 0x3f168,
1884 		0x3f170, 0x3f19c,
1885 		0x3f1f0, 0x3f238,
1886 		0x3f240, 0x3f240,
1887 		0x3f248, 0x3f250,
1888 		0x3f25c, 0x3f264,
1889 		0x3f270, 0x3f2b8,
1890 		0x3f2c0, 0x3f2e4,
1891 		0x3f2f8, 0x3f338,
1892 		0x3f340, 0x3f340,
1893 		0x3f348, 0x3f350,
1894 		0x3f35c, 0x3f364,
1895 		0x3f370, 0x3f3b8,
1896 		0x3f3c0, 0x3f3e4,
1897 		0x3f3f8, 0x3f428,
1898 		0x3f430, 0x3f448,
1899 		0x3f460, 0x3f468,
1900 		0x3f470, 0x3f49c,
1901 		0x3f4f0, 0x3f528,
1902 		0x3f530, 0x3f548,
1903 		0x3f560, 0x3f568,
1904 		0x3f570, 0x3f59c,
1905 		0x3f5f0, 0x3f638,
1906 		0x3f640, 0x3f640,
1907 		0x3f648, 0x3f650,
1908 		0x3f65c, 0x3f664,
1909 		0x3f670, 0x3f6b8,
1910 		0x3f6c0, 0x3f6e4,
1911 		0x3f6f8, 0x3f738,
1912 		0x3f740, 0x3f740,
1913 		0x3f748, 0x3f750,
1914 		0x3f75c, 0x3f764,
1915 		0x3f770, 0x3f7b8,
1916 		0x3f7c0, 0x3f7e4,
1917 		0x3f7f8, 0x3f7fc,
1918 		0x3f814, 0x3f814,
1919 		0x3f82c, 0x3f82c,
1920 		0x3f880, 0x3f88c,
1921 		0x3f8e8, 0x3f8ec,
1922 		0x3f900, 0x3f928,
1923 		0x3f930, 0x3f948,
1924 		0x3f960, 0x3f968,
1925 		0x3f970, 0x3f99c,
1926 		0x3f9f0, 0x3fa38,
1927 		0x3fa40, 0x3fa40,
1928 		0x3fa48, 0x3fa50,
1929 		0x3fa5c, 0x3fa64,
1930 		0x3fa70, 0x3fab8,
1931 		0x3fac0, 0x3fae4,
1932 		0x3faf8, 0x3fb10,
1933 		0x3fb28, 0x3fb28,
1934 		0x3fb3c, 0x3fb50,
1935 		0x3fbf0, 0x3fc10,
1936 		0x3fc28, 0x3fc28,
1937 		0x3fc3c, 0x3fc50,
1938 		0x3fcf0, 0x3fcfc,
1939 		0x40000, 0x4000c,
1940 		0x40040, 0x40050,
1941 		0x40060, 0x40068,
1942 		0x4007c, 0x4008c,
1943 		0x40094, 0x400b0,
1944 		0x400c0, 0x40144,
1945 		0x40180, 0x4018c,
1946 		0x40200, 0x40254,
1947 		0x40260, 0x40264,
1948 		0x40270, 0x40288,
1949 		0x40290, 0x40298,
1950 		0x402ac, 0x402c8,
1951 		0x402d0, 0x402e0,
1952 		0x402f0, 0x402f0,
1953 		0x40300, 0x4033c,
1954 		0x403f8, 0x403fc,
1955 		0x41304, 0x413c4,
1956 		0x41400, 0x4140c,
1957 		0x41414, 0x4141c,
1958 		0x41480, 0x414d0,
1959 		0x44000, 0x44054,
1960 		0x4405c, 0x44078,
1961 		0x440c0, 0x44174,
1962 		0x44180, 0x441ac,
1963 		0x441b4, 0x441b8,
1964 		0x441c0, 0x44254,
1965 		0x4425c, 0x44278,
1966 		0x442c0, 0x44374,
1967 		0x44380, 0x443ac,
1968 		0x443b4, 0x443b8,
1969 		0x443c0, 0x44454,
1970 		0x4445c, 0x44478,
1971 		0x444c0, 0x44574,
1972 		0x44580, 0x445ac,
1973 		0x445b4, 0x445b8,
1974 		0x445c0, 0x44654,
1975 		0x4465c, 0x44678,
1976 		0x446c0, 0x44774,
1977 		0x44780, 0x447ac,
1978 		0x447b4, 0x447b8,
1979 		0x447c0, 0x44854,
1980 		0x4485c, 0x44878,
1981 		0x448c0, 0x44974,
1982 		0x44980, 0x449ac,
1983 		0x449b4, 0x449b8,
1984 		0x449c0, 0x449fc,
1985 		0x45000, 0x45004,
1986 		0x45010, 0x45030,
1987 		0x45040, 0x45060,
1988 		0x45068, 0x45068,
1989 		0x45080, 0x45084,
1990 		0x450a0, 0x450b0,
1991 		0x45200, 0x45204,
1992 		0x45210, 0x45230,
1993 		0x45240, 0x45260,
1994 		0x45268, 0x45268,
1995 		0x45280, 0x45284,
1996 		0x452a0, 0x452b0,
1997 		0x460c0, 0x460e4,
1998 		0x47000, 0x4703c,
1999 		0x47044, 0x4708c,
2000 		0x47200, 0x47250,
2001 		0x47400, 0x47408,
2002 		0x47414, 0x47420,
2003 		0x47600, 0x47618,
2004 		0x47800, 0x47814,
2005 		0x48000, 0x4800c,
2006 		0x48040, 0x48050,
2007 		0x48060, 0x48068,
2008 		0x4807c, 0x4808c,
2009 		0x48094, 0x480b0,
2010 		0x480c0, 0x48144,
2011 		0x48180, 0x4818c,
2012 		0x48200, 0x48254,
2013 		0x48260, 0x48264,
2014 		0x48270, 0x48288,
2015 		0x48290, 0x48298,
2016 		0x482ac, 0x482c8,
2017 		0x482d0, 0x482e0,
2018 		0x482f0, 0x482f0,
2019 		0x48300, 0x4833c,
2020 		0x483f8, 0x483fc,
2021 		0x49304, 0x493c4,
2022 		0x49400, 0x4940c,
2023 		0x49414, 0x4941c,
2024 		0x49480, 0x494d0,
2025 		0x4c000, 0x4c054,
2026 		0x4c05c, 0x4c078,
2027 		0x4c0c0, 0x4c174,
2028 		0x4c180, 0x4c1ac,
2029 		0x4c1b4, 0x4c1b8,
2030 		0x4c1c0, 0x4c254,
2031 		0x4c25c, 0x4c278,
2032 		0x4c2c0, 0x4c374,
2033 		0x4c380, 0x4c3ac,
2034 		0x4c3b4, 0x4c3b8,
2035 		0x4c3c0, 0x4c454,
2036 		0x4c45c, 0x4c478,
2037 		0x4c4c0, 0x4c574,
2038 		0x4c580, 0x4c5ac,
2039 		0x4c5b4, 0x4c5b8,
2040 		0x4c5c0, 0x4c654,
2041 		0x4c65c, 0x4c678,
2042 		0x4c6c0, 0x4c774,
2043 		0x4c780, 0x4c7ac,
2044 		0x4c7b4, 0x4c7b8,
2045 		0x4c7c0, 0x4c854,
2046 		0x4c85c, 0x4c878,
2047 		0x4c8c0, 0x4c974,
2048 		0x4c980, 0x4c9ac,
2049 		0x4c9b4, 0x4c9b8,
2050 		0x4c9c0, 0x4c9fc,
2051 		0x4d000, 0x4d004,
2052 		0x4d010, 0x4d030,
2053 		0x4d040, 0x4d060,
2054 		0x4d068, 0x4d068,
2055 		0x4d080, 0x4d084,
2056 		0x4d0a0, 0x4d0b0,
2057 		0x4d200, 0x4d204,
2058 		0x4d210, 0x4d230,
2059 		0x4d240, 0x4d260,
2060 		0x4d268, 0x4d268,
2061 		0x4d280, 0x4d284,
2062 		0x4d2a0, 0x4d2b0,
2063 		0x4e0c0, 0x4e0e4,
2064 		0x4f000, 0x4f03c,
2065 		0x4f044, 0x4f08c,
2066 		0x4f200, 0x4f250,
2067 		0x4f400, 0x4f408,
2068 		0x4f414, 0x4f420,
2069 		0x4f600, 0x4f618,
2070 		0x4f800, 0x4f814,
2071 		0x50000, 0x50084,
2072 		0x50090, 0x500cc,
2073 		0x50400, 0x50400,
2074 		0x50800, 0x50884,
2075 		0x50890, 0x508cc,
2076 		0x50c00, 0x50c00,
2077 		0x51000, 0x5101c,
2078 		0x51300, 0x51308,
2079 	};
2080 
2081 	static const unsigned int t6_reg_ranges[] = {
2082 		0x1008, 0x101c,
2083 		0x1024, 0x10a8,
2084 		0x10b4, 0x10f8,
2085 		0x1100, 0x1114,
2086 		0x111c, 0x112c,
2087 		0x1138, 0x113c,
2088 		0x1144, 0x114c,
2089 		0x1180, 0x1184,
2090 		0x1190, 0x1194,
2091 		0x11a0, 0x11a4,
2092 		0x11b0, 0x11b4,
2093 		0x11fc, 0x123c,
2094 		0x1254, 0x1274,
2095 		0x1280, 0x133c,
2096 		0x1800, 0x18fc,
2097 		0x3000, 0x302c,
2098 		0x3060, 0x30b0,
2099 		0x30b8, 0x30d8,
2100 		0x30e0, 0x30fc,
2101 		0x3140, 0x357c,
2102 		0x35a8, 0x35cc,
2103 		0x35ec, 0x35ec,
2104 		0x3600, 0x5624,
2105 		0x56cc, 0x56ec,
2106 		0x56f4, 0x5720,
2107 		0x5728, 0x575c,
2108 		0x580c, 0x5814,
2109 		0x5890, 0x589c,
2110 		0x58a4, 0x58ac,
2111 		0x58b8, 0x58bc,
2112 		0x5940, 0x595c,
2113 		0x5980, 0x598c,
2114 		0x59b0, 0x59c8,
2115 		0x59d0, 0x59dc,
2116 		0x59fc, 0x5a18,
2117 		0x5a60, 0x5a6c,
2118 		0x5a80, 0x5a8c,
2119 		0x5a94, 0x5a9c,
2120 		0x5b94, 0x5bfc,
2121 		0x5c10, 0x5e48,
2122 		0x5e50, 0x5e94,
2123 		0x5ea0, 0x5eb0,
2124 		0x5ec0, 0x5ec0,
2125 		0x5ec8, 0x5ed0,
2126 		0x5ee0, 0x5ee0,
2127 		0x5ef0, 0x5ef0,
2128 		0x5f00, 0x5f00,
2129 		0x6000, 0x6020,
2130 		0x6028, 0x6040,
2131 		0x6058, 0x609c,
2132 		0x60a8, 0x619c,
2133 		0x7700, 0x7798,
2134 		0x77c0, 0x7880,
2135 		0x78cc, 0x78fc,
2136 		0x7b00, 0x7b58,
2137 		0x7b60, 0x7b84,
2138 		0x7b8c, 0x7c54,
2139 		0x7d00, 0x7d38,
2140 		0x7d40, 0x7d84,
2141 		0x7d8c, 0x7ddc,
2142 		0x7de4, 0x7e04,
2143 		0x7e10, 0x7e1c,
2144 		0x7e24, 0x7e38,
2145 		0x7e40, 0x7e44,
2146 		0x7e4c, 0x7e78,
2147 		0x7e80, 0x7edc,
2148 		0x7ee8, 0x7efc,
2149 		0x8dc0, 0x8de4,
2150 		0x8df8, 0x8e04,
2151 		0x8e10, 0x8e84,
2152 		0x8ea0, 0x8f88,
2153 		0x8fb8, 0x9058,
2154 		0x9060, 0x9060,
2155 		0x9068, 0x90f8,
2156 		0x9100, 0x9124,
2157 		0x9400, 0x9470,
2158 		0x9600, 0x9600,
2159 		0x9608, 0x9638,
2160 		0x9640, 0x9704,
2161 		0x9710, 0x971c,
2162 		0x9800, 0x9808,
2163 		0x9810, 0x9864,
2164 		0x9c00, 0x9c6c,
2165 		0x9c80, 0x9cec,
2166 		0x9d00, 0x9d6c,
2167 		0x9d80, 0x9dec,
2168 		0x9e00, 0x9e6c,
2169 		0x9e80, 0x9eec,
2170 		0x9f00, 0x9f6c,
2171 		0x9f80, 0xa020,
2172 		0xd000, 0xd03c,
2173 		0xd100, 0xd118,
2174 		0xd200, 0xd214,
2175 		0xd220, 0xd234,
2176 		0xd240, 0xd254,
2177 		0xd260, 0xd274,
2178 		0xd280, 0xd294,
2179 		0xd2a0, 0xd2b4,
2180 		0xd2c0, 0xd2d4,
2181 		0xd2e0, 0xd2f4,
2182 		0xd300, 0xd31c,
2183 		0xdfc0, 0xdfe0,
2184 		0xe000, 0xf008,
2185 		0xf010, 0xf018,
2186 		0xf020, 0xf028,
2187 		0x11000, 0x11014,
2188 		0x11048, 0x1106c,
2189 		0x11074, 0x11088,
2190 		0x11098, 0x11120,
2191 		0x1112c, 0x1117c,
2192 		0x11190, 0x112e0,
2193 		0x11300, 0x1130c,
2194 		0x12000, 0x1206c,
2195 		0x19040, 0x1906c,
2196 		0x19078, 0x19080,
2197 		0x1908c, 0x190e8,
2198 		0x190f0, 0x190f8,
2199 		0x19100, 0x19110,
2200 		0x19120, 0x19124,
2201 		0x19150, 0x19194,
2202 		0x1919c, 0x191b0,
2203 		0x191d0, 0x191e8,
2204 		0x19238, 0x19290,
2205 		0x192a4, 0x192b0,
2206 		0x192bc, 0x192bc,
2207 		0x19348, 0x1934c,
2208 		0x193f8, 0x19418,
2209 		0x19420, 0x19428,
2210 		0x19430, 0x19444,
2211 		0x1944c, 0x1946c,
2212 		0x19474, 0x19474,
2213 		0x19490, 0x194cc,
2214 		0x194f0, 0x194f8,
2215 		0x19c00, 0x19c48,
2216 		0x19c50, 0x19c80,
2217 		0x19c94, 0x19c98,
2218 		0x19ca0, 0x19cbc,
2219 		0x19ce4, 0x19ce4,
2220 		0x19cf0, 0x19cf8,
2221 		0x19d00, 0x19d28,
2222 		0x19d50, 0x19d78,
2223 		0x19d94, 0x19d98,
2224 		0x19da0, 0x19dc8,
2225 		0x19df0, 0x19e10,
2226 		0x19e50, 0x19e6c,
2227 		0x19ea0, 0x19ebc,
2228 		0x19ec4, 0x19ef4,
2229 		0x19f04, 0x19f2c,
2230 		0x19f34, 0x19f34,
2231 		0x19f40, 0x19f50,
2232 		0x19f90, 0x19fac,
2233 		0x19fc4, 0x19fc8,
2234 		0x19fd0, 0x19fe4,
2235 		0x1a000, 0x1a004,
2236 		0x1a010, 0x1a06c,
2237 		0x1a0b0, 0x1a0e4,
2238 		0x1a0ec, 0x1a0f8,
2239 		0x1a100, 0x1a108,
2240 		0x1a114, 0x1a130,
2241 		0x1a138, 0x1a1c4,
2242 		0x1a1fc, 0x1a1fc,
2243 		0x1e008, 0x1e00c,
2244 		0x1e040, 0x1e044,
2245 		0x1e04c, 0x1e04c,
2246 		0x1e284, 0x1e290,
2247 		0x1e2c0, 0x1e2c0,
2248 		0x1e2e0, 0x1e2e0,
2249 		0x1e300, 0x1e384,
2250 		0x1e3c0, 0x1e3c8,
2251 		0x1e408, 0x1e40c,
2252 		0x1e440, 0x1e444,
2253 		0x1e44c, 0x1e44c,
2254 		0x1e684, 0x1e690,
2255 		0x1e6c0, 0x1e6c0,
2256 		0x1e6e0, 0x1e6e0,
2257 		0x1e700, 0x1e784,
2258 		0x1e7c0, 0x1e7c8,
2259 		0x1e808, 0x1e80c,
2260 		0x1e840, 0x1e844,
2261 		0x1e84c, 0x1e84c,
2262 		0x1ea84, 0x1ea90,
2263 		0x1eac0, 0x1eac0,
2264 		0x1eae0, 0x1eae0,
2265 		0x1eb00, 0x1eb84,
2266 		0x1ebc0, 0x1ebc8,
2267 		0x1ec08, 0x1ec0c,
2268 		0x1ec40, 0x1ec44,
2269 		0x1ec4c, 0x1ec4c,
2270 		0x1ee84, 0x1ee90,
2271 		0x1eec0, 0x1eec0,
2272 		0x1eee0, 0x1eee0,
2273 		0x1ef00, 0x1ef84,
2274 		0x1efc0, 0x1efc8,
2275 		0x1f008, 0x1f00c,
2276 		0x1f040, 0x1f044,
2277 		0x1f04c, 0x1f04c,
2278 		0x1f284, 0x1f290,
2279 		0x1f2c0, 0x1f2c0,
2280 		0x1f2e0, 0x1f2e0,
2281 		0x1f300, 0x1f384,
2282 		0x1f3c0, 0x1f3c8,
2283 		0x1f408, 0x1f40c,
2284 		0x1f440, 0x1f444,
2285 		0x1f44c, 0x1f44c,
2286 		0x1f684, 0x1f690,
2287 		0x1f6c0, 0x1f6c0,
2288 		0x1f6e0, 0x1f6e0,
2289 		0x1f700, 0x1f784,
2290 		0x1f7c0, 0x1f7c8,
2291 		0x1f808, 0x1f80c,
2292 		0x1f840, 0x1f844,
2293 		0x1f84c, 0x1f84c,
2294 		0x1fa84, 0x1fa90,
2295 		0x1fac0, 0x1fac0,
2296 		0x1fae0, 0x1fae0,
2297 		0x1fb00, 0x1fb84,
2298 		0x1fbc0, 0x1fbc8,
2299 		0x1fc08, 0x1fc0c,
2300 		0x1fc40, 0x1fc44,
2301 		0x1fc4c, 0x1fc4c,
2302 		0x1fe84, 0x1fe90,
2303 		0x1fec0, 0x1fec0,
2304 		0x1fee0, 0x1fee0,
2305 		0x1ff00, 0x1ff84,
2306 		0x1ffc0, 0x1ffc8,
2307 		0x30000, 0x30030,
2308 		0x30100, 0x30168,
2309 		0x30190, 0x301a0,
2310 		0x301a8, 0x301b8,
2311 		0x301c4, 0x301c8,
2312 		0x301d0, 0x301d0,
2313 		0x30200, 0x30320,
2314 		0x30400, 0x304b4,
2315 		0x304c0, 0x3052c,
2316 		0x30540, 0x3061c,
2317 		0x30800, 0x308a0,
2318 		0x308c0, 0x30908,
2319 		0x30910, 0x309b8,
2320 		0x30a00, 0x30a04,
2321 		0x30a0c, 0x30a14,
2322 		0x30a1c, 0x30a2c,
2323 		0x30a44, 0x30a50,
2324 		0x30a74, 0x30a74,
2325 		0x30a7c, 0x30afc,
2326 		0x30b08, 0x30c24,
2327 		0x30d00, 0x30d14,
2328 		0x30d1c, 0x30d3c,
2329 		0x30d44, 0x30d4c,
2330 		0x30d54, 0x30d74,
2331 		0x30d7c, 0x30d7c,
2332 		0x30de0, 0x30de0,
2333 		0x30e00, 0x30ed4,
2334 		0x30f00, 0x30fa4,
2335 		0x30fc0, 0x30fc4,
2336 		0x31000, 0x31004,
2337 		0x31080, 0x310fc,
2338 		0x31208, 0x31220,
2339 		0x3123c, 0x31254,
2340 		0x31300, 0x31300,
2341 		0x31308, 0x3131c,
2342 		0x31338, 0x3133c,
2343 		0x31380, 0x31380,
2344 		0x31388, 0x313a8,
2345 		0x313b4, 0x313b4,
2346 		0x31400, 0x31420,
2347 		0x31438, 0x3143c,
2348 		0x31480, 0x31480,
2349 		0x314a8, 0x314a8,
2350 		0x314b0, 0x314b4,
2351 		0x314c8, 0x314d4,
2352 		0x31a40, 0x31a4c,
2353 		0x31af0, 0x31b20,
2354 		0x31b38, 0x31b3c,
2355 		0x31b80, 0x31b80,
2356 		0x31ba8, 0x31ba8,
2357 		0x31bb0, 0x31bb4,
2358 		0x31bc8, 0x31bd4,
2359 		0x32140, 0x3218c,
2360 		0x321f0, 0x321f4,
2361 		0x32200, 0x32200,
2362 		0x32218, 0x32218,
2363 		0x32400, 0x32400,
2364 		0x32408, 0x3241c,
2365 		0x32618, 0x32620,
2366 		0x32664, 0x32664,
2367 		0x326a8, 0x326a8,
2368 		0x326ec, 0x326ec,
2369 		0x32a00, 0x32abc,
2370 		0x32b00, 0x32b18,
2371 		0x32b20, 0x32b38,
2372 		0x32b40, 0x32b58,
2373 		0x32b60, 0x32b78,
2374 		0x32c00, 0x32c00,
2375 		0x32c08, 0x32c3c,
2376 		0x33000, 0x3302c,
2377 		0x33034, 0x33050,
2378 		0x33058, 0x33058,
2379 		0x33060, 0x3308c,
2380 		0x3309c, 0x330ac,
2381 		0x330c0, 0x330c0,
2382 		0x330c8, 0x330d0,
2383 		0x330d8, 0x330e0,
2384 		0x330ec, 0x3312c,
2385 		0x33134, 0x33150,
2386 		0x33158, 0x33158,
2387 		0x33160, 0x3318c,
2388 		0x3319c, 0x331ac,
2389 		0x331c0, 0x331c0,
2390 		0x331c8, 0x331d0,
2391 		0x331d8, 0x331e0,
2392 		0x331ec, 0x33290,
2393 		0x33298, 0x332c4,
2394 		0x332e4, 0x33390,
2395 		0x33398, 0x333c4,
2396 		0x333e4, 0x3342c,
2397 		0x33434, 0x33450,
2398 		0x33458, 0x33458,
2399 		0x33460, 0x3348c,
2400 		0x3349c, 0x334ac,
2401 		0x334c0, 0x334c0,
2402 		0x334c8, 0x334d0,
2403 		0x334d8, 0x334e0,
2404 		0x334ec, 0x3352c,
2405 		0x33534, 0x33550,
2406 		0x33558, 0x33558,
2407 		0x33560, 0x3358c,
2408 		0x3359c, 0x335ac,
2409 		0x335c0, 0x335c0,
2410 		0x335c8, 0x335d0,
2411 		0x335d8, 0x335e0,
2412 		0x335ec, 0x33690,
2413 		0x33698, 0x336c4,
2414 		0x336e4, 0x33790,
2415 		0x33798, 0x337c4,
2416 		0x337e4, 0x337fc,
2417 		0x33814, 0x33814,
2418 		0x33854, 0x33868,
2419 		0x33880, 0x3388c,
2420 		0x338c0, 0x338d0,
2421 		0x338e8, 0x338ec,
2422 		0x33900, 0x3392c,
2423 		0x33934, 0x33950,
2424 		0x33958, 0x33958,
2425 		0x33960, 0x3398c,
2426 		0x3399c, 0x339ac,
2427 		0x339c0, 0x339c0,
2428 		0x339c8, 0x339d0,
2429 		0x339d8, 0x339e0,
2430 		0x339ec, 0x33a90,
2431 		0x33a98, 0x33ac4,
2432 		0x33ae4, 0x33b10,
2433 		0x33b24, 0x33b28,
2434 		0x33b38, 0x33b50,
2435 		0x33bf0, 0x33c10,
2436 		0x33c24, 0x33c28,
2437 		0x33c38, 0x33c50,
2438 		0x33cf0, 0x33cfc,
2439 		0x34000, 0x34030,
2440 		0x34100, 0x34168,
2441 		0x34190, 0x341a0,
2442 		0x341a8, 0x341b8,
2443 		0x341c4, 0x341c8,
2444 		0x341d0, 0x341d0,
2445 		0x34200, 0x34320,
2446 		0x34400, 0x344b4,
2447 		0x344c0, 0x3452c,
2448 		0x34540, 0x3461c,
2449 		0x34800, 0x348a0,
2450 		0x348c0, 0x34908,
2451 		0x34910, 0x349b8,
2452 		0x34a00, 0x34a04,
2453 		0x34a0c, 0x34a14,
2454 		0x34a1c, 0x34a2c,
2455 		0x34a44, 0x34a50,
2456 		0x34a74, 0x34a74,
2457 		0x34a7c, 0x34afc,
2458 		0x34b08, 0x34c24,
2459 		0x34d00, 0x34d14,
2460 		0x34d1c, 0x34d3c,
2461 		0x34d44, 0x34d4c,
2462 		0x34d54, 0x34d74,
2463 		0x34d7c, 0x34d7c,
2464 		0x34de0, 0x34de0,
2465 		0x34e00, 0x34ed4,
2466 		0x34f00, 0x34fa4,
2467 		0x34fc0, 0x34fc4,
2468 		0x35000, 0x35004,
2469 		0x35080, 0x350fc,
2470 		0x35208, 0x35220,
2471 		0x3523c, 0x35254,
2472 		0x35300, 0x35300,
2473 		0x35308, 0x3531c,
2474 		0x35338, 0x3533c,
2475 		0x35380, 0x35380,
2476 		0x35388, 0x353a8,
2477 		0x353b4, 0x353b4,
2478 		0x35400, 0x35420,
2479 		0x35438, 0x3543c,
2480 		0x35480, 0x35480,
2481 		0x354a8, 0x354a8,
2482 		0x354b0, 0x354b4,
2483 		0x354c8, 0x354d4,
2484 		0x35a40, 0x35a4c,
2485 		0x35af0, 0x35b20,
2486 		0x35b38, 0x35b3c,
2487 		0x35b80, 0x35b80,
2488 		0x35ba8, 0x35ba8,
2489 		0x35bb0, 0x35bb4,
2490 		0x35bc8, 0x35bd4,
2491 		0x36140, 0x3618c,
2492 		0x361f0, 0x361f4,
2493 		0x36200, 0x36200,
2494 		0x36218, 0x36218,
2495 		0x36400, 0x36400,
2496 		0x36408, 0x3641c,
2497 		0x36618, 0x36620,
2498 		0x36664, 0x36664,
2499 		0x366a8, 0x366a8,
2500 		0x366ec, 0x366ec,
2501 		0x36a00, 0x36abc,
2502 		0x36b00, 0x36b18,
2503 		0x36b20, 0x36b38,
2504 		0x36b40, 0x36b58,
2505 		0x36b60, 0x36b78,
2506 		0x36c00, 0x36c00,
2507 		0x36c08, 0x36c3c,
2508 		0x37000, 0x3702c,
2509 		0x37034, 0x37050,
2510 		0x37058, 0x37058,
2511 		0x37060, 0x3708c,
2512 		0x3709c, 0x370ac,
2513 		0x370c0, 0x370c0,
2514 		0x370c8, 0x370d0,
2515 		0x370d8, 0x370e0,
2516 		0x370ec, 0x3712c,
2517 		0x37134, 0x37150,
2518 		0x37158, 0x37158,
2519 		0x37160, 0x3718c,
2520 		0x3719c, 0x371ac,
2521 		0x371c0, 0x371c0,
2522 		0x371c8, 0x371d0,
2523 		0x371d8, 0x371e0,
2524 		0x371ec, 0x37290,
2525 		0x37298, 0x372c4,
2526 		0x372e4, 0x37390,
2527 		0x37398, 0x373c4,
2528 		0x373e4, 0x3742c,
2529 		0x37434, 0x37450,
2530 		0x37458, 0x37458,
2531 		0x37460, 0x3748c,
2532 		0x3749c, 0x374ac,
2533 		0x374c0, 0x374c0,
2534 		0x374c8, 0x374d0,
2535 		0x374d8, 0x374e0,
2536 		0x374ec, 0x3752c,
2537 		0x37534, 0x37550,
2538 		0x37558, 0x37558,
2539 		0x37560, 0x3758c,
2540 		0x3759c, 0x375ac,
2541 		0x375c0, 0x375c0,
2542 		0x375c8, 0x375d0,
2543 		0x375d8, 0x375e0,
2544 		0x375ec, 0x37690,
2545 		0x37698, 0x376c4,
2546 		0x376e4, 0x37790,
2547 		0x37798, 0x377c4,
2548 		0x377e4, 0x377fc,
2549 		0x37814, 0x37814,
2550 		0x37854, 0x37868,
2551 		0x37880, 0x3788c,
2552 		0x378c0, 0x378d0,
2553 		0x378e8, 0x378ec,
2554 		0x37900, 0x3792c,
2555 		0x37934, 0x37950,
2556 		0x37958, 0x37958,
2557 		0x37960, 0x3798c,
2558 		0x3799c, 0x379ac,
2559 		0x379c0, 0x379c0,
2560 		0x379c8, 0x379d0,
2561 		0x379d8, 0x379e0,
2562 		0x379ec, 0x37a90,
2563 		0x37a98, 0x37ac4,
2564 		0x37ae4, 0x37b10,
2565 		0x37b24, 0x37b28,
2566 		0x37b38, 0x37b50,
2567 		0x37bf0, 0x37c10,
2568 		0x37c24, 0x37c28,
2569 		0x37c38, 0x37c50,
2570 		0x37cf0, 0x37cfc,
2571 		0x40040, 0x40040,
2572 		0x40080, 0x40084,
2573 		0x40100, 0x40100,
2574 		0x40140, 0x401bc,
2575 		0x40200, 0x40214,
2576 		0x40228, 0x40228,
2577 		0x40240, 0x40258,
2578 		0x40280, 0x40280,
2579 		0x40304, 0x40304,
2580 		0x40330, 0x4033c,
2581 		0x41304, 0x413c8,
2582 		0x413d0, 0x413dc,
2583 		0x413f0, 0x413f0,
2584 		0x41400, 0x4140c,
2585 		0x41414, 0x4141c,
2586 		0x41480, 0x414d0,
2587 		0x44000, 0x4407c,
2588 		0x440c0, 0x441ac,
2589 		0x441b4, 0x4427c,
2590 		0x442c0, 0x443ac,
2591 		0x443b4, 0x4447c,
2592 		0x444c0, 0x445ac,
2593 		0x445b4, 0x4467c,
2594 		0x446c0, 0x447ac,
2595 		0x447b4, 0x4487c,
2596 		0x448c0, 0x449ac,
2597 		0x449b4, 0x44a7c,
2598 		0x44ac0, 0x44bac,
2599 		0x44bb4, 0x44c7c,
2600 		0x44cc0, 0x44dac,
2601 		0x44db4, 0x44e7c,
2602 		0x44ec0, 0x44fac,
2603 		0x44fb4, 0x4507c,
2604 		0x450c0, 0x451ac,
2605 		0x451b4, 0x451fc,
2606 		0x45800, 0x45804,
2607 		0x45810, 0x45830,
2608 		0x45840, 0x45860,
2609 		0x45868, 0x45868,
2610 		0x45880, 0x45884,
2611 		0x458a0, 0x458b0,
2612 		0x45a00, 0x45a04,
2613 		0x45a10, 0x45a30,
2614 		0x45a40, 0x45a60,
2615 		0x45a68, 0x45a68,
2616 		0x45a80, 0x45a84,
2617 		0x45aa0, 0x45ab0,
2618 		0x460c0, 0x460e4,
2619 		0x47000, 0x4703c,
2620 		0x47044, 0x4708c,
2621 		0x47200, 0x47250,
2622 		0x47400, 0x47408,
2623 		0x47414, 0x47420,
2624 		0x47600, 0x47618,
2625 		0x47800, 0x47814,
2626 		0x47820, 0x4782c,
2627 		0x50000, 0x50084,
2628 		0x50090, 0x500cc,
2629 		0x50300, 0x50384,
2630 		0x50400, 0x50400,
2631 		0x50800, 0x50884,
2632 		0x50890, 0x508cc,
2633 		0x50b00, 0x50b84,
2634 		0x50c00, 0x50c00,
2635 		0x51000, 0x51020,
2636 		0x51028, 0x510b0,
2637 		0x51300, 0x51324,
2638 	};
2639 
2640 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2641 	const unsigned int *reg_ranges;
2642 	int reg_ranges_size, range;
2643 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2644 
2645 	/* Select the right set of register ranges to dump depending on the
2646 	 * adapter chip type.
2647 	 */
2648 	switch (chip_version) {
2649 	case CHELSIO_T4:
2650 		reg_ranges = t4_reg_ranges;
2651 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2652 		break;
2653 
2654 	case CHELSIO_T5:
2655 		reg_ranges = t5_reg_ranges;
2656 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2657 		break;
2658 
2659 	case CHELSIO_T6:
2660 		reg_ranges = t6_reg_ranges;
2661 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2662 		break;
2663 
2664 	default:
2665 		dev_err(adap->pdev_dev,
2666 			"Unsupported chip version %d\n", chip_version);
2667 		return;
2668 	}
2669 
2670 	/* Clear the register buffer and insert the appropriate register
2671 	 * values selected by the above register ranges.
2672 	 */
2673 	memset(buf, 0, buf_size);
2674 	for (range = 0; range < reg_ranges_size; range += 2) {
2675 		unsigned int reg = reg_ranges[range];
2676 		unsigned int last_reg = reg_ranges[range + 1];
2677 		u32 *bufp = (u32 *)((char *)buf + reg);
2678 
2679 		/* Iterate across the register range filling in the register
2680 		 * buffer but don't write past the end of the register buffer.
