1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F)
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202 
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 			 u32 mbox_addr)
208 {
209 	for ( ; nflit; nflit--, mbox_addr += 8)
210 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212 
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218 	struct fw_debug_cmd asrt;
219 
220 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 	dev_alert(adap->pdev_dev,
222 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226 
227 /**
228  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
229  *	@adapter: the adapter
230  *	@cmd: the Firmware Mailbox Command or Reply
231  *	@size: command length in bytes
232  *	@access: the time (ms) needed to access the Firmware Mailbox
233  *	@execute: the time (ms) the command spent being executed
234  */
235 static void t4_record_mbox(struct adapter *adapter,
236 			   const __be64 *cmd, unsigned int size,
237 			   int access, int execute)
238 {
239 	struct mbox_cmd_log *log = adapter->mbox_log;
240 	struct mbox_cmd *entry;
241 	int i;
242 
243 	entry = mbox_cmd_log_entry(log, log->cursor++);
244 	if (log->cursor == log->size)
245 		log->cursor = 0;
246 
247 	for (i = 0; i < size / 8; i++)
248 		entry->cmd[i] = be64_to_cpu(cmd[i]);
249 	while (i < MBOX_LEN / 8)
250 		entry->cmd[i++] = 0;
251 	entry->timestamp = jiffies;
252 	entry->seqno = log->seqno++;
253 	entry->access = access;
254 	entry->execute = execute;
255 }
256 
257 /**
258  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
259  *	@adap: the adapter
260  *	@mbox: index of the mailbox to use
261  *	@cmd: the command to write
262  *	@size: command length in bytes
263  *	@rpl: where to optionally store the reply
264  *	@sleep_ok: if true we may sleep while awaiting command completion
265  *	@timeout: time to wait for command to finish before timing out
266  *
267  *	Sends the given command to FW through the selected mailbox and waits
268  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
269  *	store the FW's reply to the command.  The command and its optional
270  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
271  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
272  *	the response.  If sleeping is allowed we use progressive backoff
273  *	otherwise we spin.
274  *
275  *	The return value is 0 on success or a negative errno on failure.  A
276  *	failure can happen either because we are not able to execute the
277  *	command or FW executes it but signals an error.  In the latter case
278  *	the return value is the error code indicated by FW (negated).
279  */
280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
281 			    int size, void *rpl, bool sleep_ok, int timeout)
282 {
283 	static const int delay[] = {
284 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
285 	};
286 
287 	struct mbox_list entry;
288 	u16 access = 0;
289 	u16 execute = 0;
290 	u32 v;
291 	u64 res;
292 	int i, ms, delay_idx, ret;
293 	const __be64 *p = cmd;
294 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
295 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
296 	__be64 cmd_rpl[MBOX_LEN / 8];
297 	u32 pcie_fw;
298 
299 	if ((size & 15) || size > MBOX_LEN)
300 		return -EINVAL;
301 
302 	/*
303 	 * If the device is off-line, as in EEH, commands will time out.
304 	 * Fail them early so we don't waste time waiting.
305 	 */
306 	if (adap->pdev->error_state != pci_channel_io_normal)
307 		return -EIO;
308 
309 	/* If we have a negative timeout, that implies that we can't sleep. */
310 	if (timeout < 0) {
311 		sleep_ok = false;
312 		timeout = -timeout;
313 	}
314 
315 	/* Queue ourselves onto the mailbox access list.  When our entry is at
316 	 * the front of the list, we have rights to access the mailbox.  So we
317 	 * wait [for a while] till we're at the front [or bail out with an
318 	 * EBUSY] ...
319 	 */
320 	spin_lock(&adap->mbox_lock);
321 	list_add_tail(&entry.list, &adap->mlist.list);
322 	spin_unlock(&adap->mbox_lock);
323 
324 	delay_idx = 0;
325 	ms = delay[0];
326 
327 	for (i = 0; ; i += ms) {
328 		/* If we've waited too long, return a busy indication.  This
329 		 * really ought to be based on our initial position in the
330 		 * mailbox access list but this is a start.  We very rearely
331 		 * contend on access to the mailbox ...
332 		 */
333 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
334 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
335 			spin_lock(&adap->mbox_lock);
336 			list_del(&entry.list);
337 			spin_unlock(&adap->mbox_lock);
338 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
339 			t4_record_mbox(adap, cmd, size, access, ret);
340 			return ret;
341 		}
342 
343 		/* If we're at the head, break out and start the mailbox
344 		 * protocol.
345 		 */
346 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
347 				     list) == &entry)
348 			break;
349 
350 		/* Delay for a bit before checking again ... */
351 		if (sleep_ok) {
352 			ms = delay[delay_idx];  /* last element may repeat */
353 			if (delay_idx < ARRAY_SIZE(delay) - 1)
354 				delay_idx++;
355 			msleep(ms);
356 		} else {
357 			mdelay(ms);
358 		}
359 	}
360 
361 	/* Loop trying to get ownership of the mailbox.  Return an error
362 	 * if we can't gain ownership.
363 	 */
364 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
365 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
366 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	if (v != MBOX_OWNER_DRV) {
368 		spin_lock(&adap->mbox_lock);
369 		list_del(&entry.list);
370 		spin_unlock(&adap->mbox_lock);
371 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
372 		t4_record_mbox(adap, cmd, size, access, ret);
373 		return ret;
374 	}
375 
376 	/* Copy in the new mailbox command and send it on its way ... */
377 	t4_record_mbox(adap, cmd, size, access, 0);
378 	for (i = 0; i < size; i += 8)
379 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
380 
381 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
382 	t4_read_reg(adap, ctl_reg);          /* flush write */
383 
384 	delay_idx = 0;
385 	ms = delay[0];
386 
387 	for (i = 0;
388 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
389 	     i < timeout;
390 	     i += ms) {
391 		if (sleep_ok) {
392 			ms = delay[delay_idx];  /* last element may repeat */
393 			if (delay_idx < ARRAY_SIZE(delay) - 1)
394 				delay_idx++;
395 			msleep(ms);
396 		} else
397 			mdelay(ms);
398 
399 		v = t4_read_reg(adap, ctl_reg);
400 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
401 			if (!(v & MBMSGVALID_F)) {
402 				t4_write_reg(adap, ctl_reg, 0);
403 				continue;
404 			}
405 
406 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
407 			res = be64_to_cpu(cmd_rpl[0]);
408 
409 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
410 				fw_asrt(adap, data_reg);
411 				res = FW_CMD_RETVAL_V(EIO);
412 			} else if (rpl) {
413 				memcpy(rpl, cmd_rpl, size);
414 			}
415 
416 			t4_write_reg(adap, ctl_reg, 0);
417 
418 			execute = i + ms;
419 			t4_record_mbox(adap, cmd_rpl,
420 				       MBOX_LEN, access, execute);
421 			spin_lock(&adap->mbox_lock);
422 			list_del(&entry.list);
423 			spin_unlock(&adap->mbox_lock);
424 			return -FW_CMD_RETVAL_G((int)res);
425 		}
426 	}
427 
428 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
429 	t4_record_mbox(adap, cmd, size, access, ret);
430 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
431 		*(const u8 *)cmd, mbox);
432 	t4_report_fw_error(adap);
433 	spin_lock(&adap->mbox_lock);
434 	list_del(&entry.list);
435 	spin_unlock(&adap->mbox_lock);
436 	t4_fatal_err(adap);
437 	return ret;
438 }
439 
440 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
441 		    void *rpl, bool sleep_ok)
442 {
443 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
444 				       FW_CMD_MAX_TIMEOUT);
445 }
446 
447 static int t4_edc_err_read(struct adapter *adap, int idx)
448 {
449 	u32 edc_ecc_err_addr_reg;
450 	u32 rdata_reg;
451 
452 	if (is_t4(adap->params.chip)) {
453 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
454 		return 0;
455 	}
456 	if (idx != 0 && idx != 1) {
457 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
458 		return 0;
459 	}
460 
461 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
462 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
463 
464 	CH_WARN(adap,
465 		"edc%d err addr 0x%x: 0x%x.\n",
466 		idx, edc_ecc_err_addr_reg,
467 		t4_read_reg(adap, edc_ecc_err_addr_reg));
468 	CH_WARN(adap,
469 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
470 		rdata_reg,
471 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
472 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
480 
481 	return 0;
482 }
483 
484 /**
485  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
486  *	@adap: the adapter
487  *	@win: PCI-E Memory Window to use
488  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
489  *	@addr: address within indicated memory type
490  *	@len: amount of memory to transfer
491  *	@hbuf: host memory buffer
492  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
493  *
494  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
495  *	firmware memory address and host buffer must be aligned on 32-bit
496  *	boudaries; the length may be arbitrary.  The memory is transferred as
497  *	a raw byte sequence from/to the firmware's memory.  If this memory
498  *	contains data structures which contain multi-byte integers, it's the
499  *	caller's responsibility to perform appropriate byte order conversions.
500  */
501 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
502 		 u32 len, void *hbuf, int dir)
503 {
504 	u32 pos, offset, resid, memoffset;
505 	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
506 	u32 *buf;
507 
508 	/* Argument sanity checks ...
509 	 */
510 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
511 		return -EINVAL;
512 	buf = (u32 *)hbuf;
513 
514 	/* It's convenient to be able to handle lengths which aren't a
515 	 * multiple of 32-bits because we often end up transferring files to
516 	 * the firmware.  So we'll handle that by normalizing the length here
517 	 * and then handling any residual transfer at the end.
518 	 */
519 	resid = len & 0x3;
520 	len -= resid;
521 
522 	/* Offset into the region of memory which is being accessed
523 	 * MEM_EDC0 = 0
524 	 * MEM_EDC1 = 1
525 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
526 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
527 	 */
528 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
529 	if (mtype != MEM_MC1)
530 		memoffset = (mtype * (edc_size * 1024 * 1024));
531 	else {
532 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
533 						      MA_EXT_MEMORY0_BAR_A));
534 		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
535 	}
536 
537 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
538 	addr = addr + memoffset;
539 
540 	/* Each PCI-E Memory Window is programmed with a window size -- or
541 	 * "aperture" -- which controls the granularity of its mapping onto
542 	 * adapter memory.  We need to grab that aperture in order to know
543 	 * how to use the specified window.  The window is also programmed
544 	 * with the base address of the Memory Window in BAR0's address
545 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
546 	 * the address is relative to BAR0.
547 	 */
548 	mem_reg = t4_read_reg(adap,
549 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
550 						  win));
551 	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
552 	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
553 	if (is_t4(adap->params.chip))
554 		mem_base -= adap->t4_bar0;
555 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
556 
557 	/* Calculate our initial PCI-E Memory Window Position and Offset into
558 	 * that Window.
559 	 */
560 	pos = addr & ~(mem_aperture-1);
561 	offset = addr - pos;
562 
563 	/* Set up initial PCI-E Memory Window to cover the start of our
564 	 * transfer.  (Read it back to ensure that changes propagate before we
565 	 * attempt to use the new value.)
566 	 */
567 	t4_write_reg(adap,
568 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
569 		     pos | win_pf);
570 	t4_read_reg(adap,
571 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
572 
573 	/* Transfer data to/from the adapter as long as there's an integral
574 	 * number of 32-bit transfers to complete.
575 	 *
576 	 * A note on Endianness issues:
577 	 *
578 	 * The "register" reads and writes below from/to the PCI-E Memory
579 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
580 	 * Little-Endian "swizzel."  As a result, if we have the following
581 	 * data in adapter memory:
582 	 *
583 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
584 	 *     Address:      i+0  i+1  i+2  i+3
585 	 *
586 	 * Then a read of the adapter memory via the PCI-E Memory Window
587 	 * will yield:
588 	 *
589 	 *     x = readl(i)
590 	 *         31                  0
591 	 *         [ b3 | b2 | b1 | b0 ]
592 	 *
593 	 * If this value is stored into local memory on a Little-Endian system
594 	 * it will show up correctly in local memory as:
595 	 *
596 	 *     ( ..., b0, b1, b2, b3, ... )
597 	 *
598 	 * But on a Big-Endian system, the store will show up in memory
599 	 * incorrectly swizzled as:
600 	 *
601 	 *     ( ..., b3, b2, b1, b0, ... )
602 	 *
603 	 * So we need to account for this in the reads and writes to the
604 	 * PCI-E Memory Window below by undoing the register read/write
605 	 * swizzels.
606 	 */
607 	while (len > 0) {
608 		if (dir == T4_MEMORY_READ)
609 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
610 						mem_base + offset));
611 		else
612 			t4_write_reg(adap, mem_base + offset,
613 				     (__force u32)cpu_to_le32(*buf++));
614 		offset += sizeof(__be32);
615 		len -= sizeof(__be32);
616 
617 		/* If we've reached the end of our current window aperture,
618 		 * move the PCI-E Memory Window on to the next.  Note that
619 		 * doing this here after "len" may be 0 allows us to set up
620 		 * the PCI-E Memory Window for a possible final residual
621 		 * transfer below ...
622 		 */
623 		if (offset == mem_aperture) {
624 			pos += mem_aperture;
625 			offset = 0;
626 			t4_write_reg(adap,
627 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
628 						    win), pos | win_pf);
629 			t4_read_reg(adap,
630 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
631 						    win));
632 		}
633 	}
634 
635 	/* If the original transfer had a length which wasn't a multiple of
636 	 * 32-bits, now's where we need to finish off the transfer of the
637 	 * residual amount.  The PCI-E Memory Window has already been moved
638 	 * above (if necessary) to cover this final transfer.
639 	 */
640 	if (resid) {
641 		union {
642 			u32 word;
643 			char byte[4];
644 		} last;
645 		unsigned char *bp;
646 		int i;
647 
648 		if (dir == T4_MEMORY_READ) {
649 			last.word = le32_to_cpu(
650 					(__force __le32)t4_read_reg(adap,
651 						mem_base + offset));
652 			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
653 				bp[i] = last.byte[i];
654 		} else {
655 			last.word = *buf;
656 			for (i = resid; i < 4; i++)
657 				last.byte[i] = 0;
658 			t4_write_reg(adap, mem_base + offset,
659 				     (__force u32)cpu_to_le32(last.word));
660 		}
661 	}
662 
663 	return 0;
664 }
665 
666 /* Return the specified PCI-E Configuration Space register from our Physical
667  * Function.  We try first via a Firmware LDST Command since we prefer to let
668  * the firmware own all of these registers, but if that fails we go for it
669  * directly ourselves.
670  */
671 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
672 {
673 	u32 val, ldst_addrspace;
674 
675 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
676 	 * retrieve the specified PCI-E Configuration Space register.
677 	 */
678 	struct fw_ldst_cmd ldst_cmd;
679 	int ret;
680 
681 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
682 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
683 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
684 					       FW_CMD_REQUEST_F |
685 					       FW_CMD_READ_F |
686 					       ldst_addrspace);
687 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
688 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
689 	ldst_cmd.u.pcie.ctrl_to_fn =
690 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
691 	ldst_cmd.u.pcie.r = reg;
692 
693 	/* If the LDST Command succeeds, return the result, otherwise
694 	 * fall through to reading it directly ourselves ...
695 	 */
696 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
697 			 &ldst_cmd);
698 	if (ret == 0)
699 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
700 	else
701 		/* Read the desired Configuration Space register via the PCI-E
702 		 * Backdoor mechanism.
703 		 */
704 		t4_hw_pci_read_cfg4(adap, reg, &val);
705 	return val;
706 }
707 
708 /* Get the window based on base passed to it.
709  * Window aperture is currently unhandled, but there is no use case for it
710  * right now
711  */
712 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
713 			 u32 memwin_base)
714 {
715 	u32 ret;
716 
717 	if (is_t4(adap->params.chip)) {
718 		u32 bar0;
719 
720 		/* Truncation intentional: we only read the bottom 32-bits of
721 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
722 		 * mechanism to read BAR0 instead of using
723 		 * pci_resource_start() because we could be operating from
724 		 * within a Virtual Machine which is trapping our accesses to
725 		 * our Configuration Space and we need to set up the PCI-E
726 		 * Memory Window decoders with the actual addresses which will
727 		 * be coming across the PCI-E link.
728 		 */
729 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
730 		bar0 &= pci_mask;
731 		adap->t4_bar0 = bar0;
732 
733 		ret = bar0 + memwin_base;
734 	} else {
735 		/* For T5, only relative offset inside the PCIe BAR is passed */
736 		ret = memwin_base;
737 	}
738 	return ret;
739 }
740 
741 /* Get the default utility window (win0) used by everyone */
742 u32 t4_get_util_window(struct adapter *adap)
743 {
744 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
745 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
746 }
747 
748 /* Set up memory window for accessing adapter memory ranges.  (Read
749  * back MA register to ensure that changes propagate before we attempt
750  * to use the new values.)
751  */
752 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
753 {
754 	t4_write_reg(adap,
755 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
756 		     memwin_base | BIR_V(0) |
757 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
758 	t4_read_reg(adap,
759 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
760 }
761 
762 /**
763  *	t4_get_regs_len - return the size of the chips register set
764  *	@adapter: the adapter
765  *
766  *	Returns the size of the chip's BAR0 register space.
767  */
768 unsigned int t4_get_regs_len(struct adapter *adapter)
769 {
770 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
771 
772 	switch (chip_version) {
773 	case CHELSIO_T4:
774 		return T4_REGMAP_SIZE;
775 
776 	case CHELSIO_T5:
777 	case CHELSIO_T6:
778 		return T5_REGMAP_SIZE;
779 	}
780 
781 	dev_err(adapter->pdev_dev,
782 		"Unsupported chip version %d\n", chip_version);
783 	return 0;
784 }
785 
786 /**
787  *	t4_get_regs - read chip registers into provided buffer
788  *	@adap: the adapter
789  *	@buf: register buffer
790  *	@buf_size: size (in bytes) of register buffer
791  *
792  *	If the provided register buffer isn't large enough for the chip's
793  *	full register range, the register dump will be truncated to the
794  *	register buffer's size.
