1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 } 202 203 /* 204 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 205 */ 206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 207 u32 mbox_addr) 208 { 209 for ( ; nflit; nflit--, mbox_addr += 8) 210 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 211 } 212 213 /* 214 * Handle a FW assertion reported in a mailbox. 215 */ 216 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 217 { 218 struct fw_debug_cmd asrt; 219 220 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 221 dev_alert(adap->pdev_dev, 222 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 223 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 224 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 225 } 226 227 /** 228 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 229 * @adapter: the adapter 230 * @cmd: the Firmware Mailbox Command or Reply 231 * @size: command length in bytes 232 * @access: the time (ms) needed to access the Firmware Mailbox 233 * @execute: the time (ms) the command spent being executed 234 */ 235 static void t4_record_mbox(struct adapter *adapter, 236 const __be64 *cmd, unsigned int size, 237 int access, int execute) 238 { 239 struct mbox_cmd_log *log = adapter->mbox_log; 240 struct mbox_cmd *entry; 241 int i; 242 243 entry = mbox_cmd_log_entry(log, log->cursor++); 244 if (log->cursor == log->size) 245 log->cursor = 0; 246 247 for (i = 0; i < size / 8; i++) 248 entry->cmd[i] = be64_to_cpu(cmd[i]); 249 while (i < MBOX_LEN / 8) 250 entry->cmd[i++] = 0; 251 entry->timestamp = jiffies; 252 entry->seqno = log->seqno++; 253 entry->access = access; 254 entry->execute = execute; 255 } 256 257 /** 258 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 259 * @adap: the adapter 260 * @mbox: index of the mailbox to use 261 * @cmd: the command to write 262 * @size: command length in bytes 263 * @rpl: where to optionally store the reply 264 * @sleep_ok: if true we may sleep while awaiting command completion 265 * @timeout: time to wait for command to finish before timing out 266 * 267 * Sends the given command to FW through the selected mailbox and waits 268 * for the FW to execute the command. If @rpl is not %NULL it is used to 269 * store the FW's reply to the command. The command and its optional 270 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 271 * to respond. @sleep_ok determines whether we may sleep while awaiting 272 * the response. If sleeping is allowed we use progressive backoff 273 * otherwise we spin. 274 * 275 * The return value is 0 on success or a negative errno on failure. A 276 * failure can happen either because we are not able to execute the 277 * command or FW executes it but signals an error. In the latter case 278 * the return value is the error code indicated by FW (negated). 279 */ 280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 281 int size, void *rpl, bool sleep_ok, int timeout) 282 { 283 static const int delay[] = { 284 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 285 }; 286 287 struct mbox_list entry; 288 u16 access = 0; 289 u16 execute = 0; 290 u32 v; 291 u64 res; 292 int i, ms, delay_idx, ret; 293 const __be64 *p = cmd; 294 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 295 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 296 __be64 cmd_rpl[MBOX_LEN / 8]; 297 u32 pcie_fw; 298 299 if ((size & 15) || size > MBOX_LEN) 300 return -EINVAL; 301 302 /* 303 * If the device is off-line, as in EEH, commands will time out. 304 * Fail them early so we don't waste time waiting. 305 */ 306 if (adap->pdev->error_state != pci_channel_io_normal) 307 return -EIO; 308 309 /* If we have a negative timeout, that implies that we can't sleep. */ 310 if (timeout < 0) { 311 sleep_ok = false; 312 timeout = -timeout; 313 } 314 315 /* Queue ourselves onto the mailbox access list. When our entry is at 316 * the front of the list, we have rights to access the mailbox. So we 317 * wait [for a while] till we're at the front [or bail out with an 318 * EBUSY] ... 319 */ 320 spin_lock(&adap->mbox_lock); 321 list_add_tail(&entry.list, &adap->mlist.list); 322 spin_unlock(&adap->mbox_lock); 323 324 delay_idx = 0; 325 ms = delay[0]; 326 327 for (i = 0; ; i += ms) { 328 /* If we've waited too long, return a busy indication. This 329 * really ought to be based on our initial position in the 330 * mailbox access list but this is a start. We very rearely 331 * contend on access to the mailbox ... 332 */ 333 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 334 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 335 spin_lock(&adap->mbox_lock); 336 list_del(&entry.list); 337 spin_unlock(&adap->mbox_lock); 338 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 339 t4_record_mbox(adap, cmd, size, access, ret); 340 return ret; 341 } 342 343 /* If we're at the head, break out and start the mailbox 344 * protocol. 345 */ 346 if (list_first_entry(&adap->mlist.list, struct mbox_list, 347 list) == &entry) 348 break; 349 350 /* Delay for a bit before checking again ... */ 351 if (sleep_ok) { 352 ms = delay[delay_idx]; /* last element may repeat */ 353 if (delay_idx < ARRAY_SIZE(delay) - 1) 354 delay_idx++; 355 msleep(ms); 356 } else { 357 mdelay(ms); 358 } 359 } 360 361 /* Loop trying to get ownership of the mailbox. Return an error 362 * if we can't gain ownership. 363 */ 364 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 365 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 if (v != MBOX_OWNER_DRV) { 368 spin_lock(&adap->mbox_lock); 369 list_del(&entry.list); 370 spin_unlock(&adap->mbox_lock); 371 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 372 t4_record_mbox(adap, cmd, size, access, ret); 373 return ret; 374 } 375 376 /* Copy in the new mailbox command and send it on its way ... */ 377 t4_record_mbox(adap, cmd, size, access, 0); 378 for (i = 0; i < size; i += 8) 379 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 380 381 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 382 t4_read_reg(adap, ctl_reg); /* flush write */ 383 384 delay_idx = 0; 385 ms = delay[0]; 386 387 for (i = 0; 388 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 389 i < timeout; 390 i += ms) { 391 if (sleep_ok) { 392 ms = delay[delay_idx]; /* last element may repeat */ 393 if (delay_idx < ARRAY_SIZE(delay) - 1) 394 delay_idx++; 395 msleep(ms); 396 } else 397 mdelay(ms); 398 399 v = t4_read_reg(adap, ctl_reg); 400 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 401 if (!(v & MBMSGVALID_F)) { 402 t4_write_reg(adap, ctl_reg, 0); 403 continue; 404 } 405 406 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 407 res = be64_to_cpu(cmd_rpl[0]); 408 409 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 410 fw_asrt(adap, data_reg); 411 res = FW_CMD_RETVAL_V(EIO); 412 } else if (rpl) { 413 memcpy(rpl, cmd_rpl, size); 414 } 415 416 t4_write_reg(adap, ctl_reg, 0); 417 418 execute = i + ms; 419 t4_record_mbox(adap, cmd_rpl, 420 MBOX_LEN, access, execute); 421 spin_lock(&adap->mbox_lock); 422 list_del(&entry.list); 423 spin_unlock(&adap->mbox_lock); 424 return -FW_CMD_RETVAL_G((int)res); 425 } 426 } 427 428 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 429 t4_record_mbox(adap, cmd, size, access, ret); 430 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 431 *(const u8 *)cmd, mbox); 432 t4_report_fw_error(adap); 433 spin_lock(&adap->mbox_lock); 434 list_del(&entry.list); 435 spin_unlock(&adap->mbox_lock); 436 t4_fatal_err(adap); 437 return ret; 438 } 439 440 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 441 void *rpl, bool sleep_ok) 442 { 443 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 444 FW_CMD_MAX_TIMEOUT); 445 } 446 447 static int t4_edc_err_read(struct adapter *adap, int idx) 448 { 449 u32 edc_ecc_err_addr_reg; 450 u32 rdata_reg; 451 452 if (is_t4(adap->params.chip)) { 453 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 454 return 0; 455 } 456 if (idx != 0 && idx != 1) { 457 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 458 return 0; 459 } 460 461 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 462 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 463 464 CH_WARN(adap, 465 "edc%d err addr 0x%x: 0x%x.\n", 466 idx, edc_ecc_err_addr_reg, 467 t4_read_reg(adap, edc_ecc_err_addr_reg)); 468 CH_WARN(adap, 469 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 470 rdata_reg, 471 (unsigned long long)t4_read_reg64(adap, rdata_reg), 472 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 473 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 480 481 return 0; 482 } 483 484 /** 485 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 486 * @adap: the adapter 487 * @win: PCI-E Memory Window to use 488 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 489 * @addr: address within indicated memory type 490 * @len: amount of memory to transfer 491 * @hbuf: host memory buffer 492 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 493 * 494 * Reads/writes an [almost] arbitrary memory region in the firmware: the 495 * firmware memory address and host buffer must be aligned on 32-bit 496 * boudaries; the length may be arbitrary. The memory is transferred as 497 * a raw byte sequence from/to the firmware's memory. If this memory 498 * contains data structures which contain multi-byte integers, it's the 499 * caller's responsibility to perform appropriate byte order conversions. 500 */ 501 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 502 u32 len, void *hbuf, int dir) 503 { 504 u32 pos, offset, resid, memoffset; 505 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base; 506 u32 *buf; 507 508 /* Argument sanity checks ... 509 */ 510 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 511 return -EINVAL; 512 buf = (u32 *)hbuf; 513 514 /* It's convenient to be able to handle lengths which aren't a 515 * multiple of 32-bits because we often end up transferring files to 516 * the firmware. So we'll handle that by normalizing the length here 517 * and then handling any residual transfer at the end. 518 */ 519 resid = len & 0x3; 520 len -= resid; 521 522 /* Offset into the region of memory which is being accessed 523 * MEM_EDC0 = 0 524 * MEM_EDC1 = 1 525 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 526 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 527 */ 528 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 529 if (mtype != MEM_MC1) 530 memoffset = (mtype * (edc_size * 1024 * 1024)); 531 else { 532 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 533 MA_EXT_MEMORY0_BAR_A)); 534 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 535 } 536 537 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 538 addr = addr + memoffset; 539 540 /* Each PCI-E Memory Window is programmed with a window size -- or 541 * "aperture" -- which controls the granularity of its mapping onto 542 * adapter memory. We need to grab that aperture in order to know 543 * how to use the specified window. The window is also programmed 544 * with the base address of the Memory Window in BAR0's address 545 * space. For T4 this is an absolute PCI-E Bus Address. For T5 546 * the address is relative to BAR0. 547 */ 548 mem_reg = t4_read_reg(adap, 549 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 550 win)); 551 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 552 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 553 if (is_t4(adap->params.chip)) 554 mem_base -= adap->t4_bar0; 555 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 556 557 /* Calculate our initial PCI-E Memory Window Position and Offset into 558 * that Window. 559 */ 560 pos = addr & ~(mem_aperture-1); 561 offset = addr - pos; 562 563 /* Set up initial PCI-E Memory Window to cover the start of our 564 * transfer. (Read it back to ensure that changes propagate before we 565 * attempt to use the new value.) 566 */ 567 t4_write_reg(adap, 568 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 569 pos | win_pf); 570 t4_read_reg(adap, 571 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 572 573 /* Transfer data to/from the adapter as long as there's an integral 574 * number of 32-bit transfers to complete. 575 * 576 * A note on Endianness issues: 577 * 578 * The "register" reads and writes below from/to the PCI-E Memory 579 * Window invoke the standard adapter Big-Endian to PCI-E Link 580 * Little-Endian "swizzel." As a result, if we have the following 581 * data in adapter memory: 582 * 583 * Memory: ... | b0 | b1 | b2 | b3 | ... 584 * Address: i+0 i+1 i+2 i+3 585 * 586 * Then a read of the adapter memory via the PCI-E Memory Window 587 * will yield: 588 * 589 * x = readl(i) 590 * 31 0 591 * [ b3 | b2 | b1 | b0 ] 592 * 593 * If this value is stored into local memory on a Little-Endian system 594 * it will show up correctly in local memory as: 595 * 596 * ( ..., b0, b1, b2, b3, ... ) 597 * 598 * But on a Big-Endian system, the store will show up in memory 599 * incorrectly swizzled as: 600 * 601 * ( ..., b3, b2, b1, b0, ... ) 602 * 603 * So we need to account for this in the reads and writes to the 604 * PCI-E Memory Window below by undoing the register read/write 605 * swizzels. 606 */ 607 while (len > 0) { 608 if (dir == T4_MEMORY_READ) 609 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 610 mem_base + offset)); 611 else 612 t4_write_reg(adap, mem_base + offset, 613 (__force u32)cpu_to_le32(*buf++)); 614 offset += sizeof(__be32); 615 len -= sizeof(__be32); 616 617 /* If we've reached the end of our current window aperture, 618 * move the PCI-E Memory Window on to the next. Note that 619 * doing this here after "len" may be 0 allows us to set up 620 * the PCI-E Memory Window for a possible final residual 621 * transfer below ... 622 */ 623 if (offset == mem_aperture) { 624 pos += mem_aperture; 625 offset = 0; 626 t4_write_reg(adap, 627 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 628 win), pos | win_pf); 629 t4_read_reg(adap, 630 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 631 win)); 632 } 633 } 634 635 /* If the original transfer had a length which wasn't a multiple of 636 * 32-bits, now's where we need to finish off the transfer of the 637 * residual amount. The PCI-E Memory Window has already been moved 638 * above (if necessary) to cover this final transfer. 639 */ 640 if (resid) { 641 union { 642 u32 word; 643 char byte[4]; 644 } last; 645 unsigned char *bp; 646 int i; 647 648 if (dir == T4_MEMORY_READ) { 649 last.word = le32_to_cpu( 650 (__force __le32)t4_read_reg(adap, 651 mem_base + offset)); 652 for (bp = (unsigned char *)buf, i = resid; i < 4; i++) 653 bp[i] = last.byte[i]; 654 } else { 655 last.word = *buf; 656 for (i = resid; i < 4; i++) 657 last.byte[i] = 0; 658 t4_write_reg(adap, mem_base + offset, 659 (__force u32)cpu_to_le32(last.word)); 660 } 661 } 662 663 return 0; 664 } 665 666 /* Return the specified PCI-E Configuration Space register from our Physical 667 * Function. We try first via a Firmware LDST Command since we prefer to let 668 * the firmware own all of these registers, but if that fails we go for it 669 * directly ourselves. 670 */ 671 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 672 { 673 u32 val, ldst_addrspace; 674 675 /* If fw_attach != 0, construct and send the Firmware LDST Command to 676 * retrieve the specified PCI-E Configuration Space register. 677 */ 678 struct fw_ldst_cmd ldst_cmd; 679 int ret; 680 681 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 682 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 683 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 684 FW_CMD_REQUEST_F | 685 FW_CMD_READ_F | 686 ldst_addrspace); 687 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 688 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 689 ldst_cmd.u.pcie.ctrl_to_fn = 690 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 691 ldst_cmd.u.pcie.r = reg; 692 693 /* If the LDST Command succeeds, return the result, otherwise 694 * fall through to reading it directly ourselves ... 695 */ 696 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 697 &ldst_cmd); 698 if (ret == 0) 699 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 700 else 701 /* Read the desired Configuration Space register via the PCI-E 702 * Backdoor mechanism. 703 */ 704 t4_hw_pci_read_cfg4(adap, reg, &val); 705 return val; 706 } 707 708 /* Get the window based on base passed to it. 709 * Window aperture is currently unhandled, but there is no use case for it 710 * right now 711 */ 712 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 713 u32 memwin_base) 714 { 715 u32 ret; 716 717 if (is_t4(adap->params.chip)) { 718 u32 bar0; 719 720 /* Truncation intentional: we only read the bottom 32-bits of 721 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 722 * mechanism to read BAR0 instead of using 723 * pci_resource_start() because we could be operating from 724 * within a Virtual Machine which is trapping our accesses to 725 * our Configuration Space and we need to set up the PCI-E 726 * Memory Window decoders with the actual addresses which will 727 * be coming across the PCI-E link. 728 */ 729 bar0 = t4_read_pcie_cfg4(adap, pci_base); 730 bar0 &= pci_mask; 731 adap->t4_bar0 = bar0; 732 733 ret = bar0 + memwin_base; 734 } else { 735 /* For T5, only relative offset inside the PCIe BAR is passed */ 736 ret = memwin_base; 737 } 738 return ret; 739 } 740 741 /* Get the default utility window (win0) used by everyone */ 742 u32 t4_get_util_window(struct adapter *adap) 743 { 744 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 745 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 746 } 747 748 /* Set up memory window for accessing adapter memory ranges. (Read 749 * back MA register to ensure that changes propagate before we attempt 750 * to use the new values.) 751 */ 752 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 753 { 754 t4_write_reg(adap, 755 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 756 memwin_base | BIR_V(0) | 757 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 758 t4_read_reg(adap, 759 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 760 } 761 762 /** 763 * t4_get_regs_len - return the size of the chips register set 764 * @adapter: the adapter 765 * 766 * Returns the size of the chip's BAR0 register space. 767 */ 768 unsigned int t4_get_regs_len(struct adapter *adapter) 769 { 770 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 771 772 switch (chip_version) { 773 case CHELSIO_T4: 774 return T4_REGMAP_SIZE; 775 776 case CHELSIO_T5: 777 case CHELSIO_T6: 778 return T5_REGMAP_SIZE; 779 } 780 781 dev_err(adapter->pdev_dev, 782 "Unsupported chip version %d\n", chip_version); 783 return 0; 784 } 785 786 /** 787 * t4_get_regs - read chip registers into provided buffer 788 * @adap: the adapter 789 * @buf: register buffer 790 * @buf_size: size (in bytes) of register buffer 791 * 792 * If the provided register buffer isn't large enough for the chip's 793 * full register range, the register dump will be truncated to the 794 * register buffer's size. 795 */ 796 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 797 { 798 static const unsigned int t4_reg_ranges[] = { 799 0x1008, 0x1108, 800 0x1180, 0x1184, 801 0x1190, 0x1194, 802 0x11a0, 0x11a4, 803 0x11b0, 0x11b4, 804 0x11fc, 0x123c, 805 0x1300, 0x173c, 806 0x1800, 0x18fc, 807 0x3000, 0x30d8, 808 0x30e0, 0x30e4, 809 0x30ec, 0x5910, 810 0x5920, 0x5924, 811 0x5960, 0x5960, 812 0x5968, 0x5968, 813 0x5970, 0x5970, 814 0x5978, 0x5978, 815 0x5980, 0x5980, 816 0x5988, 0x5988, 817 0x5990, 0x5990, 818 0x5998, 0x5998, 819 0x59a0, 0x59d4, 820 0x5a00, 0x5ae0, 821 0x5ae8, 0x5ae8, 822 0x5af0, 0x5af0, 823 0x5af8, 0x5af8, 824 0x6000, 0x6098, 825 0x6100, 0x6150, 826 0x6200, 0x6208, 827 0x6240, 0x6248, 828 0x6280, 0x62b0, 829 0x62c0, 0x6338, 830 0x6370, 0x638c, 831 0x6400, 0x643c, 832 0x6500, 0x6524, 833 0x6a00, 0x6a04, 834 0x6a14, 0x6a38, 835 0x6a60, 0x6a70, 836 0x6a78, 0x6a78, 837 0x6b00, 0x6b0c, 838 0x6b1c, 0x6b84, 839 0x6bf0, 0x6bf8, 840 0x6c00, 0x6c0c, 841 0x6c1c, 0x6c84, 842 0x6cf0, 0x6cf8, 843 0x6d00, 0x6d0c, 844 0x6d1c, 0x6d84, 845 0x6df0, 0x6df8, 846 0x6e00, 0x6e0c, 847 0x6e1c, 0x6e84, 848 0x6ef0, 0x6ef8, 849 0x6f00, 0x6f0c, 850 0x6f1c, 0x6f84, 851 0x6ff0, 0x6ff8, 852 0x7000, 0x700c, 853 0x701c, 0x7084, 854 0x70f0, 0x70f8, 855 0x7100, 0x710c, 856 0x711c, 0x7184, 857 0x71f0, 0x71f8, 858 0x7200, 0x720c, 859 0x721c, 0x7284, 860 0x72f0, 0x72f8, 861 0x7300, 0x730c, 862 0x731c, 0x7384, 863 0x73f0, 0x73f8, 864 0x7400, 0x7450, 865 0x7500, 0x7530, 866 0x7600, 0x760c, 867 0x7614, 0x761c, 868 0x7680, 0x76cc, 869 0x7700, 0x7798, 870 0x77c0, 0x77fc, 871 0x7900, 0x79fc, 872 0x7b00, 0x7b58, 873 0x7b60, 0x7b84, 874 0x7b8c, 0x7c38, 875 0x7d00, 0x7d38, 876 0x7d40, 0x7d80, 877 0x7d8c, 0x7ddc, 878 0x7de4, 0x7e04, 879 0x7e10, 0x7e1c, 880 0x7e24, 0x7e38, 881 0x7e40, 0x7e44, 882 0x7e4c, 0x7e78, 883 0x7e80, 0x7ea4, 884 0x7eac, 0x7edc, 885 0x7ee8, 0x7efc, 886 0x8dc0, 0x8e04, 887 0x8e10, 0x8e1c, 888 0x8e30, 0x8e78, 889 0x8ea0, 0x8eb8, 890 0x8ec0, 0x8f6c, 891 0x8fc0, 0x9008, 892 0x9010, 0x9058, 893 0x9060, 0x9060, 894 0x9068, 0x9074, 895 0x90fc, 0x90fc, 896 0x9400, 0x9408, 897 0x9410, 0x9458, 898 0x9600, 0x9600, 899 0x9608, 0x9638, 900 0x9640, 0x96bc, 901 0x9800, 0x9808, 902 0x9820, 0x983c, 903 0x9850, 0x9864, 904 0x9c00, 0x9c6c, 905 0x9c80, 0x9cec, 906 0x9d00, 0x9d6c, 907 0x9d80, 0x9dec, 908 0x9e00, 0x9e6c, 909 0x9e80, 0x9eec, 910 0x9f00, 0x9f6c, 911 0x9f80, 0x9fec, 912 0xd004, 0xd004, 913 0xd010, 0xd03c, 914 0xdfc0, 0xdfe0, 915 0xe000, 0xea7c, 916 0xf000, 0x11110, 917 0x11118, 0x11190, 918 0x19040, 0x1906c, 919 0x19078, 0x19080, 920 0x1908c, 0x190e4, 921 0x190f0, 0x190f8, 922 0x19100, 0x19110, 923 0x19120, 0x19124, 924 0x19150, 0x19194, 925 0x1919c, 0x191b0, 926 0x191d0, 0x191e8, 927 0x19238, 0x1924c, 928 0x193f8, 0x1943c, 929 0x1944c, 0x19474, 930 0x19490, 0x194e0, 931 0x194f0, 0x194f8, 932 0x19800, 0x19c08, 933 0x19c10, 0x19c90, 934 0x19ca0, 0x19ce4, 935 0x19cf0, 0x19d40, 936 0x19d50, 0x19d94, 937 0x19da0, 0x19de8, 938 0x19df0, 0x19e40, 939 0x19e50, 0x19e90, 940 0x19ea0, 0x19f4c, 941 0x1a000, 0x1a004, 942 0x1a010, 0x1a06c, 943 0x1a0b0, 0x1a0e4, 944 0x1a0ec, 0x1a0f4, 945 0x1a100, 0x1a108, 946 0x1a114, 0x1a120, 947 0x1a128, 0x1a130, 948 0x1a138, 0x1a138, 949 0x1a190, 0x1a1c4, 950 0x1a1fc, 0x1a1fc, 951 0x1e040, 0x1e04c, 952 0x1e284, 0x1e28c, 953 0x1e2c0, 0x1e2c0, 954 0x1e2e0, 0x1e2e0, 955 0x1e300, 0x1e384, 956 0x1e3c0, 0x1e3c8, 957 0x1e440, 0x1e44c, 958 0x1e684, 0x1e68c, 959 0x1e6c0, 0x1e6c0, 960 0x1e6e0, 0x1e6e0, 961 0x1e700, 0x1e784, 962 0x1e7c0, 0x1e7c8, 963 0x1e840, 0x1e84c, 964 0x1ea84, 0x1ea8c, 965 0x1eac0, 0x1eac0, 966 0x1eae0, 0x1eae0, 967 0x1eb00, 0x1eb84, 968 0x1ebc0, 0x1ebc8, 969 0x1ec40, 0x1ec4c, 970 0x1ee84, 0x1ee8c, 971 0x1eec0, 0x1eec0, 972 0x1eee0, 0x1eee0, 973 0x1ef00, 0x1ef84, 974 0x1efc0, 0x1efc8, 975 0x1f040, 0x1f04c, 976 0x1f284, 0x1f28c, 977 0x1f2c0, 0x1f2c0, 978 0x1f2e0, 0x1f2e0, 979 0x1f300, 0x1f384, 980 0x1f3c0, 0x1f3c8, 981 0x1f440, 0x1f44c, 982 0x1f684, 0x1f68c, 983 0x1f6c0, 0x1f6c0, 984 0x1f6e0, 0x1f6e0, 985 0x1f700, 0x1f784, 986 0x1f7c0, 0x1f7c8, 987 0x1f840, 0x1f84c, 988 0x1fa84, 0x1fa8c, 989 0x1fac0, 0x1fac0, 990 0x1fae0, 0x1fae0, 991 0x1fb00, 0x1fb84, 992 0x1fbc0, 0x1fbc8, 993 0x1fc40, 0x1fc4c, 994 0x1fe84, 0x1fe8c, 995 0x1fec0, 0x1fec0, 996 0x1fee0, 0x1fee0, 997 0x1ff00, 0x1ff84, 998 0x1ffc0, 0x1ffc8, 999 0x20000, 0x2002c, 1000 0x20100, 0x2013c, 1001 0x20190, 0x201a0, 1002 0x201a8, 0x201b8, 1003 0x201c4, 0x201c8, 1004 0x20200, 0x20318, 1005 0x20400, 0x204b4, 1006 0x204c0, 0x20528, 1007 0x20540, 0x20614, 1008 0x21000, 0x21040, 1009 0x2104c, 0x21060, 1010 0x210c0, 0x210ec, 1011 0x21200, 0x21268, 1012 0x21270, 0x21284, 1013 0x212fc, 0x21388, 1014 0x21400, 0x21404, 1015 0x21500, 0x21500, 1016 0x21510, 0x21518, 1017 0x2152c, 0x21530, 1018 0x2153c, 0x2153c, 1019 0x21550, 0x21554, 1020 0x21600, 0x21600, 1021 0x21608, 0x2161c, 1022 0x21624, 0x21628, 1023 0x21630, 0x21634, 1024 0x2163c, 0x2163c, 1025 0x21700, 0x2171c, 1026 0x21780, 0x2178c, 1027 0x21800, 0x21818, 1028 0x21820, 0x21828, 1029 0x21830, 0x21848, 1030 0x21850, 0x21854, 1031 0x21860, 0x21868, 1032 0x21870, 0x21870, 1033 0x21878, 0x21898, 1034 0x218a0, 0x218a8, 1035 0x218b0, 0x218c8, 1036 0x218d0, 0x218d4, 1037 0x218e0, 0x218e8, 1038 0x218f0, 0x218f0, 1039 0x218f8, 0x21a18, 1040 0x21a20, 0x21a28, 1041 0x21a30, 0x21a48, 1042 0x21a50, 0x21a54, 1043 0x21a60, 0x21a68, 1044 0x21a70, 0x21a70, 1045 0x21a78, 0x21a98, 1046 0x21aa0, 0x21aa8, 1047 0x21ab0, 0x21ac8, 1048 0x21ad0, 0x21ad4, 1049 0x21ae0, 0x21ae8, 1050 0x21af0, 0x21af0, 1051 0x21af8, 0x21c18, 1052 0x21c20, 0x21c20, 1053 0x21c28, 0x21c30, 1054 0x21c38, 0x21c38, 1055 0x21c80, 0x21c98, 1056 0x21ca0, 0x21ca8, 1057 0x21cb0, 0x21cc8, 1058 0x21cd0, 0x21cd4, 1059 0x21ce0, 0x21ce8, 1060 0x21cf0, 0x21cf0, 1061 0x21cf8, 0x21d7c, 1062 0x21e00, 0x21e04, 1063 0x22000, 0x2202c, 1064 0x22100, 0x2213c, 1065 0x22190, 0x221a0, 1066 0x221a8, 0x221b8, 1067 0x221c4, 0x221c8, 1068 0x22200, 0x22318, 1069 0x22400, 0x224b4, 1070 0x224c0, 0x22528, 1071 0x22540, 0x22614, 1072 0x23000, 0x23040, 1073 0x2304c, 0x23060, 1074 0x230c0, 0x230ec, 1075 0x23200, 0x23268, 1076 0x23270, 0x23284, 1077 0x232fc, 0x23388, 1078 0x23400, 0x23404, 1079 0x23500, 0x23500, 1080 0x23510, 0x23518, 1081 0x2352c, 0x23530, 1082 0x2353c, 0x2353c, 1083 0x23550, 0x23554, 1084 0x23600, 0x23600, 1085 0x23608, 0x2361c, 1086 0x23624, 0x23628, 1087 0x23630, 0x23634, 1088 0x2363c, 0x2363c, 1089 0x23700, 0x2371c, 1090 0x23780, 0x2378c, 1091 0x23800, 0x23818, 1092 0x23820, 0x23828, 1093 0x23830, 0x23848, 1094 0x23850, 0x23854, 1095 0x23860, 0x23868, 1096 0x23870, 0x23870, 1097 0x23878, 0x23898, 1098 0x238a0, 0x238a8, 1099 0x238b0, 0x238c8, 1100 0x238d0, 0x238d4, 1101 0x238e0, 0x238e8, 1102 0x238f0, 0x238f0, 1103 0x238f8, 0x23a18, 1104 0x23a20, 0x23a28, 1105 0x23a30, 0x23a48, 1106 0x23a50, 0x23a54, 1107 0x23a60, 0x23a68, 1108 0x23a70, 0x23a70, 1109 0x23a78, 0x23a98, 1110 0x23aa0, 0x23aa8, 1111 0x23ab0, 0x23ac8, 1112 0x23ad0, 0x23ad4, 1113 0x23ae0, 0x23ae8, 1114 0x23af0, 0x23af0, 1115 0x23af8, 0x23c18, 1116 0x23c20, 0x23c20, 1117 0x23c28, 0x23c30, 1118 0x23c38, 0x23c38, 1119 0x23c80, 0x23c98, 1120 0x23ca0, 0x23ca8, 1121 0x23cb0, 0x23cc8, 1122 0x23cd0, 0x23cd4, 1123 0x23ce0, 0x23ce8, 1124 0x23cf0, 0x23cf0, 1125 0x23cf8, 0x23d7c, 1126 0x23e00, 0x23e04, 1127 0x24000, 0x2402c, 1128 0x24100, 0x2413c, 1129 0x24190, 0x241a0, 1130 0x241a8, 0x241b8, 1131 0x241c4, 0x241c8, 1132 0x24200, 0x24318, 1133 0x24400, 0x244b4, 1134 0x244c0, 0x24528, 1135 0x24540, 0x24614, 1136 0x25000, 0x25040, 1137 0x2504c, 0x25060, 1138 0x250c0, 0x250ec, 1139 0x25200, 0x25268, 1140 0x25270, 0x25284, 1141 0x252fc, 0x25388, 1142 0x25400, 0x25404, 1143 0x25500, 0x25500, 1144 0x25510, 0x25518, 1145 0x2552c, 0x25530, 1146 0x2553c, 0x2553c, 1147 0x25550, 0x25554, 1148 0x25600, 0x25600, 1149 0x25608, 0x2561c, 1150 0x25624, 0x25628, 1151 0x25630, 0x25634, 1152 0x2563c, 0x2563c, 1153 0x25700, 0x2571c, 1154 0x25780, 0x2578c, 1155 0x25800, 0x25818, 1156 0x25820, 0x25828, 1157 0x25830, 0x25848, 1158 0x25850, 0x25854, 1159 0x25860, 0x25868, 1160 0x25870, 0x25870, 1161 0x25878, 0x25898, 1162 0x258a0, 0x258a8, 1163 0x258b0, 0x258c8, 1164 0x258d0, 0x258d4, 1165 0x258e0, 0x258e8, 1166 0x258f0, 0x258f0, 1167 0x258f8, 0x25a18, 1168 0x25a20, 0x25a28, 1169 0x25a30, 0x25a48, 1170 0x25a50, 0x25a54, 1171 0x25a60, 0x25a68, 1172 0x25a70, 0x25a70, 1173 0x25a78, 0x25a98, 1174 0x25aa0, 0x25aa8, 1175 0x25ab0, 0x25ac8, 1176 0x25ad0, 0x25ad4, 1177 0x25ae0, 0x25ae8, 1178 0x25af0, 0x25af0, 1179 0x25af8, 0x25c18, 1180 0x25c20, 0x25c20, 1181 0x25c28, 0x25c30, 1182 0x25c38, 0x25c38, 1183 0x25c80, 0x25c98, 1184 0x25ca0, 0x25ca8, 1185 0x25cb0, 0x25cc8, 1186 0x25cd0, 0x25cd4, 1187 0x25ce0, 0x25ce8, 1188 0x25cf0, 0x25cf0, 1189 0x25cf8, 0x25d7c, 1190 0x25e00, 0x25e04, 1191 0x26000, 0x2602c, 1192 0x26100, 0x2613c, 1193 0x26190, 0x261a0, 1194 0x261a8, 0x261b8, 1195 0x261c4, 0x261c8, 1196 0x26200, 0x26318, 1197 0x26400, 0x264b4, 1198 0x264c0, 0x26528, 1199 0x26540, 0x26614, 1200 0x27000, 0x27040, 1201 0x2704c, 0x27060, 1202 0x270c0, 0x270ec, 1203 0x27200, 0x27268, 1204 0x27270, 0x27284, 1205 0x272fc, 0x27388, 1206 0x27400, 0x27404, 1207 0x27500, 0x27500, 1208 0x27510, 0x27518, 1209 0x2752c, 0x27530, 1210 0x2753c, 0x2753c, 1211 0x27550, 0x27554, 1212 0x27600, 0x27600, 1213 0x27608, 0x2761c, 1214 0x27624, 0x27628, 1215 0x27630, 0x27634, 1216 0x2763c, 0x2763c, 1217 0x27700, 0x2771c, 1218 0x27780, 0x2778c, 1219 0x27800, 0x27818, 1220 0x27820, 0x27828, 1221 0x27830, 0x27848, 1222 0x27850, 0x27854, 1223 0x27860, 0x27868, 1224 0x27870, 0x27870, 1225 0x27878, 0x27898, 1226 0x278a0, 0x278a8, 1227 0x278b0, 0x278c8, 1228 0x278d0, 0x278d4, 1229 0x278e0, 0x278e8, 1230 0x278f0, 0x278f0, 1231 0x278f8, 0x27a18, 1232 0x27a20, 0x27a28, 1233 0x27a30, 0x27a48, 1234 0x27a50, 0x27a54, 1235 0x27a60, 0x27a68, 1236 0x27a70, 0x27a70, 1237 0x27a78, 0x27a98, 1238 0x27aa0, 0x27aa8, 1239 0x27ab0, 0x27ac8, 1240 0x27ad0, 0x27ad4, 1241 0x27ae0, 0x27ae8, 1242 0x27af0, 0x27af0, 1243 0x27af8, 0x27c18, 1244 0x27c20, 0x27c20, 1245 0x27c28, 0x27c30, 1246 0x27c38, 0x27c38, 1247 0x27c80, 0x27c98, 1248 0x27ca0, 0x27ca8, 1249 0x27cb0, 0x27cc8, 1250 0x27cd0, 0x27cd4, 1251 0x27ce0, 0x27ce8, 1252 0x27cf0, 0x27cf0, 1253 0x27cf8, 0x27d7c, 1254 0x27e00, 0x27e04, 1255 }; 1256 1257 static const unsigned int t5_reg_ranges[] = { 1258 0x1008, 0x10c0, 1259 0x10cc, 0x10f8, 1260 0x1100, 0x1100, 1261 0x110c, 0x1148, 1262 0x1180, 0x1184, 1263 0x1190, 0x1194, 1264 0x11a0, 0x11a4, 1265 0x11b0, 0x11b4, 1266 0x11fc, 0x123c, 1267 0x1280, 0x173c, 1268 0x1800, 0x18fc, 1269 0x3000, 0x3028, 1270 0x3060, 0x30b0, 1271 0x30b8, 0x30d8, 1272 0x30e0, 0x30fc, 1273 0x3140, 0x357c, 1274 0x35a8, 0x35cc, 1275 0x35ec, 0x35ec, 1276 0x3600, 0x5624, 1277 0x56cc, 0x56ec, 1278 0x56f4, 0x5720, 1279 0x5728, 0x575c, 1280 0x580c, 0x5814, 1281 0x5890, 0x589c, 1282 0x58a4, 0x58ac, 1283 0x58b8, 0x58bc, 1284 0x5940, 0x59c8, 1285 0x59d0, 0x59dc, 1286 0x59fc, 0x5a18, 1287 0x5a60, 0x5a70, 1288 0x5a80, 0x5a9c, 1289 0x5b94, 0x5bfc, 1290 0x6000, 0x6020, 1291 0x6028, 0x6040, 1292 0x6058, 0x609c, 1293 0x60a8, 0x614c, 1294 0x7700, 0x7798, 1295 0x77c0, 0x78fc, 1296 0x7b00, 0x7b58, 1297 0x7b60, 0x7b84, 1298 0x7b8c, 0x7c54, 1299 0x7d00, 0x7d38, 1300 0x7d40, 0x7d80, 1301 0x7d8c, 0x7ddc, 1302 0x7de4, 0x7e04, 1303 0x7e10, 0x7e1c, 1304 0x7e24, 0x7e38, 1305 0x7e40, 0x7e44, 1306 0x7e4c, 0x7e78, 1307 0x7e80, 0x7edc, 1308 0x7ee8, 0x7efc, 1309 0x8dc0, 0x8de0, 1310 0x8df8, 0x8e04, 1311 0x8e10, 0x8e84, 1312 0x8ea0, 0x8f84, 1313 0x8fc0, 0x9058, 1314 0x9060, 0x9060, 1315 0x9068, 0x90f8, 1316 0x9400, 0x9408, 1317 0x9410, 0x9470, 1318 0x9600, 0x9600, 1319 0x9608, 0x9638, 1320 0x9640, 0x96f4, 1321 0x9800, 0x9808, 1322 0x9820, 0x983c, 1323 0x9850, 0x9864, 1324 0x9c00, 0x9c6c, 1325 0x9c80, 0x9cec, 1326 0x9d00, 0x9d6c, 1327 0x9d80, 0x9dec, 1328 0x9e00, 0x9e6c, 1329 0x9e80, 0x9eec, 1330 0x9f00, 0x9f6c, 1331 0x9f80, 0xa020, 1332 0xd004, 0xd004, 1333 0xd010, 0xd03c, 1334 0xdfc0, 0xdfe0, 1335 0xe000, 0x1106c, 1336 0x11074, 0x11088, 1337 0x1109c, 0x1117c, 1338 0x11190, 0x11204, 1339 0x19040, 0x1906c, 1340 0x19078, 0x19080, 1341 0x1908c, 0x190e8, 1342 0x190f0, 0x190f8, 1343 0x19100, 0x19110, 1344 0x19120, 0x19124, 1345 0x19150, 0x19194, 1346 0x1919c, 0x191b0, 1347 0x191d0, 0x191e8, 1348 0x19238, 0x19290, 1349 0x193f8, 0x19428, 1350 0x19430, 0x19444, 1351 0x1944c, 0x1946c, 1352 0x19474, 0x19474, 1353 0x19490, 0x194cc, 1354 0x194f0, 0x194f8, 1355 0x19c00, 0x19c08, 1356 0x19c10, 0x19c60, 1357 0x19c94, 0x19ce4, 1358 0x19cf0, 0x19d40, 1359 0x19d50, 0x19d94, 1360 0x19da0, 0x19de8, 1361 0x19df0, 0x19e10, 1362 0x19e50, 0x19e90, 1363 0x19ea0, 0x19f24, 1364 0x19f34, 0x19f34, 1365 0x19f40, 0x19f50, 1366 0x19f90, 0x19fb4, 1367 0x19fc4, 0x19fe4, 1368 0x1a000, 0x1a004, 1369 0x1a010, 0x1a06c, 1370 0x1a0b0, 0x1a0e4, 1371 0x1a0ec, 0x1a0f8, 1372 0x1a100, 0x1a108, 1373 0x1a114, 0x1a120, 1374 0x1a128, 0x1a130, 1375 0x1a138, 0x1a138, 1376 0x1a190, 0x1a1c4, 1377 0x1a1fc, 0x1a1fc, 1378 0x1e008, 0x1e00c, 1379 0x1e040, 0x1e044, 1380 0x1e04c, 0x1e04c, 1381 0x1e284, 0x1e290, 1382 0x1e2c0, 0x1e2c0, 1383 0x1e2e0, 0x1e2e0, 1384 0x1e300, 0x1e384, 1385 0x1e3c0, 0x1e3c8, 1386 0x1e408, 0x1e40c, 1387 0x1e440, 0x1e444, 1388 0x1e44c, 0x1e44c, 1389 0x1e684, 0x1e690, 1390 0x1e6c0, 0x1e6c0, 1391 0x1e6e0, 0x1e6e0, 1392 0x1e700, 0x1e784, 1393 0x1e7c0, 0x1e7c8, 1394 0x1e808, 0x1e80c, 1395 0x1e840, 0x1e844, 1396 0x1e84c, 0x1e84c, 1397 0x1ea84, 0x1ea90, 1398 0x1eac0, 0x1eac0, 1399 0x1eae0, 0x1eae0, 1400 0x1eb00, 0x1eb84, 1401 0x1ebc0, 0x1ebc8, 1402 0x1ec08, 0x1ec0c, 1403 0x1ec40, 0x1ec44, 1404 0x1ec4c, 0x1ec4c, 1405 0x1ee84, 0x1ee90, 1406 0x1eec0, 0x1eec0, 1407 0x1eee0, 0x1eee0, 1408 0x1ef00, 0x1ef84, 1409 0x1efc0, 0x1efc8, 1410 0x1f008, 0x1f00c, 1411 0x1f040, 0x1f044, 1412 0x1f04c, 0x1f04c, 1413 0x1f284, 0x1f290, 1414 0x1f2c0, 0x1f2c0, 1415 0x1f2e0, 0x1f2e0, 1416 0x1f300, 0x1f384, 1417 0x1f3c0, 0x1f3c8, 1418 0x1f408, 0x1f40c, 1419 0x1f440, 0x1f444, 1420 0x1f44c, 0x1f44c, 1421 0x1f684, 0x1f690, 1422 0x1f6c0, 0x1f6c0, 1423 0x1f6e0, 0x1f6e0, 1424 0x1f700, 0x1f784, 1425 0x1f7c0, 0x1f7c8, 1426 0x1f808, 0x1f80c, 1427 0x1f840, 0x1f844, 1428 0x1f84c, 0x1f84c, 1429 0x1fa84, 0x1fa90, 1430 0x1fac0, 0x1fac0, 1431 0x1fae0, 0x1fae0, 1432 0x1fb00, 0x1fb84, 1433 0x1fbc0, 0x1fbc8, 1434 0x1fc08, 0x1fc0c, 1435 0x1fc40, 0x1fc44, 1436 0x1fc4c, 0x1fc4c, 1437 0x1fe84, 0x1fe90, 1438 0x1fec0, 0x1fec0, 1439 0x1fee0, 0x1fee0, 1440 0x1ff00, 0x1ff84, 1441 0x1ffc0, 0x1ffc8, 1442 0x30000, 0x30030, 1443 0x30100, 0x30144, 1444 0x30190, 0x301a0, 1445 0x301a8, 0x301b8, 1446 0x301c4, 0x301c8, 1447 0x301d0, 0x301d0, 1448 0x30200, 0x30318, 1449 0x30400, 0x304b4, 1450 0x304c0, 0x3052c, 1451 0x30540, 0x3061c, 1452 0x30800, 0x30828, 1453 0x30834, 0x30834, 1454 0x308c0, 0x30908, 1455 0x30910, 0x309ac, 1456 0x30a00, 0x30a14, 1457 0x30a1c, 0x30a2c, 1458 0x30a44, 0x30a50, 1459 0x30a74, 0x30a74, 1460 0x30a7c, 0x30afc, 1461 0x30b08, 0x30c24, 1462 0x30d00, 0x30d00, 1463 0x30d08, 0x30d14, 1464 0x30d1c, 0x30d20, 1465 0x30d3c, 0x30d3c, 1466 0x30d48, 0x30d50, 1467 0x31200, 0x3120c, 1468 0x31220, 0x31220, 1469 0x31240, 0x31240, 1470 0x31600, 0x3160c, 1471 0x31a00, 0x31a1c, 1472 0x31e00, 0x31e20, 1473 0x31e38, 0x31e3c, 1474 0x31e80, 0x31e80, 1475 0x31e88, 0x31ea8, 1476 0x31eb0, 0x31eb4, 1477 0x31ec8, 0x31ed4, 1478 0x31fb8, 0x32004, 1479 0x32200, 0x32200, 1480 0x32208, 0x32240, 1481 0x32248, 0x32280, 1482 0x32288, 0x322c0, 1483 0x322c8, 0x322fc, 1484 0x32600, 0x32630, 1485 0x32a00, 0x32abc, 1486 0x32b00, 0x32b10, 1487 0x32b20, 0x32b30, 1488 0x32b40, 0x32b50, 1489 0x32b60, 0x32b70, 1490 0x33000, 0x33028, 1491 0x33030, 0x33048, 1492 0x33060, 0x33068, 1493 0x33070, 0x3309c, 1494 0x330f0, 0x33128, 1495 0x33130, 0x33148, 1496 0x33160, 0x33168, 1497 0x33170, 0x3319c, 1498 0x331f0, 0x33238, 1499 0x33240, 0x33240, 1500 0x33248, 0x33250, 1501 0x3325c, 0x33264, 1502 0x33270, 0x332b8, 1503 0x332c0, 0x332e4, 1504 0x332f8, 0x33338, 1505 0x33340, 0x33340, 1506 0x33348, 0x33350, 1507 0x3335c, 0x33364, 1508 0x33370, 0x333b8, 1509 0x333c0, 0x333e4, 1510 0x333f8, 0x33428, 1511 0x33430, 0x33448, 1512 0x33460, 0x33468, 1513 0x33470, 0x3349c, 1514 0x334f0, 0x33528, 1515 0x33530, 0x33548, 1516 0x33560, 0x33568, 1517 0x33570, 0x3359c, 1518 0x335f0, 0x33638, 1519 0x33640, 0x33640, 1520 0x33648, 0x33650, 1521 0x3365c, 0x33664, 1522 0x33670, 0x336b8, 1523 0x336c0, 0x336e4, 1524 0x336f8, 0x33738, 1525 0x33740, 0x33740, 1526 0x33748, 0x33750, 1527 0x3375c, 0x33764, 1528 0x33770, 0x337b8, 1529 0x337c0, 0x337e4, 1530 0x337f8, 0x337fc, 1531 0x33814, 0x33814, 1532 0x3382c, 0x3382c, 1533 0x33880, 0x3388c, 1534 0x338e8, 0x338ec, 1535 0x33900, 0x33928, 1536 0x33930, 0x33948, 1537 0x33960, 0x33968, 1538 0x33970, 0x3399c, 1539 0x339f0, 0x33a38, 1540 0x33a40, 0x33a40, 1541 0x33a48, 0x33a50, 1542 0x33a5c, 0x33a64, 1543 0x33a70, 0x33ab8, 1544 0x33ac0, 0x33ae4, 1545 0x33af8, 0x33b10, 1546 0x33b28, 0x33b28, 1547 0x33b3c, 0x33b50, 1548 0x33bf0, 0x33c10, 1549 0x33c28, 0x33c28, 1550 0x33c3c, 0x33c50, 1551 0x33cf0, 0x33cfc, 1552 0x34000, 0x34030, 1553 0x34100, 0x34144, 1554 0x34190, 0x341a0, 1555 0x341a8, 0x341b8, 1556 0x341c4, 0x341c8, 1557 0x341d0, 0x341d0, 1558 0x34200, 0x34318, 1559 0x34400, 0x344b4, 1560 0x344c0, 0x3452c, 1561 0x34540, 0x3461c, 1562 0x34800, 0x34828, 1563 0x34834, 0x34834, 1564 0x348c0, 0x34908, 1565 0x34910, 0x349ac, 1566 0x34a00, 0x34a14, 1567 0x34a1c, 0x34a2c, 1568 0x34a44, 0x34a50, 1569 0x34a74, 0x34a74, 1570 0x34a7c, 0x34afc, 1571 0x34b08, 0x34c24, 1572 0x34d00, 0x34d00, 1573 0x34d08, 0x34d14, 1574 0x34d1c, 0x34d20, 1575 0x34d3c, 0x34d3c, 1576 0x34d48, 0x34d50, 1577 0x35200, 0x3520c, 1578 0x35220, 0x35220, 1579 0x35240, 0x35240, 1580 0x35600, 0x3560c, 1581 0x35a00, 0x35a1c, 1582 0x35e00, 0x35e20, 1583 0x35e38, 0x35e3c, 1584 0x35e80, 0x35e80, 1585 0x35e88, 0x35ea8, 1586 0x35eb0, 0x35eb4, 1587 0x35ec8, 0x35ed4, 1588 0x35fb8, 0x36004, 1589 0x36200, 0x36200, 1590 0x36208, 0x36240, 1591 0x36248, 0x36280, 1592 0x36288, 0x362c0, 1593 0x362c8, 0x362fc, 1594 0x36600, 0x36630, 1595 0x36a00, 0x36abc, 1596 0x36b00, 0x36b10, 1597 0x36b20, 0x36b30, 1598 0x36b40, 0x36b50, 1599 0x36b60, 0x36b70, 1600 0x37000, 0x37028, 1601 0x37030, 0x37048, 1602 0x37060, 0x37068, 1603 0x37070, 0x3709c, 1604 0x370f0, 0x37128, 1605 0x37130, 0x37148, 1606 0x37160, 0x37168, 1607 0x37170, 0x3719c, 1608 0x371f0, 0x37238, 1609 0x37240, 0x37240, 1610 0x37248, 0x37250, 1611 0x3725c, 0x37264, 1612 0x37270, 0x372b8, 1613 0x372c0, 0x372e4, 1614 0x372f8, 0x37338, 1615 0x37340, 0x37340, 1616 0x37348, 0x37350, 1617 0x3735c, 0x37364, 1618 0x37370, 0x373b8, 1619 0x373c0, 0x373e4, 1620 0x373f8, 0x37428, 1621 0x37430, 0x37448, 1622 0x37460, 0x37468, 1623 0x37470, 0x3749c, 1624 0x374f0, 0x37528, 1625 0x37530, 0x37548, 1626 0x37560, 0x37568, 