2681 		 */
2682 		while (reg <= last_reg && bufp < buf_end) {
2683 			*bufp++ = t4_read_reg(adap, reg);
2684 			reg += sizeof(u32);
2685 		}
2686 	}
2687 }
2688 
2689 #define EEPROM_STAT_ADDR   0x7bfc
2690 #define VPD_BASE           0x400
2691 #define VPD_BASE_OLD       0
2692 #define VPD_LEN            1024
2693 
2694 /**
2695  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696  * @phys_addr: the physical EEPROM address
2697  * @fn: the PCI function number
2698  * @sz: size of function-specific area
2699  *
2700  * Translate a physical EEPROM address to virtual.  The first 1K is
2701  * accessed through virtual addresses starting at 31K, the rest is
2702  * accessed through virtual addresses starting at 0.
2703  *
2704  * The mapping is as follows:
2705  * [0..1K) -> [31K..32K)
2706  * [1K..1K+A) -> [31K-A..31K)
2707  * [1K+A..ES) -> [0..ES-A-1K)
2708  *
2709  * where A = @fn * @sz, and ES = EEPROM size.
2710  */
2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712 {
2713 	fn *= sz;
2714 	if (phys_addr < 1024)
2715 		return phys_addr + (31 << 10);
2716 	if (phys_addr < 1024 + fn)
2717 		return 31744 - fn + phys_addr - 1024;
2718 	if (phys_addr < EEPROMSIZE)
2719 		return phys_addr - 1024 - fn;
2720 	return -EINVAL;
2721 }
2722 
2723 /**
2724  *	t4_seeprom_wp - enable/disable EEPROM write protection
2725  *	@adapter: the adapter
2726  *	@enable: whether to enable or disable write protection
2727  *
2728  *	Enables or disables write protection on the serial EEPROM.
2729  */
2730 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731 {
2732 	unsigned int v = enable ? 0xc : 0;
2733 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734 	return ret < 0 ? ret : 0;
2735 }
2736 
2737 /**
2738  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739  *	@adapter: adapter to read
2740  *	@p: where to store the parameters
2741  *
2742  *	Reads card parameters stored in VPD EEPROM.
2743  */
2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745 {
2746 	int i, ret = 0, addr;
2747 	int ec, sn, pn, na;
2748 	u8 *vpd, csum, base_val = 0;
2749 	unsigned int vpdr_len, kw_offset, id_len;
2750 
2751 	vpd = vmalloc(VPD_LEN);
2752 	if (!vpd)
2753 		return -ENOMEM;
2754 
2755 	/* Card information normally starts at VPD_BASE but early cards had
2756 	 * it at 0.
2757 	 */
2758 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, 1, &base_val);
2759 	if (ret < 0)
2760 		goto out;
2761 
2762 	addr = base_val == PCI_VPD_LRDT_ID_STRING ? VPD_BASE : VPD_BASE_OLD;
2763 
2764 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2765 	if (ret < 0)
2766 		goto out;
2767 
2768 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2769 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2770 		ret = -EINVAL;
2771 		goto out;
2772 	}
2773 
2774 	id_len = pci_vpd_lrdt_size(vpd);
2775 	if (id_len > ID_LEN)
2776 		id_len = ID_LEN;
2777 
2778 	i = pci_vpd_find_tag(vpd, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2779 	if (i < 0) {
2780 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2781 		ret = -EINVAL;
2782 		goto out;
2783 	}
2784 
2785 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2786 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2787 	if (vpdr_len + kw_offset > VPD_LEN) {
2788 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2789 		ret = -EINVAL;
2790 		goto out;
2791 	}
2792 
2793 #define FIND_VPD_KW(var, name) do { \
2794 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2795 	if (var < 0) { \
2796 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2797 		ret = -EINVAL; \
2798 		goto out; \
2799 	} \
2800 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2801 } while (0)
2802 
2803 	FIND_VPD_KW(i, "RV");
2804 	for (csum = 0; i >= 0; i--)
2805 		csum += vpd[i];
2806 
2807 	if (csum) {
2808 		dev_err(adapter->pdev_dev,
2809 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2810 		ret = -EINVAL;
2811 		goto out;
2812 	}
2813 
2814 	FIND_VPD_KW(ec, "EC");
2815 	FIND_VPD_KW(sn, "SN");
2816 	FIND_VPD_KW(pn, "PN");
2817 	FIND_VPD_KW(na, "NA");
2818 #undef FIND_VPD_KW
2819 
2820 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2821 	strim(p->id);
2822 	memcpy(p->ec, vpd + ec, EC_LEN);
2823 	strim(p->ec);
2824 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2825 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2826 	strim(p->sn);
2827 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2828 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2829 	strim(p->pn);
2830 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2831 	strim((char *)p->na);
2832 
2833 out:
2834 	vfree(vpd);
2835 	return ret < 0 ? ret : 0;
2836 }
2837 
2838 /**
2839  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2840  *	@adapter: adapter to read
2841  *	@p: where to store the parameters
2842  *
2843  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2844  *	Clock.  This can only be called after a connection to the firmware
2845  *	is established.
2846  */
2847 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2848 {
2849 	u32 cclk_param, cclk_val;
2850 	int ret;
2851 
2852 	/* Grab the raw VPD parameters.
2853 	 */
2854 	ret = t4_get_raw_vpd_params(adapter, p);
2855 	if (ret)
2856 		return ret;
2857 
2858 	/* Ask firmware for the Core Clock since it knows how to translate the
2859 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2860 	 */
2861 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2862 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2863 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2864 			      1, &cclk_param, &cclk_val);
2865 
2866 	if (ret)
2867 		return ret;
2868 	p->cclk = cclk_val;
2869 
2870 	return 0;
2871 }
2872 
2873 /**
2874  *	t4_get_pfres - retrieve VF resource limits
2875  *	@adapter: the adapter
2876  *
2877  *	Retrieves configured resource limits and capabilities for a physical
2878  *	function.  The results are stored in @adapter->pfres.
2879  */
2880 int t4_get_pfres(struct adapter *adapter)
2881 {
2882 	struct pf_resources *pfres = &adapter->params.pfres;
2883 	struct fw_pfvf_cmd cmd, rpl;
2884 	int v;
2885 	u32 word;
2886 
2887 	/* Execute PFVF Read command to get VF resource limits; bail out early
2888 	 * with error on command failure.
2889 	 */
2890 	memset(&cmd, 0, sizeof(cmd));
2891 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2892 				    FW_CMD_REQUEST_F |
2893 				    FW_CMD_READ_F |
2894 				    FW_PFVF_CMD_PFN_V(adapter->pf) |
2895 				    FW_PFVF_CMD_VFN_V(0));
2896 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2897 	v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2898 	if (v != FW_SUCCESS)
2899 		return v;
2900 
2901 	/* Extract PF resource limits and return success.
2902 	 */
2903 	word = be32_to_cpu(rpl.niqflint_niq);
2904 	pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2905 	pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2906 
2907 	word = be32_to_cpu(rpl.type_to_neq);
2908 	pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2909 	pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2910 
2911 	word = be32_to_cpu(rpl.tc_to_nexactf);
2912 	pfres->tc = FW_PFVF_CMD_TC_G(word);
2913 	pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2914 	pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2915 
2916 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2917 	pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2918 	pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2919 	pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2920 
2921 	return 0;
2922 }
2923 
2924 /* serial flash and firmware constants */
2925 enum {
2926 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2927 
2928 	/* flash command opcodes */
2929 	SF_PROG_PAGE    = 2,          /* program page */
2930 	SF_WR_DISABLE   = 4,          /* disable writes */
2931 	SF_RD_STATUS    = 5,          /* read status register */
2932 	SF_WR_ENABLE    = 6,          /* enable writes */
2933 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2934 	SF_RD_ID        = 0x9f,       /* read ID */
2935 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2936 };
2937 
2938 /**
2939  *	sf1_read - read data from the serial flash
2940  *	@adapter: the adapter
2941  *	@byte_cnt: number of bytes to read
2942  *	@cont: whether another operation will be chained
2943  *	@lock: whether to lock SF for PL access only
2944  *	@valp: where to store the read data
2945  *
2946  *	Reads up to 4 bytes of data from the serial flash.  The location of
2947  *	the read needs to be specified prior to calling this by issuing the
2948  *	appropriate commands to the serial flash.
2949  */
2950 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2951 		    int lock, u32 *valp)
2952 {
2953 	int ret;
2954 
2955 	if (!byte_cnt || byte_cnt > 4)
2956 		return -EINVAL;
2957 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2958 		return -EBUSY;
2959 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2960 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2961 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2962 	if (!ret)
2963 		*valp = t4_read_reg(adapter, SF_DATA_A);
2964 	return ret;
2965 }
2966 
2967 /**
2968  *	sf1_write - write data to the serial flash
2969  *	@adapter: the adapter
2970  *	@byte_cnt: number of bytes to write
2971  *	@cont: whether another operation will be chained
2972  *	@lock: whether to lock SF for PL access only
2973  *	@val: value to write
2974  *
2975  *	Writes up to 4 bytes of data to the serial flash.  The location of
2976  *	the write needs to be specified prior to calling this by issuing the
2977  *	appropriate commands to the serial flash.
2978  */
2979 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2980 		     int lock, u32 val)
2981 {
2982 	if (!byte_cnt || byte_cnt > 4)
2983 		return -EINVAL;
2984 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2985 		return -EBUSY;
2986 	t4_write_reg(adapter, SF_DATA_A, val);
2987 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2988 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2989 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2990 }
2991 
2992 /**
2993  *	flash_wait_op - wait for a flash operation to complete
2994  *	@adapter: the adapter
2995  *	@attempts: max number of polls of the status register
2996  *	@delay: delay between polls in ms
2997  *
2998  *	Wait for a flash operation to complete by polling the status register.
2999  */
3000 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3001 {
3002 	int ret;
3003 	u32 status;
3004 
3005 	while (1) {
3006 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3007 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3008 			return ret;
3009 		if (!(status & 1))
3010 			return 0;
3011 		if (--attempts == 0)
3012 			return -EAGAIN;
3013 		if (delay)
3014 			msleep(delay);
3015 	}
3016 }
3017 
3018 /**
3019  *	t4_read_flash - read words from serial flash
3020  *	@adapter: the adapter
3021  *	@addr: the start address for the read
3022  *	@nwords: how many 32-bit words to read
3023  *	@data: where to store the read data
3024  *	@byte_oriented: whether to store data as bytes or as words
3025  *
3026  *	Read the specified number of 32-bit words from the serial flash.
3027  *	If @byte_oriented is set the read data is stored as a byte array
3028  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3029  *	natural endianness.
3030  */
3031 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3032 		  unsigned int nwords, u32 *data, int byte_oriented)
3033 {
3034 	int ret;
3035 
3036 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3037 		return -EINVAL;
3038 
3039 	addr = swab32(addr) | SF_RD_DATA_FAST;
3040 
3041 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3042 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3043 		return ret;
3044 
3045 	for ( ; nwords; nwords--, data++) {
3046 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3047 		if (nwords == 1)
3048 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3049 		if (ret)
3050 			return ret;
3051 		if (byte_oriented)
3052 			*data = (__force __u32)(cpu_to_be32(*data));
3053 	}
3054 	return 0;
3055 }
3056 
3057 /**
3058  *	t4_write_flash - write up to a page of data to the serial flash
3059  *	@adapter: the adapter
3060  *	@addr: the start address to write
3061  *	@n: length of data to write in bytes
3062  *	@data: the data to write
3063  *	@byte_oriented: whether to store data as bytes or as words
3064  *
3065  *	Writes up to a page of data (256 bytes) to the serial flash starting
3066  *	at the given address.  All the data must be written to the same page.
3067  *	If @byte_oriented is set the write data is stored as byte stream
3068  *	(i.e. matches what on disk), otherwise in big-endian.
3069  */
3070 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3071 			  unsigned int n, const u8 *data, bool byte_oriented)
3072 {
3073 	unsigned int i, c, left, val, offset = addr & 0xff;
3074 	u32 buf[64];
3075 	int ret;
3076 
3077 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3078 		return -EINVAL;
3079 
3080 	val = swab32(addr) | SF_PROG_PAGE;
3081 
3082 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3083 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3084 		goto unlock;
3085 
3086 	for (left = n; left; left -= c, data += c) {
3087 		c = min(left, 4U);
3088 		for (val = 0, i = 0; i < c; ++i) {
3089 			if (byte_oriented)
3090 				val = (val << 8) + data[i];
3091 			else
3092 				val = (val << 8) + data[c - i - 1];
3093 		}
3094 
3095 		ret = sf1_write(adapter, c, c != left, 1, val);
3096 		if (ret)
3097 			goto unlock;
3098 	}
3099 	ret = flash_wait_op(adapter, 8, 1);
3100 	if (ret)
3101 		goto unlock;
3102 
3103 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3104 
3105 	/* Read the page to verify the write succeeded */
3106 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3107 			    byte_oriented);
3108 	if (ret)
3109 		return ret;
3110 
3111 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3112 		dev_err(adapter->pdev_dev,
3113 			"failed to correctly write the flash page at %#x\n",
3114 			addr);
3115 		return -EIO;
3116 	}
3117 	return 0;
3118 
3119 unlock:
3120 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3121 	return ret;
3122 }
3123 
3124 /**
3125  *	t4_get_fw_version - read the firmware version
3126  *	@adapter: the adapter
3127  *	@vers: where to place the version
3128  *
3129  *	Reads the FW version from flash.
3130  */
3131 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3132 {
3133 	return t4_read_flash(adapter, FLASH_FW_START +
3134 			     offsetof(struct fw_hdr, fw_ver), 1,
3135 			     vers, 0);
3136 }
3137 
3138 /**
3139  *	t4_get_bs_version - read the firmware bootstrap version
3140  *	@adapter: the adapter
3141  *	@vers: where to place the version
3142  *
3143  *	Reads the FW Bootstrap version from flash.
3144  */
3145 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3146 {
3147 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3148 			     offsetof(struct fw_hdr, fw_ver), 1,
3149 			     vers, 0);
3150 }
3151 
3152 /**
3153  *	t4_get_tp_version - read the TP microcode version
3154  *	@adapter: the adapter
3155  *	@vers: where to place the version
3156  *
3157  *	Reads the TP microcode version from flash.
3158  */
3159 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3160 {
3161 	return t4_read_flash(adapter, FLASH_FW_START +
3162 			     offsetof(struct fw_hdr, tp_microcode_ver),
3163 			     1, vers, 0);
3164 }
3165 
3166 /**
3167  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3168  *	@adap: the adapter
3169  *	@vers: where to place the version
3170  *
3171  *	Reads the Expansion ROM header from FLASH and returns the version
3172  *	number (if present) through the @vers return value pointer.  We return
3173  *	this in the Firmware Version Format since it's convenient.  Return
3174  *	0 on success, -ENOENT if no Expansion ROM is present.
3175  */
3176 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3177 {
3178 	struct exprom_header {
3179 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3180 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3181 	} *hdr;
3182 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3183 					   sizeof(u32))];
3184 	int ret;
3185 
3186 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3187 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3188 			    0);
3189 	if (ret)
3190 		return ret;
3191 
3192 	hdr = (struct exprom_header *)exprom_header_buf;
3193 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3194 		return -ENOENT;
3195 
3196 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3197 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3198 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3199 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3200 	return 0;
3201 }
3202 
3203 /**
3204  *      t4_get_vpd_version - return the VPD version
3205  *      @adapter: the adapter
3206  *      @vers: where to place the version
3207  *
3208  *      Reads the VPD via the Firmware interface (thus this can only be called
3209  *      once we're ready to issue Firmware commands).  The format of the
3210  *      VPD version is adapter specific.  Returns 0 on success, an error on
3211  *      failure.
3212  *
3213  *      Note that early versions of the Firmware didn't include the ability
3214  *      to retrieve the VPD version, so we zero-out the return-value parameter
3215  *      in that case to avoid leaving it with garbage in it.
3216  *
3217  *      Also note that the Firmware will return its cached copy of the VPD
3218  *      Revision ID, not the actual Revision ID as written in the Serial
3219  *      EEPROM.  This is only an issue if a new VPD has been written and the
3220  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3221  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3222  *      if the Host Driver will be performing a full adapter initialization.
3223  */
3224 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3225 {
3226 	u32 vpdrev_param;
3227 	int ret;
3228 
3229 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3230 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3231 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3232 			      1, &vpdrev_param, vers);
3233 	if (ret)
3234 		*vers = 0;
3235 	return ret;
3236 }
3237 
3238 /**
3239  *      t4_get_scfg_version - return the Serial Configuration version
3240  *      @adapter: the adapter
3241  *      @vers: where to place the version
3242  *
3243  *      Reads the Serial Configuration Version via the Firmware interface
3244  *      (thus this can only be called once we're ready to issue Firmware
3245  *      commands).  The format of the Serial Configuration version is
3246  *      adapter specific.  Returns 0 on success, an error on failure.
3247  *
3248  *      Note that early versions of the Firmware didn't include the ability
3249  *      to retrieve the Serial Configuration version, so we zero-out the
3250  *      return-value parameter in that case to avoid leaving it with
3251  *      garbage in it.
3252  *
3253  *      Also note that the Firmware will return its cached copy of the Serial
3254  *      Initialization Revision ID, not the actual Revision ID as written in
3255  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3256  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3257  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3258  *      been issued if the Host Driver will be performing a full adapter
3259  *      initialization.
3260  */
3261 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3262 {
3263 	u32 scfgrev_param;
3264 	int ret;
3265 
3266 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3267 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3268 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3269 			      1, &scfgrev_param, vers);
3270 	if (ret)
3271 		*vers = 0;
3272 	return ret;
3273 }
3274 
3275 /**
3276  *      t4_get_version_info - extract various chip/firmware version information
3277  *      @adapter: the adapter
3278  *
3279  *      Reads various chip/firmware version numbers and stores them into the
3280  *      adapter Adapter Parameters structure.  If any of the efforts fails
3281  *      the first failure will be returned, but all of the version numbers
3282  *      will be read.
3283  */
3284 int t4_get_version_info(struct adapter *adapter)
3285 {
3286 	int ret = 0;
3287 
3288 	#define FIRST_RET(__getvinfo) \
3289 	do { \
3290 		int __ret = __getvinfo; \
3291 		if (__ret && !ret) \
3292 			ret = __ret; \
3293 	} while (0)
3294 
3295 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3296 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3297 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3298 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3299 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3300 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3301 
3302 	#undef FIRST_RET
3303 	return ret;
3304 }
3305 
3306 /**
3307  *      t4_dump_version_info - dump all of the adapter configuration IDs
3308  *      @adapter: the adapter
3309  *
3310  *      Dumps all of the various bits of adapter configuration version/revision
3311  *      IDs information.  This is typically called at some point after
3312  *      t4_get_version_info() has been called.
3313  */
3314 void t4_dump_version_info(struct adapter *adapter)
3315 {
3316 	/* Device information */
3317 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3318 		 adapter->params.vpd.id,
3319 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3320 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3321 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3322 
3323 	/* Firmware Version */
3324 	if (!adapter->params.fw_vers)
3325 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3326 	else
3327 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3328 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3329 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3330 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3331 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3332 
3333 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3334 	 * Firmware, so dev_info() is more appropriate here.)
3335 	 */
3336 	if (!adapter->params.bs_vers)
3337 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3338 	else
3339 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3340 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3341 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3342 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3343 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3344 
3345 	/* TP Microcode Version */
3346 	if (!adapter->params.tp_vers)
3347 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3348 	else
3349 		dev_info(adapter->pdev_dev,
3350 			 "TP Microcode version: %u.%u.%u.%u\n",
3351 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3352 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3353 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3354 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3355 
3356 	/* Expansion ROM version */
3357 	if (!adapter->params.er_vers)
3358 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3359 	else
3360 		dev_info(adapter->pdev_dev,
3361 			 "Expansion ROM version: %u.%u.%u.%u\n",
3362 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3363 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3364 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3365 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3366 
3367 	/* Serial Configuration version */
3368 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3369 		 adapter->params.scfg_vers);
3370 
3371 	/* VPD Version */
3372 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3373 		 adapter->params.vpd_vers);
3374 }
3375 
3376 /**
3377  *	t4_check_fw_version - check if the FW is supported with this driver
3378  *	@adap: the adapter
3379  *
3380  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3381  *	if there's exact match, a negative error if the version could not be
3382  *	read or there's a major version mismatch
3383  */
3384 int t4_check_fw_version(struct adapter *adap)
3385 {
3386 	int i, ret, major, minor, micro;
3387 	int exp_major, exp_minor, exp_micro;
3388 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3389 
3390 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3391 	/* Try multiple times before returning error */
3392 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3393 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3394 
3395 	if (ret)
3396 		return ret;
3397 
3398 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3399 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3400 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3401 
3402 	switch (chip_version) {
3403 	case CHELSIO_T4:
3404 		exp_major = T4FW_MIN_VERSION_MAJOR;
3405 		exp_minor = T4FW_MIN_VERSION_MINOR;
3406 		exp_micro = T4FW_MIN_VERSION_MICRO;
3407 		break;
3408 	case CHELSIO_T5:
3409 		exp_major = T5FW_MIN_VERSION_MAJOR;
3410 		exp_minor = T5FW_MIN_VERSION_MINOR;
3411 		exp_micro = T5FW_MIN_VERSION_MICRO;
3412 		break;
3413 	case CHELSIO_T6:
3414 		exp_major = T6FW_MIN_VERSION_MAJOR;
3415 		exp_minor = T6FW_MIN_VERSION_MINOR;
3416 		exp_micro = T6FW_MIN_VERSION_MICRO;
3417 		break;
3418 	default:
3419 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3420 			adap->chip);
3421 		return -EINVAL;
3422 	}
3423 
3424 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3425 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3426 		dev_err(adap->pdev_dev,
3427 			"Card has firmware version %u.%u.%u, minimum "
3428 			"supported firmware is %u.%u.%u.\n", major, minor,
3429 			micro, exp_major, exp_minor, exp_micro);
3430 		return -EFAULT;
3431 	}
3432 	return 0;
3433 }
3434 
3435 /* Is the given firmware API compatible with the one the driver was compiled
3436  * with?
3437  */
3438 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3439 {
3440 
3441 	/* short circuit if it's the exact same firmware version */
3442 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3443 		return 1;
3444 
3445 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3446 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3447 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3448 		return 1;
3449 #undef SAME_INTF
3450 
3451 	return 0;
3452 }
3453 
3454 /* The firmware in the filesystem is usable, but should it be installed?
3455  * This routine explains itself in detail if it indicates the filesystem
3456  * firmware should be installed.
3457  */
3458 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3459 				int k, int c)
3460 {
3461 	const char *reason;
3462 
3463 	if (!card_fw_usable) {
3464 		reason = "incompatible or unusable";
3465 		goto install;
3466 	}
3467 
3468 	if (k > c) {
3469 		reason = "older than the version supported with this driver";
3470 		goto install;
3471 	}
3472 
3473 	return 0;
3474 
3475 install:
3476 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3477 		"installing firmware %u.%u.%u.%u on card.\n",
3478 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3479 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3480 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3481 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3482 
3483 	return 1;
3484 }
3485 
3486 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3487 	       const u8 *fw_data, unsigned int fw_size,
3488 	       struct fw_hdr *card_fw, enum dev_state state,
3489 	       int *reset)
3490 {
3491 	int ret, card_fw_usable, fs_fw_usable;
3492 	const struct fw_hdr *fs_fw;
3493 	const struct fw_hdr *drv_fw;
3494 
3495 	drv_fw = &fw_info->fw_hdr;
3496 
3497 	/* Read the header of the firmware on the card */
3498 	ret = t4_read_flash(adap, FLASH_FW_START,
3499 			    sizeof(*card_fw) / sizeof(uint32_t),
3500 			    (uint32_t *)card_fw, 1);
3501 	if (ret == 0) {
3502 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3503 	} else {
3504 		dev_err(adap->pdev_dev,
3505 			"Unable to read card's firmware header: %d\n", ret);
3506 		card_fw_usable = 0;
3507 	}
3508 
3509 	if (fw_data != NULL) {
3510 		fs_fw = (const void *)fw_data;
3511 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3512 	} else {
3513 		fs_fw = NULL;
3514 		fs_fw_usable = 0;
3515 	}
3516 
3517 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3518 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3519 		/* Common case: the firmware on the card is an exact match and
3520 		 * the filesystem one is an exact match too, or the filesystem
3521 		 * one is absent/incompatible.
3522 		 */
3523 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3524 		   should_install_fs_fw(adap, card_fw_usable,
3525 					be32_to_cpu(fs_fw->fw_ver),
3526 					be32_to_cpu(card_fw->fw_ver))) {
3527 		ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3528 				    fw_size, 0);
3529 		if (ret != 0) {
3530 			dev_err(adap->pdev_dev,
3531 				"failed to install firmware: %d\n", ret);
3532 			goto bye;
3533 		}
3534 
3535 		/* Installed successfully, update the cached header too. */
3536 		*card_fw = *fs_fw;
3537 		card_fw_usable = 1;
3538 		*reset = 0;	/* already reset as part of load_fw */
3539 	}
3540 
3541 	if (!card_fw_usable) {
3542 		uint32_t d, c, k;
3543 
3544 		d = be32_to_cpu(drv_fw->fw_ver);
3545 		c = be32_to_cpu(card_fw->fw_ver);
3546 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3547 
3548 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3549 			"chip state %d, "
3550 			"driver compiled with %d.%d.%d.%d, "
3551 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3552 			state,
3553 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3554 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3555 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3556 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3557 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3558 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3559 		ret = -EINVAL;
3560 		goto bye;
3561 	}
3562 
3563 	/* We're using whatever's on the card and it's known to be good. */
3564 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3565 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3566 
3567 bye:
3568 	return ret;
3569 }
3570 
3571 /**
3572  *	t4_flash_erase_sectors - erase a range of flash sectors
3573  *	@adapter: the adapter
3574  *	@start: the first sector to erase
3575  *	@end: the last sector to erase
3576  *
3577  *	Erases the sectors in the given inclusive range.
3578  */
3579 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3580 {
3581 	int ret = 0;
3582 
3583 	if (end >= adapter->params.sf_nsec)
3584 		return -EINVAL;
3585 
3586 	while (start <= end) {
3587 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3588 		    (ret = sf1_write(adapter, 4, 0, 1,
3589 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3590 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3591 			dev_err(adapter->pdev_dev,
3592 				"erase of flash sector %d failed, error %d\n",
3593 				start, ret);
3594 			break;
3595 		}
3596 		start++;
3597 	}
3598 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3599 	return ret;
3600 }
3601 
3602 /**
3603  *	t4_flash_cfg_addr - return the address of the flash configuration file
3604  *	@adapter: the adapter
3605  *
3606  *	Return the address within the flash where the Firmware Configuration
3607  *	File is stored.
3608  */
3609 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3610 {
3611 	if (adapter->params.sf_size == 0x100000)
3612 		return FLASH_FPGA_CFG_START;
3613 	else
3614 		return FLASH_CFG_START;
3615 }
3616 
3617 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3618  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3619  * and emit an error message for mismatched firmware to save our caller the
3620  * effort ...
3621  */
3622 static bool t4_fw_matches_chip(const struct adapter *adap,
3623 			       const struct fw_hdr *hdr)
3624 {
3625 	/* The expression below will return FALSE for any unsupported adapter
3626 	 * which will keep us "honest" in the future ...
3627 	 */
3628 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3629 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3630 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3631 		return true;
3632 
3633 	dev_err(adap->pdev_dev,
3634 		"FW image (%d) is not suitable for this adapter (%d)\n",
3635 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3636 	return false;
3637 }
3638 
3639 /**
3640  *	t4_load_fw - download firmware
3641  *	@adap: the adapter
3642  *	@fw_data: the firmware image to write
3643  *	@size: image size
3644  *
3645  *	Write the supplied firmware image to the card's serial flash.
3646  */
3647 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3648 {
3649 	u32 csum;
3650 	int ret, addr;
3651 	unsigned int i;
3652 	u8 first_page[SF_PAGE_SIZE];
3653 	const __be32 *p = (const __be32 *)fw_data;
3654 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3655 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3656 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3657 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3658 	unsigned int fw_start = FLASH_FW_START;
3659 
3660 	if (!size) {
3661 		dev_err(adap->pdev_dev, "FW image has no data\n");
3662 		return -EINVAL;
3663 	}
3664 	if (size & 511) {
3665 		dev_err(adap->pdev_dev,
3666 			"FW image size not multiple of 512 bytes\n");
3667 		return -EINVAL;
3668 	}
3669 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3670 		dev_err(adap->pdev_dev,
3671 			"FW image size differs from size in FW header\n");
3672 		return -EINVAL;
3673 	}
3674 	if (size > fw_size) {
3675 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3676 			fw_size);
3677 		return -EFBIG;
3678 	}
3679 	if (!t4_fw_matches_chip(adap, hdr))
3680 		return -EINVAL;
3681 
3682 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3683 		csum += be32_to_cpu(p[i]);
3684 
3685 	if (csum != 0xffffffff) {
3686 		dev_err(adap->pdev_dev,
3687 			"corrupted firmware image, checksum %#x\n", csum);
3688 		return -EINVAL;
3689 	}
3690 
3691 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3692 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3693 	if (ret)
3694 		goto out;
3695 
3696 	/*
3697 	 * We write the correct version at the end so the driver can see a bad
3698 	 * version if the FW write fails.  Start by writing a copy of the
3699 	 * first page with a bad version.
3700 	 */
3701 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3702 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3703 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, true);
3704 	if (ret)
3705 		goto out;
3706 
3707 	addr = fw_start;
3708 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3709 		addr += SF_PAGE_SIZE;
3710 		fw_data += SF_PAGE_SIZE;
3711 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, true);
3712 		if (ret)
3713 			goto out;
3714 	}
3715 
3716 	ret = t4_write_flash(adap, fw_start + offsetof(struct fw_hdr, fw_ver),
3717 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver,
3718 			     true);
3719 out:
3720 	if (ret)
3721 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3722 			ret);
3723 	else
3724 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3725 	return ret;
3726 }
3727 
3728 /**
3729  *	t4_phy_fw_ver - return current PHY firmware version
3730  *	@adap: the adapter
3731  *	@phy_fw_ver: return value buffer for PHY firmware version
3732  *
3733  *	Returns the current version of external PHY firmware on the
3734  *	adapter.
3735  */
3736 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3737 {
3738 	u32 param, val;
3739 	int ret;
3740 
3741 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3742 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3743 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3744 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3745 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3746 			      &param, &val);
3747 	if (ret)
3748 		return ret;
3749 	*phy_fw_ver = val;
3750 	return 0;
3751 }
3752 
3753 /**
3754  *	t4_load_phy_fw - download port PHY firmware
3755  *	@adap: the adapter
3756  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3757  *	@phy_fw_version: function to check PHY firmware versions
3758  *	@phy_fw_data: the PHY firmware image to write
3759  *	@phy_fw_size: image size
3760  *
3761  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3762  *	@phy_fw_version is supplied, then it will be used to determine if
3763  *	it's necessary to perform the transfer by comparing the version
3764  *	of any existing adapter PHY firmware with that of the passed in
3765  *	PHY firmware image.
3766  *
3767  *	A negative error number will be returned if an error occurs.  If
3768  *	version number support is available and there's no need to upgrade
3769  *	the firmware, 0 will be returned.  If firmware is successfully
3770  *	transferred to the adapter, 1 will be returned.
3771  *
3772  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3773  *	a result, a RESET of the adapter would cause that RAM to lose its
3774  *	contents.  Thus, loading PHY firmware on such adapters must happen
3775  *	after any FW_RESET_CMDs ...
3776  */
3777 int t4_load_phy_fw(struct adapter *adap, int win,
3778 		   int (*phy_fw_version)(const u8 *, size_t),
3779 		   const u8 *phy_fw_data, size_t phy_fw_size)
3780 {
3781 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3782 	unsigned long mtype = 0, maddr = 0;
3783 	u32 param, val;
3784 	int ret;
3785 
3786 	/* If we have version number support, then check to see if the adapter
3787 	 * already has up-to-date PHY firmware loaded.
3788 	 */
3789 	if (phy_fw_version) {
3790 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3791 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3792 		if (ret < 0)
3793 			return ret;
3794 
3795 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3796 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3797 				"version %#x\n", cur_phy_fw_ver);
3798 			return 0;
3799 		}
3800 	}
3801 
3802 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3803 	 * The size of the file requires a special version of the READ command
3804 	 * which will pass the file size via the values field in PARAMS_CMD and
3805 	 * retrieve the return value from firmware and place it in the same
3806 	 * buffer values
3807 	 */
3808 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3809 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3810 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3811 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3812 	val = phy_fw_size;
3813 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3814 				 &param, &val, 1, true);
3815 	if (ret < 0)
3816 		return ret;
3817 	mtype = val >> 8;
3818 	maddr = (val & 0xff) << 16;
3819 
3820 	/* Copy the supplied PHY Firmware image to the adapter memory location
3821 	 * allocated by the adapter firmware.
3822 	 */
3823 	spin_lock_bh(&adap->win0_lock);
3824 	ret = t4_memory_rw(adap, win, mtype, maddr,
3825 			   phy_fw_size, (__be32 *)phy_fw_data,
3826 			   T4_MEMORY_WRITE);
3827 	spin_unlock_bh(&adap->win0_lock);
3828 	if (ret)
3829 		return ret;
3830 
3831 	/* Tell the firmware that the PHY firmware image has been written to
3832 	 * RAM and it can now start copying it over to the PHYs.  The chip
3833 	 * firmware will RESET the affected PHYs as part of this operation
3834 	 * leaving them running the new PHY firmware image.
3835 	 */
3836 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3837 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3838 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3839 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3840 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3841 				    &param, &val, 30000);
3842 
3843 	/* If we have version number support, then check to see that the new
3844 	 * firmware got loaded properly.