795  */
796 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
797 {
798 	static const unsigned int t4_reg_ranges[] = {
799 		0x1008, 0x1108,
800 		0x1180, 0x1184,
801 		0x1190, 0x1194,
802 		0x11a0, 0x11a4,
803 		0x11b0, 0x11b4,
804 		0x11fc, 0x123c,
805 		0x1300, 0x173c,
806 		0x1800, 0x18fc,
807 		0x3000, 0x30d8,
808 		0x30e0, 0x30e4,
809 		0x30ec, 0x5910,
810 		0x5920, 0x5924,
811 		0x5960, 0x5960,
812 		0x5968, 0x5968,
813 		0x5970, 0x5970,
814 		0x5978, 0x5978,
815 		0x5980, 0x5980,
816 		0x5988, 0x5988,
817 		0x5990, 0x5990,
818 		0x5998, 0x5998,
819 		0x59a0, 0x59d4,
820 		0x5a00, 0x5ae0,
821 		0x5ae8, 0x5ae8,
822 		0x5af0, 0x5af0,
823 		0x5af8, 0x5af8,
824 		0x6000, 0x6098,
825 		0x6100, 0x6150,
826 		0x6200, 0x6208,
827 		0x6240, 0x6248,
828 		0x6280, 0x62b0,
829 		0x62c0, 0x6338,
830 		0x6370, 0x638c,
831 		0x6400, 0x643c,
832 		0x6500, 0x6524,
833 		0x6a00, 0x6a04,
834 		0x6a14, 0x6a38,
835 		0x6a60, 0x6a70,
836 		0x6a78, 0x6a78,
837 		0x6b00, 0x6b0c,
838 		0x6b1c, 0x6b84,
839 		0x6bf0, 0x6bf8,
840 		0x6c00, 0x6c0c,
841 		0x6c1c, 0x6c84,
842 		0x6cf0, 0x6cf8,
843 		0x6d00, 0x6d0c,
844 		0x6d1c, 0x6d84,
845 		0x6df0, 0x6df8,
846 		0x6e00, 0x6e0c,
847 		0x6e1c, 0x6e84,
848 		0x6ef0, 0x6ef8,
849 		0x6f00, 0x6f0c,
850 		0x6f1c, 0x6f84,
851 		0x6ff0, 0x6ff8,
852 		0x7000, 0x700c,
853 		0x701c, 0x7084,
854 		0x70f0, 0x70f8,
855 		0x7100, 0x710c,
856 		0x711c, 0x7184,
857 		0x71f0, 0x71f8,
858 		0x7200, 0x720c,
859 		0x721c, 0x7284,
860 		0x72f0, 0x72f8,
861 		0x7300, 0x730c,
862 		0x731c, 0x7384,
863 		0x73f0, 0x73f8,
864 		0x7400, 0x7450,
865 		0x7500, 0x7530,
866 		0x7600, 0x760c,
867 		0x7614, 0x761c,
868 		0x7680, 0x76cc,
869 		0x7700, 0x7798,
870 		0x77c0, 0x77fc,
871 		0x7900, 0x79fc,
872 		0x7b00, 0x7b58,
873 		0x7b60, 0x7b84,
874 		0x7b8c, 0x7c38,
875 		0x7d00, 0x7d38,
876 		0x7d40, 0x7d80,
877 		0x7d8c, 0x7ddc,
878 		0x7de4, 0x7e04,
879 		0x7e10, 0x7e1c,
880 		0x7e24, 0x7e38,
881 		0x7e40, 0x7e44,
882 		0x7e4c, 0x7e78,
883 		0x7e80, 0x7ea4,
884 		0x7eac, 0x7edc,
885 		0x7ee8, 0x7efc,
886 		0x8dc0, 0x8e04,
887 		0x8e10, 0x8e1c,
888 		0x8e30, 0x8e78,
889 		0x8ea0, 0x8eb8,
890 		0x8ec0, 0x8f6c,
891 		0x8fc0, 0x9008,
892 		0x9010, 0x9058,
893 		0x9060, 0x9060,
894 		0x9068, 0x9074,
895 		0x90fc, 0x90fc,
896 		0x9400, 0x9408,
897 		0x9410, 0x9458,
898 		0x9600, 0x9600,
899 		0x9608, 0x9638,
900 		0x9640, 0x96bc,
901 		0x9800, 0x9808,
902 		0x9820, 0x983c,
903 		0x9850, 0x9864,
904 		0x9c00, 0x9c6c,
905 		0x9c80, 0x9cec,
906 		0x9d00, 0x9d6c,
907 		0x9d80, 0x9dec,
908 		0x9e00, 0x9e6c,
909 		0x9e80, 0x9eec,
910 		0x9f00, 0x9f6c,
911 		0x9f80, 0x9fec,
912 		0xd004, 0xd004,
913 		0xd010, 0xd03c,
914 		0xdfc0, 0xdfe0,
915 		0xe000, 0xea7c,
916 		0xf000, 0x11110,
917 		0x11118, 0x11190,
918 		0x19040, 0x1906c,
919 		0x19078, 0x19080,
920 		0x1908c, 0x190e4,
921 		0x190f0, 0x190f8,
922 		0x19100, 0x19110,
923 		0x19120, 0x19124,
924 		0x19150, 0x19194,
925 		0x1919c, 0x191b0,
926 		0x191d0, 0x191e8,
927 		0x19238, 0x1924c,
928 		0x193f8, 0x1943c,
929 		0x1944c, 0x19474,
930 		0x19490, 0x194e0,
931 		0x194f0, 0x194f8,
932 		0x19800, 0x19c08,
933 		0x19c10, 0x19c90,
934 		0x19ca0, 0x19ce4,
935 		0x19cf0, 0x19d40,
936 		0x19d50, 0x19d94,
937 		0x19da0, 0x19de8,
938 		0x19df0, 0x19e40,
939 		0x19e50, 0x19e90,
940 		0x19ea0, 0x19f4c,
941 		0x1a000, 0x1a004,
942 		0x1a010, 0x1a06c,
943 		0x1a0b0, 0x1a0e4,
944 		0x1a0ec, 0x1a0f4,
945 		0x1a100, 0x1a108,
946 		0x1a114, 0x1a120,
947 		0x1a128, 0x1a130,
948 		0x1a138, 0x1a138,
949 		0x1a190, 0x1a1c4,
950 		0x1a1fc, 0x1a1fc,
951 		0x1e040, 0x1e04c,
952 		0x1e284, 0x1e28c,
953 		0x1e2c0, 0x1e2c0,
954 		0x1e2e0, 0x1e2e0,
955 		0x1e300, 0x1e384,
956 		0x1e3c0, 0x1e3c8,
957 		0x1e440, 0x1e44c,
958 		0x1e684, 0x1e68c,
959 		0x1e6c0, 0x1e6c0,
960 		0x1e6e0, 0x1e6e0,
961 		0x1e700, 0x1e784,
962 		0x1e7c0, 0x1e7c8,
963 		0x1e840, 0x1e84c,
964 		0x1ea84, 0x1ea8c,
965 		0x1eac0, 0x1eac0,
966 		0x1eae0, 0x1eae0,
967 		0x1eb00, 0x1eb84,
968 		0x1ebc0, 0x1ebc8,
969 		0x1ec40, 0x1ec4c,
970 		0x1ee84, 0x1ee8c,
971 		0x1eec0, 0x1eec0,
972 		0x1eee0, 0x1eee0,
973 		0x1ef00, 0x1ef84,
974 		0x1efc0, 0x1efc8,
975 		0x1f040, 0x1f04c,
976 		0x1f284, 0x1f28c,
977 		0x1f2c0, 0x1f2c0,
978 		0x1f2e0, 0x1f2e0,
979 		0x1f300, 0x1f384,
980 		0x1f3c0, 0x1f3c8,
981 		0x1f440, 0x1f44c,
982 		0x1f684, 0x1f68c,
983 		0x1f6c0, 0x1f6c0,
984 		0x1f6e0, 0x1f6e0,
985 		0x1f700, 0x1f784,
986 		0x1f7c0, 0x1f7c8,
987 		0x1f840, 0x1f84c,
988 		0x1fa84, 0x1fa8c,
989 		0x1fac0, 0x1fac0,
990 		0x1fae0, 0x1fae0,
991 		0x1fb00, 0x1fb84,
992 		0x1fbc0, 0x1fbc8,
993 		0x1fc40, 0x1fc4c,
994 		0x1fe84, 0x1fe8c,
995 		0x1fec0, 0x1fec0,
996 		0x1fee0, 0x1fee0,
997 		0x1ff00, 0x1ff84,
998 		0x1ffc0, 0x1ffc8,
999 		0x20000, 0x2002c,
1000 		0x20100, 0x2013c,
1001 		0x20190, 0x201a0,
1002 		0x201a8, 0x201b8,
1003 		0x201c4, 0x201c8,
1004 		0x20200, 0x20318,
1005 		0x20400, 0x204b4,
1006 		0x204c0, 0x20528,
1007 		0x20540, 0x20614,
1008 		0x21000, 0x21040,
1009 		0x2104c, 0x21060,
1010 		0x210c0, 0x210ec,
1011 		0x21200, 0x21268,
1012 		0x21270, 0x21284,
1013 		0x212fc, 0x21388,
1014 		0x21400, 0x21404,
1015 		0x21500, 0x21500,
1016 		0x21510, 0x21518,
1017 		0x2152c, 0x21530,
1018 		0x2153c, 0x2153c,
1019 		0x21550, 0x21554,
1020 		0x21600, 0x21600,
1021 		0x21608, 0x2161c,
1022 		0x21624, 0x21628,
1023 		0x21630, 0x21634,
1024 		0x2163c, 0x2163c,
1025 		0x21700, 0x2171c,
1026 		0x21780, 0x2178c,
1027 		0x21800, 0x21818,
1028 		0x21820, 0x21828,
1029 		0x21830, 0x21848,
1030 		0x21850, 0x21854,
1031 		0x21860, 0x21868,
1032 		0x21870, 0x21870,
1033 		0x21878, 0x21898,
1034 		0x218a0, 0x218a8,
1035 		0x218b0, 0x218c8,
1036 		0x218d0, 0x218d4,
1037 		0x218e0, 0x218e8,
1038 		0x218f0, 0x218f0,
1039 		0x218f8, 0x21a18,
1040 		0x21a20, 0x21a28,
1041 		0x21a30, 0x21a48,
1042 		0x21a50, 0x21a54,
1043 		0x21a60, 0x21a68,
1044 		0x21a70, 0x21a70,
1045 		0x21a78, 0x21a98,
1046 		0x21aa0, 0x21aa8,
1047 		0x21ab0, 0x21ac8,
1048 		0x21ad0, 0x21ad4,
1049 		0x21ae0, 0x21ae8,
1050 		0x21af0, 0x21af0,
1051 		0x21af8, 0x21c18,
1052 		0x21c20, 0x21c20,
1053 		0x21c28, 0x21c30,
1054 		0x21c38, 0x21c38,
1055 		0x21c80, 0x21c98,
1056 		0x21ca0, 0x21ca8,
1057 		0x21cb0, 0x21cc8,
1058 		0x21cd0, 0x21cd4,
1059 		0x21ce0, 0x21ce8,
1060 		0x21cf0, 0x21cf0,
1061 		0x21cf8, 0x21d7c,
1062 		0x21e00, 0x21e04,
1063 		0x22000, 0x2202c,
1064 		0x22100, 0x2213c,
1065 		0x22190, 0x221a0,
1066 		0x221a8, 0x221b8,
1067 		0x221c4, 0x221c8,
1068 		0x22200, 0x22318,
1069 		0x22400, 0x224b4,
1070 		0x224c0, 0x22528,
1071 		0x22540, 0x22614,
1072 		0x23000, 0x23040,
1073 		0x2304c, 0x23060,
1074 		0x230c0, 0x230ec,
1075 		0x23200, 0x23268,
1076 		0x23270, 0x23284,
1077 		0x232fc, 0x23388,
1078 		0x23400, 0x23404,
1079 		0x23500, 0x23500,
1080 		0x23510, 0x23518,
1081 		0x2352c, 0x23530,
1082 		0x2353c, 0x2353c,
1083 		0x23550, 0x23554,
1084 		0x23600, 0x23600,
1085 		0x23608, 0x2361c,
1086 		0x23624, 0x23628,
1087 		0x23630, 0x23634,
1088 		0x2363c, 0x2363c,
1089 		0x23700, 0x2371c,
1090 		0x23780, 0x2378c,
1091 		0x23800, 0x23818,
1092 		0x23820, 0x23828,
1093 		0x23830, 0x23848,
1094 		0x23850, 0x23854,
1095 		0x23860, 0x23868,
1096 		0x23870, 0x23870,
1097 		0x23878, 0x23898,
1098 		0x238a0, 0x238a8,
1099 		0x238b0, 0x238c8,
1100 		0x238d0, 0x238d4,
1101 		0x238e0, 0x238e8,
1102 		0x238f0, 0x238f0,
1103 		0x238f8, 0x23a18,
1104 		0x23a20, 0x23a28,
1105 		0x23a30, 0x23a48,
1106 		0x23a50, 0x23a54,
1107 		0x23a60, 0x23a68,
1108 		0x23a70, 0x23a70,
1109 		0x23a78, 0x23a98,
1110 		0x23aa0, 0x23aa8,
1111 		0x23ab0, 0x23ac8,
1112 		0x23ad0, 0x23ad4,
1113 		0x23ae0, 0x23ae8,
1114 		0x23af0, 0x23af0,
1115 		0x23af8, 0x23c18,
1116 		0x23c20, 0x23c20,
1117 		0x23c28, 0x23c30,
1118 		0x23c38, 0x23c38,
1119 		0x23c80, 0x23c98,
1120 		0x23ca0, 0x23ca8,
1121 		0x23cb0, 0x23cc8,
1122 		0x23cd0, 0x23cd4,
1123 		0x23ce0, 0x23ce8,
1124 		0x23cf0, 0x23cf0,
1125 		0x23cf8, 0x23d7c,
1126 		0x23e00, 0x23e04,
1127 		0x24000, 0x2402c,
1128 		0x24100, 0x2413c,
1129 		0x24190, 0x241a0,
1130 		0x241a8, 0x241b8,
1131 		0x241c4, 0x241c8,
1132 		0x24200, 0x24318,
1133 		0x24400, 0x244b4,
1134 		0x244c0, 0x24528,
1135 		0x24540, 0x24614,
1136 		0x25000, 0x25040,
1137 		0x2504c, 0x25060,
1138 		0x250c0, 0x250ec,
1139 		0x25200, 0x25268,
1140 		0x25270, 0x25284,
1141 		0x252fc, 0x25388,
1142 		0x25400, 0x25404,
1143 		0x25500, 0x25500,
1144 		0x25510, 0x25518,
1145 		0x2552c, 0x25530,
1146 		0x2553c, 0x2553c,
1147 		0x25550, 0x25554,
1148 		0x25600, 0x25600,
1149 		0x25608, 0x2561c,
1150 		0x25624, 0x25628,
1151 		0x25630, 0x25634,
1152 		0x2563c, 0x2563c,
1153 		0x25700, 0x2571c,
1154 		0x25780, 0x2578c,
1155 		0x25800, 0x25818,
1156 		0x25820, 0x25828,
1157 		0x25830, 0x25848,
1158 		0x25850, 0x25854,
1159 		0x25860, 0x25868,
1160 		0x25870, 0x25870,
1161 		0x25878, 0x25898,
1162 		0x258a0, 0x258a8,
1163 		0x258b0, 0x258c8,
1164 		0x258d0, 0x258d4,
1165 		0x258e0, 0x258e8,
1166 		0x258f0, 0x258f0,
1167 		0x258f8, 0x25a18,
1168 		0x25a20, 0x25a28,
1169 		0x25a30, 0x25a48,
1170 		0x25a50, 0x25a54,
1171 		0x25a60, 0x25a68,
1172 		0x25a70, 0x25a70,
1173 		0x25a78, 0x25a98,
1174 		0x25aa0, 0x25aa8,
1175 		0x25ab0, 0x25ac8,
1176 		0x25ad0, 0x25ad4,
1177 		0x25ae0, 0x25ae8,
1178 		0x25af0, 0x25af0,
1179 		0x25af8, 0x25c18,
1180 		0x25c20, 0x25c20,
1181 		0x25c28, 0x25c30,
1182 		0x25c38, 0x25c38,
1183 		0x25c80, 0x25c98,
1184 		0x25ca0, 0x25ca8,
1185 		0x25cb0, 0x25cc8,
1186 		0x25cd0, 0x25cd4,
1187 		0x25ce0, 0x25ce8,
1188 		0x25cf0, 0x25cf0,
1189 		0x25cf8, 0x25d7c,
1190 		0x25e00, 0x25e04,
1191 		0x26000, 0x2602c,
1192 		0x26100, 0x2613c,
1193 		0x26190, 0x261a0,
1194 		0x261a8, 0x261b8,
1195 		0x261c4, 0x261c8,
1196 		0x26200, 0x26318,
1197 		0x26400, 0x264b4,
1198 		0x264c0, 0x26528,
1199 		0x26540, 0x26614,
1200 		0x27000, 0x27040,
1201 		0x2704c, 0x27060,
1202 		0x270c0, 0x270ec,
1203 		0x27200, 0x27268,
1204 		0x27270, 0x27284,
1205 		0x272fc, 0x27388,
1206 		0x27400, 0x27404,
1207 		0x27500, 0x27500,
1208 		0x27510, 0x27518,
1209 		0x2752c, 0x27530,
1210 		0x2753c, 0x2753c,
1211 		0x27550, 0x27554,
1212 		0x27600, 0x27600,
1213 		0x27608, 0x2761c,
1214 		0x27624, 0x27628,
1215 		0x27630, 0x27634,
1216 		0x2763c, 0x2763c,
1217 		0x27700, 0x2771c,
1218 		0x27780, 0x2778c,
1219 		0x27800, 0x27818,
1220 		0x27820, 0x27828,
1221 		0x27830, 0x27848,
1222 		0x27850, 0x27854,
1223 		0x27860, 0x27868,
1224 		0x27870, 0x27870,
1225 		0x27878, 0x27898,
1226 		0x278a0, 0x278a8,
1227 		0x278b0, 0x278c8,
1228 		0x278d0, 0x278d4,
1229 		0x278e0, 0x278e8,
1230 		0x278f0, 0x278f0,
1231 		0x278f8, 0x27a18,
1232 		0x27a20, 0x27a28,
1233 		0x27a30, 0x27a48,
1234 		0x27a50, 0x27a54,
1235 		0x27a60, 0x27a68,
1236 		0x27a70, 0x27a70,
1237 		0x27a78, 0x27a98,
1238 		0x27aa0, 0x27aa8,
1239 		0x27ab0, 0x27ac8,
1240 		0x27ad0, 0x27ad4,
1241 		0x27ae0, 0x27ae8,
1242 		0x27af0, 0x27af0,
1243 		0x27af8, 0x27c18,
1244 		0x27c20, 0x27c20,
1245 		0x27c28, 0x27c30,
1246 		0x27c38, 0x27c38,
1247 		0x27c80, 0x27c98,
1248 		0x27ca0, 0x27ca8,
1249 		0x27cb0, 0x27cc8,
1250 		0x27cd0, 0x27cd4,
1251 		0x27ce0, 0x27ce8,
1252 		0x27cf0, 0x27cf0,
1253 		0x27cf8, 0x27d7c,
1254 		0x27e00, 0x27e04,
1255 	};
1256 
1257 	static const unsigned int t5_reg_ranges[] = {
1258 		0x1008, 0x10c0,
1259 		0x10cc, 0x10f8,
1260 		0x1100, 0x1100,
1261 		0x110c, 0x1148,
1262 		0x1180, 0x1184,
1263 		0x1190, 0x1194,
1264 		0x11a0, 0x11a4,
1265 		0x11b0, 0x11b4,
1266 		0x11fc, 0x123c,
1267 		0x1280, 0x173c,
1268 		0x1800, 0x18fc,
1269 		0x3000, 0x3028,
1270 		0x3060, 0x30b0,
1271 		0x30b8, 0x30d8,
1272 		0x30e0, 0x30fc,
1273 		0x3140, 0x357c,
1274 		0x35a8, 0x35cc,
1275 		0x35ec, 0x35ec,
1276 		0x3600, 0x5624,
1277 		0x56cc, 0x56ec,
1278 		0x56f4, 0x5720,
1279 		0x5728, 0x575c,
1280 		0x580c, 0x5814,
1281 		0x5890, 0x589c,
1282 		0x58a4, 0x58ac,
1283 		0x58b8, 0x58bc,
1284 		0x5940, 0x59c8,
1285 		0x59d0, 0x59dc,
1286 		0x59fc, 0x5a18,
1287 		0x5a60, 0x5a70,
1288 		0x5a80, 0x5a9c,
1289 		0x5b94, 0x5bfc,
1290 		0x6000, 0x6020,
1291 		0x6028, 0x6040,
1292 		0x6058, 0x609c,
1293 		0x60a8, 0x614c,
1294 		0x7700, 0x7798,
1295 		0x77c0, 0x78fc,
1296 		0x7b00, 0x7b58,
1297 		0x7b60, 0x7b84,
1298 		0x7b8c, 0x7c54,
1299 		0x7d00, 0x7d38,
1300 		0x7d40, 0x7d80,
1301 		0x7d8c, 0x7ddc,
1302 		0x7de4, 0x7e04,
1303 		0x7e10, 0x7e1c,
1304 		0x7e24, 0x7e38,
1305 		0x7e40, 0x7e44,
1306 		0x7e4c, 0x7e78,
1307 		0x7e80, 0x7edc,
1308 		0x7ee8, 0x7efc,
1309 		0x8dc0, 0x8de0,
1310 		0x8df8, 0x8e04,
1311 		0x8e10, 0x8e84,
1312 		0x8ea0, 0x8f84,
1313 		0x8fc0, 0x9058,
1314 		0x9060, 0x9060,
1315 		0x9068, 0x90f8,
1316 		0x9400, 0x9408,
1317 		0x9410, 0x9470,
1318 		0x9600, 0x9600,
1319 		0x9608, 0x9638,
1320 		0x9640, 0x96f4,
1321 		0x9800, 0x9808,
1322 		0x9820, 0x983c,
1323 		0x9850, 0x9864,
1324 		0x9c00, 0x9c6c,
1325 		0x9c80, 0x9cec,
1326 		0x9d00, 0x9d6c,
1327 		0x9d80, 0x9dec,
1328 		0x9e00, 0x9e6c,
1329 		0x9e80, 0x9eec,
1330 		0x9f00, 0x9f6c,
1331 		0x9f80, 0xa020,
1332 		0xd004, 0xd004,
1333 		0xd010, 0xd03c,
1334 		0xdfc0, 0xdfe0,
1335 		0xe000, 0x1106c,
1336 		0x11074, 0x11088,
1337 		0x1109c, 0x1117c,
1338 		0x11190, 0x11204,
1339 		0x19040, 0x1906c,
1340 		0x19078, 0x19080,
1341 		0x1908c, 0x190e8,
1342 		0x190f0, 0x190f8,
1343 		0x19100, 0x19110,
1344 		0x19120, 0x19124,
1345 		0x19150, 0x19194,
1346 		0x1919c, 0x191b0,
1347 		0x191d0, 0x191e8,
1348 		0x19238, 0x19290,
1349 		0x193f8, 0x19428,
1350 		0x19430, 0x19444,
1351 		0x1944c, 0x1946c,
1352 		0x19474, 0x19474,
1353 		0x19490, 0x194cc,
1354 		0x194f0, 0x194f8,
1355 		0x19c00, 0x19c08,
1356 		0x19c10, 0x19c60,
1357 		0x19c94, 0x19ce4,
1358 		0x19cf0, 0x19d40,
1359 		0x19d50, 0x19d94,
1360 		0x19da0, 0x19de8,
1361 		0x19df0, 0x19e10,
1362 		0x19e50, 0x19e90,
1363 		0x19ea0, 0x19f24,
1364 		0x19f34, 0x19f34,
1365 		0x19f40, 0x19f50,
1366 		0x19f90, 0x19fb4,
1367 		0x19fc4, 0x19fe4,
1368 		0x1a000, 0x1a004,
1369 		0x1a010, 0x1a06c,
1370 		0x1a0b0, 0x1a0e4,
1371 		0x1a0ec, 0x1a0f8,