1627 0x37570, 0x3759c, 1628 0x375f0, 0x37638, 1629 0x37640, 0x37640, 1630 0x37648, 0x37650, 1631 0x3765c, 0x37664, 1632 0x37670, 0x376b8, 1633 0x376c0, 0x376e4, 1634 0x376f8, 0x37738, 1635 0x37740, 0x37740, 1636 0x37748, 0x37750, 1637 0x3775c, 0x37764, 1638 0x37770, 0x377b8, 1639 0x377c0, 0x377e4, 1640 0x377f8, 0x377fc, 1641 0x37814, 0x37814, 1642 0x3782c, 0x3782c, 1643 0x37880, 0x3788c, 1644 0x378e8, 0x378ec, 1645 0x37900, 0x37928, 1646 0x37930, 0x37948, 1647 0x37960, 0x37968, 1648 0x37970, 0x3799c, 1649 0x379f0, 0x37a38, 1650 0x37a40, 0x37a40, 1651 0x37a48, 0x37a50, 1652 0x37a5c, 0x37a64, 1653 0x37a70, 0x37ab8, 1654 0x37ac0, 0x37ae4, 1655 0x37af8, 0x37b10, 1656 0x37b28, 0x37b28, 1657 0x37b3c, 0x37b50, 1658 0x37bf0, 0x37c10, 1659 0x37c28, 0x37c28, 1660 0x37c3c, 0x37c50, 1661 0x37cf0, 0x37cfc, 1662 0x38000, 0x38030, 1663 0x38100, 0x38144, 1664 0x38190, 0x381a0, 1665 0x381a8, 0x381b8, 1666 0x381c4, 0x381c8, 1667 0x381d0, 0x381d0, 1668 0x38200, 0x38318, 1669 0x38400, 0x384b4, 1670 0x384c0, 0x3852c, 1671 0x38540, 0x3861c, 1672 0x38800, 0x38828, 1673 0x38834, 0x38834, 1674 0x388c0, 0x38908, 1675 0x38910, 0x389ac, 1676 0x38a00, 0x38a14, 1677 0x38a1c, 0x38a2c, 1678 0x38a44, 0x38a50, 1679 0x38a74, 0x38a74, 1680 0x38a7c, 0x38afc, 1681 0x38b08, 0x38c24, 1682 0x38d00, 0x38d00, 1683 0x38d08, 0x38d14, 1684 0x38d1c, 0x38d20, 1685 0x38d3c, 0x38d3c, 1686 0x38d48, 0x38d50, 1687 0x39200, 0x3920c, 1688 0x39220, 0x39220, 1689 0x39240, 0x39240, 1690 0x39600, 0x3960c, 1691 0x39a00, 0x39a1c, 1692 0x39e00, 0x39e20, 1693 0x39e38, 0x39e3c, 1694 0x39e80, 0x39e80, 1695 0x39e88, 0x39ea8, 1696 0x39eb0, 0x39eb4, 1697 0x39ec8, 0x39ed4, 1698 0x39fb8, 0x3a004, 1699 0x3a200, 0x3a200, 1700 0x3a208, 0x3a240, 1701 0x3a248, 0x3a280, 1702 0x3a288, 0x3a2c0, 1703 0x3a2c8, 0x3a2fc, 1704 0x3a600, 0x3a630, 1705 0x3aa00, 0x3aabc, 1706 0x3ab00, 0x3ab10, 1707 0x3ab20, 0x3ab30, 1708 0x3ab40, 0x3ab50, 1709 0x3ab60, 0x3ab70, 1710 0x3b000, 0x3b028, 1711 0x3b030, 0x3b048, 1712 0x3b060, 0x3b068, 1713 0x3b070, 0x3b09c, 1714 0x3b0f0, 0x3b128, 1715 0x3b130, 0x3b148, 1716 0x3b160, 0x3b168, 1717 0x3b170, 0x3b19c, 1718 0x3b1f0, 0x3b238, 1719 0x3b240, 0x3b240, 1720 0x3b248, 0x3b250, 1721 0x3b25c, 0x3b264, 1722 0x3b270, 0x3b2b8, 1723 0x3b2c0, 0x3b2e4, 1724 0x3b2f8, 0x3b338, 1725 0x3b340, 0x3b340, 1726 0x3b348, 0x3b350, 1727 0x3b35c, 0x3b364, 1728 0x3b370, 0x3b3b8, 1729 0x3b3c0, 0x3b3e4, 1730 0x3b3f8, 0x3b428, 1731 0x3b430, 0x3b448, 1732 0x3b460, 0x3b468, 1733 0x3b470, 0x3b49c, 1734 0x3b4f0, 0x3b528, 1735 0x3b530, 0x3b548, 1736 0x3b560, 0x3b568, 1737 0x3b570, 0x3b59c, 1738 0x3b5f0, 0x3b638, 1739 0x3b640, 0x3b640, 1740 0x3b648, 0x3b650, 1741 0x3b65c, 0x3b664, 1742 0x3b670, 0x3b6b8, 1743 0x3b6c0, 0x3b6e4, 1744 0x3b6f8, 0x3b738, 1745 0x3b740, 0x3b740, 1746 0x3b748, 0x3b750, 1747 0x3b75c, 0x3b764, 1748 0x3b770, 0x3b7b8, 1749 0x3b7c0, 0x3b7e4, 1750 0x3b7f8, 0x3b7fc, 1751 0x3b814, 0x3b814, 1752 0x3b82c, 0x3b82c, 1753 0x3b880, 0x3b88c, 1754 0x3b8e8, 0x3b8ec, 1755 0x3b900, 0x3b928, 1756 0x3b930, 0x3b948, 1757 0x3b960, 0x3b968, 1758 0x3b970, 0x3b99c, 1759 0x3b9f0, 0x3ba38, 1760 0x3ba40, 0x3ba40, 1761 0x3ba48, 0x3ba50, 1762 0x3ba5c, 0x3ba64, 1763 0x3ba70, 0x3bab8, 1764 0x3bac0, 0x3bae4, 1765 0x3baf8, 0x3bb10, 1766 0x3bb28, 0x3bb28, 1767 0x3bb3c, 0x3bb50, 1768 0x3bbf0, 0x3bc10, 1769 0x3bc28, 0x3bc28, 1770 0x3bc3c, 0x3bc50, 1771 0x3bcf0, 0x3bcfc, 1772 0x3c000, 0x3c030, 1773 0x3c100, 0x3c144, 1774 0x3c190, 0x3c1a0, 1775 0x3c1a8, 0x3c1b8, 1776 0x3c1c4, 0x3c1c8, 1777 0x3c1d0, 0x3c1d0, 1778 0x3c200, 0x3c318, 1779 0x3c400, 0x3c4b4, 1780 0x3c4c0, 0x3c52c, 1781 0x3c540, 0x3c61c, 1782 0x3c800, 0x3c828, 1783 0x3c834, 0x3c834, 1784 0x3c8c0, 0x3c908, 1785 0x3c910, 0x3c9ac, 1786 0x3ca00, 0x3ca14, 1787 0x3ca1c, 0x3ca2c, 1788 0x3ca44, 0x3ca50, 1789 0x3ca74, 0x3ca74, 1790 0x3ca7c, 0x3cafc, 1791 0x3cb08, 0x3cc24, 1792 0x3cd00, 0x3cd00, 1793 0x3cd08, 0x3cd14, 1794 0x3cd1c, 0x3cd20, 1795 0x3cd3c, 0x3cd3c, 1796 0x3cd48, 0x3cd50, 1797 0x3d200, 0x3d20c, 1798 0x3d220, 0x3d220, 1799 0x3d240, 0x3d240, 1800 0x3d600, 0x3d60c, 1801 0x3da00, 0x3da1c, 1802 0x3de00, 0x3de20, 1803 0x3de38, 0x3de3c, 1804 0x3de80, 0x3de80, 1805 0x3de88, 0x3dea8, 1806 0x3deb0, 0x3deb4, 1807 0x3dec8, 0x3ded4, 1808 0x3dfb8, 0x3e004, 1809 0x3e200, 0x3e200, 1810 0x3e208, 0x3e240, 1811 0x3e248, 0x3e280, 1812 0x3e288, 0x3e2c0, 1813 0x3e2c8, 0x3e2fc, 1814 0x3e600, 0x3e630, 1815 0x3ea00, 0x3eabc, 1816 0x3eb00, 0x3eb10, 1817 0x3eb20, 0x3eb30, 1818 0x3eb40, 0x3eb50, 1819 0x3eb60, 0x3eb70, 1820 0x3f000, 0x3f028, 1821 0x3f030, 0x3f048, 1822 0x3f060, 0x3f068, 1823 0x3f070, 0x3f09c, 1824 0x3f0f0, 0x3f128, 1825 0x3f130, 0x3f148, 1826 0x3f160, 0x3f168, 1827 0x3f170, 0x3f19c, 1828 0x3f1f0, 0x3f238, 1829 0x3f240, 0x3f240, 1830 0x3f248, 0x3f250, 1831 0x3f25c, 0x3f264, 1832 0x3f270, 0x3f2b8, 1833 0x3f2c0, 0x3f2e4, 1834 0x3f2f8, 0x3f338, 1835 0x3f340, 0x3f340, 1836 0x3f348, 0x3f350, 1837 0x3f35c, 0x3f364, 1838 0x3f370, 0x3f3b8, 1839 0x3f3c0, 0x3f3e4, 1840 0x3f3f8, 0x3f428, 1841 0x3f430, 0x3f448, 1842 0x3f460, 0x3f468, 1843 0x3f470, 0x3f49c, 1844 0x3f4f0, 0x3f528, 1845 0x3f530, 0x3f548, 1846 0x3f560, 0x3f568, 1847 0x3f570, 0x3f59c, 1848 0x3f5f0, 0x3f638, 1849 0x3f640, 0x3f640, 1850 0x3f648, 0x3f650, 1851 0x3f65c, 0x3f664, 1852 0x3f670, 0x3f6b8, 1853 0x3f6c0, 0x3f6e4, 1854 0x3f6f8, 0x3f738, 1855 0x3f740, 0x3f740, 1856 0x3f748, 0x3f750, 1857 0x3f75c, 0x3f764, 1858 0x3f770, 0x3f7b8, 1859 0x3f7c0, 0x3f7e4, 1860 0x3f7f8, 0x3f7fc, 1861 0x3f814, 0x3f814, 1862 0x3f82c, 0x3f82c, 1863 0x3f880, 0x3f88c, 1864 0x3f8e8, 0x3f8ec, 1865 0x3f900, 0x3f928, 1866 0x3f930, 0x3f948, 1867 0x3f960, 0x3f968, 1868 0x3f970, 0x3f99c, 1869 0x3f9f0, 0x3fa38, 1870 0x3fa40, 0x3fa40, 1871 0x3fa48, 0x3fa50, 1872 0x3fa5c, 0x3fa64, 1873 0x3fa70, 0x3fab8, 1874 0x3fac0, 0x3fae4, 1875 0x3faf8, 0x3fb10, 1876 0x3fb28, 0x3fb28, 1877 0x3fb3c, 0x3fb50, 1878 0x3fbf0, 0x3fc10, 1879 0x3fc28, 0x3fc28, 1880 0x3fc3c, 0x3fc50, 1881 0x3fcf0, 0x3fcfc, 1882 0x40000, 0x4000c, 1883 0x40040, 0x40050, 1884 0x40060, 0x40068, 1885 0x4007c, 0x4008c, 1886 0x40094, 0x400b0, 1887 0x400c0, 0x40144, 1888 0x40180, 0x4018c, 1889 0x40200, 0x40254, 1890 0x40260, 0x40264, 1891 0x40270, 0x40288, 1892 0x40290, 0x40298, 1893 0x402ac, 0x402c8, 1894 0x402d0, 0x402e0, 1895 0x402f0, 0x402f0, 1896 0x40300, 0x4033c, 1897 0x403f8, 0x403fc, 1898 0x41304, 0x413c4, 1899 0x41400, 0x4140c, 1900 0x41414, 0x4141c, 1901 0x41480, 0x414d0, 1902 0x44000, 0x44054, 1903 0x4405c, 0x44078, 1904 0x440c0, 0x44174, 1905 0x44180, 0x441ac, 1906 0x441b4, 0x441b8, 1907 0x441c0, 0x44254, 1908 0x4425c, 0x44278, 1909 0x442c0, 0x44374, 1910 0x44380, 0x443ac, 1911 0x443b4, 0x443b8, 1912 0x443c0, 0x44454, 1913 0x4445c, 0x44478, 1914 0x444c0, 0x44574, 1915 0x44580, 0x445ac, 1916 0x445b4, 0x445b8, 1917 0x445c0, 0x44654, 1918 0x4465c, 0x44678, 1919 0x446c0, 0x44774, 1920 0x44780, 0x447ac, 1921 0x447b4, 0x447b8, 1922 0x447c0, 0x44854, 1923 0x4485c, 0x44878, 1924 0x448c0, 0x44974, 1925 0x44980, 0x449ac, 1926 0x449b4, 0x449b8, 1927 0x449c0, 0x449fc, 1928 0x45000, 0x45004, 1929 0x45010, 0x45030, 1930 0x45040, 0x45060, 1931 0x45068, 0x45068, 1932 0x45080, 0x45084, 1933 0x450a0, 0x450b0, 1934 0x45200, 0x45204, 1935 0x45210, 0x45230, 1936 0x45240, 0x45260, 1937 0x45268, 0x45268, 1938 0x45280, 0x45284, 1939 0x452a0, 0x452b0, 1940 0x460c0, 0x460e4, 1941 0x47000, 0x4703c, 1942 0x47044, 0x4708c, 1943 0x47200, 0x47250, 1944 0x47400, 0x47408, 1945 0x47414, 0x47420, 1946 0x47600, 0x47618, 1947 0x47800, 0x47814, 1948 0x48000, 0x4800c, 1949 0x48040, 0x48050, 1950 0x48060, 0x48068, 1951 0x4807c, 0x4808c, 1952 0x48094, 0x480b0, 1953 0x480c0, 0x48144, 1954 0x48180, 0x4818c, 1955 0x48200, 0x48254, 1956 0x48260, 0x48264, 1957 0x48270, 0x48288, 1958 0x48290, 0x48298, 1959 0x482ac, 0x482c8, 1960 0x482d0, 0x482e0, 1961 0x482f0, 0x482f0, 1962 0x48300, 0x4833c, 1963 0x483f8, 0x483fc, 1964 0x49304, 0x493c4, 1965 0x49400, 0x4940c, 1966 0x49414, 0x4941c, 1967 0x49480, 0x494d0, 1968 0x4c000, 0x4c054, 1969 0x4c05c, 0x4c078, 1970 0x4c0c0, 0x4c174, 1971 0x4c180, 0x4c1ac, 1972 0x4c1b4, 0x4c1b8, 1973 0x4c1c0, 0x4c254, 1974 0x4c25c, 0x4c278, 1975 0x4c2c0, 0x4c374, 1976 0x4c380, 0x4c3ac, 1977 0x4c3b4, 0x4c3b8, 1978 0x4c3c0, 0x4c454, 1979 0x4c45c, 0x4c478, 1980 0x4c4c0, 0x4c574, 1981 0x4c580, 0x4c5ac, 1982 0x4c5b4, 0x4c5b8, 1983 0x4c5c0, 0x4c654, 1984 0x4c65c, 0x4c678, 1985 0x4c6c0, 0x4c774, 1986 0x4c780, 0x4c7ac, 1987 0x4c7b4, 0x4c7b8, 1988 0x4c7c0, 0x4c854, 1989 0x4c85c, 0x4c878, 1990 0x4c8c0, 0x4c974, 1991 0x4c980, 0x4c9ac, 1992 0x4c9b4, 0x4c9b8, 1993 0x4c9c0, 0x4c9fc, 1994 0x4d000, 0x4d004, 1995 0x4d010, 0x4d030, 1996 0x4d040, 0x4d060, 1997 0x4d068, 0x4d068, 1998 0x4d080, 0x4d084, 1999 0x4d0a0, 0x4d0b0, 2000 0x4d200, 0x4d204, 2001 0x4d210, 0x4d230, 2002 0x4d240, 0x4d260, 2003 0x4d268, 0x4d268, 2004 0x4d280, 0x4d284, 2005 0x4d2a0, 0x4d2b0, 2006 0x4e0c0, 0x4e0e4, 2007 0x4f000, 0x4f03c, 2008 0x4f044, 0x4f08c, 2009 0x4f200, 0x4f250, 2010 0x4f400, 0x4f408, 2011 0x4f414, 0x4f420, 2012 0x4f600, 0x4f618, 2013 0x4f800, 0x4f814, 2014 0x50000, 0x50084, 2015 0x50090, 0x500cc, 2016 0x50400, 0x50400, 2017 0x50800, 0x50884, 2018 0x50890, 0x508cc, 2019 0x50c00, 0x50c00, 2020 0x51000, 0x5101c, 2021 0x51300, 0x51308, 2022 }; 2023 2024 static const unsigned int t6_reg_ranges[] = { 2025 0x1008, 0x101c, 2026 0x1024, 0x10a8, 2027 0x10b4, 0x10f8, 2028 0x1100, 0x1114, 2029 0x111c, 0x112c, 2030 0x1138, 0x113c, 2031 0x1144, 0x114c, 2032 0x1180, 0x1184, 2033 0x1190, 0x1194, 2034 0x11a0, 0x11a4, 2035 0x11b0, 0x11b4, 2036 0x11fc, 0x1274, 2037 0x1280, 0x133c, 2038 0x1800, 0x18fc, 2039 0x3000, 0x302c, 2040 0x3060, 0x30b0, 2041 0x30b8, 0x30d8, 2042 0x30e0, 0x30fc, 2043 0x3140, 0x357c, 2044 0x35a8, 0x35cc, 2045 0x35ec, 0x35ec, 2046 0x3600, 0x5624, 2047 0x56cc, 0x56ec, 2048 0x56f4, 0x5720, 2049 0x5728, 0x575c, 2050 0x580c, 0x5814, 2051 0x5890, 0x589c, 2052 0x58a4, 0x58ac, 2053 0x58b8, 0x58bc, 2054 0x5940, 0x595c, 2055 0x5980, 0x598c, 2056 0x59b0, 0x59c8, 2057 0x59d0, 0x59dc, 2058 0x59fc, 0x5a18, 2059 0x5a60, 0x5a6c, 2060 0x5a80, 0x5a8c, 2061 0x5a94, 0x5a9c, 2062 0x5b94, 0x5bfc, 2063 0x5c10, 0x5e48, 2064 0x5e50, 0x5e94, 2065 0x5ea0, 0x5eb0, 2066 0x5ec0, 0x5ec0, 2067 0x5ec8, 0x5ed0, 2068 0x5ee0, 0x5ee0, 2069 0x5ef0, 0x5ef0, 2070 0x5f00, 0x5f00, 2071 0x6000, 0x6020, 2072 0x6028, 0x6040, 2073 0x6058, 0x609c, 2074 0x60a8, 0x619c, 2075 0x7700, 0x7798, 2076 0x77c0, 0x7880, 2077 0x78cc, 0x78fc, 2078 0x7b00, 0x7b58, 2079 0x7b60, 0x7b84, 2080 0x7b8c, 0x7c54, 2081 0x7d00, 0x7d38, 2082 0x7d40, 0x7d84, 2083 0x7d8c, 0x7ddc, 2084 0x7de4, 0x7e04, 2085 0x7e10, 0x7e1c, 2086 0x7e24, 0x7e38, 2087 0x7e40, 0x7e44, 2088 0x7e4c, 0x7e78, 2089 0x7e80, 0x7edc, 2090 0x7ee8, 0x7efc, 2091 0x8dc0, 0x8de4, 2092 0x8df8, 0x8e04, 2093 0x8e10, 0x8e84, 2094 0x8ea0, 0x8f88, 2095 0x8fb8, 0x9058, 2096 0x9060, 0x9060, 2097 0x9068, 0x90f8, 2098 0x9100, 0x9124, 2099 0x9400, 0x9470, 2100 0x9600, 0x9600, 2101 0x9608, 0x9638, 2102 0x9640, 0x9704, 2103 0x9710, 0x971c, 2104 0x9800, 0x9808, 2105 0x9820, 0x983c, 2106 0x9850, 0x9864, 2107 0x9c00, 0x9c6c, 2108 0x9c80, 0x9cec, 2109 0x9d00, 0x9d6c, 2110 0x9d80, 0x9dec, 2111 0x9e00, 0x9e6c, 2112 0x9e80, 0x9eec, 2113 0x9f00, 0x9f6c, 2114 0x9f80, 0xa020, 2115 0xd004, 0xd03c, 2116 0xd100, 0xd118, 2117 0xd200, 0xd214, 2118 0xd220, 0xd234, 2119 0xd240, 0xd254, 2120 0xd260, 0xd274, 2121 0xd280, 0xd294, 2122 0xd2a0, 0xd2b4, 2123 0xd2c0, 0xd2d4, 2124 0xd2e0, 0xd2f4, 2125 0xd300, 0xd31c, 2126 0xdfc0, 0xdfe0, 2127 0xe000, 0xf008, 2128 0xf010, 0xf018, 2129 0xf020, 0xf028, 2130 0x11000, 0x11014, 2131 0x11048, 0x1106c, 2132 0x11074, 0x11088, 2133 0x11098, 0x11120, 2134 0x1112c, 0x1117c, 2135 0x11190, 0x112e0, 2136 0x11300, 0x1130c, 2137 0x12000, 0x1206c, 2138 0x19040, 0x1906c, 2139 0x19078, 0x19080, 2140 0x1908c, 0x190e8, 2141 0x190f0, 0x190f8, 2142 0x19100, 0x19110, 2143 0x19120, 0x19124, 2144 0x19150, 0x19194, 2145 0x1919c, 0x191b0, 2146 0x191d0, 0x191e8, 2147 0x19238, 0x19290, 2148 0x192a4, 0x192b0, 2149 0x192bc, 0x192bc, 2150 0x19348, 0x1934c, 2151 0x193f8, 0x19418, 2152 0x19420, 0x19428, 2153 0x19430, 0x19444, 2154 0x1944c, 0x1946c, 2155 0x19474, 0x19474, 2156 0x19490, 0x194cc, 2157 0x194f0, 0x194f8, 2158 0x19c00, 0x19c48, 2159 0x19c50, 0x19c80, 2160 0x19c94, 0x19c98, 2161 0x19ca0, 0x19cbc, 2162 0x19ce4, 0x19ce4, 2163 0x19cf0, 0x19cf8, 2164 0x19d00, 0x19d28, 2165 0x19d50, 0x19d78, 2166 0x19d94, 0x19d98, 2167 0x19da0, 0x19dc8, 2168 0x19df0, 0x19e10, 2169 0x19e50, 0x19e6c, 2170 0x19ea0, 0x19ebc, 2171 0x19ec4, 0x19ef4, 2172 0x19f04, 0x19f2c, 2173 0x19f34, 0x19f34, 2174 0x19f40, 0x19f50, 2175 0x19f90, 0x19fac, 2176 0x19fc4, 0x19fc8, 2177 0x19fd0, 0x19fe4, 2178 0x1a000, 0x1a004, 2179 0x1a010, 0x1a06c, 2180 0x1a0b0, 0x1a0e4, 2181 0x1a0ec, 0x1a0f8, 2182 0x1a100, 0x1a108, 2183 0x1a114, 0x1a120, 2184 0x1a128, 0x1a130, 2185 0x1a138, 0x1a138, 2186 0x1a190, 0x1a1c4, 2187 0x1a1fc, 0x1a1fc, 2188 0x1e008, 0x1e00c, 2189 0x1e040, 0x1e044, 2190 0x1e04c, 0x1e04c, 2191 0x1e284, 0x1e290, 2192 0x1e2c0, 0x1e2c0, 2193 0x1e2e0, 0x1e2e0, 2194 0x1e300, 0x1e384, 2195 0x1e3c0, 0x1e3c8, 2196 0x1e408, 0x1e40c, 2197 0x1e440, 0x1e444, 2198 0x1e44c, 0x1e44c, 2199 0x1e684, 0x1e690, 2200 0x1e6c0, 0x1e6c0, 2201 0x1e6e0, 0x1e6e0, 2202 0x1e700, 0x1e784, 2203 0x1e7c0, 0x1e7c8, 2204 0x1e808, 0x1e80c, 2205 0x1e840, 0x1e844, 2206 0x1e84c, 0x1e84c, 2207 0x1ea84, 0x1ea90, 2208 0x1eac0, 0x1eac0, 2209 0x1eae0, 0x1eae0, 2210 0x1eb00, 0x1eb84, 2211 0x1ebc0, 0x1ebc8, 2212 0x1ec08, 0x1ec0c, 2213 0x1ec40, 0x1ec44, 2214 0x1ec4c, 0x1ec4c, 2215 0x1ee84, 0x1ee90, 2216 0x1eec0, 0x1eec0, 2217 0x1eee0, 0x1eee0, 2218 0x1ef00, 0x1ef84, 2219 0x1efc0, 0x1efc8, 2220 0x1f008, 0x1f00c, 2221 0x1f040, 0x1f044, 2222 0x1f04c, 0x1f04c, 2223 0x1f284, 0x1f290, 2224 0x1f2c0, 0x1f2c0, 2225 0x1f2e0, 0x1f2e0, 2226 0x1f300, 0x1f384, 2227 0x1f3c0, 0x1f3c8, 2228 0x1f408, 0x1f40c, 2229 0x1f440, 0x1f444, 2230 0x1f44c, 0x1f44c, 2231 0x1f684, 0x1f690, 2232 0x1f6c0, 0x1f6c0, 2233 0x1f6e0, 0x1f6e0, 2234 0x1f700, 0x1f784, 2235 0x1f7c0, 0x1f7c8, 2236 0x1f808, 0x1f80c, 2237 0x1f840, 0x1f844, 2238 0x1f84c, 0x1f84c, 2239 0x1fa84, 0x1fa90, 2240 0x1fac0, 0x1fac0, 2241 0x1fae0, 0x1fae0, 2242 0x1fb00, 0x1fb84, 2243 0x1fbc0, 0x1fbc8, 2244 0x1fc08, 0x1fc0c, 2245 0x1fc40, 0x1fc44, 2246 0x1fc4c, 0x1fc4c, 2247 0x1fe84, 0x1fe90, 2248 0x1fec0, 0x1fec0, 2249 0x1fee0, 0x1fee0, 2250 0x1ff00, 0x1ff84, 2251 0x1ffc0, 0x1ffc8, 2252 0x30000, 0x30030, 2253 0x30100, 0x30168, 2254 0x30190, 0x301a0, 2255 0x301a8, 0x301b8, 2256 0x301c4, 0x301c8, 2257 0x301d0, 0x301d0, 2258 0x30200, 0x30320, 2259 0x30400, 0x304b4, 2260 0x304c0, 0x3052c, 2261 0x30540, 0x3061c, 2262 0x30800, 0x308a0, 2263 0x308c0, 0x30908, 2264 0x30910, 0x309b8, 2265 0x30a00, 0x30a04, 2266 0x30a0c, 0x30a14, 2267 0x30a1c, 0x30a2c, 2268 0x30a44, 0x30a50, 2269 0x30a74, 0x30a74, 2270 0x30a7c, 0x30afc, 2271 0x30b08, 0x30c24, 2272 0x30d00, 0x30d14, 2273 0x30d1c, 0x30d3c, 2274 0x30d44, 0x30d4c, 2275 0x30d54, 0x30d74, 2276 0x30d7c, 0x30d7c, 2277 0x30de0, 0x30de0, 2278 0x30e00, 0x30ed4, 2279 0x30f00, 0x30fa4, 2280 0x30fc0, 0x30fc4, 2281 0x31000, 0x31004, 2282 0x31080, 0x310fc, 2283 0x31208, 0x31220, 2284 0x3123c, 0x31254, 2285 0x31300, 0x31300, 2286 0x31308, 0x3131c, 2287 0x31338, 0x3133c, 2288 0x31380, 0x31380, 2289 0x31388, 0x313a8, 2290 0x313b4, 0x313b4, 2291 0x31400, 0x31420, 2292 0x31438, 0x3143c, 2293 0x31480, 0x31480, 2294 0x314a8, 0x314a8, 2295 0x314b0, 0x314b4, 2296 0x314c8, 0x314d4, 2297 0x31a40, 0x31a4c, 2298 0x31af0, 0x31b20, 2299 0x31b38, 0x31b3c, 2300 0x31b80, 0x31b80, 2301 0x31ba8, 0x31ba8, 2302 0x31bb0, 0x31bb4, 2303 0x31bc8, 0x31bd4, 2304 0x32140, 0x3218c, 2305 0x321f0, 0x321f4, 2306 0x32200, 0x32200, 2307 0x32218, 0x32218, 2308 0x32400, 0x32400, 2309 0x32408, 0x3241c, 2310 0x32618, 0x32620, 2311 0x32664, 0x32664, 2312 0x326a8, 0x326a8, 2313 0x326ec, 0x326ec, 2314 0x32a00, 0x32abc, 2315 0x32b00, 0x32b18, 2316 0x32b20, 0x32b38, 2317 0x32b40, 0x32b58, 2318 0x32b60, 0x32b78, 2319 0x32c00, 0x32c00, 2320 0x32c08, 0x32c3c, 2321 0x33000, 0x3302c, 2322 0x33034, 0x33050, 2323 0x33058, 0x33058, 2324 0x33060, 0x3308c, 2325 0x3309c, 0x330ac, 2326 0x330c0, 0x330c0, 2327 0x330c8, 0x330d0, 2328 0x330d8, 0x330e0, 2329 0x330ec, 0x3312c, 2330 0x33134, 0x33150, 2331 0x33158, 0x33158, 2332 0x33160, 0x3318c, 2333 0x3319c, 0x331ac, 2334 0x331c0, 0x331c0, 2335 0x331c8, 0x331d0, 2336 0x331d8, 0x331e0, 2337 0x331ec, 0x33290, 2338 0x33298, 0x332c4, 2339 0x332e4, 0x33390, 2340 0x33398, 0x333c4, 2341 0x333e4, 0x3342c, 2342 0x33434, 0x33450, 2343 0x33458, 0x33458, 2344 0x33460, 0x3348c, 2345 0x3349c, 0x334ac, 2346 0x334c0, 0x334c0, 2347 0x334c8, 0x334d0, 2348 0x334d8, 0x334e0, 2349 0x334ec, 0x3352c, 2350 0x33534, 0x33550, 2351 0x33558, 0x33558, 2352 0x33560, 0x3358c, 2353 0x3359c, 0x335ac, 2354 0x335c0, 0x335c0, 2355 0x335c8, 0x335d0, 2356 0x335d8, 0x335e0, 2357 0x335ec, 0x33690, 2358 0x33698, 0x336c4, 2359 0x336e4, 0x33790, 2360 0x33798, 0x337c4, 2361 0x337e4, 0x337fc, 2362 0x33814, 0x33814, 2363 0x33854, 0x33868, 2364 0x33880, 0x3388c, 2365 0x338c0, 0x338d0, 2366 0x338e8, 0x338ec, 2367 0x33900, 0x3392c, 2368 0x33934, 0x33950, 2369 0x33958, 0x33958, 2370 0x33960, 0x3398c, 2371 0x3399c, 0x339ac, 2372 0x339c0, 0x339c0, 2373 0x339c8, 0x339d0, 2374 0x339d8, 0x339e0, 2375 0x339ec, 0x33a90, 2376 0x33a98, 0x33ac4, 2377 0x33ae4, 0x33b10, 2378 0x33b24, 0x33b28, 2379 0x33b38, 0x33b50, 2380 0x33bf0, 0x33c10, 2381 0x33c24, 0x33c28, 2382 0x33c38, 0x33c50, 2383 0x33cf0, 0x33cfc, 2384 0x34000, 0x34030, 2385 0x34100, 0x34168, 2386 0x34190, 0x341a0, 2387 0x341a8, 0x341b8, 2388 0x341c4, 0x341c8, 2389 0x341d0, 0x341d0, 2390 0x34200, 0x34320, 2391 0x34400, 0x344b4, 2392 0x344c0, 0x3452c, 2393 0x34540, 0x3461c, 2394 0x34800, 0x348a0, 2395 0x348c0, 0x34908, 2396 0x34910, 0x349b8, 2397 0x34a00, 0x34a04, 2398 0x34a0c, 0x34a14, 2399 0x34a1c, 0x34a2c, 2400 0x34a44, 0x34a50, 2401 0x34a74, 0x34a74, 2402 0x34a7c, 0x34afc, 2403 0x34b08, 0x34c24, 2404 0x34d00, 0x34d14, 2405 0x34d1c, 0x34d3c, 2406 0x34d44, 0x34d4c, 2407 0x34d54, 0x34d74, 2408 0x34d7c, 0x34d7c, 2409 0x34de0, 0x34de0, 2410 0x34e00, 0x34ed4, 2411 0x34f00, 0x34fa4, 2412 0x34fc0, 0x34fc4, 2413 0x35000, 0x35004, 2414 0x35080, 0x350fc, 2415 0x35208, 0x35220, 2416 0x3523c, 0x35254, 2417 0x35300, 0x35300, 2418 0x35308, 0x3531c, 2419 0x35338, 0x3533c, 2420 0x35380, 0x35380, 2421 0x35388, 0x353a8, 2422 0x353b4, 0x353b4, 2423 0x35400, 0x35420, 2424 0x35438, 0x3543c, 2425 0x35480, 0x35480, 2426 0x354a8, 0x354a8, 2427 0x354b0, 0x354b4, 2428 0x354c8, 0x354d4, 2429 0x35a40, 0x35a4c, 2430 0x35af0, 0x35b20, 2431 0x35b38, 0x35b3c, 2432 0x35b80, 0x35b80, 2433 0x35ba8, 0x35ba8, 2434 0x35bb0, 0x35bb4, 2435 0x35bc8, 0x35bd4, 2436 0x36140, 0x3618c, 2437 0x361f0, 0x361f4, 2438 0x36200, 0x36200, 2439 0x36218, 0x36218, 2440 0x36400, 0x36400, 2441 0x36408, 0x3641c, 2442 0x36618, 0x36620, 2443 0x36664, 0x36664, 2444 0x366a8, 0x366a8, 2445 0x366ec, 0x366ec, 2446 0x36a00, 0x36abc, 2447 0x36b00, 0x36b18, 2448 0x36b20, 0x36b38, 2449 0x36b40, 0x36b58, 2450 0x36b60, 0x36b78, 2451 0x36c00, 0x36c00, 2452 0x36c08, 0x36c3c, 2453 0x37000, 0x3702c, 2454 0x37034, 0x37050, 2455 0x37058, 0x37058, 2456 0x37060, 0x3708c, 2457 0x3709c, 0x370ac, 2458 0x370c0, 0x370c0, 2459 0x370c8, 0x370d0, 2460 0x370d8, 0x370e0, 2461 0x370ec, 0x3712c, 2462 0x37134, 0x37150, 2463 0x37158, 0x37158, 2464 0x37160, 0x3718c, 2465 0x3719c, 0x371ac, 2466 0x371c0, 0x371c0, 2467 0x371c8, 0x371d0, 2468 0x371d8, 0x371e0, 2469 0x371ec, 0x37290, 2470 0x37298, 0x372c4, 2471 0x372e4, 0x37390, 2472 0x37398, 0x373c4, 2473 0x373e4, 0x3742c, 2474 0x37434, 0x37450, 2475 0x37458, 0x37458, 2476 0x37460, 0x3748c, 2477 0x3749c, 0x374ac, 2478 0x374c0, 0x374c0, 2479 0x374c8, 0x374d0, 2480 0x374d8, 0x374e0, 2481 0x374ec, 0x3752c, 2482 0x37534, 0x37550, 2483 0x37558, 0x37558, 2484 0x37560, 0x3758c, 2485 0x3759c, 0x375ac, 2486 0x375c0, 0x375c0, 2487 0x375c8, 0x375d0, 2488 0x375d8, 0x375e0, 2489 0x375ec, 0x37690, 2490 0x37698, 0x376c4, 2491 0x376e4, 0x37790, 2492 0x37798, 0x377c4, 2493 0x377e4, 0x377fc, 2494 0x37814, 0x37814, 2495 0x37854, 0x37868, 2496 0x37880, 0x3788c, 2497 0x378c0, 0x378d0, 2498 0x378e8, 0x378ec, 2499 0x37900, 0x3792c, 2500 0x37934, 0x37950, 2501 0x37958, 0x37958, 2502 0x37960, 0x3798c, 2503 0x3799c, 0x379ac, 2504 0x379c0, 0x379c0, 2505 0x379c8, 0x379d0, 2506 0x379d8, 0x379e0, 2507 0x379ec, 0x37a90, 2508 0x37a98, 0x37ac4, 2509 0x37ae4, 0x37b10, 2510 0x37b24, 0x37b28, 2511 0x37b38, 0x37b50, 2512 0x37bf0, 0x37c10, 2513 0x37c24, 0x37c28, 2514 0x37c38, 0x37c50, 2515 0x37cf0, 0x37cfc, 2516 0x40040, 0x40040, 2517 0x40080, 0x40084, 2518 0x40100, 0x40100, 2519 0x40140, 0x401bc, 2520 0x40200, 0x40214, 2521 0x40228, 0x40228, 2522 0x40240, 0x40258, 2523 0x40280, 0x40280, 2524 0x40304, 0x40304, 2525 0x40330, 0x4033c, 2526 0x41304, 0x413c8, 2527 0x413d0, 0x413dc, 2528 0x413f0, 0x413f0, 2529 0x41400, 0x4140c, 2530 0x41414, 0x4141c, 2531 0x41480, 0x414d0, 2532 0x44000, 0x4407c, 2533 0x440c0, 0x441ac, 2534 0x441b4, 0x4427c, 2535 0x442c0, 0x443ac, 2536 0x443b4, 0x4447c, 2537 0x444c0, 0x445ac, 2538 0x445b4, 0x4467c, 2539 0x446c0, 0x447ac, 2540 0x447b4, 0x4487c, 2541 0x448c0, 0x449ac, 2542 0x449b4, 0x44a7c, 2543 0x44ac0, 0x44bac, 2544 0x44bb4, 0x44c7c, 2545 0x44cc0, 0x44dac, 2546 0x44db4, 0x44e7c, 2547 0x44ec0, 0x44fac, 2548 0x44fb4, 0x4507c, 2549 0x450c0, 0x451ac, 2550 0x451b4, 0x451fc, 2551 0x45800, 0x45804, 2552 0x45810, 0x45830, 2553 0x45840, 0x45860, 2554 0x45868, 0x45868, 2555 0x45880, 0x45884, 2556 0x458a0, 0x458b0, 2557 0x45a00, 0x45a04, 2558 0x45a10, 0x45a30, 2559 0x45a40, 0x45a60, 2560 0x45a68, 0x45a68, 2561 0x45a80, 0x45a84, 2562 0x45aa0, 0x45ab0, 2563 0x460c0, 0x460e4, 2564 0x47000, 0x4703c, 2565 0x47044, 0x4708c, 2566 0x47200, 0x47250, 2567 0x47400, 0x47408, 2568 0x47414, 0x47420, 2569 0x47600, 0x47618, 2570 0x47800, 0x47814, 2571 0x47820, 0x4782c, 2572 0x50000, 0x50084, 2573 0x50090, 0x500cc, 2574 0x50300, 0x50384, 2575 0x50400, 0x50400, 2576 0x50800, 0x50884, 2577 0x50890, 0x508cc, 2578 0x50b00, 0x50b84, 2579 0x50c00, 0x50c00, 2580 0x51000, 0x51020, 2581 0x51028, 0x510b0, 2582 0x51300, 0x51324, 2583 }; 2584 2585 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2586 const unsigned int *reg_ranges; 2587 int reg_ranges_size, range; 2588 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2589 2590 /* Select the right set of register ranges to dump depending on the 2591 * adapter chip type. 2592 */ 2593 switch (chip_version) { 2594 case CHELSIO_T4: 2595 reg_ranges = t4_reg_ranges; 2596 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2597 break; 2598 2599 case CHELSIO_T5: 2600 reg_ranges = t5_reg_ranges; 2601 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2602 break; 2603 2604 case CHELSIO_T6: 2605 reg_ranges = t6_reg_ranges; 2606 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2607 break; 2608 2609 default: 2610 dev_err(adap->pdev_dev, 2611 "Unsupported chip version %d\n", chip_version); 2612 return; 2613 } 2614 2615 /* Clear the register buffer and insert the appropriate register 2616 * values selected by the above register ranges. 2617 */ 2618 memset(buf, 0, buf_size); 2619 for (range = 0; range < reg_ranges_size; range += 2) { 2620 unsigned int reg = reg_ranges[range]; 2621 unsigned int last_reg = reg_ranges[range + 1]; 2622 u32 *bufp = (u32 *)((char *)buf + reg); 2623 2624 /* Iterate across the register range filling in the register 2625 * buffer but don't write past the end of the register buffer. 2626 */ 2627 while (reg <= last_reg && bufp < buf_end) { 2628 *bufp++ = t4_read_reg(adap, reg); 2629 reg += sizeof(u32); 2630 } 2631 } 2632 } 2633 2634 #define EEPROM_STAT_ADDR 0x7bfc 2635 #define VPD_SIZE 0x800 2636 #define VPD_BASE 0x400 2637 #define VPD_BASE_OLD 0 2638 #define VPD_LEN 1024 2639 #define CHELSIO_VPD_UNIQUE_ID 0x82 2640 2641 /** 2642 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2643 * @phys_addr: the physical EEPROM address 2644 * @fn: the PCI function number 2645 * @sz: size of function-specific area 2646 * 2647 * Translate a physical EEPROM address to virtual. The first 1K is 2648 * accessed through virtual addresses starting at 31K, the rest is 2649 * accessed through virtual addresses starting at 0. 2650 * 2651 * The mapping is as follows: 2652 * [0..1K) -> [31K..32K) 2653 * [1K..1K+A) -> [31K-A..31K) 2654 * [1K+A..ES) -> [0..ES-A-1K) 2655 * 2656 * where A = @fn * @sz, and ES = EEPROM size. 2657 */ 2658 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2659 { 2660 fn *= sz; 2661 if (phys_addr < 1024) 2662 return phys_addr + (31 << 10); 2663 if (phys_addr < 1024 + fn) 2664 return 31744 - fn + phys_addr - 1024; 2665 if (phys_addr < EEPROMSIZE) 2666 return phys_addr - 1024 - fn; 2667 return -EINVAL; 2668 } 2669 2670 /** 2671 * t4_seeprom_wp - enable/disable EEPROM write protection 2672 * @adapter: the adapter 2673 * @enable: whether to enable or disable write protection 2674 * 2675 * Enables or disables write protection on the serial EEPROM. 2676 */ 2677 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2678 { 2679 unsigned int v = enable ? 0xc : 0; 2680 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2681 return ret < 0 ? ret : 0; 2682 } 2683 2684 /** 2685 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2686 * @adapter: adapter to read 2687 * @p: where to store the parameters 2688 * 2689 * Reads card parameters stored in VPD EEPROM. 2690 */ 2691 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2692 { 2693 int i, ret = 0, addr; 2694 int ec, sn, pn, na; 2695 u8 *vpd, csum; 2696 unsigned int vpdr_len, kw_offset, id_len; 2697 2698 vpd = vmalloc(VPD_LEN); 2699 if (!vpd) 2700 return -ENOMEM; 2701 2702 /* We have two VPD data structures stored in the adapter VPD area. 2703 * By default, Linux calculates the size of the VPD area by traversing 2704 * the first VPD area at offset 0x0, so we need to tell the OS what 2705 * our real VPD size is. 2706 */ 2707 ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE); 2708 if (ret < 0) 2709 goto out; 2710 2711 /* Card information normally starts at VPD_BASE but early cards had 2712 * it at 0. 2713 */ 2714 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2715 if (ret < 0) 2716 goto out; 2717 2718 /* The VPD shall have a unique identifier specified by the PCI SIG. 2719 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2720 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2721 * is expected to automatically put this entry at the 2722 * beginning of the VPD. 2723 */ 2724 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2725 2726 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2727 if (ret < 0) 2728 goto out; 2729 2730 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2731 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2732 ret = -EINVAL; 2733 goto out; 2734 } 2735 2736 id_len = pci_vpd_lrdt_size(vpd); 2737 if (id_len > ID_LEN) 2738 id_len = ID_LEN; 2739 2740 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2741 if (i < 0) { 2742 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2743 ret = -EINVAL; 2744 goto out; 2745 } 2746 2747 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2748 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2749 if (vpdr_len + kw_offset > VPD_LEN) { 2750 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2751 ret = -EINVAL; 2752 goto out; 2753 } 2754 2755 #define FIND_VPD_KW(var, name) do { \ 2756 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2757 if (var < 0) { \ 2758 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2759 ret = -EINVAL; \ 2760 goto out; \ 2761 } \ 2762 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2763 } while (0) 2764 2765 FIND_VPD_KW(i, "RV"); 2766 for (csum = 0; i >= 0; i--) 2767 csum += vpd[i]; 2768 2769 if (csum) { 2770 dev_err(adapter->pdev_dev, 2771 "corrupted VPD EEPROM, actual csum %u\n", csum); 2772 ret = -EINVAL; 2773 goto out; 2774 } 2775 2776 FIND_VPD_KW(ec, "EC"); 2777 FIND_VPD_KW(sn, "SN"); 2778 FIND_VPD_KW(pn, "PN"); 2779 FIND_VPD_KW(na, "NA"); 2780 #undef FIND_VPD_KW 2781 2782 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2783 strim(p->id); 2784 memcpy(p->ec, vpd + ec, EC_LEN); 2785 strim(p->ec); 2786 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2787 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2788 strim(p->sn); 2789 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2790 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2791 strim(p->pn); 2792 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2793 strim((char *)p->na); 2794 2795 out: 2796 vfree(vpd); 2797 return ret < 0 ? ret : 0; 2798 } 2799 2800 /** 2801 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2802 * @adapter: adapter to read 2803 * @p: where to store the parameters 2804 * 2805 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2806 * Clock. This can only be called after a connection to the firmware 2807 * is established. 2808 */ 2809 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2810 { 2811 u32 cclk_param, cclk_val; 2812 int ret; 2813 2814 /* Grab the raw VPD parameters. 2815 */ 2816 ret = t4_get_raw_vpd_params(adapter, p); 2817 if (ret) 2818 return ret; 2819 2820 /* Ask firmware for the Core Clock since it knows how to translate the 2821 * Reference Clock ('V2') VPD field into a Core Clock value ... 2822 */ 2823 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2824 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2825 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2826 1, &cclk_param, &cclk_val); 2827 2828 if (ret) 2829 return ret; 2830 p->cclk = cclk_val; 2831 2832 return 0; 2833 } 2834 2835 /* serial flash and firmware constants */ 2836 enum { 2837 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2838 2839 /* flash command opcodes */ 2840 SF_PROG_PAGE = 2, /* program page */ 2841 SF_WR_DISABLE = 4, /* disable writes */ 2842 SF_RD_STATUS = 5, /* read status register */ 2843 SF_WR_ENABLE = 6, /* enable writes */ 2844 SF_RD_DATA_FAST = 0xb, /* read flash */ 2845 SF_RD_ID = 0x9f, /* read ID */ 2846 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2847 2848 FW_MAX_SIZE = 16 * SF_SEC_SIZE, 2849 }; 2850 2851 /** 2852 * sf1_read - read data from the serial flash 2853 * @adapter: the adapter 2854 * @byte_cnt: number of bytes to read 2855 * @cont: whether another operation will be chained 2856 * @lock: whether to lock SF for PL access only 2857 * @valp: where to store the read data 2858 * 2859 * Reads up to 4 bytes of data from the serial flash. The location of 2860 * the read needs to be specified prior to calling this by issuing the 2861 * appropriate commands to the serial flash. 2862 */ 2863 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2864 int lock, u32 *valp) 2865 { 2866 int ret; 2867 2868 if (!byte_cnt || byte_cnt > 4) 2869 return -EINVAL; 2870 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2871 return -EBUSY; 2872 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2873 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2874 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2875 if (!ret) 2876 *valp = t4_read_reg(adapter, SF_DATA_A); 2877 return ret; 2878 } 2879 2880 /** 2881 * sf1_write - write data to the serial flash 2882 * @adapter: the adapter 2883 * @byte_cnt: number of bytes to write 2884 * @cont: whether another operation will be chained 2885 * @lock: whether to lock SF for PL access only 2886 * @val: value to write 2887 * 2888 * Writes up to 4 bytes of data to the serial flash. The location of 2889 * the write needs to be specified prior to calling this by issuing the 2890 * appropriate commands to the serial flash. 2891 */ 2892 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2893 int lock, u32 val) 2894 { 2895 if (!byte_cnt || byte_cnt > 4) 2896 return -EINVAL; 2897 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2898 return -EBUSY; 2899 t4_write_reg(adapter, SF_DATA_A, val); 2900 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2901 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2902 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2903 } 2904 2905 /** 2906 * flash_wait_op - wait for a flash operation to complete 2907 * @adapter: the adapter 2908 * @attempts: max number of polls of the status register 2909 * @delay: delay between polls in ms 2910 * 2911 * Wait for a flash operation to complete by polling the status register. 2912 */ 2913 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 2914 { 2915 int ret; 2916 u32 status; 2917 2918 while (1) { 2919 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 2920 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 2921 return ret; 2922 if (!(status & 1)) 2923 return 0; 2924 if (--attempts == 0) 2925 return -EAGAIN; 2926 if (delay) 2927 msleep(delay); 2928 } 2929 } 2930 2931 /** 2932 * t4_read_flash - read words from serial flash 2933 * @adapter: the adapter 2934 * @addr: the start address for the read 2935 * @nwords: how many 32-bit words to read 2936 * @data: where to store the read data 2937 * @byte_oriented: whether to store data as bytes or as words 2938 * 2939 * Read the specified number of 32-bit words from the serial flash. 2940 * If @byte_oriented is set the read data is stored as a byte array 2941 * (i.e., big-endian), otherwise as 32-bit words in the platform's 2942 * natural endianness. 2943 */ 2944 int t4_read_flash(struct adapter *adapter, unsigned int addr, 2945 unsigned int nwords, u32 *data, int byte_oriented) 2946 { 2947 int ret; 2948 2949 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 2950 return -EINVAL; 2951 2952 addr = swab32(addr) | SF_RD_DATA_FAST; 2953 2954 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 2955 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 2956 return ret; 2957 2958 for ( ; nwords; nwords--, data++) { 2959 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 2960 if (nwords == 1) 2961 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 2962 if (ret) 2963 return ret; 2964 if (byte_oriented) 2965 *data = (__force __u32)(cpu_to_be32(*data)); 2966 } 2967 return 0; 2968 } 2969 2970 /** 2971 * t4_write_flash - write up to a page of data to the serial flash 2972 * @adapter: the adapter 2973 * @addr: the start address to write 2974 * @n: length of data to write in bytes 2975 * @data: the data to write 2976 * 2977 * Writes up to a page of data (256 bytes) to the serial flash starting 2978 * at the given address. All the data must be written to the same page. 2979 */ 2980 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 2981 unsigned int n, const u8 *data) 2982 { 2983 int ret; 2984 u32 buf[64]; 2985 unsigned int i, c, left, val, offset = addr & 0xff; 2986 2987 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 2988 return -EINVAL; 2989 2990 val = swab32(addr) | SF_PROG_PAGE; 2991 2992 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 2993 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 2994 goto unlock; 2995 2996 for (left = n; left; left -= c) { 2997 c = min(left, 4U); 2998 for (val = 0, i = 0; i < c; ++i) 2999 val = (val << 8) + *data++; 3000 3001 ret = sf1_write(adapter, c, c != left, 1, val); 3002 if (ret) 3003 goto unlock; 3004 } 3005 ret = flash_wait_op(adapter, 8, 1); 3006 if (ret) 3007 goto unlock; 3008 3009 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3010 3011 /* Read the page to verify the write succeeded */ 3012 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 3013 if (ret) 3014 return ret; 3015 3016 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3017 dev_err(adapter->pdev_dev, 3018 "failed to correctly write the flash page at %#x\n", 3019 addr); 3020 return -EIO; 3021 } 3022 return 0; 3023 3024 unlock: 3025 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3026 return ret; 3027 } 3028 3029 /** 3030 * t4_get_fw_version - read the firmware version 3031 * @adapter: the adapter 3032 * @vers: where to place the version 3033 * 3034 * Reads the FW version from flash. 3035 */ 3036 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3037 { 3038 return t4_read_flash(adapter, FLASH_FW_START + 3039 offsetof(struct fw_hdr, fw_ver), 1, 3040 vers, 0); 3041 } 3042 3043 /** 3044 * t4_get_bs_version - read the firmware bootstrap version 3045 * @adapter: the adapter 3046 * @vers: where to place the version 3047 * 3048 * Reads the FW Bootstrap version from flash. 3049 */ 3050 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3051 { 3052 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3053 offsetof(struct fw_hdr, fw_ver), 1, 3054 vers, 0); 3055 } 3056 3057 /** 3058 * t4_get_tp_version - read the TP microcode version 3059 * @adapter: the adapter 3060 * @vers: where to place the version 3061 * 3062 * Reads the TP microcode version from flash. 3063 */ 3064 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3065 { 3066 return t4_read_flash(adapter, FLASH_FW_START + 3067 offsetof(struct fw_hdr, tp_microcode_ver), 3068 1, vers, 0); 3069 } 3070 3071 /** 3072 * t4_get_exprom_version - return the Expansion ROM version (if any) 3073 * @adapter: the adapter 3074 * @vers: where to place the version 3075 * 3076 * Reads the Expansion ROM header from FLASH and returns the version 3077 * number (if present) through the @vers return value pointer. We return 3078 * this in the Firmware Version Format since it's convenient. Return 3079 * 0 on success, -ENOENT if no Expansion ROM is present. 