3845 	 */
3846 	if (phy_fw_version) {
3847 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3848 		if (ret < 0)
3849 			return ret;
3850 
3851 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3852 			CH_WARN(adap, "PHY Firmware did not update: "
3853 				"version on adapter %#x, "
3854 				"version flashed %#x\n",
3855 				cur_phy_fw_ver, new_phy_fw_vers);
3856 			return -ENXIO;
3857 		}
3858 	}
3859 
3860 	return 1;
3861 }
3862 
3863 /**
3864  *	t4_fwcache - firmware cache operation
3865  *	@adap: the adapter
3866  *	@op  : the operation (flush or flush and invalidate)
3867  */
3868 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3869 {
3870 	struct fw_params_cmd c;
3871 
3872 	memset(&c, 0, sizeof(c));
3873 	c.op_to_vfn =
3874 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3875 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3876 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3877 			    FW_PARAMS_CMD_VFN_V(0));
3878 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3879 	c.param[0].mnem =
3880 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3881 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3882 	c.param[0].val = cpu_to_be32(op);
3883 
3884 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3885 }
3886 
3887 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3888 			unsigned int *pif_req_wrptr,
3889 			unsigned int *pif_rsp_wrptr)
3890 {
3891 	int i, j;
3892 	u32 cfg, val, req, rsp;
3893 
3894 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3895 	if (cfg & LADBGEN_F)
3896 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3897 
3898 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3899 	req = POLADBGWRPTR_G(val);
3900 	rsp = PILADBGWRPTR_G(val);
3901 	if (pif_req_wrptr)
3902 		*pif_req_wrptr = req;
3903 	if (pif_rsp_wrptr)
3904 		*pif_rsp_wrptr = rsp;
3905 
3906 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3907 		for (j = 0; j < 6; j++) {
3908 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3909 				     PILADBGRDPTR_V(rsp));
3910 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3911 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3912 			req++;
3913 			rsp++;
3914 		}
3915 		req = (req + 2) & POLADBGRDPTR_M;
3916 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3917 	}
3918 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3919 }
3920 
3921 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3922 {
3923 	u32 cfg;
3924 	int i, j, idx;
3925 
3926 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3927 	if (cfg & LADBGEN_F)
3928 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3929 
3930 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3931 		for (j = 0; j < 5; j++) {
3932 			idx = 8 * i + j;
3933 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3934 				     PILADBGRDPTR_V(idx));
3935 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3936 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3937 		}
3938 	}
3939 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3940 }
3941 
3942 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3943 {
3944 	unsigned int i, j;
3945 
3946 	for (i = 0; i < 8; i++) {
3947 		u32 *p = la_buf + i;
3948 
3949 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3950 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3951 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3952 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3953 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3954 	}
3955 }
3956 
3957 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3958  * Capabilities which we control with separate controls -- see, for instance,
3959  * Pause Frames and Forward Error Correction.  In order to determine what the
3960  * full set of Advertised Port Capabilities are, the base Advertised Port
3961  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3962  * Port Capabilities associated with those other controls.  See
3963  * t4_link_acaps() for how this is done.
3964  */
3965 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3966 		     FW_PORT_CAP32_ANEG)
3967 
3968 /**
3969  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3970  *	@caps16: a 16-bit Port Capabilities value
3971  *
3972  *	Returns the equivalent 32-bit Port Capabilities value.
3973  */
3974 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3975 {
3976 	fw_port_cap32_t caps32 = 0;
3977 
3978 	#define CAP16_TO_CAP32(__cap) \
3979 		do { \
3980 			if (caps16 & FW_PORT_CAP_##__cap) \
3981 				caps32 |= FW_PORT_CAP32_##__cap; \
3982 		} while (0)
3983 
3984 	CAP16_TO_CAP32(SPEED_100M);
3985 	CAP16_TO_CAP32(SPEED_1G);
3986 	CAP16_TO_CAP32(SPEED_25G);
3987 	CAP16_TO_CAP32(SPEED_10G);
3988 	CAP16_TO_CAP32(SPEED_40G);
3989 	CAP16_TO_CAP32(SPEED_100G);
3990 	CAP16_TO_CAP32(FC_RX);
3991 	CAP16_TO_CAP32(FC_TX);
3992 	CAP16_TO_CAP32(ANEG);
3993 	CAP16_TO_CAP32(FORCE_PAUSE);
3994 	CAP16_TO_CAP32(MDIAUTO);
3995 	CAP16_TO_CAP32(MDISTRAIGHT);
3996 	CAP16_TO_CAP32(FEC_RS);
3997 	CAP16_TO_CAP32(FEC_BASER_RS);
3998 	CAP16_TO_CAP32(802_3_PAUSE);
3999 	CAP16_TO_CAP32(802_3_ASM_DIR);
4000 
4001 	#undef CAP16_TO_CAP32
4002 
4003 	return caps32;
4004 }
4005 
4006 /**
4007  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4008  *	@caps32: a 32-bit Port Capabilities value
4009  *
4010  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
4011  *	not all 32-bit Port Capabilities can be represented in the 16-bit
4012  *	Port Capabilities and some fields/values may not make it.
4013  */
4014 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4015 {
4016 	fw_port_cap16_t caps16 = 0;
4017 
4018 	#define CAP32_TO_CAP16(__cap) \
4019 		do { \
4020 			if (caps32 & FW_PORT_CAP32_##__cap) \
4021 				caps16 |= FW_PORT_CAP_##__cap; \
4022 		} while (0)
4023 
4024 	CAP32_TO_CAP16(SPEED_100M);
4025 	CAP32_TO_CAP16(SPEED_1G);
4026 	CAP32_TO_CAP16(SPEED_10G);
4027 	CAP32_TO_CAP16(SPEED_25G);
4028 	CAP32_TO_CAP16(SPEED_40G);
4029 	CAP32_TO_CAP16(SPEED_100G);
4030 	CAP32_TO_CAP16(FC_RX);
4031 	CAP32_TO_CAP16(FC_TX);
4032 	CAP32_TO_CAP16(802_3_PAUSE);
4033 	CAP32_TO_CAP16(802_3_ASM_DIR);
4034 	CAP32_TO_CAP16(ANEG);
4035 	CAP32_TO_CAP16(FORCE_PAUSE);
4036 	CAP32_TO_CAP16(MDIAUTO);
4037 	CAP32_TO_CAP16(MDISTRAIGHT);
4038 	CAP32_TO_CAP16(FEC_RS);
4039 	CAP32_TO_CAP16(FEC_BASER_RS);
4040 
4041 	#undef CAP32_TO_CAP16
4042 
4043 	return caps16;
4044 }
4045 
4046 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4047 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4048 {
4049 	enum cc_pause cc_pause = 0;
4050 
4051 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4052 		cc_pause |= PAUSE_RX;
4053 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4054 		cc_pause |= PAUSE_TX;
4055 
4056 	return cc_pause;
4057 }
4058 
4059 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4060 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4061 {
4062 	/* Translate orthogonal RX/TX Pause Controls for L1 Configure
4063 	 * commands, etc.
4064 	 */
4065 	fw_port_cap32_t fw_pause = 0;
4066 
4067 	if (cc_pause & PAUSE_RX)
4068 		fw_pause |= FW_PORT_CAP32_FC_RX;
4069 	if (cc_pause & PAUSE_TX)
4070 		fw_pause |= FW_PORT_CAP32_FC_TX;
4071 	if (!(cc_pause & PAUSE_AUTONEG))
4072 		fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4073 
4074 	/* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4075 	 * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4076 	 * Note that these bits are ignored in L1 Configure commands.
4077 	 */
4078 	if (cc_pause & PAUSE_RX) {
4079 		if (cc_pause & PAUSE_TX)
4080 			fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4081 		else
4082 			fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4083 				    FW_PORT_CAP32_802_3_PAUSE;
4084 	} else if (cc_pause & PAUSE_TX) {
4085 		fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4086 	}
4087 
4088 	return fw_pause;
4089 }
4090 
4091 /* Translate Firmware Forward Error Correction specification to Common Code */
4092 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4093 {
4094 	enum cc_fec cc_fec = 0;
4095 
4096 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4097 		cc_fec |= FEC_RS;
4098 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4099 		cc_fec |= FEC_BASER_RS;
4100 
4101 	return cc_fec;
4102 }
4103 
4104 /* Translate Common Code Forward Error Correction specification to Firmware */
4105 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4106 {
4107 	fw_port_cap32_t fw_fec = 0;
4108 
4109 	if (cc_fec & FEC_RS)
4110 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4111 	if (cc_fec & FEC_BASER_RS)
4112 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4113 
4114 	return fw_fec;
4115 }
4116 
4117 /**
4118  *	t4_link_acaps - compute Link Advertised Port Capabilities
4119  *	@adapter: the adapter
4120  *	@port: the Port ID
4121  *	@lc: the Port's Link Configuration
4122  *
4123  *	Synthesize the Advertised Port Capabilities we'll be using based on
4124  *	the base Advertised Port Capabilities (which have been filtered by
4125  *	ADVERT_MASK) plus the individual controls for things like Pause
4126  *	Frames, Forward Error Correction, MDI, etc.
4127  */
4128 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4129 			      struct link_config *lc)
4130 {
4131 	fw_port_cap32_t fw_fc, fw_fec, acaps;
4132 	unsigned int fw_mdi;
4133 	char cc_fec;
4134 
4135 	fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4136 
4137 	/* Convert driver coding of Pause Frame Flow Control settings into the
4138 	 * Firmware's API.
4139 	 */
4140 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4141 
4142 	/* Convert Common Code Forward Error Control settings into the
4143 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4144 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4145 	 * sent us as part of its IEEE 802.3-based interpretation of
4146 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4147 	 * use whatever is in the current Requested FEC settings.
4148 	 */
4149 	if (lc->requested_fec & FEC_AUTO)
4150 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4151 	else
4152 		cc_fec = lc->requested_fec;
4153 	fw_fec = cc_to_fwcap_fec(cc_fec);
4154 
4155 	/* Figure out what our Requested Port Capabilities are going to be.
4156 	 * Note parallel structure in t4_handle_get_port_info() and
4157 	 * init_link_config().
4158 	 */
4159 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4160 		acaps = lc->acaps | fw_fc | fw_fec;
4161 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4162 		lc->fec = cc_fec;
4163 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4164 		acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4165 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4166 		lc->fec = cc_fec;
4167 	} else {
4168 		acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4169 	}
4170 
4171 	/* Some Requested Port Capabilities are trivially wrong if they exceed
4172 	 * the Physical Port Capabilities.  We can check that here and provide
4173 	 * moderately useful feedback in the system log.
4174 	 *
4175 	 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4176 	 * we need to exclude this from this check in order to maintain
4177 	 * compatibility ...
4178 	 */
4179 	if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4180 		dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4181 			acaps, lc->pcaps);
4182 		return -EINVAL;
4183 	}
4184 
4185 	return acaps;
4186 }
4187 
4188 /**
4189  *	t4_link_l1cfg_core - apply link configuration to MAC/PHY
4190  *	@adapter: the adapter
4191  *	@mbox: the Firmware Mailbox to use
4192  *	@port: the Port ID
4193  *	@lc: the Port's Link Configuration
4194  *	@sleep_ok: if true we may sleep while awaiting command completion
4195  *	@timeout: time to wait for command to finish before timing out
4196  *		(negative implies @sleep_ok=false)
4197  *
4198  *	Set up a port's MAC and PHY according to a desired link configuration.
4199  *	- If the PHY can auto-negotiate first decide what to advertise, then
4200  *	  enable/disable auto-negotiation as desired, and reset.
4201  *	- If the PHY does not auto-negotiate just reset it.
4202  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4203  *	  otherwise do it later based on the outcome of auto-negotiation.
4204  */
4205 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4206 		       unsigned int port, struct link_config *lc,
4207 		       u8 sleep_ok, int timeout)
4208 {
4209 	unsigned int fw_caps = adapter->params.fw_caps_support;
4210 	struct fw_port_cmd cmd;
4211 	fw_port_cap32_t rcap;
4212 	int ret;
4213 
4214 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4215 	    lc->autoneg == AUTONEG_ENABLE) {
4216 		return -EINVAL;
4217 	}
4218 
4219 	/* Compute our Requested Port Capabilities and send that on to the
4220 	 * Firmware.
4221 	 */
4222 	rcap = t4_link_acaps(adapter, port, lc);
4223 	memset(&cmd, 0, sizeof(cmd));
4224 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4225 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4226 				       FW_PORT_CMD_PORTID_V(port));
4227 	cmd.action_to_len16 =
4228 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4229 						 ? FW_PORT_ACTION_L1_CFG
4230 						 : FW_PORT_ACTION_L1_CFG32) |
4231 						 FW_LEN16(cmd));
4232 	if (fw_caps == FW_CAPS16)
4233 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4234 	else
4235 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4236 
4237 	ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4238 				      sleep_ok, timeout);
4239 
4240 	/* Unfortunately, even if the Requested Port Capabilities "fit" within
4241 	 * the Physical Port Capabilities, some combinations of features may
4242 	 * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4243 	 * Error Correction.  So if the Firmware rejects the L1 Configure
4244 	 * request, flag that here.
4245 	 */
4246 	if (ret) {
4247 		dev_err(adapter->pdev_dev,
4248 			"Requested Port Capabilities %#x rejected, error %d\n",
4249 			rcap, -ret);
4250 		return ret;
4251 	}
4252 	return 0;
4253 }
4254 
4255 /**
4256  *	t4_restart_aneg - restart autonegotiation
4257  *	@adap: the adapter
4258  *	@mbox: mbox to use for the FW command
4259  *	@port: the port id
4260  *
4261  *	Restarts autonegotiation for the selected port.
4262  */
4263 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4264 {
4265 	unsigned int fw_caps = adap->params.fw_caps_support;
4266 	struct fw_port_cmd c;
4267 
4268 	memset(&c, 0, sizeof(c));
4269 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4270 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4271 				     FW_PORT_CMD_PORTID_V(port));
4272 	c.action_to_len16 =
4273 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4274 						 ? FW_PORT_ACTION_L1_CFG
4275 						 : FW_PORT_ACTION_L1_CFG32) |
4276 			    FW_LEN16(c));
4277 	if (fw_caps == FW_CAPS16)
4278 		c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4279 	else
4280 		c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4281 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4282 }
4283 
4284 typedef void (*int_handler_t)(struct adapter *adap);
4285 
4286 struct intr_info {
4287 	unsigned int mask;       /* bits to check in interrupt status */
4288 	const char *msg;         /* message to print or NULL */
4289 	short stat_idx;          /* stat counter to increment or -1 */
4290 	unsigned short fatal;    /* whether the condition reported is fatal */
4291 	int_handler_t int_handler; /* platform-specific int handler */
4292 };
4293 
4294 /**
4295  *	t4_handle_intr_status - table driven interrupt handler
4296  *	@adapter: the adapter that generated the interrupt
4297  *	@reg: the interrupt status register to process
4298  *	@acts: table of interrupt actions
4299  *
4300  *	A table driven interrupt handler that applies a set of masks to an
4301  *	interrupt status word and performs the corresponding actions if the
4302  *	interrupts described by the mask have occurred.  The actions include
4303  *	optionally emitting a warning or alert message.  The table is terminated
4304  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4305  *	conditions.
4306  */
4307 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4308 				 const struct intr_info *acts)
4309 {
4310 	int fatal = 0;
4311 	unsigned int mask = 0;
4312 	unsigned int status = t4_read_reg(adapter, reg);
4313 
4314 	for ( ; acts->mask; ++acts) {
4315 		if (!(status & acts->mask))
4316 			continue;
4317 		if (acts->fatal) {
4318 			fatal++;
4319 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4320 				  status & acts->mask);
4321 		} else if (acts->msg && printk_ratelimit())
4322 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4323 				 status & acts->mask);
4324 		if (acts->int_handler)
4325 			acts->int_handler(adapter);
4326 		mask |= acts->mask;
4327 	}
4328 	status &= mask;
4329 	if (status)                           /* clear processed interrupts */
4330 		t4_write_reg(adapter, reg, status);
4331 	return fatal;
4332 }
4333 
4334 /*
4335  * Interrupt handler for the PCIE module.
4336  */
4337 static void pcie_intr_handler(struct adapter *adapter)
4338 {
4339 	static const struct intr_info sysbus_intr_info[] = {
4340 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4341 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4342 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4343 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4344 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4345 		{ 0 }
4346 	};
4347 	static const struct intr_info pcie_port_intr_info[] = {
4348 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4349 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4350 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4351 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4352 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4353 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4354 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4355 		{ RDPE_F, "Rx data parity error", -1, 1 },
4356 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4357 		{ 0 }
4358 	};
4359 	static const struct intr_info pcie_intr_info[] = {
4360 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4361 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4362 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4363 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4364 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4365 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4366 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4367 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4368 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4369 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4370 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4371 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4372 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4373 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4374 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4375 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4376 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4377 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4378 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4379 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4380 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4381 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4382 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4383 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4384 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4385 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4386 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4387 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4388 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4389 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4390 		  -1, 0 },
4391 		{ 0 }
4392 	};
4393 
4394 	static struct intr_info t5_pcie_intr_info[] = {
4395 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4396 		  -1, 1 },
4397 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4398 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4399 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4400 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4401 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4402 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4403 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4404 		  -1, 1 },
4405 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4406 		  -1, 1 },
4407 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4408 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4409 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4410 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4411 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4412 		  -1, 1 },
4413 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4414 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4415 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4416 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4417 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4418 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4419 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4420 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4421 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4422 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4423 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4424 		  -1, 1 },
4425 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4426 		  -1, 1 },
4427 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4428 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4429 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4430 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4431 		{ 0 }
4432 	};
4433 
4434 	int fat;
4435 
4436 	if (is_t4(adapter->params.chip))
4437 		fat = t4_handle_intr_status(adapter,
4438 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4439 				sysbus_intr_info) +
4440 			t4_handle_intr_status(adapter,
4441 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4442 					pcie_port_intr_info) +
4443 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4444 					      pcie_intr_info);
4445 	else
4446 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4447 					    t5_pcie_intr_info);
4448 
4449 	if (fat)
4450 		t4_fatal_err(adapter);
4451 }
4452 
4453 /*
4454  * TP interrupt handler.
4455  */
4456 static void tp_intr_handler(struct adapter *adapter)
4457 {
4458 	static const struct intr_info tp_intr_info[] = {
4459 		{ 0x3fffffff, "TP parity error", -1, 1 },
4460 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4461 		{ 0 }
4462 	};
4463 
4464 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4465 		t4_fatal_err(adapter);
4466 }
4467 
4468 /*
4469  * SGE interrupt handler.
4470  */
4471 static void sge_intr_handler(struct adapter *adapter)
4472 {
4473 	u32 v = 0, perr;
4474 	u32 err;
4475 
4476 	static const struct intr_info sge_intr_info[] = {
4477 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4478 		  "SGE received CPL exceeding IQE size", -1, 1 },
4479 		{ ERR_INVALID_CIDX_INC_F,
4480 		  "SGE GTS CIDX increment too large", -1, 0 },
4481 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4482 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4483 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4484 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4485 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4486 		  0 },
4487 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4488 		  0 },
4489 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4490 		  0 },
4491 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4492 		  0 },
4493 		{ ERR_ING_CTXT_PRIO_F,
4494 		  "SGE too many priority ingress contexts", -1, 0 },
4495 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4496 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4497 		{ 0 }
4498 	};
4499 
4500 	static struct intr_info t4t5_sge_intr_info[] = {
4501 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4502 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4503 		{ ERR_EGR_CTXT_PRIO_F,
4504 		  "SGE too many priority egress contexts", -1, 0 },
4505 		{ 0 }
4506 	};
4507 
4508 	perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4509 	if (perr) {
4510 		v |= perr;
4511 		dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4512 			  perr);
4513 	}
4514 
4515 	perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4516 	if (perr) {
4517 		v |= perr;
4518 		dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4519 			  perr);
4520 	}
4521 
4522 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4523 		perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4524 		/* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4525 		perr &= ~ERR_T_RXCRC_F;
4526 		if (perr) {
4527 			v |= perr;
4528 			dev_alert(adapter->pdev_dev,
4529 				  "SGE Cause5 Parity Error %#x\n", perr);
4530 		}
4531 	}
4532 
4533 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4534 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4535 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4536 					   t4t5_sge_intr_info);
4537 
4538 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4539 	if (err & ERROR_QID_VALID_F) {
4540 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4541 			ERROR_QID_G(err));
4542 		if (err & UNCAPTURED_ERROR_F)
4543 			dev_err(adapter->pdev_dev,
4544 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4545 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4546 			     UNCAPTURED_ERROR_F);
4547 	}
4548 
4549 	if (v != 0)
4550 		t4_fatal_err(adapter);
4551 }
4552 
4553 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4554 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4555 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4556 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4557 
4558 /*
4559  * CIM interrupt handler.
4560  */
4561 static void cim_intr_handler(struct adapter *adapter)
4562 {
4563 	static const struct intr_info cim_intr_info[] = {
4564 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4565 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4566 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4567 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4568 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4569 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4570 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4571 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4572 		{ 0 }
4573 	};
4574 	static const struct intr_info cim_upintr_info[] = {
4575 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4576 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4577 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4578 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4579 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4580 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4581 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4582 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4583 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4584 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4585 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4586 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4587 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4588 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4589 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4590 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4591 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4592 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4593 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4594 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4595 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4596 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4597 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4598 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4599 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4600 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4601 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4602 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4603 		{ 0 }
4604 	};
4605 
4606 	u32 val, fw_err;
4607 	int fat;
4608 
4609 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4610 	if (fw_err & PCIE_FW_ERR_F)
4611 		t4_report_fw_error(adapter);
4612 
4613 	/* When the Firmware detects an internal error which normally
4614 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4615 	 * in order to make sure the Host sees the Firmware Crash.  So
4616 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4617 	 * ignore the Timer0 interrupt.
4618 	 */
4619 
4620 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4621 	if (val & TIMER0INT_F)
4622 		if (!(fw_err & PCIE_FW_ERR_F) ||
4623 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4624 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4625 				     TIMER0INT_F);
4626 
4627 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4628 				    cim_intr_info) +
4629 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4630 				    cim_upintr_info);
4631 	if (fat)
4632 		t4_fatal_err(adapter);
4633 }
4634 
4635 /*
4636  * ULP RX interrupt handler.
4637  */
4638 static void ulprx_intr_handler(struct adapter *adapter)
4639 {
4640 	static const struct intr_info ulprx_intr_info[] = {
4641 		{ 0x1800000, "ULPRX context error", -1, 1 },
4642 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4643 		{ 0 }
4644 	};
4645 
4646 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4647 		t4_fatal_err(adapter);
4648 }
4649 
4650 /*
4651  * ULP TX interrupt handler.
4652  */
4653 static void ulptx_intr_handler(struct adapter *adapter)
4654 {
4655 	static const struct intr_info ulptx_intr_info[] = {
4656 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4657 		  0 },
4658 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4659 		  0 },
4660 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4661 		  0 },
4662 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4663 		  0 },
4664 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4665 		{ 0 }
4666 	};
4667 
4668 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4669 		t4_fatal_err(adapter);
4670 }
4671 
4672 /*
4673  * PM TX interrupt handler.
4674  */
4675 static void pmtx_intr_handler(struct adapter *adapter)
4676 {
4677 	static const struct intr_info pmtx_intr_info[] = {
4678 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4679 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4680 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4681 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4682 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4683 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4684 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4685 		  -1, 1 },
4686 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4687 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4688 		{ 0 }
4689 	};
4690 
4691 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4692 		t4_fatal_err(adapter);
4693 }
4694 
4695 /*
4696  * PM RX interrupt handler.
4697  */
4698 static void pmrx_intr_handler(struct adapter *adapter)
4699 {
4700 	static const struct intr_info pmrx_intr_info[] = {
4701 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4702 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4703 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4704 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4705 		  -1, 1 },
4706 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4707 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4708 		{ 0 }
4709 	};
4710 
4711 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4712 		t4_fatal_err(adapter);
4713 }
4714 
4715 /*
4716  * CPL switch interrupt handler.
4717  */
4718 static void cplsw_intr_handler(struct adapter *adapter)
4719 {
4720 	static const struct intr_info cplsw_intr_info[] = {
4721 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4722 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4723 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4724 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4725 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4726 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4727 		{ 0 }
4728 	};
4729 
4730 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4731 		t4_fatal_err(adapter);
4732 }
4733 
4734 /*
4735  * LE interrupt handler.
4736  */
4737 static void le_intr_handler(struct adapter *adap)
4738 {
4739 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4740 	static const struct intr_info le_intr_info[] = {
4741 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4742 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4743 		{ PARITYERR_F, "LE parity error", -1, 1 },
4744 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4745 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4746 		{ 0 }
4747 	};
4748 
4749 	static struct intr_info t6_le_intr_info[] = {
4750 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4751 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4752 		{ CMDTIDERR_F, "LE cmd tid error", -1, 1 },
4753 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4754 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4755 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4756 		{ HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 },
4757 		{ 0 }
4758 	};
4759 
4760 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4761 				  (chip <= CHELSIO_T5) ?
4762 				  le_intr_info : t6_le_intr_info))
4763 		t4_fatal_err(adap);
4764 }
4765 
4766 /*
4767  * MPS interrupt handler.
4768  */
4769 static void mps_intr_handler(struct adapter *adapter)
4770 {
4771 	static const struct intr_info mps_rx_intr_info[] = {
4772 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4773 		{ 0 }
4774 	};
4775 	static const struct intr_info mps_tx_intr_info[] = {
4776 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4777 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4778 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4779 		  -1, 1 },
4780 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4781 		  -1, 1 },
4782 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4783 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4784 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4785 		{ 0 }
4786 	};
4787 	static const struct intr_info t6_mps_tx_intr_info[] = {
4788 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4789 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4790 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4791 		  -1, 1 },
4792 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4793 		  -1, 1 },
4794 		/* MPS Tx Bubble is normal for T6 */
4795 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4796 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4797 		{ 0 }
4798 	};
4799 	static const struct intr_info mps_trc_intr_info[] = {
4800 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4801 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4802 		  -1, 1 },
4803 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4804 		{ 0 }
4805 	};
4806 	static const struct intr_info mps_stat_sram_intr_info[] = {
4807 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4808 		{ 0 }
4809 	};
4810 	static const struct intr_info mps_stat_tx_intr_info[] = {
4811 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4812 		{ 0 }
4813 	};
4814 	static const struct intr_info mps_stat_rx_intr_info[] = {
4815 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4816 		{ 0 }
4817 	};
4818 	static const struct intr_info mps_cls_intr_info[] = {
4819 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4820 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4821 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4822 		{ 0 }
4823 	};
4824 
4825 	int fat;
4826 
4827 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4828 				    mps_rx_intr_info) +
4829 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4830 				    is_t6(adapter->params.chip)
4831 				    ? t6_mps_tx_intr_info
4832 				    : mps_tx_intr_info) +
4833 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4834 				    mps_trc_intr_info) +
4835 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4836 				    mps_stat_sram_intr_info) +
4837 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4838 				    mps_stat_tx_intr_info) +
4839 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4840 				    mps_stat_rx_intr_info) +
4841 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4842 				    mps_cls_intr_info);
4843 
4844 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4845 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4846 	if (fat)
4847 		t4_fatal_err(adapter);
4848 }
4849 
4850 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4851 		      ECC_UE_INT_CAUSE_F)
4852 
4853 /*
4854  * EDC/MC interrupt handler.
4855  */
4856 static void mem_intr_handler(struct adapter *adapter, int idx)
4857 {
4858 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4859 
4860 	unsigned int addr, cnt_addr, v;
4861 
4862 	if (idx <= MEM_EDC1) {
4863 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4864 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4865 	} else if (idx == MEM_MC) {
4866 		if (is_t4(adapter->params.chip)) {
4867 			addr = MC_INT_CAUSE_A;
4868 			cnt_addr = MC_ECC_STATUS_A;
4869 		} else {
4870 			addr = MC_P_INT_CAUSE_A;
4871 			cnt_addr = MC_P_ECC_STATUS_A;
4872 		}
4873 	} else {
4874 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4875 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4876 	}
4877 
4878 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4879 	if (v & PERR_INT_CAUSE_F)
4880 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4881 			  name[idx]);
4882 	if (v & ECC_CE_INT_CAUSE_F) {
4883 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4884 
4885 		t4_edc_err_read(adapter, idx);
4886 
4887 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4888 		if (printk_ratelimit())
4889 			dev_warn(adapter->pdev_dev,
4890 				 "%u %s correctable ECC data error%s\n",
4891 				 cnt, name[idx], cnt > 1 ? "s" : "");
4892 	}
4893 	if (v & ECC_UE_INT_CAUSE_F)
4894 		dev_alert(adapter->pdev_dev,
4895 			  "%s uncorrectable ECC data error\n", name[idx]);
4896 
4897 	t4_write_reg(adapter, addr, v);
4898 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4899 		t4_fatal_err(adapter);
4900 }
4901 
4902 /*
4903  * MA interrupt handler.
4904  */
4905 static void ma_intr_handler(struct adapter *adap)
4906 {
4907 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4908 
4909 	if (status & MEM_PERR_INT_CAUSE_F) {
4910 		dev_alert(adap->pdev_dev,
4911 			  "MA parity error, parity status %#x\n",
4912 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4913 		if (is_t5(adap->params.chip))
4914 			dev_alert(adap->pdev_dev,
4915 				  "MA parity error, parity status %#x\n",
4916 				  t4_read_reg(adap,
4917 					      MA_PARITY_ERROR_STATUS2_A));
4918 	}
4919 	if (status & MEM_WRAP_INT_CAUSE_F) {
4920 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4921 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4922 			  "client %u to address %#x\n",
4923 			  MEM_WRAP_CLIENT_NUM_G(v),
4924 			  MEM_WRAP_ADDRESS_G(v) << 4);
4925 	}
4926 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4927 	t4_fatal_err(adap);
4928 }
4929 
4930 /*
4931  * SMB interrupt handler.
4932  */
4933 static void smb_intr_handler(struct adapter *adap)
4934 {
4935 	static const struct intr_info smb_intr_info[] = {
4936 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4937 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4938 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4939 		{ 0 }
4940 	};
4941 
4942 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4943 		t4_fatal_err(adap);
4944 }
4945 
4946 /*
4947  * NC-SI interrupt handler.
4948  */
4949 static void ncsi_intr_handler(struct adapter *adap)
4950 {
4951 	static const struct intr_info ncsi_intr_info[] = {
4952 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4953 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4954 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4955 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4956 		{ 0 }
4957 	};
4958 
4959 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4960 		t4_fatal_err(adap);
4961 }
4962 
4963 /*
4964  * XGMAC interrupt handler.
4965  */
4966 static void xgmac_intr_handler(struct adapter *adap, int port)
4967 {
4968 	u32 v, int_cause_reg;
4969 
4970 	if (is_t4(adap->params.chip))
4971 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4972 	else
4973 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4974 
4975 	v = t4_read_reg(adap, int_cause_reg);
4976 
4977 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4978 	if (!v)
4979 		return;
4980 
4981 	if (v & TXFIFO_PRTY_ERR_F)
4982 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4983 			  port);
4984 	if (v & RXFIFO_PRTY_ERR_F)
4985 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4986 			  port);
4987 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4988 	t4_fatal_err(adap);
4989 }
4990 
4991 /*
4992  * PL interrupt handler.
4993  */
4994 static void pl_intr_handler(struct adapter *adap)
4995 {
4996 	static const struct intr_info pl_intr_info[] = {
4997 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4998 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4999 		{ 0 }
5000 	};
5001 
5002 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
5003 		t4_fatal_err(adap);
5004 }
5005 
5006 #define PF_INTR_MASK (PFSW_F)
5007 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
5008 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
5009 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
5010 
5011 /**
5012  *	t4_slow_intr_handler - control path interrupt handler
5013  *	@adapter: the adapter
5014  *
5015  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5016  *	The designation 'slow' is because it involves register reads, while
5017  *	data interrupts typically don't involve any MMIOs.
5018  */
5019 int t4_slow_intr_handler(struct adapter *adapter)
5020 {
5021 	/* There are rare cases where a PL_INT_CAUSE bit may end up getting
5022 	 * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5023 	 * easiest just to mask that case here.
5024 	 */
5025 	u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5026 	u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5027 	u32 cause = raw_cause & enable;
5028 
5029 	if (!(cause & GLBL_INTR_MASK))
5030 		return 0;
5031 	if (cause & CIM_F)
5032 		cim_intr_handler(adapter);
5033 	if (cause & MPS_F)
5034 		mps_intr_handler(adapter);
5035 	if (cause & NCSI_F)
5036 		ncsi_intr_handler(adapter);
5037 	if (cause & PL_F)
5038 		pl_intr_handler(adapter);
5039 	if (cause & SMB_F)
5040 		smb_intr_handler(adapter);
5041 	if (cause & XGMAC0_F)
5042 		xgmac_intr_handler(adapter, 0);
5043 	if (cause & XGMAC1_F)
5044 		xgmac_intr_handler(adapter, 1);
5045 	if (cause & XGMAC_KR0_F)
5046 		xgmac_intr_handler(adapter, 2);
5047 	if (cause & XGMAC_KR1_F)
5048 		xgmac_intr_handler(adapter, 3);
5049 	if (cause & PCIE_F)
5050 		pcie_intr_handler(adapter);
5051 	if (cause & MC_F)
5052 		mem_intr_handler(adapter, MEM_MC);
5053 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
5054 		mem_intr_handler(adapter, MEM_MC1);
5055 	if (cause & EDC0_F)
5056 		mem_intr_handler(adapter, MEM_EDC0);
5057 	if (cause & EDC1_F)
5058 		mem_intr_handler(adapter, MEM_EDC1);
5059 	if (cause & LE_F)
5060 		le_intr_handler(adapter);
5061 	if (cause & TP_F)
5062 		tp_intr_handler(adapter);
5063 	if (cause & MA_F)
5064 		ma_intr_handler(adapter);
5065 	if (cause & PM_TX_F)
5066 		pmtx_intr_handler(adapter);
5067 	if (cause & PM_RX_F)
5068 		pmrx_intr_handler(adapter);
5069 	if (cause & ULP_RX_F)
5070 		ulprx_intr_handler(adapter);
5071 	if (cause & CPL_SWITCH_F)
5072 		cplsw_intr_handler(adapter);
5073 	if (cause & SGE_F)
5074 		sge_intr_handler(adapter);
5075 	if (cause & ULP_TX_F)
5076 		ulptx_intr_handler(adapter);
5077 
5078 	/* Clear the interrupts just processed for which we are the master. */
5079 	t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5080 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5081 	return 1;
5082 }
5083 
5084 /**
5085  *	t4_intr_enable - enable interrupts
5086  *	@adapter: the adapter whose interrupts should be enabled
5087  *
5088  *	Enable PF-specific interrupts for the calling function and the top-level
5089  *	interrupt concentrator for global interrupts.  Interrupts are already
5090  *	enabled at each module,	here we just enable the roots of the interrupt
5091  *	hierarchies.