1372 		0x1a100, 0x1a108,
1373 		0x1a114, 0x1a120,
1374 		0x1a128, 0x1a130,
1375 		0x1a138, 0x1a138,
1376 		0x1a190, 0x1a1c4,
1377 		0x1a1fc, 0x1a1fc,
1378 		0x1e008, 0x1e00c,
1379 		0x1e040, 0x1e044,
1380 		0x1e04c, 0x1e04c,
1381 		0x1e284, 0x1e290,
1382 		0x1e2c0, 0x1e2c0,
1383 		0x1e2e0, 0x1e2e0,
1384 		0x1e300, 0x1e384,
1385 		0x1e3c0, 0x1e3c8,
1386 		0x1e408, 0x1e40c,
1387 		0x1e440, 0x1e444,
1388 		0x1e44c, 0x1e44c,
1389 		0x1e684, 0x1e690,
1390 		0x1e6c0, 0x1e6c0,
1391 		0x1e6e0, 0x1e6e0,
1392 		0x1e700, 0x1e784,
1393 		0x1e7c0, 0x1e7c8,
1394 		0x1e808, 0x1e80c,
1395 		0x1e840, 0x1e844,
1396 		0x1e84c, 0x1e84c,
1397 		0x1ea84, 0x1ea90,
1398 		0x1eac0, 0x1eac0,
1399 		0x1eae0, 0x1eae0,
1400 		0x1eb00, 0x1eb84,
1401 		0x1ebc0, 0x1ebc8,
1402 		0x1ec08, 0x1ec0c,
1403 		0x1ec40, 0x1ec44,
1404 		0x1ec4c, 0x1ec4c,
1405 		0x1ee84, 0x1ee90,
1406 		0x1eec0, 0x1eec0,
1407 		0x1eee0, 0x1eee0,
1408 		0x1ef00, 0x1ef84,
1409 		0x1efc0, 0x1efc8,
1410 		0x1f008, 0x1f00c,
1411 		0x1f040, 0x1f044,
1412 		0x1f04c, 0x1f04c,
1413 		0x1f284, 0x1f290,
1414 		0x1f2c0, 0x1f2c0,
1415 		0x1f2e0, 0x1f2e0,
1416 		0x1f300, 0x1f384,
1417 		0x1f3c0, 0x1f3c8,
1418 		0x1f408, 0x1f40c,
1419 		0x1f440, 0x1f444,
1420 		0x1f44c, 0x1f44c,
1421 		0x1f684, 0x1f690,
1422 		0x1f6c0, 0x1f6c0,
1423 		0x1f6e0, 0x1f6e0,
1424 		0x1f700, 0x1f784,
1425 		0x1f7c0, 0x1f7c8,
1426 		0x1f808, 0x1f80c,
1427 		0x1f840, 0x1f844,
1428 		0x1f84c, 0x1f84c,
1429 		0x1fa84, 0x1fa90,
1430 		0x1fac0, 0x1fac0,
1431 		0x1fae0, 0x1fae0,
1432 		0x1fb00, 0x1fb84,
1433 		0x1fbc0, 0x1fbc8,
1434 		0x1fc08, 0x1fc0c,
1435 		0x1fc40, 0x1fc44,
1436 		0x1fc4c, 0x1fc4c,
1437 		0x1fe84, 0x1fe90,
1438 		0x1fec0, 0x1fec0,
1439 		0x1fee0, 0x1fee0,
1440 		0x1ff00, 0x1ff84,
1441 		0x1ffc0, 0x1ffc8,
1442 		0x30000, 0x30030,
1443 		0x30100, 0x30144,
1444 		0x30190, 0x301a0,
1445 		0x301a8, 0x301b8,
1446 		0x301c4, 0x301c8,
1447 		0x301d0, 0x301d0,
1448 		0x30200, 0x30318,
1449 		0x30400, 0x304b4,
1450 		0x304c0, 0x3052c,
1451 		0x30540, 0x3061c,
1452 		0x30800, 0x30828,
1453 		0x30834, 0x30834,
1454 		0x308c0, 0x30908,
1455 		0x30910, 0x309ac,
1456 		0x30a00, 0x30a14,
1457 		0x30a1c, 0x30a2c,
1458 		0x30a44, 0x30a50,
1459 		0x30a74, 0x30a74,
1460 		0x30a7c, 0x30afc,
1461 		0x30b08, 0x30c24,
1462 		0x30d00, 0x30d00,
1463 		0x30d08, 0x30d14,
1464 		0x30d1c, 0x30d20,
1465 		0x30d3c, 0x30d3c,
1466 		0x30d48, 0x30d50,
1467 		0x31200, 0x3120c,
1468 		0x31220, 0x31220,
1469 		0x31240, 0x31240,
1470 		0x31600, 0x3160c,
1471 		0x31a00, 0x31a1c,
1472 		0x31e00, 0x31e20,
1473 		0x31e38, 0x31e3c,
1474 		0x31e80, 0x31e80,
1475 		0x31e88, 0x31ea8,
1476 		0x31eb0, 0x31eb4,
1477 		0x31ec8, 0x31ed4,
1478 		0x31fb8, 0x32004,
1479 		0x32200, 0x32200,
1480 		0x32208, 0x32240,
1481 		0x32248, 0x32280,
1482 		0x32288, 0x322c0,
1483 		0x322c8, 0x322fc,
1484 		0x32600, 0x32630,
1485 		0x32a00, 0x32abc,
1486 		0x32b00, 0x32b10,
1487 		0x32b20, 0x32b30,
1488 		0x32b40, 0x32b50,
1489 		0x32b60, 0x32b70,
1490 		0x33000, 0x33028,
1491 		0x33030, 0x33048,
1492 		0x33060, 0x33068,
1493 		0x33070, 0x3309c,
1494 		0x330f0, 0x33128,
1495 		0x33130, 0x33148,
1496 		0x33160, 0x33168,
1497 		0x33170, 0x3319c,
1498 		0x331f0, 0x33238,
1499 		0x33240, 0x33240,
1500 		0x33248, 0x33250,
1501 		0x3325c, 0x33264,
1502 		0x33270, 0x332b8,
1503 		0x332c0, 0x332e4,
1504 		0x332f8, 0x33338,
1505 		0x33340, 0x33340,
1506 		0x33348, 0x33350,
1507 		0x3335c, 0x33364,
1508 		0x33370, 0x333b8,
1509 		0x333c0, 0x333e4,
1510 		0x333f8, 0x33428,
1511 		0x33430, 0x33448,
1512 		0x33460, 0x33468,
1513 		0x33470, 0x3349c,
1514 		0x334f0, 0x33528,
1515 		0x33530, 0x33548,
1516 		0x33560, 0x33568,
1517 		0x33570, 0x3359c,
1518 		0x335f0, 0x33638,
1519 		0x33640, 0x33640,
1520 		0x33648, 0x33650,
1521 		0x3365c, 0x33664,
1522 		0x33670, 0x336b8,
1523 		0x336c0, 0x336e4,
1524 		0x336f8, 0x33738,
1525 		0x33740, 0x33740,
1526 		0x33748, 0x33750,
1527 		0x3375c, 0x33764,
1528 		0x33770, 0x337b8,
1529 		0x337c0, 0x337e4,
1530 		0x337f8, 0x337fc,
1531 		0x33814, 0x33814,
1532 		0x3382c, 0x3382c,
1533 		0x33880, 0x3388c,
1534 		0x338e8, 0x338ec,
1535 		0x33900, 0x33928,
1536 		0x33930, 0x33948,
1537 		0x33960, 0x33968,
1538 		0x33970, 0x3399c,
1539 		0x339f0, 0x33a38,
1540 		0x33a40, 0x33a40,
1541 		0x33a48, 0x33a50,
1542 		0x33a5c, 0x33a64,
1543 		0x33a70, 0x33ab8,
1544 		0x33ac0, 0x33ae4,
1545 		0x33af8, 0x33b10,
1546 		0x33b28, 0x33b28,
1547 		0x33b3c, 0x33b50,
1548 		0x33bf0, 0x33c10,
1549 		0x33c28, 0x33c28,
1550 		0x33c3c, 0x33c50,
1551 		0x33cf0, 0x33cfc,
1552 		0x34000, 0x34030,
1553 		0x34100, 0x34144,
1554 		0x34190, 0x341a0,
1555 		0x341a8, 0x341b8,
1556 		0x341c4, 0x341c8,
1557 		0x341d0, 0x341d0,
1558 		0x34200, 0x34318,
1559 		0x34400, 0x344b4,
1560 		0x344c0, 0x3452c,
1561 		0x34540, 0x3461c,
1562 		0x34800, 0x34828,
1563 		0x34834, 0x34834,
1564 		0x348c0, 0x34908,
1565 		0x34910, 0x349ac,
1566 		0x34a00, 0x34a14,
1567 		0x34a1c, 0x34a2c,
1568 		0x34a44, 0x34a50,
1569 		0x34a74, 0x34a74,
1570 		0x34a7c, 0x34afc,
1571 		0x34b08, 0x34c24,
1572 		0x34d00, 0x34d00,
1573 		0x34d08, 0x34d14,
1574 		0x34d1c, 0x34d20,
1575 		0x34d3c, 0x34d3c,
1576 		0x34d48, 0x34d50,
1577 		0x35200, 0x3520c,
1578 		0x35220, 0x35220,
1579 		0x35240, 0x35240,
1580 		0x35600, 0x3560c,
1581 		0x35a00, 0x35a1c,
1582 		0x35e00, 0x35e20,
1583 		0x35e38, 0x35e3c,
1584 		0x35e80, 0x35e80,
1585 		0x35e88, 0x35ea8,
1586 		0x35eb0, 0x35eb4,
1587 		0x35ec8, 0x35ed4,
1588 		0x35fb8, 0x36004,
1589 		0x36200, 0x36200,
1590 		0x36208, 0x36240,
1591 		0x36248, 0x36280,
1592 		0x36288, 0x362c0,
1593 		0x362c8, 0x362fc,
1594 		0x36600, 0x36630,
1595 		0x36a00, 0x36abc,
1596 		0x36b00, 0x36b10,
1597 		0x36b20, 0x36b30,
1598 		0x36b40, 0x36b50,
1599 		0x36b60, 0x36b70,
1600 		0x37000, 0x37028,
1601 		0x37030, 0x37048,
1602 		0x37060, 0x37068,
1603 		0x37070, 0x3709c,
1604 		0x370f0, 0x37128,
1605 		0x37130, 0x37148,
1606 		0x37160, 0x37168,
1607 		0x37170, 0x3719c,
1608 		0x371f0, 0x37238,
1609 		0x37240, 0x37240,
1610 		0x37248, 0x37250,
1611 		0x3725c, 0x37264,
1612 		0x37270, 0x372b8,
1613 		0x372c0, 0x372e4,
1614 		0x372f8, 0x37338,
1615 		0x37340, 0x37340,
1616 		0x37348, 0x37350,
1617 		0x3735c, 0x37364,
1618 		0x37370, 0x373b8,
1619 		0x373c0, 0x373e4,
1620 		0x373f8, 0x37428,
1621 		0x37430, 0x37448,
1622 		0x37460, 0x37468,
1623 		0x37470, 0x3749c,
1624 		0x374f0, 0x37528,
1625 		0x37530, 0x37548,
1626 		0x37560, 0x37568,
1627 		0x37570, 0x3759c,
1628 		0x375f0, 0x37638,
1629 		0x37640, 0x37640,
1630 		0x37648, 0x37650,
1631 		0x3765c, 0x37664,
1632 		0x37670, 0x376b8,
1633 		0x376c0, 0x376e4,
1634 		0x376f8, 0x37738,
1635 		0x37740, 0x37740,
1636 		0x37748, 0x37750,
1637 		0x3775c, 0x37764,
1638 		0x37770, 0x377b8,
1639 		0x377c0, 0x377e4,
1640 		0x377f8, 0x377fc,
1641 		0x37814, 0x37814,
1642 		0x3782c, 0x3782c,
1643 		0x37880, 0x3788c,
1644 		0x378e8, 0x378ec,
1645 		0x37900, 0x37928,
1646 		0x37930, 0x37948,
1647 		0x37960, 0x37968,
1648 		0x37970, 0x3799c,
1649 		0x379f0, 0x37a38,
1650 		0x37a40, 0x37a40,
1651 		0x37a48, 0x37a50,
1652 		0x37a5c, 0x37a64,
1653 		0x37a70, 0x37ab8,
1654 		0x37ac0, 0x37ae4,
1655 		0x37af8, 0x37b10,
1656 		0x37b28, 0x37b28,
1657 		0x37b3c, 0x37b50,
1658 		0x37bf0, 0x37c10,
1659 		0x37c28, 0x37c28,
1660 		0x37c3c, 0x37c50,
1661 		0x37cf0, 0x37cfc,
1662 		0x38000, 0x38030,
1663 		0x38100, 0x38144,
1664 		0x38190, 0x381a0,
1665 		0x381a8, 0x381b8,
1666 		0x381c4, 0x381c8,
1667 		0x381d0, 0x381d0,
1668 		0x38200, 0x38318,
1669 		0x38400, 0x384b4,
1670 		0x384c0, 0x3852c,
1671 		0x38540, 0x3861c,
1672 		0x38800, 0x38828,
1673 		0x38834, 0x38834,
1674 		0x388c0, 0x38908,
1675 		0x38910, 0x389ac,
1676 		0x38a00, 0x38a14,
1677 		0x38a1c, 0x38a2c,
1678 		0x38a44, 0x38a50,
1679 		0x38a74, 0x38a74,
1680 		0x38a7c, 0x38afc,
1681 		0x38b08, 0x38c24,
1682 		0x38d00, 0x38d00,
1683 		0x38d08, 0x38d14,
1684 		0x38d1c, 0x38d20,
1685 		0x38d3c, 0x38d3c,
1686 		0x38d48, 0x38d50,
1687 		0x39200, 0x3920c,
1688 		0x39220, 0x39220,
1689 		0x39240, 0x39240,
1690 		0x39600, 0x3960c,
1691 		0x39a00, 0x39a1c,
1692 		0x39e00, 0x39e20,
1693 		0x39e38, 0x39e3c,
1694 		0x39e80, 0x39e80,
1695 		0x39e88, 0x39ea8,
1696 		0x39eb0, 0x39eb4,
1697 		0x39ec8, 0x39ed4,
1698 		0x39fb8, 0x3a004,
1699 		0x3a200, 0x3a200,
1700 		0x3a208, 0x3a240,
1701 		0x3a248, 0x3a280,
1702 		0x3a288, 0x3a2c0,
1703 		0x3a2c8, 0x3a2fc,
1704 		0x3a600, 0x3a630,
1705 		0x3aa00, 0x3aabc,
1706 		0x3ab00, 0x3ab10,
1707 		0x3ab20, 0x3ab30,
1708 		0x3ab40, 0x3ab50,
1709 		0x3ab60, 0x3ab70,
1710 		0x3b000, 0x3b028,
1711 		0x3b030, 0x3b048,
1712 		0x3b060, 0x3b068,
1713 		0x3b070, 0x3b09c,
1714 		0x3b0f0, 0x3b128,
1715 		0x3b130, 0x3b148,
1716 		0x3b160, 0x3b168,
1717 		0x3b170, 0x3b19c,
1718 		0x3b1f0, 0x3b238,
1719 		0x3b240, 0x3b240,
1720 		0x3b248, 0x3b250,
1721 		0x3b25c, 0x3b264,
1722 		0x3b270, 0x3b2b8,
1723 		0x3b2c0, 0x3b2e4,
1724 		0x3b2f8, 0x3b338,
1725 		0x3b340, 0x3b340,
1726 		0x3b348, 0x3b350,
1727 		0x3b35c, 0x3b364,
1728 		0x3b370, 0x3b3b8,
1729 		0x3b3c0, 0x3b3e4,
1730 		0x3b3f8, 0x3b428,
1731 		0x3b430, 0x3b448,
1732 		0x3b460, 0x3b468,
1733 		0x3b470, 0x3b49c,
1734 		0x3b4f0, 0x3b528,
1735 		0x3b530, 0x3b548,
1736 		0x3b560, 0x3b568,
1737 		0x3b570, 0x3b59c,
1738 		0x3b5f0, 0x3b638,
1739 		0x3b640, 0x3b640,
1740 		0x3b648, 0x3b650,
1741 		0x3b65c, 0x3b664,
1742 		0x3b670, 0x3b6b8,
1743 		0x3b6c0, 0x3b6e4,
1744 		0x3b6f8, 0x3b738,
1745 		0x3b740, 0x3b740,
1746 		0x3b748, 0x3b750,
1747 		0x3b75c, 0x3b764,
1748 		0x3b770, 0x3b7b8,
1749 		0x3b7c0, 0x3b7e4,
1750 		0x3b7f8, 0x3b7fc,
1751 		0x3b814, 0x3b814,
1752 		0x3b82c, 0x3b82c,
1753 		0x3b880, 0x3b88c,
1754 		0x3b8e8, 0x3b8ec,
1755 		0x3b900, 0x3b928,
1756 		0x3b930, 0x3b948,
1757 		0x3b960, 0x3b968,
1758 		0x3b970, 0x3b99c,
1759 		0x3b9f0, 0x3ba38,
1760 		0x3ba40, 0x3ba40,
1761 		0x3ba48, 0x3ba50,
1762 		0x3ba5c, 0x3ba64,
1763 		0x3ba70, 0x3bab8,
1764 		0x3bac0, 0x3bae4,
1765 		0x3baf8, 0x3bb10,
1766 		0x3bb28, 0x3bb28,
1767 		0x3bb3c, 0x3bb50,
1768 		0x3bbf0, 0x3bc10,
1769 		0x3bc28, 0x3bc28,
1770 		0x3bc3c, 0x3bc50,
1771 		0x3bcf0, 0x3bcfc,
1772 		0x3c000, 0x3c030,
1773 		0x3c100, 0x3c144,
1774 		0x3c190, 0x3c1a0,
1775 		0x3c1a8, 0x3c1b8,
1776 		0x3c1c4, 0x3c1c8,
1777 		0x3c1d0, 0x3c1d0,
1778 		0x3c200, 0x3c318,
1779 		0x3c400, 0x3c4b4,
1780 		0x3c4c0, 0x3c52c,
1781 		0x3c540, 0x3c61c,
1782 		0x3c800, 0x3c828,
1783 		0x3c834, 0x3c834,
1784 		0x3c8c0, 0x3c908,
1785 		0x3c910, 0x3c9ac,
1786 		0x3ca00, 0x3ca14,
1787 		0x3ca1c, 0x3ca2c,
1788 		0x3ca44, 0x3ca50,
1789 		0x3ca74, 0x3ca74,
1790 		0x3ca7c, 0x3cafc,
1791 		0x3cb08, 0x3cc24,
1792 		0x3cd00, 0x3cd00,
1793 		0x3cd08, 0x3cd14,
1794 		0x3cd1c, 0x3cd20,
1795 		0x3cd3c, 0x3cd3c,
1796 		0x3cd48, 0x3cd50,
1797 		0x3d200, 0x3d20c,
1798 		0x3d220, 0x3d220,
1799 		0x3d240, 0x3d240,
1800 		0x3d600, 0x3d60c,
1801 		0x3da00, 0x3da1c,
1802 		0x3de00, 0x3de20,
1803 		0x3de38, 0x3de3c,
1804 		0x3de80, 0x3de80,
1805 		0x3de88, 0x3dea8,
1806 		0x3deb0, 0x3deb4,
1807 		0x3dec8, 0x3ded4,
1808 		0x3dfb8, 0x3e004,
1809 		0x3e200, 0x3e200,
1810 		0x3e208, 0x3e240,
1811 		0x3e248, 0x3e280,
1812 		0x3e288, 0x3e2c0,
1813 		0x3e2c8, 0x3e2fc,
1814 		0x3e600, 0x3e630,
1815 		0x3ea00, 0x3eabc,
1816 		0x3eb00, 0x3eb10,
1817 		0x3eb20, 0x3eb30,
1818 		0x3eb40, 0x3eb50,
1819 		0x3eb60, 0x3eb70,
1820 		0x3f000, 0x3f028,
1821 		0x3f030, 0x3f048,
1822 		0x3f060, 0x3f068,
1823 		0x3f070, 0x3f09c,
1824 		0x3f0f0, 0x3f128,
1825 		0x3f130, 0x3f148,
1826 		0x3f160, 0x3f168,
1827 		0x3f170, 0x3f19c,
1828 		0x3f1f0, 0x3f238,
1829 		0x3f240, 0x3f240,
1830 		0x3f248, 0x3f250,
1831 		0x3f25c, 0x3f264,
1832 		0x3f270, 0x3f2b8,
1833 		0x3f2c0, 0x3f2e4,
1834 		0x3f2f8, 0x3f338,
1835 		0x3f340, 0x3f340,
1836 		0x3f348, 0x3f350,
1837 		0x3f35c, 0x3f364,
1838 		0x3f370, 0x3f3b8,
1839 		0x3f3c0, 0x3f3e4,
1840 		0x3f3f8, 0x3f428,
1841 		0x3f430, 0x3f448,
1842 		0x3f460, 0x3f468,
1843 		0x3f470, 0x3f49c,
1844 		0x3f4f0, 0x3f528,
1845 		0x3f530, 0x3f548,
1846 		0x3f560, 0x3f568,
1847 		0x3f570, 0x3f59c,
1848 		0x3f5f0, 0x3f638,
1849 		0x3f640, 0x3f640,
1850 		0x3f648, 0x3f650,
1851 		0x3f65c, 0x3f664,
1852 		0x3f670, 0x3f6b8,
1853 		0x3f6c0, 0x3f6e4,
1854 		0x3f6f8, 0x3f738,
1855 		0x3f740, 0x3f740,
1856 		0x3f748, 0x3f750,
1857 		0x3f75c, 0x3f764,
1858 		0x3f770, 0x3f7b8,
1859 		0x3f7c0, 0x3f7e4,
1860 		0x3f7f8, 0x3f7fc,
1861 		0x3f814, 0x3f814,
1862 		0x3f82c, 0x3f82c,
1863 		0x3f880, 0x3f88c,
1864 		0x3f8e8, 0x3f8ec,
1865 		0x3f900, 0x3f928,
1866 		0x3f930, 0x3f948,
1867 		0x3f960, 0x3f968,
1868 		0x3f970, 0x3f99c,
1869 		0x3f9f0, 0x3fa38,
1870 		0x3fa40, 0x3fa40,
1871 		0x3fa48, 0x3fa50,
1872 		0x3fa5c, 0x3fa64,
1873 		0x3fa70, 0x3fab8,
1874 		0x3fac0, 0x3fae4,
1875 		0x3faf8, 0x3fb10,
1876 		0x3fb28, 0x3fb28,
1877 		0x3fb3c, 0x3fb50,
1878 		0x3fbf0, 0x3fc10,
1879 		0x3fc28, 0x3fc28,
1880 		0x3fc3c, 0x3fc50,
1881 		0x3fcf0, 0x3fcfc,
1882 		0x40000, 0x4000c,
1883 		0x40040, 0x40050,
1884 		0x40060, 0x40068,
1885 		0x4007c, 0x4008c,
1886 		0x40094, 0x400b0,
1887 		0x400c0, 0x40144,
1888 		0x40180, 0x4018c,
1889 		0x40200, 0x40254,
1890 		0x40260, 0x40264,
1891 		0x40270, 0x40288,
1892 		0x40290, 0x40298,
1893 		0x402ac, 0x402c8,
1894 		0x402d0, 0x402e0,
1895 		0x402f0, 0x402f0,
1896 		0x40300, 0x4033c,
1897 		0x403f8, 0x403fc,
1898 		0x41304, 0x413c4,
1899 		0x41400, 0x4140c,
1900 		0x41414, 0x4141c,
1901 		0x41480, 0x414d0,
1902 		0x44000, 0x44054,
1903 		0x4405c, 0x44078,
1904 		0x440c0, 0x44174,
1905 		0x44180, 0x441ac,
1906 		0x441b4, 0x441b8,
1907 		0x441c0, 0x44254,
1908 		0x4425c, 0x44278,
1909 		0x442c0, 0x44374,
1910 		0x44380, 0x443ac,
1911 		0x443b4, 0x443b8,
1912 		0x443c0, 0x44454,
1913 		0x4445c, 0x44478,
1914 		0x444c0, 0x44574,
1915 		0x44580, 0x445ac,
1916 		0x445b4, 0x445b8,
1917 		0x445c0, 0x44654,
1918 		0x4465c, 0x44678,
1919 		0x446c0, 0x44774,
1920 		0x44780, 0x447ac,
1921 		0x447b4, 0x447b8,
1922 		0x447c0, 0x44854,
1923 		0x4485c, 0x44878,
1924 		0x448c0, 0x44974,
1925 		0x44980, 0x449ac,