3080 */ 3081 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3082 { 3083 struct exprom_header { 3084 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3085 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3086 } *hdr; 3087 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3088 sizeof(u32))]; 3089 int ret; 3090 3091 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3092 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3093 0); 3094 if (ret) 3095 return ret; 3096 3097 hdr = (struct exprom_header *)exprom_header_buf; 3098 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3099 return -ENOENT; 3100 3101 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3102 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3103 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3104 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3105 return 0; 3106 } 3107 3108 /** 3109 * t4_get_vpd_version - return the VPD version 3110 * @adapter: the adapter 3111 * @vers: where to place the version 3112 * 3113 * Reads the VPD via the Firmware interface (thus this can only be called 3114 * once we're ready to issue Firmware commands). The format of the 3115 * VPD version is adapter specific. Returns 0 on success, an error on 3116 * failure. 3117 * 3118 * Note that early versions of the Firmware didn't include the ability 3119 * to retrieve the VPD version, so we zero-out the return-value parameter 3120 * in that case to avoid leaving it with garbage in it. 3121 * 3122 * Also note that the Firmware will return its cached copy of the VPD 3123 * Revision ID, not the actual Revision ID as written in the Serial 3124 * EEPROM. This is only an issue if a new VPD has been written and the 3125 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3126 * to defer calling this routine till after a FW_RESET_CMD has been issued 3127 * if the Host Driver will be performing a full adapter initialization. 3128 */ 3129 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3130 { 3131 u32 vpdrev_param; 3132 int ret; 3133 3134 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3135 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3136 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3137 1, &vpdrev_param, vers); 3138 if (ret) 3139 *vers = 0; 3140 return ret; 3141 } 3142 3143 /** 3144 * t4_get_scfg_version - return the Serial Configuration version 3145 * @adapter: the adapter 3146 * @vers: where to place the version 3147 * 3148 * Reads the Serial Configuration Version via the Firmware interface 3149 * (thus this can only be called once we're ready to issue Firmware 3150 * commands). The format of the Serial Configuration version is 3151 * adapter specific. Returns 0 on success, an error on failure. 3152 * 3153 * Note that early versions of the Firmware didn't include the ability 3154 * to retrieve the Serial Configuration version, so we zero-out the 3155 * return-value parameter in that case to avoid leaving it with 3156 * garbage in it. 3157 * 3158 * Also note that the Firmware will return its cached copy of the Serial 3159 * Initialization Revision ID, not the actual Revision ID as written in 3160 * the Serial EEPROM. This is only an issue if a new VPD has been written 3161 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3162 * it's best to defer calling this routine till after a FW_RESET_CMD has 3163 * been issued if the Host Driver will be performing a full adapter 3164 * initialization. 3165 */ 3166 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3167 { 3168 u32 scfgrev_param; 3169 int ret; 3170 3171 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3172 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3173 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3174 1, &scfgrev_param, vers); 3175 if (ret) 3176 *vers = 0; 3177 return ret; 3178 } 3179 3180 /** 3181 * t4_get_version_info - extract various chip/firmware version information 3182 * @adapter: the adapter 3183 * 3184 * Reads various chip/firmware version numbers and stores them into the 3185 * adapter Adapter Parameters structure. If any of the efforts fails 3186 * the first failure will be returned, but all of the version numbers 3187 * will be read. 3188 */ 3189 int t4_get_version_info(struct adapter *adapter) 3190 { 3191 int ret = 0; 3192 3193 #define FIRST_RET(__getvinfo) \ 3194 do { \ 3195 int __ret = __getvinfo; \ 3196 if (__ret && !ret) \ 3197 ret = __ret; \ 3198 } while (0) 3199 3200 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3201 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3202 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3203 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3204 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3205 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3206 3207 #undef FIRST_RET 3208 return ret; 3209 } 3210 3211 /** 3212 * t4_dump_version_info - dump all of the adapter configuration IDs 3213 * @adapter: the adapter 3214 * 3215 * Dumps all of the various bits of adapter configuration version/revision 3216 * IDs information. This is typically called at some point after 3217 * t4_get_version_info() has been called. 3218 */ 3219 void t4_dump_version_info(struct adapter *adapter) 3220 { 3221 /* Device information */ 3222 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3223 adapter->params.vpd.id, 3224 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3225 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3226 adapter->params.vpd.sn, adapter->params.vpd.pn); 3227 3228 /* Firmware Version */ 3229 if (!adapter->params.fw_vers) 3230 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3231 else 3232 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3233 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3234 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3235 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3236 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3237 3238 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3239 * Firmware, so dev_info() is more appropriate here.) 3240 */ 3241 if (!adapter->params.bs_vers) 3242 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3243 else 3244 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3245 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3246 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3247 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3248 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3249 3250 /* TP Microcode Version */ 3251 if (!adapter->params.tp_vers) 3252 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3253 else 3254 dev_info(adapter->pdev_dev, 3255 "TP Microcode version: %u.%u.%u.%u\n", 3256 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3257 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3258 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3259 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3260 3261 /* Expansion ROM version */ 3262 if (!adapter->params.er_vers) 3263 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3264 else 3265 dev_info(adapter->pdev_dev, 3266 "Expansion ROM version: %u.%u.%u.%u\n", 3267 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3268 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3269 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3270 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3271 3272 /* Serial Configuration version */ 3273 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3274 adapter->params.scfg_vers); 3275 3276 /* VPD Version */ 3277 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3278 adapter->params.vpd_vers); 3279 } 3280 3281 /** 3282 * t4_check_fw_version - check if the FW is supported with this driver 3283 * @adap: the adapter 3284 * 3285 * Checks if an adapter's FW is compatible with the driver. Returns 0 3286 * if there's exact match, a negative error if the version could not be 3287 * read or there's a major version mismatch 3288 */ 3289 int t4_check_fw_version(struct adapter *adap) 3290 { 3291 int i, ret, major, minor, micro; 3292 int exp_major, exp_minor, exp_micro; 3293 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3294 3295 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3296 /* Try multiple times before returning error */ 3297 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3298 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3299 3300 if (ret) 3301 return ret; 3302 3303 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3304 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3305 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3306 3307 switch (chip_version) { 3308 case CHELSIO_T4: 3309 exp_major = T4FW_MIN_VERSION_MAJOR; 3310 exp_minor = T4FW_MIN_VERSION_MINOR; 3311 exp_micro = T4FW_MIN_VERSION_MICRO; 3312 break; 3313 case CHELSIO_T5: 3314 exp_major = T5FW_MIN_VERSION_MAJOR; 3315 exp_minor = T5FW_MIN_VERSION_MINOR; 3316 exp_micro = T5FW_MIN_VERSION_MICRO; 3317 break; 3318 case CHELSIO_T6: 3319 exp_major = T6FW_MIN_VERSION_MAJOR; 3320 exp_minor = T6FW_MIN_VERSION_MINOR; 3321 exp_micro = T6FW_MIN_VERSION_MICRO; 3322 break; 3323 default: 3324 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3325 adap->chip); 3326 return -EINVAL; 3327 } 3328 3329 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3330 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3331 dev_err(adap->pdev_dev, 3332 "Card has firmware version %u.%u.%u, minimum " 3333 "supported firmware is %u.%u.%u.\n", major, minor, 3334 micro, exp_major, exp_minor, exp_micro); 3335 return -EFAULT; 3336 } 3337 return 0; 3338 } 3339 3340 /* Is the given firmware API compatible with the one the driver was compiled 3341 * with? 3342 */ 3343 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3344 { 3345 3346 /* short circuit if it's the exact same firmware version */ 3347 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3348 return 1; 3349 3350 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3351 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3352 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3353 return 1; 3354 #undef SAME_INTF 3355 3356 return 0; 3357 } 3358 3359 /* The firmware in the filesystem is usable, but should it be installed? 3360 * This routine explains itself in detail if it indicates the filesystem 3361 * firmware should be installed. 3362 */ 3363 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3364 int k, int c) 3365 { 3366 const char *reason; 3367 3368 if (!card_fw_usable) { 3369 reason = "incompatible or unusable"; 3370 goto install; 3371 } 3372 3373 if (k > c) { 3374 reason = "older than the version supported with this driver"; 3375 goto install; 3376 } 3377 3378 return 0; 3379 3380 install: 3381 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3382 "installing firmware %u.%u.%u.%u on card.\n", 3383 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3384 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3385 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3386 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3387 3388 return 1; 3389 } 3390 3391 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3392 const u8 *fw_data, unsigned int fw_size, 3393 struct fw_hdr *card_fw, enum dev_state state, 3394 int *reset) 3395 { 3396 int ret, card_fw_usable, fs_fw_usable; 3397 const struct fw_hdr *fs_fw; 3398 const struct fw_hdr *drv_fw; 3399 3400 drv_fw = &fw_info->fw_hdr; 3401 3402 /* Read the header of the firmware on the card */ 3403 ret = -t4_read_flash(adap, FLASH_FW_START, 3404 sizeof(*card_fw) / sizeof(uint32_t), 3405 (uint32_t *)card_fw, 1); 3406 if (ret == 0) { 3407 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3408 } else { 3409 dev_err(adap->pdev_dev, 3410 "Unable to read card's firmware header: %d\n", ret); 3411 card_fw_usable = 0; 3412 } 3413 3414 if (fw_data != NULL) { 3415 fs_fw = (const void *)fw_data; 3416 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3417 } else { 3418 fs_fw = NULL; 3419 fs_fw_usable = 0; 3420 } 3421 3422 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3423 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3424 /* Common case: the firmware on the card is an exact match and 3425 * the filesystem one is an exact match too, or the filesystem 3426 * one is absent/incompatible. 3427 */ 3428 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3429 should_install_fs_fw(adap, card_fw_usable, 3430 be32_to_cpu(fs_fw->fw_ver), 3431 be32_to_cpu(card_fw->fw_ver))) { 3432 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 3433 fw_size, 0); 3434 if (ret != 0) { 3435 dev_err(adap->pdev_dev, 3436 "failed to install firmware: %d\n", ret); 3437 goto bye; 3438 } 3439 3440 /* Installed successfully, update the cached header too. */ 3441 *card_fw = *fs_fw; 3442 card_fw_usable = 1; 3443 *reset = 0; /* already reset as part of load_fw */ 3444 } 3445 3446 if (!card_fw_usable) { 3447 uint32_t d, c, k; 3448 3449 d = be32_to_cpu(drv_fw->fw_ver); 3450 c = be32_to_cpu(card_fw->fw_ver); 3451 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3452 3453 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3454 "chip state %d, " 3455 "driver compiled with %d.%d.%d.%d, " 3456 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3457 state, 3458 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3459 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3460 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3461 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3462 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3463 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3464 ret = EINVAL; 3465 goto bye; 3466 } 3467 3468 /* We're using whatever's on the card and it's known to be good. */ 3469 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3470 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3471 3472 bye: 3473 return ret; 3474 } 3475 3476 /** 3477 * t4_flash_erase_sectors - erase a range of flash sectors 3478 * @adapter: the adapter 3479 * @start: the first sector to erase 3480 * @end: the last sector to erase 3481 * 3482 * Erases the sectors in the given inclusive range. 3483 */ 3484 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3485 { 3486 int ret = 0; 3487 3488 if (end >= adapter->params.sf_nsec) 3489 return -EINVAL; 3490 3491 while (start <= end) { 3492 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3493 (ret = sf1_write(adapter, 4, 0, 1, 3494 SF_ERASE_SECTOR | (start << 8))) != 0 || 3495 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3496 dev_err(adapter->pdev_dev, 3497 "erase of flash sector %d failed, error %d\n", 3498 start, ret); 3499 break; 3500 } 3501 start++; 3502 } 3503 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3504 return ret; 3505 } 3506 3507 /** 3508 * t4_flash_cfg_addr - return the address of the flash configuration file 3509 * @adapter: the adapter 3510 * 3511 * Return the address within the flash where the Firmware Configuration 3512 * File is stored. 3513 */ 3514 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3515 { 3516 if (adapter->params.sf_size == 0x100000) 3517 return FLASH_FPGA_CFG_START; 3518 else 3519 return FLASH_CFG_START; 3520 } 3521 3522 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3523 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3524 * and emit an error message for mismatched firmware to save our caller the 3525 * effort ... 3526 */ 3527 static bool t4_fw_matches_chip(const struct adapter *adap, 3528 const struct fw_hdr *hdr) 3529 { 3530 /* The expression below will return FALSE for any unsupported adapter 3531 * which will keep us "honest" in the future ... 3532 */ 3533 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3534 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3535 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3536 return true; 3537 3538 dev_err(adap->pdev_dev, 3539 "FW image (%d) is not suitable for this adapter (%d)\n", 3540 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3541 return false; 3542 } 3543 3544 /** 3545 * t4_load_fw - download firmware 3546 * @adap: the adapter 3547 * @fw_data: the firmware image to write 3548 * @size: image size 3549 * 3550 * Write the supplied firmware image to the card's serial flash. 3551 */ 3552 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3553 { 3554 u32 csum; 3555 int ret, addr; 3556 unsigned int i; 3557 u8 first_page[SF_PAGE_SIZE]; 3558 const __be32 *p = (const __be32 *)fw_data; 3559 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3560 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3561 unsigned int fw_img_start = adap->params.sf_fw_start; 3562 unsigned int fw_start_sec = fw_img_start / sf_sec_size; 3563 3564 if (!size) { 3565 dev_err(adap->pdev_dev, "FW image has no data\n"); 3566 return -EINVAL; 3567 } 3568 if (size & 511) { 3569 dev_err(adap->pdev_dev, 3570 "FW image size not multiple of 512 bytes\n"); 3571 return -EINVAL; 3572 } 3573 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3574 dev_err(adap->pdev_dev, 3575 "FW image size differs from size in FW header\n"); 3576 return -EINVAL; 3577 } 3578 if (size > FW_MAX_SIZE) { 3579 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3580 FW_MAX_SIZE); 3581 return -EFBIG; 3582 } 3583 if (!t4_fw_matches_chip(adap, hdr)) 3584 return -EINVAL; 3585 3586 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3587 csum += be32_to_cpu(p[i]); 3588 3589 if (csum != 0xffffffff) { 3590 dev_err(adap->pdev_dev, 3591 "corrupted firmware image, checksum %#x\n", csum); 3592 return -EINVAL; 3593 } 3594 3595 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3596 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3597 if (ret) 3598 goto out; 3599 3600 /* 3601 * We write the correct version at the end so the driver can see a bad 3602 * version if the FW write fails. Start by writing a copy of the 3603 * first page with a bad version. 3604 */ 3605 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3606 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3607 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page); 3608 if (ret) 3609 goto out; 3610 3611 addr = fw_img_start; 3612 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3613 addr += SF_PAGE_SIZE; 3614 fw_data += SF_PAGE_SIZE; 3615 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3616 if (ret) 3617 goto out; 3618 } 3619 3620 ret = t4_write_flash(adap, 3621 fw_img_start + offsetof(struct fw_hdr, fw_ver), 3622 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3623 out: 3624 if (ret) 3625 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3626 ret); 3627 else 3628 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3629 return ret; 3630 } 3631 3632 /** 3633 * t4_phy_fw_ver - return current PHY firmware version 3634 * @adap: the adapter 3635 * @phy_fw_ver: return value buffer for PHY firmware version 3636 * 3637 * Returns the current version of external PHY firmware on the 3638 * adapter. 3639 */ 3640 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3641 { 3642 u32 param, val; 3643 int ret; 3644 3645 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3646 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3647 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3648 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3649 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3650 ¶m, &val); 3651 if (ret < 0) 3652 return ret; 3653 *phy_fw_ver = val; 3654 return 0; 3655 } 3656 3657 /** 3658 * t4_load_phy_fw - download port PHY firmware 3659 * @adap: the adapter 3660 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3661 * @win_lock: the lock to use to guard the memory copy 3662 * @phy_fw_version: function to check PHY firmware versions 3663 * @phy_fw_data: the PHY firmware image to write 3664 * @phy_fw_size: image size 3665 * 3666 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3667 * @phy_fw_version is supplied, then it will be used to determine if 3668 * it's necessary to perform the transfer by comparing the version 3669 * of any existing adapter PHY firmware with that of the passed in 3670 * PHY firmware image. If @win_lock is non-NULL then it will be used 3671 * around the call to t4_memory_rw() which transfers the PHY firmware 3672 * to the adapter. 3673 * 3674 * A negative error number will be returned if an error occurs. If 3675 * version number support is available and there's no need to upgrade 3676 * the firmware, 0 will be returned. If firmware is successfully 3677 * transferred to the adapter, 1 will be retured. 3678 * 3679 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3680 * a result, a RESET of the adapter would cause that RAM to lose its 3681 * contents. Thus, loading PHY firmware on such adapters must happen 3682 * after any FW_RESET_CMDs ... 3683 */ 3684 int t4_load_phy_fw(struct adapter *adap, 3685 int win, spinlock_t *win_lock, 3686 int (*phy_fw_version)(const u8 *, size_t), 3687 const u8 *phy_fw_data, size_t phy_fw_size) 3688 { 3689 unsigned long mtype = 0, maddr = 0; 3690 u32 param, val; 3691 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3692 int ret; 3693 3694 /* If we have version number support, then check to see if the adapter 3695 * already has up-to-date PHY firmware loaded. 3696 */ 3697 if (phy_fw_version) { 3698 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3699 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3700 if (ret < 0) 3701 return ret; 3702 3703 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3704 CH_WARN(adap, "PHY Firmware already up-to-date, " 3705 "version %#x\n", cur_phy_fw_ver); 3706 return 0; 3707 } 3708 } 3709 3710 /* Ask the firmware where it wants us to copy the PHY firmware image. 3711 * The size of the file requires a special version of the READ coommand 3712 * which will pass the file size via the values field in PARAMS_CMD and 3713 * retrieve the return value from firmware and place it in the same 3714 * buffer values 3715 */ 3716 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3717 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3718 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3719 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3720 val = phy_fw_size; 3721 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3722 ¶m, &val, 1, true); 3723 if (ret < 0) 3724 return ret; 3725 mtype = val >> 8; 3726 maddr = (val & 0xff) << 16; 3727 3728 /* Copy the supplied PHY Firmware image to the adapter memory location 3729 * allocated by the adapter firmware. 3730 */ 3731 if (win_lock) 3732 spin_lock_bh(win_lock); 3733 ret = t4_memory_rw(adap, win, mtype, maddr, 3734 phy_fw_size, (__be32 *)phy_fw_data, 3735 T4_MEMORY_WRITE); 3736 if (win_lock) 3737 spin_unlock_bh(win_lock); 3738 if (ret) 3739 return ret; 3740 3741 /* Tell the firmware that the PHY firmware image has been written to 3742 * RAM and it can now start copying it over to the PHYs. The chip 3743 * firmware will RESET the affected PHYs as part of this operation 3744 * leaving them running the new PHY firmware image. 3745 */ 3746 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3747 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3748 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3749 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3750 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3751 ¶m, &val, 30000); 3752 3753 /* If we have version number support, then check to see that the new 3754 * firmware got loaded properly. 3755 */ 3756 if (phy_fw_version) { 3757 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3758 if (ret < 0) 3759 return ret; 3760 3761 if (cur_phy_fw_ver != new_phy_fw_vers) { 3762 CH_WARN(adap, "PHY Firmware did not update: " 3763 "version on adapter %#x, " 3764 "version flashed %#x\n", 3765 cur_phy_fw_ver, new_phy_fw_vers); 3766 return -ENXIO; 3767 } 3768 } 3769 3770 return 1; 3771 } 3772 3773 /** 3774 * t4_fwcache - firmware cache operation 3775 * @adap: the adapter 3776 * @op : the operation (flush or flush and invalidate) 3777 */ 3778 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3779 { 3780 struct fw_params_cmd c; 3781 3782 memset(&c, 0, sizeof(c)); 3783 c.op_to_vfn = 3784 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3785 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3786 FW_PARAMS_CMD_PFN_V(adap->pf) | 3787 FW_PARAMS_CMD_VFN_V(0)); 3788 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3789 c.param[0].mnem = 3790 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3791 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3792 c.param[0].val = (__force __be32)op; 3793 3794 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3795 } 3796 3797 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3798 unsigned int *pif_req_wrptr, 3799 unsigned int *pif_rsp_wrptr) 3800 { 3801 int i, j; 3802 u32 cfg, val, req, rsp; 3803 3804 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3805 if (cfg & LADBGEN_F) 3806 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3807 3808 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3809 req = POLADBGWRPTR_G(val); 3810 rsp = PILADBGWRPTR_G(val); 3811 if (pif_req_wrptr) 3812 *pif_req_wrptr = req; 3813 if (pif_rsp_wrptr) 3814 *pif_rsp_wrptr = rsp; 3815 3816 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3817 for (j = 0; j < 6; j++) { 3818 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3819 PILADBGRDPTR_V(rsp)); 3820 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3821 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3822 req++; 3823 rsp++; 3824 } 3825 req = (req + 2) & POLADBGRDPTR_M; 3826 rsp = (rsp + 2) & PILADBGRDPTR_M; 3827 } 3828 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3829 } 3830 3831 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3832 { 3833 u32 cfg; 3834 int i, j, idx; 3835 3836 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3837 if (cfg & LADBGEN_F) 3838 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3839 3840 for (i = 0; i < CIM_MALA_SIZE; i++) { 3841 for (j = 0; j < 5; j++) { 3842 idx = 8 * i + j; 3843 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3844 PILADBGRDPTR_V(idx)); 3845 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3846 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3847 } 3848 } 3849 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3850 } 3851 3852 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3853 { 3854 unsigned int i, j; 3855 3856 for (i = 0; i < 8; i++) { 3857 u32 *p = la_buf + i; 3858 3859 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3860 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3861 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3862 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3863 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3864 } 3865 } 3866 3867 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3868 FW_PORT_CAP32_ANEG) 3869 3870 /** 3871 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3872 * @caps16: a 16-bit Port Capabilities value 3873 * 3874 * Returns the equivalent 32-bit Port Capabilities value. 3875 */ 3876 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3877 { 3878 fw_port_cap32_t caps32 = 0; 3879 3880 #define CAP16_TO_CAP32(__cap) \ 3881 do { \ 3882 if (caps16 & FW_PORT_CAP_##__cap) \ 3883 caps32 |= FW_PORT_CAP32_##__cap; \ 3884 } while (0) 3885 3886 CAP16_TO_CAP32(SPEED_100M); 3887 CAP16_TO_CAP32(SPEED_1G); 3888 CAP16_TO_CAP32(SPEED_25G); 3889 CAP16_TO_CAP32(SPEED_10G); 3890 CAP16_TO_CAP32(SPEED_40G); 3891 CAP16_TO_CAP32(SPEED_100G); 3892 CAP16_TO_CAP32(FC_RX); 3893 CAP16_TO_CAP32(FC_TX); 3894 CAP16_TO_CAP32(ANEG); 3895 CAP16_TO_CAP32(MDIX); 3896 CAP16_TO_CAP32(MDIAUTO); 3897 CAP16_TO_CAP32(FEC_RS); 3898 CAP16_TO_CAP32(FEC_BASER_RS); 3899 CAP16_TO_CAP32(802_3_PAUSE); 3900 CAP16_TO_CAP32(802_3_ASM_DIR); 3901 3902 #undef CAP16_TO_CAP32 3903 3904 return caps32; 3905 } 3906 3907 /** 3908 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 3909 * @caps32: a 32-bit Port Capabilities value 3910 * 3911 * Returns the equivalent 16-bit Port Capabilities value. Note that 3912 * not all 32-bit Port Capabilities can be represented in the 16-bit 3913 * Port Capabilities and some fields/values may not make it. 3914 */ 3915 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 3916 { 3917 fw_port_cap16_t caps16 = 0; 3918 3919 #define CAP32_TO_CAP16(__cap) \ 3920 do { \ 3921 if (caps32 & FW_PORT_CAP32_##__cap) \ 3922 caps16 |= FW_PORT_CAP_##__cap; \ 3923 } while (0) 3924 3925 CAP32_TO_CAP16(SPEED_100M); 3926 CAP32_TO_CAP16(SPEED_1G); 3927 CAP32_TO_CAP16(SPEED_10G); 3928 CAP32_TO_CAP16(SPEED_25G); 3929 CAP32_TO_CAP16(SPEED_40G); 3930 CAP32_TO_CAP16(SPEED_100G); 3931 CAP32_TO_CAP16(FC_RX); 3932 CAP32_TO_CAP16(FC_TX); 3933 CAP32_TO_CAP16(802_3_PAUSE); 3934 CAP32_TO_CAP16(802_3_ASM_DIR); 3935 CAP32_TO_CAP16(ANEG); 3936 CAP32_TO_CAP16(MDIX); 3937 CAP32_TO_CAP16(MDIAUTO); 3938 CAP32_TO_CAP16(FEC_RS); 3939 CAP32_TO_CAP16(FEC_BASER_RS); 3940 3941 #undef CAP32_TO_CAP16 3942 3943 return caps16; 3944 } 3945 3946 /* Translate Firmware Port Capabilities Pause specification to Common Code */ 3947 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 3948 { 3949 enum cc_pause cc_pause = 0; 3950 3951 if (fw_pause & FW_PORT_CAP32_FC_RX) 3952 cc_pause |= PAUSE_RX; 3953 if (fw_pause & FW_PORT_CAP32_FC_TX) 3954 cc_pause |= PAUSE_TX; 3955 3956 return cc_pause; 3957 } 3958 3959 /* Translate Common Code Pause specification into Firmware Port Capabilities */ 3960 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 3961 { 3962 fw_port_cap32_t fw_pause = 0; 3963 3964 if (cc_pause & PAUSE_RX) 3965 fw_pause |= FW_PORT_CAP32_FC_RX; 3966 if (cc_pause & PAUSE_TX) 3967 fw_pause |= FW_PORT_CAP32_FC_TX; 3968 3969 return fw_pause; 3970 } 3971 3972 /* Translate Firmware Forward Error Correction specification to Common Code */ 3973 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 3974 { 3975 enum cc_fec cc_fec = 0; 3976 3977 if (fw_fec & FW_PORT_CAP32_FEC_RS) 3978 cc_fec |= FEC_RS; 3979 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 3980 cc_fec |= FEC_BASER_RS; 3981 3982 return cc_fec; 3983 } 3984 3985 /* Translate Common Code Forward Error Correction specification to Firmware */ 3986 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 3987 { 3988 fw_port_cap32_t fw_fec = 0; 3989 3990 if (cc_fec & FEC_RS) 3991 fw_fec |= FW_PORT_CAP32_FEC_RS; 3992 if (cc_fec & FEC_BASER_RS) 3993 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 3994 3995 return fw_fec; 3996 } 3997 3998 /** 3999 * t4_link_l1cfg - apply link configuration to MAC/PHY 4000 * @adapter: the adapter 4001 * @mbox: the Firmware Mailbox to use 4002 * @port: the Port ID 4003 * @lc: the Port's Link Configuration 4004 * 4005 * Set up a port's MAC and PHY according to a desired link configuration. 4006 * - If the PHY can auto-negotiate first decide what to advertise, then 4007 * enable/disable auto-negotiation as desired, and reset. 4008 * - If the PHY does not auto-negotiate just reset it. 4009 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4010 * otherwise do it later based on the outcome of auto-negotiation. 4011 */ 4012 int t4_link_l1cfg(struct adapter *adapter, unsigned int mbox, 4013 unsigned int port, struct link_config *lc) 4014 { 4015 unsigned int fw_caps = adapter->params.fw_caps_support; 4016 struct fw_port_cmd cmd; 4017 unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO); 4018 fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap; 4019 4020 lc->link_ok = 0; 4021 4022 /* Convert driver coding of Pause Frame Flow Control settings into the 4023 * Firmware's API. 4024 */ 4025 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4026 4027 /* Convert Common Code Forward Error Control settings into the 4028 * Firmware's API. If the current Requested FEC has "Automatic" 4029 * (IEEE 802.3) specified, then we use whatever the Firmware 4030 * sent us as part of it's IEEE 802.3-based interpratation of 4031 * the Transceiver Module EPROM FEC parameters. Otherwise we 4032 * use whatever is in the current Requested FEC settings. 4033 */ 4034 if (lc->requested_fec & FEC_AUTO) 4035 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4036 else 4037 cc_fec = lc->requested_fec; 4038 fw_fec = cc_to_fwcap_fec(cc_fec); 4039 4040 /* Figure out what our Requested Port Capabilities are going to be. 4041 */ 4042 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4043 rcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec; 4044 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4045 lc->fec = cc_fec; 4046 } else if (lc->autoneg == AUTONEG_DISABLE) { 4047 rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4048 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4049 lc->fec = cc_fec; 4050 } else { 4051 rcap = lc->acaps | fw_fc | fw_fec | fw_mdi; 4052 } 4053 4054 /* And send that on to the Firmware ... 4055 */ 4056 memset(&cmd, 0, sizeof(cmd)); 4057 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4058 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4059 FW_PORT_CMD_PORTID_V(port)); 4060 cmd.action_to_len16 = 4061 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4062 ? FW_PORT_ACTION_L1_CFG 4063 : FW_PORT_ACTION_L1_CFG32) | 4064 FW_LEN16(cmd)); 4065 if (fw_caps == FW_CAPS16) 4066 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4067 else 4068 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4069 return t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 4070 } 4071 4072 /** 4073 * t4_restart_aneg - restart autonegotiation 4074 * @adap: the adapter 4075 * @mbox: mbox to use for the FW command 4076 * @port: the port id 4077 * 4078 * Restarts autonegotiation for the selected port. 4079 */ 4080 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4081 { 4082 struct fw_port_cmd c; 4083 4084 memset(&c, 0, sizeof(c)); 4085 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4086 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4087 FW_PORT_CMD_PORTID_V(port)); 4088 c.action_to_len16 = 4089 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | 4090 FW_LEN16(c)); 4091 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG); 4092 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4093 } 4094 4095 typedef void (*int_handler_t)(struct adapter *adap); 4096 4097 struct intr_info { 4098 unsigned int mask; /* bits to check in interrupt status */ 4099 const char *msg; /* message to print or NULL */ 4100 short stat_idx; /* stat counter to increment or -1 */ 4101 unsigned short fatal; /* whether the condition reported is fatal */ 4102 int_handler_t int_handler; /* platform-specific int handler */ 4103 }; 4104 4105 /** 4106 * t4_handle_intr_status - table driven interrupt handler 4107 * @adapter: the adapter that generated the interrupt 4108 * @reg: the interrupt status register to process 4109 * @acts: table of interrupt actions 4110 * 4111 * A table driven interrupt handler that applies a set of masks to an 4112 * interrupt status word and performs the corresponding actions if the 4113 * interrupts described by the mask have occurred. The actions include 4114 * optionally emitting a warning or alert message. The table is terminated 4115 * by an entry specifying mask 0. Returns the number of fatal interrupt 4116 * conditions. 4117 */ 4118 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4119 const struct intr_info *acts) 4120 { 4121 int fatal = 0; 4122 unsigned int mask = 0; 4123 unsigned int status = t4_read_reg(adapter, reg); 4124 4125 for ( ; acts->mask; ++acts) { 4126 if (!(status & acts->mask)) 4127 continue; 4128 if (acts->fatal) { 4129 fatal++; 4130 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4131 status & acts->mask); 4132 } else if (acts->msg && printk_ratelimit()) 4133 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4134 status & acts->mask); 4135 if (acts->int_handler) 4136 acts->int_handler(adapter); 4137 mask |= acts->mask; 4138 } 4139 status &= mask; 4140 if (status) /* clear processed interrupts */ 4141 t4_write_reg(adapter, reg, status); 4142 return fatal; 4143 } 4144 4145 /* 4146 * Interrupt handler for the PCIE module. 