5092  *
5093  *	Note: this function should be called only when the driver manages
5094  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5095  *	function at a time should be doing this.
5096  */
5097 void t4_intr_enable(struct adapter *adapter)
5098 {
5099 	u32 val = 0;
5100 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5101 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5102 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5103 
5104 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5105 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5106 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5107 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5108 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5109 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5110 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5111 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5112 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5113 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5114 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5115 }
5116 
5117 /**
5118  *	t4_intr_disable - disable interrupts
5119  *	@adapter: the adapter whose interrupts should be disabled
5120  *
5121  *	Disable interrupts.  We only disable the top-level interrupt
5122  *	concentrators.  The caller must be a PCI function managing global
5123  *	interrupts.
5124  */
5125 void t4_intr_disable(struct adapter *adapter)
5126 {
5127 	u32 whoami, pf;
5128 
5129 	if (pci_channel_offline(adapter->pdev))
5130 		return;
5131 
5132 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5133 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5134 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5135 
5136 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5137 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5138 }
5139 
5140 unsigned int t4_chip_rss_size(struct adapter *adap)
5141 {
5142 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5143 		return RSS_NENTRIES;
5144 	else
5145 		return T6_RSS_NENTRIES;
5146 }
5147 
5148 /**
5149  *	t4_config_rss_range - configure a portion of the RSS mapping table
5150  *	@adapter: the adapter
5151  *	@mbox: mbox to use for the FW command
5152  *	@viid: virtual interface whose RSS subtable is to be written
5153  *	@start: start entry in the table to write
5154  *	@n: how many table entries to write
5155  *	@rspq: values for the response queue lookup table
5156  *	@nrspq: number of values in @rspq
5157  *
5158  *	Programs the selected part of the VI's RSS mapping table with the
5159  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5160  *	until the full table range is populated.
5161  *
5162  *	The caller must ensure the values in @rspq are in the range allowed for
5163  *	@viid.
5164  */
5165 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5166 			int start, int n, const u16 *rspq, unsigned int nrspq)
5167 {
5168 	int ret;
5169 	const u16 *rsp = rspq;
5170 	const u16 *rsp_end = rspq + nrspq;
5171 	struct fw_rss_ind_tbl_cmd cmd;
5172 
5173 	memset(&cmd, 0, sizeof(cmd));
5174 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5175 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5176 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5177 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5178 
5179 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5180 	while (n > 0) {
5181 		int nq = min(n, 32);
5182 		__be32 *qp = &cmd.iq0_to_iq2;
5183 
5184 		cmd.niqid = cpu_to_be16(nq);
5185 		cmd.startidx = cpu_to_be16(start);
5186 
5187 		start += nq;
5188 		n -= nq;
5189 
5190 		while (nq > 0) {
5191 			unsigned int v;
5192 
5193 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5194 			if (++rsp >= rsp_end)
5195 				rsp = rspq;
5196 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5197 			if (++rsp >= rsp_end)
5198 				rsp = rspq;
5199 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5200 			if (++rsp >= rsp_end)
5201 				rsp = rspq;
5202 
5203 			*qp++ = cpu_to_be32(v);
5204 			nq -= 3;
5205 		}
5206 
5207 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5208 		if (ret)
5209 			return ret;
5210 	}
5211 	return 0;
5212 }
5213 
5214 /**
5215  *	t4_config_glbl_rss - configure the global RSS mode
5216  *	@adapter: the adapter
5217  *	@mbox: mbox to use for the FW command
5218  *	@mode: global RSS mode
5219  *	@flags: mode-specific flags
5220  *
5221  *	Sets the global RSS mode.
5222  */
5223 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5224 		       unsigned int flags)
5225 {
5226 	struct fw_rss_glb_config_cmd c;
5227 
5228 	memset(&c, 0, sizeof(c));
5229 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5230 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5231 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5232 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5233 		c.u.manual.mode_pkd =
5234 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5235 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5236 		c.u.basicvirtual.mode_pkd =
5237 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5238 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5239 	} else
5240 		return -EINVAL;
5241 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5242 }
5243 
5244 /**
5245  *	t4_config_vi_rss - configure per VI RSS settings
5246  *	@adapter: the adapter
5247  *	@mbox: mbox to use for the FW command
5248  *	@viid: the VI id
5249  *	@flags: RSS flags
5250  *	@defq: id of the default RSS queue for the VI.
5251  *
5252  *	Configures VI-specific RSS properties.
5253  */
5254 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5255 		     unsigned int flags, unsigned int defq)
5256 {
5257 	struct fw_rss_vi_config_cmd c;
5258 
5259 	memset(&c, 0, sizeof(c));
5260 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5261 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5262 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5263 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5264 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5265 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5266 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5267 }
5268 
5269 /* Read an RSS table row */
5270 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5271 {
5272 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5273 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5274 				   5, 0, val);
5275 }
5276 
5277 /**
5278  *	t4_read_rss - read the contents of the RSS mapping table
5279  *	@adapter: the adapter
5280  *	@map: holds the contents of the RSS mapping table
5281  *
5282  *	Reads the contents of the RSS hash->queue mapping table.
5283  */
5284 int t4_read_rss(struct adapter *adapter, u16 *map)
5285 {
5286 	int i, ret, nentries;
5287 	u32 val;
5288 
5289 	nentries = t4_chip_rss_size(adapter);
5290 	for (i = 0; i < nentries / 2; ++i) {
5291 		ret = rd_rss_row(adapter, i, &val);
5292 		if (ret)
5293 			return ret;
5294 		*map++ = LKPTBLQUEUE0_G(val);
5295 		*map++ = LKPTBLQUEUE1_G(val);
5296 	}
5297 	return 0;
5298 }
5299 
5300 static unsigned int t4_use_ldst(struct adapter *adap)
5301 {
5302 	return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5303 }
5304 
5305 /**
5306  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5307  * @adap: the adapter
5308  * @cmd: TP fw ldst address space type
5309  * @vals: where the indirect register values are stored/written
5310  * @nregs: how many indirect registers to read/write
5311  * @start_index: index of first indirect register to read/write
5312  * @rw: Read (1) or Write (0)
5313  * @sleep_ok: if true we may sleep while awaiting command completion
5314  *
5315  * Access TP indirect registers through LDST
5316  */
5317 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5318 			    unsigned int nregs, unsigned int start_index,
5319 			    unsigned int rw, bool sleep_ok)
5320 {
5321 	int ret = 0;
5322 	unsigned int i;
5323 	struct fw_ldst_cmd c;
5324 
5325 	for (i = 0; i < nregs; i++) {
5326 		memset(&c, 0, sizeof(c));
5327 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5328 						FW_CMD_REQUEST_F |
5329 						(rw ? FW_CMD_READ_F :
5330 						      FW_CMD_WRITE_F) |
5331 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5332 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5333 
5334 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5335 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5336 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5337 				      sleep_ok);
5338 		if (ret)
5339 			return ret;
5340 
5341 		if (rw)
5342 			vals[i] = be32_to_cpu(c.u.addrval.val);
5343 	}
5344 	return 0;
5345 }
5346 
5347 /**
5348  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5349  * @adap: the adapter
5350  * @reg_addr: Address Register
5351  * @reg_data: Data register
5352  * @buff: where the indirect register values are stored/written
5353  * @nregs: how many indirect registers to read/write
5354  * @start_index: index of first indirect register to read/write
5355  * @rw: READ(1) or WRITE(0)
5356  * @sleep_ok: if true we may sleep while awaiting command completion
5357  *
5358  * Read/Write TP indirect registers through LDST if possible.
5359  * Else, use backdoor access
5360  **/
5361 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5362 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5363 			      bool sleep_ok)
5364 {
5365 	int rc = -EINVAL;
5366 	int cmd;
5367 
5368 	switch (reg_addr) {
5369 	case TP_PIO_ADDR_A:
5370 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5371 		break;
5372 	case TP_TM_PIO_ADDR_A:
5373 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5374 		break;
5375 	case TP_MIB_INDEX_A:
5376 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5377 		break;
5378 	default:
5379 		goto indirect_access;
5380 	}
5381 
5382 	if (t4_use_ldst(adap))
5383 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5384 				      sleep_ok);
5385 
5386 indirect_access:
5387 
5388 	if (rc) {
5389 		if (rw)
5390 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5391 					 start_index);
5392 		else
5393 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5394 					  start_index);
5395 	}
5396 }
5397 
5398 /**
5399  * t4_tp_pio_read - Read TP PIO registers
5400  * @adap: the adapter
5401  * @buff: where the indirect register values are written
5402  * @nregs: how many indirect registers to read
5403  * @start_index: index of first indirect register to read
5404  * @sleep_ok: if true we may sleep while awaiting command completion
5405  *
5406  * Read TP PIO Registers
5407  **/
5408 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5409 		    u32 start_index, bool sleep_ok)
5410 {
5411 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5412 			  start_index, 1, sleep_ok);
5413 }
5414 
5415 /**
5416  * t4_tp_pio_write - Write TP PIO registers
5417  * @adap: the adapter
5418  * @buff: where the indirect register values are stored
5419  * @nregs: how many indirect registers to write
5420  * @start_index: index of first indirect register to write
5421  * @sleep_ok: if true we may sleep while awaiting command completion
5422  *
5423  * Write TP PIO Registers
5424  **/
5425 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5426 			    u32 start_index, bool sleep_ok)
5427 {
5428 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5429 			  start_index, 0, sleep_ok);
5430 }
5431 
5432 /**
5433  * t4_tp_tm_pio_read - Read TP TM PIO registers
5434  * @adap: the adapter
5435  * @buff: where the indirect register values are written
5436  * @nregs: how many indirect registers to read
5437  * @start_index: index of first indirect register to read
5438  * @sleep_ok: if true we may sleep while awaiting command completion
5439  *
5440  * Read TP TM PIO Registers
5441  **/
5442 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5443 		       u32 start_index, bool sleep_ok)
5444 {
5445 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5446 			  nregs, start_index, 1, sleep_ok);
5447 }
5448 
5449 /**
5450  * t4_tp_mib_read - Read TP MIB registers
5451  * @adap: the adapter
5452  * @buff: where the indirect register values are written
5453  * @nregs: how many indirect registers to read
5454  * @start_index: index of first indirect register to read
5455  * @sleep_ok: if true we may sleep while awaiting command completion
5456  *
5457  * Read TP MIB Registers
5458  **/
5459 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5460 		    bool sleep_ok)
5461 {
5462 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5463 			  start_index, 1, sleep_ok);
5464 }
5465 
5466 /**
5467  *	t4_read_rss_key - read the global RSS key
5468  *	@adap: the adapter
5469  *	@key: 10-entry array holding the 320-bit RSS key
5470  *      @sleep_ok: if true we may sleep while awaiting command completion
5471  *
5472  *	Reads the global 320-bit RSS key.
5473  */
5474 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5475 {
5476 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5477 }
5478 
5479 /**
5480  *	t4_write_rss_key - program one of the RSS keys
5481  *	@adap: the adapter
5482  *	@key: 10-entry array holding the 320-bit RSS key
5483  *	@idx: which RSS key to write
5484  *      @sleep_ok: if true we may sleep while awaiting command completion
5485  *
5486  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5487  *	0..15 the corresponding entry in the RSS key table is written,
5488  *	otherwise the global RSS key is written.
5489  */
5490 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5491 		      bool sleep_ok)
5492 {
5493 	u8 rss_key_addr_cnt = 16;
5494 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5495 
5496 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5497 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5498 	 * as index[5:4](upper 2) into key table
5499 	 */
5500 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5501 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5502 		rss_key_addr_cnt = 32;
5503 
5504 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5505 
5506 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5507 		if (rss_key_addr_cnt > 16)
5508 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5509 				     KEYWRADDRX_V(idx >> 4) |
5510 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5511 		else
5512 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5513 				     KEYWRADDR_V(idx) | KEYWREN_F);
5514 	}
5515 }
5516 
5517 /**
5518  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5519  *	@adapter: the adapter
5520  *	@index: the entry in the PF RSS table to read
5521  *	@valp: where to store the returned value
5522  *      @sleep_ok: if true we may sleep while awaiting command completion
5523  *
5524  *	Reads the PF RSS Configuration Table at the specified index and returns
5525  *	the value found there.
5526  */
5527 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5528 			   u32 *valp, bool sleep_ok)
5529 {
5530 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5531 }
5532 
5533 /**
5534  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5535  *	@adapter: the adapter
5536  *	@index: the entry in the VF RSS table to read
5537  *	@vfl: where to store the returned VFL
5538  *	@vfh: where to store the returned VFH
5539  *      @sleep_ok: if true we may sleep while awaiting command completion
5540  *
5541  *	Reads the VF RSS Configuration Table at the specified index and returns
5542  *	the (VFL, VFH) values found there.
5543  */
5544 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5545 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5546 {
5547 	u32 vrt, mask, data;
5548 
5549 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5550 		mask = VFWRADDR_V(VFWRADDR_M);
5551 		data = VFWRADDR_V(index);
5552 	} else {
5553 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5554 		 data = T6_VFWRADDR_V(index);
5555 	}
5556 
5557 	/* Request that the index'th VF Table values be read into VFL/VFH.
5558 	 */
5559 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5560 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5561 	vrt |= data | VFRDEN_F;
5562 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5563 
5564 	/* Grab the VFL/VFH values ...
5565 	 */
5566 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5567 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5568 }
5569 
5570 /**
5571  *	t4_read_rss_pf_map - read PF RSS Map
5572  *	@adapter: the adapter
5573  *      @sleep_ok: if true we may sleep while awaiting command completion
5574  *
5575  *	Reads the PF RSS Map register and returns its value.
5576  */
5577 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5578 {
5579 	u32 pfmap;
5580 
5581 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5582 	return pfmap;
5583 }
5584 
5585 /**
5586  *	t4_read_rss_pf_mask - read PF RSS Mask
5587  *	@adapter: the adapter
5588  *      @sleep_ok: if true we may sleep while awaiting command completion
5589  *
5590  *	Reads the PF RSS Mask register and returns its value.
5591  */
5592 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5593 {
5594 	u32 pfmask;
5595 
5596 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5597 	return pfmask;
5598 }
5599 
5600 /**
5601  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5602  *	@adap: the adapter
5603  *	@v4: holds the TCP/IP counter values
5604  *	@v6: holds the TCP/IPv6 counter values
5605  *      @sleep_ok: if true we may sleep while awaiting command completion
5606  *
5607  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5608  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5609  */
5610 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5611 			 struct tp_tcp_stats *v6, bool sleep_ok)
5612 {
5613 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5614 
5615 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5616 #define STAT(x)     val[STAT_IDX(x)]
5617 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5618 
5619 	if (v4) {
5620 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5621 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5622 		v4->tcp_out_rsts = STAT(OUT_RST);
5623 		v4->tcp_in_segs  = STAT64(IN_SEG);
5624 		v4->tcp_out_segs = STAT64(OUT_SEG);
5625 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5626 	}
5627 	if (v6) {
5628 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5629 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5630 		v6->tcp_out_rsts = STAT(OUT_RST);
5631 		v6->tcp_in_segs  = STAT64(IN_SEG);
5632 		v6->tcp_out_segs = STAT64(OUT_SEG);
5633 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5634 	}
5635 #undef STAT64
5636 #undef STAT
5637 #undef STAT_IDX
5638 }
5639 
5640 /**
5641  *	t4_tp_get_err_stats - read TP's error MIB counters
5642  *	@adap: the adapter
5643  *	@st: holds the counter values
5644  *      @sleep_ok: if true we may sleep while awaiting command completion
5645  *
5646  *	Returns the values of TP's error counters.
5647  */
5648 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5649 			 bool sleep_ok)
5650 {
5651 	int nchan = adap->params.arch.nchan;
5652 
5653 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5654 		       sleep_ok);
5655 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5656 		       sleep_ok);
5657 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5658 		       sleep_ok);
5659 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5660 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5661 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5662 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5663 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5664 		       sleep_ok);
5665 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5666 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5667 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5668 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5669 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5670 		       sleep_ok);
5671 }
5672 
5673 /**
5674  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5675  *	@adap: the adapter
5676  *	@st: holds the counter values
5677  *      @sleep_ok: if true we may sleep while awaiting command completion
5678  *
5679  *	Returns the values of TP's CPL counters.
5680  */
5681 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5682 			 bool sleep_ok)
5683 {
5684 	int nchan = adap->params.arch.nchan;
5685 
5686 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5687 
5688 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5689 }
5690 
5691 /**
5692  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5693  *	@adap: the adapter
5694  *	@st: holds the counter values
5695  *      @sleep_ok: if true we may sleep while awaiting command completion
5696  *
5697  *	Returns the values of TP's RDMA counters.
5698  */
5699 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5700 			  bool sleep_ok)
5701 {
5702 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5703 		       sleep_ok);
5704 }
5705 
5706 /**
5707  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5708  *	@adap: the adapter
5709  *	@idx: the port index
5710  *	@st: holds the counter values
5711  *      @sleep_ok: if true we may sleep while awaiting command completion
5712  *
5713  *	Returns the values of TP's FCoE counters for the selected port.
5714  */
5715 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5716 		       struct tp_fcoe_stats *st, bool sleep_ok)
5717 {
5718 	u32 val[2];
5719 
5720 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5721 		       sleep_ok);
5722 
5723 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5724 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5725 
5726 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5727 		       sleep_ok);
5728 
5729 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5730 }
5731 
5732 /**
5733  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5734  *	@adap: the adapter
5735  *	@st: holds the counter values
5736  *      @sleep_ok: if true we may sleep while awaiting command completion
5737  *
5738  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5739  */
5740 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5741 		      bool sleep_ok)
5742 {
5743 	u32 val[4];
5744 
5745 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5746 	st->frames = val[0];
5747 	st->drops = val[1];
5748 	st->octets = ((u64)val[2] << 32) | val[3];
5749 }
5750 
5751 /**
5752  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5753  *	@adap: the adapter
5754  *	@mtus: where to store the MTU values
5755  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5756  *
5757  *	Reads the HW path MTU table.
5758  */
5759 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5760 {
5761 	u32 v;
5762 	int i;
5763 
5764 	for (i = 0; i < NMTUS; ++i) {
5765 		t4_write_reg(adap, TP_MTU_TABLE_A,
5766 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5767 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5768 		mtus[i] = MTUVALUE_G(v);
5769 		if (mtu_log)
5770 			mtu_log[i] = MTUWIDTH_G(v);
5771 	}
5772 }
5773 
5774 /**
5775  *	t4_read_cong_tbl - reads the congestion control table
5776  *	@adap: the adapter
5777  *	@incr: where to store the alpha values
5778  *
5779  *	Reads the additive increments programmed into the HW congestion
5780  *	control table.
5781  */
5782 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5783 {
5784 	unsigned int mtu, w;
5785 
5786 	for (mtu = 0; mtu < NMTUS; ++mtu)
5787 		for (w = 0; w < NCCTRL_WIN; ++w) {
5788 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5789 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5790 			incr[mtu][w] = (u16)t4_read_reg(adap,
5791 						TP_CCTRL_TABLE_A) & 0x1fff;
5792 		}
5793 }
5794 
5795 /**
5796  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5797  *	@adap: the adapter
5798  *	@addr: the indirect TP register address
5799  *	@mask: specifies the field within the register to modify
5800  *	@val: new value for the field
5801  *
5802  *	Sets a field of an indirect TP register to the given value.
5803  */
5804 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5805 			    unsigned int mask, unsigned int val)
5806 {
5807 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5808 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5809 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5810 }
5811 
5812 /**
5813  *	init_cong_ctrl - initialize congestion control parameters
5814  *	@a: the alpha values for congestion control
5815  *	@b: the beta values for congestion control
5816  *
5817  *	Initialize the congestion control parameters.
5818  */
5819 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5820 {
5821 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5822 	a[9] = 2;
5823 	a[10] = 3;
5824 	a[11] = 4;
5825 	a[12] = 5;
5826 	a[13] = 6;
5827 	a[14] = 7;
5828 	a[15] = 8;
5829 	a[16] = 9;
5830 	a[17] = 10;
5831 	a[18] = 14;
5832 	a[19] = 17;
5833 	a[20] = 21;
5834 	a[21] = 25;
5835 	a[22] = 30;
5836 	a[23] = 35;
5837 	a[24] = 45;
5838 	a[25] = 60;
5839 	a[26] = 80;
5840 	a[27] = 100;
5841 	a[28] = 200;
5842 	a[29] = 300;
5843 	a[30] = 400;
5844 	a[31] = 500;
5845 
5846 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5847 	b[9] = b[10] = 1;
5848 	b[11] = b[12] = 2;
5849 	b[13] = b[14] = b[15] = b[16] = 3;
5850 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5851 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5852 	b[28] = b[29] = 6;
5853 	b[30] = b[31] = 7;
5854 }
5855 
5856 /* The minimum additive increment value for the congestion control table */
5857 #define CC_MIN_INCR 2U
5858 
5859 /**
5860  *	t4_load_mtus - write the MTU and congestion control HW tables
5861  *	@adap: the adapter
5862  *	@mtus: the values for the MTU table
5863  *	@alpha: the values for the congestion control alpha parameter
5864  *	@beta: the values for the congestion control beta parameter
5865  *
5866  *	Write the HW MTU table with the supplied MTUs and the high-speed
5867  *	congestion control table with the supplied alpha, beta, and MTUs.
5868  *	We write the two tables together because the additive increments
5869  *	depend on the MTUs.
5870  */
5871 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5872 		  const unsigned short *alpha, const unsigned short *beta)
5873 {
5874 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5875 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5876 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5877 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5878 	};
5879 
5880 	unsigned int i, w;
5881 
5882 	for (i = 0; i < NMTUS; ++i) {
5883 		unsigned int mtu = mtus[i];
5884 		unsigned int log2 = fls(mtu);
5885 
5886 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5887 			log2--;
5888 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5889 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5890 
5891 		for (w = 0; w < NCCTRL_WIN; ++w) {
5892 			unsigned int inc;
5893 
5894 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5895 				  CC_MIN_INCR);
5896 
5897 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5898 				     (w << 16) | (beta[w] << 13) | inc);
5899 		}
5900 	}
5901 }
5902 
5903 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5904  * clocks.  The formula is
5905  *
5906  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5907  *
5908  * which is equivalent to
5909  *
5910  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5911  */
5912 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5913 {
5914 	u64 v = bytes256 * adap->params.vpd.cclk;
5915 
5916 	return v * 62 + v / 2;
5917 }
5918 
5919 /**
5920  *	t4_get_chan_txrate - get the current per channel Tx rates
5921  *	@adap: the adapter
5922  *	@nic_rate: rates for NIC traffic
5923  *	@ofld_rate: rates for offloaded traffic
5924  *
5925  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5926  *	for each channel.
5927  */
5928 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5929 {
5930 	u32 v;
5931 
5932 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5933 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5934 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5935 	if (adap->params.arch.nchan == NCHAN) {
5936 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5937 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5938 	}
5939 
5940 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5941 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5942 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5943 	if (adap->params.arch.nchan == NCHAN) {
5944 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5945 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5946 	}
5947 }
5948 
5949 /**
5950  *	t4_set_trace_filter - configure one of the tracing filters
5951  *	@adap: the adapter
5952  *	@tp: the desired trace filter parameters
5953  *	@idx: which filter to configure
5954  *	@enable: whether to enable or disable the filter
5955  *
5956  *	Configures one of the tracing filters available in HW.  If @enable is
5957  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5958  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5959  */
5960 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5961 			int idx, int enable)
5962 {
5963 	int i, ofst = idx * 4;
5964 	u32 data_reg, mask_reg, cfg;
5965 
5966 	if (!enable) {
5967 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5968 		return 0;
5969 	}
5970 
5971 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5972 	if (cfg & TRCMULTIFILTER_F) {
5973 		/* If multiple tracers are enabled, then maximum
5974 		 * capture size is 2.5KB (FIFO size of a single channel)
5975 		 * minus 2 flits for CPL_TRACE_PKT header.
5976 		 */
5977 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5978 			return -EINVAL;
5979 	} else {
5980 		/* If multiple tracers are disabled, to avoid deadlocks
5981 		 * maximum packet capture size of 9600 bytes is recommended.
5982 		 * Also in this mode, only trace0 can be enabled and running.
5983 		 */
5984 		if (tp->snap_len > 9600 || idx)
5985 			return -EINVAL;
5986 	}
5987 
5988 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5989 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5990 	    tp->min_len > TFMINPKTSIZE_M)
5991 		return -EINVAL;
5992 
5993 	/* stop the tracer we'll be changing */
5994 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5995 
5996 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5997 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5998 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5999 
6000 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6001 		t4_write_reg(adap, data_reg, tp->data[i]);
6002 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6003 	}
6004 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
6005 		     TFCAPTUREMAX_V(tp->snap_len) |
6006 		     TFMINPKTSIZE_V(tp->min_len));
6007 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
6008 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
6009 		     (is_t4(adap->params.chip) ?
6010 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
6011 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
6012 		     T5_TFINVERTMATCH_V(tp->invert)));
6013 
6014 	return 0;
6015 }
6016 
6017 /**
6018  *	t4_get_trace_filter - query one of the tracing filters
6019  *	@adap: the adapter
6020  *	@tp: the current trace filter parameters
6021  *	@idx: which trace filter to query
6022  *	@enabled: non-zero if the filter is enabled
6023  *
6024  *	Returns the current settings of one of the HW tracing filters.
6025  */
6026 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6027 			 int *enabled)
6028 {
6029 	u32 ctla, ctlb;
6030 	int i, ofst = idx * 4;
6031 	u32 data_reg, mask_reg;
6032 
6033 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6034 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6035 
6036 	if (is_t4(adap->params.chip)) {
6037 		*enabled = !!(ctla & TFEN_F);
6038 		tp->port =  TFPORT_G(ctla);
6039 		tp->invert = !!(ctla & TFINVERTMATCH_F);
6040 	} else {
6041 		*enabled = !!(ctla & T5_TFEN_F);
6042 		tp->port = T5_TFPORT_G(ctla);
6043 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6044 	}
6045 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
6046 	tp->min_len = TFMINPKTSIZE_G(ctlb);
6047 	tp->skip_ofst = TFOFFSET_G(ctla);
6048 	tp->skip_len = TFLENGTH_G(ctla);
6049 
6050 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6051 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6052 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6053 
6054 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6055 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6056 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6057 	}
6058 }
6059 
6060 /**
6061  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6062  *	@adap: the adapter
6063  *	@cnt: where to store the count statistics
6064  *	@cycles: where to store the cycle statistics
6065  *
6066  *	Returns performance statistics from PMTX.
6067  */
6068 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6069 {
6070 	int i;
6071 	u32 data[2];
6072 
6073 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6074 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6075 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6076 		if (is_t4(adap->params.chip)) {
6077 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6078 		} else {
6079 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6080 					 PM_TX_DBG_DATA_A, data, 2,
6081 					 PM_TX_DBG_STAT_MSB_A);
6082 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6083 		}
6084 	}
6085 }
6086 
6087 /**
6088  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6089  *	@adap: the adapter
6090  *	@cnt: where to store the count statistics
6091  *	@cycles: where to store the cycle statistics
6092  *
6093  *	Returns performance statistics from PMRX.
6094  */
6095 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6096 {
6097 	int i;
6098 	u32 data[2];
6099 
6100 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6101 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6102 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6103 		if (is_t4(adap->params.chip)) {
6104 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6105 		} else {
6106 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6107 					 PM_RX_DBG_DATA_A, data, 2,
6108 					 PM_RX_DBG_STAT_MSB_A);
6109 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6110 		}
6111 	}
6112 }
6113 
6114 /**
6115  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6116  *	@adapter: the adapter
6117  *	@pidx: the port index
6118  *
6119  *	Computes and returns a bitmap indicating which MPS buffer groups are
6120  *	associated with the given Port.  Bit i is set if buffer group i is
6121  *	used by the Port.
6122  */
6123 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6124 					      int pidx)
6125 {
6126 	unsigned int chip_version, nports;
6127 
6128 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6129 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6130 
6131 	switch (chip_version) {
6132 	case CHELSIO_T4:
6133 	case CHELSIO_T5:
6134 		switch (nports) {
6135 		case 1: return 0xf;
6136 		case 2: return 3 << (2 * pidx);
6137 		case 4: return 1 << pidx;
6138 		}
6139 		break;
6140 
6141 	case CHELSIO_T6:
6142 		switch (nports) {
6143 		case 2: return 1 << (2 * pidx);
6144 		}
6145 		break;
6146 	}
6147 
6148 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6149 		chip_version, nports);
6150 
6151 	return 0;
6152 }
6153 
6154 /**
6155  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6156  *	@adapter: the adapter
6157  *	@pidx: the port index
6158  *
6159  *	Returns a bitmap indicating which MPS buffer groups are associated
6160  *	with the given Port.  Bit i is set if buffer group i is used by the
6161  *	Port.
6162  */
6163 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6164 {
6165 	u8 *mps_bg_map;
6166 	unsigned int nports;
6167 
6168 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6169 	if (pidx >= nports) {
6170 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6171 			pidx, nports);
6172 		return 0;
6173 	}
6174 
6175 	/* If we've already retrieved/computed this, just return the result.
6176 	 */
6177 	mps_bg_map = adapter->params.mps_bg_map;
6178 	if (mps_bg_map[pidx])
6179 		return mps_bg_map[pidx];
6180 
6181 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6182 	 * If we're talking to such Firmware, let it tell us.  If the new
6183 	 * API isn't supported, revert back to old hardcoded way.  The value
6184 	 * obtained from Firmware is encoded in below format:
6185 	 *
6186 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6187 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6188 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6189 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6190 	 */
6191 	if (adapter->flags & CXGB4_FW_OK) {
6192 		u32 param, val;
6193 		int ret;
6194 
6195 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6196 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6197 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6198 					 0, 1, &param, &val);
6199 		if (!ret) {
6200 			int p;
6201 
6202 			/* Store the BG Map for all of the Ports in order to
6203 			 * avoid more calls to the Firmware in the future.
6204 			 */
6205 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6206 				mps_bg_map[p] = val & 0xff;
6207 
6208 			return mps_bg_map[pidx];
6209 		}
6210 	}
6211 
6212 	/* Either we're not talking to the Firmware or we're dealing with
6213 	 * older Firmware which doesn't support the new API to get the MPS
6214 	 * Buffer Group Map.  Fall back to computing it ourselves.
6215 	 */
6216 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6217 	return mps_bg_map[pidx];
6218 }
6219 
6220 /**
6221  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6222  *      @adapter: the adapter
6223  *      @pidx: the port index
6224  */
6225 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6226 {
6227 	unsigned int nports;
6228 	u32 param, val = 0;
6229 	int ret;
6230 
6231 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6232 	if (pidx >= nports) {
6233 		CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6234 			pidx, nports);
6235 		return 0;
6236 	}
6237 
6238 	/* FW version >= 1.16.44.0 can determine E2C channel map using
6239 	 * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6240 	 */
6241 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6242 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6243 	ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6244 				 0, 1, &param, &val);
6245 	if (!ret)
6246 		return (val >> (8 * pidx)) & 0xff;
6247 
6248 	return 0;
6249 }
6250 
6251 /**
6252  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6253  *	@adap: the adapter
6254  *	@pidx: the port index
6255  *
6256  *	Returns a bitmap indicating which TP Ingress Channels are associated
6257  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6258  *	the Port.
6259  */
6260 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6261 {
6262 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6263 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6264 
6265 	if (pidx >= nports) {
6266 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6267 			 pidx, nports);
6268 		return 0;
6269 	}
6270 
6271 	switch (chip_version) {
6272 	case CHELSIO_T4:
6273 	case CHELSIO_T5:
6274 		/* Note that this happens to be the same values as the MPS
6275 		 * Buffer Group Map for these Chips.  But we replicate the code
6276 		 * here because they're really separate concepts.
6277 		 */
6278 		switch (nports) {
6279 		case 1: return 0xf;
6280 		case 2: return 3 << (2 * pidx);
6281 		case 4: return 1 << pidx;
6282 		}
6283 		break;
6284 
6285 	case CHELSIO_T6:
6286 		switch (nports) {
6287 		case 1:
6288 		case 2: return 1 << pidx;
6289 		}
6290 		break;
6291 	}
6292 
6293 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6294 		chip_version, nports);
6295 	return 0;
6296 }
6297 
6298 /**
6299  *      t4_get_port_type_description - return Port Type string description
6300  *      @port_type: firmware Port Type enumeration
6301  */
6302 const char *t4_get_port_type_description(enum fw_port_type port_type)
6303 {
6304 	static const char *const port_type_description[] = {
6305 		"Fiber_XFI",
6306 		"Fiber_XAUI",
6307 		"BT_SGMII",
6308 		"BT_XFI",
6309 		"BT_XAUI",
6310 		"KX4",
6311 		"CX4",
6312 		"KX",
6313 		"KR",
6314 		"SFP",
6315 		"BP_AP",
6316 		"BP4_AP",
6317 		"QSFP_10G",
6318 		"QSA",
6319 		"QSFP",
6320 		"BP40_BA",
6321 		"KR4_100G",
6322 		"CR4_QSFP",
6323 		"CR_QSFP",
6324 		"CR2_QSFP",
6325 		"SFP28",
6326 		"KR_SFP28",
6327 		"KR_XLAUI"
6328 	};
6329 
6330 	if (port_type < ARRAY_SIZE(port_type_description))
6331 		return port_type_description[port_type];
6332 	return "UNKNOWN";
6333 }
6334 
6335 /**
6336  *      t4_get_port_stats_offset - collect port stats relative to a previous
6337  *                                 snapshot
6338  *      @adap: The adapter
6339  *      @idx: The port
6340  *      @stats: Current stats to fill
6341  *      @offset: Previous stats snapshot
6342  */
6343 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6344 			      struct port_stats *stats,
6345 			      struct port_stats *offset)
6346 {
6347 	u64 *s, *o;
6348 	int i;
6349 
6350 	t4_get_port_stats(adap, idx, stats);
6351 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6352 			i < (sizeof(struct port_stats) / sizeof(u64));
6353 			i++, s++, o++)
6354 		*s -= *o;
6355 }
6356 
6357 /**
6358  *	t4_get_port_stats - collect port statistics
6359  *	@adap: the adapter
6360  *	@idx: the port index
6361  *	@p: the stats structure to fill
6362  *
6363  *	Collect statistics related to the given port from HW.