1926 		0x449b4, 0x449b8,
1927 		0x449c0, 0x449fc,
1928 		0x45000, 0x45004,
1929 		0x45010, 0x45030,
1930 		0x45040, 0x45060,
1931 		0x45068, 0x45068,
1932 		0x45080, 0x45084,
1933 		0x450a0, 0x450b0,
1934 		0x45200, 0x45204,
1935 		0x45210, 0x45230,
1936 		0x45240, 0x45260,
1937 		0x45268, 0x45268,
1938 		0x45280, 0x45284,
1939 		0x452a0, 0x452b0,
1940 		0x460c0, 0x460e4,
1941 		0x47000, 0x4703c,
1942 		0x47044, 0x4708c,
1943 		0x47200, 0x47250,
1944 		0x47400, 0x47408,
1945 		0x47414, 0x47420,
1946 		0x47600, 0x47618,
1947 		0x47800, 0x47814,
1948 		0x48000, 0x4800c,
1949 		0x48040, 0x48050,
1950 		0x48060, 0x48068,
1951 		0x4807c, 0x4808c,
1952 		0x48094, 0x480b0,
1953 		0x480c0, 0x48144,
1954 		0x48180, 0x4818c,
1955 		0x48200, 0x48254,
1956 		0x48260, 0x48264,
1957 		0x48270, 0x48288,
1958 		0x48290, 0x48298,
1959 		0x482ac, 0x482c8,
1960 		0x482d0, 0x482e0,
1961 		0x482f0, 0x482f0,
1962 		0x48300, 0x4833c,
1963 		0x483f8, 0x483fc,
1964 		0x49304, 0x493c4,
1965 		0x49400, 0x4940c,
1966 		0x49414, 0x4941c,
1967 		0x49480, 0x494d0,
1968 		0x4c000, 0x4c054,
1969 		0x4c05c, 0x4c078,
1970 		0x4c0c0, 0x4c174,
1971 		0x4c180, 0x4c1ac,
1972 		0x4c1b4, 0x4c1b8,
1973 		0x4c1c0, 0x4c254,
1974 		0x4c25c, 0x4c278,
1975 		0x4c2c0, 0x4c374,
1976 		0x4c380, 0x4c3ac,
1977 		0x4c3b4, 0x4c3b8,
1978 		0x4c3c0, 0x4c454,
1979 		0x4c45c, 0x4c478,
1980 		0x4c4c0, 0x4c574,
1981 		0x4c580, 0x4c5ac,
1982 		0x4c5b4, 0x4c5b8,
1983 		0x4c5c0, 0x4c654,
1984 		0x4c65c, 0x4c678,
1985 		0x4c6c0, 0x4c774,
1986 		0x4c780, 0x4c7ac,
1987 		0x4c7b4, 0x4c7b8,
1988 		0x4c7c0, 0x4c854,
1989 		0x4c85c, 0x4c878,
1990 		0x4c8c0, 0x4c974,
1991 		0x4c980, 0x4c9ac,
1992 		0x4c9b4, 0x4c9b8,
1993 		0x4c9c0, 0x4c9fc,
1994 		0x4d000, 0x4d004,
1995 		0x4d010, 0x4d030,
1996 		0x4d040, 0x4d060,
1997 		0x4d068, 0x4d068,
1998 		0x4d080, 0x4d084,
1999 		0x4d0a0, 0x4d0b0,
2000 		0x4d200, 0x4d204,
2001 		0x4d210, 0x4d230,
2002 		0x4d240, 0x4d260,
2003 		0x4d268, 0x4d268,
2004 		0x4d280, 0x4d284,
2005 		0x4d2a0, 0x4d2b0,
2006 		0x4e0c0, 0x4e0e4,
2007 		0x4f000, 0x4f03c,
2008 		0x4f044, 0x4f08c,
2009 		0x4f200, 0x4f250,
2010 		0x4f400, 0x4f408,
2011 		0x4f414, 0x4f420,
2012 		0x4f600, 0x4f618,
2013 		0x4f800, 0x4f814,
2014 		0x50000, 0x50084,
2015 		0x50090, 0x500cc,
2016 		0x50400, 0x50400,
2017 		0x50800, 0x50884,
2018 		0x50890, 0x508cc,
2019 		0x50c00, 0x50c00,
2020 		0x51000, 0x5101c,
2021 		0x51300, 0x51308,
2022 	};
2023 
2024 	static const unsigned int t6_reg_ranges[] = {
2025 		0x1008, 0x101c,
2026 		0x1024, 0x10a8,
2027 		0x10b4, 0x10f8,
2028 		0x1100, 0x1114,
2029 		0x111c, 0x112c,
2030 		0x1138, 0x113c,
2031 		0x1144, 0x114c,
2032 		0x1180, 0x1184,
2033 		0x1190, 0x1194,
2034 		0x11a0, 0x11a4,
2035 		0x11b0, 0x11b4,
2036 		0x11fc, 0x1274,
2037 		0x1280, 0x133c,
2038 		0x1800, 0x18fc,
2039 		0x3000, 0x302c,
2040 		0x3060, 0x30b0,
2041 		0x30b8, 0x30d8,
2042 		0x30e0, 0x30fc,
2043 		0x3140, 0x357c,
2044 		0x35a8, 0x35cc,
2045 		0x35ec, 0x35ec,
2046 		0x3600, 0x5624,
2047 		0x56cc, 0x56ec,
2048 		0x56f4, 0x5720,
2049 		0x5728, 0x575c,
2050 		0x580c, 0x5814,
2051 		0x5890, 0x589c,
2052 		0x58a4, 0x58ac,
2053 		0x58b8, 0x58bc,
2054 		0x5940, 0x595c,
2055 		0x5980, 0x598c,
2056 		0x59b0, 0x59c8,
2057 		0x59d0, 0x59dc,
2058 		0x59fc, 0x5a18,
2059 		0x5a60, 0x5a6c,
2060 		0x5a80, 0x5a8c,
2061 		0x5a94, 0x5a9c,
2062 		0x5b94, 0x5bfc,
2063 		0x5c10, 0x5e48,
2064 		0x5e50, 0x5e94,
2065 		0x5ea0, 0x5eb0,
2066 		0x5ec0, 0x5ec0,
2067 		0x5ec8, 0x5ed0,
2068 		0x5ee0, 0x5ee0,
2069 		0x5ef0, 0x5ef0,
2070 		0x5f00, 0x5f00,
2071 		0x6000, 0x6020,
2072 		0x6028, 0x6040,
2073 		0x6058, 0x609c,
2074 		0x60a8, 0x619c,
2075 		0x7700, 0x7798,
2076 		0x77c0, 0x7880,
2077 		0x78cc, 0x78fc,
2078 		0x7b00, 0x7b58,
2079 		0x7b60, 0x7b84,
2080 		0x7b8c, 0x7c54,
2081 		0x7d00, 0x7d38,
2082 		0x7d40, 0x7d84,
2083 		0x7d8c, 0x7ddc,
2084 		0x7de4, 0x7e04,
2085 		0x7e10, 0x7e1c,
2086 		0x7e24, 0x7e38,
2087 		0x7e40, 0x7e44,
2088 		0x7e4c, 0x7e78,
2089 		0x7e80, 0x7edc,
2090 		0x7ee8, 0x7efc,
2091 		0x8dc0, 0x8de4,
2092 		0x8df8, 0x8e04,
2093 		0x8e10, 0x8e84,
2094 		0x8ea0, 0x8f88,
2095 		0x8fb8, 0x9058,
2096 		0x9060, 0x9060,
2097 		0x9068, 0x90f8,
2098 		0x9100, 0x9124,
2099 		0x9400, 0x9470,
2100 		0x9600, 0x9600,
2101 		0x9608, 0x9638,
2102 		0x9640, 0x9704,
2103 		0x9710, 0x971c,
2104 		0x9800, 0x9808,
2105 		0x9820, 0x983c,
2106 		0x9850, 0x9864,
2107 		0x9c00, 0x9c6c,
2108 		0x9c80, 0x9cec,
2109 		0x9d00, 0x9d6c,
2110 		0x9d80, 0x9dec,
2111 		0x9e00, 0x9e6c,
2112 		0x9e80, 0x9eec,
2113 		0x9f00, 0x9f6c,
2114 		0x9f80, 0xa020,
2115 		0xd004, 0xd03c,
2116 		0xd100, 0xd118,
2117 		0xd200, 0xd214,
2118 		0xd220, 0xd234,
2119 		0xd240, 0xd254,
2120 		0xd260, 0xd274,
2121 		0xd280, 0xd294,
2122 		0xd2a0, 0xd2b4,
2123 		0xd2c0, 0xd2d4,
2124 		0xd2e0, 0xd2f4,
2125 		0xd300, 0xd31c,
2126 		0xdfc0, 0xdfe0,
2127 		0xe000, 0xf008,
2128 		0xf010, 0xf018,
2129 		0xf020, 0xf028,
2130 		0x11000, 0x11014,
2131 		0x11048, 0x1106c,
2132 		0x11074, 0x11088,
2133 		0x11098, 0x11120,
2134 		0x1112c, 0x1117c,
2135 		0x11190, 0x112e0,
2136 		0x11300, 0x1130c,
2137 		0x12000, 0x1206c,
2138 		0x19040, 0x1906c,
2139 		0x19078, 0x19080,
2140 		0x1908c, 0x190e8,
2141 		0x190f0, 0x190f8,
2142 		0x19100, 0x19110,
2143 		0x19120, 0x19124,
2144 		0x19150, 0x19194,
2145 		0x1919c, 0x191b0,
2146 		0x191d0, 0x191e8,
2147 		0x19238, 0x19290,
2148 		0x192a4, 0x192b0,
2149 		0x192bc, 0x192bc,
2150 		0x19348, 0x1934c,
2151 		0x193f8, 0x19418,
2152 		0x19420, 0x19428,
2153 		0x19430, 0x19444,
2154 		0x1944c, 0x1946c,
2155 		0x19474, 0x19474,
2156 		0x19490, 0x194cc,
2157 		0x194f0, 0x194f8,
2158 		0x19c00, 0x19c48,
2159 		0x19c50, 0x19c80,
2160 		0x19c94, 0x19c98,
2161 		0x19ca0, 0x19cbc,
2162 		0x19ce4, 0x19ce4,
2163 		0x19cf0, 0x19cf8,
2164 		0x19d00, 0x19d28,
2165 		0x19d50, 0x19d78,
2166 		0x19d94, 0x19d98,
2167 		0x19da0, 0x19dc8,
2168 		0x19df0, 0x19e10,
2169 		0x19e50, 0x19e6c,
2170 		0x19ea0, 0x19ebc,
2171 		0x19ec4, 0x19ef4,
2172 		0x19f04, 0x19f2c,
2173 		0x19f34, 0x19f34,
2174 		0x19f40, 0x19f50,
2175 		0x19f90, 0x19fac,
2176 		0x19fc4, 0x19fc8,
2177 		0x19fd0, 0x19fe4,
2178 		0x1a000, 0x1a004,
2179 		0x1a010, 0x1a06c,
2180 		0x1a0b0, 0x1a0e4,
2181 		0x1a0ec, 0x1a0f8,
2182 		0x1a100, 0x1a108,
2183 		0x1a114, 0x1a120,
2184 		0x1a128, 0x1a130,
2185 		0x1a138, 0x1a138,
2186 		0x1a190, 0x1a1c4,
2187 		0x1a1fc, 0x1a1fc,
2188 		0x1e008, 0x1e00c,
2189 		0x1e040, 0x1e044,
2190 		0x1e04c, 0x1e04c,
2191 		0x1e284, 0x1e290,
2192 		0x1e2c0, 0x1e2c0,
2193 		0x1e2e0, 0x1e2e0,
2194 		0x1e300, 0x1e384,
2195 		0x1e3c0, 0x1e3c8,
2196 		0x1e408, 0x1e40c,
2197 		0x1e440, 0x1e444,
2198 		0x1e44c, 0x1e44c,
2199 		0x1e684, 0x1e690,
2200 		0x1e6c0, 0x1e6c0,
2201 		0x1e6e0, 0x1e6e0,
2202 		0x1e700, 0x1e784,
2203 		0x1e7c0, 0x1e7c8,
2204 		0x1e808, 0x1e80c,
2205 		0x1e840, 0x1e844,
2206 		0x1e84c, 0x1e84c,
2207 		0x1ea84, 0x1ea90,
2208 		0x1eac0, 0x1eac0,
2209 		0x1eae0, 0x1eae0,
2210 		0x1eb00, 0x1eb84,
2211 		0x1ebc0, 0x1ebc8,
2212 		0x1ec08, 0x1ec0c,
2213 		0x1ec40, 0x1ec44,
2214 		0x1ec4c, 0x1ec4c,
2215 		0x1ee84, 0x1ee90,
2216 		0x1eec0, 0x1eec0,
2217 		0x1eee0, 0x1eee0,
2218 		0x1ef00, 0x1ef84,
2219 		0x1efc0, 0x1efc8,
2220 		0x1f008, 0x1f00c,
2221 		0x1f040, 0x1f044,
2222 		0x1f04c, 0x1f04c,
2223 		0x1f284, 0x1f290,
2224 		0x1f2c0, 0x1f2c0,
2225 		0x1f2e0, 0x1f2e0,
2226 		0x1f300, 0x1f384,
2227 		0x1f3c0, 0x1f3c8,
2228 		0x1f408, 0x1f40c,
2229 		0x1f440, 0x1f444,
2230 		0x1f44c, 0x1f44c,
2231 		0x1f684, 0x1f690,
2232 		0x1f6c0, 0x1f6c0,
2233 		0x1f6e0, 0x1f6e0,
2234 		0x1f700, 0x1f784,
2235 		0x1f7c0, 0x1f7c8,
2236 		0x1f808, 0x1f80c,
2237 		0x1f840, 0x1f844,
2238 		0x1f84c, 0x1f84c,
2239 		0x1fa84, 0x1fa90,
2240 		0x1fac0, 0x1fac0,
2241 		0x1fae0, 0x1fae0,
2242 		0x1fb00, 0x1fb84,
2243 		0x1fbc0, 0x1fbc8,
2244 		0x1fc08, 0x1fc0c,
2245 		0x1fc40, 0x1fc44,
2246 		0x1fc4c, 0x1fc4c,
2247 		0x1fe84, 0x1fe90,
2248 		0x1fec0, 0x1fec0,
2249 		0x1fee0, 0x1fee0,
2250 		0x1ff00, 0x1ff84,
2251 		0x1ffc0, 0x1ffc8,
2252 		0x30000, 0x30030,
2253 		0x30100, 0x30168,
2254 		0x30190, 0x301a0,
2255 		0x301a8, 0x301b8,
2256 		0x301c4, 0x301c8,
2257 		0x301d0, 0x301d0,
2258 		0x30200, 0x30320,
2259 		0x30400, 0x304b4,
2260 		0x304c0, 0x3052c,
2261 		0x30540, 0x3061c,
2262 		0x30800, 0x308a0,
2263 		0x308c0, 0x30908,
2264 		0x30910, 0x309b8,
2265 		0x30a00, 0x30a04,
2266 		0x30a0c, 0x30a14,
2267 		0x30a1c, 0x30a2c,
2268 		0x30a44, 0x30a50,
2269 		0x30a74, 0x30a74,
2270 		0x30a7c, 0x30afc,
2271 		0x30b08, 0x30c24,
2272 		0x30d00, 0x30d14,
2273 		0x30d1c, 0x30d3c,
2274 		0x30d44, 0x30d4c,
2275 		0x30d54, 0x30d74,
2276 		0x30d7c, 0x30d7c,
2277 		0x30de0, 0x30de0,
2278 		0x30e00, 0x30ed4,
2279 		0x30f00, 0x30fa4,
2280 		0x30fc0, 0x30fc4,
2281 		0x31000, 0x31004,
2282 		0x31080, 0x310fc,
2283 		0x31208, 0x31220,
2284 		0x3123c, 0x31254,
2285 		0x31300, 0x31300,
2286 		0x31308, 0x3131c,
2287 		0x31338, 0x3133c,
2288 		0x31380, 0x31380,
2289 		0x31388, 0x313a8,
2290 		0x313b4, 0x313b4,
2291 		0x31400, 0x31420,
2292 		0x31438, 0x3143c,
2293 		0x31480, 0x31480,
2294 		0x314a8, 0x314a8,
2295 		0x314b0, 0x314b4,
2296 		0x314c8, 0x314d4,
2297 		0x31a40, 0x31a4c,
2298 		0x31af0, 0x31b20,
2299 		0x31b38, 0x31b3c,
2300 		0x31b80, 0x31b80,
2301 		0x31ba8, 0x31ba8,
2302 		0x31bb0, 0x31bb4,
2303 		0x31bc8, 0x31bd4,
2304 		0x32140, 0x3218c,
2305 		0x321f0, 0x321f4,
2306 		0x32200, 0x32200,
2307 		0x32218, 0x32218,
2308 		0x32400, 0x32400,
2309 		0x32408, 0x3241c,
2310 		0x32618, 0x32620,
2311 		0x32664, 0x32664,
2312 		0x326a8, 0x326a8,
2313 		0x326ec, 0x326ec,
2314 		0x32a00, 0x32abc,
2315 		0x32b00, 0x32b18,
2316 		0x32b20, 0x32b38,
2317 		0x32b40, 0x32b58,
2318 		0x32b60, 0x32b78,
2319 		0x32c00, 0x32c00,
2320 		0x32c08, 0x32c3c,
2321 		0x33000, 0x3302c,
2322 		0x33034, 0x33050,
2323 		0x33058, 0x33058,
2324 		0x33060, 0x3308c,
2325 		0x3309c, 0x330ac,
2326 		0x330c0, 0x330c0,
2327 		0x330c8, 0x330d0,
2328 		0x330d8, 0x330e0,
2329 		0x330ec, 0x3312c,
2330 		0x33134, 0x33150,
2331 		0x33158, 0x33158,
2332 		0x33160, 0x3318c,
2333 		0x3319c, 0x331ac,
2334 		0x331c0, 0x331c0,
2335 		0x331c8, 0x331d0,
2336 		0x331d8, 0x331e0,
2337 		0x331ec, 0x33290,
2338 		0x33298, 0x332c4,
2339 		0x332e4, 0x33390,
2340 		0x33398, 0x333c4,
2341 		0x333e4, 0x3342c,
2342 		0x33434, 0x33450,
2343 		0x33458, 0x33458,
2344 		0x33460, 0x3348c,
2345 		0x3349c, 0x334ac,
2346 		0x334c0, 0x334c0,
2347 		0x334c8, 0x334d0,
2348 		0x334d8, 0x334e0,
2349 		0x334ec, 0x3352c,
2350 		0x33534, 0x33550,
2351 		0x33558, 0x33558,
2352 		0x33560, 0x3358c,
2353 		0x3359c, 0x335ac,
2354 		0x335c0, 0x335c0,
2355 		0x335c8, 0x335d0,
2356 		0x335d8, 0x335e0,
2357 		0x335ec, 0x33690,
2358 		0x33698, 0x336c4,
2359 		0x336e4, 0x33790,
2360 		0x33798, 0x337c4,
2361 		0x337e4, 0x337fc,
2362 		0x33814, 0x33814,
2363 		0x33854, 0x33868,
2364 		0x33880, 0x3388c,
2365 		0x338c0, 0x338d0,
2366 		0x338e8, 0x338ec,
2367 		0x33900, 0x3392c,
2368 		0x33934, 0x33950,
2369 		0x33958, 0x33958,
2370 		0x33960, 0x3398c,
2371 		0x3399c, 0x339ac,
2372 		0x339c0, 0x339c0,
2373 		0x339c8, 0x339d0,
2374 		0x339d8, 0x339e0,
2375 		0x339ec, 0x33a90,
2376 		0x33a98, 0x33ac4,
2377 		0x33ae4, 0x33b10,
2378 		0x33b24, 0x33b28,
2379 		0x33b38, 0x33b50,
2380 		0x33bf0, 0x33c10,
2381 		0x33c24, 0x33c28,
2382 		0x33c38, 0x33c50,
2383 		0x33cf0, 0x33cfc,
2384 		0x34000, 0x34030,
2385 		0x34100, 0x34168,
2386 		0x34190, 0x341a0,
2387 		0x341a8, 0x341b8,
2388 		0x341c4, 0x341c8,
2389 		0x341d0, 0x341d0,
2390 		0x34200, 0x34320,
2391 		0x34400, 0x344b4,
2392 		0x344c0, 0x3452c,
2393 		0x34540, 0x3461c,
2394 		0x34800, 0x348a0,
2395 		0x348c0, 0x34908,
2396 		0x34910, 0x349b8,
2397 		0x34a00, 0x34a04,
2398 		0x34a0c, 0x34a14,
2399 		0x34a1c, 0x34a2c,
2400 		0x34a44, 0x34a50,
2401 		0x34a74, 0x34a74,
2402 		0x34a7c, 0x34afc,
2403 		0x34b08, 0x34c24,
2404 		0x34d00, 0x34d14,
2405 		0x34d1c, 0x34d3c,
2406 		0x34d44, 0x34d4c,
2407 		0x34d54, 0x34d74,
2408 		0x34d7c, 0x34d7c,
2409 		0x34de0, 0x34de0,
2410 		0x34e00, 0x34ed4,
2411 		0x34f00, 0x34fa4,
2412 		0x34fc0, 0x34fc4,
2413 		0x35000, 0x35004,
2414 		0x35080, 0x350fc,
2415 		0x35208, 0x35220,
2416 		0x3523c, 0x35254,
2417 		0x35300, 0x35300,
2418 		0x35308, 0x3531c,
2419 		0x35338, 0x3533c,
2420 		0x35380, 0x35380,
2421 		0x35388, 0x353a8,
2422 		0x353b4, 0x353b4,
2423 		0x35400, 0x35420,
2424 		0x35438, 0x3543c,
2425 		0x35480, 0x35480,
2426 		0x354a8, 0x354a8,
2427 		0x354b0, 0x354b4,
2428 		0x354c8, 0x354d4,
2429 		0x35a40, 0x35a4c,
2430 		0x35af0, 0x35b20,
2431 		0x35b38, 0x35b3c,
2432 		0x35b80, 0x35b80,
2433 		0x35ba8, 0x35ba8,
2434 		0x35bb0, 0x35bb4,
2435 		0x35bc8, 0x35bd4,
2436 		0x36140, 0x3618c,
2437 		0x361f0, 0x361f4,
2438 		0x36200, 0x36200,
2439 		0x36218, 0x36218,
2440 		0x36400, 0x36400,
2441 		0x36408, 0x3641c,
2442 		0x36618, 0x36620,
2443 		0x36664, 0x36664,
2444 		0x366a8, 0x366a8,
2445 		0x366ec, 0x366ec,
2446 		0x36a00, 0x36abc,
2447 		0x36b00, 0x36b18,
2448 		0x36b20, 0x36b38,
2449 		0x36b40, 0x36b58,
2450 		0x36b60, 0x36b78,
2451 		0x36c00, 0x36c00,
2452 		0x36c08, 0x36c3c,
2453 		0x37000, 0x3702c,
2454 		0x37034, 0x37050,
2455 		0x37058, 0x37058,
2456 		0x37060, 0x3708c,
2457 		0x3709c, 0x370ac,
2458 		0x370c0, 0x370c0,
2459 		0x370c8, 0x370d0,
2460 		0x370d8, 0x370e0,
2461 		0x370ec, 0x3712c,
2462 		0x37134, 0x37150,
2463 		0x37158, 0x37158,
2464 		0x37160, 0x3718c,
2465 		0x3719c, 0x371ac,
2466 		0x371c0, 0x371c0,
2467 		0x371c8, 0x371d0,
2468 		0x371d8, 0x371e0,
2469 		0x371ec, 0x37290,
2470 		0x37298, 0x372c4,
2471 		0x372e4, 0x37390,
2472 		0x37398, 0x373c4,
2473 		0x373e4, 0x3742c,
2474 		0x37434, 0x37450,
2475 		0x37458, 0x37458,
2476 		0x37460, 0x3748c,
2477 		0x3749c, 0x374ac,
2478 		0x374c0, 0x374c0,
2479 		0x374c8, 0x374d0,
2480 		0x374d8, 0x374e0,
2481 		0x374ec, 0x3752c,
2482 		0x37534, 0x37550,
2483 		0x37558, 0x37558,
2484 		0x37560, 0x3758c,
2485 		0x3759c, 0x375ac,
2486 		0x375c0, 0x375c0,
2487 		0x375c8, 0x375d0,