4147 */ 4148 static void pcie_intr_handler(struct adapter *adapter) 4149 { 4150 static const struct intr_info sysbus_intr_info[] = { 4151 { RNPP_F, "RXNP array parity error", -1, 1 }, 4152 { RPCP_F, "RXPC array parity error", -1, 1 }, 4153 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4154 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4155 { RFTP_F, "RXFT array parity error", -1, 1 }, 4156 { 0 } 4157 }; 4158 static const struct intr_info pcie_port_intr_info[] = { 4159 { TPCP_F, "TXPC array parity error", -1, 1 }, 4160 { TNPP_F, "TXNP array parity error", -1, 1 }, 4161 { TFTP_F, "TXFT array parity error", -1, 1 }, 4162 { TCAP_F, "TXCA array parity error", -1, 1 }, 4163 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4164 { RCAP_F, "RXCA array parity error", -1, 1 }, 4165 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4166 { RDPE_F, "Rx data parity error", -1, 1 }, 4167 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4168 { 0 } 4169 }; 4170 static const struct intr_info pcie_intr_info[] = { 4171 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4172 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4173 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4174 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4175 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4176 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4177 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4178 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4179 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4180 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4181 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4182 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4183 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4184 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4185 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4186 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4187 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4188 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4189 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4190 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4191 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4192 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4193 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4194 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4195 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4196 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4197 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4198 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4199 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4200 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4201 -1, 0 }, 4202 { 0 } 4203 }; 4204 4205 static struct intr_info t5_pcie_intr_info[] = { 4206 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4207 -1, 1 }, 4208 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4209 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4210 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4211 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4212 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4213 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4214 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4215 -1, 1 }, 4216 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4217 -1, 1 }, 4218 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4219 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4220 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4221 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4222 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4223 -1, 1 }, 4224 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4225 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4226 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4227 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4228 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4229 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4230 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4231 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4232 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4233 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4234 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4235 -1, 1 }, 4236 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4237 -1, 1 }, 4238 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4239 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4240 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4241 { READRSPERR_F, "Outbound read error", -1, 0 }, 4242 { 0 } 4243 }; 4244 4245 int fat; 4246 4247 if (is_t4(adapter->params.chip)) 4248 fat = t4_handle_intr_status(adapter, 4249 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4250 sysbus_intr_info) + 4251 t4_handle_intr_status(adapter, 4252 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4253 pcie_port_intr_info) + 4254 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4255 pcie_intr_info); 4256 else 4257 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4258 t5_pcie_intr_info); 4259 4260 if (fat) 4261 t4_fatal_err(adapter); 4262 } 4263 4264 /* 4265 * TP interrupt handler. 4266 */ 4267 static void tp_intr_handler(struct adapter *adapter) 4268 { 4269 static const struct intr_info tp_intr_info[] = { 4270 { 0x3fffffff, "TP parity error", -1, 1 }, 4271 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4272 { 0 } 4273 }; 4274 4275 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4276 t4_fatal_err(adapter); 4277 } 4278 4279 /* 4280 * SGE interrupt handler. 4281 */ 4282 static void sge_intr_handler(struct adapter *adapter) 4283 { 4284 u64 v; 4285 u32 err; 4286 4287 static const struct intr_info sge_intr_info[] = { 4288 { ERR_CPL_EXCEED_IQE_SIZE_F, 4289 "SGE received CPL exceeding IQE size", -1, 1 }, 4290 { ERR_INVALID_CIDX_INC_F, 4291 "SGE GTS CIDX increment too large", -1, 0 }, 4292 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4293 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4294 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4295 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4296 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4297 0 }, 4298 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4299 0 }, 4300 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4301 0 }, 4302 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4303 0 }, 4304 { ERR_ING_CTXT_PRIO_F, 4305 "SGE too many priority ingress contexts", -1, 0 }, 4306 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4307 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4308 { 0 } 4309 }; 4310 4311 static struct intr_info t4t5_sge_intr_info[] = { 4312 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4313 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4314 { ERR_EGR_CTXT_PRIO_F, 4315 "SGE too many priority egress contexts", -1, 0 }, 4316 { 0 } 4317 }; 4318 4319 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | 4320 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); 4321 if (v) { 4322 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 4323 (unsigned long long)v); 4324 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); 4325 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); 4326 } 4327 4328 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4329 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4330 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4331 t4t5_sge_intr_info); 4332 4333 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4334 if (err & ERROR_QID_VALID_F) { 4335 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4336 ERROR_QID_G(err)); 4337 if (err & UNCAPTURED_ERROR_F) 4338 dev_err(adapter->pdev_dev, 4339 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4340 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4341 UNCAPTURED_ERROR_F); 4342 } 4343 4344 if (v != 0) 4345 t4_fatal_err(adapter); 4346 } 4347 4348 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4349 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4350 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4351 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4352 4353 /* 4354 * CIM interrupt handler. 4355 */ 4356 static void cim_intr_handler(struct adapter *adapter) 4357 { 4358 static const struct intr_info cim_intr_info[] = { 4359 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4360 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4361 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4362 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4363 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4364 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4365 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4366 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4367 { 0 } 4368 }; 4369 static const struct intr_info cim_upintr_info[] = { 4370 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4371 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4372 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4373 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4374 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4375 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4376 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4377 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4378 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4379 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4380 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4381 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4382 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4383 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4384 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4385 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4386 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4387 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4388 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4389 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4390 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4391 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4392 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4393 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4394 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4395 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4396 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4397 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4398 { 0 } 4399 }; 4400 4401 u32 val, fw_err; 4402 int fat; 4403 4404 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4405 if (fw_err & PCIE_FW_ERR_F) 4406 t4_report_fw_error(adapter); 4407 4408 /* When the Firmware detects an internal error which normally 4409 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4410 * in order to make sure the Host sees the Firmware Crash. So 4411 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4412 * ignore the Timer0 interrupt. 4413 */ 4414 4415 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4416 if (val & TIMER0INT_F) 4417 if (!(fw_err & PCIE_FW_ERR_F) || 4418 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4419 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4420 TIMER0INT_F); 4421 4422 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4423 cim_intr_info) + 4424 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4425 cim_upintr_info); 4426 if (fat) 4427 t4_fatal_err(adapter); 4428 } 4429 4430 /* 4431 * ULP RX interrupt handler. 4432 */ 4433 static void ulprx_intr_handler(struct adapter *adapter) 4434 { 4435 static const struct intr_info ulprx_intr_info[] = { 4436 { 0x1800000, "ULPRX context error", -1, 1 }, 4437 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4438 { 0 } 4439 }; 4440 4441 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4442 t4_fatal_err(adapter); 4443 } 4444 4445 /* 4446 * ULP TX interrupt handler. 4447 */ 4448 static void ulptx_intr_handler(struct adapter *adapter) 4449 { 4450 static const struct intr_info ulptx_intr_info[] = { 4451 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4452 0 }, 4453 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4454 0 }, 4455 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4456 0 }, 4457 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4458 0 }, 4459 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4460 { 0 } 4461 }; 4462 4463 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4464 t4_fatal_err(adapter); 4465 } 4466 4467 /* 4468 * PM TX interrupt handler. 4469 */ 4470 static void pmtx_intr_handler(struct adapter *adapter) 4471 { 4472 static const struct intr_info pmtx_intr_info[] = { 4473 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4474 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4475 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4476 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4477 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4478 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4479 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4480 -1, 1 }, 4481 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4482 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4483 { 0 } 4484 }; 4485 4486 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4487 t4_fatal_err(adapter); 4488 } 4489 4490 /* 4491 * PM RX interrupt handler. 4492 */ 4493 static void pmrx_intr_handler(struct adapter *adapter) 4494 { 4495 static const struct intr_info pmrx_intr_info[] = { 4496 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4497 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4498 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4499 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4500 -1, 1 }, 4501 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4502 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4503 { 0 } 4504 }; 4505 4506 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4507 t4_fatal_err(adapter); 4508 } 4509 4510 /* 4511 * CPL switch interrupt handler. 4512 */ 4513 static void cplsw_intr_handler(struct adapter *adapter) 4514 { 4515 static const struct intr_info cplsw_intr_info[] = { 4516 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4517 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4518 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4519 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4520 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4521 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4522 { 0 } 4523 }; 4524 4525 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4526 t4_fatal_err(adapter); 4527 } 4528 4529 /* 4530 * LE interrupt handler. 4531 */ 4532 static void le_intr_handler(struct adapter *adap) 4533 { 4534 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4535 static const struct intr_info le_intr_info[] = { 4536 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4537 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4538 { PARITYERR_F, "LE parity error", -1, 1 }, 4539 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4540 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4541 { 0 } 4542 }; 4543 4544 static struct intr_info t6_le_intr_info[] = { 4545 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4546 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4547 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4548 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4549 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4550 { 0 } 4551 }; 4552 4553 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4554 (chip <= CHELSIO_T5) ? 4555 le_intr_info : t6_le_intr_info)) 4556 t4_fatal_err(adap); 4557 } 4558 4559 /* 4560 * MPS interrupt handler. 4561 */ 4562 static void mps_intr_handler(struct adapter *adapter) 4563 { 4564 static const struct intr_info mps_rx_intr_info[] = { 4565 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4566 { 0 } 4567 }; 4568 static const struct intr_info mps_tx_intr_info[] = { 4569 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4570 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4571 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4572 -1, 1 }, 4573 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4574 -1, 1 }, 4575 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4576 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4577 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4578 { 0 } 4579 }; 4580 static const struct intr_info t6_mps_tx_intr_info[] = { 4581 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4582 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4583 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4584 -1, 1 }, 4585 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4586 -1, 1 }, 4587 /* MPS Tx Bubble is normal for T6 */ 4588 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4589 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4590 { 0 } 4591 }; 4592 static const struct intr_info mps_trc_intr_info[] = { 4593 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4594 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4595 -1, 1 }, 4596 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4597 { 0 } 4598 }; 4599 static const struct intr_info mps_stat_sram_intr_info[] = { 4600 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4601 { 0 } 4602 }; 4603 static const struct intr_info mps_stat_tx_intr_info[] = { 4604 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4605 { 0 } 4606 }; 4607 static const struct intr_info mps_stat_rx_intr_info[] = { 4608 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4609 { 0 } 4610 }; 4611 static const struct intr_info mps_cls_intr_info[] = { 4612 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4613 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4614 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4615 { 0 } 4616 }; 4617 4618 int fat; 4619 4620 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4621 mps_rx_intr_info) + 4622 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4623 is_t6(adapter->params.chip) 4624 ? t6_mps_tx_intr_info 4625 : mps_tx_intr_info) + 4626 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4627 mps_trc_intr_info) + 4628 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4629 mps_stat_sram_intr_info) + 4630 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4631 mps_stat_tx_intr_info) + 4632 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4633 mps_stat_rx_intr_info) + 4634 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4635 mps_cls_intr_info); 4636 4637 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4638 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4639 if (fat) 4640 t4_fatal_err(adapter); 4641 } 4642 4643 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4644 ECC_UE_INT_CAUSE_F) 4645 4646 /* 4647 * EDC/MC interrupt handler. 4648 */ 4649 static void mem_intr_handler(struct adapter *adapter, int idx) 4650 { 4651 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4652 4653 unsigned int addr, cnt_addr, v; 4654 4655 if (idx <= MEM_EDC1) { 4656 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4657 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4658 } else if (idx == MEM_MC) { 4659 if (is_t4(adapter->params.chip)) { 4660 addr = MC_INT_CAUSE_A; 4661 cnt_addr = MC_ECC_STATUS_A; 4662 } else { 4663 addr = MC_P_INT_CAUSE_A; 4664 cnt_addr = MC_P_ECC_STATUS_A; 4665 } 4666 } else { 4667 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4668 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4669 } 4670 4671 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4672 if (v & PERR_INT_CAUSE_F) 4673 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4674 name[idx]); 4675 if (v & ECC_CE_INT_CAUSE_F) { 4676 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4677 4678 t4_edc_err_read(adapter, idx); 4679 4680 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4681 if (printk_ratelimit()) 4682 dev_warn(adapter->pdev_dev, 4683 "%u %s correctable ECC data error%s\n", 4684 cnt, name[idx], cnt > 1 ? "s" : ""); 4685 } 4686 if (v & ECC_UE_INT_CAUSE_F) 4687 dev_alert(adapter->pdev_dev, 4688 "%s uncorrectable ECC data error\n", name[idx]); 4689 4690 t4_write_reg(adapter, addr, v); 4691 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4692 t4_fatal_err(adapter); 4693 } 4694 4695 /* 4696 * MA interrupt handler. 4697 */ 4698 static void ma_intr_handler(struct adapter *adap) 4699 { 4700 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4701 4702 if (status & MEM_PERR_INT_CAUSE_F) { 4703 dev_alert(adap->pdev_dev, 4704 "MA parity error, parity status %#x\n", 4705 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4706 if (is_t5(adap->params.chip)) 4707 dev_alert(adap->pdev_dev, 4708 "MA parity error, parity status %#x\n", 4709 t4_read_reg(adap, 4710 MA_PARITY_ERROR_STATUS2_A)); 4711 } 4712 if (status & MEM_WRAP_INT_CAUSE_F) { 4713 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4714 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4715 "client %u to address %#x\n", 4716 MEM_WRAP_CLIENT_NUM_G(v), 4717 MEM_WRAP_ADDRESS_G(v) << 4); 4718 } 4719 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4720 t4_fatal_err(adap); 4721 } 4722 4723 /* 4724 * SMB interrupt handler. 4725 */ 4726 static void smb_intr_handler(struct adapter *adap) 4727 { 4728 static const struct intr_info smb_intr_info[] = { 4729 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4730 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4731 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4732 { 0 } 4733 }; 4734 4735 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4736 t4_fatal_err(adap); 4737 } 4738 4739 /* 4740 * NC-SI interrupt handler. 4741 */ 4742 static void ncsi_intr_handler(struct adapter *adap) 4743 { 4744 static const struct intr_info ncsi_intr_info[] = { 4745 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4746 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4747 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4748 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4749 { 0 } 4750 }; 4751 4752 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4753 t4_fatal_err(adap); 4754 } 4755 4756 /* 4757 * XGMAC interrupt handler. 4758 */ 4759 static void xgmac_intr_handler(struct adapter *adap, int port) 4760 { 4761 u32 v, int_cause_reg; 4762 4763 if (is_t4(adap->params.chip)) 4764 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4765 else 4766 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4767 4768 v = t4_read_reg(adap, int_cause_reg); 4769 4770 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4771 if (!v) 4772 return; 4773 4774 if (v & TXFIFO_PRTY_ERR_F) 4775 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4776 port); 4777 if (v & RXFIFO_PRTY_ERR_F) 4778 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4779 port); 4780 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4781 t4_fatal_err(adap); 4782 } 4783 4784 /* 4785 * PL interrupt handler. 4786 */ 4787 static void pl_intr_handler(struct adapter *adap) 4788 { 4789 static const struct intr_info pl_intr_info[] = { 4790 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4791 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4792 { 0 } 4793 }; 4794 4795 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4796 t4_fatal_err(adap); 4797 } 4798 4799 #define PF_INTR_MASK (PFSW_F) 4800 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4801 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4802 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 4803 4804 /** 4805 * t4_slow_intr_handler - control path interrupt handler 4806 * @adapter: the adapter 4807 * 4808 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 4809 * The designation 'slow' is because it involves register reads, while 4810 * data interrupts typically don't involve any MMIOs. 4811 */ 4812 int t4_slow_intr_handler(struct adapter *adapter) 4813 { 4814 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 4815 4816 if (!(cause & GLBL_INTR_MASK)) 4817 return 0; 4818 if (cause & CIM_F) 4819 cim_intr_handler(adapter); 4820 if (cause & MPS_F) 4821 mps_intr_handler(adapter); 4822 if (cause & NCSI_F) 4823 ncsi_intr_handler(adapter); 4824 if (cause & PL_F) 4825 pl_intr_handler(adapter); 4826 if (cause & SMB_F) 4827 smb_intr_handler(adapter); 4828 if (cause & XGMAC0_F) 4829 xgmac_intr_handler(adapter, 0); 4830 if (cause & XGMAC1_F) 4831 xgmac_intr_handler(adapter, 1); 4832 if (cause & XGMAC_KR0_F) 4833 xgmac_intr_handler(adapter, 2); 4834 if (cause & XGMAC_KR1_F) 4835 xgmac_intr_handler(adapter, 3); 4836 if (cause & PCIE_F) 4837 pcie_intr_handler(adapter); 4838 if (cause & MC_F) 4839 mem_intr_handler(adapter, MEM_MC); 4840 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 4841 mem_intr_handler(adapter, MEM_MC1); 4842 if (cause & EDC0_F) 4843 mem_intr_handler(adapter, MEM_EDC0); 4844 if (cause & EDC1_F) 4845 mem_intr_handler(adapter, MEM_EDC1); 4846 if (cause & LE_F) 4847 le_intr_handler(adapter); 4848 if (cause & TP_F) 4849 tp_intr_handler(adapter); 4850 if (cause & MA_F) 4851 ma_intr_handler(adapter); 4852 if (cause & PM_TX_F) 4853 pmtx_intr_handler(adapter); 4854 if (cause & PM_RX_F) 4855 pmrx_intr_handler(adapter); 4856 if (cause & ULP_RX_F) 4857 ulprx_intr_handler(adapter); 4858 if (cause & CPL_SWITCH_F) 4859 cplsw_intr_handler(adapter); 4860 if (cause & SGE_F) 4861 sge_intr_handler(adapter); 4862 if (cause & ULP_TX_F) 4863 ulptx_intr_handler(adapter); 4864 4865 /* Clear the interrupts just processed for which we are the master. */ 4866 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK); 4867 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 4868 return 1; 4869 } 4870 4871 /** 4872 * t4_intr_enable - enable interrupts 4873 * @adapter: the adapter whose interrupts should be enabled 4874 * 4875 * Enable PF-specific interrupts for the calling function and the top-level 4876 * interrupt concentrator for global interrupts. Interrupts are already 4877 * enabled at each module, here we just enable the roots of the interrupt 4878 * hierarchies. 4879 * 4880 * Note: this function should be called only when the driver manages 4881 * non PF-specific interrupts from the various HW modules. Only one PCI 4882 * function at a time should be doing this. 4883 */ 4884 void t4_intr_enable(struct adapter *adapter) 4885 { 4886 u32 val = 0; 4887 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4888 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4889 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4890 4891 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4892 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 4893 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 4894 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 4895 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 4896 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 4897 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 4898 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 4899 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 4900 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 4901 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 4902 } 4903 4904 /** 4905 * t4_intr_disable - disable interrupts 4906 * @adapter: the adapter whose interrupts should be disabled 4907 * 4908 * Disable interrupts. We only disable the top-level interrupt 4909 * concentrators. The caller must be a PCI function managing global 4910 * interrupts. 4911 */ 4912 void t4_intr_disable(struct adapter *adapter) 4913 { 4914 u32 whoami, pf; 4915 4916 if (pci_channel_offline(adapter->pdev)) 4917 return; 4918 4919 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4920 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4921 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4922 4923 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 4924 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 4925 } 4926 4927 /** 4928 * t4_config_rss_range - configure a portion of the RSS mapping table 4929 * @adapter: the adapter 4930 * @mbox: mbox to use for the FW command 4931 * @viid: virtual interface whose RSS subtable is to be written 4932 * @start: start entry in the table to write 4933 * @n: how many table entries to write 4934 * @rspq: values for the response queue lookup table 4935 * @nrspq: number of values in @rspq 4936 * 4937 * Programs the selected part of the VI's RSS mapping table with the 4938 * provided values. If @nrspq < @n the supplied values are used repeatedly 4939 * until the full table range is populated. 4940 * 4941 * The caller must ensure the values in @rspq are in the range allowed for 4942 * @viid. 4943 */ 4944 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 4945 int start, int n, const u16 *rspq, unsigned int nrspq) 4946 { 4947 int ret; 4948 const u16 *rsp = rspq; 4949 const u16 *rsp_end = rspq + nrspq; 4950 struct fw_rss_ind_tbl_cmd cmd; 4951 4952 memset(&cmd, 0, sizeof(cmd)); 4953 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 4954 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 4955 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 4956 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 4957 4958 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 4959 while (n > 0) { 4960 int nq = min(n, 32); 4961 __be32 *qp = &cmd.iq0_to_iq2; 4962 4963 cmd.niqid = cpu_to_be16(nq); 4964 cmd.startidx = cpu_to_be16(start); 4965 4966 start += nq; 4967 n -= nq; 4968 4969 while (nq > 0) { 4970 unsigned int v; 4971 4972 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 4973 if (++rsp >= rsp_end) 4974 rsp = rspq; 4975 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 4976 if (++rsp >= rsp_end) 4977 rsp = rspq; 4978 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 4979 if (++rsp >= rsp_end) 4980 rsp = rspq; 4981 4982 *qp++ = cpu_to_be32(v); 4983 nq -= 3; 4984 } 4985 4986 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 4987 if (ret) 4988 return ret; 4989 } 4990 return 0; 4991 } 4992 4993 /** 4994 * t4_config_glbl_rss - configure the global RSS mode 4995 * @adapter: the adapter 4996 * @mbox: mbox to use for the FW command 4997 * @mode: global RSS mode 4998 * @flags: mode-specific flags 4999 * 5000 * Sets the global RSS mode. 5001 */ 5002 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5003 unsigned int flags) 5004 { 5005 struct fw_rss_glb_config_cmd c; 5006 5007 memset(&c, 0, sizeof(c)); 5008 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5009 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5010 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5011 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5012 c.u.manual.mode_pkd = 5013 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5014 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5015 c.u.basicvirtual.mode_pkd = 5016 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5017 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5018 } else 5019 return -EINVAL; 5020 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5021 } 5022 5023 /** 5024 * t4_config_vi_rss - configure per VI RSS settings 5025 * @adapter: the adapter 5026 * @mbox: mbox to use for the FW command 5027 * @viid: the VI id 5028 * @flags: RSS flags 5029 * @defq: id of the default RSS queue for the VI. 5030 * 5031 * Configures VI-specific RSS properties. 5032 */ 5033 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5034 unsigned int flags, unsigned int defq) 5035 { 5036 struct fw_rss_vi_config_cmd c; 5037 5038 memset(&c, 0, sizeof(c)); 5039 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5040 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5041 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5042 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5043 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5044 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5045 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5046 } 5047 5048 /* Read an RSS table row */ 5049 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5050 { 5051 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5052 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5053 5, 0, val); 5054 } 5055 5056 /** 5057 * t4_read_rss - read the contents of the RSS mapping table 5058 * @adapter: the adapter 5059 * @map: holds the contents of the RSS mapping table 5060 * 5061 * Reads the contents of the RSS hash->queue mapping table. 5062 */ 5063 int t4_read_rss(struct adapter *adapter, u16 *map) 5064 { 5065 u32 val; 5066 int i, ret; 5067 5068 for (i = 0; i < RSS_NENTRIES / 2; ++i) { 5069 ret = rd_rss_row(adapter, i, &val); 5070 if (ret) 5071 return ret; 5072 *map++ = LKPTBLQUEUE0_G(val); 5073 *map++ = LKPTBLQUEUE1_G(val); 5074 } 5075 return 0; 5076 } 5077 5078 static unsigned int t4_use_ldst(struct adapter *adap) 5079 { 5080 return (adap->flags & FW_OK) || !adap->use_bd; 5081 } 5082 5083 /** 5084 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5085 * @adap: the adapter 5086 * @cmd: TP fw ldst address space type 5087 * @vals: where the indirect register values are stored/written 5088 * @nregs: how many indirect registers to read/write 5089 * @start_idx: index of first indirect register to read/write 5090 * @rw: Read (1) or Write (0) 5091 * @sleep_ok: if true we may sleep while awaiting command completion 5092 * 5093 * Access TP indirect registers through LDST 5094 */ 5095 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5096 unsigned int nregs, unsigned int start_index, 5097 unsigned int rw, bool sleep_ok) 5098 { 5099 int ret = 0; 5100 unsigned int i; 5101 struct fw_ldst_cmd c; 5102 5103 for (i = 0; i < nregs; i++) { 5104 memset(&c, 0, sizeof(c)); 5105 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5106 FW_CMD_REQUEST_F | 5107 (rw ? FW_CMD_READ_F : 5108 FW_CMD_WRITE_F) | 5109 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5110 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5111 5112 c.u.addrval.addr = cpu_to_be32(start_index + i); 5113 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5114 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5115 sleep_ok); 5116 if (ret) 5117 return ret; 5118 5119 if (rw) 5120 vals[i] = be32_to_cpu(c.u.addrval.val); 5121 } 5122 return 0; 5123 } 5124 5125 /** 5126 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5127 * @adap: the adapter 5128 * @reg_addr: Address Register 5129 * @reg_data: Data register 5130 * @buff: where the indirect register values are stored/written 5131 * @nregs: how many indirect registers to read/write 5132 * @start_index: index of first indirect register to read/write 5133 * @rw: READ(1) or WRITE(0) 5134 * @sleep_ok: if true we may sleep while awaiting command completion 5135 * 5136 * Read/Write TP indirect registers through LDST if possible. 5137 * Else, use backdoor access 5138 **/ 5139 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5140 u32 *buff, u32 nregs, u32 start_index, int rw, 5141 bool sleep_ok) 5142 { 5143 int rc = -EINVAL; 5144 int cmd; 5145 5146 switch (reg_addr) { 5147 case TP_PIO_ADDR_A: 5148 cmd = FW_LDST_ADDRSPC_TP_PIO; 5149 break; 5150 case TP_TM_PIO_ADDR_A: 5151 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5152 break; 5153 case TP_MIB_INDEX_A: 5154 cmd = FW_LDST_ADDRSPC_TP_MIB; 5155 break; 5156 default: 5157 goto indirect_access; 5158 } 5159 5160 if (t4_use_ldst(adap)) 5161 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5162 sleep_ok); 5163 5164 indirect_access: 5165 5166 if (rc) { 5167 if (rw) 5168 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5169 start_index); 5170 else 5171 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5172 start_index); 5173 } 5174 } 5175 5176 /** 5177 * t4_tp_pio_read - Read TP PIO registers 5178 * @adap: the adapter 5179 * @buff: where the indirect register values are written 5180 * @nregs: how many indirect registers to read 5181 * @start_index: index of first indirect register to read 5182 * @sleep_ok: if true we may sleep while awaiting command completion 5183 * 5184 * Read TP PIO Registers 5185 **/ 5186 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5187 u32 start_index, bool sleep_ok) 5188 { 5189 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5190 start_index, 1, sleep_ok); 5191 } 5192 5193 /** 5194 * t4_tp_pio_write - Write TP PIO registers 5195 * @adap: the adapter 5196 * @buff: where the indirect register values are stored 5197 * @nregs: how many indirect registers to write 5198 * @start_index: index of first indirect register to write 5199 * @sleep_ok: if true we may sleep while awaiting command completion 5200 * 5201 * Write TP PIO Registers 5202 **/ 5203 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5204 u32 start_index, bool sleep_ok) 5205 { 5206 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5207 start_index, 0, sleep_ok); 5208 } 5209 5210 /** 5211 * t4_tp_tm_pio_read - Read TP TM PIO registers 5212 * @adap: the adapter 5213 * @buff: where the indirect register values are written 5214 * @nregs: how many indirect registers to read 5215 * @start_index: index of first indirect register to read 5216 * @sleep_ok: if true we may sleep while awaiting command completion 5217 * 5218 * Read TP TM PIO Registers 5219 **/ 5220 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5221 u32 start_index, bool sleep_ok) 5222 { 5223 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5224 nregs, start_index, 1, sleep_ok); 5225 } 5226 5227 /** 5228 * t4_tp_mib_read - Read TP MIB registers 5229 * @adap: the adapter 5230 * @buff: where the indirect register values are written 5231 * @nregs: how many indirect registers to read 5232 * @start_index: index of first indirect register to read 5233 * @sleep_ok: if true we may sleep while awaiting command completion 5234 * 5235 * Read TP MIB Registers 5236 **/ 5237 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5238 bool sleep_ok) 5239 { 5240 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5241 start_index, 1, sleep_ok); 5242 } 5243 5244 /** 5245 * t4_read_rss_key - read the global RSS key 5246 * @adap: the adapter 5247 * @key: 10-entry array holding the 320-bit RSS key 5248 * @sleep_ok: if true we may sleep while awaiting command completion 5249 * 5250 * Reads the global 320-bit RSS key. 5251 */ 5252 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5253 { 5254 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5255 } 5256 5257 /** 5258 * t4_write_rss_key - program one of the RSS keys 5259 * @adap: the adapter 5260 * @key: 10-entry array holding the 320-bit RSS key 5261 * @idx: which RSS key to write 5262 * @sleep_ok: if true we may sleep while awaiting command completion 5263 * 5264 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5265 * 0..15 the corresponding entry in the RSS key table is written, 5266 * otherwise the global RSS key is written. 5267 */ 5268 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5269 bool sleep_ok) 5270 { 5271 u8 rss_key_addr_cnt = 16; 5272 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5273 5274 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5275 * allows access to key addresses 16-63 by using KeyWrAddrX 5276 * as index[5:4](upper 2) into key table 5277 */ 5278 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5279 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5280 rss_key_addr_cnt = 32; 5281 5282 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5283 5284 if (idx >= 0 && idx < rss_key_addr_cnt) { 5285 if (rss_key_addr_cnt > 16) 5286 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5287 KEYWRADDRX_V(idx >> 4) | 5288 T6_VFWRADDR_V(idx) | KEYWREN_F); 5289 else 5290 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5291 KEYWRADDR_V(idx) | KEYWREN_F); 5292 } 5293 } 5294 5295 /** 5296 * t4_read_rss_pf_config - read PF RSS Configuration Table 5297 * @adapter: the adapter 5298 * @index: the entry in the PF RSS table to read 5299 * @valp: where to store the returned value 5300 * @sleep_ok: if true we may sleep while awaiting command completion 5301 * 5302 * Reads the PF RSS Configuration Table at the specified index and returns 5303 * the value found there. 