6364  */
6365 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6366 {
6367 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6368 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6369 
6370 #define GET_STAT(name) \
6371 	t4_read_reg64(adap, \
6372 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6373 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6374 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6375 
6376 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6377 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6378 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6379 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6380 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6381 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6382 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6383 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6384 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6385 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6386 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6387 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6388 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6389 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6390 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6391 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6392 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6393 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6394 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6395 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6396 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6397 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6398 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6399 
6400 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6401 		if (stat_ctl & COUNTPAUSESTATTX_F)
6402 			p->tx_frames_64 -= p->tx_pause;
6403 		if (stat_ctl & COUNTPAUSEMCTX_F)
6404 			p->tx_mcast_frames -= p->tx_pause;
6405 	}
6406 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6407 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6408 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6409 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6410 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6411 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6412 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6413 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6414 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6415 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6416 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6417 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6418 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6419 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6420 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6421 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6422 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6423 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6424 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6425 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6426 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6427 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6428 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6429 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6430 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6431 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6432 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6433 
6434 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6435 		if (stat_ctl & COUNTPAUSESTATRX_F)
6436 			p->rx_frames_64 -= p->rx_pause;
6437 		if (stat_ctl & COUNTPAUSEMCRX_F)
6438 			p->rx_mcast_frames -= p->rx_pause;
6439 	}
6440 
6441 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6442 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6443 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6444 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6445 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6446 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6447 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6448 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6449 
6450 #undef GET_STAT
6451 #undef GET_STAT_COM
6452 }
6453 
6454 /**
6455  *	t4_get_lb_stats - collect loopback port statistics
6456  *	@adap: the adapter
6457  *	@idx: the loopback port index
6458  *	@p: the stats structure to fill
6459  *
6460  *	Return HW statistics for the given loopback port.
6461  */
6462 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6463 {
6464 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6465 
6466 #define GET_STAT(name) \
6467 	t4_read_reg64(adap, \
6468 	(is_t4(adap->params.chip) ? \
6469 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6470 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6471 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6472 
6473 	p->octets           = GET_STAT(BYTES);
6474 	p->frames           = GET_STAT(FRAMES);
6475 	p->bcast_frames     = GET_STAT(BCAST);
6476 	p->mcast_frames     = GET_STAT(MCAST);
6477 	p->ucast_frames     = GET_STAT(UCAST);
6478 	p->error_frames     = GET_STAT(ERROR);
6479 
6480 	p->frames_64        = GET_STAT(64B);
6481 	p->frames_65_127    = GET_STAT(65B_127B);
6482 	p->frames_128_255   = GET_STAT(128B_255B);
6483 	p->frames_256_511   = GET_STAT(256B_511B);
6484 	p->frames_512_1023  = GET_STAT(512B_1023B);
6485 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6486 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6487 	p->drop             = GET_STAT(DROP_FRAMES);
6488 
6489 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6490 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6491 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6492 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6493 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6494 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6495 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6496 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6497 
6498 #undef GET_STAT
6499 #undef GET_STAT_COM
6500 }
6501 
6502 /*     t4_mk_filtdelwr - create a delete filter WR
6503  *     @ftid: the filter ID
6504  *     @wr: the filter work request to populate
6505  *     @qid: ingress queue to receive the delete notification
6506  *
6507  *     Creates a filter work request to delete the supplied filter.  If @qid is
6508  *     negative the delete notification is suppressed.
6509  */
6510 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6511 {
6512 	memset(wr, 0, sizeof(*wr));
6513 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6514 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6515 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6516 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6517 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6518 	if (qid >= 0)
6519 		wr->rx_chan_rx_rpl_iq =
6520 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6521 }
6522 
6523 #define INIT_CMD(var, cmd, rd_wr) do { \
6524 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6525 					FW_CMD_REQUEST_F | \
6526 					FW_CMD_##rd_wr##_F); \
6527 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6528 } while (0)
6529 
6530 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6531 			  u32 addr, u32 val)
6532 {
6533 	u32 ldst_addrspace;
6534 	struct fw_ldst_cmd c;
6535 
6536 	memset(&c, 0, sizeof(c));
6537 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6538 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6539 					FW_CMD_REQUEST_F |
6540 					FW_CMD_WRITE_F |
6541 					ldst_addrspace);
6542 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6543 	c.u.addrval.addr = cpu_to_be32(addr);
6544 	c.u.addrval.val = cpu_to_be32(val);
6545 
6546 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6547 }
6548 
6549 /**
6550  *	t4_mdio_rd - read a PHY register through MDIO
6551  *	@adap: the adapter
6552  *	@mbox: mailbox to use for the FW command
6553  *	@phy_addr: the PHY address
6554  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6555  *	@reg: the register to read
6556  *	@valp: where to store the value
6557  *
6558  *	Issues a FW command through the given mailbox to read a PHY register.
6559  */
6560 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6561 	       unsigned int mmd, unsigned int reg, u16 *valp)
6562 {
6563 	int ret;
6564 	u32 ldst_addrspace;
6565 	struct fw_ldst_cmd c;
6566 
6567 	memset(&c, 0, sizeof(c));
6568 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6569 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6570 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6571 					ldst_addrspace);
6572 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6573 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6574 					 FW_LDST_CMD_MMD_V(mmd));
6575 	c.u.mdio.raddr = cpu_to_be16(reg);
6576 
6577 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6578 	if (ret == 0)
6579 		*valp = be16_to_cpu(c.u.mdio.rval);
6580 	return ret;
6581 }
6582 
6583 /**
6584  *	t4_mdio_wr - write a PHY register through MDIO
6585  *	@adap: the adapter
6586  *	@mbox: mailbox to use for the FW command
6587  *	@phy_addr: the PHY address
6588  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6589  *	@reg: the register to write
6590  *	@val: value to write
6591  *
6592  *	Issues a FW command through the given mailbox to write a PHY register.
6593  */
6594 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6595 	       unsigned int mmd, unsigned int reg, u16 val)
6596 {
6597 	u32 ldst_addrspace;
6598 	struct fw_ldst_cmd c;
6599 
6600 	memset(&c, 0, sizeof(c));
6601 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6602 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6603 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6604 					ldst_addrspace);
6605 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6606 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6607 					 FW_LDST_CMD_MMD_V(mmd));
6608 	c.u.mdio.raddr = cpu_to_be16(reg);
6609 	c.u.mdio.rval = cpu_to_be16(val);
6610 
6611 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6612 }
6613 
6614 /**
6615  *	t4_sge_decode_idma_state - decode the idma state
6616  *	@adapter: the adapter
6617  *	@state: the state idma is stuck in
6618  */
6619 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6620 {
6621 	static const char * const t4_decode[] = {
6622 		"IDMA_IDLE",
6623 		"IDMA_PUSH_MORE_CPL_FIFO",
6624 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6625 		"Not used",
6626 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6627 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6628 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6629 		"IDMA_SEND_FIFO_TO_IMSG",
6630 		"IDMA_FL_REQ_DATA_FL_PREP",
6631 		"IDMA_FL_REQ_DATA_FL",
6632 		"IDMA_FL_DROP",
6633 		"IDMA_FL_H_REQ_HEADER_FL",
6634 		"IDMA_FL_H_SEND_PCIEHDR",
6635 		"IDMA_FL_H_PUSH_CPL_FIFO",
6636 		"IDMA_FL_H_SEND_CPL",
6637 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6638 		"IDMA_FL_H_SEND_IP_HDR",
6639 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6640 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6641 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6642 		"IDMA_FL_D_SEND_PCIEHDR",
6643 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6644 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6645 		"IDMA_FL_SEND_PCIEHDR",
6646 		"IDMA_FL_PUSH_CPL_FIFO",
6647 		"IDMA_FL_SEND_CPL",
6648 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6649 		"IDMA_FL_SEND_PAYLOAD",
6650 		"IDMA_FL_REQ_NEXT_DATA_FL",
6651 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6652 		"IDMA_FL_SEND_PADDING",
6653 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6654 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6655 		"IDMA_FL_REQ_DATAFL_DONE",
6656 		"IDMA_FL_REQ_HEADERFL_DONE",
6657 	};
6658 	static const char * const t5_decode[] = {
6659 		"IDMA_IDLE",
6660 		"IDMA_ALMOST_IDLE",
6661 		"IDMA_PUSH_MORE_CPL_FIFO",
6662 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6663 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6664 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6665 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6666 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6667 		"IDMA_SEND_FIFO_TO_IMSG",
6668 		"IDMA_FL_REQ_DATA_FL",
6669 		"IDMA_FL_DROP",
6670 		"IDMA_FL_DROP_SEND_INC",
6671 		"IDMA_FL_H_REQ_HEADER_FL",
6672 		"IDMA_FL_H_SEND_PCIEHDR",
6673 		"IDMA_FL_H_PUSH_CPL_FIFO",
6674 		"IDMA_FL_H_SEND_CPL",
6675 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6676 		"IDMA_FL_H_SEND_IP_HDR",
6677 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6678 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6679 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6680 		"IDMA_FL_D_SEND_PCIEHDR",
6681 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6682 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6683 		"IDMA_FL_SEND_PCIEHDR",
6684 		"IDMA_FL_PUSH_CPL_FIFO",
6685 		"IDMA_FL_SEND_CPL",
6686 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6687 		"IDMA_FL_SEND_PAYLOAD",
6688 		"IDMA_FL_REQ_NEXT_DATA_FL",
6689 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6690 		"IDMA_FL_SEND_PADDING",
6691 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6692 	};
6693 	static const char * const t6_decode[] = {
6694 		"IDMA_IDLE",
6695 		"IDMA_PUSH_MORE_CPL_FIFO",
6696 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6697 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6698 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6699 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6700 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6701 		"IDMA_FL_REQ_DATA_FL",
6702 		"IDMA_FL_DROP",
6703 		"IDMA_FL_DROP_SEND_INC",
6704 		"IDMA_FL_H_REQ_HEADER_FL",
6705 		"IDMA_FL_H_SEND_PCIEHDR",
6706 		"IDMA_FL_H_PUSH_CPL_FIFO",
6707 		"IDMA_FL_H_SEND_CPL",
6708 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6709 		"IDMA_FL_H_SEND_IP_HDR",
6710 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6711 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6712 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6713 		"IDMA_FL_D_SEND_PCIEHDR",
6714 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6715 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6716 		"IDMA_FL_SEND_PCIEHDR",
6717 		"IDMA_FL_PUSH_CPL_FIFO",
6718 		"IDMA_FL_SEND_CPL",
6719 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6720 		"IDMA_FL_SEND_PAYLOAD",
6721 		"IDMA_FL_REQ_NEXT_DATA_FL",
6722 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6723 		"IDMA_FL_SEND_PADDING",
6724 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6725 	};
6726 	static const u32 sge_regs[] = {
6727 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6728 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6729 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6730 	};
6731 	const char **sge_idma_decode;
6732 	int sge_idma_decode_nstates;
6733 	int i;
6734 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6735 
6736 	/* Select the right set of decode strings to dump depending on the
6737 	 * adapter chip type.
6738 	 */
6739 	switch (chip_version) {
6740 	case CHELSIO_T4:
6741 		sge_idma_decode = (const char **)t4_decode;
6742 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6743 		break;
6744 
6745 	case CHELSIO_T5:
6746 		sge_idma_decode = (const char **)t5_decode;
6747 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6748 		break;
6749 
6750 	case CHELSIO_T6:
6751 		sge_idma_decode = (const char **)t6_decode;
6752 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6753 		break;
6754 
6755 	default:
6756 		dev_err(adapter->pdev_dev,
6757 			"Unsupported chip version %d\n", chip_version);
6758 		return;
6759 	}
6760 
6761 	if (is_t4(adapter->params.chip)) {
6762 		sge_idma_decode = (const char **)t4_decode;
6763 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6764 	} else {
6765 		sge_idma_decode = (const char **)t5_decode;
6766 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6767 	}
6768 
6769 	if (state < sge_idma_decode_nstates)
6770 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6771 	else
6772 		CH_WARN(adapter, "idma state %d unknown\n", state);
6773 
6774 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6775 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6776 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6777 }
6778 
6779 /**
6780  *      t4_sge_ctxt_flush - flush the SGE context cache
6781  *      @adap: the adapter
6782  *      @mbox: mailbox to use for the FW command
6783  *      @ctxt_type: Egress or Ingress
6784  *
6785  *      Issues a FW command through the given mailbox to flush the
6786  *      SGE context cache.
6787  */
6788 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6789 {
6790 	int ret;
6791 	u32 ldst_addrspace;
6792 	struct fw_ldst_cmd c;
6793 
6794 	memset(&c, 0, sizeof(c));
6795 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6796 						 FW_LDST_ADDRSPC_SGE_EGRC :
6797 						 FW_LDST_ADDRSPC_SGE_INGC);
6798 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6799 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6800 					ldst_addrspace);
6801 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6802 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6803 
6804 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6805 	return ret;
6806 }
6807 
6808 /**
6809  *	t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6810  *	@adap: the adapter
6811  *	@ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6812  *	@dbqtimers: SGE Doorbell Queue Timer table
6813  *
6814  *	Reads the SGE Doorbell Queue Timer values into the provided table.
6815  *	Returns 0 on success (Firmware and Hardware support this feature),
6816  *	an error on failure.
6817  */
6818 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6819 			  u16 *dbqtimers)
6820 {
6821 	int ret, dbqtimerix;
6822 
6823 	ret = 0;
6824 	dbqtimerix = 0;
6825 	while (dbqtimerix < ndbqtimers) {
6826 		int nparams, param;
6827 		u32 params[7], vals[7];
6828 
6829 		nparams = ndbqtimers - dbqtimerix;
6830 		if (nparams > ARRAY_SIZE(params))
6831 			nparams = ARRAY_SIZE(params);
6832 
6833 		for (param = 0; param < nparams; param++)
6834 			params[param] =
6835 			  (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6836 			   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6837 			   FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6838 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6839 				      nparams, params, vals);
6840 		if (ret)
6841 			break;
6842 
6843 		for (param = 0; param < nparams; param++)
6844 			dbqtimers[dbqtimerix++] = vals[param];
6845 	}
6846 	return ret;
6847 }
6848 
6849 /**
6850  *      t4_fw_hello - establish communication with FW
6851  *      @adap: the adapter
6852  *      @mbox: mailbox to use for the FW command
6853  *      @evt_mbox: mailbox to receive async FW events
6854  *      @master: specifies the caller's willingness to be the device master
6855  *	@state: returns the current device state (if non-NULL)
6856  *
6857  *	Issues a command to establish communication with FW.  Returns either
6858  *	an error (negative integer) or the mailbox of the Master PF.
6859  */
6860 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6861 		enum dev_master master, enum dev_state *state)
6862 {
6863 	int ret;
6864 	struct fw_hello_cmd c;
6865 	u32 v;
6866 	unsigned int master_mbox;
6867 	int retries = FW_CMD_HELLO_RETRIES;
6868 
6869 retry:
6870 	memset(&c, 0, sizeof(c));
6871 	INIT_CMD(c, HELLO, WRITE);
6872 	c.err_to_clearinit = cpu_to_be32(
6873 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6874 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6875 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6876 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6877 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6878 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6879 		FW_HELLO_CMD_CLEARINIT_F);
6880 
6881 	/*
6882 	 * Issue the HELLO command to the firmware.  If it's not successful
6883 	 * but indicates that we got a "busy" or "timeout" condition, retry
6884 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6885 	 * retry limit, check to see if the firmware left us any error
6886 	 * information and report that if so.
6887 	 */
6888 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6889 	if (ret < 0) {
6890 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6891 			goto retry;
6892 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6893 			t4_report_fw_error(adap);
6894 		return ret;
6895 	}
6896 
6897 	v = be32_to_cpu(c.err_to_clearinit);
6898 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6899 	if (state) {
6900 		if (v & FW_HELLO_CMD_ERR_F)
6901 			*state = DEV_STATE_ERR;
6902 		else if (v & FW_HELLO_CMD_INIT_F)
6903 			*state = DEV_STATE_INIT;
6904 		else
6905 			*state = DEV_STATE_UNINIT;
6906 	}
6907 
6908 	/*
6909 	 * If we're not the Master PF then we need to wait around for the
6910 	 * Master PF Driver to finish setting up the adapter.
6911 	 *
6912 	 * Note that we also do this wait if we're a non-Master-capable PF and
6913 	 * there is no current Master PF; a Master PF may show up momentarily
6914 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6915 	 * OS loads lots of different drivers rapidly at the same time).  In
6916 	 * this case, the Master PF returned by the firmware will be
6917 	 * PCIE_FW_MASTER_M so the test below will work ...
6918 	 */
6919 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6920 	    master_mbox != mbox) {
6921 		int waiting = FW_CMD_HELLO_TIMEOUT;
6922 
6923 		/*
6924 		 * Wait for the firmware to either indicate an error or
6925 		 * initialized state.  If we see either of these we bail out
6926 		 * and report the issue to the caller.  If we exhaust the
6927 		 * "hello timeout" and we haven't exhausted our retries, try
6928 		 * again.  Otherwise bail with a timeout error.
6929 		 */
6930 		for (;;) {
6931 			u32 pcie_fw;
6932 
6933 			msleep(50);
6934 			waiting -= 50;
6935 
6936 			/*
6937 			 * If neither Error nor Initialized are indicated
6938 			 * by the firmware keep waiting till we exhaust our
6939 			 * timeout ... and then retry if we haven't exhausted
6940 			 * our retries ...
6941 			 */
6942 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6943 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6944 				if (waiting <= 0) {
6945 					if (retries-- > 0)
6946 						goto retry;
6947 
6948 					return -ETIMEDOUT;
6949 				}
6950 				continue;
6951 			}
6952 
6953 			/*
6954 			 * We either have an Error or Initialized condition
6955 			 * report errors preferentially.
6956 			 */
6957 			if (state) {
6958 				if (pcie_fw & PCIE_FW_ERR_F)
6959 					*state = DEV_STATE_ERR;
6960 				else if (pcie_fw & PCIE_FW_INIT_F)
6961 					*state = DEV_STATE_INIT;
6962 			}
6963 
6964 			/*
6965 			 * If we arrived before a Master PF was selected and
6966 			 * there's not a valid Master PF, grab its identity
6967 			 * for our caller.
6968 			 */
6969 			if (master_mbox == PCIE_FW_MASTER_M &&
6970 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6971 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6972 			break;
6973 		}
6974 	}
6975 
6976 	return master_mbox;
6977 }
6978 
6979 /**
6980  *	t4_fw_bye - end communication with FW
6981  *	@adap: the adapter
6982  *	@mbox: mailbox to use for the FW command
6983  *
6984  *	Issues a command to terminate communication with FW.
6985  */
6986 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6987 {
6988 	struct fw_bye_cmd c;
6989 
6990 	memset(&c, 0, sizeof(c));
6991 	INIT_CMD(c, BYE, WRITE);
6992 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6993 }
6994 
6995 /**
6996  *	t4_early_init - ask FW to initialize the device
6997  *	@adap: the adapter
6998  *	@mbox: mailbox to use for the FW command
6999  *
7000  *	Issues a command to FW to partially initialize the device.  This
7001  *	performs initialization that generally doesn't depend on user input.
7002  */
7003 int t4_early_init(struct adapter *adap, unsigned int mbox)
7004 {
7005 	struct fw_initialize_cmd c;
7006 
7007 	memset(&c, 0, sizeof(c));
7008 	INIT_CMD(c, INITIALIZE, WRITE);
7009 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7010 }
7011 
7012 /**
7013  *	t4_fw_reset - issue a reset to FW
7014  *	@adap: the adapter
7015  *	@mbox: mailbox to use for the FW command
7016  *	@reset: specifies the type of reset to perform
7017  *
7018  *	Issues a reset command of the specified type to FW.
7019  */
7020 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7021 {
7022 	struct fw_reset_cmd c;
7023 
7024 	memset(&c, 0, sizeof(c));
7025 	INIT_CMD(c, RESET, WRITE);
7026 	c.val = cpu_to_be32(reset);
7027 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7028 }
7029 
7030 /**
7031  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7032  *	@adap: the adapter
7033  *	@mbox: mailbox to use for the FW RESET command (if desired)
7034  *	@force: force uP into RESET even if FW RESET command fails
7035  *
7036  *	Issues a RESET command to firmware (if desired) with a HALT indication
7037  *	and then puts the microprocessor into RESET state.  The RESET command
7038  *	will only be issued if a legitimate mailbox is provided (mbox <=
7039  *	PCIE_FW_MASTER_M).
7040  *
7041  *	This is generally used in order for the host to safely manipulate the
7042  *	adapter without fear of conflicting with whatever the firmware might
7043  *	be doing.  The only way out of this state is to RESTART the firmware
7044  *	...
7045  */
7046 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7047 {
7048 	int ret = 0;
7049 
7050 	/*
7051 	 * If a legitimate mailbox is provided, issue a RESET command
7052 	 * with a HALT indication.
7053 	 */
7054 	if (mbox <= PCIE_FW_MASTER_M) {
7055 		struct fw_reset_cmd c;
7056 
7057 		memset(&c, 0, sizeof(c));
7058 		INIT_CMD(c, RESET, WRITE);
7059 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7060 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7061 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7062 	}
7063 
7064 	/*
7065 	 * Normally we won't complete the operation if the firmware RESET
7066 	 * command fails but if our caller insists we'll go ahead and put the
7067 	 * uP into RESET.  This can be useful if the firmware is hung or even
7068 	 * missing ...  We'll have to take the risk of putting the uP into
7069 	 * RESET without the cooperation of firmware in that case.
7070 	 *
7071 	 * We also force the firmware's HALT flag to be on in case we bypassed
7072 	 * the firmware RESET command above or we're dealing with old firmware
7073 	 * which doesn't have the HALT capability.  This will serve as a flag
7074 	 * for the incoming firmware to know that it's coming out of a HALT
7075 	 * rather than a RESET ... if it's new enough to understand that ...
7076 	 */
7077 	if (ret == 0 || force) {
7078 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7079 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7080 				 PCIE_FW_HALT_F);
7081 	}
7082 
7083 	/*
7084 	 * And we always return the result of the firmware RESET command
7085 	 * even when we force the uP into RESET ...
7086 	 */
7087 	return ret;
7088 }
7089 
7090 /**
7091  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7092  *	@adap: the adapter
7093  *	@mbox: mailbox to use for the FW command
7094  *	@reset: if we want to do a RESET to restart things
7095  *
7096  *	Restart firmware previously halted by t4_fw_halt().  On successful
7097  *	return the previous PF Master remains as the new PF Master and there
7098  *	is no need to issue a new HELLO command, etc.
7099  *
7100  *	We do this in two ways:
7101  *
7102  *	 1. If we're dealing with newer firmware we'll simply want to take
7103  *	    the chip's microprocessor out of RESET.  This will cause the
7104  *	    firmware to start up from its start vector.  And then we'll loop
7105  *	    until the firmware indicates it's started again (PCIE_FW.HALT
7106  *	    reset to 0) or we timeout.
7107  *
7108  *	 2. If we're dealing with older firmware then we'll need to RESET
7109  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
7110  *	    flag and automatically RESET itself on startup.
7111  */
7112 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7113 {
7114 	if (reset) {
7115 		/*
7116 		 * Since we're directing the RESET instead of the firmware
7117 		 * doing it automatically, we need to clear the PCIE_FW.HALT
7118 		 * bit.
7119 		 */
7120 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7121 
7122 		/*
7123 		 * If we've been given a valid mailbox, first try to get the
7124 		 * firmware to do the RESET.  If that works, great and we can
7125 		 * return success.  Otherwise, if we haven't been given a
7126 		 * valid mailbox or the RESET command failed, fall back to
7127 		 * hitting the chip with a hammer.
7128 		 */
7129 		if (mbox <= PCIE_FW_MASTER_M) {
7130 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7131 			msleep(100);
7132 			if (t4_fw_reset(adap, mbox,
7133 					PIORST_F | PIORSTMODE_F) == 0)
7134 				return 0;
7135 		}
7136 
7137 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7138 		msleep(2000);
7139 	} else {
7140 		int ms;
7141 
7142 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7143 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7144 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7145 				return 0;
7146 			msleep(100);
7147 			ms += 100;
7148 		}
7149 		return -ETIMEDOUT;
7150 	}
7151 	return 0;
7152 }
7153 
7154 /**
7155  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7156  *	@adap: the adapter
7157  *	@mbox: mailbox to use for the FW RESET command (if desired)
7158  *	@fw_data: the firmware image to write
7159  *	@size: image size
7160  *	@force: force upgrade even if firmware doesn't cooperate
7161  *
7162  *	Perform all of the steps necessary for upgrading an adapter's
7163  *	firmware image.  Normally this requires the cooperation of the
7164  *	existing firmware in order to halt all existing activities
7165  *	but if an invalid mailbox token is passed in we skip that step
7166  *	(though we'll still put the adapter microprocessor into RESET in
7167  *	that case).
7168  *
7169  *	On successful return the new firmware will have been loaded and
7170  *	the adapter will have been fully RESET losing all previous setup
7171  *	state.  On unsuccessful return the adapter may be completely hosed ...
7172  *	positive errno indicates that the adapter is ~probably~ intact, a
7173  *	negative errno indicates that things are looking bad ...
7174  */
7175 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7176 		  const u8 *fw_data, unsigned int size, int force)
7177 {
7178 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7179 	int reset, ret;
7180 
7181 	if (!t4_fw_matches_chip(adap, fw_hdr))
7182 		return -EINVAL;
7183 
7184 	/* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7185 	 * set wont be sent when we are flashing FW.
7186 	 */
7187 	adap->flags &= ~CXGB4_FW_OK;
7188 
7189 	ret = t4_fw_halt(adap, mbox, force);
7190 	if (ret < 0 && !force)
7191 		goto out;
7192 
7193 	ret = t4_load_fw(adap, fw_data, size);
7194 	if (ret < 0)
7195 		goto out;
7196 
7197 	/*
7198 	 * If there was a Firmware Configuration File stored in FLASH,
7199 	 * there's a good chance that it won't be compatible with the new
7200 	 * Firmware.  In order to prevent difficult to diagnose adapter
7201 	 * initialization issues, we clear out the Firmware Configuration File
7202 	 * portion of the FLASH .  The user will need to re-FLASH a new
7203 	 * Firmware Configuration File which is compatible with the new
7204 	 * Firmware if that's desired.
7205 	 */
7206 	(void)t4_load_cfg(adap, NULL, 0);
7207 
7208 	/*
7209 	 * Older versions of the firmware don't understand the new
7210 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7211 	 * restart.  So for newly loaded older firmware we'll have to do the
7212 	 * RESET for it so it starts up on a clean slate.  We can tell if
7213 	 * the newly loaded firmware will handle this right by checking
7214 	 * its header flags to see if it advertises the capability.
7215 	 */
7216 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7217 	ret = t4_fw_restart(adap, mbox, reset);
7218 
7219 	/* Grab potentially new Firmware Device Log parameters so we can see
7220 	 * how healthy the new Firmware is.  It's okay to contact the new
7221 	 * Firmware for these parameters even though, as far as it's
7222 	 * concerned, we've never said "HELLO" to it ...
7223 	 */
7224 	(void)t4_init_devlog_params(adap);
7225 out:
7226 	adap->flags |= CXGB4_FW_OK;
7227 	return ret;
7228 }
7229 
7230 /**
7231  *	t4_fl_pkt_align - return the fl packet alignment
7232  *	@adap: the adapter
7233  *
7234  *	T4 has a single field to specify the packing and padding boundary.
7235  *	T5 onwards has separate fields for this and hence the alignment for
7236  *	next packet offset is maximum of these two.
7237  *
7238  */
7239 int t4_fl_pkt_align(struct adapter *adap)
7240 {
7241 	u32 sge_control, sge_control2;
7242 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7243 
7244 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7245 
7246 	/* T4 uses a single control field to specify both the PCIe Padding and
7247 	 * Packing Boundary.  T5 introduced the ability to specify these
7248 	 * separately.  The actual Ingress Packet Data alignment boundary
7249 	 * within Packed Buffer Mode is the maximum of these two
7250 	 * specifications.  (Note that it makes no real practical sense to
7251 	 * have the Padding Boundary be larger than the Packing Boundary but you
7252 	 * could set the chip up that way and, in fact, legacy T4 code would
7253 	 * end doing this because it would initialize the Padding Boundary and
7254 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7255 	 * Padding Boundary values in T6 starts from 8B,
7256 	 * where as it is 32B for T4 and T5.
7257 	 */
7258 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7259 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7260 	else
7261 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7262 
7263 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7264 
7265 	fl_align = ingpadboundary;
7266 	if (!is_t4(adap->params.chip)) {
7267 		/* T5 has a weird interpretation of one of the PCIe Packing
7268 		 * Boundary values.  No idea why ...
7269 		 */
7270 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7271 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7272 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7273 			ingpackboundary = 16;
7274 		else
7275 			ingpackboundary = 1 << (ingpackboundary +
7276 						INGPACKBOUNDARY_SHIFT_X);
7277 
7278 		fl_align = max(ingpadboundary, ingpackboundary);
7279 	}
7280 	return fl_align;
7281 }
7282 
7283 /**
7284  *	t4_fixup_host_params - fix up host-dependent parameters
7285  *	@adap: the adapter
7286  *	@page_size: the host's Base Page Size
7287  *	@cache_line_size: the host's Cache Line Size
7288  *
7289  *	Various registers in T4 contain values which are dependent on the
7290  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7291  *	those registers with the appropriate values as passed in ...
7292  */
7293 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7294 			 unsigned int cache_line_size)
7295 {
7296 	unsigned int page_shift = fls(page_size) - 1;
7297 	unsigned int sge_hps = page_shift - 10;
7298 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7299 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7300 	unsigned int fl_align_log = fls(fl_align) - 1;
7301 
7302 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7303 		     HOSTPAGESIZEPF0_V(sge_hps) |
7304 		     HOSTPAGESIZEPF1_V(sge_hps) |
7305 		     HOSTPAGESIZEPF2_V(sge_hps) |
7306 		     HOSTPAGESIZEPF3_V(sge_hps) |
7307 		     HOSTPAGESIZEPF4_V(sge_hps) |
7308 		     HOSTPAGESIZEPF5_V(sge_hps) |
7309 		     HOSTPAGESIZEPF6_V(sge_hps) |
7310 		     HOSTPAGESIZEPF7_V(sge_hps));
7311 
7312 	if (is_t4(adap->params.chip)) {
7313 		t4_set_reg_field(adap, SGE_CONTROL_A,
7314 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7315 				 EGRSTATUSPAGESIZE_F,
7316 				 INGPADBOUNDARY_V(fl_align_log -
7317 						  INGPADBOUNDARY_SHIFT_X) |
7318 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7319 	} else {
7320 		unsigned int pack_align;
7321 		unsigned int ingpad, ingpack;
7322 
7323 		/* T5 introduced the separation of the Free List Padding and
7324 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7325 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7326 		 * Bandwidth, and use a Packing Boundary which is large enough
7327 		 * to avoid false sharing between CPUs, etc.
7328 		 *
7329 		 * For the PCI Link, the smaller the Padding Boundary the
7330 		 * better.  For the Memory Controller, a smaller Padding
7331 		 * Boundary is better until we cross under the Memory Line
7332 		 * Size (the minimum unit of transfer to/from Memory).  If we
7333 		 * have a Padding Boundary which is smaller than the Memory
7334 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7335 		 * Memory Controller which is never good.
7336 		 */
7337 
7338 		/* We want the Packing Boundary to be based on the Cache Line
7339 		 * Size in order to help avoid False Sharing performance
7340 		 * issues between CPUs, etc.  We also want the Packing
7341 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7342 		 * get best performance when the Packing Boundary is a
7343 		 * multiple of the Maximum Payload Size.
7344 		 */
7345 		pack_align = fl_align;
7346 		if (pci_is_pcie(adap->pdev)) {
7347 			unsigned int mps, mps_log;
7348 			u16 devctl;
7349 
7350 			/* The PCIe Device Control Maximum Payload Size field
7351 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7352 			 * 128 bytes.
7353 			 */
7354 			pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7355 						  &devctl);
7356 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7357 			mps = 1 << mps_log;
7358 			if (mps > pack_align)
7359 				pack_align = mps;
7360 		}
7361 
7362 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7363 		 * value for the Packing Boundary.  This corresponds to 16
7364 		 * bytes instead of the expected 32 bytes.  So if we want 32
7365 		 * bytes, the best we can really do is 64 bytes ...
7366 		 */
7367 		if (pack_align <= 16) {
7368 			ingpack = INGPACKBOUNDARY_16B_X;
7369 			fl_align = 16;
7370 		} else if (pack_align == 32) {
7371 			ingpack = INGPACKBOUNDARY_64B_X;
7372 			fl_align = 64;
7373 		} else {
7374 			unsigned int pack_align_log = fls(pack_align) - 1;
7375 
7376 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7377 			fl_align = pack_align;
7378 		}
7379 
7380 		/* Use the smallest Ingress Padding which isn't smaller than
7381 		 * the Memory Controller Read/Write Size.  We'll take that as
7382 		 * being 8 bytes since we don't know of any system with a
7383 		 * wider Memory Controller Bus Width.
7384 		 */
7385 		if (is_t5(adap->params.chip))
7386 			ingpad = INGPADBOUNDARY_32B_X;
7387 		else
7388 			ingpad = T6_INGPADBOUNDARY_8B_X;
7389 
7390 		t4_set_reg_field(adap, SGE_CONTROL_A,
7391 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7392 				 EGRSTATUSPAGESIZE_F,
7393 				 INGPADBOUNDARY_V(ingpad) |
7394 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7395 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7396 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7397 				 INGPACKBOUNDARY_V(ingpack));
7398 	}
7399 	/*
7400 	 * Adjust various SGE Free List Host Buffer Sizes.