2488 		0x375d8, 0x375e0,
2489 		0x375ec, 0x37690,
2490 		0x37698, 0x376c4,
2491 		0x376e4, 0x37790,
2492 		0x37798, 0x377c4,
2493 		0x377e4, 0x377fc,
2494 		0x37814, 0x37814,
2495 		0x37854, 0x37868,
2496 		0x37880, 0x3788c,
2497 		0x378c0, 0x378d0,
2498 		0x378e8, 0x378ec,
2499 		0x37900, 0x3792c,
2500 		0x37934, 0x37950,
2501 		0x37958, 0x37958,
2502 		0x37960, 0x3798c,
2503 		0x3799c, 0x379ac,
2504 		0x379c0, 0x379c0,
2505 		0x379c8, 0x379d0,
2506 		0x379d8, 0x379e0,
2507 		0x379ec, 0x37a90,
2508 		0x37a98, 0x37ac4,
2509 		0x37ae4, 0x37b10,
2510 		0x37b24, 0x37b28,
2511 		0x37b38, 0x37b50,
2512 		0x37bf0, 0x37c10,
2513 		0x37c24, 0x37c28,
2514 		0x37c38, 0x37c50,
2515 		0x37cf0, 0x37cfc,
2516 		0x40040, 0x40040,
2517 		0x40080, 0x40084,
2518 		0x40100, 0x40100,
2519 		0x40140, 0x401bc,
2520 		0x40200, 0x40214,
2521 		0x40228, 0x40228,
2522 		0x40240, 0x40258,
2523 		0x40280, 0x40280,
2524 		0x40304, 0x40304,
2525 		0x40330, 0x4033c,
2526 		0x41304, 0x413c8,
2527 		0x413d0, 0x413dc,
2528 		0x413f0, 0x413f0,
2529 		0x41400, 0x4140c,
2530 		0x41414, 0x4141c,
2531 		0x41480, 0x414d0,
2532 		0x44000, 0x4407c,
2533 		0x440c0, 0x441ac,
2534 		0x441b4, 0x4427c,
2535 		0x442c0, 0x443ac,
2536 		0x443b4, 0x4447c,
2537 		0x444c0, 0x445ac,
2538 		0x445b4, 0x4467c,
2539 		0x446c0, 0x447ac,
2540 		0x447b4, 0x4487c,
2541 		0x448c0, 0x449ac,
2542 		0x449b4, 0x44a7c,
2543 		0x44ac0, 0x44bac,
2544 		0x44bb4, 0x44c7c,
2545 		0x44cc0, 0x44dac,
2546 		0x44db4, 0x44e7c,
2547 		0x44ec0, 0x44fac,
2548 		0x44fb4, 0x4507c,
2549 		0x450c0, 0x451ac,
2550 		0x451b4, 0x451fc,
2551 		0x45800, 0x45804,
2552 		0x45810, 0x45830,
2553 		0x45840, 0x45860,
2554 		0x45868, 0x45868,
2555 		0x45880, 0x45884,
2556 		0x458a0, 0x458b0,
2557 		0x45a00, 0x45a04,
2558 		0x45a10, 0x45a30,
2559 		0x45a40, 0x45a60,
2560 		0x45a68, 0x45a68,
2561 		0x45a80, 0x45a84,
2562 		0x45aa0, 0x45ab0,
2563 		0x460c0, 0x460e4,
2564 		0x47000, 0x4703c,
2565 		0x47044, 0x4708c,
2566 		0x47200, 0x47250,
2567 		0x47400, 0x47408,
2568 		0x47414, 0x47420,
2569 		0x47600, 0x47618,
2570 		0x47800, 0x47814,
2571 		0x47820, 0x4782c,
2572 		0x50000, 0x50084,
2573 		0x50090, 0x500cc,
2574 		0x50300, 0x50384,
2575 		0x50400, 0x50400,
2576 		0x50800, 0x50884,
2577 		0x50890, 0x508cc,
2578 		0x50b00, 0x50b84,
2579 		0x50c00, 0x50c00,
2580 		0x51000, 0x51020,
2581 		0x51028, 0x510b0,
2582 		0x51300, 0x51324,
2583 	};
2584 
2585 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2586 	const unsigned int *reg_ranges;
2587 	int reg_ranges_size, range;
2588 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2589 
2590 	/* Select the right set of register ranges to dump depending on the
2591 	 * adapter chip type.
2592 	 */
2593 	switch (chip_version) {
2594 	case CHELSIO_T4:
2595 		reg_ranges = t4_reg_ranges;
2596 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2597 		break;
2598 
2599 	case CHELSIO_T5:
2600 		reg_ranges = t5_reg_ranges;
2601 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2602 		break;
2603 
2604 	case CHELSIO_T6:
2605 		reg_ranges = t6_reg_ranges;
2606 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2607 		break;
2608 
2609 	default:
2610 		dev_err(adap->pdev_dev,
2611 			"Unsupported chip version %d\n", chip_version);
2612 		return;
2613 	}
2614 
2615 	/* Clear the register buffer and insert the appropriate register
2616 	 * values selected by the above register ranges.
2617 	 */
2618 	memset(buf, 0, buf_size);
2619 	for (range = 0; range < reg_ranges_size; range += 2) {
2620 		unsigned int reg = reg_ranges[range];
2621 		unsigned int last_reg = reg_ranges[range + 1];
2622 		u32 *bufp = (u32 *)((char *)buf + reg);
2623 
2624 		/* Iterate across the register range filling in the register
2625 		 * buffer but don't write past the end of the register buffer.
2626 		 */
2627 		while (reg <= last_reg && bufp < buf_end) {
2628 			*bufp++ = t4_read_reg(adap, reg);
2629 			reg += sizeof(u32);
2630 		}
2631 	}
2632 }
2633 
2634 #define EEPROM_STAT_ADDR   0x7bfc
2635 #define VPD_SIZE           0x800
2636 #define VPD_BASE           0x400
2637 #define VPD_BASE_OLD       0
2638 #define VPD_LEN            1024
2639 #define CHELSIO_VPD_UNIQUE_ID 0x82
2640 
2641 /**
2642  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2643  * @phys_addr: the physical EEPROM address
2644  * @fn: the PCI function number
2645  * @sz: size of function-specific area
2646  *
2647  * Translate a physical EEPROM address to virtual.  The first 1K is
2648  * accessed through virtual addresses starting at 31K, the rest is
2649  * accessed through virtual addresses starting at 0.
2650  *
2651  * The mapping is as follows:
2652  * [0..1K) -> [31K..32K)
2653  * [1K..1K+A) -> [31K-A..31K)
2654  * [1K+A..ES) -> [0..ES-A-1K)
2655  *
2656  * where A = @fn * @sz, and ES = EEPROM size.
2657  */
2658 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2659 {
2660 	fn *= sz;
2661 	if (phys_addr < 1024)
2662 		return phys_addr + (31 << 10);
2663 	if (phys_addr < 1024 + fn)
2664 		return 31744 - fn + phys_addr - 1024;
2665 	if (phys_addr < EEPROMSIZE)
2666 		return phys_addr - 1024 - fn;
2667 	return -EINVAL;
2668 }
2669 
2670 /**
2671  *	t4_seeprom_wp - enable/disable EEPROM write protection
2672  *	@adapter: the adapter
2673  *	@enable: whether to enable or disable write protection
2674  *
2675  *	Enables or disables write protection on the serial EEPROM.
2676  */
2677 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2678 {
2679 	unsigned int v = enable ? 0xc : 0;
2680 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2681 	return ret < 0 ? ret : 0;
2682 }
2683 
2684 /**
2685  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2686  *	@adapter: adapter to read
2687  *	@p: where to store the parameters
2688  *
2689  *	Reads card parameters stored in VPD EEPROM.
2690  */
2691 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2692 {
2693 	int i, ret = 0, addr;
2694 	int ec, sn, pn, na;
2695 	u8 *vpd, csum;
2696 	unsigned int vpdr_len, kw_offset, id_len;
2697 
2698 	vpd = vmalloc(VPD_LEN);
2699 	if (!vpd)
2700 		return -ENOMEM;
2701 
2702 	/* We have two VPD data structures stored in the adapter VPD area.
2703 	 * By default, Linux calculates the size of the VPD area by traversing
2704 	 * the first VPD area at offset 0x0, so we need to tell the OS what
2705 	 * our real VPD size is.
2706 	 */
2707 	ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE);
2708 	if (ret < 0)
2709 		goto out;
2710 
2711 	/* Card information normally starts at VPD_BASE but early cards had
2712 	 * it at 0.
2713 	 */
2714 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2715 	if (ret < 0)
2716 		goto out;
2717 
2718 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2719 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2720 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2721 	 * is expected to automatically put this entry at the
2722 	 * beginning of the VPD.
2723 	 */
2724 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2725 
2726 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2727 	if (ret < 0)
2728 		goto out;
2729 
2730 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2731 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2732 		ret = -EINVAL;
2733 		goto out;
2734 	}
2735 
2736 	id_len = pci_vpd_lrdt_size(vpd);
2737 	if (id_len > ID_LEN)
2738 		id_len = ID_LEN;
2739 
2740 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2741 	if (i < 0) {
2742 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2743 		ret = -EINVAL;
2744 		goto out;
2745 	}
2746 
2747 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2748 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2749 	if (vpdr_len + kw_offset > VPD_LEN) {
2750 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2751 		ret = -EINVAL;
2752 		goto out;
2753 	}
2754 
2755 #define FIND_VPD_KW(var, name) do { \
2756 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2757 	if (var < 0) { \
2758 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2759 		ret = -EINVAL; \
2760 		goto out; \
2761 	} \
2762 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2763 } while (0)
2764 
2765 	FIND_VPD_KW(i, "RV");
2766 	for (csum = 0; i >= 0; i--)
2767 		csum += vpd[i];
2768 
2769 	if (csum) {
2770 		dev_err(adapter->pdev_dev,
2771 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2772 		ret = -EINVAL;
2773 		goto out;
2774 	}
2775 
2776 	FIND_VPD_KW(ec, "EC");
2777 	FIND_VPD_KW(sn, "SN");
2778 	FIND_VPD_KW(pn, "PN");
2779 	FIND_VPD_KW(na, "NA");
2780 #undef FIND_VPD_KW
2781 
2782 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2783 	strim(p->id);
2784 	memcpy(p->ec, vpd + ec, EC_LEN);
2785 	strim(p->ec);
2786 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2787 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2788 	strim(p->sn);
2789 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2790 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2791 	strim(p->pn);
2792 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2793 	strim((char *)p->na);
2794 
2795 out:
2796 	vfree(vpd);
2797 	return ret < 0 ? ret : 0;
2798 }
2799 
2800 /**
2801  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2802  *	@adapter: adapter to read
2803  *	@p: where to store the parameters
2804  *
2805  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2806  *	Clock.  This can only be called after a connection to the firmware
2807  *	is established.
2808  */
2809 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2810 {
2811 	u32 cclk_param, cclk_val;
2812 	int ret;
2813 
2814 	/* Grab the raw VPD parameters.
2815 	 */
2816 	ret = t4_get_raw_vpd_params(adapter, p);
2817 	if (ret)
2818 		return ret;
2819 
2820 	/* Ask firmware for the Core Clock since it knows how to translate the
2821 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2822 	 */
2823 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2824 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2825 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2826 			      1, &cclk_param, &cclk_val);
2827 
2828 	if (ret)
2829 		return ret;
2830 	p->cclk = cclk_val;
2831 
2832 	return 0;
2833 }
2834 
2835 /* serial flash and firmware constants */
2836 enum {
2837 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2838 
2839 	/* flash command opcodes */
2840 	SF_PROG_PAGE    = 2,          /* program page */
2841 	SF_WR_DISABLE   = 4,          /* disable writes */
2842 	SF_RD_STATUS    = 5,          /* read status register */
2843 	SF_WR_ENABLE    = 6,          /* enable writes */
2844 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2845 	SF_RD_ID        = 0x9f,       /* read ID */
2846 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2847 
2848 	FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2849 };
2850 
2851 /**
2852  *	sf1_read - read data from the serial flash
2853  *	@adapter: the adapter
2854  *	@byte_cnt: number of bytes to read
2855  *	@cont: whether another operation will be chained
2856  *	@lock: whether to lock SF for PL access only
2857  *	@valp: where to store the read data
2858  *
2859  *	Reads up to 4 bytes of data from the serial flash.  The location of
2860  *	the read needs to be specified prior to calling this by issuing the
2861  *	appropriate commands to the serial flash.
2862  */
2863 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2864 		    int lock, u32 *valp)
2865 {
2866 	int ret;
2867 
2868 	if (!byte_cnt || byte_cnt > 4)
2869 		return -EINVAL;
2870 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2871 		return -EBUSY;
2872 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2873 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2874 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2875 	if (!ret)
2876 		*valp = t4_read_reg(adapter, SF_DATA_A);
2877 	return ret;
2878 }
2879 
2880 /**
2881  *	sf1_write - write data to the serial flash
2882  *	@adapter: the adapter
2883  *	@byte_cnt: number of bytes to write
2884  *	@cont: whether another operation will be chained
2885  *	@lock: whether to lock SF for PL access only
2886  *	@val: value to write
2887  *
2888  *	Writes up to 4 bytes of data to the serial flash.  The location of
2889  *	the write needs to be specified prior to calling this by issuing the
2890  *	appropriate commands to the serial flash.
2891  */
2892 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2893 		     int lock, u32 val)
2894 {
2895 	if (!byte_cnt || byte_cnt > 4)
2896 		return -EINVAL;
2897 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2898 		return -EBUSY;
2899 	t4_write_reg(adapter, SF_DATA_A, val);
2900 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2901 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2902 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2903 }
2904 
2905 /**
2906  *	flash_wait_op - wait for a flash operation to complete
2907  *	@adapter: the adapter
2908  *	@attempts: max number of polls of the status register
2909  *	@delay: delay between polls in ms
2910  *
2911  *	Wait for a flash operation to complete by polling the status register.
2912  */
2913 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2914 {
2915 	int ret;
2916 	u32 status;
2917 
2918 	while (1) {
2919 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2920 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2921 			return ret;
2922 		if (!(status & 1))
2923 			return 0;
2924 		if (--attempts == 0)
2925 			return -EAGAIN;
2926 		if (delay)
2927 			msleep(delay);
2928 	}
2929 }
2930 
2931 /**
2932  *	t4_read_flash - read words from serial flash
2933  *	@adapter: the adapter
2934  *	@addr: the start address for the read
2935  *	@nwords: how many 32-bit words to read
2936  *	@data: where to store the read data
2937  *	@byte_oriented: whether to store data as bytes or as words
2938  *
2939  *	Read the specified number of 32-bit words from the serial flash.