5304 */ 5305 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5306 u32 *valp, bool sleep_ok) 5307 { 5308 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5309 } 5310 5311 /** 5312 * t4_read_rss_vf_config - read VF RSS Configuration Table 5313 * @adapter: the adapter 5314 * @index: the entry in the VF RSS table to read 5315 * @vfl: where to store the returned VFL 5316 * @vfh: where to store the returned VFH 5317 * @sleep_ok: if true we may sleep while awaiting command completion 5318 * 5319 * Reads the VF RSS Configuration Table at the specified index and returns 5320 * the (VFL, VFH) values found there. 5321 */ 5322 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5323 u32 *vfl, u32 *vfh, bool sleep_ok) 5324 { 5325 u32 vrt, mask, data; 5326 5327 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5328 mask = VFWRADDR_V(VFWRADDR_M); 5329 data = VFWRADDR_V(index); 5330 } else { 5331 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5332 data = T6_VFWRADDR_V(index); 5333 } 5334 5335 /* Request that the index'th VF Table values be read into VFL/VFH. 5336 */ 5337 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5338 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5339 vrt |= data | VFRDEN_F; 5340 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5341 5342 /* Grab the VFL/VFH values ... 5343 */ 5344 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5345 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5346 } 5347 5348 /** 5349 * t4_read_rss_pf_map - read PF RSS Map 5350 * @adapter: the adapter 5351 * @sleep_ok: if true we may sleep while awaiting command completion 5352 * 5353 * Reads the PF RSS Map register and returns its value. 5354 */ 5355 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5356 { 5357 u32 pfmap; 5358 5359 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5360 return pfmap; 5361 } 5362 5363 /** 5364 * t4_read_rss_pf_mask - read PF RSS Mask 5365 * @adapter: the adapter 5366 * @sleep_ok: if true we may sleep while awaiting command completion 5367 * 5368 * Reads the PF RSS Mask register and returns its value. 5369 */ 5370 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5371 { 5372 u32 pfmask; 5373 5374 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5375 return pfmask; 5376 } 5377 5378 /** 5379 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5380 * @adap: the adapter 5381 * @v4: holds the TCP/IP counter values 5382 * @v6: holds the TCP/IPv6 counter values 5383 * @sleep_ok: if true we may sleep while awaiting command completion 5384 * 5385 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5386 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5387 */ 5388 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5389 struct tp_tcp_stats *v6, bool sleep_ok) 5390 { 5391 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5392 5393 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5394 #define STAT(x) val[STAT_IDX(x)] 5395 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5396 5397 if (v4) { 5398 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5399 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5400 v4->tcp_out_rsts = STAT(OUT_RST); 5401 v4->tcp_in_segs = STAT64(IN_SEG); 5402 v4->tcp_out_segs = STAT64(OUT_SEG); 5403 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5404 } 5405 if (v6) { 5406 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5407 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5408 v6->tcp_out_rsts = STAT(OUT_RST); 5409 v6->tcp_in_segs = STAT64(IN_SEG); 5410 v6->tcp_out_segs = STAT64(OUT_SEG); 5411 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5412 } 5413 #undef STAT64 5414 #undef STAT 5415 #undef STAT_IDX 5416 } 5417 5418 /** 5419 * t4_tp_get_err_stats - read TP's error MIB counters 5420 * @adap: the adapter 5421 * @st: holds the counter values 5422 * @sleep_ok: if true we may sleep while awaiting command completion 5423 * 5424 * Returns the values of TP's error counters. 5425 */ 5426 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5427 bool sleep_ok) 5428 { 5429 int nchan = adap->params.arch.nchan; 5430 5431 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5432 sleep_ok); 5433 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5434 sleep_ok); 5435 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5436 sleep_ok); 5437 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5438 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5439 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5440 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5441 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5442 sleep_ok); 5443 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5444 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5445 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5446 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5447 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5448 sleep_ok); 5449 } 5450 5451 /** 5452 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5453 * @adap: the adapter 5454 * @st: holds the counter values 5455 * @sleep_ok: if true we may sleep while awaiting command completion 5456 * 5457 * Returns the values of TP's CPL counters. 5458 */ 5459 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5460 bool sleep_ok) 5461 { 5462 int nchan = adap->params.arch.nchan; 5463 5464 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5465 5466 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5467 } 5468 5469 /** 5470 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5471 * @adap: the adapter 5472 * @st: holds the counter values 5473 * @sleep_ok: if true we may sleep while awaiting command completion 5474 * 5475 * Returns the values of TP's RDMA counters. 5476 */ 5477 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5478 bool sleep_ok) 5479 { 5480 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5481 sleep_ok); 5482 } 5483 5484 /** 5485 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5486 * @adap: the adapter 5487 * @idx: the port index 5488 * @st: holds the counter values 5489 * @sleep_ok: if true we may sleep while awaiting command completion 5490 * 5491 * Returns the values of TP's FCoE counters for the selected port. 5492 */ 5493 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5494 struct tp_fcoe_stats *st, bool sleep_ok) 5495 { 5496 u32 val[2]; 5497 5498 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5499 sleep_ok); 5500 5501 t4_tp_mib_read(adap, &st->frames_drop, 1, 5502 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5503 5504 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5505 sleep_ok); 5506 5507 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5508 } 5509 5510 /** 5511 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5512 * @adap: the adapter 5513 * @st: holds the counter values 5514 * @sleep_ok: if true we may sleep while awaiting command completion 5515 * 5516 * Returns the values of TP's counters for non-TCP directly-placed packets. 5517 */ 5518 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5519 bool sleep_ok) 5520 { 5521 u32 val[4]; 5522 5523 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5524 st->frames = val[0]; 5525 st->drops = val[1]; 5526 st->octets = ((u64)val[2] << 32) | val[3]; 5527 } 5528 5529 /** 5530 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5531 * @adap: the adapter 5532 * @mtus: where to store the MTU values 5533 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5534 * 5535 * Reads the HW path MTU table. 5536 */ 5537 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5538 { 5539 u32 v; 5540 int i; 5541 5542 for (i = 0; i < NMTUS; ++i) { 5543 t4_write_reg(adap, TP_MTU_TABLE_A, 5544 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5545 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5546 mtus[i] = MTUVALUE_G(v); 5547 if (mtu_log) 5548 mtu_log[i] = MTUWIDTH_G(v); 5549 } 5550 } 5551 5552 /** 5553 * t4_read_cong_tbl - reads the congestion control table 5554 * @adap: the adapter 5555 * @incr: where to store the alpha values 5556 * 5557 * Reads the additive increments programmed into the HW congestion 5558 * control table. 5559 */ 5560 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5561 { 5562 unsigned int mtu, w; 5563 5564 for (mtu = 0; mtu < NMTUS; ++mtu) 5565 for (w = 0; w < NCCTRL_WIN; ++w) { 5566 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5567 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5568 incr[mtu][w] = (u16)t4_read_reg(adap, 5569 TP_CCTRL_TABLE_A) & 0x1fff; 5570 } 5571 } 5572 5573 /** 5574 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5575 * @adap: the adapter 5576 * @addr: the indirect TP register address 5577 * @mask: specifies the field within the register to modify 5578 * @val: new value for the field 5579 * 5580 * Sets a field of an indirect TP register to the given value. 5581 */ 5582 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5583 unsigned int mask, unsigned int val) 5584 { 5585 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5586 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5587 t4_write_reg(adap, TP_PIO_DATA_A, val); 5588 } 5589 5590 /** 5591 * init_cong_ctrl - initialize congestion control parameters 5592 * @a: the alpha values for congestion control 5593 * @b: the beta values for congestion control 5594 * 5595 * Initialize the congestion control parameters. 5596 */ 5597 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5598 { 5599 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5600 a[9] = 2; 5601 a[10] = 3; 5602 a[11] = 4; 5603 a[12] = 5; 5604 a[13] = 6; 5605 a[14] = 7; 5606 a[15] = 8; 5607 a[16] = 9; 5608 a[17] = 10; 5609 a[18] = 14; 5610 a[19] = 17; 5611 a[20] = 21; 5612 a[21] = 25; 5613 a[22] = 30; 5614 a[23] = 35; 5615 a[24] = 45; 5616 a[25] = 60; 5617 a[26] = 80; 5618 a[27] = 100; 5619 a[28] = 200; 5620 a[29] = 300; 5621 a[30] = 400; 5622 a[31] = 500; 5623 5624 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5625 b[9] = b[10] = 1; 5626 b[11] = b[12] = 2; 5627 b[13] = b[14] = b[15] = b[16] = 3; 5628 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5629 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5630 b[28] = b[29] = 6; 5631 b[30] = b[31] = 7; 5632 } 5633 5634 /* The minimum additive increment value for the congestion control table */ 5635 #define CC_MIN_INCR 2U 5636 5637 /** 5638 * t4_load_mtus - write the MTU and congestion control HW tables 5639 * @adap: the adapter 5640 * @mtus: the values for the MTU table 5641 * @alpha: the values for the congestion control alpha parameter 5642 * @beta: the values for the congestion control beta parameter 5643 * 5644 * Write the HW MTU table with the supplied MTUs and the high-speed 5645 * congestion control table with the supplied alpha, beta, and MTUs. 5646 * We write the two tables together because the additive increments 5647 * depend on the MTUs. 5648 */ 5649 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5650 const unsigned short *alpha, const unsigned short *beta) 5651 { 5652 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5653 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5654 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5655 28672, 40960, 57344, 81920, 114688, 163840, 229376 5656 }; 5657 5658 unsigned int i, w; 5659 5660 for (i = 0; i < NMTUS; ++i) { 5661 unsigned int mtu = mtus[i]; 5662 unsigned int log2 = fls(mtu); 5663 5664 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5665 log2--; 5666 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5667 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5668 5669 for (w = 0; w < NCCTRL_WIN; ++w) { 5670 unsigned int inc; 5671 5672 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5673 CC_MIN_INCR); 5674 5675 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5676 (w << 16) | (beta[w] << 13) | inc); 5677 } 5678 } 5679 } 5680 5681 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5682 * clocks. The formula is 5683 * 5684 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5685 * 5686 * which is equivalent to 5687 * 5688 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5689 */ 5690 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5691 { 5692 u64 v = bytes256 * adap->params.vpd.cclk; 5693 5694 return v * 62 + v / 2; 5695 } 5696 5697 /** 5698 * t4_get_chan_txrate - get the current per channel Tx rates 5699 * @adap: the adapter 5700 * @nic_rate: rates for NIC traffic 5701 * @ofld_rate: rates for offloaded traffic 5702 * 5703 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5704 * for each channel. 5705 */ 5706 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5707 { 5708 u32 v; 5709 5710 v = t4_read_reg(adap, TP_TX_TRATE_A); 5711 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5712 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5713 if (adap->params.arch.nchan == NCHAN) { 5714 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5715 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5716 } 5717 5718 v = t4_read_reg(adap, TP_TX_ORATE_A); 5719 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5720 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5721 if (adap->params.arch.nchan == NCHAN) { 5722 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5723 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5724 } 5725 } 5726 5727 /** 5728 * t4_set_trace_filter - configure one of the tracing filters 5729 * @adap: the adapter 5730 * @tp: the desired trace filter parameters 5731 * @idx: which filter to configure 5732 * @enable: whether to enable or disable the filter 5733 * 5734 * Configures one of the tracing filters available in HW. If @enable is 5735 * %0 @tp is not examined and may be %NULL. The user is responsible to 5736 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5737 */ 5738 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5739 int idx, int enable) 5740 { 5741 int i, ofst = idx * 4; 5742 u32 data_reg, mask_reg, cfg; 5743 u32 multitrc = TRCMULTIFILTER_F; 5744 5745 if (!enable) { 5746 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5747 return 0; 5748 } 5749 5750 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5751 if (cfg & TRCMULTIFILTER_F) { 5752 /* If multiple tracers are enabled, then maximum 5753 * capture size is 2.5KB (FIFO size of a single channel) 5754 * minus 2 flits for CPL_TRACE_PKT header. 5755 */ 5756 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5757 return -EINVAL; 5758 } else { 5759 /* If multiple tracers are disabled, to avoid deadlocks 5760 * maximum packet capture size of 9600 bytes is recommended. 5761 * Also in this mode, only trace0 can be enabled and running. 5762 */ 5763 multitrc = 0; 5764 if (tp->snap_len > 9600 || idx) 5765 return -EINVAL; 5766 } 5767 5768 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5769 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5770 tp->min_len > TFMINPKTSIZE_M) 5771 return -EINVAL; 5772 5773 /* stop the tracer we'll be changing */ 5774 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5775 5776 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5777 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5778 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5779 5780 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5781 t4_write_reg(adap, data_reg, tp->data[i]); 5782 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5783 } 5784 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5785 TFCAPTUREMAX_V(tp->snap_len) | 5786 TFMINPKTSIZE_V(tp->min_len)); 5787 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5788 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5789 (is_t4(adap->params.chip) ? 5790 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 5791 T5_TFPORT_V(tp->port) | T5_TFEN_F | 5792 T5_TFINVERTMATCH_V(tp->invert))); 5793 5794 return 0; 5795 } 5796 5797 /** 5798 * t4_get_trace_filter - query one of the tracing filters 5799 * @adap: the adapter 5800 * @tp: the current trace filter parameters 5801 * @idx: which trace filter to query 5802 * @enabled: non-zero if the filter is enabled 5803 * 5804 * Returns the current settings of one of the HW tracing filters. 5805 */ 5806 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 5807 int *enabled) 5808 { 5809 u32 ctla, ctlb; 5810 int i, ofst = idx * 4; 5811 u32 data_reg, mask_reg; 5812 5813 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 5814 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 5815 5816 if (is_t4(adap->params.chip)) { 5817 *enabled = !!(ctla & TFEN_F); 5818 tp->port = TFPORT_G(ctla); 5819 tp->invert = !!(ctla & TFINVERTMATCH_F); 5820 } else { 5821 *enabled = !!(ctla & T5_TFEN_F); 5822 tp->port = T5_TFPORT_G(ctla); 5823 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 5824 } 5825 tp->snap_len = TFCAPTUREMAX_G(ctlb); 5826 tp->min_len = TFMINPKTSIZE_G(ctlb); 5827 tp->skip_ofst = TFOFFSET_G(ctla); 5828 tp->skip_len = TFLENGTH_G(ctla); 5829 5830 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 5831 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 5832 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 5833 5834 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5835 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 5836 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 5837 } 5838 } 5839 5840 /** 5841 * t4_pmtx_get_stats - returns the HW stats from PMTX 5842 * @adap: the adapter 5843 * @cnt: where to store the count statistics 5844 * @cycles: where to store the cycle statistics 5845 * 5846 * Returns performance statistics from PMTX. 5847 */ 5848 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5849 { 5850 int i; 5851 u32 data[2]; 5852 5853 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5854 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 5855 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 5856 if (is_t4(adap->params.chip)) { 5857 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 5858 } else { 5859 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 5860 PM_TX_DBG_DATA_A, data, 2, 5861 PM_TX_DBG_STAT_MSB_A); 5862 cycles[i] = (((u64)data[0] << 32) | data[1]); 5863 } 5864 } 5865 } 5866 5867 /** 5868 * t4_pmrx_get_stats - returns the HW stats from PMRX 5869 * @adap: the adapter 5870 * @cnt: where to store the count statistics 5871 * @cycles: where to store the cycle statistics 5872 * 5873 * Returns performance statistics from PMRX. 5874 */ 5875 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5876 { 5877 int i; 5878 u32 data[2]; 5879 5880 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5881 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 5882 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 5883 if (is_t4(adap->params.chip)) { 5884 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 5885 } else { 5886 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 5887 PM_RX_DBG_DATA_A, data, 2, 5888 PM_RX_DBG_STAT_MSB_A); 5889 cycles[i] = (((u64)data[0] << 32) | data[1]); 5890 } 5891 } 5892 } 5893 5894 /** 5895 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 5896 * @adap: the adapter 5897 * @pidx: the port index 5898 * 5899 * Computes and returns a bitmap indicating which MPS buffer groups are 5900 * associated with the given Port. Bit i is set if buffer group i is 5901 * used by the Port. 5902 */ 5903 static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 5904 int pidx) 5905 { 5906 unsigned int chip_version, nports; 5907 5908 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 5909 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 5910 5911 switch (chip_version) { 5912 case CHELSIO_T4: 5913 case CHELSIO_T5: 5914 switch (nports) { 5915 case 1: return 0xf; 5916 case 2: return 3 << (2 * pidx); 5917 case 4: return 1 << pidx; 5918 } 5919 break; 5920 5921 case CHELSIO_T6: 5922 switch (nports) { 5923 case 2: return 1 << (2 * pidx); 5924 } 5925 break; 5926 } 5927 5928 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 5929 chip_version, nports); 5930 5931 return 0; 5932 } 5933 5934 /** 5935 * t4_get_mps_bg_map - return the buffer groups associated with a port 5936 * @adapter: the adapter 5937 * @pidx: the port index 5938 * 5939 * Returns a bitmap indicating which MPS buffer groups are associated 5940 * with the given Port. Bit i is set if buffer group i is used by the 5941 * Port. 5942 */ 5943 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 5944 { 5945 u8 *mps_bg_map; 5946 unsigned int nports; 5947 5948 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 5949 if (pidx >= nports) { 5950 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 5951 pidx, nports); 5952 return 0; 5953 } 5954 5955 /* If we've already retrieved/computed this, just return the result. 5956 */ 5957 mps_bg_map = adapter->params.mps_bg_map; 5958 if (mps_bg_map[pidx]) 5959 return mps_bg_map[pidx]; 5960 5961 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 5962 * If we're talking to such Firmware, let it tell us. If the new 5963 * API isn't supported, revert back to old hardcoded way. The value 5964 * obtained from Firmware is encoded in below format: 5965 * 5966 * val = (( MPSBGMAP[Port 3] << 24 ) | 5967 * ( MPSBGMAP[Port 2] << 16 ) | 5968 * ( MPSBGMAP[Port 1] << 8 ) | 5969 * ( MPSBGMAP[Port 0] << 0 )) 5970 */ 5971 if (adapter->flags & FW_OK) { 5972 u32 param, val; 5973 int ret; 5974 5975 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 5976 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 5977 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 5978 0, 1, ¶m, &val); 5979 if (!ret) { 5980 int p; 5981 5982 /* Store the BG Map for all of the Ports in order to 5983 * avoid more calls to the Firmware in the future. 5984 */ 5985 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 5986 mps_bg_map[p] = val & 0xff; 5987 5988 return mps_bg_map[pidx]; 5989 } 5990 } 5991 5992 /* Either we're not talking to the Firmware or we're dealing with 5993 * older Firmware which doesn't support the new API to get the MPS 5994 * Buffer Group Map. Fall back to computing it ourselves. 5995 */ 5996 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 5997 return mps_bg_map[pidx]; 5998 } 5999 6000 /** 6001 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6002 * @adapter: the adapter 6003 * @pidx: the port index 6004 * 6005 * Returns a bitmap indicating which TP Ingress Channels are associated 6006 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6007 * the Port. 6008 */ 6009 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6010 { 6011 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6012 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6013 6014 if (pidx >= nports) { 6015 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6016 pidx, nports); 6017 return 0; 6018 } 6019 6020 switch (chip_version) { 6021 case CHELSIO_T4: 6022 case CHELSIO_T5: 6023 /* Note that this happens to be the same values as the MPS 6024 * Buffer Group Map for these Chips. But we replicate the code 6025 * here because they're really separate concepts. 6026 */ 6027 switch (nports) { 6028 case 1: return 0xf; 6029 case 2: return 3 << (2 * pidx); 6030 case 4: return 1 << pidx; 6031 } 6032 break; 6033 6034 case CHELSIO_T6: 6035 switch (nports) { 6036 case 2: return 1 << pidx; 6037 } 6038 break; 6039 } 6040 6041 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6042 chip_version, nports); 6043 return 0; 6044 } 6045 6046 /** 6047 * t4_get_port_type_description - return Port Type string description 6048 * @port_type: firmware Port Type enumeration 6049 */ 6050 const char *t4_get_port_type_description(enum fw_port_type port_type) 6051 { 6052 static const char *const port_type_description[] = { 6053 "Fiber_XFI", 6054 "Fiber_XAUI", 6055 "BT_SGMII", 6056 "BT_XFI", 6057 "BT_XAUI", 6058 "KX4", 6059 "CX4", 6060 "KX", 6061 "KR", 6062 "SFP", 6063 "BP_AP", 6064 "BP4_AP", 6065 "QSFP_10G", 6066 "QSA", 6067 "QSFP", 6068 "BP40_BA", 6069 "KR4_100G", 6070 "CR4_QSFP", 6071 "CR_QSFP", 6072 "CR2_QSFP", 6073 "SFP28", 6074 "KR_SFP28", 6075 }; 6076 6077 if (port_type < ARRAY_SIZE(port_type_description)) 6078 return port_type_description[port_type]; 6079 return "UNKNOWN"; 6080 } 6081 6082 /** 6083 * t4_get_port_stats_offset - collect port stats relative to a previous 6084 * snapshot 6085 * @adap: The adapter 6086 * @idx: The port 6087 * @stats: Current stats to fill 6088 * @offset: Previous stats snapshot 6089 */ 6090 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6091 struct port_stats *stats, 6092 struct port_stats *offset) 6093 { 6094 u64 *s, *o; 6095 int i; 6096 6097 t4_get_port_stats(adap, idx, stats); 6098 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6099 i < (sizeof(struct port_stats) / sizeof(u64)); 6100 i++, s++, o++) 6101 *s -= *o; 6102 } 6103 6104 /** 6105 * t4_get_port_stats - collect port statistics 6106 * @adap: the adapter 6107 * @idx: the port index 6108 * @p: the stats structure to fill 6109 * 6110 * Collect statistics related to the given port from HW. 6111 */ 6112 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6113 { 6114 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6115 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6116 6117 #define GET_STAT(name) \ 6118 t4_read_reg64(adap, \ 6119 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6120 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6121 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6122 6123 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6124 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6125 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6126 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6127 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6128 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6129 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6130 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6131 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6132 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6133 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6134 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6135 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6136 p->tx_drop = GET_STAT(TX_PORT_DROP); 6137 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6138 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6139 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6140 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6141 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6142 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6143 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6144 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6145 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6146 6147 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6148 if (stat_ctl & COUNTPAUSESTATTX_F) 6149 p->tx_frames_64 -= p->tx_pause; 6150 if (stat_ctl & COUNTPAUSEMCTX_F) 6151 p->tx_mcast_frames -= p->tx_pause; 6152 } 6153 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6154 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6155 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6156 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6157 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6158 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6159 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6160 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6161 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6162 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6163 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6164 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6165 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6166 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6167 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6168 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6169 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6170 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6171 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6172 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6173 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6174 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6175 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6176 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6177 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6178 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6179 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6180 6181 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6182 if (stat_ctl & COUNTPAUSESTATRX_F) 6183 p->rx_frames_64 -= p->rx_pause; 6184 if (stat_ctl & COUNTPAUSEMCRX_F) 6185 p->rx_mcast_frames -= p->rx_pause; 6186 } 6187 6188 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6189 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6190 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6191 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6192 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6193 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6194 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6195 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6196 6197 #undef GET_STAT 6198 #undef GET_STAT_COM 6199 } 6200 6201 /** 6202 * t4_get_lb_stats - collect loopback port statistics 6203 * @adap: the adapter 6204 * @idx: the loopback port index 6205 * @p: the stats structure to fill 6206 * 6207 * Return HW statistics for the given loopback port. 6208 */ 6209 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6210 { 6211 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6212 6213 #define GET_STAT(name) \ 6214 t4_read_reg64(adap, \ 6215 (is_t4(adap->params.chip) ? \ 6216 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6217 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6218 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6219 6220 p->octets = GET_STAT(BYTES); 6221 p->frames = GET_STAT(FRAMES); 6222 p->bcast_frames = GET_STAT(BCAST); 6223 p->mcast_frames = GET_STAT(MCAST); 6224 p->ucast_frames = GET_STAT(UCAST); 6225 p->error_frames = GET_STAT(ERROR); 6226 6227 p->frames_64 = GET_STAT(64B); 6228 p->frames_65_127 = GET_STAT(65B_127B); 6229 p->frames_128_255 = GET_STAT(128B_255B); 6230 p->frames_256_511 = GET_STAT(256B_511B); 6231 p->frames_512_1023 = GET_STAT(512B_1023B); 6232 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6233 p->frames_1519_max = GET_STAT(1519B_MAX); 6234 p->drop = GET_STAT(DROP_FRAMES); 6235 6236 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6237 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6238 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6239 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6240 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6241 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6242 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6243 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6244 6245 #undef GET_STAT 6246 #undef GET_STAT_COM 6247 } 6248 6249 /* t4_mk_filtdelwr - create a delete filter WR 6250 * @ftid: the filter ID 6251 * @wr: the filter work request to populate 6252 * @qid: ingress queue to receive the delete notification 6253 * 6254 * Creates a filter work request to delete the supplied filter. If @qid is 6255 * negative the delete notification is suppressed. 6256 */ 6257 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6258 { 6259 memset(wr, 0, sizeof(*wr)); 6260 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6261 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6262 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6263 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6264 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6265 if (qid >= 0) 6266 wr->rx_chan_rx_rpl_iq = 6267 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6268 } 6269 6270 #define INIT_CMD(var, cmd, rd_wr) do { \ 6271 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6272 FW_CMD_REQUEST_F | \ 6273 FW_CMD_##rd_wr##_F); \ 6274 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6275 } while (0) 6276 6277 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6278 u32 addr, u32 val) 6279 { 6280 u32 ldst_addrspace; 6281 struct fw_ldst_cmd c; 6282 6283 memset(&c, 0, sizeof(c)); 6284 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6285 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6286 FW_CMD_REQUEST_F | 6287 FW_CMD_WRITE_F | 6288 ldst_addrspace); 6289 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6290 c.u.addrval.addr = cpu_to_be32(addr); 6291 c.u.addrval.val = cpu_to_be32(val); 6292 6293 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6294 } 6295 6296 /** 6297 * t4_mdio_rd - read a PHY register through MDIO 6298 * @adap: the adapter 6299 * @mbox: mailbox to use for the FW command 6300 * @phy_addr: the PHY address 6301 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6302 * @reg: the register to read 6303 * @valp: where to store the value 6304 * 6305 * Issues a FW command through the given mailbox to read a PHY register. 6306 */ 6307 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6308 unsigned int mmd, unsigned int reg, u16 *valp) 6309 { 6310 int ret; 6311 u32 ldst_addrspace; 6312 struct fw_ldst_cmd c; 6313 6314 memset(&c, 0, sizeof(c)); 6315 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6316 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6317 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6318 ldst_addrspace); 6319 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6320 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6321 FW_LDST_CMD_MMD_V(mmd)); 6322 c.u.mdio.raddr = cpu_to_be16(reg); 6323 6324 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6325 if (ret == 0) 6326 *valp = be16_to_cpu(c.u.mdio.rval); 6327 return ret; 6328 } 6329 6330 /** 6331 * t4_mdio_wr - write a PHY register through MDIO 6332 * @adap: the adapter 6333 * @mbox: mailbox to use for the FW command 6334 * @phy_addr: the PHY address 6335 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6336 * @reg: the register to write 6337 * @valp: value to write 6338 * 6339 * Issues a FW command through the given mailbox to write a PHY register. 