7401 	 *
7402 	 * This is something of a crock since we're using fixed indices into
7403 	 * the array which are also known by the sge.c code and the T4
7404 	 * Firmware Configuration File.  We need to come up with a much better
7405 	 * approach to managing this array.  For now, the first four entries
7406 	 * are:
7407 	 *
7408 	 *   0: Host Page Size
7409 	 *   1: 64KB
7410 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7411 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7412 	 *
7413 	 * For the single-MTU buffers in unpacked mode we need to include
7414 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7415 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7416 	 * Padding boundary.  All of these are accommodated in the Factory
7417 	 * Default Firmware Configuration File but we need to adjust it for
7418 	 * this host's cache line size.
7419 	 */
7420 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7421 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7422 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7423 		     & ~(fl_align-1));
7424 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7425 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7426 		     & ~(fl_align-1));
7427 
7428 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7429 
7430 	return 0;
7431 }
7432 
7433 /**
7434  *	t4_fw_initialize - ask FW to initialize the device
7435  *	@adap: the adapter
7436  *	@mbox: mailbox to use for the FW command
7437  *
7438  *	Issues a command to FW to partially initialize the device.  This
7439  *	performs initialization that generally doesn't depend on user input.
7440  */
7441 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7442 {
7443 	struct fw_initialize_cmd c;
7444 
7445 	memset(&c, 0, sizeof(c));
7446 	INIT_CMD(c, INITIALIZE, WRITE);
7447 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7448 }
7449 
7450 /**
7451  *	t4_query_params_rw - query FW or device parameters
7452  *	@adap: the adapter
7453  *	@mbox: mailbox to use for the FW command
7454  *	@pf: the PF
7455  *	@vf: the VF
7456  *	@nparams: the number of parameters
7457  *	@params: the parameter names
7458  *	@val: the parameter values
7459  *	@rw: Write and read flag
7460  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7461  *
7462  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7463  *	queried at once.
7464  */
7465 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7466 		       unsigned int vf, unsigned int nparams, const u32 *params,
7467 		       u32 *val, int rw, bool sleep_ok)
7468 {
7469 	int i, ret;
7470 	struct fw_params_cmd c;
7471 	__be32 *p = &c.param[0].mnem;
7472 
7473 	if (nparams > 7)
7474 		return -EINVAL;
7475 
7476 	memset(&c, 0, sizeof(c));
7477 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7478 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7479 				  FW_PARAMS_CMD_PFN_V(pf) |
7480 				  FW_PARAMS_CMD_VFN_V(vf));
7481 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7482 
7483 	for (i = 0; i < nparams; i++) {
7484 		*p++ = cpu_to_be32(*params++);
7485 		if (rw)
7486 			*p = cpu_to_be32(*(val + i));
7487 		p++;
7488 	}
7489 
7490 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7491 	if (ret == 0)
7492 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7493 			*val++ = be32_to_cpu(*p);
7494 	return ret;
7495 }
7496 
7497 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7498 		    unsigned int vf, unsigned int nparams, const u32 *params,
7499 		    u32 *val)
7500 {
7501 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7502 				  true);
7503 }
7504 
7505 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7506 		       unsigned int vf, unsigned int nparams, const u32 *params,
7507 		       u32 *val)
7508 {
7509 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7510 				  false);
7511 }
7512 
7513 /**
7514  *      t4_set_params_timeout - sets FW or device parameters
7515  *      @adap: the adapter
7516  *      @mbox: mailbox to use for the FW command
7517  *      @pf: the PF
7518  *      @vf: the VF
7519  *      @nparams: the number of parameters
7520  *      @params: the parameter names
7521  *      @val: the parameter values
7522  *      @timeout: the timeout time
7523  *
7524  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7525  *      specified at once.
7526  */
7527 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7528 			  unsigned int pf, unsigned int vf,
7529 			  unsigned int nparams, const u32 *params,
7530 			  const u32 *val, int timeout)
7531 {
7532 	struct fw_params_cmd c;
7533 	__be32 *p = &c.param[0].mnem;
7534 
7535 	if (nparams > 7)
7536 		return -EINVAL;
7537 
7538 	memset(&c, 0, sizeof(c));
7539 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7540 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7541 				  FW_PARAMS_CMD_PFN_V(pf) |
7542 				  FW_PARAMS_CMD_VFN_V(vf));
7543 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7544 
7545 	while (nparams--) {
7546 		*p++ = cpu_to_be32(*params++);
7547 		*p++ = cpu_to_be32(*val++);
7548 	}
7549 
7550 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7551 }
7552 
7553 /**
7554  *	t4_set_params - sets FW or device parameters
7555  *	@adap: the adapter
7556  *	@mbox: mailbox to use for the FW command
7557  *	@pf: the PF
7558  *	@vf: the VF
7559  *	@nparams: the number of parameters
7560  *	@params: the parameter names
7561  *	@val: the parameter values
7562  *
7563  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7564  *	specified at once.
7565  */
7566 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7567 		  unsigned int vf, unsigned int nparams, const u32 *params,
7568 		  const u32 *val)
7569 {
7570 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7571 				     FW_CMD_MAX_TIMEOUT);
7572 }
7573 
7574 /**
7575  *	t4_cfg_pfvf - configure PF/VF resource limits
7576  *	@adap: the adapter
7577  *	@mbox: mailbox to use for the FW command
7578  *	@pf: the PF being configured
7579  *	@vf: the VF being configured
7580  *	@txq: the max number of egress queues
7581  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7582  *	@rxqi: the max number of interrupt-capable ingress queues
7583  *	@rxq: the max number of interruptless ingress queues
7584  *	@tc: the PCI traffic class
7585  *	@vi: the max number of virtual interfaces
7586  *	@cmask: the channel access rights mask for the PF/VF
7587  *	@pmask: the port access rights mask for the PF/VF
7588  *	@nexact: the maximum number of exact MPS filters
7589  *	@rcaps: read capabilities
7590  *	@wxcaps: write/execute capabilities
7591  *
7592  *	Configures resource limits and capabilities for a physical or virtual
7593  *	function.
7594  */
7595 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7596 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7597 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7598 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7599 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7600 {
7601 	struct fw_pfvf_cmd c;
7602 
7603 	memset(&c, 0, sizeof(c));
7604 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7605 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7606 				  FW_PFVF_CMD_VFN_V(vf));
7607 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7608 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7609 				     FW_PFVF_CMD_NIQ_V(rxq));
7610 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7611 				    FW_PFVF_CMD_PMASK_V(pmask) |
7612 				    FW_PFVF_CMD_NEQ_V(txq));
7613 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7614 				      FW_PFVF_CMD_NVI_V(vi) |
7615 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7616 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7617 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7618 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7619 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7620 }
7621 
7622 /**
7623  *	t4_alloc_vi - allocate a virtual interface
7624  *	@adap: the adapter
7625  *	@mbox: mailbox to use for the FW command
7626  *	@port: physical port associated with the VI
7627  *	@pf: the PF owning the VI
7628  *	@vf: the VF owning the VI
7629  *	@nmac: number of MAC addresses needed (1 to 5)
7630  *	@mac: the MAC addresses of the VI
7631  *	@rss_size: size of RSS table slice associated with this VI
7632  *	@vivld: the destination to store the VI Valid value.
7633  *	@vin: the destination to store the VIN value.
7634  *
7635  *	Allocates a virtual interface for the given physical port.  If @mac is
7636  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7637  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7638  *	stored consecutively so the space needed is @nmac * 6 bytes.
7639  *	Returns a negative error number or the non-negative VI id.
7640  */
7641 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7642 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7643 		unsigned int *rss_size, u8 *vivld, u8 *vin)
7644 {
7645 	int ret;
7646 	struct fw_vi_cmd c;
7647 
7648 	memset(&c, 0, sizeof(c));
7649 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7650 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7651 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7652 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7653 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7654 	c.nmac = nmac - 1;
7655 
7656 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7657 	if (ret)
7658 		return ret;
7659 
7660 	if (mac) {
7661 		memcpy(mac, c.mac, sizeof(c.mac));
7662 		switch (nmac) {
7663 		case 5:
7664 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7665 			fallthrough;
7666 		case 4:
7667 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7668 			fallthrough;
7669 		case 3:
7670 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7671 			fallthrough;
7672 		case 2:
7673 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7674 		}
7675 	}
7676 	if (rss_size)
7677 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7678 
7679 	if (vivld)
7680 		*vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7681 
7682 	if (vin)
7683 		*vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7684 
7685 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7686 }
7687 
7688 /**
7689  *	t4_free_vi - free a virtual interface
7690  *	@adap: the adapter
7691  *	@mbox: mailbox to use for the FW command
7692  *	@pf: the PF owning the VI
7693  *	@vf: the VF owning the VI
7694  *	@viid: virtual interface identifiler
7695  *
7696  *	Free a previously allocated virtual interface.
7697  */
7698 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7699 	       unsigned int vf, unsigned int viid)
7700 {
7701 	struct fw_vi_cmd c;
7702 
7703 	memset(&c, 0, sizeof(c));
7704 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7705 				  FW_CMD_REQUEST_F |
7706 				  FW_CMD_EXEC_F |
7707 				  FW_VI_CMD_PFN_V(pf) |
7708 				  FW_VI_CMD_VFN_V(vf));
7709 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7710 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7711 
7712 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7713 }
7714 
7715 /**
7716  *	t4_set_rxmode - set Rx properties of a virtual interface
7717  *	@adap: the adapter
7718  *	@mbox: mailbox to use for the FW command
7719  *	@viid: the VI id
7720  *	@viid_mirror: the mirror VI id
7721  *	@mtu: the new MTU or -1
7722  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7723  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7724  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7725  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7726  *	@sleep_ok: if true we may sleep while awaiting command completion
7727  *
7728  *	Sets Rx properties of a virtual interface.
7729  */
7730 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7731 		  unsigned int viid_mirror, int mtu, int promisc, int all_multi,
7732 		  int bcast, int vlanex, bool sleep_ok)
7733 {
7734 	struct fw_vi_rxmode_cmd c, c_mirror;
7735 	int ret;
7736 
7737 	/* convert to FW values */
7738 	if (mtu < 0)
7739 		mtu = FW_RXMODE_MTU_NO_CHG;
7740 	if (promisc < 0)
7741 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7742 	if (all_multi < 0)
7743 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7744 	if (bcast < 0)
7745 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7746 	if (vlanex < 0)
7747 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7748 
7749 	memset(&c, 0, sizeof(c));
7750 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7751 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7752 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7753 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7754 	c.mtu_to_vlanexen =
7755 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7756 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7757 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7758 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7759 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7760 
7761 	if (viid_mirror) {
7762 		memcpy(&c_mirror, &c, sizeof(c_mirror));
7763 		c_mirror.op_to_viid =
7764 			cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7765 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7766 				    FW_VI_RXMODE_CMD_VIID_V(viid_mirror));
7767 	}
7768 
7769 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7770 	if (ret)
7771 		return ret;
7772 
7773 	if (viid_mirror)
7774 		ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror),
7775 				      NULL, sleep_ok);
7776 
7777 	return ret;
7778 }
7779 
7780 /**
7781  *      t4_free_encap_mac_filt - frees MPS entry at given index
7782  *      @adap: the adapter
7783  *      @viid: the VI id
7784  *      @idx: index of MPS entry to be freed
7785  *      @sleep_ok: call is allowed to sleep
7786  *
7787  *      Frees the MPS entry at supplied index
7788  *
7789  *      Returns a negative error number or zero on success
7790  */
7791 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7792 			   int idx, bool sleep_ok)
7793 {
7794 	struct fw_vi_mac_exact *p;
7795 	struct fw_vi_mac_cmd c;
7796 	int ret = 0;
7797 	u32 exact;
7798 
7799 	memset(&c, 0, sizeof(c));
7800 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7801 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7802 				   FW_CMD_EXEC_V(0) |
7803 				   FW_VI_MAC_CMD_VIID_V(viid));
7804 	exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7805 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7806 					  exact |
7807 					  FW_CMD_LEN16_V(1));
7808 	p = c.u.exact;
7809 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7810 				      FW_VI_MAC_CMD_IDX_V(idx));
7811 	eth_zero_addr(p->macaddr);
7812 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7813 	return ret;
7814 }
7815 
7816 /**
7817  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7818  *	@adap: the adapter
7819  *	@viid: the VI id
7820  *	@addr: the MAC address
7821  *	@mask: the mask
7822  *	@idx: index of the entry in mps tcam
7823  *	@lookup_type: MAC address for inner (1) or outer (0) header
7824  *	@port_id: the port index
7825  *	@sleep_ok: call is allowed to sleep
7826  *
7827  *	Removes the mac entry at the specified index using raw mac interface.
7828  *
7829  *	Returns a negative error number on failure.
7830  */
7831 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7832 			 const u8 *addr, const u8 *mask, unsigned int idx,
7833 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7834 {
7835 	struct fw_vi_mac_cmd c;
7836 	struct fw_vi_mac_raw *p = &c.u.raw;
7837 	u32 val;
7838 
7839 	memset(&c, 0, sizeof(c));
7840 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7841 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7842 				   FW_CMD_EXEC_V(0) |
7843 				   FW_VI_MAC_CMD_VIID_V(viid));
7844 	val = FW_CMD_LEN16_V(1) |
7845 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7846 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7847 					  FW_CMD_LEN16_V(val));
7848 
7849 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7850 				     FW_VI_MAC_ID_BASED_FREE);
7851 
7852 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7853 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7854 				   DATAPORTNUM_V(port_id));
7855 	/* Lookup mask and port mask */
7856 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7857 				    DATAPORTNUM_V(DATAPORTNUM_M));
7858 
7859 	/* Copy the address and the mask */
7860 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7861 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7862 
7863 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7864 }
7865 
7866 /**
7867  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7868  *      @adap: the adapter
7869  *      @viid: the VI id
7870  *      @addr: the MAC address
7871  *      @mask: the mask
7872  *      @vni: the VNI id for the tunnel protocol
7873  *      @vni_mask: mask for the VNI id
7874  *      @dip_hit: to enable DIP match for the MPS entry
7875  *      @lookup_type: MAC address for inner (1) or outer (0) header
7876  *      @sleep_ok: call is allowed to sleep
7877  *
7878  *      Allocates an MPS entry with specified MAC address and VNI value.
7879  *
7880  *      Returns a negative error number or the allocated index for this mac.
7881  */
7882 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7883 			    const u8 *addr, const u8 *mask, unsigned int vni,
7884 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7885 			    bool sleep_ok)
7886 {
7887 	struct fw_vi_mac_cmd c;
7888 	struct fw_vi_mac_vni *p = c.u.exact_vni;
7889 	int ret = 0;
7890 	u32 val;
7891 
7892 	memset(&c, 0, sizeof(c));
7893 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7894 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7895 				   FW_VI_MAC_CMD_VIID_V(viid));
7896 	val = FW_CMD_LEN16_V(1) |
7897 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7898 	c.freemacs_to_len16 = cpu_to_be32(val);
7899 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7900 				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7901 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7902 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7903 
7904 	p->lookup_type_to_vni =
7905 		cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7906 			    FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7907 			    FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7908 	p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7909 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7910 	if (ret == 0)
7911 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7912 	return ret;
7913 }
7914 
7915 /**
7916  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7917  *	@adap: the adapter
7918  *	@viid: the VI id
7919  *	@addr: the MAC address
7920  *	@mask: the mask
7921  *	@idx: index at which to add this entry
7922  *	@lookup_type: MAC address for inner (1) or outer (0) header
7923  *	@port_id: the port index
7924  *	@sleep_ok: call is allowed to sleep
7925  *
7926  *	Adds the mac entry at the specified index using raw mac interface.
7927  *
7928  *	Returns a negative error number or the allocated index for this mac.
7929  */
7930 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7931 			  const u8 *addr, const u8 *mask, unsigned int idx,
7932 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7933 {
7934 	int ret = 0;
7935 	struct fw_vi_mac_cmd c;
7936 	struct fw_vi_mac_raw *p = &c.u.raw;
7937 	u32 val;
7938 
7939 	memset(&c, 0, sizeof(c));
7940 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7941 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7942 				   FW_VI_MAC_CMD_VIID_V(viid));
7943 	val = FW_CMD_LEN16_V(1) |
7944 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7945 	c.freemacs_to_len16 = cpu_to_be32(val);
7946 
7947 	/* Specify that this is an inner mac address */
7948 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7949 
7950 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7951 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7952 				   DATAPORTNUM_V(port_id));
7953 	/* Lookup mask and port mask */
7954 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7955 				    DATAPORTNUM_V(DATAPORTNUM_M));
7956 
7957 	/* Copy the address and the mask */
7958 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7959 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7960 
7961 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7962 	if (ret == 0) {
7963 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7964 		if (ret != idx)
7965 			ret = -ENOMEM;
7966 	}
7967 
7968 	return ret;
7969 }
7970 
7971 /**
7972  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7973  *	@adap: the adapter
7974  *	@mbox: mailbox to use for the FW command
7975  *	@viid: the VI id
7976  *	@free: if true any existing filters for this VI id are first removed
7977  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7978  *	@addr: the MAC address(es)
7979  *	@idx: where to store the index of each allocated filter
7980  *	@hash: pointer to hash address filter bitmap
7981  *	@sleep_ok: call is allowed to sleep
7982  *
7983  *	Allocates an exact-match filter for each of the supplied addresses and
7984  *	sets it to the corresponding address.  If @idx is not %NULL it should
7985  *	have at least @naddr entries, each of which will be set to the index of
7986  *	the filter allocated for the corresponding MAC address.  If a filter
7987  *	could not be allocated for an address its index is set to 0xffff.
7988  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7989  *	are hashed and update the hash filter bitmap pointed at by @hash.
7990  *
7991  *	Returns a negative error number or the number of filters allocated.
7992  */
7993 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7994 		      unsigned int viid, bool free, unsigned int naddr,
7995 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7996 {
7997 	int offset, ret = 0;
7998 	struct fw_vi_mac_cmd c;
7999 	unsigned int nfilters = 0;
8000 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
8001 	unsigned int rem = naddr;
8002 
8003 	if (naddr > max_naddr)
8004 		return -EINVAL;
8005 
8006 	for (offset = 0; offset < naddr ; /**/) {
8007 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
8008 					 rem : ARRAY_SIZE(c.u.exact));
8009 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8010 						     u.exact[fw_naddr]), 16);
8011 		struct fw_vi_mac_exact *p;
8012 		int i;
8013 
8014 		memset(&c, 0, sizeof(c));
8015 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8016 					   FW_CMD_REQUEST_F |
8017 					   FW_CMD_WRITE_F |
8018 					   FW_CMD_EXEC_V(free) |
8019 					   FW_VI_MAC_CMD_VIID_V(viid));
8020 		c.freemacs_to_len16 =
8021 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
8022 				    FW_CMD_LEN16_V(len16));
8023 
8024 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8025 			p->valid_to_idx =
8026 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8027 					    FW_VI_MAC_CMD_IDX_V(
8028 						    FW_VI_MAC_ADD_MAC));
8029 			memcpy(p->macaddr, addr[offset + i],
8030 			       sizeof(p->macaddr));
8031 		}
8032 
8033 		/* It's okay if we run out of space in our MAC address arena.
8034 		 * Some of the addresses we submit may get stored so we need
8035 		 * to run through the reply to see what the results were ...
8036 		 */
8037 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8038 		if (ret && ret != -FW_ENOMEM)
8039 			break;
8040 
8041 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8042 			u16 index = FW_VI_MAC_CMD_IDX_G(
8043 					be16_to_cpu(p->valid_to_idx));
8044 
8045 			if (idx)
8046 				idx[offset + i] = (index >= max_naddr ?
8047 						   0xffff : index);
8048 			if (index < max_naddr)
8049 				nfilters++;
8050 			else if (hash)
8051 				*hash |= (1ULL <<
8052 					  hash_mac_addr(addr[offset + i]));
8053 		}
8054 
8055 		free = false;
8056 		offset += fw_naddr;
8057 		rem -= fw_naddr;
8058 	}
8059 
8060 	if (ret == 0 || ret == -FW_ENOMEM)
8061 		ret = nfilters;
8062 	return ret;
8063 }
8064 
8065 /**
8066  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8067  *	@adap: the adapter
8068  *	@mbox: mailbox to use for the FW command
8069  *	@viid: the VI id
8070  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8071  *	@addr: the MAC address(es)
8072  *	@sleep_ok: call is allowed to sleep
8073  *
8074  *	Frees the exact-match filter for each of the supplied addresses
8075  *
8076  *	Returns a negative error number or the number of filters freed.
8077  */
8078 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8079 		     unsigned int viid, unsigned int naddr,
8080 		     const u8 **addr, bool sleep_ok)
8081 {
8082 	int offset, ret = 0;
8083 	struct fw_vi_mac_cmd c;
8084 	unsigned int nfilters = 0;
8085 	unsigned int max_naddr = is_t4(adap->params.chip) ?
8086 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
8087 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8088 	unsigned int rem = naddr;
8089 
8090 	if (naddr > max_naddr)
8091 		return -EINVAL;
8092 
8093 	for (offset = 0; offset < (int)naddr ; /**/) {
8094 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8095 					 ? rem
8096 					 : ARRAY_SIZE(c.u.exact));
8097 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8098 						     u.exact[fw_naddr]), 16);
8099 		struct fw_vi_mac_exact *p;
8100 		int i;
8101 
8102 		memset(&c, 0, sizeof(c));
8103 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8104 				     FW_CMD_REQUEST_F |
8105 				     FW_CMD_WRITE_F |
8106 				     FW_CMD_EXEC_V(0) |
8107 				     FW_VI_MAC_CMD_VIID_V(viid));
8108 		c.freemacs_to_len16 =
8109 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8110 					    FW_CMD_LEN16_V(len16));
8111 
8112 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8113 			p->valid_to_idx = cpu_to_be16(
8114 				FW_VI_MAC_CMD_VALID_F |
8115 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8116 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8117 		}
8118 
8119 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8120 		if (ret)
8121 			break;
8122 
8123 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8124 			u16 index = FW_VI_MAC_CMD_IDX_G(
8125 						be16_to_cpu(p->valid_to_idx));
8126 
8127 			if (index < max_naddr)
8128 				nfilters++;
8129 		}
8130 
8131 		offset += fw_naddr;
8132 		rem -= fw_naddr;
8133 	}
8134 
8135 	if (ret == 0)
8136 		ret = nfilters;
8137 	return ret;
8138 }
8139 
8140 /**
8141  *	t4_change_mac - modifies the exact-match filter for a MAC address
8142  *	@adap: the adapter
8143  *	@mbox: mailbox to use for the FW command
8144  *	@viid: the VI id
8145  *	@idx: index of existing filter for old value of MAC address, or -1
8146  *	@addr: the new MAC address value
8147  *	@persist: whether a new MAC allocation should be persistent
8148  *	@smt_idx: the destination to store the new SMT index.
8149  *
8150  *	Modifies an exact-match filter and sets it to the new MAC address.
8151  *	Note that in general it is not possible to modify the value of a given
8152  *	filter so the generic way to modify an address filter is to free the one
8153  *	being used by the old address value and allocate a new filter for the
8154  *	new address value.  @idx can be -1 if the address is a new addition.
8155  *
8156  *	Returns a negative error number or the index of the filter with the new
8157  *	MAC value.
8158  */
8159 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8160 		  int idx, const u8 *addr, bool persist, u8 *smt_idx)
8161 {
8162 	int ret, mode;
8163 	struct fw_vi_mac_cmd c;
8164 	struct fw_vi_mac_exact *p = c.u.exact;
8165 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8166 
8167 	if (idx < 0)                             /* new allocation */
8168 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8169 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8170 
8171 	memset(&c, 0, sizeof(c));
8172 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8173 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8174 				   FW_VI_MAC_CMD_VIID_V(viid));
8175 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8176 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8177 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8178 				      FW_VI_MAC_CMD_IDX_V(idx));
8179 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8180 
8181 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8182 	if (ret == 0) {
8183 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8184 		if (ret >= max_mac_addr)
8185 			ret = -ENOMEM;
8186 		if (smt_idx) {
8187 			if (adap->params.viid_smt_extn_support) {
8188 				*smt_idx = FW_VI_MAC_CMD_SMTID_G
8189 						    (be32_to_cpu(c.op_to_viid));
8190 			} else {
8191 				/* In T4/T5, SMT contains 256 SMAC entries
8192 				 * organized in 128 rows of 2 entries each.
8193 				 * In T6, SMT contains 256 SMAC entries in
8194 				 * 256 rows.
8195 				 */
8196 				if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8197 								     CHELSIO_T5)
8198 					*smt_idx = (viid & FW_VIID_VIN_M) << 1;
8199 				else
8200 					*smt_idx = (viid & FW_VIID_VIN_M);
8201 			}
8202 		}
8203 	}
8204 	return ret;
8205 }
8206 
8207 /**
8208  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8209  *	@adap: the adapter
8210  *	@mbox: mailbox to use for the FW command
8211  *	@viid: the VI id
8212  *	@ucast: whether the hash filter should also match unicast addresses
8213  *	@vec: the value to be written to the hash filter
8214  *	@sleep_ok: call is allowed to sleep
8215  *
8216  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8217  */
8218 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8219 		     bool ucast, u64 vec, bool sleep_ok)
8220 {
8221 	struct fw_vi_mac_cmd c;
8222 
8223 	memset(&c, 0, sizeof(c));
8224 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8225 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8226 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8227 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8228 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8229 					  FW_CMD_LEN16_V(1));
8230 	c.u.hash.hashvec = cpu_to_be64(vec);
8231 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8232 }
8233 
8234 /**
8235  *      t4_enable_vi_params - enable/disable a virtual interface
8236  *      @adap: the adapter
8237  *      @mbox: mailbox to use for the FW command
8238  *      @viid: the VI id
8239  *      @rx_en: 1=enable Rx, 0=disable Rx
8240  *      @tx_en: 1=enable Tx, 0=disable Tx
8241  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8242  *
8243  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8244  *      only makes sense when enabling a Virtual Interface ...
8245  */
8246 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8247 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8248 {
8249 	struct fw_vi_enable_cmd c;
8250 
8251 	memset(&c, 0, sizeof(c));
8252 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8253 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8254 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8255 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8256 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8257 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8258 				     FW_LEN16(c));
8259 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8260 }
8261 
8262 /**
8263  *	t4_enable_vi - enable/disable a virtual interface
8264  *	@adap: the adapter
8265  *	@mbox: mailbox to use for the FW command
8266  *	@viid: the VI id
8267  *	@rx_en: 1=enable Rx, 0=disable Rx
8268  *	@tx_en: 1=enable Tx, 0=disable Tx
8269  *
8270  *	Enables/disables a virtual interface.
8271  */
8272 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8273 		 bool rx_en, bool tx_en)
8274 {
8275 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8276 }
8277 
8278 /**
8279  *	t4_enable_pi_params - enable/disable a Port's Virtual Interface
8280  *      @adap: the adapter
8281  *      @mbox: mailbox to use for the FW command
8282  *      @pi: the Port Information structure
8283  *      @rx_en: 1=enable Rx, 0=disable Rx
8284  *      @tx_en: 1=enable Tx, 0=disable Tx
8285  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8286  *
8287  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8288  *	Enable only makes sense when enabling a Virtual Interface ...
8289  *	If the Virtual Interface enable/disable operation is successful,
8290  *	we notify the OS-specific code of a potential Link Status change
8291  *	via the OS Contract API t4_os_link_changed().
8292  */
8293 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8294 			struct port_info *pi,
8295 			bool rx_en, bool tx_en, bool dcb_en)
8296 {
8297 	int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8298 				      rx_en, tx_en, dcb_en);
8299 	if (ret)
8300 		return ret;
8301 	t4_os_link_changed(adap, pi->port_id,
8302 			   rx_en && tx_en && pi->link_cfg.link_ok);
8303 	return 0;
8304 }
8305 
8306 /**
8307  *	t4_identify_port - identify a VI's port by blinking its LED
8308  *	@adap: the adapter
8309  *	@mbox: mailbox to use for the FW command
8310  *	@viid: the VI id
8311  *	@nblinks: how many times to blink LED at 2.5 Hz
8312  *
8313  *	Identifies a VI's port by blinking its LED.
8314  */
8315 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8316 		     unsigned int nblinks)
8317 {
8318 	struct fw_vi_enable_cmd c;
8319 
8320 	memset(&c, 0, sizeof(c));
8321 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8322 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8323 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8324 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8325 	c.blinkdur = cpu_to_be16(nblinks);
8326 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8327 }
8328 
8329 /**
8330  *	t4_iq_stop - stop an ingress queue and its FLs
8331  *	@adap: the adapter
8332  *	@mbox: mailbox to use for the FW command
8333  *	@pf: the PF owning the queues
8334  *	@vf: the VF owning the queues
8335  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8336  *	@iqid: ingress queue id
8337  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8338  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8339  *
8340  *	Stops an ingress queue and its associated FLs, if any.  This causes
8341  *	any current or future data/messages destined for these queues to be
8342  *	tossed.
8343  */
8344 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8345 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8346 	       unsigned int fl0id, unsigned int fl1id)
8347 {
8348 	struct fw_iq_cmd c;
8349 
8350 	memset(&c, 0, sizeof(c));
8351 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8352 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8353 				  FW_IQ_CMD_VFN_V(vf));
8354 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8355 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8356 	c.iqid = cpu_to_be16(iqid);
8357 	c.fl0id = cpu_to_be16(fl0id);
8358 	c.fl1id = cpu_to_be16(fl1id);
8359 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8360 }
8361 
8362 /**
8363  *	t4_iq_free - free an ingress queue and its FLs
8364  *	@adap: the adapter
8365  *	@mbox: mailbox to use for the FW command
8366  *	@pf: the PF owning the queues
8367  *	@vf: the VF owning the queues
8368  *	@iqtype: the ingress queue type
8369  *	@iqid: ingress queue id
8370  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8371  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8372  *
8373  *	Frees an ingress queue and its associated FLs, if any.
8374  */
8375 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8376 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8377 	       unsigned int fl0id, unsigned int fl1id)
8378 {
8379 	struct fw_iq_cmd c;
8380 
8381 	memset(&c, 0, sizeof(c));
8382 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8383 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8384 				  FW_IQ_CMD_VFN_V(vf));
8385 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8386 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8387 	c.iqid = cpu_to_be16(iqid);
8388 	c.fl0id = cpu_to_be16(fl0id);
8389 	c.fl1id = cpu_to_be16(fl1id);
8390 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8391 }
8392 
8393 /**
8394  *	t4_eth_eq_free - free an Ethernet egress queue
8395  *	@adap: the adapter
8396  *	@mbox: mailbox to use for the FW command
8397  *	@pf: the PF owning the queue
8398  *	@vf: the VF owning the queue
8399  *	@eqid: egress queue id
8400  *
8401  *	Frees an Ethernet egress queue.
8402  */
8403 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8404 		   unsigned int vf, unsigned int eqid)
8405 {
8406 	struct fw_eq_eth_cmd c;
8407 
8408 	memset(&c, 0, sizeof(c));
8409 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8410 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8411 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8412 				  FW_EQ_ETH_CMD_VFN_V(vf));
8413 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8414 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8415 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8416 }
8417 
8418 /**
8419  *	t4_ctrl_eq_free - free a control egress queue
8420  *	@adap: the adapter
8421  *	@mbox: mailbox to use for the FW command
8422  *	@pf: the PF owning the queue
8423  *	@vf: the VF owning the queue
8424  *	@eqid: egress queue id
8425  *
8426  *	Frees a control egress queue.
8427  */
8428 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8429 		    unsigned int vf, unsigned int eqid)
8430 {
8431 	struct fw_eq_ctrl_cmd c;
8432 
8433 	memset(&c, 0, sizeof(c));
8434 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8435 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8436 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8437 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8438 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8439 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8440 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8441 }
8442 
8443 /**
8444  *	t4_ofld_eq_free - free an offload egress queue
8445  *	@adap: the adapter
8446  *	@mbox: mailbox to use for the FW command
8447  *	@pf: the PF owning the queue
8448  *	@vf: the VF owning the queue
8449  *	@eqid: egress queue id
8450  *
8451  *	Frees a control egress queue.
8452  */
8453 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8454 		    unsigned int vf, unsigned int eqid)
8455 {
8456 	struct fw_eq_ofld_cmd c;
8457 
8458 	memset(&c, 0, sizeof(c));
8459 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8460 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8461 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8462 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8463 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8464 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8465 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8466 }
8467 
8468 /**
8469  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8470  *	@link_down_rc: Link Down Reason Code
8471  *
8472  *	Returns a string representation of the Link Down Reason Code.
8473  */
8474 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8475 {
8476 	static const char * const reason[] = {
8477 		"Link Down",
8478 		"Remote Fault",
8479 		"Auto-negotiation Failure",
8480 		"Reserved",
8481 		"Insufficient Airflow",
8482 		"Unable To Determine Reason",
8483 		"No RX Signal Detected",
8484 		"Reserved",
8485 	};
8486 
8487 	if (link_down_rc >= ARRAY_SIZE(reason))
8488 		return "Bad Reason Code";
8489 
8490 	return reason[link_down_rc];
8491 }
8492 
8493 /* Return the highest speed set in the port capabilities, in Mb/s. */
8494 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8495 {
8496 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8497 		do { \
8498 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8499 				return __speed; \
8500 		} while (0)
8501 
8502 	TEST_SPEED_RETURN(400G, 400000);
8503 	TEST_SPEED_RETURN(200G, 200000);
8504 	TEST_SPEED_RETURN(100G, 100000);
8505 	TEST_SPEED_RETURN(50G,   50000);
8506 	TEST_SPEED_RETURN(40G,   40000);
8507 	TEST_SPEED_RETURN(25G,   25000);
8508 	TEST_SPEED_RETURN(10G,   10000);
8509 	TEST_SPEED_RETURN(1G,     1000);
8510 	TEST_SPEED_RETURN(100M,    100);
8511 
8512 	#undef TEST_SPEED_RETURN
8513 
8514 	return 0;
8515 }
8516 
8517 /**
8518  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8519  *	@acaps: advertised Port Capabilities
8520  *
8521  *	Get the highest speed for the port from the advertised Port
8522  *	Capabilities.  It will be either the highest speed from the list of
8523  *	speeds or whatever user has set using ethtool.