2940  *	If @byte_oriented is set the read data is stored as a byte array
2941  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2942  *	natural endianness.
2943  */
2944 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2945 		  unsigned int nwords, u32 *data, int byte_oriented)
2946 {
2947 	int ret;
2948 
2949 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2950 		return -EINVAL;
2951 
2952 	addr = swab32(addr) | SF_RD_DATA_FAST;
2953 
2954 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2955 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2956 		return ret;
2957 
2958 	for ( ; nwords; nwords--, data++) {
2959 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2960 		if (nwords == 1)
2961 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2962 		if (ret)
2963 			return ret;
2964 		if (byte_oriented)
2965 			*data = (__force __u32)(cpu_to_be32(*data));
2966 	}
2967 	return 0;
2968 }
2969 
2970 /**
2971  *	t4_write_flash - write up to a page of data to the serial flash
2972  *	@adapter: the adapter
2973  *	@addr: the start address to write
2974  *	@n: length of data to write in bytes
2975  *	@data: the data to write
2976  *
2977  *	Writes up to a page of data (256 bytes) to the serial flash starting
2978  *	at the given address.  All the data must be written to the same page.
2979  */
2980 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2981 			  unsigned int n, const u8 *data)
2982 {
2983 	int ret;
2984 	u32 buf[64];
2985 	unsigned int i, c, left, val, offset = addr & 0xff;
2986 
2987 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2988 		return -EINVAL;
2989 
2990 	val = swab32(addr) | SF_PROG_PAGE;
2991 
2992 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2993 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2994 		goto unlock;
2995 
2996 	for (left = n; left; left -= c) {
2997 		c = min(left, 4U);
2998 		for (val = 0, i = 0; i < c; ++i)
2999 			val = (val << 8) + *data++;
3000 
3001 		ret = sf1_write(adapter, c, c != left, 1, val);
3002 		if (ret)
3003 			goto unlock;
3004 	}
3005 	ret = flash_wait_op(adapter, 8, 1);
3006 	if (ret)
3007 		goto unlock;
3008 
3009 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3010 
3011 	/* Read the page to verify the write succeeded */
3012 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3013 	if (ret)
3014 		return ret;
3015 
3016 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3017 		dev_err(adapter->pdev_dev,
3018 			"failed to correctly write the flash page at %#x\n",
3019 			addr);
3020 		return -EIO;
3021 	}
3022 	return 0;
3023 
3024 unlock:
3025 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3026 	return ret;
3027 }
3028 
3029 /**
3030  *	t4_get_fw_version - read the firmware version
3031  *	@adapter: the adapter
3032  *	@vers: where to place the version
3033  *
3034  *	Reads the FW version from flash.
3035  */
3036 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3037 {
3038 	return t4_read_flash(adapter, FLASH_FW_START +
3039 			     offsetof(struct fw_hdr, fw_ver), 1,
3040 			     vers, 0);
3041 }
3042 
3043 /**
3044  *	t4_get_bs_version - read the firmware bootstrap version
3045  *	@adapter: the adapter
3046  *	@vers: where to place the version
3047  *
3048  *	Reads the FW Bootstrap version from flash.
3049  */
3050 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3051 {
3052 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3053 			     offsetof(struct fw_hdr, fw_ver), 1,
3054 			     vers, 0);
3055 }
3056 
3057 /**
3058  *	t4_get_tp_version - read the TP microcode version
3059  *	@adapter: the adapter
3060  *	@vers: where to place the version
3061  *
3062  *	Reads the TP microcode version from flash.
3063  */
3064 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3065 {
3066 	return t4_read_flash(adapter, FLASH_FW_START +
3067 			     offsetof(struct fw_hdr, tp_microcode_ver),
3068 			     1, vers, 0);
3069 }
3070 
3071 /**
3072  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3073  *	@adapter: the adapter
3074  *	@vers: where to place the version
3075  *
3076  *	Reads the Expansion ROM header from FLASH and returns the version
3077  *	number (if present) through the @vers return value pointer.  We return
3078  *	this in the Firmware Version Format since it's convenient.  Return
3079  *	0 on success, -ENOENT if no Expansion ROM is present.
3080  */
3081 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3082 {
3083 	struct exprom_header {
3084 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3085 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3086 	} *hdr;
3087 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3088 					   sizeof(u32))];
3089 	int ret;
3090 
3091 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3092 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3093 			    0);
3094 	if (ret)
3095 		return ret;
3096 
3097 	hdr = (struct exprom_header *)exprom_header_buf;
3098 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3099 		return -ENOENT;
3100 
3101 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3102 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3103 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3104 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3105 	return 0;
3106 }
3107 
3108 /**
3109  *      t4_get_vpd_version - return the VPD version
3110  *      @adapter: the adapter
3111  *      @vers: where to place the version
3112  *
3113  *      Reads the VPD via the Firmware interface (thus this can only be called
3114  *      once we're ready to issue Firmware commands).  The format of the
3115  *      VPD version is adapter specific.  Returns 0 on success, an error on
3116  *      failure.
3117  *
3118  *      Note that early versions of the Firmware didn't include the ability
3119  *      to retrieve the VPD version, so we zero-out the return-value parameter
3120  *      in that case to avoid leaving it with garbage in it.
3121  *
3122  *      Also note that the Firmware will return its cached copy of the VPD
3123  *      Revision ID, not the actual Revision ID as written in the Serial
3124  *      EEPROM.  This is only an issue if a new VPD has been written and the
3125  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3126  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3127  *      if the Host Driver will be performing a full adapter initialization.
3128  */
3129 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3130 {
3131 	u32 vpdrev_param;
3132 	int ret;
3133 
3134 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3135 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3136 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3137 			      1, &vpdrev_param, vers);
3138 	if (ret)
3139 		*vers = 0;
3140 	return ret;
3141 }
3142 
3143 /**
3144  *      t4_get_scfg_version - return the Serial Configuration version
3145  *      @adapter: the adapter
3146  *      @vers: where to place the version
3147  *
3148  *      Reads the Serial Configuration Version via the Firmware interface
3149  *      (thus this can only be called once we're ready to issue Firmware
3150  *      commands).  The format of the Serial Configuration version is
3151  *      adapter specific.  Returns 0 on success, an error on failure.
3152  *
3153  *      Note that early versions of the Firmware didn't include the ability
3154  *      to retrieve the Serial Configuration version, so we zero-out the
3155  *      return-value parameter in that case to avoid leaving it with
3156  *      garbage in it.
3157  *
3158  *      Also note that the Firmware will return its cached copy of the Serial
3159  *      Initialization Revision ID, not the actual Revision ID as written in
3160  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3161  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3162  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3163  *      been issued if the Host Driver will be performing a full adapter
3164  *      initialization.
3165  */
3166 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3167 {
3168 	u32 scfgrev_param;
3169 	int ret;
3170 
3171 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3172 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3173 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3174 			      1, &scfgrev_param, vers);
3175 	if (ret)
3176 		*vers = 0;
3177 	return ret;
3178 }
3179 
3180 /**
3181  *      t4_get_version_info - extract various chip/firmware version information
3182  *      @adapter: the adapter
3183  *
3184  *      Reads various chip/firmware version numbers and stores them into the
3185  *      adapter Adapter Parameters structure.  If any of the efforts fails
3186  *      the first failure will be returned, but all of the version numbers
3187  *      will be read.
3188  */
3189 int t4_get_version_info(struct adapter *adapter)
3190 {
3191 	int ret = 0;
3192 
3193 	#define FIRST_RET(__getvinfo) \
3194 	do { \
3195 		int __ret = __getvinfo; \
3196 		if (__ret && !ret) \
3197 			ret = __ret; \
3198 	} while (0)
3199 
3200 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3201 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3202 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3203 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3204 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3205 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3206 
3207 	#undef FIRST_RET
3208 	return ret;
3209 }
3210 
3211 /**
3212  *      t4_dump_version_info - dump all of the adapter configuration IDs
3213  *      @adapter: the adapter
3214  *
3215  *      Dumps all of the various bits of adapter configuration version/revision
3216  *      IDs information.  This is typically called at some point after
3217  *      t4_get_version_info() has been called.
3218  */
3219 void t4_dump_version_info(struct adapter *adapter)
3220 {
3221 	/* Device information */
3222 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3223 		 adapter->params.vpd.id,
3224 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3225 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3226 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3227 
3228 	/* Firmware Version */
3229 	if (!adapter->params.fw_vers)
3230 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3231 	else
3232 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3233 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3234 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3235 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3236 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3237 
3238 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3239 	 * Firmware, so dev_info() is more appropriate here.)
3240 	 */
3241 	if (!adapter->params.bs_vers)
3242 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3243 	else
3244 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3245 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3246 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3247 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3248 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3249 
3250 	/* TP Microcode Version */
3251 	if (!adapter->params.tp_vers)
3252 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3253 	else
3254 		dev_info(adapter->pdev_dev,
3255 			 "TP Microcode version: %u.%u.%u.%u\n",
3256 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3257 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3258 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3259 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3260 
3261 	/* Expansion ROM version */
3262 	if (!adapter->params.er_vers)
3263 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3264 	else
3265 		dev_info(adapter->pdev_dev,
3266 			 "Expansion ROM version: %u.%u.%u.%u\n",
3267 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3268 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3269 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3270 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3271 
3272 	/* Serial Configuration version */
3273 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3274 		 adapter->params.scfg_vers);
3275 
3276 	/* VPD Version */
3277 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3278 		 adapter->params.vpd_vers);
3279 }
3280 
3281 /**
3282  *	t4_check_fw_version - check if the FW is supported with this driver
3283  *	@adap: the adapter
3284  *
3285  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3286  *	if there's exact match, a negative error if the version could not be
3287  *	read or there's a major version mismatch
3288  */
3289 int t4_check_fw_version(struct adapter *adap)
3290 {
3291 	int i, ret, major, minor, micro;
3292 	int exp_major, exp_minor, exp_micro;
3293 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3294 
3295 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3296 	/* Try multiple times before returning error */
3297 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3298 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3299 
3300 	if (ret)
3301 		return ret;
3302 
3303 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3304 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3305 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3306 
3307 	switch (chip_version) {
3308 	case CHELSIO_T4:
3309 		exp_major = T4FW_MIN_VERSION_MAJOR;
3310 		exp_minor = T4FW_MIN_VERSION_MINOR;
3311 		exp_micro = T4FW_MIN_VERSION_MICRO;
3312 		break;
3313 	case CHELSIO_T5:
3314 		exp_major = T5FW_MIN_VERSION_MAJOR;
3315 		exp_minor = T5FW_MIN_VERSION_MINOR;
3316 		exp_micro = T5FW_MIN_VERSION_MICRO;
3317 		break;
3318 	case CHELSIO_T6:
3319 		exp_major = T6FW_MIN_VERSION_MAJOR;
3320 		exp_minor = T6FW_MIN_VERSION_MINOR;
3321 		exp_micro = T6FW_MIN_VERSION_MICRO;
3322 		break;
3323 	default:
3324 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3325 			adap->chip);
3326 		return -EINVAL;
3327 	}
3328 
3329 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3330 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3331 		dev_err(adap->pdev_dev,
3332 			"Card has firmware version %u.%u.%u, minimum "
3333 			"supported firmware is %u.%u.%u.\n", major, minor,
3334 			micro, exp_major, exp_minor, exp_micro);
3335 		return -EFAULT;
3336 	}
3337 	return 0;
3338 }
3339 
3340 /* Is the given firmware API compatible with the one the driver was compiled
3341  * with?
3342  */
3343 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3344 {
3345 
3346 	/* short circuit if it's the exact same firmware version */
3347 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3348 		return 1;
3349 
3350 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3351 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3352 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3353 		return 1;
3354 #undef SAME_INTF
3355 
3356 	return 0;
3357 }
3358 
3359 /* The firmware in the filesystem is usable, but should it be installed?
3360  * This routine explains itself in detail if it indicates the filesystem
3361  * firmware should be installed.
3362  */
3363 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3364 				int k, int c)
3365 {
3366 	const char *reason;
3367 
3368 	if (!card_fw_usable) {
3369 		reason = "incompatible or unusable";
3370 		goto install;
3371 	}
3372 
3373 	if (k > c) {
3374 		reason = "older than the version supported with this driver";
3375 		goto install;
3376 	}
3377 
3378 	return 0;
3379 
3380 install:
3381 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3382 		"installing firmware %u.%u.%u.%u on card.\n",
3383 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3384 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3385 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3386 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3387 
3388 	return 1;
3389 }
3390 
3391 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3392 	       const u8 *fw_data, unsigned int fw_size,
3393 	       struct fw_hdr *card_fw, enum dev_state state,
3394 	       int *reset)
3395 {
3396 	int ret, card_fw_usable, fs_fw_usable;
3397 	const struct fw_hdr *fs_fw;
3398 	const struct fw_hdr *drv_fw;
3399 
3400 	drv_fw = &fw_info->fw_hdr;
3401 
3402 	/* Read the header of the firmware on the card */
3403 	ret = -t4_read_flash(adap, FLASH_FW_START,
3404 			    sizeof(*card_fw) / sizeof(uint32_t),
3405 			    (uint32_t *)card_fw, 1);
3406 	if (ret == 0) {
3407 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3408 	} else {
3409 		dev_err(adap->pdev_dev,
3410 			"Unable to read card's firmware header: %d\n", ret);
3411 		card_fw_usable = 0;
3412 	}
3413 
3414 	if (fw_data != NULL) {
3415 		fs_fw = (const void *)fw_data;
3416 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3417 	} else {
3418 		fs_fw = NULL;
3419 		fs_fw_usable = 0;
3420 	}
3421 
3422 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3423 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3424 		/* Common case: the firmware on the card is an exact match and
3425 		 * the filesystem one is an exact match too, or the filesystem
3426 		 * one is absent/incompatible.
3427 		 */
3428 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3429 		   should_install_fs_fw(adap, card_fw_usable,
3430 					be32_to_cpu(fs_fw->fw_ver),
3431 					be32_to_cpu(card_fw->fw_ver))) {
3432 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3433 				     fw_size, 0);
3434 		if (ret != 0) {
3435 			dev_err(adap->pdev_dev,
3436 				"failed to install firmware: %d\n", ret);
3437 			goto bye;
3438 		}
3439 
3440 		/* Installed successfully, update the cached header too. */
3441 		*card_fw = *fs_fw;
3442 		card_fw_usable = 1;
3443 		*reset = 0;	/* already reset as part of load_fw */
3444 	}
3445 
3446 	if (!card_fw_usable) {
3447 		uint32_t d, c, k;
3448 
3449 		d = be32_to_cpu(drv_fw->fw_ver);
3450 		c = be32_to_cpu(card_fw->fw_ver);
3451 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3452 
3453 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3454 			"chip state %d, "
3455 			"driver compiled with %d.%d.%d.%d, "
3456 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3457 			state,
3458 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3459 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3460 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3461 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3462 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3463 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3464 		ret = EINVAL;
3465 		goto bye;
3466 	}
3467 
3468 	/* We're using whatever's on the card and it's known to be good. */
3469 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3470 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3471 
3472 bye:
3473 	return ret;
3474 }
3475 
3476 /**
3477  *	t4_flash_erase_sectors - erase a range of flash sectors
3478  *	@adapter: the adapter
3479  *	@start: the first sector to erase
3480  *	@end: the last sector to erase
3481  *
3482  *	Erases the sectors in the given inclusive range.
3483  */
3484 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3485 {
3486 	int ret = 0;
3487 
3488 	if (end >= adapter->params.sf_nsec)
3489 		return -EINVAL;
3490 
3491 	while (start <= end) {
3492 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3493 		    (ret = sf1_write(adapter, 4, 0, 1,
3494 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3495 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3496 			dev_err(adapter->pdev_dev,
3497 				"erase of flash sector %d failed, error %d\n",
3498 				start, ret);
3499 			break;
3500 		}
3501 		start++;
3502 	}
3503 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3504 	return ret;
3505 }
3506 
3507 /**
3508  *	t4_flash_cfg_addr - return the address of the flash configuration file
3509  *	@adapter: the adapter
3510  *
3511  *	Return the address within the flash where the Firmware Configuration
3512  *	File is stored.
3513  */
3514 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3515 {
3516 	if (adapter->params.sf_size == 0x100000)
3517 		return FLASH_FPGA_CFG_START;
3518 	else
3519 		return FLASH_CFG_START;
3520 }
3521 
3522 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3523  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3524  * and emit an error message for mismatched firmware to save our caller the
3525  * effort ...
3526  */
3527 static bool t4_fw_matches_chip(const struct adapter *adap,
3528 			       const struct fw_hdr *hdr)
3529 {
3530 	/* The expression below will return FALSE for any unsupported adapter
3531 	 * which will keep us "honest" in the future ...
3532 	 */
3533 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3534 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3535 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3536 		return true;
3537 
3538 	dev_err(adap->pdev_dev,
3539 		"FW image (%d) is not suitable for this adapter (%d)\n",
3540 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3541 	return false;
3542 }
3543 
3544 /**
3545  *	t4_load_fw - download firmware
3546  *	@adap: the adapter
3547  *	@fw_data: the firmware image to write
3548  *	@size: image size
3549  *
3550  *	Write the supplied firmware image to the card's serial flash.
3551  */
3552 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3553 {
3554 	u32 csum;
3555 	int ret, addr;
3556 	unsigned int i;
3557 	u8 first_page[SF_PAGE_SIZE];
3558 	const __be32 *p = (const __be32 *)fw_data;
3559 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3560 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3561 	unsigned int fw_img_start = adap->params.sf_fw_start;
3562 	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3563 
3564 	if (!size) {
3565 		dev_err(adap->pdev_dev, "FW image has no data\n");
3566 		return -EINVAL;
3567 	}
3568 	if (size & 511) {
3569 		dev_err(adap->pdev_dev,
3570 			"FW image size not multiple of 512 bytes\n");
3571 		return -EINVAL;
3572 	}
3573 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3574 		dev_err(adap->pdev_dev,
3575 			"FW image size differs from size in FW header\n");
3576 		return -EINVAL;
3577 	}
3578 	if (size > FW_MAX_SIZE) {
3579 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3580 			FW_MAX_SIZE);
3581 		return -EFBIG;
3582 	}
3583 	if (!t4_fw_matches_chip(adap, hdr))
3584 		return -EINVAL;
3585 
3586 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3587 		csum += be32_to_cpu(p[i]);
3588 
3589 	if (csum != 0xffffffff) {
3590 		dev_err(adap->pdev_dev,
3591 			"corrupted firmware image, checksum %#x\n", csum);
3592 		return -EINVAL;
3593 	}
3594 
3595 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3596 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3597 	if (ret)
3598 		goto out;
3599 
3600 	/*
3601 	 * We write the correct version at the end so the driver can see a bad
3602 	 * version if the FW write fails.  Start by writing a copy of the
3603 	 * first page with a bad version.
3604 	 */
3605 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3606 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3607 	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3608 	if (ret)
3609 		goto out;
3610 
3611 	addr = fw_img_start;
3612 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3613 		addr += SF_PAGE_SIZE;
3614 		fw_data += SF_PAGE_SIZE;
3615 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3616 		if (ret)
3617 			goto out;
3618 	}
3619 
3620 	ret = t4_write_flash(adap,
3621 			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
3622 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3623 out:
3624 	if (ret)
3625 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3626 			ret);
3627 	else
3628 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3629 	return ret;
3630 }
3631 
3632 /**
3633  *	t4_phy_fw_ver - return current PHY firmware version
3634  *	@adap: the adapter
3635  *	@phy_fw_ver: return value buffer for PHY firmware version
3636  *
3637  *	Returns the current version of external PHY firmware on the
3638  *	adapter.
3639  */
3640 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3641 {
3642 	u32 param, val;
3643 	int ret;
3644 
3645 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3646 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3647 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3648 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3649 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3650 			      &param, &val);
3651 	if (ret < 0)
3652 		return ret;
3653 	*phy_fw_ver = val;
3654 	return 0;
3655 }
3656 
3657 /**
3658  *	t4_load_phy_fw - download port PHY firmware
3659  *	@adap: the adapter
3660  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3661  *	@win_lock: the lock to use to guard the memory copy
3662  *	@phy_fw_version: function to check PHY firmware versions
3663  *	@phy_fw_data: the PHY firmware image to write
3664  *	@phy_fw_size: image size
3665  *
3666  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3667  *	@phy_fw_version is supplied, then it will be used to determine if
3668  *	it's necessary to perform the transfer by comparing the version
3669  *	of any existing adapter PHY firmware with that of the passed in
3670  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3671  *	around the call to t4_memory_rw() which transfers the PHY firmware
3672  *	to the adapter.
3673  *
3674  *	A negative error number will be returned if an error occurs.  If
3675  *	version number support is available and there's no need to upgrade
3676  *	the firmware, 0 will be returned.  If firmware is successfully
3677  *	transferred to the adapter, 1 will be retured.
3678  *
3679  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3680  *	a result, a RESET of the adapter would cause that RAM to lose its
3681  *	contents.  Thus, loading PHY firmware on such adapters must happen
3682  *	after any FW_RESET_CMDs ...