6340 */ 6341 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6342 unsigned int mmd, unsigned int reg, u16 val) 6343 { 6344 u32 ldst_addrspace; 6345 struct fw_ldst_cmd c; 6346 6347 memset(&c, 0, sizeof(c)); 6348 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6349 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6350 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6351 ldst_addrspace); 6352 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6353 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6354 FW_LDST_CMD_MMD_V(mmd)); 6355 c.u.mdio.raddr = cpu_to_be16(reg); 6356 c.u.mdio.rval = cpu_to_be16(val); 6357 6358 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6359 } 6360 6361 /** 6362 * t4_sge_decode_idma_state - decode the idma state 6363 * @adap: the adapter 6364 * @state: the state idma is stuck in 6365 */ 6366 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6367 { 6368 static const char * const t4_decode[] = { 6369 "IDMA_IDLE", 6370 "IDMA_PUSH_MORE_CPL_FIFO", 6371 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6372 "Not used", 6373 "IDMA_PHYSADDR_SEND_PCIEHDR", 6374 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6375 "IDMA_PHYSADDR_SEND_PAYLOAD", 6376 "IDMA_SEND_FIFO_TO_IMSG", 6377 "IDMA_FL_REQ_DATA_FL_PREP", 6378 "IDMA_FL_REQ_DATA_FL", 6379 "IDMA_FL_DROP", 6380 "IDMA_FL_H_REQ_HEADER_FL", 6381 "IDMA_FL_H_SEND_PCIEHDR", 6382 "IDMA_FL_H_PUSH_CPL_FIFO", 6383 "IDMA_FL_H_SEND_CPL", 6384 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6385 "IDMA_FL_H_SEND_IP_HDR", 6386 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6387 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6388 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6389 "IDMA_FL_D_SEND_PCIEHDR", 6390 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6391 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6392 "IDMA_FL_SEND_PCIEHDR", 6393 "IDMA_FL_PUSH_CPL_FIFO", 6394 "IDMA_FL_SEND_CPL", 6395 "IDMA_FL_SEND_PAYLOAD_FIRST", 6396 "IDMA_FL_SEND_PAYLOAD", 6397 "IDMA_FL_REQ_NEXT_DATA_FL", 6398 "IDMA_FL_SEND_NEXT_PCIEHDR", 6399 "IDMA_FL_SEND_PADDING", 6400 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6401 "IDMA_FL_SEND_FIFO_TO_IMSG", 6402 "IDMA_FL_REQ_DATAFL_DONE", 6403 "IDMA_FL_REQ_HEADERFL_DONE", 6404 }; 6405 static const char * const t5_decode[] = { 6406 "IDMA_IDLE", 6407 "IDMA_ALMOST_IDLE", 6408 "IDMA_PUSH_MORE_CPL_FIFO", 6409 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6410 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6411 "IDMA_PHYSADDR_SEND_PCIEHDR", 6412 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6413 "IDMA_PHYSADDR_SEND_PAYLOAD", 6414 "IDMA_SEND_FIFO_TO_IMSG", 6415 "IDMA_FL_REQ_DATA_FL", 6416 "IDMA_FL_DROP", 6417 "IDMA_FL_DROP_SEND_INC", 6418 "IDMA_FL_H_REQ_HEADER_FL", 6419 "IDMA_FL_H_SEND_PCIEHDR", 6420 "IDMA_FL_H_PUSH_CPL_FIFO", 6421 "IDMA_FL_H_SEND_CPL", 6422 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6423 "IDMA_FL_H_SEND_IP_HDR", 6424 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6425 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6426 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6427 "IDMA_FL_D_SEND_PCIEHDR", 6428 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6429 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6430 "IDMA_FL_SEND_PCIEHDR", 6431 "IDMA_FL_PUSH_CPL_FIFO", 6432 "IDMA_FL_SEND_CPL", 6433 "IDMA_FL_SEND_PAYLOAD_FIRST", 6434 "IDMA_FL_SEND_PAYLOAD", 6435 "IDMA_FL_REQ_NEXT_DATA_FL", 6436 "IDMA_FL_SEND_NEXT_PCIEHDR", 6437 "IDMA_FL_SEND_PADDING", 6438 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6439 }; 6440 static const char * const t6_decode[] = { 6441 "IDMA_IDLE", 6442 "IDMA_PUSH_MORE_CPL_FIFO", 6443 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6444 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6445 "IDMA_PHYSADDR_SEND_PCIEHDR", 6446 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6447 "IDMA_PHYSADDR_SEND_PAYLOAD", 6448 "IDMA_FL_REQ_DATA_FL", 6449 "IDMA_FL_DROP", 6450 "IDMA_FL_DROP_SEND_INC", 6451 "IDMA_FL_H_REQ_HEADER_FL", 6452 "IDMA_FL_H_SEND_PCIEHDR", 6453 "IDMA_FL_H_PUSH_CPL_FIFO", 6454 "IDMA_FL_H_SEND_CPL", 6455 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6456 "IDMA_FL_H_SEND_IP_HDR", 6457 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6458 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6459 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6460 "IDMA_FL_D_SEND_PCIEHDR", 6461 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6462 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6463 "IDMA_FL_SEND_PCIEHDR", 6464 "IDMA_FL_PUSH_CPL_FIFO", 6465 "IDMA_FL_SEND_CPL", 6466 "IDMA_FL_SEND_PAYLOAD_FIRST", 6467 "IDMA_FL_SEND_PAYLOAD", 6468 "IDMA_FL_REQ_NEXT_DATA_FL", 6469 "IDMA_FL_SEND_NEXT_PCIEHDR", 6470 "IDMA_FL_SEND_PADDING", 6471 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6472 }; 6473 static const u32 sge_regs[] = { 6474 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6475 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6476 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6477 }; 6478 const char **sge_idma_decode; 6479 int sge_idma_decode_nstates; 6480 int i; 6481 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6482 6483 /* Select the right set of decode strings to dump depending on the 6484 * adapter chip type. 6485 */ 6486 switch (chip_version) { 6487 case CHELSIO_T4: 6488 sge_idma_decode = (const char **)t4_decode; 6489 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6490 break; 6491 6492 case CHELSIO_T5: 6493 sge_idma_decode = (const char **)t5_decode; 6494 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6495 break; 6496 6497 case CHELSIO_T6: 6498 sge_idma_decode = (const char **)t6_decode; 6499 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6500 break; 6501 6502 default: 6503 dev_err(adapter->pdev_dev, 6504 "Unsupported chip version %d\n", chip_version); 6505 return; 6506 } 6507 6508 if (is_t4(adapter->params.chip)) { 6509 sge_idma_decode = (const char **)t4_decode; 6510 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6511 } else { 6512 sge_idma_decode = (const char **)t5_decode; 6513 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6514 } 6515 6516 if (state < sge_idma_decode_nstates) 6517 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6518 else 6519 CH_WARN(adapter, "idma state %d unknown\n", state); 6520 6521 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6522 CH_WARN(adapter, "SGE register %#x value %#x\n", 6523 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6524 } 6525 6526 /** 6527 * t4_sge_ctxt_flush - flush the SGE context cache 6528 * @adap: the adapter 6529 * @mbox: mailbox to use for the FW command 6530 * 6531 * Issues a FW command through the given mailbox to flush the 6532 * SGE context cache. 6533 */ 6534 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox) 6535 { 6536 int ret; 6537 u32 ldst_addrspace; 6538 struct fw_ldst_cmd c; 6539 6540 memset(&c, 0, sizeof(c)); 6541 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC); 6542 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6543 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6544 ldst_addrspace); 6545 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6546 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6547 6548 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6549 return ret; 6550 } 6551 6552 /** 6553 * t4_fw_hello - establish communication with FW 6554 * @adap: the adapter 6555 * @mbox: mailbox to use for the FW command 6556 * @evt_mbox: mailbox to receive async FW events 6557 * @master: specifies the caller's willingness to be the device master 6558 * @state: returns the current device state (if non-NULL) 6559 * 6560 * Issues a command to establish communication with FW. Returns either 6561 * an error (negative integer) or the mailbox of the Master PF. 6562 */ 6563 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6564 enum dev_master master, enum dev_state *state) 6565 { 6566 int ret; 6567 struct fw_hello_cmd c; 6568 u32 v; 6569 unsigned int master_mbox; 6570 int retries = FW_CMD_HELLO_RETRIES; 6571 6572 retry: 6573 memset(&c, 0, sizeof(c)); 6574 INIT_CMD(c, HELLO, WRITE); 6575 c.err_to_clearinit = cpu_to_be32( 6576 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6577 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6578 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6579 mbox : FW_HELLO_CMD_MBMASTER_M) | 6580 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6581 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6582 FW_HELLO_CMD_CLEARINIT_F); 6583 6584 /* 6585 * Issue the HELLO command to the firmware. If it's not successful 6586 * but indicates that we got a "busy" or "timeout" condition, retry 6587 * the HELLO until we exhaust our retry limit. If we do exceed our 6588 * retry limit, check to see if the firmware left us any error 6589 * information and report that if so. 6590 */ 6591 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6592 if (ret < 0) { 6593 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6594 goto retry; 6595 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6596 t4_report_fw_error(adap); 6597 return ret; 6598 } 6599 6600 v = be32_to_cpu(c.err_to_clearinit); 6601 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6602 if (state) { 6603 if (v & FW_HELLO_CMD_ERR_F) 6604 *state = DEV_STATE_ERR; 6605 else if (v & FW_HELLO_CMD_INIT_F) 6606 *state = DEV_STATE_INIT; 6607 else 6608 *state = DEV_STATE_UNINIT; 6609 } 6610 6611 /* 6612 * If we're not the Master PF then we need to wait around for the 6613 * Master PF Driver to finish setting up the adapter. 6614 * 6615 * Note that we also do this wait if we're a non-Master-capable PF and 6616 * there is no current Master PF; a Master PF may show up momentarily 6617 * and we wouldn't want to fail pointlessly. (This can happen when an 6618 * OS loads lots of different drivers rapidly at the same time). In 6619 * this case, the Master PF returned by the firmware will be 6620 * PCIE_FW_MASTER_M so the test below will work ... 6621 */ 6622 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6623 master_mbox != mbox) { 6624 int waiting = FW_CMD_HELLO_TIMEOUT; 6625 6626 /* 6627 * Wait for the firmware to either indicate an error or 6628 * initialized state. If we see either of these we bail out 6629 * and report the issue to the caller. If we exhaust the 6630 * "hello timeout" and we haven't exhausted our retries, try 6631 * again. Otherwise bail with a timeout error. 6632 */ 6633 for (;;) { 6634 u32 pcie_fw; 6635 6636 msleep(50); 6637 waiting -= 50; 6638 6639 /* 6640 * If neither Error nor Initialialized are indicated 6641 * by the firmware keep waiting till we exaust our 6642 * timeout ... and then retry if we haven't exhausted 6643 * our retries ... 6644 */ 6645 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6646 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6647 if (waiting <= 0) { 6648 if (retries-- > 0) 6649 goto retry; 6650 6651 return -ETIMEDOUT; 6652 } 6653 continue; 6654 } 6655 6656 /* 6657 * We either have an Error or Initialized condition 6658 * report errors preferentially. 6659 */ 6660 if (state) { 6661 if (pcie_fw & PCIE_FW_ERR_F) 6662 *state = DEV_STATE_ERR; 6663 else if (pcie_fw & PCIE_FW_INIT_F) 6664 *state = DEV_STATE_INIT; 6665 } 6666 6667 /* 6668 * If we arrived before a Master PF was selected and 6669 * there's not a valid Master PF, grab its identity 6670 * for our caller. 6671 */ 6672 if (master_mbox == PCIE_FW_MASTER_M && 6673 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6674 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6675 break; 6676 } 6677 } 6678 6679 return master_mbox; 6680 } 6681 6682 /** 6683 * t4_fw_bye - end communication with FW 6684 * @adap: the adapter 6685 * @mbox: mailbox to use for the FW command 6686 * 6687 * Issues a command to terminate communication with FW. 6688 */ 6689 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6690 { 6691 struct fw_bye_cmd c; 6692 6693 memset(&c, 0, sizeof(c)); 6694 INIT_CMD(c, BYE, WRITE); 6695 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6696 } 6697 6698 /** 6699 * t4_init_cmd - ask FW to initialize the device 6700 * @adap: the adapter 6701 * @mbox: mailbox to use for the FW command 6702 * 6703 * Issues a command to FW to partially initialize the device. This 6704 * performs initialization that generally doesn't depend on user input. 6705 */ 6706 int t4_early_init(struct adapter *adap, unsigned int mbox) 6707 { 6708 struct fw_initialize_cmd c; 6709 6710 memset(&c, 0, sizeof(c)); 6711 INIT_CMD(c, INITIALIZE, WRITE); 6712 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6713 } 6714 6715 /** 6716 * t4_fw_reset - issue a reset to FW 6717 * @adap: the adapter 6718 * @mbox: mailbox to use for the FW command 6719 * @reset: specifies the type of reset to perform 6720 * 6721 * Issues a reset command of the specified type to FW. 6722 */ 6723 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 6724 { 6725 struct fw_reset_cmd c; 6726 6727 memset(&c, 0, sizeof(c)); 6728 INIT_CMD(c, RESET, WRITE); 6729 c.val = cpu_to_be32(reset); 6730 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6731 } 6732 6733 /** 6734 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 6735 * @adap: the adapter 6736 * @mbox: mailbox to use for the FW RESET command (if desired) 6737 * @force: force uP into RESET even if FW RESET command fails 6738 * 6739 * Issues a RESET command to firmware (if desired) with a HALT indication 6740 * and then puts the microprocessor into RESET state. The RESET command 6741 * will only be issued if a legitimate mailbox is provided (mbox <= 6742 * PCIE_FW_MASTER_M). 6743 * 6744 * This is generally used in order for the host to safely manipulate the 6745 * adapter without fear of conflicting with whatever the firmware might 6746 * be doing. The only way out of this state is to RESTART the firmware 6747 * ... 6748 */ 6749 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 6750 { 6751 int ret = 0; 6752 6753 /* 6754 * If a legitimate mailbox is provided, issue a RESET command 6755 * with a HALT indication. 6756 */ 6757 if (mbox <= PCIE_FW_MASTER_M) { 6758 struct fw_reset_cmd c; 6759 6760 memset(&c, 0, sizeof(c)); 6761 INIT_CMD(c, RESET, WRITE); 6762 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 6763 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 6764 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6765 } 6766 6767 /* 6768 * Normally we won't complete the operation if the firmware RESET 6769 * command fails but if our caller insists we'll go ahead and put the 6770 * uP into RESET. This can be useful if the firmware is hung or even 6771 * missing ... We'll have to take the risk of putting the uP into 6772 * RESET without the cooperation of firmware in that case. 6773 * 6774 * We also force the firmware's HALT flag to be on in case we bypassed 6775 * the firmware RESET command above or we're dealing with old firmware 6776 * which doesn't have the HALT capability. This will serve as a flag 6777 * for the incoming firmware to know that it's coming out of a HALT 6778 * rather than a RESET ... if it's new enough to understand that ... 6779 */ 6780 if (ret == 0 || force) { 6781 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 6782 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 6783 PCIE_FW_HALT_F); 6784 } 6785 6786 /* 6787 * And we always return the result of the firmware RESET command 6788 * even when we force the uP into RESET ... 6789 */ 6790 return ret; 6791 } 6792 6793 /** 6794 * t4_fw_restart - restart the firmware by taking the uP out of RESET 6795 * @adap: the adapter 6796 * @reset: if we want to do a RESET to restart things 6797 * 6798 * Restart firmware previously halted by t4_fw_halt(). On successful 6799 * return the previous PF Master remains as the new PF Master and there 6800 * is no need to issue a new HELLO command, etc. 6801 * 6802 * We do this in two ways: 6803 * 6804 * 1. If we're dealing with newer firmware we'll simply want to take 6805 * the chip's microprocessor out of RESET. This will cause the 6806 * firmware to start up from its start vector. And then we'll loop 6807 * until the firmware indicates it's started again (PCIE_FW.HALT 6808 * reset to 0) or we timeout. 6809 * 6810 * 2. If we're dealing with older firmware then we'll need to RESET 6811 * the chip since older firmware won't recognize the PCIE_FW.HALT 6812 * flag and automatically RESET itself on startup. 6813 */ 6814 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 6815 { 6816 if (reset) { 6817 /* 6818 * Since we're directing the RESET instead of the firmware 6819 * doing it automatically, we need to clear the PCIE_FW.HALT 6820 * bit. 6821 */ 6822 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 6823 6824 /* 6825 * If we've been given a valid mailbox, first try to get the 6826 * firmware to do the RESET. If that works, great and we can 6827 * return success. Otherwise, if we haven't been given a 6828 * valid mailbox or the RESET command failed, fall back to 6829 * hitting the chip with a hammer. 6830 */ 6831 if (mbox <= PCIE_FW_MASTER_M) { 6832 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6833 msleep(100); 6834 if (t4_fw_reset(adap, mbox, 6835 PIORST_F | PIORSTMODE_F) == 0) 6836 return 0; 6837 } 6838 6839 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 6840 msleep(2000); 6841 } else { 6842 int ms; 6843 6844 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6845 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 6846 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 6847 return 0; 6848 msleep(100); 6849 ms += 100; 6850 } 6851 return -ETIMEDOUT; 6852 } 6853 return 0; 6854 } 6855 6856 /** 6857 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 6858 * @adap: the adapter 6859 * @mbox: mailbox to use for the FW RESET command (if desired) 6860 * @fw_data: the firmware image to write 6861 * @size: image size 6862 * @force: force upgrade even if firmware doesn't cooperate 6863 * 6864 * Perform all of the steps necessary for upgrading an adapter's 6865 * firmware image. Normally this requires the cooperation of the 6866 * existing firmware in order to halt all existing activities 6867 * but if an invalid mailbox token is passed in we skip that step 6868 * (though we'll still put the adapter microprocessor into RESET in 6869 * that case). 6870 * 6871 * On successful return the new firmware will have been loaded and 6872 * the adapter will have been fully RESET losing all previous setup 6873 * state. On unsuccessful return the adapter may be completely hosed ... 6874 * positive errno indicates that the adapter is ~probably~ intact, a 6875 * negative errno indicates that things are looking bad ... 6876 */ 6877 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 6878 const u8 *fw_data, unsigned int size, int force) 6879 { 6880 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 6881 int reset, ret; 6882 6883 if (!t4_fw_matches_chip(adap, fw_hdr)) 6884 return -EINVAL; 6885 6886 /* Disable FW_OK flag so that mbox commands with FW_OK flag set 6887 * wont be sent when we are flashing FW. 6888 */ 6889 adap->flags &= ~FW_OK; 6890 6891 ret = t4_fw_halt(adap, mbox, force); 6892 if (ret < 0 && !force) 6893 goto out; 6894 6895 ret = t4_load_fw(adap, fw_data, size); 6896 if (ret < 0) 6897 goto out; 6898 6899 /* 6900 * If there was a Firmware Configuration File stored in FLASH, 6901 * there's a good chance that it won't be compatible with the new 6902 * Firmware. In order to prevent difficult to diagnose adapter 6903 * initialization issues, we clear out the Firmware Configuration File 6904 * portion of the FLASH . The user will need to re-FLASH a new 6905 * Firmware Configuration File which is compatible with the new 6906 * Firmware if that's desired. 6907 */ 6908 (void)t4_load_cfg(adap, NULL, 0); 6909 6910 /* 6911 * Older versions of the firmware don't understand the new 6912 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 6913 * restart. So for newly loaded older firmware we'll have to do the 6914 * RESET for it so it starts up on a clean slate. We can tell if 6915 * the newly loaded firmware will handle this right by checking 6916 * its header flags to see if it advertises the capability. 6917 */ 6918 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 6919 ret = t4_fw_restart(adap, mbox, reset); 6920 6921 /* Grab potentially new Firmware Device Log parameters so we can see 6922 * how healthy the new Firmware is. It's okay to contact the new 6923 * Firmware for these parameters even though, as far as it's 6924 * concerned, we've never said "HELLO" to it ... 6925 */ 6926 (void)t4_init_devlog_params(adap); 6927 out: 6928 adap->flags |= FW_OK; 6929 return ret; 6930 } 6931 6932 /** 6933 * t4_fl_pkt_align - return the fl packet alignment 6934 * @adap: the adapter 6935 * 6936 * T4 has a single field to specify the packing and padding boundary. 6937 * T5 onwards has separate fields for this and hence the alignment for 6938 * next packet offset is maximum of these two. 6939 * 6940 */ 6941 int t4_fl_pkt_align(struct adapter *adap) 6942 { 6943 u32 sge_control, sge_control2; 6944 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 6945 6946 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 6947 6948 /* T4 uses a single control field to specify both the PCIe Padding and 6949 * Packing Boundary. T5 introduced the ability to specify these 6950 * separately. The actual Ingress Packet Data alignment boundary 6951 * within Packed Buffer Mode is the maximum of these two 6952 * specifications. (Note that it makes no real practical sense to 6953 * have the Pading Boudary be larger than the Packing Boundary but you 6954 * could set the chip up that way and, in fact, legacy T4 code would 6955 * end doing this because it would initialize the Padding Boundary and 6956 * leave the Packing Boundary initialized to 0 (16 bytes).) 6957 * Padding Boundary values in T6 starts from 8B, 6958 * where as it is 32B for T4 and T5. 6959 */ 6960 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 6961 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 6962 else 6963 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 6964 6965 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 6966 6967 fl_align = ingpadboundary; 6968 if (!is_t4(adap->params.chip)) { 6969 /* T5 has a weird interpretation of one of the PCIe Packing 6970 * Boundary values. No idea why ... 6971 */ 6972 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 6973 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 6974 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 6975 ingpackboundary = 16; 6976 else 6977 ingpackboundary = 1 << (ingpackboundary + 6978 INGPACKBOUNDARY_SHIFT_X); 6979 6980 fl_align = max(ingpadboundary, ingpackboundary); 6981 } 6982 return fl_align; 6983 } 6984 6985 /** 6986 * t4_fixup_host_params - fix up host-dependent parameters 6987 * @adap: the adapter 6988 * @page_size: the host's Base Page Size 6989 * @cache_line_size: the host's Cache Line Size 6990 * 6991 * Various registers in T4 contain values which are dependent on the 6992 * host's Base Page and Cache Line Sizes. This function will fix all of 6993 * those registers with the appropriate values as passed in ... 6994 */ 6995 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 6996 unsigned int cache_line_size) 6997 { 6998 unsigned int page_shift = fls(page_size) - 1; 6999 unsigned int sge_hps = page_shift - 10; 7000 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7001 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7002 unsigned int fl_align_log = fls(fl_align) - 1; 7003 7004 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 7005 HOSTPAGESIZEPF0_V(sge_hps) | 7006 HOSTPAGESIZEPF1_V(sge_hps) | 7007 HOSTPAGESIZEPF2_V(sge_hps) | 7008 HOSTPAGESIZEPF3_V(sge_hps) | 7009 HOSTPAGESIZEPF4_V(sge_hps) | 7010 HOSTPAGESIZEPF5_V(sge_hps) | 7011 HOSTPAGESIZEPF6_V(sge_hps) | 7012 HOSTPAGESIZEPF7_V(sge_hps)); 7013 7014 if (is_t4(adap->params.chip)) { 7015 t4_set_reg_field(adap, SGE_CONTROL_A, 7016 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7017 EGRSTATUSPAGESIZE_F, 7018 INGPADBOUNDARY_V(fl_align_log - 7019 INGPADBOUNDARY_SHIFT_X) | 7020 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7021 } else { 7022 unsigned int pack_align; 7023 unsigned int ingpad, ingpack; 7024 unsigned int pcie_cap; 7025 7026 /* T5 introduced the separation of the Free List Padding and 7027 * Packing Boundaries. Thus, we can select a smaller Padding 7028 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7029 * Bandwidth, and use a Packing Boundary which is large enough 7030 * to avoid false sharing between CPUs, etc. 7031 * 7032 * For the PCI Link, the smaller the Padding Boundary the 7033 * better. For the Memory Controller, a smaller Padding 7034 * Boundary is better until we cross under the Memory Line 7035 * Size (the minimum unit of transfer to/from Memory). If we 7036 * have a Padding Boundary which is smaller than the Memory 7037 * Line Size, that'll involve a Read-Modify-Write cycle on the 7038 * Memory Controller which is never good. 7039 */ 7040 7041 /* We want the Packing Boundary to be based on the Cache Line 7042 * Size in order to help avoid False Sharing performance 7043 * issues between CPUs, etc. We also want the Packing 7044 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7045 * get best performance when the Packing Boundary is a 7046 * multiple of the Maximum Payload Size. 7047 */ 7048 pack_align = fl_align; 7049 pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP); 7050 if (pcie_cap) { 7051 unsigned int mps, mps_log; 7052 u16 devctl; 7053 7054 /* The PCIe Device Control Maximum Payload Size field 7055 * [bits 7:5] encodes sizes as powers of 2 starting at 7056 * 128 bytes. 7057 */ 7058 pci_read_config_word(adap->pdev, 7059 pcie_cap + PCI_EXP_DEVCTL, 7060 &devctl); 7061 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7062 mps = 1 << mps_log; 7063 if (mps > pack_align) 7064 pack_align = mps; 7065 } 7066 7067 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7068 * value for the Packing Boundary. This corresponds to 16 7069 * bytes instead of the expected 32 bytes. So if we want 32 7070 * bytes, the best we can really do is 64 bytes ... 7071 */ 7072 if (pack_align <= 16) { 7073 ingpack = INGPACKBOUNDARY_16B_X; 7074 fl_align = 16; 7075 } else if (pack_align == 32) { 7076 ingpack = INGPACKBOUNDARY_64B_X; 7077 fl_align = 64; 7078 } else { 7079 unsigned int pack_align_log = fls(pack_align) - 1; 7080 7081 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7082 fl_align = pack_align; 7083 } 7084 7085 /* Use the smallest Ingress Padding which isn't smaller than 7086 * the Memory Controller Read/Write Size. We'll take that as 7087 * being 8 bytes since we don't know of any system with a 7088 * wider Memory Controller Bus Width. 7089 */ 7090 if (is_t5(adap->params.chip)) 7091 ingpad = INGPADBOUNDARY_32B_X; 7092 else 7093 ingpad = T6_INGPADBOUNDARY_8B_X; 7094 7095 t4_set_reg_field(adap, SGE_CONTROL_A, 7096 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7097 EGRSTATUSPAGESIZE_F, 7098 INGPADBOUNDARY_V(ingpad) | 7099 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7100 t4_set_reg_field(adap, SGE_CONTROL2_A, 7101 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7102 INGPACKBOUNDARY_V(ingpack)); 7103 } 7104 /* 7105 * Adjust various SGE Free List Host Buffer Sizes. 7106 * 7107 * This is something of a crock since we're using fixed indices into 7108 * the array which are also known by the sge.c code and the T4 7109 * Firmware Configuration File. We need to come up with a much better 7110 * approach to managing this array. For now, the first four entries 7111 * are: 7112 * 7113 * 0: Host Page Size 7114 * 1: 64KB 7115 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7116 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7117 * 7118 * For the single-MTU buffers in unpacked mode we need to include 7119 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7120 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7121 * Padding boundary. All of these are accommodated in the Factory 7122 * Default Firmware Configuration File but we need to adjust it for 7123 * this host's cache line size. 7124 */ 7125 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7126 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7127 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7128 & ~(fl_align-1)); 7129 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7130 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7131 & ~(fl_align-1)); 7132 7133 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7134 7135 return 0; 7136 } 7137 7138 /** 7139 * t4_fw_initialize - ask FW to initialize the device 7140 * @adap: the adapter 7141 * @mbox: mailbox to use for the FW command 7142 * 7143 * Issues a command to FW to partially initialize the device. This 7144 * performs initialization that generally doesn't depend on user input. 7145 */ 7146 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7147 { 7148 struct fw_initialize_cmd c; 7149 7150 memset(&c, 0, sizeof(c)); 7151 INIT_CMD(c, INITIALIZE, WRITE); 7152 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7153 } 7154 7155 /** 7156 * t4_query_params_rw - query FW or device parameters 7157 * @adap: the adapter 7158 * @mbox: mailbox to use for the FW command 7159 * @pf: the PF 7160 * @vf: the VF 7161 * @nparams: the number of parameters 7162 * @params: the parameter names 7163 * @val: the parameter values 7164 * @rw: Write and read flag 7165 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7166 * 7167 * Reads the value of FW or device parameters. Up to 7 parameters can be 7168 * queried at once. 7169 */ 7170 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7171 unsigned int vf, unsigned int nparams, const u32 *params, 7172 u32 *val, int rw, bool sleep_ok) 7173 { 7174 int i, ret; 7175 struct fw_params_cmd c; 7176 __be32 *p = &c.param[0].mnem; 7177 7178 if (nparams > 7) 7179 return -EINVAL; 7180 7181 memset(&c, 0, sizeof(c)); 7182 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7183 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7184 FW_PARAMS_CMD_PFN_V(pf) | 7185 FW_PARAMS_CMD_VFN_V(vf)); 7186 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7187 7188 for (i = 0; i < nparams; i++) { 7189 *p++ = cpu_to_be32(*params++); 7190 if (rw) 7191 *p = cpu_to_be32(*(val + i)); 7192 p++; 7193 } 7194 7195 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7196 if (ret == 0) 7197 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7198 *val++ = be32_to_cpu(*p); 7199 return ret; 7200 } 7201 7202 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7203 unsigned int vf, unsigned int nparams, const u32 *params, 7204 u32 *val) 7205 { 7206 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7207 true); 7208 } 7209 7210 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7211 unsigned int vf, unsigned int nparams, const u32 *params, 7212 u32 *val) 7213 { 7214 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7215 false); 7216 } 7217 7218 /** 7219 * t4_set_params_timeout - sets FW or device parameters 7220 * @adap: the adapter 7221 * @mbox: mailbox to use for the FW command 7222 * @pf: the PF 7223 * @vf: the VF 7224 * @nparams: the number of parameters 7225 * @params: the parameter names 7226 * @val: the parameter values 7227 * @timeout: the timeout time 7228 * 7229 * Sets the value of FW or device parameters. Up to 7 parameters can be 7230 * specified at once. 7231 */ 7232 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7233 unsigned int pf, unsigned int vf, 7234 unsigned int nparams, const u32 *params, 7235 const u32 *val, int timeout) 7236 { 7237 struct fw_params_cmd c; 7238 __be32 *p = &c.param[0].mnem; 7239 7240 if (nparams > 7) 7241 return -EINVAL; 7242 7243 memset(&c, 0, sizeof(c)); 7244 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7245 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7246 FW_PARAMS_CMD_PFN_V(pf) | 7247 FW_PARAMS_CMD_VFN_V(vf)); 7248 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7249 7250 while (nparams--) { 7251 *p++ = cpu_to_be32(*params++); 7252 *p++ = cpu_to_be32(*val++); 7253 } 7254 7255 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7256 } 7257 7258 /** 7259 * t4_set_params - sets FW or device parameters 7260 * @adap: the adapter 7261 * @mbox: mailbox to use for the FW command 7262 * @pf: the PF 7263 * @vf: the VF 7264 * @nparams: the number of parameters 7265 * @params: the parameter names 7266 * @val: the parameter values 7267 * 7268 * Sets the value of FW or device parameters. Up to 7 parameters can be 7269 * specified at once. 7270 */ 7271 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7272 unsigned int vf, unsigned int nparams, const u32 *params, 7273 const u32 *val) 7274 { 7275 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7276 FW_CMD_MAX_TIMEOUT); 7277 } 7278 7279 /** 7280 * t4_cfg_pfvf - configure PF/VF resource limits 7281 * @adap: the adapter 7282 * @mbox: mailbox to use for the FW command 7283 * @pf: the PF being configured 7284 * @vf: the VF being configured 7285 * @txq: the max number of egress queues 7286 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7287 * @rxqi: the max number of interrupt-capable ingress queues 7288 * @rxq: the max number of interruptless ingress queues 7289 * @tc: the PCI traffic class 7290 * @vi: the max number of virtual interfaces 7291 * @cmask: the channel access rights mask for the PF/VF 7292 * @pmask: the port access rights mask for the PF/VF 7293 * @nexact: the maximum number of exact MPS filters 7294 * @rcaps: read capabilities 7295 * @wxcaps: write/execute capabilities 7296 * 7297 * Configures resource limits and capabilities for a physical or virtual 7298 * function. 7299 */ 7300 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7301 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7302 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7303 unsigned int vi, unsigned int cmask, unsigned int pmask, 7304 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7305 { 7306 struct fw_pfvf_cmd c; 7307 7308 memset(&c, 0, sizeof(c)); 7309 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7310 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7311 FW_PFVF_CMD_VFN_V(vf)); 7312 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7313 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7314 FW_PFVF_CMD_NIQ_V(rxq)); 7315 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7316 FW_PFVF_CMD_PMASK_V(pmask) | 7317 FW_PFVF_CMD_NEQ_V(txq)); 7318 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7319 FW_PFVF_CMD_NVI_V(vi) | 7320 FW_PFVF_CMD_NEXACTF_V(nexact)); 7321 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7322 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7323 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7324 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7325 } 7326 7327 /** 7328 * t4_alloc_vi - allocate a virtual interface 7329 * @adap: the adapter 7330 * @mbox: mailbox to use for the FW command 7331 * @port: physical port associated with the VI 7332 * @pf: the PF owning the VI 7333 * @vf: the VF owning the VI 7334 * @nmac: number of MAC addresses needed (1 to 5) 7335 * @mac: the MAC addresses of the VI 7336 * @rss_size: size of RSS table slice associated with this VI 7337 * 7338 * Allocates a virtual interface for the given physical port. If @mac is 7339 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7340 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7341 * stored consecutively so the space needed is @nmac * 6 bytes. 7342 * Returns a negative error number or the non-negative VI id. 7343 */ 7344 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7345 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7346 unsigned int *rss_size) 7347 { 7348 int ret; 7349 struct fw_vi_cmd c; 7350 7351 memset(&c, 0, sizeof(c)); 7352 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7353 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7354 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7355 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7356 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7357 c.nmac = nmac - 1; 7358 7359 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7360 if (ret) 7361 return ret; 7362 7363 if (mac) { 7364 memcpy(mac, c.mac, sizeof(c.mac)); 7365 switch (nmac) { 7366 case 5: 7367 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7368 case 4: 7369 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7370 case 3: 7371 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7372 case 2: 7373 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7374 } 7375 } 7376 if (rss_size) 7377 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7378 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7379 } 7380 7381 /** 7382 * t4_free_vi - free a virtual interface 7383 * @adap: the adapter 7384 * @mbox: mailbox to use for the FW command 7385 * @pf: the PF owning the VI 7386 * @vf: the VF owning the VI 7387 * @viid: virtual interface identifiler 7388 * 7389 * Free a previously allocated virtual interface. 7390 */ 7391 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7392 unsigned int vf, unsigned int viid) 7393 { 7394 struct fw_vi_cmd c; 7395 7396 memset(&c, 0, sizeof(c)); 7397 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7398 FW_CMD_REQUEST_F | 7399 FW_CMD_EXEC_F | 7400 FW_VI_CMD_PFN_V(pf) | 7401 FW_VI_CMD_VFN_V(vf)); 7402 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7403 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7404 7405 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7406 } 7407 7408 /** 7409 * t4_set_rxmode - set Rx properties of a virtual interface 7410 * @adap: the adapter 7411 * @mbox: mailbox to use for the FW command 7412 * @viid: the VI id 7413 * @mtu: the new MTU or -1 7414 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7415 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7416 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7417 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7418 * @sleep_ok: if true we may sleep while awaiting command completion 7419 * 7420 * Sets Rx properties of a virtual interface. 7421 */ 7422 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7423 int mtu, int promisc, int all_multi, int bcast, int vlanex, 7424 bool sleep_ok) 7425 { 7426 struct fw_vi_rxmode_cmd c; 7427 7428 /* convert to FW values */ 7429 if (mtu < 0) 7430 mtu = FW_RXMODE_MTU_NO_CHG; 7431 if (promisc < 0) 7432 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7433 if (all_multi < 0) 7434 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7435 if (bcast < 0) 7436 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7437 if (vlanex < 0) 7438 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7439 7440 memset(&c, 0, sizeof(c)); 7441 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7442 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7443 FW_VI_RXMODE_CMD_VIID_V(viid)); 7444 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7445 c.mtu_to_vlanexen = 7446 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7447 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7448 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7449 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7450 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7451 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7452 } 7453 7454 /** 7455 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7456 * @adap: the adapter 7457 * @mbox: mailbox to use for the FW command 7458 * @viid: the VI id 7459 * @free: if true any existing filters for this VI id are first removed 7460 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7461 * @addr: the MAC address(es) 7462 * @idx: where to store the index of each allocated filter 7463 * @hash: pointer to hash address filter bitmap 7464 * @sleep_ok: call is allowed to sleep 7465 * 7466 * Allocates an exact-match filter for each of the supplied addresses and 7467 * sets it to the corresponding address. If @idx is not %NULL it should 7468 * have at least @naddr entries, each of which will be set to the index of 7469 * the filter allocated for the corresponding MAC address. If a filter 7470 * could not be allocated for an address its index is set to 0xffff. 7471 * If @hash is not %NULL addresses that fail to allocate an exact filter 7472 * are hashed and update the hash filter bitmap pointed at by @hash. 7473 * 7474 * Returns a negative error number or the number of filters allocated. 