8524  */
8525 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8526 {
8527 	#define TEST_SPEED_RETURN(__caps_speed) \
8528 		do { \
8529 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8530 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8531 		} while (0)
8532 
8533 	TEST_SPEED_RETURN(400G);
8534 	TEST_SPEED_RETURN(200G);
8535 	TEST_SPEED_RETURN(100G);
8536 	TEST_SPEED_RETURN(50G);
8537 	TEST_SPEED_RETURN(40G);
8538 	TEST_SPEED_RETURN(25G);
8539 	TEST_SPEED_RETURN(10G);
8540 	TEST_SPEED_RETURN(1G);
8541 	TEST_SPEED_RETURN(100M);
8542 
8543 	#undef TEST_SPEED_RETURN
8544 
8545 	return 0;
8546 }
8547 
8548 /**
8549  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8550  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8551  *
8552  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8553  *	32-bit Port Capabilities value.
8554  */
8555 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8556 {
8557 	fw_port_cap32_t linkattr = 0;
8558 
8559 	/* Unfortunately the format of the Link Status in the old
8560 	 * 16-bit Port Information message isn't the same as the
8561 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8562 	 */
8563 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8564 		linkattr |= FW_PORT_CAP32_FC_RX;
8565 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8566 		linkattr |= FW_PORT_CAP32_FC_TX;
8567 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8568 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8569 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8570 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8571 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8572 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8573 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8574 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8575 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8576 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8577 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8578 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8579 
8580 	return linkattr;
8581 }
8582 
8583 /**
8584  *	t4_handle_get_port_info - process a FW reply message
8585  *	@pi: the port info
8586  *	@rpl: start of the FW message
8587  *
8588  *	Processes a GET_PORT_INFO FW reply message.
8589  */
8590 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8591 {
8592 	const struct fw_port_cmd *cmd = (const void *)rpl;
8593 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8594 	struct link_config *lc = &pi->link_cfg;
8595 	struct adapter *adapter = pi->adapter;
8596 	unsigned int speed, fc, fec, adv_fc;
8597 	enum fw_port_module_type mod_type;
8598 	int action, link_ok, linkdnrc;
8599 	enum fw_port_type port_type;
8600 
8601 	/* Extract the various fields from the Port Information message.
8602 	 */
8603 	action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8604 	switch (action) {
8605 	case FW_PORT_ACTION_GET_PORT_INFO: {
8606 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8607 
8608 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8609 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8610 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8611 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8612 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8613 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8614 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8615 		linkattr = lstatus_to_fwcap(lstatus);
8616 		break;
8617 	}
8618 
8619 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8620 		u32 lstatus32;
8621 
8622 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8623 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8624 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8625 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8626 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8627 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8628 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8629 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8630 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8631 		break;
8632 	}
8633 
8634 	default:
8635 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8636 			be32_to_cpu(cmd->action_to_len16));
8637 		return;
8638 	}
8639 
8640 	fec = fwcap_to_cc_fec(acaps);
8641 	adv_fc = fwcap_to_cc_pause(acaps);
8642 	fc = fwcap_to_cc_pause(linkattr);
8643 	speed = fwcap_to_speed(linkattr);
8644 
8645 	/* Reset state for communicating new Transceiver Module status and
8646 	 * whether the OS-dependent layer wants us to redo the current
8647 	 * "sticky" L1 Configure Link Parameters.
8648 	 */
8649 	lc->new_module = false;
8650 	lc->redo_l1cfg = false;
8651 
8652 	if (mod_type != pi->mod_type) {
8653 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8654 		 * various fundamental Port Capabilities which used to be
8655 		 * immutable can now change radically.  We can now have
8656 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8657 		 * all change based on what Transceiver Module is inserted.
8658 		 * So we need to record the Physical "Port" Capabilities on
8659 		 * every Transceiver Module change.
8660 		 */
8661 		lc->pcaps = pcaps;
8662 
8663 		/* When a new Transceiver Module is inserted, the Firmware
8664 		 * will examine its i2c EPROM to determine its type and
8665 		 * general operating parameters including things like Forward
8666 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8667 		 * how to interpret these i2c values to determine default
8668 		 * "sutomatic" settings.  We record these for future use when
8669 		 * the user explicitly requests these standards-based values.
8670 		 */
8671 		lc->def_acaps = acaps;
8672 
8673 		/* Some versions of the early T6 Firmware "cheated" when
8674 		 * handling different Transceiver Modules by changing the
8675 		 * underlaying Port Type reported to the Host Drivers.  As
8676 		 * such we need to capture whatever Port Type the Firmware
8677 		 * sends us and record it in case it's different from what we
8678 		 * were told earlier.  Unfortunately, since Firmware is
8679 		 * forever, we'll need to keep this code here forever, but in
8680 		 * later T6 Firmware it should just be an assignment of the
8681 		 * same value already recorded.
8682 		 */
8683 		pi->port_type = port_type;
8684 
8685 		/* Record new Module Type information.
8686 		 */
8687 		pi->mod_type = mod_type;
8688 
8689 		/* Let the OS-dependent layer know if we have a new
8690 		 * Transceiver Module inserted.
8691 		 */
8692 		lc->new_module = t4_is_inserted_mod_type(mod_type);
8693 
8694 		t4_os_portmod_changed(adapter, pi->port_id);
8695 	}
8696 
8697 	if (link_ok != lc->link_ok || speed != lc->speed ||
8698 	    fc != lc->fc || adv_fc != lc->advertised_fc ||
8699 	    fec != lc->fec) {
8700 		/* something changed */
8701 		if (!link_ok && lc->link_ok) {
8702 			lc->link_down_rc = linkdnrc;
8703 			dev_warn_ratelimited(adapter->pdev_dev,
8704 					     "Port %d link down, reason: %s\n",
8705 					     pi->tx_chan,
8706 					     t4_link_down_rc_str(linkdnrc));
8707 		}
8708 		lc->link_ok = link_ok;
8709 		lc->speed = speed;
8710 		lc->advertised_fc = adv_fc;
8711 		lc->fc = fc;
8712 		lc->fec = fec;
8713 
8714 		lc->lpacaps = lpacaps;
8715 		lc->acaps = acaps & ADVERT_MASK;
8716 
8717 		/* If we're not physically capable of Auto-Negotiation, note
8718 		 * this as Auto-Negotiation disabled.  Otherwise, we track
8719 		 * what Auto-Negotiation settings we have.  Note parallel
8720 		 * structure in t4_link_l1cfg_core() and init_link_config().
8721 		 */
8722 		if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8723 			lc->autoneg = AUTONEG_DISABLE;
8724 		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8725 			lc->autoneg = AUTONEG_ENABLE;
8726 		} else {
8727 			/* When Autoneg is disabled, user needs to set
8728 			 * single speed.
8729 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8730 			 */
8731 			lc->acaps = 0;
8732 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8733 			lc->autoneg = AUTONEG_DISABLE;
8734 		}
8735 
8736 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8737 	}
8738 
8739 	/* If we have a new Transceiver Module and the OS-dependent code has
8740 	 * told us that it wants us to redo whatever "sticky" L1 Configuration
8741 	 * Link Parameters are set, do that now.
8742 	 */
8743 	if (lc->new_module && lc->redo_l1cfg) {
8744 		struct link_config old_lc;
8745 		int ret;
8746 
8747 		/* Save the current L1 Configuration and restore it if an
8748 		 * error occurs.  We probably should fix the l1_cfg*()
8749 		 * routines not to change the link_config when an error
8750 		 * occurs ...
8751 		 */
8752 		old_lc = *lc;
8753 		ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8754 		if (ret) {
8755 			*lc = old_lc;
8756 			dev_warn(adapter->pdev_dev,
8757 				 "Attempt to update new Transceiver Module settings failed\n");
8758 		}
8759 	}
8760 	lc->new_module = false;
8761 	lc->redo_l1cfg = false;
8762 }
8763 
8764 /**
8765  *	t4_update_port_info - retrieve and update port information if changed
8766  *	@pi: the port_info
8767  *
8768  *	We issue a Get Port Information Command to the Firmware and, if
8769  *	successful, we check to see if anything is different from what we
8770  *	last recorded and update things accordingly.
8771  */
8772 int t4_update_port_info(struct port_info *pi)
8773 {
8774 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8775 	struct fw_port_cmd port_cmd;
8776 	int ret;
8777 
8778 	memset(&port_cmd, 0, sizeof(port_cmd));
8779 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8780 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8781 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8782 	port_cmd.action_to_len16 = cpu_to_be32(
8783 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8784 				     ? FW_PORT_ACTION_GET_PORT_INFO
8785 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8786 		FW_LEN16(port_cmd));
8787 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8788 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8789 	if (ret)
8790 		return ret;
8791 
8792 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8793 	return 0;
8794 }
8795 
8796 /**
8797  *	t4_get_link_params - retrieve basic link parameters for given port
8798  *	@pi: the port
8799  *	@link_okp: value return pointer for link up/down
8800  *	@speedp: value return pointer for speed (Mb/s)
8801  *	@mtup: value return pointer for mtu
8802  *
8803  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8804  *	and MTU for a specified port.  A negative error is returned on
8805  *	failure; 0 on success.
8806  */
8807 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8808 		       unsigned int *speedp, unsigned int *mtup)
8809 {
8810 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8811 	unsigned int action, link_ok, mtu;
8812 	struct fw_port_cmd port_cmd;
8813 	fw_port_cap32_t linkattr;
8814 	int ret;
8815 
8816 	memset(&port_cmd, 0, sizeof(port_cmd));
8817 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8818 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8819 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8820 	action = (fw_caps == FW_CAPS16
8821 		  ? FW_PORT_ACTION_GET_PORT_INFO
8822 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8823 	port_cmd.action_to_len16 = cpu_to_be32(
8824 		FW_PORT_CMD_ACTION_V(action) |
8825 		FW_LEN16(port_cmd));
8826 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8827 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8828 	if (ret)
8829 		return ret;
8830 
8831 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8832 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8833 
8834 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8835 		linkattr = lstatus_to_fwcap(lstatus);
8836 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8837 	} else {
8838 		u32 lstatus32 =
8839 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8840 
8841 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8842 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8843 		mtu = FW_PORT_CMD_MTU32_G(
8844 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8845 	}
8846 
8847 	if (link_okp)
8848 		*link_okp = link_ok;
8849 	if (speedp)
8850 		*speedp = fwcap_to_speed(linkattr);
8851 	if (mtup)
8852 		*mtup = mtu;
8853 
8854 	return 0;
8855 }
8856 
8857 /**
8858  *      t4_handle_fw_rpl - process a FW reply message
8859  *      @adap: the adapter
8860  *      @rpl: start of the FW message
8861  *
8862  *      Processes a FW message, such as link state change messages.
8863  */
8864 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8865 {
8866 	u8 opcode = *(const u8 *)rpl;
8867 
8868 	/* This might be a port command ... this simplifies the following
8869 	 * conditionals ...  We can get away with pre-dereferencing
8870 	 * action_to_len16 because it's in the first 16 bytes and all messages
8871 	 * will be at least that long.
8872 	 */
8873 	const struct fw_port_cmd *p = (const void *)rpl;
8874 	unsigned int action =
8875 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8876 
8877 	if (opcode == FW_PORT_CMD &&
8878 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8879 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8880 		int i;
8881 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8882 		struct port_info *pi = NULL;
8883 
8884 		for_each_port(adap, i) {
8885 			pi = adap2pinfo(adap, i);
8886 			if (pi->tx_chan == chan)
8887 				break;
8888 		}
8889 
8890 		t4_handle_get_port_info(pi, rpl);
8891 	} else {
8892 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8893 			 opcode);
8894 		return -EINVAL;
8895 	}
8896 	return 0;
8897 }
8898 
8899 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8900 {
8901 	u16 val;
8902 
8903 	if (pci_is_pcie(adapter->pdev)) {
8904 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8905 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8906 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8907 	}
8908 }
8909 
8910 /**
8911  *	init_link_config - initialize a link's SW state
8912  *	@lc: pointer to structure holding the link state
8913  *	@pcaps: link Port Capabilities
8914  *	@acaps: link current Advertised Port Capabilities
8915  *
8916  *	Initializes the SW state maintained for each link, including the link's
8917  *	capabilities and default speed/flow-control/autonegotiation settings.
8918  */
8919 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8920 			     fw_port_cap32_t acaps)
8921 {
8922 	lc->pcaps = pcaps;
8923 	lc->def_acaps = acaps;
8924 	lc->lpacaps = 0;
8925 	lc->speed_caps = 0;
8926 	lc->speed = 0;
8927 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8928 
8929 	/* For Forward Error Control, we default to whatever the Firmware
8930 	 * tells us the Link is currently advertising.
8931 	 */
8932 	lc->requested_fec = FEC_AUTO;
8933 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8934 
8935 	/* If the Port is capable of Auto-Negtotiation, initialize it as
8936 	 * "enabled" and copy over all of the Physical Port Capabilities
8937 	 * to the Advertised Port Capabilities.  Otherwise mark it as
8938 	 * Auto-Negotiate disabled and select the highest supported speed
8939 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
8940 	 * and t4_handle_get_port_info().
8941 	 */
8942 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8943 		lc->acaps = lc->pcaps & ADVERT_MASK;
8944 		lc->autoneg = AUTONEG_ENABLE;
8945 		lc->requested_fc |= PAUSE_AUTONEG;
8946 	} else {
8947 		lc->acaps = 0;
8948 		lc->autoneg = AUTONEG_DISABLE;
8949 		lc->speed_caps = fwcap_to_fwspeed(acaps);
8950 	}
8951 }
8952 
8953 #define CIM_PF_NOACCESS 0xeeeeeeee
8954 
8955 int t4_wait_dev_ready(void __iomem *regs)
8956 {
8957 	u32 whoami;
8958 
8959 	whoami = readl(regs + PL_WHOAMI_A);
8960 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8961 		return 0;
8962 
8963 	msleep(500);
8964 	whoami = readl(regs + PL_WHOAMI_A);
8965 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8966 }
8967 
8968 struct flash_desc {
8969 	u32 vendor_and_model_id;
8970 	u32 size_mb;
8971 };
8972 
8973 static int t4_get_flash_params(struct adapter *adap)
8974 {
8975 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8976 	 * to the preexisting code.  All flash parts have 64KB sectors.
8977 	 */
8978 	static struct flash_desc supported_flash[] = {
8979 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8980 	};
8981 
8982 	unsigned int part, manufacturer;
8983 	unsigned int density, size = 0;
8984 	u32 flashid = 0;
8985 	int ret;
8986 
8987 	/* Issue a Read ID Command to the Flash part.  We decode supported
8988 	 * Flash parts and their sizes from this.  There's a newer Query
8989 	 * Command which can retrieve detailed geometry information but many
8990 	 * Flash parts don't support it.
8991 	 */
8992 
8993 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8994 	if (!ret)
8995 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8996 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8997 	if (ret)
8998 		return ret;
8999 
9000 	/* Check to see if it's one of our non-standard supported Flash parts.
9001 	 */
9002 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
9003 		if (supported_flash[part].vendor_and_model_id == flashid) {
9004 			adap->params.sf_size = supported_flash[part].size_mb;
9005 			adap->params.sf_nsec =
9006 				adap->params.sf_size / SF_SEC_SIZE;
9007 			goto found;
9008 		}
9009 
9010 	/* Decode Flash part size.  The code below looks repetitive with
9011 	 * common encodings, but that's not guaranteed in the JEDEC
9012 	 * specification for the Read JEDEC ID command.  The only thing that
9013 	 * we're guaranteed by the JEDEC specification is where the
9014 	 * Manufacturer ID is in the returned result.  After that each
9015 	 * Manufacturer ~could~ encode things completely differently.
9016 	 * Note, all Flash parts must have 64KB sectors.
9017 	 */
9018 	manufacturer = flashid & 0xff;
9019 	switch (manufacturer) {
9020 	case 0x20: { /* Micron/Numonix */
9021 		/* This Density -> Size decoding table is taken from Micron
9022 		 * Data Sheets.
9023 		 */
9024 		density = (flashid >> 16) & 0xff;
9025 		switch (density) {
9026 		case 0x14: /* 1MB */
9027 			size = 1 << 20;
9028 			break;
9029 		case 0x15: /* 2MB */
9030 			size = 1 << 21;
9031 			break;
9032 		case 0x16: /* 4MB */
9033 			size = 1 << 22;
9034 			break;
9035 		case 0x17: /* 8MB */
9036 			size = 1 << 23;
9037 			break;
9038 		case 0x18: /* 16MB */
9039 			size = 1 << 24;
9040 			break;
9041 		case 0x19: /* 32MB */
9042 			size = 1 << 25;
9043 			break;
9044 		case 0x20: /* 64MB */
9045 			size = 1 << 26;
9046 			break;
9047 		case 0x21: /* 128MB */
9048 			size = 1 << 27;
9049 			break;
9050 		case 0x22: /* 256MB */
9051 			size = 1 << 28;
9052 			break;
9053 		}
9054 		break;
9055 	}
9056 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9057 		/* This Density -> Size decoding table is taken from ISSI
9058 		 * Data Sheets.
9059 		 */
9060 		density = (flashid >> 16) & 0xff;
9061 		switch (density) {
9062 		case 0x16: /* 32 MB */
9063 			size = 1 << 25;
9064 			break;
9065 		case 0x17: /* 64MB */
9066 			size = 1 << 26;
9067 			break;
9068 		}
9069 		break;
9070 	}
9071 	case 0xc2: { /* Macronix */
9072 		/* This Density -> Size decoding table is taken from Macronix
9073 		 * Data Sheets.
9074 		 */
9075 		density = (flashid >> 16) & 0xff;
9076 		switch (density) {
9077 		case 0x17: /* 8MB */
9078 			size = 1 << 23;
9079 			break;
9080 		case 0x18: /* 16MB */
9081 			size = 1 << 24;
9082 			break;
9083 		}
9084 		break;
9085 	}
9086 	case 0xef: { /* Winbond */
9087 		/* This Density -> Size decoding table is taken from Winbond
9088 		 * Data Sheets.
9089 		 */
9090 		density = (flashid >> 16) & 0xff;
9091 		switch (density) {
9092 		case 0x17: /* 8MB */
9093 			size = 1 << 23;
9094 			break;
9095 		case 0x18: /* 16MB */
9096 			size = 1 << 24;
9097 			break;
9098 		}
9099 		break;
9100 	}
9101 	}
9102 
9103 	/* If we didn't recognize the FLASH part, that's no real issue: the
9104 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9105 	 * use a FLASH part which is at least 4MB in size and has 64KB
9106 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9107 	 * than 4MB, but that's all we really need.
9108 	 */
9109 	if (size == 0) {
9110 		dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9111 			 flashid);
9112 		size = 1 << 22;
9113 	}
9114 
9115 	/* Store decoded Flash size and fall through into vetting code. */
9116 	adap->params.sf_size = size;
9117 	adap->params.sf_nsec = size / SF_SEC_SIZE;
9118 
9119 found:
9120 	if (adap->params.sf_size < FLASH_MIN_SIZE)
9121 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9122 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9123 	return 0;
9124 }
9125 
9126 /**
9127  *	t4_prep_adapter - prepare SW and HW for operation
9128  *	@adapter: the adapter
9129  *
9130  *	Initialize adapter SW state for the various HW modules, set initial
9131  *	values for some adapter tunables, take PHYs out of reset, and
9132  *	initialize the MDIO interface.
9133  */
9134 int t4_prep_adapter(struct adapter *adapter)
9135 {
9136 	int ret, ver;
9137 	uint16_t device_id;
9138 	u32 pl_rev;
9139 
9140 	get_pci_mode(adapter, &adapter->params.pci);
9141 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9142 
9143 	ret = t4_get_flash_params(adapter);
9144 	if (ret < 0) {
9145 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9146 		return ret;
9147 	}
9148 
9149 	/* Retrieve adapter's device ID
9150 	 */
9151 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9152 	ver = device_id >> 12;
9153 	adapter->params.chip = 0;
9154 	switch (ver) {
9155 	case CHELSIO_T4:
9156 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9157 		adapter->params.arch.sge_fl_db = DBPRIO_F;
9158 		adapter->params.arch.mps_tcam_size =
9159 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
9160 		adapter->params.arch.mps_rplc_size = 128;
9161 		adapter->params.arch.nchan = NCHAN;
9162 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9163 		adapter->params.arch.vfcount = 128;
9164 		/* Congestion map is for 4 channels so that
9165 		 * MPS can have 4 priority per port.
9166 		 */
9167 		adapter->params.arch.cng_ch_bits_log = 2;
9168 		break;
9169 	case CHELSIO_T5:
9170 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9171 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9172 		adapter->params.arch.mps_tcam_size =
9173 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9174 		adapter->params.arch.mps_rplc_size = 128;
9175 		adapter->params.arch.nchan = NCHAN;
9176 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9177 		adapter->params.arch.vfcount = 128;
9178 		adapter->params.arch.cng_ch_bits_log = 2;
9179 		break;
9180 	case CHELSIO_T6:
9181 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9182 		adapter->params.arch.sge_fl_db = 0;
9183 		adapter->params.arch.mps_tcam_size =
9184 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9185 		adapter->params.arch.mps_rplc_size = 256;
9186 		adapter->params.arch.nchan = 2;
9187 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9188 		adapter->params.arch.vfcount = 256;
9189 		/* Congestion map will be for 2 channels so that
9190 		 * MPS can have 8 priority per port.
9191 		 */
9192 		adapter->params.arch.cng_ch_bits_log = 3;
9193 		break;
9194 	default:
9195 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9196 			device_id);
9197 		return -EINVAL;
9198 	}
9199 
9200 	adapter->params.cim_la_size = CIMLA_SIZE;
9201 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9202 
9203 	/*
9204 	 * Default port for debugging in case we can't reach FW.
9205 	 */
9206 	adapter->params.nports = 1;
9207 	adapter->params.portvec = 1;
9208 	adapter->params.vpd.cclk = 50000;
9209 
9210 	/* Set PCIe completion timeout to 4 seconds. */
9211 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9212 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9213 	return 0;
9214 }
9215 
9216 /**
9217  *	t4_shutdown_adapter - shut down adapter, host & wire
9218  *	@adapter: the adapter
9219  *
9220  *	Perform an emergency shutdown of the adapter and stop it from
9221  *	continuing any further communication on the ports or DMA to the
9222  *	host.  This is typically used when the adapter and/or firmware
9223  *	have crashed and we want to prevent any further accidental
9224  *	communication with the rest of the world.  This will also force
9225  *	the port Link Status to go down -- if register writes work --
9226  *	which should help our peers figure out that we're down.
9227  */
9228 int t4_shutdown_adapter(struct adapter *adapter)
9229 {
9230 	int port;
9231 
9232 	t4_intr_disable(adapter);
9233 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9234 	for_each_port(adapter, port) {
9235 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
9236 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
9237 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
9238 
9239 		t4_write_reg(adapter, a_port_cfg,
9240 			     t4_read_reg(adapter, a_port_cfg)
9241 			     & ~SIGNAL_DET_V(1));
9242 	}
9243 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9244 
9245 	return 0;
9246 }
9247 
9248 /**
9249  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9250  *	@adapter: the adapter
9251  *	@qid: the Queue ID
9252  *	@qtype: the Ingress or Egress type for @qid
9253  *	@user: true if this request is for a user mode queue
9254  *	@pbar2_qoffset: BAR2 Queue Offset
9255  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9256  *
9257  *	Returns the BAR2 SGE Queue Registers information associated with the
9258  *	indicated Absolute Queue ID.  These are passed back in return value
9259  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9260  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9261  *
9262  *	This may return an error which indicates that BAR2 SGE Queue
9263  *	registers aren't available.  If an error is not returned, then the
9264  *	following values are returned:
9265  *
9266  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9267  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9268  *
9269  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9270  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9271  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9272  *	then these "Inferred Queue ID" register may not be used.
9273  */
9274 int t4_bar2_sge_qregs(struct adapter *adapter,
9275 		      unsigned int qid,
9276 		      enum t4_bar2_qtype qtype,
9277 		      int user,
9278 		      u64 *pbar2_qoffset,
9279 		      unsigned int *pbar2_qid)
9280 {
9281 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9282 	u64 bar2_page_offset, bar2_qoffset;
9283 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9284 
9285 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9286 	if (!user && is_t4(adapter->params.chip))
9287 		return -EINVAL;
9288 
9289 	/* Get our SGE Page Size parameters.
9290 	 */
9291 	page_shift = adapter->params.sge.hps + 10;
9292 	page_size = 1 << page_shift;
9293 
9294 	/* Get the right Queues per Page parameters for our Queue.
9295 	 */
9296 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9297 		     ? adapter->params.sge.eq_qpp
9298 		     : adapter->params.sge.iq_qpp);
9299 	qpp_mask = (1 << qpp_shift) - 1;
9300 
9301 	/*  Calculate the basics of the BAR2 SGE Queue register area:
9302 	 *  o The BAR2 page the Queue registers will be in.
9303 	 *  o The BAR2 Queue ID.
9304 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9305 	 */
9306 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9307 	bar2_qid = qid & qpp_mask;
9308 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9309 
9310 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9311 	 * hardware will infer the Absolute Queue ID simply from the writes to
9312 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9313 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9314 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9315 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9316 	 * from the BAR2 Page and BAR2 Queue ID.
9317 	 *
9318 	 * One important censequence of this is that some BAR2 SGE registers
9319 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9320 	 * there.  But other registers synthesize the SGE Queue ID purely
9321 	 * from the writes to the registers -- the Write Combined Doorbell
9322 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9323 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9324 	 * Queue ID can be inferred from simple writes.
9325 	 */
9326 	bar2_qoffset = bar2_page_offset;
9327 	bar2_qinferred = (bar2_qid_offset < page_size);
9328 	if (bar2_qinferred) {
9329 		bar2_qoffset += bar2_qid_offset;
9330 		bar2_qid = 0;
9331 	}
9332 
9333 	*pbar2_qoffset = bar2_qoffset;
9334 	*pbar2_qid = bar2_qid;
9335 	return 0;
9336 }
9337 
9338 /**
9339  *	t4_init_devlog_params - initialize adapter->params.devlog
9340  *	@adap: the adapter
9341  *
9342  *	Initialize various fields of the adapter's Firmware Device Log
9343  *	Parameters structure.
9344  */
9345 int t4_init_devlog_params(struct adapter *adap)
9346 {
9347 	struct devlog_params *dparams = &adap->params.devlog;
9348 	u32 pf_dparams;
9349 	unsigned int devlog_meminfo;
9350 	struct fw_devlog_cmd devlog_cmd;
9351 	int ret;
9352 
9353 	/* If we're dealing with newer firmware, the Device Log Parameters
9354 	 * are stored in a designated register which allows us to access the
9355 	 * Device Log even if we can't talk to the firmware.
9356 	 */
9357 	pf_dparams =
9358 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9359 	if (pf_dparams) {
9360 		unsigned int nentries, nentries128;
9361 
9362 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9363 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9364 
9365 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9366 		nentries = (nentries128 + 1) * 128;
9367 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9368 
9369 		return 0;
9370 	}
9371 
9372 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9373 	 */
9374 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9375 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9376 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
9377 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9378 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9379 			 &devlog_cmd);
9380 	if (ret)
9381 		return ret;
9382 
9383 	devlog_meminfo =
9384 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9385 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9386 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9387 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9388 
9389 	return 0;
9390 }
9391 
9392 /**
9393  *	t4_init_sge_params - initialize adap->params.sge
9394  *	@adapter: the adapter
9395  *
9396  *	Initialize various fields of the adapter's SGE Parameters structure.
9397  */
9398 int t4_init_sge_params(struct adapter *adapter)
9399 {
9400 	struct sge_params *sge_params = &adapter->params.sge;
9401 	u32 hps, qpp;
9402 	unsigned int s_hps, s_qpp;
9403 
9404 	/* Extract the SGE Page Size for our PF.
9405 	 */
9406 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9407 	s_hps = (HOSTPAGESIZEPF0_S +
9408 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9409 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9410 
9411 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9412 	 */
9413 	s_qpp = (QUEUESPERPAGEPF0_S +
9414 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9415 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9416 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9417 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9418 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9419 
9420 	return 0;
9421 }
9422 
9423 /**
9424  *      t4_init_tp_params - initialize adap->params.tp
9425  *      @adap: the adapter
9426  *      @sleep_ok: if true we may sleep while awaiting command completion
9427  *
9428  *      Initialize various fields of the adapter's TP Parameters structure.
9429  */
9430 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9431 {
9432 	u32 param, val, v;
9433 	int chan, ret;
9434 
9435 
9436 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9437 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
9438 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9439 
9440 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9441 	for (chan = 0; chan < NCHAN; chan++)
9442 		adap->params.tp.tx_modq[chan] = chan;
9443 
9444 	/* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9445 	 * Configuration.
9446 	 */
9447 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9448 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9449 		 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9450 
9451 	/* Read current value */
9452 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9453 			      &param, &val);
9454 	if (ret == 0) {
9455 		dev_info(adap->pdev_dev,
9456 			 "Current filter mode/mask 0x%x:0x%x\n",
9457 			 FW_PARAMS_PARAM_FILTER_MODE_G(val),
9458 			 FW_PARAMS_PARAM_FILTER_MASK_G(val));
9459 		adap->params.tp.vlan_pri_map =
9460 			FW_PARAMS_PARAM_FILTER_MODE_G(val);
9461 		adap->params.tp.filter_mask =
9462 			FW_PARAMS_PARAM_FILTER_MASK_G(val);
9463 	} else {
9464 		dev_info(adap->pdev_dev,
9465 			 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9466 
9467 		/* Incase of older-fw (which doesn't expose the api
9468 		 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9469 		 * the fw api) combination, fall-back to older method of reading
9470 		 * the filter mode from indirect-register
9471 		 */
9472 		t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9473 			       TP_VLAN_PRI_MAP_A, sleep_ok);
9474 
9475 		/* With the older-fw and newer-driver combination we might run
9476 		 * into an issue when user wants to use hash filter region but
9477 		 * the filter_mask is zero, in this case filter_mask validation
9478 		 * is tough. To avoid that we set the filter_mask same as filter
9479 		 * mode, which will behave exactly as the older way of ignoring
9480 		 * the filter mask validation.
9481 		 */
9482 		adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9483 	}
9484 
9485 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9486 		       TP_INGRESS_CONFIG_A, sleep_ok);
9487 
9488 	/* For T6, cache the adapter's compressed error vector
9489 	 * and passing outer header info for encapsulated packets.
9490 	 */
9491 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9492 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9493 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9494 	}
9495 
9496 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9497 	 * shift positions of several elements of the Compressed Filter Tuple
9498 	 * for this adapter which we need frequently ...
9499 	 */
9500 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9501 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9502 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9503 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9504 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9505 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9506 							       PROTOCOL_F);
9507 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9508 								ETHERTYPE_F);
9509 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9510 							       MACMATCH_F);
9511 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9512 								MPSHITTYPE_F);
9513 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9514 							   FRAGMENTATION_F);
9515 
9516 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9517 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9518 	 */
9519 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9520 		adap->params.tp.vnic_shift = -1;
9521 
9522 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9523 	adap->params.tp.hash_filter_mask = v;
9524 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9525 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9526 	return 0;
9527 }
9528 
9529 /**
9530  *      t4_filter_field_shift - calculate filter field shift
9531  *      @adap: the adapter
9532  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9533  *
9534  *      Return the shift position of a filter field within the Compressed
9535  *      Filter Tuple.  The filter field is specified via its selection bit
9536  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9537  */
9538 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9539 {
9540 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9541 	unsigned int sel;
9542 	int field_shift;
9543 
9544 	if ((filter_mode & filter_sel) == 0)
9545 		return -1;
9546 
9547 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9548 		switch (filter_mode & sel) {
9549 		case FCOE_F:
9550 			field_shift += FT_FCOE_W;
9551 			break;
9552 		case PORT_F:
9553 			field_shift += FT_PORT_W;
9554 			break;
9555 		case VNIC_ID_F:
9556 			field_shift += FT_VNIC_ID_W;
9557 			break;
9558 		case VLAN_F:
9559 			field_shift += FT_VLAN_W;
9560 			break;
9561 		case TOS_F:
9562 			field_shift += FT_TOS_W;
9563 			break;
9564 		case PROTOCOL_F:
9565 			field_shift += FT_PROTOCOL_W;
9566 			break;
9567 		case ETHERTYPE_F:
9568 			field_shift += FT_ETHERTYPE_W;
9569 			break;
9570 		case MACMATCH_F:
9571 			field_shift += FT_MACMATCH_W;
9572 			break;
9573 		case MPSHITTYPE_F:
9574 			field_shift += FT_MPSHITTYPE_W;
9575 			break;
9576 		case FRAGMENTATION_F:
9577 			field_shift += FT_FRAGMENTATION_W;
9578 			break;
9579 		}
9580 	}
9581 	return field_shift;
9582 }
9583 
9584 int t4_init_rss_mode(struct adapter *adap, int mbox)
9585 {
9586 	int i, ret;
9587 	struct fw_rss_vi_config_cmd rvc;
9588 
9589 	memset(&rvc, 0, sizeof(rvc));
9590 
9591 	for_each_port(adap, i) {
9592 		struct port_info *p = adap2pinfo(adap, i);
9593 
9594 		rvc.op_to_viid =
9595 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9596 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9597 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9598 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9599 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9600 		if (ret)
9601 			return ret;
9602 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9603 	}
9604 	return 0;
9605 }
9606 
9607 /**
9608  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9609  *	@pi: the port_info
9610  *	@mbox: mailbox to use for the FW command
9611  *	@port: physical port associated with the VI
9612  *	@pf: the PF owning the VI
9613  *	@vf: the VF owning the VI
9614  *	@mac: the MAC address of the VI
9615  *
9616  *	Allocates a virtual interface for the given physical port.  If @mac is
9617  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9618  *	@mac should be large enough to hold an Ethernet address.
9619  *	Returns < 0 on error.