3683  */
3684 int t4_load_phy_fw(struct adapter *adap,
3685 		   int win, spinlock_t *win_lock,
3686 		   int (*phy_fw_version)(const u8 *, size_t),
3687 		   const u8 *phy_fw_data, size_t phy_fw_size)
3688 {
3689 	unsigned long mtype = 0, maddr = 0;
3690 	u32 param, val;
3691 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3692 	int ret;
3693 
3694 	/* If we have version number support, then check to see if the adapter
3695 	 * already has up-to-date PHY firmware loaded.
3696 	 */
3697 	 if (phy_fw_version) {
3698 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3699 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3700 		if (ret < 0)
3701 			return ret;
3702 
3703 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3704 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3705 				"version %#x\n", cur_phy_fw_ver);
3706 			return 0;
3707 		}
3708 	}
3709 
3710 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3711 	 * The size of the file requires a special version of the READ coommand
3712 	 * which will pass the file size via the values field in PARAMS_CMD and
3713 	 * retrieve the return value from firmware and place it in the same
3714 	 * buffer values
3715 	 */
3716 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3717 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3718 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3719 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3720 	val = phy_fw_size;
3721 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3722 				 &param, &val, 1, true);
3723 	if (ret < 0)
3724 		return ret;
3725 	mtype = val >> 8;
3726 	maddr = (val & 0xff) << 16;
3727 
3728 	/* Copy the supplied PHY Firmware image to the adapter memory location
3729 	 * allocated by the adapter firmware.
3730 	 */
3731 	if (win_lock)
3732 		spin_lock_bh(win_lock);
3733 	ret = t4_memory_rw(adap, win, mtype, maddr,
3734 			   phy_fw_size, (__be32 *)phy_fw_data,
3735 			   T4_MEMORY_WRITE);
3736 	if (win_lock)
3737 		spin_unlock_bh(win_lock);
3738 	if (ret)
3739 		return ret;
3740 
3741 	/* Tell the firmware that the PHY firmware image has been written to
3742 	 * RAM and it can now start copying it over to the PHYs.  The chip
3743 	 * firmware will RESET the affected PHYs as part of this operation
3744 	 * leaving them running the new PHY firmware image.
3745 	 */
3746 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3747 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3748 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3749 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3750 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3751 				    &param, &val, 30000);
3752 
3753 	/* If we have version number support, then check to see that the new
3754 	 * firmware got loaded properly.
3755 	 */
3756 	if (phy_fw_version) {
3757 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3758 		if (ret < 0)
3759 			return ret;
3760 
3761 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3762 			CH_WARN(adap, "PHY Firmware did not update: "
3763 				"version on adapter %#x, "
3764 				"version flashed %#x\n",
3765 				cur_phy_fw_ver, new_phy_fw_vers);
3766 			return -ENXIO;
3767 		}
3768 	}
3769 
3770 	return 1;
3771 }
3772 
3773 /**
3774  *	t4_fwcache - firmware cache operation
3775  *	@adap: the adapter
3776  *	@op  : the operation (flush or flush and invalidate)
3777  */
3778 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3779 {
3780 	struct fw_params_cmd c;
3781 
3782 	memset(&c, 0, sizeof(c));
3783 	c.op_to_vfn =
3784 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3785 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3786 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3787 			    FW_PARAMS_CMD_VFN_V(0));
3788 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3789 	c.param[0].mnem =
3790 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3791 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3792 	c.param[0].val = (__force __be32)op;
3793 
3794 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3795 }
3796 
3797 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3798 			unsigned int *pif_req_wrptr,
3799 			unsigned int *pif_rsp_wrptr)
3800 {
3801 	int i, j;
3802 	u32 cfg, val, req, rsp;
3803 
3804 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3805 	if (cfg & LADBGEN_F)
3806 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3807 
3808 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3809 	req = POLADBGWRPTR_G(val);
3810 	rsp = PILADBGWRPTR_G(val);
3811 	if (pif_req_wrptr)
3812 		*pif_req_wrptr = req;
3813 	if (pif_rsp_wrptr)
3814 		*pif_rsp_wrptr = rsp;
3815 
3816 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3817 		for (j = 0; j < 6; j++) {
3818 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3819 				     PILADBGRDPTR_V(rsp));
3820 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3821 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3822 			req++;
3823 			rsp++;
3824 		}
3825 		req = (req + 2) & POLADBGRDPTR_M;
3826 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3827 	}
3828 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3829 }
3830 
3831 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3832 {
3833 	u32 cfg;
3834 	int i, j, idx;
3835 
3836 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3837 	if (cfg & LADBGEN_F)
3838 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3839 
3840 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3841 		for (j = 0; j < 5; j++) {
3842 			idx = 8 * i + j;
3843 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3844 				     PILADBGRDPTR_V(idx));
3845 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3846 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3847 		}
3848 	}
3849 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3850 }
3851 
3852 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3853 {
3854 	unsigned int i, j;
3855 
3856 	for (i = 0; i < 8; i++) {
3857 		u32 *p = la_buf + i;
3858 
3859 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3860 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3861 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3862 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3863 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3864 	}
3865 }
3866 
3867 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3868 		     FW_PORT_CAP32_ANEG)
3869 
3870 /**
3871  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3872  *	@caps16: a 16-bit Port Capabilities value
3873  *
3874  *	Returns the equivalent 32-bit Port Capabilities value.
3875  */
3876 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3877 {
3878 	fw_port_cap32_t caps32 = 0;
3879 
3880 	#define CAP16_TO_CAP32(__cap) \
3881 		do { \
3882 			if (caps16 & FW_PORT_CAP_##__cap) \
3883 				caps32 |= FW_PORT_CAP32_##__cap; \
3884 		} while (0)
3885 
3886 	CAP16_TO_CAP32(SPEED_100M);
3887 	CAP16_TO_CAP32(SPEED_1G);
3888 	CAP16_TO_CAP32(SPEED_25G);
3889 	CAP16_TO_CAP32(SPEED_10G);
3890 	CAP16_TO_CAP32(SPEED_40G);
3891 	CAP16_TO_CAP32(SPEED_100G);
3892 	CAP16_TO_CAP32(FC_RX);
3893 	CAP16_TO_CAP32(FC_TX);
3894 	CAP16_TO_CAP32(ANEG);
3895 	CAP16_TO_CAP32(MDIX);
3896 	CAP16_TO_CAP32(MDIAUTO);
3897 	CAP16_TO_CAP32(FEC_RS);
3898 	CAP16_TO_CAP32(FEC_BASER_RS);
3899 	CAP16_TO_CAP32(802_3_PAUSE);
3900 	CAP16_TO_CAP32(802_3_ASM_DIR);
3901 
3902 	#undef CAP16_TO_CAP32
3903 
3904 	return caps32;
3905 }
3906 
3907 /**
3908  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3909  *	@caps32: a 32-bit Port Capabilities value
3910  *
3911  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3912  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3913  *	Port Capabilities and some fields/values may not make it.
3914  */
3915 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
3916 {
3917 	fw_port_cap16_t caps16 = 0;
3918 
3919 	#define CAP32_TO_CAP16(__cap) \
3920 		do { \
3921 			if (caps32 & FW_PORT_CAP32_##__cap) \
3922 				caps16 |= FW_PORT_CAP_##__cap; \
3923 		} while (0)
3924 
3925 	CAP32_TO_CAP16(SPEED_100M);
3926 	CAP32_TO_CAP16(SPEED_1G);
3927 	CAP32_TO_CAP16(SPEED_10G);
3928 	CAP32_TO_CAP16(SPEED_25G);
3929 	CAP32_TO_CAP16(SPEED_40G);
3930 	CAP32_TO_CAP16(SPEED_100G);
3931 	CAP32_TO_CAP16(FC_RX);
3932 	CAP32_TO_CAP16(FC_TX);
3933 	CAP32_TO_CAP16(802_3_PAUSE);
3934 	CAP32_TO_CAP16(802_3_ASM_DIR);
3935 	CAP32_TO_CAP16(ANEG);
3936 	CAP32_TO_CAP16(MDIX);
3937 	CAP32_TO_CAP16(MDIAUTO);
3938 	CAP32_TO_CAP16(FEC_RS);
3939 	CAP32_TO_CAP16(FEC_BASER_RS);
3940 
3941 	#undef CAP32_TO_CAP16
3942 
3943 	return caps16;
3944 }
3945 
3946 /* Translate Firmware Port Capabilities Pause specification to Common Code */
3947 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
3948 {
3949 	enum cc_pause cc_pause = 0;
3950 
3951 	if (fw_pause & FW_PORT_CAP32_FC_RX)
3952 		cc_pause |= PAUSE_RX;
3953 	if (fw_pause & FW_PORT_CAP32_FC_TX)
3954 		cc_pause |= PAUSE_TX;
3955 
3956 	return cc_pause;
3957 }
3958 
3959 /* Translate Common Code Pause specification into Firmware Port Capabilities */
3960 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
3961 {
3962 	fw_port_cap32_t fw_pause = 0;
3963 
3964 	if (cc_pause & PAUSE_RX)
3965 		fw_pause |= FW_PORT_CAP32_FC_RX;
3966 	if (cc_pause & PAUSE_TX)
3967 		fw_pause |= FW_PORT_CAP32_FC_TX;
3968 
3969 	return fw_pause;
3970 }
3971 
3972 /* Translate Firmware Forward Error Correction specification to Common Code */
3973 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
3974 {
3975 	enum cc_fec cc_fec = 0;
3976 
3977 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
3978 		cc_fec |= FEC_RS;
3979 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
3980 		cc_fec |= FEC_BASER_RS;
3981 
3982 	return cc_fec;
3983 }
3984 
3985 /* Translate Common Code Forward Error Correction specification to Firmware */
3986 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
3987 {
3988 	fw_port_cap32_t fw_fec = 0;
3989 
3990 	if (cc_fec & FEC_RS)
3991 		fw_fec |= FW_PORT_CAP32_FEC_RS;
3992 	if (cc_fec & FEC_BASER_RS)
3993 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
3994 
3995 	return fw_fec;
3996 }
3997 
3998 /**
3999  *	t4_link_l1cfg - apply link configuration to MAC/PHY
4000  *	@adapter: the adapter
4001  *	@mbox: the Firmware Mailbox to use
4002  *	@port: the Port ID
4003  *	@lc: the Port's Link Configuration
4004  *
4005  *	Set up a port's MAC and PHY according to a desired link configuration.
4006  *	- If the PHY can auto-negotiate first decide what to advertise, then
4007  *	  enable/disable auto-negotiation as desired, and reset.
4008  *	- If the PHY does not auto-negotiate just reset it.
4009  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4010  *	  otherwise do it later based on the outcome of auto-negotiation.
4011  */
4012 int t4_link_l1cfg(struct adapter *adapter, unsigned int mbox,
4013 		  unsigned int port, struct link_config *lc)
4014 {
4015 	unsigned int fw_caps = adapter->params.fw_caps_support;
4016 	struct fw_port_cmd cmd;
4017 	unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO);
4018 	fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap;
4019 
4020 	lc->link_ok = 0;
4021 
4022 	/* Convert driver coding of Pause Frame Flow Control settings into the
4023 	 * Firmware's API.
4024 	 */
4025 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4026 
4027 	/* Convert Common Code Forward Error Control settings into the
4028 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4029 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4030 	 * sent us as part of it's IEEE 802.3-based interpratation of
4031 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4032 	 * use whatever is in the current Requested FEC settings.
4033 	 */
4034 	if (lc->requested_fec & FEC_AUTO)
4035 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4036 	else
4037 		cc_fec = lc->requested_fec;
4038 	fw_fec = cc_to_fwcap_fec(cc_fec);
4039 
4040 	/* Figure out what our Requested Port Capabilities are going to be.
4041 	 */
4042 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4043 		rcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
4044 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4045 		lc->fec = cc_fec;
4046 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4047 		rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4048 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4049 		lc->fec = cc_fec;
4050 	} else {
4051 		rcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
4052 	}
4053 
4054 	/* And send that on to the Firmware ...
4055 	 */
4056 	memset(&cmd, 0, sizeof(cmd));
4057 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4058 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4059 				       FW_PORT_CMD_PORTID_V(port));
4060 	cmd.action_to_len16 =
4061 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4062 						 ? FW_PORT_ACTION_L1_CFG
4063 						 : FW_PORT_ACTION_L1_CFG32) |
4064 			    FW_LEN16(cmd));
4065 	if (fw_caps == FW_CAPS16)
4066 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4067 	else
4068 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4069 	return t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4070 }
4071 
4072 /**
4073  *	t4_restart_aneg - restart autonegotiation
4074  *	@adap: the adapter
4075  *	@mbox: mbox to use for the FW command
4076  *	@port: the port id
4077  *
4078  *	Restarts autonegotiation for the selected port.
4079  */
4080 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4081 {
4082 	struct fw_port_cmd c;
4083 
4084 	memset(&c, 0, sizeof(c));
4085 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4086 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4087 				     FW_PORT_CMD_PORTID_V(port));
4088 	c.action_to_len16 =
4089 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
4090 			    FW_LEN16(c));
4091 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG);
4092 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4093 }
4094 
4095 typedef void (*int_handler_t)(struct adapter *adap);
4096 
4097 struct intr_info {
4098 	unsigned int mask;       /* bits to check in interrupt status */
4099 	const char *msg;         /* message to print or NULL */
4100 	short stat_idx;          /* stat counter to increment or -1 */
4101 	unsigned short fatal;    /* whether the condition reported is fatal */
4102 	int_handler_t int_handler; /* platform-specific int handler */
4103 };
4104 
4105 /**
4106  *	t4_handle_intr_status - table driven interrupt handler
4107  *	@adapter: the adapter that generated the interrupt
4108  *	@reg: the interrupt status register to process
4109  *	@acts: table of interrupt actions
4110  *
4111  *	A table driven interrupt handler that applies a set of masks to an
4112  *	interrupt status word and performs the corresponding actions if the
4113  *	interrupts described by the mask have occurred.  The actions include
4114  *	optionally emitting a warning or alert message.  The table is terminated
4115  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4116  *	conditions.
4117  */
4118 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4119 				 const struct intr_info *acts)
4120 {
4121 	int fatal = 0;
4122 	unsigned int mask = 0;
4123 	unsigned int status = t4_read_reg(adapter, reg);
4124 
4125 	for ( ; acts->mask; ++acts) {
4126 		if (!(status & acts->mask))
4127 			continue;
4128 		if (acts->fatal) {
4129 			fatal++;
4130 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4131 				  status & acts->mask);
4132 		} else if (acts->msg && printk_ratelimit())
4133 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4134 				 status & acts->mask);
4135 		if (acts->int_handler)
4136 			acts->int_handler(adapter);
4137 		mask |= acts->mask;
4138 	}
4139 	status &= mask;
4140 	if (status)                           /* clear processed interrupts */
4141 		t4_write_reg(adapter, reg, status);
4142 	return fatal;
4143 }
4144 
4145 /*
4146  * Interrupt handler for the PCIE module.
4147  */
4148 static void pcie_intr_handler(struct adapter *adapter)
4149 {
4150 	static const struct intr_info sysbus_intr_info[] = {
4151 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4152 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4153 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4154 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4155 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4156 		{ 0 }
4157 	};
4158 	static const struct intr_info pcie_port_intr_info[] = {
4159 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4160 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4161 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4162 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4163 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4164 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4165 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4166 		{ RDPE_F, "Rx data parity error", -1, 1 },
4167 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4168 		{ 0 }
4169 	};
4170 	static const struct intr_info pcie_intr_info[] = {
4171 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4172 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4173 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4174 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4175 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4176 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4177 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4178 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4179 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4180 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4181 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4182 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4183 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4184 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4185 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4186 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4187 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4188 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4189 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4190 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4191 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4192 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4193 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4194 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4195 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4196 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4197 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4198 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4199 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4200 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4201 		  -1, 0 },
4202 		{ 0 }
4203 	};
4204 
4205 	static struct intr_info t5_pcie_intr_info[] = {
4206 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4207 		  -1, 1 },
4208 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4209 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4210 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4211 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4212 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4213 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4214 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4215 		  -1, 1 },
4216 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4217 		  -1, 1 },
4218 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4219 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4220 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4221 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4222 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4223 		  -1, 1 },
4224 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4225 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4226 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4227 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4228 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4229 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4230 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4231 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4232 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4233 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4234 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4235 		  -1, 1 },
4236 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4237 		  -1, 1 },
4238 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4239 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4240 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4241 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4242 		{ 0 }
4243 	};
4244 
4245 	int fat;
4246 
4247 	if (is_t4(adapter->params.chip))
4248 		fat = t4_handle_intr_status(adapter,
4249 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4250 				sysbus_intr_info) +
4251 			t4_handle_intr_status(adapter,
4252 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4253 					pcie_port_intr_info) +
4254 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4255 					      pcie_intr_info);
4256 	else
4257 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4258 					    t5_pcie_intr_info);
4259 
4260 	if (fat)
4261 		t4_fatal_err(adapter);
4262 }
4263 
4264 /*
4265  * TP interrupt handler.
4266  */
4267 static void tp_intr_handler(struct adapter *adapter)
4268 {
4269 	static const struct intr_info tp_intr_info[] = {
4270 		{ 0x3fffffff, "TP parity error", -1, 1 },
4271 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4272 		{ 0 }
4273 	};
4274 
4275 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4276 		t4_fatal_err(adapter);
4277 }
4278 
4279 /*
4280  * SGE interrupt handler.
4281  */
4282 static void sge_intr_handler(struct adapter *adapter)
4283 {
4284 	u64 v;
4285 	u32 err;
4286 
4287 	static const struct intr_info sge_intr_info[] = {
4288 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4289 		  "SGE received CPL exceeding IQE size", -1, 1 },
4290 		{ ERR_INVALID_CIDX_INC_F,
4291 		  "SGE GTS CIDX increment too large", -1, 0 },
4292 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4293 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4294 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4295 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4296 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4297 		  0 },
4298 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4299 		  0 },
4300 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4301 		  0 },
4302 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4303 		  0 },
4304 		{ ERR_ING_CTXT_PRIO_F,
4305 		  "SGE too many priority ingress contexts", -1, 0 },
4306 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4307 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4308 		{ 0 }
4309 	};
4310 
4311 	static struct intr_info t4t5_sge_intr_info[] = {
4312 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4313 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4314 		{ ERR_EGR_CTXT_PRIO_F,
4315 		  "SGE too many priority egress contexts", -1, 0 },
4316 		{ 0 }
4317 	};
4318 
4319 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4320 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
4321 	if (v) {
4322 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4323 				(unsigned long long)v);
4324 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4325 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4326 	}
4327 
4328 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4329 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4330 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4331 					   t4t5_sge_intr_info);
4332 
4333 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4334 	if (err & ERROR_QID_VALID_F) {
4335 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4336 			ERROR_QID_G(err));
4337 		if (err & UNCAPTURED_ERROR_F)
4338 			dev_err(adapter->pdev_dev,
4339 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4340 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4341 			     UNCAPTURED_ERROR_F);
4342 	}
4343 
4344 	if (v != 0)
4345 		t4_fatal_err(adapter);
4346 }
4347 
4348 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4349 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4350 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4351 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4352 
4353 /*
4354  * CIM interrupt handler.
4355  */
4356 static void cim_intr_handler(struct adapter *adapter)
4357 {
4358 	static const struct intr_info cim_intr_info[] = {
4359 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4360 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4361 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4362 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4363 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4364 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4365 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4366 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4367 		{ 0 }
4368 	};
4369 	static const struct intr_info cim_upintr_info[] = {
4370 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4371 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4372 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4373 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4374 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4375 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4376 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4377 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4378 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4379 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4380 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4381 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4382 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4383 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4384 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4385 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4386 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4387 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4388 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4389 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4390 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4391 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4392 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4393 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4394 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4395 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4396 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4397 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4398 		{ 0 }
4399 	};
4400 
4401 	u32 val, fw_err;
4402 	int fat;
4403 
4404 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4405 	if (fw_err & PCIE_FW_ERR_F)
4406 		t4_report_fw_error(adapter);
4407 
4408 	/* When the Firmware detects an internal error which normally
4409 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4410 	 * in order to make sure the Host sees the Firmware Crash.  So
4411 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4412 	 * ignore the Timer0 interrupt.
4413 	 */
4414 
4415 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4416 	if (val & TIMER0INT_F)
4417 		if (!(fw_err & PCIE_FW_ERR_F) ||
4418 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4419 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4420 				     TIMER0INT_F);
4421 
4422 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4423 				    cim_intr_info) +
4424 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4425 				    cim_upintr_info);
4426 	if (fat)
4427 		t4_fatal_err(adapter);
4428 }
4429 
4430 /*
4431  * ULP RX interrupt handler.
4432  */
4433 static void ulprx_intr_handler(struct adapter *adapter)
4434 {
4435 	static const struct intr_info ulprx_intr_info[] = {
4436 		{ 0x1800000, "ULPRX context error", -1, 1 },
4437 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4438 		{ 0 }
4439 	};
4440 
4441 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4442 		t4_fatal_err(adapter);
4443 }
4444 
4445 /*
4446  * ULP TX interrupt handler.