7475 */ 7476 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7477 unsigned int viid, bool free, unsigned int naddr, 7478 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7479 { 7480 int offset, ret = 0; 7481 struct fw_vi_mac_cmd c; 7482 unsigned int nfilters = 0; 7483 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 7484 unsigned int rem = naddr; 7485 7486 if (naddr > max_naddr) 7487 return -EINVAL; 7488 7489 for (offset = 0; offset < naddr ; /**/) { 7490 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 7491 rem : ARRAY_SIZE(c.u.exact)); 7492 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7493 u.exact[fw_naddr]), 16); 7494 struct fw_vi_mac_exact *p; 7495 int i; 7496 7497 memset(&c, 0, sizeof(c)); 7498 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7499 FW_CMD_REQUEST_F | 7500 FW_CMD_WRITE_F | 7501 FW_CMD_EXEC_V(free) | 7502 FW_VI_MAC_CMD_VIID_V(viid)); 7503 c.freemacs_to_len16 = 7504 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 7505 FW_CMD_LEN16_V(len16)); 7506 7507 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7508 p->valid_to_idx = 7509 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7510 FW_VI_MAC_CMD_IDX_V( 7511 FW_VI_MAC_ADD_MAC)); 7512 memcpy(p->macaddr, addr[offset + i], 7513 sizeof(p->macaddr)); 7514 } 7515 7516 /* It's okay if we run out of space in our MAC address arena. 7517 * Some of the addresses we submit may get stored so we need 7518 * to run through the reply to see what the results were ... 7519 */ 7520 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7521 if (ret && ret != -FW_ENOMEM) 7522 break; 7523 7524 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7525 u16 index = FW_VI_MAC_CMD_IDX_G( 7526 be16_to_cpu(p->valid_to_idx)); 7527 7528 if (idx) 7529 idx[offset + i] = (index >= max_naddr ? 7530 0xffff : index); 7531 if (index < max_naddr) 7532 nfilters++; 7533 else if (hash) 7534 *hash |= (1ULL << 7535 hash_mac_addr(addr[offset + i])); 7536 } 7537 7538 free = false; 7539 offset += fw_naddr; 7540 rem -= fw_naddr; 7541 } 7542 7543 if (ret == 0 || ret == -FW_ENOMEM) 7544 ret = nfilters; 7545 return ret; 7546 } 7547 7548 /** 7549 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 7550 * @adap: the adapter 7551 * @mbox: mailbox to use for the FW command 7552 * @viid: the VI id 7553 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7554 * @addr: the MAC address(es) 7555 * @sleep_ok: call is allowed to sleep 7556 * 7557 * Frees the exact-match filter for each of the supplied addresses 7558 * 7559 * Returns a negative error number or the number of filters freed. 7560 */ 7561 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 7562 unsigned int viid, unsigned int naddr, 7563 const u8 **addr, bool sleep_ok) 7564 { 7565 int offset, ret = 0; 7566 struct fw_vi_mac_cmd c; 7567 unsigned int nfilters = 0; 7568 unsigned int max_naddr = is_t4(adap->params.chip) ? 7569 NUM_MPS_CLS_SRAM_L_INSTANCES : 7570 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7571 unsigned int rem = naddr; 7572 7573 if (naddr > max_naddr) 7574 return -EINVAL; 7575 7576 for (offset = 0; offset < (int)naddr ; /**/) { 7577 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 7578 ? rem 7579 : ARRAY_SIZE(c.u.exact)); 7580 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7581 u.exact[fw_naddr]), 16); 7582 struct fw_vi_mac_exact *p; 7583 int i; 7584 7585 memset(&c, 0, sizeof(c)); 7586 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7587 FW_CMD_REQUEST_F | 7588 FW_CMD_WRITE_F | 7589 FW_CMD_EXEC_V(0) | 7590 FW_VI_MAC_CMD_VIID_V(viid)); 7591 c.freemacs_to_len16 = 7592 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7593 FW_CMD_LEN16_V(len16)); 7594 7595 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 7596 p->valid_to_idx = cpu_to_be16( 7597 FW_VI_MAC_CMD_VALID_F | 7598 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 7599 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 7600 } 7601 7602 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7603 if (ret) 7604 break; 7605 7606 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7607 u16 index = FW_VI_MAC_CMD_IDX_G( 7608 be16_to_cpu(p->valid_to_idx)); 7609 7610 if (index < max_naddr) 7611 nfilters++; 7612 } 7613 7614 offset += fw_naddr; 7615 rem -= fw_naddr; 7616 } 7617 7618 if (ret == 0) 7619 ret = nfilters; 7620 return ret; 7621 } 7622 7623 /** 7624 * t4_change_mac - modifies the exact-match filter for a MAC address 7625 * @adap: the adapter 7626 * @mbox: mailbox to use for the FW command 7627 * @viid: the VI id 7628 * @idx: index of existing filter for old value of MAC address, or -1 7629 * @addr: the new MAC address value 7630 * @persist: whether a new MAC allocation should be persistent 7631 * @add_smt: if true also add the address to the HW SMT 7632 * 7633 * Modifies an exact-match filter and sets it to the new MAC address. 7634 * Note that in general it is not possible to modify the value of a given 7635 * filter so the generic way to modify an address filter is to free the one 7636 * being used by the old address value and allocate a new filter for the 7637 * new address value. @idx can be -1 if the address is a new addition. 7638 * 7639 * Returns a negative error number or the index of the filter with the new 7640 * MAC value. 7641 */ 7642 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 7643 int idx, const u8 *addr, bool persist, bool add_smt) 7644 { 7645 int ret, mode; 7646 struct fw_vi_mac_cmd c; 7647 struct fw_vi_mac_exact *p = c.u.exact; 7648 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 7649 7650 if (idx < 0) /* new allocation */ 7651 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 7652 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 7653 7654 memset(&c, 0, sizeof(c)); 7655 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7656 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7657 FW_VI_MAC_CMD_VIID_V(viid)); 7658 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 7659 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7660 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 7661 FW_VI_MAC_CMD_IDX_V(idx)); 7662 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7663 7664 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7665 if (ret == 0) { 7666 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7667 if (ret >= max_mac_addr) 7668 ret = -ENOMEM; 7669 } 7670 return ret; 7671 } 7672 7673 /** 7674 * t4_set_addr_hash - program the MAC inexact-match hash filter 7675 * @adap: the adapter 7676 * @mbox: mailbox to use for the FW command 7677 * @viid: the VI id 7678 * @ucast: whether the hash filter should also match unicast addresses 7679 * @vec: the value to be written to the hash filter 7680 * @sleep_ok: call is allowed to sleep 7681 * 7682 * Sets the 64-bit inexact-match hash filter for a virtual interface. 7683 */ 7684 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 7685 bool ucast, u64 vec, bool sleep_ok) 7686 { 7687 struct fw_vi_mac_cmd c; 7688 7689 memset(&c, 0, sizeof(c)); 7690 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7691 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7692 FW_VI_ENABLE_CMD_VIID_V(viid)); 7693 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 7694 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 7695 FW_CMD_LEN16_V(1)); 7696 c.u.hash.hashvec = cpu_to_be64(vec); 7697 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7698 } 7699 7700 /** 7701 * t4_enable_vi_params - enable/disable a virtual interface 7702 * @adap: the adapter 7703 * @mbox: mailbox to use for the FW command 7704 * @viid: the VI id 7705 * @rx_en: 1=enable Rx, 0=disable Rx 7706 * @tx_en: 1=enable Tx, 0=disable Tx 7707 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 7708 * 7709 * Enables/disables a virtual interface. Note that setting DCB Enable 7710 * only makes sense when enabling a Virtual Interface ... 7711 */ 7712 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 7713 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 7714 { 7715 struct fw_vi_enable_cmd c; 7716 7717 memset(&c, 0, sizeof(c)); 7718 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 7719 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7720 FW_VI_ENABLE_CMD_VIID_V(viid)); 7721 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 7722 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 7723 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 7724 FW_LEN16(c)); 7725 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 7726 } 7727 7728 /** 7729 * t4_enable_vi - enable/disable a virtual interface 7730 * @adap: the adapter 7731 * @mbox: mailbox to use for the FW command 7732 * @viid: the VI id 7733 * @rx_en: 1=enable Rx, 0=disable Rx 7734 * @tx_en: 1=enable Tx, 0=disable Tx 7735 * 7736 * Enables/disables a virtual interface. 7737 */ 7738 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 7739 bool rx_en, bool tx_en) 7740 { 7741 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 7742 } 7743 7744 /** 7745 * t4_identify_port - identify a VI's port by blinking its LED 7746 * @adap: the adapter 7747 * @mbox: mailbox to use for the FW command 7748 * @viid: the VI id 7749 * @nblinks: how many times to blink LED at 2.5 Hz 7750 * 7751 * Identifies a VI's port by blinking its LED. 7752 */ 7753 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 7754 unsigned int nblinks) 7755 { 7756 struct fw_vi_enable_cmd c; 7757 7758 memset(&c, 0, sizeof(c)); 7759 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 7760 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7761 FW_VI_ENABLE_CMD_VIID_V(viid)); 7762 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 7763 c.blinkdur = cpu_to_be16(nblinks); 7764 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7765 } 7766 7767 /** 7768 * t4_iq_stop - stop an ingress queue and its FLs 7769 * @adap: the adapter 7770 * @mbox: mailbox to use for the FW command 7771 * @pf: the PF owning the queues 7772 * @vf: the VF owning the queues 7773 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 7774 * @iqid: ingress queue id 7775 * @fl0id: FL0 queue id or 0xffff if no attached FL0 7776 * @fl1id: FL1 queue id or 0xffff if no attached FL1 7777 * 7778 * Stops an ingress queue and its associated FLs, if any. This causes 7779 * any current or future data/messages destined for these queues to be 7780 * tossed. 7781 */ 7782 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 7783 unsigned int vf, unsigned int iqtype, unsigned int iqid, 7784 unsigned int fl0id, unsigned int fl1id) 7785 { 7786 struct fw_iq_cmd c; 7787 7788 memset(&c, 0, sizeof(c)); 7789 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 7790 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 7791 FW_IQ_CMD_VFN_V(vf)); 7792 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 7793 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 7794 c.iqid = cpu_to_be16(iqid); 7795 c.fl0id = cpu_to_be16(fl0id); 7796 c.fl1id = cpu_to_be16(fl1id); 7797 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7798 } 7799 7800 /** 7801 * t4_iq_free - free an ingress queue and its FLs 7802 * @adap: the adapter 7803 * @mbox: mailbox to use for the FW command 7804 * @pf: the PF owning the queues 7805 * @vf: the VF owning the queues 7806 * @iqtype: the ingress queue type 7807 * @iqid: ingress queue id 7808 * @fl0id: FL0 queue id or 0xffff if no attached FL0 7809 * @fl1id: FL1 queue id or 0xffff if no attached FL1 7810 * 7811 * Frees an ingress queue and its associated FLs, if any. 7812 */ 7813 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7814 unsigned int vf, unsigned int iqtype, unsigned int iqid, 7815 unsigned int fl0id, unsigned int fl1id) 7816 { 7817 struct fw_iq_cmd c; 7818 7819 memset(&c, 0, sizeof(c)); 7820 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 7821 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 7822 FW_IQ_CMD_VFN_V(vf)); 7823 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 7824 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 7825 c.iqid = cpu_to_be16(iqid); 7826 c.fl0id = cpu_to_be16(fl0id); 7827 c.fl1id = cpu_to_be16(fl1id); 7828 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7829 } 7830 7831 /** 7832 * t4_eth_eq_free - free an Ethernet egress queue 7833 * @adap: the adapter 7834 * @mbox: mailbox to use for the FW command 7835 * @pf: the PF owning the queue 7836 * @vf: the VF owning the queue 7837 * @eqid: egress queue id 7838 * 7839 * Frees an Ethernet egress queue. 7840 */ 7841 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7842 unsigned int vf, unsigned int eqid) 7843 { 7844 struct fw_eq_eth_cmd c; 7845 7846 memset(&c, 0, sizeof(c)); 7847 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 7848 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7849 FW_EQ_ETH_CMD_PFN_V(pf) | 7850 FW_EQ_ETH_CMD_VFN_V(vf)); 7851 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 7852 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 7853 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7854 } 7855 7856 /** 7857 * t4_ctrl_eq_free - free a control egress queue 7858 * @adap: the adapter 7859 * @mbox: mailbox to use for the FW command 7860 * @pf: the PF owning the queue 7861 * @vf: the VF owning the queue 7862 * @eqid: egress queue id 7863 * 7864 * Frees a control egress queue. 7865 */ 7866 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7867 unsigned int vf, unsigned int eqid) 7868 { 7869 struct fw_eq_ctrl_cmd c; 7870 7871 memset(&c, 0, sizeof(c)); 7872 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 7873 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7874 FW_EQ_CTRL_CMD_PFN_V(pf) | 7875 FW_EQ_CTRL_CMD_VFN_V(vf)); 7876 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 7877 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 7878 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7879 } 7880 7881 /** 7882 * t4_ofld_eq_free - free an offload egress queue 7883 * @adap: the adapter 7884 * @mbox: mailbox to use for the FW command 7885 * @pf: the PF owning the queue 7886 * @vf: the VF owning the queue 7887 * @eqid: egress queue id 7888 * 7889 * Frees a control egress queue. 7890 */ 7891 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7892 unsigned int vf, unsigned int eqid) 7893 { 7894 struct fw_eq_ofld_cmd c; 7895 7896 memset(&c, 0, sizeof(c)); 7897 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 7898 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7899 FW_EQ_OFLD_CMD_PFN_V(pf) | 7900 FW_EQ_OFLD_CMD_VFN_V(vf)); 7901 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 7902 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 7903 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7904 } 7905 7906 /** 7907 * t4_link_down_rc_str - return a string for a Link Down Reason Code 7908 * @adap: the adapter 7909 * @link_down_rc: Link Down Reason Code 7910 * 7911 * Returns a string representation of the Link Down Reason Code. 7912 */ 7913 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 7914 { 7915 static const char * const reason[] = { 7916 "Link Down", 7917 "Remote Fault", 7918 "Auto-negotiation Failure", 7919 "Reserved", 7920 "Insufficient Airflow", 7921 "Unable To Determine Reason", 7922 "No RX Signal Detected", 7923 "Reserved", 7924 }; 7925 7926 if (link_down_rc >= ARRAY_SIZE(reason)) 7927 return "Bad Reason Code"; 7928 7929 return reason[link_down_rc]; 7930 } 7931 7932 /** 7933 * Return the highest speed set in the port capabilities, in Mb/s. 7934 */ 7935 static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 7936 { 7937 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 7938 do { \ 7939 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 7940 return __speed; \ 7941 } while (0) 7942 7943 TEST_SPEED_RETURN(400G, 400000); 7944 TEST_SPEED_RETURN(200G, 200000); 7945 TEST_SPEED_RETURN(100G, 100000); 7946 TEST_SPEED_RETURN(50G, 50000); 7947 TEST_SPEED_RETURN(40G, 40000); 7948 TEST_SPEED_RETURN(25G, 25000); 7949 TEST_SPEED_RETURN(10G, 10000); 7950 TEST_SPEED_RETURN(1G, 1000); 7951 TEST_SPEED_RETURN(100M, 100); 7952 7953 #undef TEST_SPEED_RETURN 7954 7955 return 0; 7956 } 7957 7958 /** 7959 * fwcap_to_fwspeed - return highest speed in Port Capabilities 7960 * @acaps: advertised Port Capabilities 7961 * 7962 * Get the highest speed for the port from the advertised Port 7963 * Capabilities. It will be either the highest speed from the list of 7964 * speeds or whatever user has set using ethtool. 7965 */ 7966 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 7967 { 7968 #define TEST_SPEED_RETURN(__caps_speed) \ 7969 do { \ 7970 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 7971 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 7972 } while (0) 7973 7974 TEST_SPEED_RETURN(400G); 7975 TEST_SPEED_RETURN(200G); 7976 TEST_SPEED_RETURN(100G); 7977 TEST_SPEED_RETURN(50G); 7978 TEST_SPEED_RETURN(40G); 7979 TEST_SPEED_RETURN(25G); 7980 TEST_SPEED_RETURN(10G); 7981 TEST_SPEED_RETURN(1G); 7982 TEST_SPEED_RETURN(100M); 7983 7984 #undef TEST_SPEED_RETURN 7985 7986 return 0; 7987 } 7988 7989 /** 7990 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 7991 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 7992 * 7993 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 7994 * 32-bit Port Capabilities value. 7995 */ 7996 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 7997 { 7998 fw_port_cap32_t linkattr = 0; 7999 8000 /* Unfortunately the format of the Link Status in the old 8001 * 16-bit Port Information message isn't the same as the 8002 * 16-bit Port Capabilities bitfield used everywhere else ... 8003 */ 8004 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8005 linkattr |= FW_PORT_CAP32_FC_RX; 8006 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8007 linkattr |= FW_PORT_CAP32_FC_TX; 8008 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8009 linkattr |= FW_PORT_CAP32_SPEED_100M; 8010 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8011 linkattr |= FW_PORT_CAP32_SPEED_1G; 8012 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8013 linkattr |= FW_PORT_CAP32_SPEED_10G; 8014 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8015 linkattr |= FW_PORT_CAP32_SPEED_25G; 8016 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8017 linkattr |= FW_PORT_CAP32_SPEED_40G; 8018 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8019 linkattr |= FW_PORT_CAP32_SPEED_100G; 8020 8021 return linkattr; 8022 } 8023 8024 /** 8025 * t4_handle_get_port_info - process a FW reply message 8026 * @pi: the port info 8027 * @rpl: start of the FW message 8028 * 8029 * Processes a GET_PORT_INFO FW reply message. 8030 */ 8031 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8032 { 8033 const struct fw_port_cmd *cmd = (const void *)rpl; 8034 int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8035 struct adapter *adapter = pi->adapter; 8036 struct link_config *lc = &pi->link_cfg; 8037 int link_ok, linkdnrc; 8038 enum fw_port_type port_type; 8039 enum fw_port_module_type mod_type; 8040 unsigned int speed, fc, fec; 8041 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8042 8043 /* Extract the various fields from the Port Information message. 8044 */ 8045 switch (action) { 8046 case FW_PORT_ACTION_GET_PORT_INFO: { 8047 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8048 8049 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8050 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8051 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8052 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8053 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8054 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8055 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8056 linkattr = lstatus_to_fwcap(lstatus); 8057 break; 8058 } 8059 8060 case FW_PORT_ACTION_GET_PORT_INFO32: { 8061 u32 lstatus32; 8062 8063 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8064 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8065 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8066 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8067 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8068 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8069 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8070 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8071 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8072 break; 8073 } 8074 8075 default: 8076 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8077 be32_to_cpu(cmd->action_to_len16)); 8078 return; 8079 } 8080 8081 fec = fwcap_to_cc_fec(acaps); 8082 fc = fwcap_to_cc_pause(linkattr); 8083 speed = fwcap_to_speed(linkattr); 8084 8085 if (mod_type != pi->mod_type) { 8086 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8087 * various fundamental Port Capabilities which used to be 8088 * immutable can now change radically. We can now have 8089 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8090 * all change based on what Transceiver Module is inserted. 8091 * So we need to record the Physical "Port" Capabilities on 8092 * every Transceiver Module change. 8093 */ 8094 lc->pcaps = pcaps; 8095 8096 /* When a new Transceiver Module is inserted, the Firmware 8097 * will examine its i2c EPROM to determine its type and 8098 * general operating parameters including things like Forward 8099 * Error Control, etc. Various IEEE 802.3 standards dictate 8100 * how to interpret these i2c values to determine default 8101 * "sutomatic" settings. We record these for future use when 8102 * the user explicitly requests these standards-based values. 8103 */ 8104 lc->def_acaps = acaps; 8105 8106 /* Some versions of the early T6 Firmware "cheated" when 8107 * handling different Transceiver Modules by changing the 8108 * underlaying Port Type reported to the Host Drivers. As 8109 * such we need to capture whatever Port Type the Firmware 8110 * sends us and record it in case it's different from what we 8111 * were told earlier. Unfortunately, since Firmware is 8112 * forever, we'll need to keep this code here forever, but in 8113 * later T6 Firmware it should just be an assignment of the 8114 * same value already recorded. 8115 */ 8116 pi->port_type = port_type; 8117 8118 pi->mod_type = mod_type; 8119 t4_os_portmod_changed(adapter, pi->port_id); 8120 } 8121 8122 if (link_ok != lc->link_ok || speed != lc->speed || 8123 fc != lc->fc || fec != lc->fec) { /* something changed */ 8124 if (!link_ok && lc->link_ok) { 8125 lc->link_down_rc = linkdnrc; 8126 dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n", 8127 pi->tx_chan, t4_link_down_rc_str(linkdnrc)); 8128 } 8129 lc->link_ok = link_ok; 8130 lc->speed = speed; 8131 lc->fc = fc; 8132 lc->fec = fec; 8133 8134 lc->lpacaps = lpacaps; 8135 lc->acaps = acaps & ADVERT_MASK; 8136 8137 if (lc->acaps & FW_PORT_CAP32_ANEG) { 8138 lc->autoneg = AUTONEG_ENABLE; 8139 } else { 8140 /* When Autoneg is disabled, user needs to set 8141 * single speed. 8142 * Similar to cxgb4_ethtool.c: set_link_ksettings 8143 */ 8144 lc->acaps = 0; 8145 lc->speed_caps = fwcap_to_fwspeed(acaps); 8146 lc->autoneg = AUTONEG_DISABLE; 8147 } 8148 8149 t4_os_link_changed(adapter, pi->port_id, link_ok); 8150 } 8151 } 8152 8153 /** 8154 * t4_update_port_info - retrieve and update port information if changed 8155 * @pi: the port_info 8156 * 8157 * We issue a Get Port Information Command to the Firmware and, if 8158 * successful, we check to see if anything is different from what we 8159 * last recorded and update things accordingly. 8160 */ 8161 int t4_update_port_info(struct port_info *pi) 8162 { 8163 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8164 struct fw_port_cmd port_cmd; 8165 int ret; 8166 8167 memset(&port_cmd, 0, sizeof(port_cmd)); 8168 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8169 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8170 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8171 port_cmd.action_to_len16 = cpu_to_be32( 8172 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8173 ? FW_PORT_ACTION_GET_PORT_INFO 8174 : FW_PORT_ACTION_GET_PORT_INFO32) | 8175 FW_LEN16(port_cmd)); 8176 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8177 &port_cmd, sizeof(port_cmd), &port_cmd); 8178 if (ret) 8179 return ret; 8180 8181 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8182 return 0; 8183 } 8184 8185 /** 8186 * t4_get_link_params - retrieve basic link parameters for given port 8187 * @pi: the port 8188 * @link_okp: value return pointer for link up/down 8189 * @speedp: value return pointer for speed (Mb/s) 8190 * @mtup: value return pointer for mtu 8191 * 8192 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8193 * and MTU for a specified port. A negative error is returned on 8194 * failure; 0 on success. 8195 */ 8196 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8197 unsigned int *speedp, unsigned int *mtup) 8198 { 8199 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8200 struct fw_port_cmd port_cmd; 8201 unsigned int action, link_ok, speed, mtu; 8202 fw_port_cap32_t linkattr; 8203 int ret; 8204 8205 memset(&port_cmd, 0, sizeof(port_cmd)); 8206 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8207 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8208 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8209 action = (fw_caps == FW_CAPS16 8210 ? FW_PORT_ACTION_GET_PORT_INFO 8211 : FW_PORT_ACTION_GET_PORT_INFO32); 8212 port_cmd.action_to_len16 = cpu_to_be32( 8213 FW_PORT_CMD_ACTION_V(action) | 8214 FW_LEN16(port_cmd)); 8215 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8216 &port_cmd, sizeof(port_cmd), &port_cmd); 8217 if (ret) 8218 return ret; 8219 8220 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8221 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8222 8223 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8224 linkattr = lstatus_to_fwcap(lstatus); 8225 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8226 } else { 8227 u32 lstatus32 = 8228 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8229 8230 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8231 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8232 mtu = FW_PORT_CMD_MTU32_G( 8233 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8234 } 8235 speed = fwcap_to_speed(linkattr); 8236 8237 *link_okp = link_ok; 8238 *speedp = fwcap_to_speed(linkattr); 8239 *mtup = mtu; 8240 8241 return 0; 8242 } 8243 8244 /** 8245 * t4_handle_fw_rpl - process a FW reply message 8246 * @adap: the adapter 8247 * @rpl: start of the FW message 8248 * 8249 * Processes a FW message, such as link state change messages. 8250 */ 8251 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8252 { 8253 u8 opcode = *(const u8 *)rpl; 8254 8255 /* This might be a port command ... this simplifies the following 8256 * conditionals ... We can get away with pre-dereferencing 8257 * action_to_len16 because it's in the first 16 bytes and all messages 8258 * will be at least that long. 8259 */ 8260 const struct fw_port_cmd *p = (const void *)rpl; 8261 unsigned int action = 8262 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8263 8264 if (opcode == FW_PORT_CMD && 8265 (action == FW_PORT_ACTION_GET_PORT_INFO || 8266 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8267 int i; 8268 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8269 struct port_info *pi = NULL; 8270 8271 for_each_port(adap, i) { 8272 pi = adap2pinfo(adap, i); 8273 if (pi->tx_chan == chan) 8274 break; 8275 } 8276 8277 t4_handle_get_port_info(pi, rpl); 8278 } else { 8279 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8280 opcode); 8281 return -EINVAL; 8282 } 8283 return 0; 8284 } 8285 8286 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8287 { 8288 u16 val; 8289 8290 if (pci_is_pcie(adapter->pdev)) { 8291 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8292 p->speed = val & PCI_EXP_LNKSTA_CLS; 8293 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8294 } 8295 } 8296 8297 /** 8298 * init_link_config - initialize a link's SW state 8299 * @lc: pointer to structure holding the link state 8300 * @pcaps: link Port Capabilities 8301 * @acaps: link current Advertised Port Capabilities 8302 * 8303 * Initializes the SW state maintained for each link, including the link's 8304 * capabilities and default speed/flow-control/autonegotiation settings. 8305 */ 8306 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8307 fw_port_cap32_t acaps) 8308 { 8309 lc->pcaps = pcaps; 8310 lc->def_acaps = acaps; 8311 lc->lpacaps = 0; 8312 lc->speed_caps = 0; 8313 lc->speed = 0; 8314 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8315 8316 /* For Forward Error Control, we default to whatever the Firmware 8317 * tells us the Link is currently advertising. 8318 */ 8319 lc->requested_fec = FEC_AUTO; 8320 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8321 8322 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8323 lc->acaps = lc->pcaps & ADVERT_MASK; 8324 lc->autoneg = AUTONEG_ENABLE; 8325 lc->requested_fc |= PAUSE_AUTONEG; 8326 } else { 8327 lc->acaps = 0; 8328 lc->autoneg = AUTONEG_DISABLE; 8329 } 8330 } 8331 8332 #define CIM_PF_NOACCESS 0xeeeeeeee 8333 8334 int t4_wait_dev_ready(void __iomem *regs) 8335 { 8336 u32 whoami; 8337 8338 whoami = readl(regs + PL_WHOAMI_A); 8339 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8340 return 0; 8341 8342 msleep(500); 8343 whoami = readl(regs + PL_WHOAMI_A); 8344 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8345 } 8346 8347 struct flash_desc { 8348 u32 vendor_and_model_id; 8349 u32 size_mb; 8350 }; 8351 8352 static int t4_get_flash_params(struct adapter *adap) 8353 { 8354 /* Table for non-Numonix supported flash parts. Numonix parts are left 8355 * to the preexisting code. All flash parts have 64KB sectors. 8356 */ 8357 static struct flash_desc supported_flash[] = { 8358 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8359 }; 8360 8361 unsigned int part, manufacturer; 8362 unsigned int density, size; 8363 u32 flashid = 0; 8364 int ret; 8365 8366 /* Issue a Read ID Command to the Flash part. We decode supported 8367 * Flash parts and their sizes from this. There's a newer Query 8368 * Command which can retrieve detailed geometry information but many 8369 * Flash parts don't support it. 8370 */ 8371 8372 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8373 if (!ret) 8374 ret = sf1_read(adap, 3, 0, 1, &flashid); 8375 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8376 if (ret) 8377 return ret; 8378 8379 /* Check to see if it's one of our non-standard supported Flash parts. 8380 */ 8381 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8382 if (supported_flash[part].vendor_and_model_id == flashid) { 8383 adap->params.sf_size = supported_flash[part].size_mb; 8384 adap->params.sf_nsec = 8385 adap->params.sf_size / SF_SEC_SIZE; 8386 goto found; 8387 } 8388 8389 /* Decode Flash part size. The code below looks repetative with 8390 * common encodings, but that's not guaranteed in the JEDEC 8391 * specification for the Read JADEC ID command. The only thing that 8392 * we're guaranteed by the JADEC specification is where the 8393 * Manufacturer ID is in the returned result. After that each 8394 * Manufacturer ~could~ encode things completely differently. 8395 * Note, all Flash parts must have 64KB sectors. 8396 */ 8397 manufacturer = flashid & 0xff; 8398 switch (manufacturer) { 8399 case 0x20: { /* Micron/Numonix */ 8400 /* This Density -> Size decoding table is taken from Micron 8401 * Data Sheets. 8402 */ 8403 density = (flashid >> 16) & 0xff; 8404 switch (density) { 8405 case 0x14: /* 1MB */ 8406 size = 1 << 20; 8407 break; 8408 case 0x15: /* 2MB */ 8409 size = 1 << 21; 8410 break; 8411 case 0x16: /* 4MB */ 8412 size = 1 << 22; 8413 break; 8414 case 0x17: /* 8MB */ 8415 size = 1 << 23; 8416 break; 8417 case 0x18: /* 16MB */ 8418 size = 1 << 24; 8419 break; 8420 case 0x19: /* 32MB */ 8421 size = 1 << 25; 8422 break; 8423 case 0x20: /* 64MB */ 8424 size = 1 << 26; 8425 break; 8426 case 0x21: /* 128MB */ 8427 size = 1 << 27; 8428 break; 8429 case 0x22: /* 256MB */ 8430 size = 1 << 28; 8431 break; 8432 8433 default: 8434 dev_err(adap->pdev_dev, "Micron Flash Part has bad size, ID = %#x, Density code = %#x\n", 8435 flashid, density); 8436 return -EINVAL; 8437 } 8438 break; 8439 } 8440 case 0xc2: { /* Macronix */ 8441 /* This Density -> Size decoding table is taken from Macronix 8442 * Data Sheets. 8443 */ 8444 density = (flashid >> 16) & 0xff; 8445 switch (density) { 8446 case 0x17: /* 8MB */ 8447 size = 1 << 23; 8448 break; 8449 case 0x18: /* 16MB */ 8450 size = 1 << 24; 8451 break; 8452 default: 8453 dev_err(adap->pdev_dev, "Macronix Flash Part has bad size, ID = %#x, Density code = %#x\n", 8454 flashid, density); 8455 return -EINVAL; 8456 } 8457 break; 8458 } 8459 case 0xef: { /* Winbond */ 8460 /* This Density -> Size decoding table is taken from Winbond 8461 * Data Sheets. 8462 */ 8463 density = (flashid >> 16) & 0xff; 8464 switch (density) { 8465 case 0x17: /* 8MB */ 8466 size = 1 << 23; 8467 break; 8468 case 0x18: /* 16MB */ 8469 size = 1 << 24; 8470 break; 8471 default: 8472 dev_err(adap->pdev_dev, "Winbond Flash Part has bad size, ID = %#x, Density code = %#x\n", 8473 flashid, density); 8474 return -EINVAL; 8475 } 8476 break; 8477 } 8478 default: 8479 dev_err(adap->pdev_dev, "Unsupported Flash Part, ID = %#x\n", 8480 flashid); 8481 return -EINVAL; 8482 } 8483 8484 /* Store decoded Flash size and fall through into vetting code. */ 8485 adap->params.sf_size = size; 8486 adap->params.sf_nsec = size / SF_SEC_SIZE; 8487 8488 found: 8489 if (adap->params.sf_size < FLASH_MIN_SIZE) 8490 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 8491 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 8492 return 0; 8493 } 8494 8495 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range) 8496 { 8497 u16 val; 8498 u32 pcie_cap; 8499 8500 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); 8501 if (pcie_cap) { 8502 pci_read_config_word(adapter->pdev, 8503 pcie_cap + PCI_EXP_DEVCTL2, &val); 8504 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT; 8505 val |= range; 8506 pci_write_config_word(adapter->pdev, 8507 pcie_cap + PCI_EXP_DEVCTL2, val); 8508 } 8509 } 8510 8511 /** 8512 * t4_prep_adapter - prepare SW and HW for operation 8513 * @adapter: the adapter 8514 * @reset: if true perform a HW reset 8515 * 8516 * Initialize adapter SW state for the various HW modules, set initial 8517 * values for some adapter tunables, take PHYs out of reset, and 8518 * initialize the MDIO interface. 8519 */ 8520 int t4_prep_adapter(struct adapter *adapter) 8521 { 8522 int ret, ver; 8523 uint16_t device_id; 8524 u32 pl_rev; 8525 8526 get_pci_mode(adapter, &adapter->params.pci); 8527 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 8528 8529 ret = t4_get_flash_params(adapter); 8530 if (ret < 0) { 8531 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 8532 return ret; 8533 } 8534 8535 /* Retrieve adapter's device ID 8536 */ 8537 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 8538 ver = device_id >> 12; 8539 adapter->params.chip = 0; 8540 switch (ver) { 8541 case CHELSIO_T4: 8542 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 8543 adapter->params.arch.sge_fl_db = DBPRIO_F; 8544 adapter->params.arch.mps_tcam_size = 8545 NUM_MPS_CLS_SRAM_L_INSTANCES; 8546 adapter->params.arch.mps_rplc_size = 128; 8547 adapter->params.arch.nchan = NCHAN; 8548 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 8549 adapter->params.arch.vfcount = 128; 8550 /* Congestion map is for 4 channels so that 8551 * MPS can have 4 priority per port. 8552 */ 8553 adapter->params.arch.cng_ch_bits_log = 2; 8554 break; 8555 case CHELSIO_T5: 8556 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 8557 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 8558 adapter->params.arch.mps_tcam_size = 8559 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8560 adapter->params.arch.mps_rplc_size = 128; 8561 adapter->params.arch.nchan = NCHAN; 8562 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 8563 adapter->params.arch.vfcount = 128; 8564 adapter->params.arch.cng_ch_bits_log = 2; 8565 break; 8566 case CHELSIO_T6: 8567 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 8568 adapter->params.arch.sge_fl_db = 0; 8569 adapter->params.arch.mps_tcam_size = 8570 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8571 adapter->params.arch.mps_rplc_size = 256; 8572 adapter->params.arch.nchan = 2; 8573 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 8574 adapter->params.arch.vfcount = 256; 8575 /* Congestion map will be for 2 channels so that 8576 * MPS can have 8 priority per port. 8577 */ 8578 adapter->params.arch.cng_ch_bits_log = 3; 8579 break; 8580 default: 8581 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 8582 device_id); 8583 return -EINVAL; 8584 } 8585 8586 adapter->params.cim_la_size = CIMLA_SIZE; 8587 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 8588 8589 /* 8590 * Default port for debugging in case we can't reach FW. 8591 */ 8592 adapter->params.nports = 1; 8593 adapter->params.portvec = 1; 8594 adapter->params.vpd.cclk = 50000; 8595 8596 /* Set pci completion timeout value to 4 seconds. */ 8597 set_pcie_completion_timeout(adapter, 0xd); 8598 return 0; 8599 } 8600 8601 /** 8602 * t4_shutdown_adapter - shut down adapter, host & wire 8603 * @adapter: the adapter 8604 * 8605 * Perform an emergency shutdown of the adapter and stop it from 8606 * continuing any further communication on the ports or DMA to the 8607 * host. This is typically used when the adapter and/or firmware 8608 * have crashed and we want to prevent any further accidental 8609 * communication with the rest of the world. This will also force 8610 * the port Link Status to go down -- if register writes work -- 8611 * which should help our peers figure out that we're down. 8612 */ 8613 int t4_shutdown_adapter(struct adapter *adapter) 8614 { 8615 int port; 8616 8617 t4_intr_disable(adapter); 8618 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 8619 for_each_port(adapter, port) { 8620 u32 a_port_cfg = is_t4(adapter->params.chip) ? 