9620  */
9621 int t4_init_portinfo(struct port_info *pi, int mbox,
9622 		     int port, int pf, int vf, u8 mac[])
9623 {
9624 	struct adapter *adapter = pi->adapter;
9625 	unsigned int fw_caps = adapter->params.fw_caps_support;
9626 	struct fw_port_cmd cmd;
9627 	unsigned int rss_size;
9628 	enum fw_port_type port_type;
9629 	int mdio_addr;
9630 	fw_port_cap32_t pcaps, acaps;
9631 	u8 vivld = 0, vin = 0;
9632 	int ret;
9633 
9634 	/* If we haven't yet determined whether we're talking to Firmware
9635 	 * which knows the new 32-bit Port Capabilities, it's time to find
9636 	 * out now.  This will also tell new Firmware to send us Port Status
9637 	 * Updates using the new 32-bit Port Capabilities version of the
9638 	 * Port Information message.
9639 	 */
9640 	if (fw_caps == FW_CAPS_UNKNOWN) {
9641 		u32 param, val;
9642 
9643 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9644 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9645 		val = 1;
9646 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9647 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9648 		adapter->params.fw_caps_support = fw_caps;
9649 	}
9650 
9651 	memset(&cmd, 0, sizeof(cmd));
9652 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9653 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9654 				       FW_PORT_CMD_PORTID_V(port));
9655 	cmd.action_to_len16 = cpu_to_be32(
9656 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9657 				     ? FW_PORT_ACTION_GET_PORT_INFO
9658 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9659 		FW_LEN16(cmd));
9660 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9661 	if (ret)
9662 		return ret;
9663 
9664 	/* Extract the various fields from the Port Information message.
9665 	 */
9666 	if (fw_caps == FW_CAPS16) {
9667 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9668 
9669 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9670 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9671 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9672 			     : -1);
9673 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9674 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9675 	} else {
9676 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9677 
9678 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9679 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9680 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9681 			     : -1);
9682 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9683 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9684 	}
9685 
9686 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9687 			  &vivld, &vin);
9688 	if (ret < 0)
9689 		return ret;
9690 
9691 	pi->viid = ret;
9692 	pi->tx_chan = port;
9693 	pi->lport = port;
9694 	pi->rss_size = rss_size;
9695 	pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9696 
9697 	/* If fw supports returning the VIN as part of FW_VI_CMD,
9698 	 * save the returned values.
9699 	 */
9700 	if (adapter->params.viid_smt_extn_support) {
9701 		pi->vivld = vivld;
9702 		pi->vin = vin;
9703 	} else {
9704 		/* Retrieve the values from VIID */
9705 		pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9706 		pi->vin =  FW_VIID_VIN_G(pi->viid);
9707 	}
9708 
9709 	pi->port_type = port_type;
9710 	pi->mdio_addr = mdio_addr;
9711 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9712 
9713 	init_link_config(&pi->link_cfg, pcaps, acaps);
9714 	return 0;
9715 }
9716 
9717 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9718 {
9719 	u8 addr[6];
9720 	int ret, i, j = 0;
9721 
9722 	for_each_port(adap, i) {
9723 		struct port_info *pi = adap2pinfo(adap, i);
9724 
9725 		while ((adap->params.portvec & (1 << j)) == 0)
9726 			j++;
9727 
9728 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9729 		if (ret)
9730 			return ret;
9731 
9732 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9733 		j++;
9734 	}
9735 	return 0;
9736 }
9737 
9738 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf,
9739 			u16 *mirror_viid)
9740 {
9741 	int ret;
9742 
9743 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL,
9744 			  NULL, NULL);
9745 	if (ret < 0)
9746 		return ret;
9747 
9748 	if (mirror_viid)
9749 		*mirror_viid = ret;
9750 
9751 	return 0;
9752 }
9753 
9754 /**
9755  *	t4_read_cimq_cfg - read CIM queue configuration
9756  *	@adap: the adapter
9757  *	@base: holds the queue base addresses in bytes
9758  *	@size: holds the queue sizes in bytes
9759  *	@thres: holds the queue full thresholds in bytes
9760  *
9761  *	Returns the current configuration of the CIM queues, starting with
9762  *	the IBQs, then the OBQs.
9763  */
9764 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9765 {
9766 	unsigned int i, v;
9767 	int cim_num_obq = is_t4(adap->params.chip) ?
9768 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9769 
9770 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9771 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9772 			     QUENUMSELECT_V(i));
9773 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9774 		/* value is in 256-byte units */
9775 		*base++ = CIMQBASE_G(v) * 256;
9776 		*size++ = CIMQSIZE_G(v) * 256;
9777 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9778 	}
9779 	for (i = 0; i < cim_num_obq; i++) {
9780 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9781 			     QUENUMSELECT_V(i));
9782 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9783 		/* value is in 256-byte units */
9784 		*base++ = CIMQBASE_G(v) * 256;
9785 		*size++ = CIMQSIZE_G(v) * 256;
9786 	}
9787 }
9788 
9789 /**
9790  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9791  *	@adap: the adapter
9792  *	@qid: the queue index
9793  *	@data: where to store the queue contents
9794  *	@n: capacity of @data in 32-bit words
9795  *
9796  *	Reads the contents of the selected CIM queue starting at address 0 up
9797  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9798  *	error and the number of 32-bit words actually read on success.
9799  */
9800 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9801 {
9802 	int i, err, attempts;
9803 	unsigned int addr;
9804 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9805 
9806 	if (qid > 5 || (n & 3))
9807 		return -EINVAL;
9808 
9809 	addr = qid * nwords;
9810 	if (n > nwords)
9811 		n = nwords;
9812 
9813 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9814 	 * Wait for 1 Sec with a delay of 1 usec.
9815 	 */
9816 	attempts = 1000000;
9817 
9818 	for (i = 0; i < n; i++, addr++) {
9819 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9820 			     IBQDBGEN_F);
9821 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9822 				      attempts, 1);
9823 		if (err)
9824 			return err;
9825 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9826 	}
9827 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9828 	return i;
9829 }
9830 
9831 /**
9832  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9833  *	@adap: the adapter
9834  *	@qid: the queue index
9835  *	@data: where to store the queue contents
9836  *	@n: capacity of @data in 32-bit words
9837  *
9838  *	Reads the contents of the selected CIM queue starting at address 0 up
9839  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9840  *	error and the number of 32-bit words actually read on success.
9841  */
9842 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9843 {
9844 	int i, err;
9845 	unsigned int addr, v, nwords;
9846 	int cim_num_obq = is_t4(adap->params.chip) ?
9847 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9848 
9849 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9850 		return -EINVAL;
9851 
9852 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9853 		     QUENUMSELECT_V(qid));
9854 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9855 
9856 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9857 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9858 	if (n > nwords)
9859 		n = nwords;
9860 
9861 	for (i = 0; i < n; i++, addr++) {
9862 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9863 			     OBQDBGEN_F);
9864 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9865 				      2, 1);
9866 		if (err)
9867 			return err;
9868 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9869 	}
9870 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9871 	return i;
9872 }
9873 
9874 /**
9875  *	t4_cim_read - read a block from CIM internal address space
9876  *	@adap: the adapter
9877  *	@addr: the start address within the CIM address space
9878  *	@n: number of words to read
9879  *	@valp: where to store the result
9880  *
9881  *	Reads a block of 4-byte words from the CIM intenal address space.
9882  */
9883 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9884 		unsigned int *valp)
9885 {
9886 	int ret = 0;
9887 
9888 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9889 		return -EBUSY;
9890 
9891 	for ( ; !ret && n--; addr += 4) {
9892 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9893 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9894 				      0, 5, 2);
9895 		if (!ret)
9896 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9897 	}
9898 	return ret;
9899 }
9900 
9901 /**
9902  *	t4_cim_write - write a block into CIM internal address space
9903  *	@adap: the adapter
9904  *	@addr: the start address within the CIM address space
9905  *	@n: number of words to write
9906  *	@valp: set of values to write
9907  *
9908  *	Writes a block of 4-byte words into the CIM intenal address space.
9909  */
9910 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9911 		 const unsigned int *valp)
9912 {
9913 	int ret = 0;
9914 
9915 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9916 		return -EBUSY;
9917 
9918 	for ( ; !ret && n--; addr += 4) {
9919 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9920 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9921 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9922 				      0, 5, 2);
9923 	}
9924 	return ret;
9925 }
9926 
9927 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9928 			 unsigned int val)
9929 {
9930 	return t4_cim_write(adap, addr, 1, &val);
9931 }
9932 
9933 /**
9934  *	t4_cim_read_la - read CIM LA capture buffer
9935  *	@adap: the adapter
9936  *	@la_buf: where to store the LA data
9937  *	@wrptr: the HW write pointer within the capture buffer
9938  *
9939  *	Reads the contents of the CIM LA buffer with the most recent entry at
9940  *	the end	of the returned data and with the entry at @wrptr first.
9941  *	We try to leave the LA in the running state we find it in.
9942  */
9943 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9944 {
9945 	int i, ret;
9946 	unsigned int cfg, val, idx;
9947 
9948 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9949 	if (ret)
9950 		return ret;
9951 
9952 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9953 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9954 		if (ret)
9955 			return ret;
9956 	}
9957 
9958 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9959 	if (ret)
9960 		goto restart;
9961 
9962 	idx = UPDBGLAWRPTR_G(val);
9963 	if (wrptr)
9964 		*wrptr = idx;
9965 
9966 	for (i = 0; i < adap->params.cim_la_size; i++) {
9967 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9968 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9969 		if (ret)
9970 			break;
9971 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9972 		if (ret)
9973 			break;
9974 		if (val & UPDBGLARDEN_F) {
9975 			ret = -ETIMEDOUT;
9976 			break;
9977 		}
9978 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9979 		if (ret)
9980 			break;
9981 
9982 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9983 		 * identify the 32-bit portion of the full 312-bit data
9984 		 */
9985 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9986 			idx = (idx & 0xff0) + 0x10;
9987 		else
9988 			idx++;
9989 		/* address can't exceed 0xfff */
9990 		idx &= UPDBGLARDPTR_M;
9991 	}
9992 restart:
9993 	if (cfg & UPDBGLAEN_F) {
9994 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9995 				      cfg & ~UPDBGLARDEN_F);
9996 		if (!ret)
9997 			ret = r;
9998 	}
9999 	return ret;
10000 }
10001 
10002 /**
10003  *	t4_tp_read_la - read TP LA capture buffer
10004  *	@adap: the adapter
10005  *	@la_buf: where to store the LA data
10006  *	@wrptr: the HW write pointer within the capture buffer
10007  *
10008  *	Reads the contents of the TP LA buffer with the most recent entry at
10009  *	the end	of the returned data and with the entry at @wrptr first.
10010  *	We leave the LA in the running state we find it in.
10011  */
10012 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10013 {
10014 	bool last_incomplete;
10015 	unsigned int i, cfg, val, idx;
10016 
10017 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
10018 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
10019 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10020 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
10021 
10022 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
10023 	idx = DBGLAWPTR_G(val);
10024 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
10025 	if (last_incomplete)
10026 		idx = (idx + 1) & DBGLARPTR_M;
10027 	if (wrptr)
10028 		*wrptr = idx;
10029 
10030 	val &= 0xffff;
10031 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
10032 	val |= adap->params.tp.la_mask;
10033 
10034 	for (i = 0; i < TPLA_SIZE; i++) {
10035 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10036 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10037 		idx = (idx + 1) & DBGLARPTR_M;
10038 	}
10039 
10040 	/* Wipe out last entry if it isn't valid */
10041 	if (last_incomplete)
10042 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10043 
10044 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
10045 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10046 			     cfg | adap->params.tp.la_mask);
10047 }
10048 
10049 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10050  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10051  * state for more than the Warning Threshold then we'll issue a warning about
10052  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10053  * appears to be hung every Warning Repeat second till the situation clears.
10054  * If the situation clears, we'll note that as well.
10055  */
10056 #define SGE_IDMA_WARN_THRESH 1
10057 #define SGE_IDMA_WARN_REPEAT 300
10058 
10059 /**
10060  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10061  *	@adapter: the adapter
10062  *	@idma: the adapter IDMA Monitor state
10063  *
10064  *	Initialize the state of an SGE Ingress DMA Monitor.
10065  */
10066 void t4_idma_monitor_init(struct adapter *adapter,
10067 			  struct sge_idma_monitor_state *idma)
10068 {
10069 	/* Initialize the state variables for detecting an SGE Ingress DMA
10070 	 * hang.  The SGE has internal counters which count up on each clock
10071 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10072 	 * same state they were on the previous clock tick.  The clock used is
10073 	 * the Core Clock so we have a limit on the maximum "time" they can
10074 	 * record; typically a very small number of seconds.  For instance,
10075 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10076 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10077 	 * risk of having the "timers" overflow and give us the flexibility to
10078 	 * maintain a Hung SGE State Machine of our own which operates across
10079 	 * a longer time frame.
10080 	 */
10081 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10082 	idma->idma_stalled[0] = 0;
10083 	idma->idma_stalled[1] = 0;
10084 }
10085 
10086 /**
10087  *	t4_idma_monitor - monitor SGE Ingress DMA state
10088  *	@adapter: the adapter
10089  *	@idma: the adapter IDMA Monitor state
10090  *	@hz: number of ticks/second
10091  *	@ticks: number of ticks since the last IDMA Monitor call
10092  */
10093 void t4_idma_monitor(struct adapter *adapter,
10094 		     struct sge_idma_monitor_state *idma,
10095 		     int hz, int ticks)
10096 {
10097 	int i, idma_same_state_cnt[2];
10098 
10099 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10100 	  * are counters inside the SGE which count up on each clock when the
10101 	  * SGE finds its Ingress DMA State Engines in the same states they
10102 	  * were in the previous clock.  The counters will peg out at
10103 	  * 0xffffffff without wrapping around so once they pass the 1s
10104 	  * threshold they'll stay above that till the IDMA state changes.
10105 	  */
10106 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10107 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10108 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10109 
10110 	for (i = 0; i < 2; i++) {
10111 		u32 debug0, debug11;
10112 
10113 		/* If the Ingress DMA Same State Counter ("timer") is less
10114 		 * than 1s, then we can reset our synthesized Stall Timer and
10115 		 * continue.  If we have previously emitted warnings about a
10116 		 * potential stalled Ingress Queue, issue a note indicating
10117 		 * that the Ingress Queue has resumed forward progress.
10118 		 */
10119 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10120 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10121 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10122 					 "resumed after %d seconds\n",
10123 					 i, idma->idma_qid[i],
10124 					 idma->idma_stalled[i] / hz);
10125 			idma->idma_stalled[i] = 0;
10126 			continue;
10127 		}
10128 
10129 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10130 		 * domain.  The first time we get here it'll be because we
10131 		 * passed the 1s Threshold; each additional time it'll be
10132 		 * because the RX Timer Callback is being fired on its regular
10133 		 * schedule.
10134 		 *
10135 		 * If the stall is below our Potential Hung Ingress Queue
10136 		 * Warning Threshold, continue.
10137 		 */
10138 		if (idma->idma_stalled[i] == 0) {
10139 			idma->idma_stalled[i] = hz;
10140 			idma->idma_warn[i] = 0;
10141 		} else {
10142 			idma->idma_stalled[i] += ticks;
10143 			idma->idma_warn[i] -= ticks;
10144 		}
10145 
10146 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10147 			continue;
10148 
10149 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10150 		 */
10151 		if (idma->idma_warn[i] > 0)
10152 			continue;
10153 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10154 
10155 		/* Read and save the SGE IDMA State and Queue ID information.
10156 		 * We do this every time in case it changes across time ...
10157 		 * can't be too careful ...
10158 		 */
10159 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10160 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10161 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10162 
10163 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10164 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10165 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10166 
10167 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10168 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10169 			 i, idma->idma_qid[i], idma->idma_state[i],
10170 			 idma->idma_stalled[i] / hz,
10171 			 debug0, debug11);
10172 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10173 	}
10174 }
10175 
10176 /**
10177  *	t4_load_cfg - download config file
10178  *	@adap: the adapter
10179  *	@cfg_data: the cfg text file to write
10180  *	@size: text file size
10181  *
10182  *	Write the supplied config text file to the card's serial flash.
10183  */
10184 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10185 {
10186 	int ret, i, n, cfg_addr;
10187 	unsigned int addr;
10188 	unsigned int flash_cfg_start_sec;
10189 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10190 
10191 	cfg_addr = t4_flash_cfg_addr(adap);
10192 	if (cfg_addr < 0)
10193 		return cfg_addr;
10194 
10195 	addr = cfg_addr;
10196 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10197 
10198 	if (size > FLASH_CFG_MAX_SIZE) {
10199 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10200 			FLASH_CFG_MAX_SIZE);
10201 		return -EFBIG;
10202 	}
10203 
10204 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10205 			 sf_sec_size);
10206 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10207 				     flash_cfg_start_sec + i - 1);
10208 	/* If size == 0 then we're simply erasing the FLASH sectors associated
10209 	 * with the on-adapter Firmware Configuration File.
10210 	 */
10211 	if (ret || size == 0)
10212 		goto out;
10213 
10214 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10215 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10216 		if ((size - i) <  SF_PAGE_SIZE)
10217 			n = size - i;
10218 		else
10219 			n = SF_PAGE_SIZE;
10220 		ret = t4_write_flash(adap, addr, n, cfg_data, true);
10221 		if (ret)
10222 			goto out;
10223 
10224 		addr += SF_PAGE_SIZE;
10225 		cfg_data += SF_PAGE_SIZE;
10226 	}
10227 
10228 out:
10229 	if (ret)
10230 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
10231 			(size == 0 ? "clear" : "download"), ret);
10232 	return ret;
10233 }
10234 
10235 /**
10236  *	t4_set_vf_mac_acl - Set MAC address for the specified VF
10237  *	@adapter: The adapter
10238  *	@vf: one of the VFs instantiated by the specified PF
10239  *	@naddr: the number of MAC addresses
10240  *	@addr: the MAC address(es) to be set to the specified VF
10241  */
10242 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10243 		      unsigned int naddr, u8 *addr)
10244 {
10245 	struct fw_acl_mac_cmd cmd;
10246 
10247 	memset(&cmd, 0, sizeof(cmd));
10248 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10249 				    FW_CMD_REQUEST_F |
10250 				    FW_CMD_WRITE_F |
10251 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10252 				    FW_ACL_MAC_CMD_VFN_V(vf));
10253 
10254 	/* Note: Do not enable the ACL */
10255 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10256 	cmd.nmac = naddr;
10257 
10258 	switch (adapter->pf) {
10259 	case 3:
10260 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10261 		break;
10262 	case 2:
10263 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10264 		break;
10265 	case 1:
10266 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10267 		break;
10268 	case 0:
10269 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10270 		break;
10271 	}
10272 
10273 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10274 }
10275 
10276 /**
10277  * t4_read_pace_tbl - read the pace table
10278  * @adap: the adapter
10279  * @pace_vals: holds the returned values
10280  *
10281  * Returns the values of TP's pace table in microseconds.
10282  */
10283 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10284 {
10285 	unsigned int i, v;
10286 
10287 	for (i = 0; i < NTX_SCHED; i++) {
10288 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10289 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
10290 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10291 	}
10292 }
10293 
10294 /**
10295  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10296  * @adap: the adapter
10297  * @sched: the scheduler index
10298  * @kbps: the byte rate in Kbps
10299  * @ipg: the interpacket delay in tenths of nanoseconds
10300  * @sleep_ok: if true we may sleep while awaiting command completion
10301  *
10302  * Return the current configuration of a HW Tx scheduler.
10303  */
10304 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10305 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10306 {
10307 	unsigned int v, addr, bpt, cpt;
10308 
10309 	if (kbps) {
10310 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10311 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10312 		if (sched & 1)
10313 			v >>= 16;
10314 		bpt = (v >> 8) & 0xff;
10315 		cpt = v & 0xff;
10316 		if (!cpt) {
10317 			*kbps = 0;	/* scheduler disabled */
10318 		} else {
10319 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10320 			*kbps = (v * bpt) / 125;
10321 		}
10322 	}
10323 	if (ipg) {
10324 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10325 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10326 		if (sched & 1)
10327 			v >>= 16;
10328 		v &= 0xffff;
10329 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10330 	}
10331 }
10332 
10333 /* t4_sge_ctxt_rd - read an SGE context through FW
10334  * @adap: the adapter
10335  * @mbox: mailbox to use for the FW command
10336  * @cid: the context id
10337  * @ctype: the context type
10338  * @data: where to store the context data
10339  *
10340  * Issues a FW command through the given mailbox to read an SGE context.
10341  */
10342 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10343 		   enum ctxt_type ctype, u32 *data)
10344 {
10345 	struct fw_ldst_cmd c;
10346 	int ret;
10347 
10348 	if (ctype == CTXT_FLM)
10349 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10350 	else
10351 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10352 
10353 	memset(&c, 0, sizeof(c));
10354 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10355 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
10356 					FW_LDST_CMD_ADDRSPACE_V(ret));
10357 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10358 	c.u.idctxt.physid = cpu_to_be32(cid);
10359 
10360 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10361 	if (ret == 0) {
10362 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10363 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10364 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10365 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10366 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10367 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10368 	}
10369 	return ret;
10370 }
10371 
10372 /**
10373  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10374  * @adap: the adapter
10375  * @cid: the context id
10376  * @ctype: the context type
10377  * @data: where to store the context data
10378  *
10379  * Reads an SGE context directly, bypassing FW.  This is only for
10380  * debugging when FW is unavailable.
10381  */
10382 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10383 		      enum ctxt_type ctype, u32 *data)
10384 {
10385 	int i, ret;
10386 
10387 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10388 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10389 	if (!ret)
10390 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10391 			*data++ = t4_read_reg(adap, i);
10392 	return ret;
10393 }
10394 
10395 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10396 		    u8 rateunit, u8 ratemode, u8 channel, u8 class,
10397 		    u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10398 		    u16 burstsize)
10399 {
10400 	struct fw_sched_cmd cmd;
10401 
10402 	memset(&cmd, 0, sizeof(cmd));
10403 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10404 				      FW_CMD_REQUEST_F |
10405 				      FW_CMD_WRITE_F);
10406 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10407 
10408 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10409 	cmd.u.params.type = type;
10410 	cmd.u.params.level = level;
10411 	cmd.u.params.mode = mode;
10412 	cmd.u.params.ch = channel;
10413 	cmd.u.params.cl = class;
10414 	cmd.u.params.unit = rateunit;
10415 	cmd.u.params.rate = ratemode;
10416 	cmd.u.params.min = cpu_to_be32(minrate);
10417 	cmd.u.params.max = cpu_to_be32(maxrate);
10418 	cmd.u.params.weight = cpu_to_be16(weight);
10419 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10420 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
10421 
10422 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10423 			       NULL, 1);
10424 }
10425 
10426 /**
10427  *	t4_i2c_rd - read I2C data from adapter
10428  *	@adap: the adapter
10429  *	@mbox: mailbox to use for the FW command
10430  *	@port: Port number if per-port device; <0 if not
10431  *	@devid: per-port device ID or absolute device ID
10432  *	@offset: byte offset into device I2C space
10433  *	@len: byte length of I2C space data
10434  *	@buf: buffer in which to return I2C data
10435  *
10436  *	Reads the I2C data from the indicated device and location.
10437  */
10438 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10439 	      unsigned int devid, unsigned int offset,
10440 	      unsigned int len, u8 *buf)
10441 {
10442 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10443 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10444 	int ret = 0;
10445 
10446 	if (len > I2C_PAGE_SIZE)
10447 		return -EINVAL;
10448 
10449 	/* Dont allow reads that spans multiple pages */
10450 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10451 		return -EINVAL;
10452 
10453 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10454 	ldst_cmd.op_to_addrspace =
10455 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10456 			    FW_CMD_REQUEST_F |
10457 			    FW_CMD_READ_F |
10458 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10459 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10460 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10461 	ldst_cmd.u.i2c.did = devid;
10462 
10463 	while (len > 0) {
10464 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10465 
10466 		ldst_cmd.u.i2c.boffset = offset;
10467 		ldst_cmd.u.i2c.blen = i2c_len;
10468 
10469 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10470 				 &ldst_rpl);
10471 		if (ret)
10472 			break;
10473 
10474 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10475 		offset += i2c_len;
10476 		buf += i2c_len;
10477 		len -= i2c_len;
10478 	}
10479 
10480 	return ret;
10481 }
10482 
10483 /**
10484  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10485  *      @adap: the adapter
10486  *      @mbox: mailbox to use for the FW command
10487  *      @vf: one of the VFs instantiated by the specified PF
10488  *      @vlan: The vlanid to be set
10489  */
10490 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10491 		    u16 vlan)
10492 {
10493 	struct fw_acl_vlan_cmd vlan_cmd;
10494 	unsigned int enable;
10495 
10496 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10497 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10498 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10499 					 FW_CMD_REQUEST_F |
10500 					 FW_CMD_WRITE_F |
10501 					 FW_CMD_EXEC_F |
10502 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10503 					 FW_ACL_VLAN_CMD_VFN_V(vf));
10504 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10505 	/* Drop all packets that donot match vlan id */
10506 	vlan_cmd.dropnovlan_fm = (enable
10507 				  ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10508 				     FW_ACL_VLAN_CMD_FM_F) : 0);
10509 	if (enable != 0) {
10510 		vlan_cmd.nvlan = 1;
10511 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10512 	}
10513 
10514 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10515 }
10516 
10517 /**
10518  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10519  *	@device_id: the device ID to write.
10520  *	@boot_data: the boot image to modify.
10521  *
10522  *	Write the supplied device ID to the boot BIOS image.
10523  */
10524 static void modify_device_id(int device_id, u8 *boot_data)
10525 {
10526 	struct cxgb4_pcir_data *pcir_header;
10527 	struct legacy_pci_rom_hdr *header;
10528 	u8 *cur_header = boot_data;
10529 	u16 pcir_offset;
10530 
10531 	 /* Loop through all chained images and change the device ID's */
10532 	do {
10533 		header = (struct legacy_pci_rom_hdr *)cur_header;
10534 		pcir_offset = le16_to_cpu(header->pcir_offset);
10535 		pcir_header = (struct cxgb4_pcir_data *)(cur_header +
10536 			      pcir_offset);
10537 
10538 		/**
10539 		 * Only modify the Device ID if code type is Legacy or HP.
10540 		 * 0x00: Okay to modify
10541 		 * 0x01: FCODE. Do not modify
10542 		 * 0x03: Okay to modify
10543 		 * 0x04-0xFF: Do not modify
10544 		 */
10545 		if (pcir_header->code_type == CXGB4_HDR_CODE1) {
10546 			u8 csum = 0;
10547 			int i;
10548 
10549 			/**
10550 			 * Modify Device ID to match current adatper
10551 			 */
10552 			pcir_header->device_id = cpu_to_le16(device_id);
10553 
10554 			/**
10555 			 * Set checksum temporarily to 0.
10556 			 * We will recalculate it later.
10557 			 */
10558 			header->cksum = 0x0;
10559 
10560 			/**
10561 			 * Calculate and update checksum
10562 			 */
10563 			for (i = 0; i < (header->size512 * 512); i++)
10564 				csum += cur_header[i];
10565 
10566 			/**
10567 			 * Invert summed value to create the checksum
10568 			 * Writing new checksum value directly to the boot data
10569 			 */
10570 			cur_header[7] = -csum;
10571 
10572 		} else if (pcir_header->code_type == CXGB4_HDR_CODE2) {
10573 			/**
10574 			 * Modify Device ID to match current adatper
10575 			 */
10576 			pcir_header->device_id = cpu_to_le16(device_id);
10577 		}
10578 
10579 		/**
10580 		 * Move header pointer up to the next image in the ROM.
10581 		 */
10582 		cur_header += header->size512 * 512;
10583 	} while (!(pcir_header->indicator & CXGB4_HDR_INDI));
10584 }
10585 
10586 /**
10587  *	t4_load_boot - download boot flash
10588  *	@adap: the adapter
10589  *	@boot_data: the boot image to write
10590  *	@boot_addr: offset in flash to write boot_data
10591  *	@size: image size
10592  *
10593  *	Write the supplied boot image to the card's serial flash.
10594  *	The boot image has the following sections: a 28-byte header and the
10595  *	boot image.
10596  */
10597 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10598 		 unsigned int boot_addr, unsigned int size)
10599 {
10600 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10601 	unsigned int boot_sector = (boot_addr * 1024);
10602 	struct cxgb4_pci_exp_rom_header *header;
10603 	struct cxgb4_pcir_data *pcir_header;
10604 	int pcir_offset;
10605 	unsigned int i;
10606 	u16 device_id;
10607 	int ret, addr;
10608 
10609 	/**
10610 	 * Make sure the boot image does not encroach on the firmware region
10611 	 */
10612 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10613 		dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n");
10614 		return -EFBIG;
10615 	}
10616 
10617 	/* Get boot header */
10618 	header = (struct cxgb4_pci_exp_rom_header *)boot_data;
10619 	pcir_offset = le16_to_cpu(header->pcir_offset);
10620 	/* PCIR Data Structure */
10621 	pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset];
10622 
10623 	/**
10624 	 * Perform some primitive sanity testing to avoid accidentally
10625 	 * writing garbage over the boot sectors.  We ought to check for
10626 	 * more but it's not worth it for now ...
10627 	 */
10628 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10629 		dev_err(adap->pdev_dev, "boot image too small/large\n");
10630 		return -EFBIG;
10631 	}
10632 
10633 	if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) {
10634 		dev_err(adap->pdev_dev, "Boot image missing signature\n");
10635 		return -EINVAL;
10636 	}
10637 
10638 	/* Check PCI header signature */
10639 	if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) {
10640 		dev_err(adap->pdev_dev, "PCI header missing signature\n");
10641 		return -EINVAL;
10642 	}
10643 
10644 	/* Check Vendor ID matches Chelsio ID*/
10645 	if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) {
10646 		dev_err(adap->pdev_dev, "Vendor ID missing signature\n");
10647 		return -EINVAL;
10648 	}
10649 
10650 	/**
10651 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10652 	 * and Boot configuration data sections. These 3 boot sections span
10653 	 * sectors 0 to 7 in flash and live right before the FW image location.
10654 	 */
10655 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,  sf_sec_size);
10656 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10657 				     (boot_sector >> 16) + i - 1);
10658 
10659 	/**
10660 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10661 	 * with the on-adapter option ROM file
10662 	 */
10663 	if (ret || size == 0)
10664 		goto out;
10665 	/* Retrieve adapter's device ID */
10666 	pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id);
10667        /* Want to deal with PF 0 so I strip off PF 4 indicator */
10668 	device_id = device_id & 0xf0ff;
10669 
10670 	 /* Check PCIE Device ID */
10671 	if (le16_to_cpu(pcir_header->device_id) != device_id) {
10672 		/**
10673 		 * Change the device ID in the Boot BIOS image to match
10674 		 * the Device ID of the current adapter.
10675 		 */
10676 		modify_device_id(device_id, boot_data);
10677 	}
10678 
10679 	/**
10680 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10681 	 * we finish copying the rest of the boot image. This will ensure
10682 	 * that the BIOS boot header will only be written if the boot image
10683 	 * was written in full.
10684 	 */
10685 	addr = boot_sector;
10686 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10687 		addr += SF_PAGE_SIZE;
10688 		boot_data += SF_PAGE_SIZE;
10689 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data,
10690 				     false);
10691 		if (ret)
10692 			goto out;
10693 	}
10694 
10695 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10696 			     (const u8 *)header, false);
10697 
10698 out:
10699 	if (ret)
10700 		dev_err(adap->pdev_dev, "boot image load failed, error %d\n",
10701 			ret);
10702 	return ret;
10703 }
10704 
10705 /**
10706  *	t4_flash_bootcfg_addr - return the address of the flash
10707  *	optionrom configuration
10708  *	@adapter: the adapter
10709  *
10710  *	Return the address within the flash where the OptionROM Configuration
10711  *	is stored, or an error if the device FLASH is too small to contain
10712  *	a OptionROM Configuration.
10713  */
10714 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10715 {
10716 	/**
10717 	 * If the device FLASH isn't large enough to hold a Firmware
10718 	 * Configuration File, return an error.
10719 	 */
10720 	if (adapter->params.sf_size <
10721 	    FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10722 		return -ENOSPC;
10723 
10724 	return FLASH_BOOTCFG_START;
10725 }
10726 
10727 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10728 {
10729 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10730 	struct cxgb4_bootcfg_data *header;
10731 	unsigned int flash_cfg_start_sec;
10732 	unsigned int addr, npad;
10733 	int ret, i, n, cfg_addr;
10734 
10735 	cfg_addr = t4_flash_bootcfg_addr(adap);
10736 	if (cfg_addr < 0)
10737 		return cfg_addr;
10738 
10739 	addr = cfg_addr;
10740 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10741 
10742 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10743 		dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n",
10744 			FLASH_BOOTCFG_MAX_SIZE);
10745 		return -EFBIG;
10746 	}
10747 
10748 	header = (struct cxgb4_bootcfg_data *)cfg_data;
10749 	if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) {
10750 		dev_err(adap->pdev_dev, "Wrong bootcfg signature\n");
10751 		ret = -EINVAL;
10752 		goto out;
10753 	}
10754 
10755 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,
10756 			 sf_sec_size);
10757 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10758 				     flash_cfg_start_sec + i - 1);
10759 
10760 	/**
10761 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10762 	 * with the on-adapter OptionROM Configuration File.
10763 	 */
10764 	if (ret || size == 0)
10765 		goto out;
10766 
10767 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10768 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10769 		n = min_t(u32, size - i, SF_PAGE_SIZE);
10770 
10771 		ret = t4_write_flash(adap, addr, n, cfg_data, false);
10772 		if (ret)
10773 			goto out;
10774 
10775 		addr += SF_PAGE_SIZE;
10776 		cfg_data += SF_PAGE_SIZE;
10777 	}
10778 
10779 	npad = ((size + 4 - 1) & ~3) - size;
10780 	for (i = 0; i < npad; i++) {
10781 		u8 data = 0;
10782 
10783 		ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data,
10784 				     false);
10785 		if (ret)
10786 			goto out;
10787 	}
10788 
10789 out:
10790 	if (ret)
10791 		dev_err(adap->pdev_dev, "boot config data %s failed %d\n",
10792 			(size == 0 ? "clear" : "download"), ret);
10793 	return ret;
10794 }
10795