8621 PORT_REG(port, XGMAC_PORT_CFG_A) : 8622 T5_PORT_REG(port, MAC_PORT_CFG_A); 8623 8624 t4_write_reg(adapter, a_port_cfg, 8625 t4_read_reg(adapter, a_port_cfg) 8626 & ~SIGNAL_DET_V(1)); 8627 } 8628 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 8629 8630 return 0; 8631 } 8632 8633 /** 8634 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 8635 * @adapter: the adapter 8636 * @qid: the Queue ID 8637 * @qtype: the Ingress or Egress type for @qid 8638 * @user: true if this request is for a user mode queue 8639 * @pbar2_qoffset: BAR2 Queue Offset 8640 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 8641 * 8642 * Returns the BAR2 SGE Queue Registers information associated with the 8643 * indicated Absolute Queue ID. These are passed back in return value 8644 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 8645 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 8646 * 8647 * This may return an error which indicates that BAR2 SGE Queue 8648 * registers aren't available. If an error is not returned, then the 8649 * following values are returned: 8650 * 8651 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 8652 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 8653 * 8654 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 8655 * require the "Inferred Queue ID" ability may be used. E.g. the 8656 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 8657 * then these "Inferred Queue ID" register may not be used. 8658 */ 8659 int t4_bar2_sge_qregs(struct adapter *adapter, 8660 unsigned int qid, 8661 enum t4_bar2_qtype qtype, 8662 int user, 8663 u64 *pbar2_qoffset, 8664 unsigned int *pbar2_qid) 8665 { 8666 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 8667 u64 bar2_page_offset, bar2_qoffset; 8668 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 8669 8670 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 8671 if (!user && is_t4(adapter->params.chip)) 8672 return -EINVAL; 8673 8674 /* Get our SGE Page Size parameters. 8675 */ 8676 page_shift = adapter->params.sge.hps + 10; 8677 page_size = 1 << page_shift; 8678 8679 /* Get the right Queues per Page parameters for our Queue. 8680 */ 8681 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 8682 ? adapter->params.sge.eq_qpp 8683 : adapter->params.sge.iq_qpp); 8684 qpp_mask = (1 << qpp_shift) - 1; 8685 8686 /* Calculate the basics of the BAR2 SGE Queue register area: 8687 * o The BAR2 page the Queue registers will be in. 8688 * o The BAR2 Queue ID. 8689 * o The BAR2 Queue ID Offset into the BAR2 page. 8690 */ 8691 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 8692 bar2_qid = qid & qpp_mask; 8693 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 8694 8695 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 8696 * hardware will infer the Absolute Queue ID simply from the writes to 8697 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 8698 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 8699 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 8700 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 8701 * from the BAR2 Page and BAR2 Queue ID. 8702 * 8703 * One important censequence of this is that some BAR2 SGE registers 8704 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 8705 * there. But other registers synthesize the SGE Queue ID purely 8706 * from the writes to the registers -- the Write Combined Doorbell 8707 * Buffer is a good example. These BAR2 SGE Registers are only 8708 * available for those BAR2 SGE Register areas where the SGE Absolute 8709 * Queue ID can be inferred from simple writes. 8710 */ 8711 bar2_qoffset = bar2_page_offset; 8712 bar2_qinferred = (bar2_qid_offset < page_size); 8713 if (bar2_qinferred) { 8714 bar2_qoffset += bar2_qid_offset; 8715 bar2_qid = 0; 8716 } 8717 8718 *pbar2_qoffset = bar2_qoffset; 8719 *pbar2_qid = bar2_qid; 8720 return 0; 8721 } 8722 8723 /** 8724 * t4_init_devlog_params - initialize adapter->params.devlog 8725 * @adap: the adapter 8726 * 8727 * Initialize various fields of the adapter's Firmware Device Log 8728 * Parameters structure. 8729 */ 8730 int t4_init_devlog_params(struct adapter *adap) 8731 { 8732 struct devlog_params *dparams = &adap->params.devlog; 8733 u32 pf_dparams; 8734 unsigned int devlog_meminfo; 8735 struct fw_devlog_cmd devlog_cmd; 8736 int ret; 8737 8738 /* If we're dealing with newer firmware, the Device Log Paramerters 8739 * are stored in a designated register which allows us to access the 8740 * Device Log even if we can't talk to the firmware. 8741 */ 8742 pf_dparams = 8743 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 8744 if (pf_dparams) { 8745 unsigned int nentries, nentries128; 8746 8747 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 8748 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 8749 8750 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 8751 nentries = (nentries128 + 1) * 128; 8752 dparams->size = nentries * sizeof(struct fw_devlog_e); 8753 8754 return 0; 8755 } 8756 8757 /* Otherwise, ask the firmware for it's Device Log Parameters. 8758 */ 8759 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 8760 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 8761 FW_CMD_REQUEST_F | FW_CMD_READ_F); 8762 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 8763 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 8764 &devlog_cmd); 8765 if (ret) 8766 return ret; 8767 8768 devlog_meminfo = 8769 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 8770 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 8771 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 8772 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 8773 8774 return 0; 8775 } 8776 8777 /** 8778 * t4_init_sge_params - initialize adap->params.sge 8779 * @adapter: the adapter 8780 * 8781 * Initialize various fields of the adapter's SGE Parameters structure. 8782 */ 8783 int t4_init_sge_params(struct adapter *adapter) 8784 { 8785 struct sge_params *sge_params = &adapter->params.sge; 8786 u32 hps, qpp; 8787 unsigned int s_hps, s_qpp; 8788 8789 /* Extract the SGE Page Size for our PF. 8790 */ 8791 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 8792 s_hps = (HOSTPAGESIZEPF0_S + 8793 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 8794 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 8795 8796 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 8797 */ 8798 s_qpp = (QUEUESPERPAGEPF0_S + 8799 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 8800 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 8801 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 8802 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 8803 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 8804 8805 return 0; 8806 } 8807 8808 /** 8809 * t4_init_tp_params - initialize adap->params.tp 8810 * @adap: the adapter 8811 * @sleep_ok: if true we may sleep while awaiting command completion 8812 * 8813 * Initialize various fields of the adapter's TP Parameters structure. 8814 */ 8815 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 8816 { 8817 int chan; 8818 u32 v; 8819 8820 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 8821 adap->params.tp.tre = TIMERRESOLUTION_G(v); 8822 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 8823 8824 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 8825 for (chan = 0; chan < NCHAN; chan++) 8826 adap->params.tp.tx_modq[chan] = chan; 8827 8828 /* Cache the adapter's Compressed Filter Mode and global Incress 8829 * Configuration. 8830 */ 8831 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 8832 TP_VLAN_PRI_MAP_A, sleep_ok); 8833 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 8834 TP_INGRESS_CONFIG_A, sleep_ok); 8835 8836 /* For T6, cache the adapter's compressed error vector 8837 * and passing outer header info for encapsulated packets. 8838 */ 8839 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 8840 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 8841 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 8842 } 8843 8844 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 8845 * shift positions of several elements of the Compressed Filter Tuple 8846 * for this adapter which we need frequently ... 8847 */ 8848 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 8849 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 8850 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 8851 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 8852 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 8853 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 8854 PROTOCOL_F); 8855 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 8856 ETHERTYPE_F); 8857 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 8858 MACMATCH_F); 8859 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 8860 MPSHITTYPE_F); 8861 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 8862 FRAGMENTATION_F); 8863 8864 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 8865 * represents the presence of an Outer VLAN instead of a VNIC ID. 8866 */ 8867 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 8868 adap->params.tp.vnic_shift = -1; 8869 8870 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 8871 adap->params.tp.hash_filter_mask = v; 8872 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 8873 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 8874 return 0; 8875 } 8876 8877 /** 8878 * t4_filter_field_shift - calculate filter field shift 8879 * @adap: the adapter 8880 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 8881 * 8882 * Return the shift position of a filter field within the Compressed 8883 * Filter Tuple. The filter field is specified via its selection bit 8884 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 8885 */ 8886 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 8887 { 8888 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 8889 unsigned int sel; 8890 int field_shift; 8891 8892 if ((filter_mode & filter_sel) == 0) 8893 return -1; 8894 8895 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 8896 switch (filter_mode & sel) { 8897 case FCOE_F: 8898 field_shift += FT_FCOE_W; 8899 break; 8900 case PORT_F: 8901 field_shift += FT_PORT_W; 8902 break; 8903 case VNIC_ID_F: 8904 field_shift += FT_VNIC_ID_W; 8905 break; 8906 case VLAN_F: 8907 field_shift += FT_VLAN_W; 8908 break; 8909 case TOS_F: 8910 field_shift += FT_TOS_W; 8911 break; 8912 case PROTOCOL_F: 8913 field_shift += FT_PROTOCOL_W; 8914 break; 8915 case ETHERTYPE_F: 8916 field_shift += FT_ETHERTYPE_W; 8917 break; 8918 case MACMATCH_F: 8919 field_shift += FT_MACMATCH_W; 8920 break; 8921 case MPSHITTYPE_F: 8922 field_shift += FT_MPSHITTYPE_W; 8923 break; 8924 case FRAGMENTATION_F: 8925 field_shift += FT_FRAGMENTATION_W; 8926 break; 8927 } 8928 } 8929 return field_shift; 8930 } 8931 8932 int t4_init_rss_mode(struct adapter *adap, int mbox) 8933 { 8934 int i, ret; 8935 struct fw_rss_vi_config_cmd rvc; 8936 8937 memset(&rvc, 0, sizeof(rvc)); 8938 8939 for_each_port(adap, i) { 8940 struct port_info *p = adap2pinfo(adap, i); 8941 8942 rvc.op_to_viid = 8943 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 8944 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8945 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 8946 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 8947 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 8948 if (ret) 8949 return ret; 8950 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 8951 } 8952 return 0; 8953 } 8954 8955 /** 8956 * t4_init_portinfo - allocate a virtual interface and initialize port_info 8957 * @pi: the port_info 8958 * @mbox: mailbox to use for the FW command 8959 * @port: physical port associated with the VI 8960 * @pf: the PF owning the VI 8961 * @vf: the VF owning the VI 8962 * @mac: the MAC address of the VI 8963 * 8964 * Allocates a virtual interface for the given physical port. If @mac is 8965 * not %NULL it contains the MAC address of the VI as assigned by FW. 8966 * @mac should be large enough to hold an Ethernet address. 8967 * Returns < 0 on error. 8968 */ 8969 int t4_init_portinfo(struct port_info *pi, int mbox, 8970 int port, int pf, int vf, u8 mac[]) 8971 { 8972 struct adapter *adapter = pi->adapter; 8973 unsigned int fw_caps = adapter->params.fw_caps_support; 8974 struct fw_port_cmd cmd; 8975 unsigned int rss_size; 8976 enum fw_port_type port_type; 8977 int mdio_addr; 8978 fw_port_cap32_t pcaps, acaps; 8979 int ret; 8980 8981 /* If we haven't yet determined whether we're talking to Firmware 8982 * which knows the new 32-bit Port Capabilities, it's time to find 8983 * out now. This will also tell new Firmware to send us Port Status 8984 * Updates using the new 32-bit Port Capabilities version of the 8985 * Port Information message. 8986 */ 8987 if (fw_caps == FW_CAPS_UNKNOWN) { 8988 u32 param, val; 8989 8990 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 8991 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 8992 val = 1; 8993 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 8994 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 8995 adapter->params.fw_caps_support = fw_caps; 8996 } 8997 8998 memset(&cmd, 0, sizeof(cmd)); 8999 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 9000 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9001 FW_PORT_CMD_PORTID_V(port)); 9002 cmd.action_to_len16 = cpu_to_be32( 9003 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9004 ? FW_PORT_ACTION_GET_PORT_INFO 9005 : FW_PORT_ACTION_GET_PORT_INFO32) | 9006 FW_LEN16(cmd)); 9007 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9008 if (ret) 9009 return ret; 9010 9011 /* Extract the various fields from the Port Information message. 9012 */ 9013 if (fw_caps == FW_CAPS16) { 9014 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9015 9016 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9017 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9018 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9019 : -1); 9020 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9021 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9022 } else { 9023 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9024 9025 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9026 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9027 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9028 : -1); 9029 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9030 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9031 } 9032 9033 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size); 9034 if (ret < 0) 9035 return ret; 9036 9037 pi->viid = ret; 9038 pi->tx_chan = port; 9039 pi->lport = port; 9040 pi->rss_size = rss_size; 9041 9042 pi->port_type = port_type; 9043 pi->mdio_addr = mdio_addr; 9044 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9045 9046 init_link_config(&pi->link_cfg, pcaps, acaps); 9047 return 0; 9048 } 9049 9050 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9051 { 9052 u8 addr[6]; 9053 int ret, i, j = 0; 9054 9055 for_each_port(adap, i) { 9056 struct port_info *pi = adap2pinfo(adap, i); 9057 9058 while ((adap->params.portvec & (1 << j)) == 0) 9059 j++; 9060 9061 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9062 if (ret) 9063 return ret; 9064 9065 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 9066 j++; 9067 } 9068 return 0; 9069 } 9070 9071 /** 9072 * t4_read_cimq_cfg - read CIM queue configuration 9073 * @adap: the adapter 9074 * @base: holds the queue base addresses in bytes 9075 * @size: holds the queue sizes in bytes 9076 * @thres: holds the queue full thresholds in bytes 9077 * 9078 * Returns the current configuration of the CIM queues, starting with 9079 * the IBQs, then the OBQs. 9080 */ 9081 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9082 { 9083 unsigned int i, v; 9084 int cim_num_obq = is_t4(adap->params.chip) ? 9085 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9086 9087 for (i = 0; i < CIM_NUM_IBQ; i++) { 9088 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9089 QUENUMSELECT_V(i)); 9090 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9091 /* value is in 256-byte units */ 9092 *base++ = CIMQBASE_G(v) * 256; 9093 *size++ = CIMQSIZE_G(v) * 256; 9094 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9095 } 9096 for (i = 0; i < cim_num_obq; i++) { 9097 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9098 QUENUMSELECT_V(i)); 9099 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9100 /* value is in 256-byte units */ 9101 *base++ = CIMQBASE_G(v) * 256; 9102 *size++ = CIMQSIZE_G(v) * 256; 9103 } 9104 } 9105 9106 /** 9107 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9108 * @adap: the adapter 9109 * @qid: the queue index 9110 * @data: where to store the queue contents 9111 * @n: capacity of @data in 32-bit words 9112 * 9113 * Reads the contents of the selected CIM queue starting at address 0 up 9114 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9115 * error and the number of 32-bit words actually read on success. 9116 */ 9117 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9118 { 9119 int i, err, attempts; 9120 unsigned int addr; 9121 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9122 9123 if (qid > 5 || (n & 3)) 9124 return -EINVAL; 9125 9126 addr = qid * nwords; 9127 if (n > nwords) 9128 n = nwords; 9129 9130 /* It might take 3-10ms before the IBQ debug read access is allowed. 9131 * Wait for 1 Sec with a delay of 1 usec. 9132 */ 9133 attempts = 1000000; 9134 9135 for (i = 0; i < n; i++, addr++) { 9136 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9137 IBQDBGEN_F); 9138 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9139 attempts, 1); 9140 if (err) 9141 return err; 9142 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9143 } 9144 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9145 return i; 9146 } 9147 9148 /** 9149 * t4_read_cim_obq - read the contents of a CIM outbound queue 9150 * @adap: the adapter 9151 * @qid: the queue index 9152 * @data: where to store the queue contents 9153 * @n: capacity of @data in 32-bit words 9154 * 9155 * Reads the contents of the selected CIM queue starting at address 0 up 9156 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9157 * error and the number of 32-bit words actually read on success. 9158 */ 9159 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9160 { 9161 int i, err; 9162 unsigned int addr, v, nwords; 9163 int cim_num_obq = is_t4(adap->params.chip) ? 9164 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9165 9166 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9167 return -EINVAL; 9168 9169 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9170 QUENUMSELECT_V(qid)); 9171 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9172 9173 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9174 nwords = CIMQSIZE_G(v) * 64; /* same */ 9175 if (n > nwords) 9176 n = nwords; 9177 9178 for (i = 0; i < n; i++, addr++) { 9179 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9180 OBQDBGEN_F); 9181 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9182 2, 1); 9183 if (err) 9184 return err; 9185 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9186 } 9187 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9188 return i; 9189 } 9190 9191 /** 9192 * t4_cim_read - read a block from CIM internal address space 9193 * @adap: the adapter 9194 * @addr: the start address within the CIM address space 9195 * @n: number of words to read 9196 * @valp: where to store the result 9197 * 9198 * Reads a block of 4-byte words from the CIM intenal address space. 9199 */ 9200 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9201 unsigned int *valp) 9202 { 9203 int ret = 0; 9204 9205 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9206 return -EBUSY; 9207 9208 for ( ; !ret && n--; addr += 4) { 9209 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9210 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9211 0, 5, 2); 9212 if (!ret) 9213 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9214 } 9215 return ret; 9216 } 9217 9218 /** 9219 * t4_cim_write - write a block into CIM internal address space 9220 * @adap: the adapter 9221 * @addr: the start address within the CIM address space 9222 * @n: number of words to write 9223 * @valp: set of values to write 9224 * 9225 * Writes a block of 4-byte words into the CIM intenal address space. 9226 */ 9227 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9228 const unsigned int *valp) 9229 { 9230 int ret = 0; 9231 9232 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9233 return -EBUSY; 9234 9235 for ( ; !ret && n--; addr += 4) { 9236 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9237 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9238 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9239 0, 5, 2); 9240 } 9241 return ret; 9242 } 9243 9244 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9245 unsigned int val) 9246 { 9247 return t4_cim_write(adap, addr, 1, &val); 9248 } 9249 9250 /** 9251 * t4_cim_read_la - read CIM LA capture buffer 9252 * @adap: the adapter 9253 * @la_buf: where to store the LA data 9254 * @wrptr: the HW write pointer within the capture buffer 9255 * 9256 * Reads the contents of the CIM LA buffer with the most recent entry at 9257 * the end of the returned data and with the entry at @wrptr first. 9258 * We try to leave the LA in the running state we find it in. 9259 */ 9260 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9261 { 9262 int i, ret; 9263 unsigned int cfg, val, idx; 9264 9265 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9266 if (ret) 9267 return ret; 9268 9269 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9270 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9271 if (ret) 9272 return ret; 9273 } 9274 9275 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9276 if (ret) 9277 goto restart; 9278 9279 idx = UPDBGLAWRPTR_G(val); 9280 if (wrptr) 9281 *wrptr = idx; 9282 9283 for (i = 0; i < adap->params.cim_la_size; i++) { 9284 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9285 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9286 if (ret) 9287 break; 9288 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9289 if (ret) 9290 break; 9291 if (val & UPDBGLARDEN_F) { 9292 ret = -ETIMEDOUT; 9293 break; 9294 } 9295 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9296 if (ret) 9297 break; 9298 9299 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9300 * identify the 32-bit portion of the full 312-bit data 9301 */ 9302 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9303 idx = (idx & 0xff0) + 0x10; 9304 else 9305 idx++; 9306 /* address can't exceed 0xfff */ 9307 idx &= UPDBGLARDPTR_M; 9308 } 9309 restart: 9310 if (cfg & UPDBGLAEN_F) { 9311 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9312 cfg & ~UPDBGLARDEN_F); 9313 if (!ret) 9314 ret = r; 9315 } 9316 return ret; 9317 } 9318 9319 /** 9320 * t4_tp_read_la - read TP LA capture buffer 9321 * @adap: the adapter 9322 * @la_buf: where to store the LA data 9323 * @wrptr: the HW write pointer within the capture buffer 9324 * 9325 * Reads the contents of the TP LA buffer with the most recent entry at 9326 * the end of the returned data and with the entry at @wrptr first. 9327 * We leave the LA in the running state we find it in. 9328 */ 9329 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9330 { 9331 bool last_incomplete; 9332 unsigned int i, cfg, val, idx; 9333 9334 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 9335 if (cfg & DBGLAENABLE_F) /* freeze LA */ 9336 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9337 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 9338 9339 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 9340 idx = DBGLAWPTR_G(val); 9341 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 9342 if (last_incomplete) 9343 idx = (idx + 1) & DBGLARPTR_M; 9344 if (wrptr) 9345 *wrptr = idx; 9346 9347 val &= 0xffff; 9348 val &= ~DBGLARPTR_V(DBGLARPTR_M); 9349 val |= adap->params.tp.la_mask; 9350 9351 for (i = 0; i < TPLA_SIZE; i++) { 9352 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 9353 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 9354 idx = (idx + 1) & DBGLARPTR_M; 9355 } 9356 9357 /* Wipe out last entry if it isn't valid */ 9358 if (last_incomplete) 9359 la_buf[TPLA_SIZE - 1] = ~0ULL; 9360 9361 if (cfg & DBGLAENABLE_F) /* restore running state */ 9362 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9363 cfg | adap->params.tp.la_mask); 9364 } 9365 9366 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 9367 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 9368 * state for more than the Warning Threshold then we'll issue a warning about 9369 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 9370 * appears to be hung every Warning Repeat second till the situation clears. 9371 * If the situation clears, we'll note that as well. 9372 */ 9373 #define SGE_IDMA_WARN_THRESH 1 9374 #define SGE_IDMA_WARN_REPEAT 300 9375 9376 /** 9377 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 9378 * @adapter: the adapter 9379 * @idma: the adapter IDMA Monitor state 9380 * 9381 * Initialize the state of an SGE Ingress DMA Monitor. 9382 */ 9383 void t4_idma_monitor_init(struct adapter *adapter, 9384 struct sge_idma_monitor_state *idma) 9385 { 9386 /* Initialize the state variables for detecting an SGE Ingress DMA 9387 * hang. The SGE has internal counters which count up on each clock 9388 * tick whenever the SGE finds its Ingress DMA State Engines in the 9389 * same state they were on the previous clock tick. The clock used is 9390 * the Core Clock so we have a limit on the maximum "time" they can 9391 * record; typically a very small number of seconds. For instance, 9392 * with a 600MHz Core Clock, we can only count up to a bit more than 9393 * 7s. So we'll synthesize a larger counter in order to not run the 9394 * risk of having the "timers" overflow and give us the flexibility to 9395 * maintain a Hung SGE State Machine of our own which operates across 9396 * a longer time frame. 9397 */ 9398 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 9399 idma->idma_stalled[0] = 0; 9400 idma->idma_stalled[1] = 0; 9401 } 9402 9403 /** 9404 * t4_idma_monitor - monitor SGE Ingress DMA state 9405 * @adapter: the adapter 9406 * @idma: the adapter IDMA Monitor state 9407 * @hz: number of ticks/second 9408 * @ticks: number of ticks since the last IDMA Monitor call 9409 */ 9410 void t4_idma_monitor(struct adapter *adapter, 9411 struct sge_idma_monitor_state *idma, 9412 int hz, int ticks) 9413 { 9414 int i, idma_same_state_cnt[2]; 9415 9416 /* Read the SGE Debug Ingress DMA Same State Count registers. These 9417 * are counters inside the SGE which count up on each clock when the 9418 * SGE finds its Ingress DMA State Engines in the same states they 9419 * were in the previous clock. The counters will peg out at 9420 * 0xffffffff without wrapping around so once they pass the 1s 9421 * threshold they'll stay above that till the IDMA state changes. 9422 */ 9423 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 9424 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 9425 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9426 9427 for (i = 0; i < 2; i++) { 9428 u32 debug0, debug11; 9429 9430 /* If the Ingress DMA Same State Counter ("timer") is less 9431 * than 1s, then we can reset our synthesized Stall Timer and 9432 * continue. If we have previously emitted warnings about a 9433 * potential stalled Ingress Queue, issue a note indicating 9434 * that the Ingress Queue has resumed forward progress. 9435 */ 9436 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 9437 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 9438 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 9439 "resumed after %d seconds\n", 9440 i, idma->idma_qid[i], 9441 idma->idma_stalled[i] / hz); 9442 idma->idma_stalled[i] = 0; 9443 continue; 9444 } 9445 9446 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 9447 * domain. The first time we get here it'll be because we 9448 * passed the 1s Threshold; each additional time it'll be 9449 * because the RX Timer Callback is being fired on its regular 9450 * schedule. 9451 * 9452 * If the stall is below our Potential Hung Ingress Queue 9453 * Warning Threshold, continue. 9454 */ 9455 if (idma->idma_stalled[i] == 0) { 9456 idma->idma_stalled[i] = hz; 9457 idma->idma_warn[i] = 0; 9458 } else { 9459 idma->idma_stalled[i] += ticks; 9460 idma->idma_warn[i] -= ticks; 9461 } 9462 9463 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 9464 continue; 9465 9466 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 9467 */ 9468 if (idma->idma_warn[i] > 0) 9469 continue; 9470 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 9471 9472 /* Read and save the SGE IDMA State and Queue ID information. 9473 * We do this every time in case it changes across time ... 9474 * can't be too careful ... 9475 */ 9476 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 9477 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9478 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 9479 9480 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 9481 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9482 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 9483 9484 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 9485 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 9486 i, idma->idma_qid[i], idma->idma_state[i], 9487 idma->idma_stalled[i] / hz, 9488 debug0, debug11); 9489 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 9490 } 9491 } 9492 9493 /** 9494 * t4_load_cfg - download config file 9495 * @adap: the adapter 9496 * @cfg_data: the cfg text file to write 9497 * @size: text file size 9498 * 9499 * Write the supplied config text file to the card's serial flash. 9500 */ 9501 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 9502 { 9503 int ret, i, n, cfg_addr; 9504 unsigned int addr; 9505 unsigned int flash_cfg_start_sec; 9506 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 9507 9508 cfg_addr = t4_flash_cfg_addr(adap); 9509 if (cfg_addr < 0) 9510 return cfg_addr; 9511 9512 addr = cfg_addr; 9513 flash_cfg_start_sec = addr / SF_SEC_SIZE; 9514 9515 if (size > FLASH_CFG_MAX_SIZE) { 9516 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 9517 FLASH_CFG_MAX_SIZE); 9518 return -EFBIG; 9519 } 9520 9521 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 9522 sf_sec_size); 9523 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 9524 flash_cfg_start_sec + i - 1); 9525 /* If size == 0 then we're simply erasing the FLASH sectors associated 9526 * with the on-adapter Firmware Configuration File. 9527 */ 9528 if (ret || size == 0) 9529 goto out; 9530 9531 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 9532 for (i = 0; i < size; i += SF_PAGE_SIZE) { 9533 if ((size - i) < SF_PAGE_SIZE) 9534 n = size - i; 9535 else 9536 n = SF_PAGE_SIZE; 9537 ret = t4_write_flash(adap, addr, n, cfg_data); 9538 if (ret) 9539 goto out; 9540 9541 addr += SF_PAGE_SIZE; 9542 cfg_data += SF_PAGE_SIZE; 9543 } 9544 9545 out: 9546 if (ret) 9547 dev_err(adap->pdev_dev, "config file %s failed %d\n", 9548 (size == 0 ? "clear" : "download"), ret); 9549 return ret; 9550 } 9551 9552 /** 9553 * t4_set_vf_mac - Set MAC address for the specified VF 9554 * @adapter: The adapter 9555 * @vf: one of the VFs instantiated by the specified PF 9556 * @naddr: the number of MAC addresses 9557 * @addr: the MAC address(es) to be set to the specified VF 9558 */ 9559 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 9560 unsigned int naddr, u8 *addr) 9561 { 9562 struct fw_acl_mac_cmd cmd; 9563 9564 memset(&cmd, 0, sizeof(cmd)); 9565 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 9566 FW_CMD_REQUEST_F | 9567 FW_CMD_WRITE_F | 9568 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 9569 FW_ACL_MAC_CMD_VFN_V(vf)); 9570 9571 /* Note: Do not enable the ACL */ 9572 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 9573 cmd.nmac = naddr; 9574 9575 switch (adapter->pf) { 9576 case 3: 9577 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 9578 break; 9579 case 2: 9580 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 9581 break; 9582 case 1: 9583 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 9584 break; 9585 case 0: 9586 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 9587 break; 9588 } 9589 9590 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 9591 } 9592 9593 /** 9594 * t4_read_pace_tbl - read the pace table 9595 * @adap: the adapter 9596 * @pace_vals: holds the returned values 9597 * 9598 * Returns the values of TP's pace table in microseconds. 9599 */ 9600 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 9601 { 9602 unsigned int i, v; 9603 9604 for (i = 0; i < NTX_SCHED; i++) { 9605 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 9606 v = t4_read_reg(adap, TP_PACE_TABLE_A); 9607 pace_vals[i] = dack_ticks_to_usec(adap, v); 9608 } 9609 } 9610 9611 /** 9612 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 9613 * @adap: the adapter 9614 * @sched: the scheduler index 9615 * @kbps: the byte rate in Kbps 9616 * @ipg: the interpacket delay in tenths of nanoseconds 9617 * @sleep_ok: if true we may sleep while awaiting command completion 9618 * 9619 * Return the current configuration of a HW Tx scheduler. 9620 */ 9621 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 9622 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 9623 { 9624 unsigned int v, addr, bpt, cpt; 9625 9626 if (kbps) { 9627 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 9628 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9629 if (sched & 1) 9630 v >>= 16; 9631 bpt = (v >> 8) & 0xff; 9632 cpt = v & 0xff; 9633 if (!cpt) { 9634 *kbps = 0; /* scheduler disabled */ 9635 } else { 9636 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 9637 *kbps = (v * bpt) / 125; 9638 } 9639 } 9640 if (ipg) { 9641 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 9642 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9643 if (sched & 1) 9644 v >>= 16; 9645 v &= 0xffff; 9646 *ipg = (10000 * v) / core_ticks_per_usec(adap); 9647 } 9648 } 9649 9650 /* t4_sge_ctxt_rd - read an SGE context through FW 9651 * @adap: the adapter 9652 * @mbox: mailbox to use for the FW command 9653 * @cid: the context id 9654 * @ctype: the context type 9655 * @data: where to store the context data 9656 * 9657 * Issues a FW command through the given mailbox to read an SGE context. 9658 */ 9659 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 9660 enum ctxt_type ctype, u32 *data) 9661 { 9662 struct fw_ldst_cmd c; 9663 int ret; 9664 9665 if (ctype == CTXT_FLM) 9666 ret = FW_LDST_ADDRSPC_SGE_FLMC; 9667 else 9668 ret = FW_LDST_ADDRSPC_SGE_CONMC; 9669 9670 memset(&c, 0, sizeof(c)); 9671 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 9672 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9673 FW_LDST_CMD_ADDRSPACE_V(ret)); 9674 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 9675 c.u.idctxt.physid = cpu_to_be32(cid); 9676 9677 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 9678 if (ret == 0) { 9679 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 9680 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 9681 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 9682 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 9683 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 9684 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 9685 } 9686 return ret; 9687 } 9688 9689 /** 9690 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 9691 * @adap: the adapter 9692 * @cid: the context id 9693 * @ctype: the context type 9694 * @data: where to store the context data 9695 * 9696 * Reads an SGE context directly, bypassing FW. This is only for 9697 * debugging when FW is unavailable. 9698 */ 9699 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 9700 enum ctxt_type ctype, u32 *data) 9701 { 9702 int i, ret; 9703 9704 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 9705 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 9706 if (!ret) 9707 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 9708 *data++ = t4_read_reg(adap, i); 9709 return ret; 9710 } 9711 9712 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 9713 int rateunit, int ratemode, int channel, int class, 9714 int minrate, int maxrate, int weight, int pktsize) 9715 { 9716 struct fw_sched_cmd cmd; 9717 9718 memset(&cmd, 0, sizeof(cmd)); 9719 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 9720 FW_CMD_REQUEST_F | 9721 FW_CMD_WRITE_F); 9722 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 9723 9724 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 9725 cmd.u.params.type = type; 9726 cmd.u.params.level = level; 9727 cmd.u.params.mode = mode; 9728 cmd.u.params.ch = channel; 9729 cmd.u.params.cl = class; 9730 cmd.u.params.unit = rateunit; 9731 cmd.u.params.rate = ratemode; 9732 cmd.u.params.min = cpu_to_be32(minrate); 9733 cmd.u.params.max = cpu_to_be32(maxrate); 9734 cmd.u.params.weight = cpu_to_be16(weight); 9735 cmd.u.params.pktsize = cpu_to_be16(pktsize); 9736 9737 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 9738 NULL, 1); 9739 } 9740