4447  */
4448 static void ulptx_intr_handler(struct adapter *adapter)
4449 {
4450 	static const struct intr_info ulptx_intr_info[] = {
4451 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4452 		  0 },
4453 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4454 		  0 },
4455 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4456 		  0 },
4457 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4458 		  0 },
4459 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4460 		{ 0 }
4461 	};
4462 
4463 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4464 		t4_fatal_err(adapter);
4465 }
4466 
4467 /*
4468  * PM TX interrupt handler.
4469  */
4470 static void pmtx_intr_handler(struct adapter *adapter)
4471 {
4472 	static const struct intr_info pmtx_intr_info[] = {
4473 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4474 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4475 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4476 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4477 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4478 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4479 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4480 		  -1, 1 },
4481 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4482 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4483 		{ 0 }
4484 	};
4485 
4486 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4487 		t4_fatal_err(adapter);
4488 }
4489 
4490 /*
4491  * PM RX interrupt handler.
4492  */
4493 static void pmrx_intr_handler(struct adapter *adapter)
4494 {
4495 	static const struct intr_info pmrx_intr_info[] = {
4496 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4497 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4498 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4499 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4500 		  -1, 1 },
4501 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4502 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4503 		{ 0 }
4504 	};
4505 
4506 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4507 		t4_fatal_err(adapter);
4508 }
4509 
4510 /*
4511  * CPL switch interrupt handler.
4512  */
4513 static void cplsw_intr_handler(struct adapter *adapter)
4514 {
4515 	static const struct intr_info cplsw_intr_info[] = {
4516 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4517 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4518 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4519 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4520 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4521 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4522 		{ 0 }
4523 	};
4524 
4525 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4526 		t4_fatal_err(adapter);
4527 }
4528 
4529 /*
4530  * LE interrupt handler.
4531  */
4532 static void le_intr_handler(struct adapter *adap)
4533 {
4534 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4535 	static const struct intr_info le_intr_info[] = {
4536 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4537 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4538 		{ PARITYERR_F, "LE parity error", -1, 1 },
4539 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4540 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4541 		{ 0 }
4542 	};
4543 
4544 	static struct intr_info t6_le_intr_info[] = {
4545 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4546 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4547 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4548 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4549 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4550 		{ 0 }
4551 	};
4552 
4553 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4554 				  (chip <= CHELSIO_T5) ?
4555 				  le_intr_info : t6_le_intr_info))
4556 		t4_fatal_err(adap);
4557 }
4558 
4559 /*
4560  * MPS interrupt handler.
4561  */
4562 static void mps_intr_handler(struct adapter *adapter)
4563 {
4564 	static const struct intr_info mps_rx_intr_info[] = {
4565 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4566 		{ 0 }
4567 	};
4568 	static const struct intr_info mps_tx_intr_info[] = {
4569 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4570 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4571 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4572 		  -1, 1 },
4573 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4574 		  -1, 1 },
4575 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4576 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4577 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4578 		{ 0 }
4579 	};
4580 	static const struct intr_info t6_mps_tx_intr_info[] = {
4581 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4582 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4583 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4584 		  -1, 1 },
4585 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4586 		  -1, 1 },
4587 		/* MPS Tx Bubble is normal for T6 */
4588 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4589 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4590 		{ 0 }
4591 	};
4592 	static const struct intr_info mps_trc_intr_info[] = {
4593 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4594 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4595 		  -1, 1 },
4596 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4597 		{ 0 }
4598 	};
4599 	static const struct intr_info mps_stat_sram_intr_info[] = {
4600 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4601 		{ 0 }
4602 	};
4603 	static const struct intr_info mps_stat_tx_intr_info[] = {
4604 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4605 		{ 0 }
4606 	};
4607 	static const struct intr_info mps_stat_rx_intr_info[] = {
4608 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4609 		{ 0 }
4610 	};
4611 	static const struct intr_info mps_cls_intr_info[] = {
4612 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4613 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4614 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4615 		{ 0 }
4616 	};
4617 
4618 	int fat;
4619 
4620 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4621 				    mps_rx_intr_info) +
4622 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4623 				    is_t6(adapter->params.chip)
4624 				    ? t6_mps_tx_intr_info
4625 				    : mps_tx_intr_info) +
4626 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4627 				    mps_trc_intr_info) +
4628 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4629 				    mps_stat_sram_intr_info) +
4630 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4631 				    mps_stat_tx_intr_info) +
4632 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4633 				    mps_stat_rx_intr_info) +
4634 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4635 				    mps_cls_intr_info);
4636 
4637 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4638 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4639 	if (fat)
4640 		t4_fatal_err(adapter);
4641 }
4642 
4643 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4644 		      ECC_UE_INT_CAUSE_F)
4645 
4646 /*
4647  * EDC/MC interrupt handler.
4648  */
4649 static void mem_intr_handler(struct adapter *adapter, int idx)
4650 {
4651 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4652 
4653 	unsigned int addr, cnt_addr, v;
4654 
4655 	if (idx <= MEM_EDC1) {
4656 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4657 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4658 	} else if (idx == MEM_MC) {
4659 		if (is_t4(adapter->params.chip)) {
4660 			addr = MC_INT_CAUSE_A;
4661 			cnt_addr = MC_ECC_STATUS_A;
4662 		} else {
4663 			addr = MC_P_INT_CAUSE_A;
4664 			cnt_addr = MC_P_ECC_STATUS_A;
4665 		}
4666 	} else {
4667 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4668 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4669 	}
4670 
4671 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4672 	if (v & PERR_INT_CAUSE_F)
4673 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4674 			  name[idx]);
4675 	if (v & ECC_CE_INT_CAUSE_F) {
4676 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4677 
4678 		t4_edc_err_read(adapter, idx);
4679 
4680 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4681 		if (printk_ratelimit())
4682 			dev_warn(adapter->pdev_dev,
4683 				 "%u %s correctable ECC data error%s\n",
4684 				 cnt, name[idx], cnt > 1 ? "s" : "");
4685 	}
4686 	if (v & ECC_UE_INT_CAUSE_F)
4687 		dev_alert(adapter->pdev_dev,
4688 			  "%s uncorrectable ECC data error\n", name[idx]);
4689 
4690 	t4_write_reg(adapter, addr, v);
4691 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4692 		t4_fatal_err(adapter);
4693 }
4694 
4695 /*
4696  * MA interrupt handler.
4697  */
4698 static void ma_intr_handler(struct adapter *adap)
4699 {
4700 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4701 
4702 	if (status & MEM_PERR_INT_CAUSE_F) {
4703 		dev_alert(adap->pdev_dev,
4704 			  "MA parity error, parity status %#x\n",
4705 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4706 		if (is_t5(adap->params.chip))
4707 			dev_alert(adap->pdev_dev,
4708 				  "MA parity error, parity status %#x\n",
4709 				  t4_read_reg(adap,
4710 					      MA_PARITY_ERROR_STATUS2_A));
4711 	}
4712 	if (status & MEM_WRAP_INT_CAUSE_F) {
4713 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4714 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4715 			  "client %u to address %#x\n",
4716 			  MEM_WRAP_CLIENT_NUM_G(v),
4717 			  MEM_WRAP_ADDRESS_G(v) << 4);
4718 	}
4719 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4720 	t4_fatal_err(adap);
4721 }
4722 
4723 /*
4724  * SMB interrupt handler.
4725  */
4726 static void smb_intr_handler(struct adapter *adap)
4727 {
4728 	static const struct intr_info smb_intr_info[] = {
4729 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4730 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4731 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4732 		{ 0 }
4733 	};
4734 
4735 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4736 		t4_fatal_err(adap);
4737 }
4738 
4739 /*
4740  * NC-SI interrupt handler.
4741  */
4742 static void ncsi_intr_handler(struct adapter *adap)
4743 {
4744 	static const struct intr_info ncsi_intr_info[] = {
4745 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4746 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4747 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4748 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4749 		{ 0 }
4750 	};
4751 
4752 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4753 		t4_fatal_err(adap);
4754 }
4755 
4756 /*
4757  * XGMAC interrupt handler.
4758  */
4759 static void xgmac_intr_handler(struct adapter *adap, int port)
4760 {
4761 	u32 v, int_cause_reg;
4762 
4763 	if (is_t4(adap->params.chip))
4764 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4765 	else
4766 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4767 
4768 	v = t4_read_reg(adap, int_cause_reg);
4769 
4770 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4771 	if (!v)
4772 		return;
4773 
4774 	if (v & TXFIFO_PRTY_ERR_F)
4775 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4776 			  port);
4777 	if (v & RXFIFO_PRTY_ERR_F)
4778 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4779 			  port);
4780 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4781 	t4_fatal_err(adap);
4782 }
4783 
4784 /*
4785  * PL interrupt handler.
4786  */
4787 static void pl_intr_handler(struct adapter *adap)
4788 {
4789 	static const struct intr_info pl_intr_info[] = {
4790 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4791 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4792 		{ 0 }
4793 	};
4794 
4795 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4796 		t4_fatal_err(adap);
4797 }
4798 
4799 #define PF_INTR_MASK (PFSW_F)
4800 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4801 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4802 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4803 
4804 /**
4805  *	t4_slow_intr_handler - control path interrupt handler
4806  *	@adapter: the adapter
4807  *
4808  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4809  *	The designation 'slow' is because it involves register reads, while
4810  *	data interrupts typically don't involve any MMIOs.
4811  */
4812 int t4_slow_intr_handler(struct adapter *adapter)
4813 {
4814 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4815 
4816 	if (!(cause & GLBL_INTR_MASK))
4817 		return 0;
4818 	if (cause & CIM_F)
4819 		cim_intr_handler(adapter);
4820 	if (cause & MPS_F)
4821 		mps_intr_handler(adapter);
4822 	if (cause & NCSI_F)
4823 		ncsi_intr_handler(adapter);
4824 	if (cause & PL_F)
4825 		pl_intr_handler(adapter);
4826 	if (cause & SMB_F)
4827 		smb_intr_handler(adapter);
4828 	if (cause & XGMAC0_F)
4829 		xgmac_intr_handler(adapter, 0);
4830 	if (cause & XGMAC1_F)
4831 		xgmac_intr_handler(adapter, 1);
4832 	if (cause & XGMAC_KR0_F)
4833 		xgmac_intr_handler(adapter, 2);
4834 	if (cause & XGMAC_KR1_F)
4835 		xgmac_intr_handler(adapter, 3);
4836 	if (cause & PCIE_F)
4837 		pcie_intr_handler(adapter);
4838 	if (cause & MC_F)
4839 		mem_intr_handler(adapter, MEM_MC);
4840 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4841 		mem_intr_handler(adapter, MEM_MC1);
4842 	if (cause & EDC0_F)
4843 		mem_intr_handler(adapter, MEM_EDC0);
4844 	if (cause & EDC1_F)
4845 		mem_intr_handler(adapter, MEM_EDC1);
4846 	if (cause & LE_F)
4847 		le_intr_handler(adapter);
4848 	if (cause & TP_F)
4849 		tp_intr_handler(adapter);
4850 	if (cause & MA_F)
4851 		ma_intr_handler(adapter);
4852 	if (cause & PM_TX_F)
4853 		pmtx_intr_handler(adapter);
4854 	if (cause & PM_RX_F)
4855 		pmrx_intr_handler(adapter);
4856 	if (cause & ULP_RX_F)
4857 		ulprx_intr_handler(adapter);
4858 	if (cause & CPL_SWITCH_F)
4859 		cplsw_intr_handler(adapter);
4860 	if (cause & SGE_F)
4861 		sge_intr_handler(adapter);
4862 	if (cause & ULP_TX_F)
4863 		ulptx_intr_handler(adapter);
4864 
4865 	/* Clear the interrupts just processed for which we are the master. */
4866 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4867 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4868 	return 1;
4869 }
4870 
4871 /**
4872  *	t4_intr_enable - enable interrupts
4873  *	@adapter: the adapter whose interrupts should be enabled
4874  *
4875  *	Enable PF-specific interrupts for the calling function and the top-level
4876  *	interrupt concentrator for global interrupts.  Interrupts are already
4877  *	enabled at each module,	here we just enable the roots of the interrupt
4878  *	hierarchies.
4879  *
4880  *	Note: this function should be called only when the driver manages
4881  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4882  *	function at a time should be doing this.
4883  */
4884 void t4_intr_enable(struct adapter *adapter)
4885 {
4886 	u32 val = 0;
4887 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4888 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4889 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4890 
4891 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4892 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4893 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4894 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4895 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4896 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4897 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4898 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4899 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4900 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4901 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4902 }
4903 
4904 /**
4905  *	t4_intr_disable - disable interrupts
4906  *	@adapter: the adapter whose interrupts should be disabled
4907  *
4908  *	Disable interrupts.  We only disable the top-level interrupt
4909  *	concentrators.  The caller must be a PCI function managing global
4910  *	interrupts.
4911  */
4912 void t4_intr_disable(struct adapter *adapter)
4913 {
4914 	u32 whoami, pf;
4915 
4916 	if (pci_channel_offline(adapter->pdev))
4917 		return;
4918 
4919 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4920 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4921 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4922 
4923 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4924 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4925 }
4926 
4927 /**
4928  *	t4_config_rss_range - configure a portion of the RSS mapping table
4929  *	@adapter: the adapter
4930  *	@mbox: mbox to use for the FW command
4931  *	@viid: virtual interface whose RSS subtable is to be written
4932  *	@start: start entry in the table to write
4933  *	@n: how many table entries to write
4934  *	@rspq: values for the response queue lookup table
4935  *	@nrspq: number of values in @rspq
4936  *
4937  *	Programs the selected part of the VI's RSS mapping table with the
4938  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4939  *	until the full table range is populated.
4940  *
4941  *	The caller must ensure the values in @rspq are in the range allowed for
4942  *	@viid.
4943  */
4944 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4945 			int start, int n, const u16 *rspq, unsigned int nrspq)
4946 {
4947 	int ret;
4948 	const u16 *rsp = rspq;
4949 	const u16 *rsp_end = rspq + nrspq;
4950 	struct fw_rss_ind_tbl_cmd cmd;
4951 
4952 	memset(&cmd, 0, sizeof(cmd));
4953 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4954 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4955 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
4956 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4957 
4958 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4959 	while (n > 0) {
4960 		int nq = min(n, 32);
4961 		__be32 *qp = &cmd.iq0_to_iq2;
4962 
4963 		cmd.niqid = cpu_to_be16(nq);
4964 		cmd.startidx = cpu_to_be16(start);
4965 
4966 		start += nq;
4967 		n -= nq;
4968 
4969 		while (nq > 0) {
4970 			unsigned int v;
4971 
4972 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4973 			if (++rsp >= rsp_end)
4974 				rsp = rspq;
4975 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4976 			if (++rsp >= rsp_end)
4977 				rsp = rspq;
4978 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4979 			if (++rsp >= rsp_end)
4980 				rsp = rspq;
4981 
4982 			*qp++ = cpu_to_be32(v);
4983 			nq -= 3;
4984 		}
4985 
4986 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4987 		if (ret)
4988 			return ret;
4989 	}
4990 	return 0;
4991 }
4992 
4993 /**
4994  *	t4_config_glbl_rss - configure the global RSS mode
4995  *	@adapter: the adapter
4996  *	@mbox: mbox to use for the FW command
4997  *	@mode: global RSS mode
4998  *	@flags: mode-specific flags
4999  *
5000  *	Sets the global RSS mode.
5001  */
5002 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5003 		       unsigned int flags)
5004 {
5005 	struct fw_rss_glb_config_cmd c;
5006 
5007 	memset(&c, 0, sizeof(c));
5008 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5009 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5010 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5011 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5012 		c.u.manual.mode_pkd =
5013 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5014 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5015 		c.u.basicvirtual.mode_pkd =
5016 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5017 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5018 	} else
5019 		return -EINVAL;
5020 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5021 }
5022 
5023 /**
5024  *	t4_config_vi_rss - configure per VI RSS settings
5025  *	@adapter: the adapter
5026  *	@mbox: mbox to use for the FW command
5027  *	@viid: the VI id
5028  *	@flags: RSS flags
5029  *	@defq: id of the default RSS queue for the VI.
5030  *
5031  *	Configures VI-specific RSS properties.
5032  */
5033 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5034 		     unsigned int flags, unsigned int defq)
5035 {
5036 	struct fw_rss_vi_config_cmd c;
5037 
5038 	memset(&c, 0, sizeof(c));
5039 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5040 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5041 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5042 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5043 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5044 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5045 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5046 }
5047 
5048 /* Read an RSS table row */
5049 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5050 {
5051 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5052 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5053 				   5, 0, val);
5054 }
5055 
5056 /**
5057  *	t4_read_rss - read the contents of the RSS mapping table
5058  *	@adapter: the adapter
5059  *	@map: holds the contents of the RSS mapping table
5060  *
5061  *	Reads the contents of the RSS hash->queue mapping table.
5062  */
5063 int t4_read_rss(struct adapter *adapter, u16 *map)
5064 {
5065 	u32 val;
5066 	int i, ret;
5067 
5068 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
5069 		ret = rd_rss_row(adapter, i, &val);
5070 		if (ret)
5071 			return ret;
5072 		*map++ = LKPTBLQUEUE0_G(val);
5073 		*map++ = LKPTBLQUEUE1_G(val);
5074 	}
5075 	return 0;
5076 }
5077 
5078 static unsigned int t4_use_ldst(struct adapter *adap)
5079 {
5080 	return (adap->flags & FW_OK) || !adap->use_bd;
5081 }
5082 
5083 /**
5084  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5085  * @adap: the adapter
5086  * @cmd: TP fw ldst address space type
5087  * @vals: where the indirect register values are stored/written
5088  * @nregs: how many indirect registers to read/write
5089  * @start_idx: index of first indirect register to read/write
5090  * @rw: Read (1) or Write (0)
5091  * @sleep_ok: if true we may sleep while awaiting command completion
5092  *
5093  * Access TP indirect registers through LDST
5094  */
5095 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5096 			    unsigned int nregs, unsigned int start_index,
5097 			    unsigned int rw, bool sleep_ok)
5098 {
5099 	int ret = 0;
5100 	unsigned int i;
5101 	struct fw_ldst_cmd c;
5102 
5103 	for (i = 0; i < nregs; i++) {
5104 		memset(&c, 0, sizeof(c));
5105 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5106 						FW_CMD_REQUEST_F |
5107 						(rw ? FW_CMD_READ_F :
5108 						      FW_CMD_WRITE_F) |
5109 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5110 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5111 
5112 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5113 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5114 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5115 				      sleep_ok);
5116 		if (ret)
5117 			return ret;
5118 
5119 		if (rw)
5120 			vals[i] = be32_to_cpu(c.u.addrval.val);
5121 	}
5122 	return 0;
5123 }
5124 
5125 /**
5126  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5127  * @adap: the adapter
5128  * @reg_addr: Address Register
5129  * @reg_data: Data register
5130  * @buff: where the indirect register values are stored/written
5131  * @nregs: how many indirect registers to read/write
5132  * @start_index: index of first indirect register to read/write
5133  * @rw: READ(1) or WRITE(0)
5134  * @sleep_ok: if true we may sleep while awaiting command completion
5135  *
5136  * Read/Write TP indirect registers through LDST if possible.
5137  * Else, use backdoor access
5138  **/
5139 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5140 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5141 			      bool sleep_ok)
5142 {
5143 	int rc = -EINVAL;
5144 	int cmd;
5145 
5146 	switch (reg_addr) {
5147 	case TP_PIO_ADDR_A:
5148 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5149 		break;
5150 	case TP_TM_PIO_ADDR_A:
5151 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5152 		break;
5153 	case TP_MIB_INDEX_A:
5154 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5155 		break;
5156 	default:
5157 		goto indirect_access;
5158 	}
5159 
5160 	if (t4_use_ldst(adap))
5161 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5162 				      sleep_ok);
5163 
5164 indirect_access:
5165 
5166 	if (rc) {
5167 		if (rw)
5168 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5169 					 start_index);
5170 		else
5171 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5172 					  start_index);
5173 	}
5174 }
5175 
5176 /**
5177  * t4_tp_pio_read - Read TP PIO registers
5178  * @adap: the adapter
5179  * @buff: where the indirect register values are written
5180  * @nregs: how many indirect registers to read
5181  * @start_index: index of first indirect register to read
5182  * @sleep_ok: if true we may sleep while awaiting command completion
5183  *
5184  * Read TP PIO Registers
5185  **/
5186 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5187 		    u32 start_index, bool sleep_ok)
5188 {
5189 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5190 			  start_index, 1, sleep_ok);
5191 }
5192 
5193 /**
5194  * t4_tp_pio_write - Write TP PIO registers
5195  * @adap: the adapter
5196  * @buff: where the indirect register values are stored
5197  * @nregs: how many indirect registers to write
5198  * @start_index: index of first indirect register to write
5199  * @sleep_ok: if true we may sleep while awaiting command completion
5200  *
5201  * Write TP PIO Registers
5202  **/
5203 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5204 			    u32 start_index, bool sleep_ok)
5205 {
5206 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5207 			  start_index, 0, sleep_ok);
5208 }
5209 
5210 /**
5211  * t4_tp_tm_pio_read - Read TP TM PIO registers
5212  * @adap: the adapter
5213  * @buff: where the indirect register values are written
5214  * @nregs: how many indirect registers to read
5215  * @start_index: index of first indirect register to read
5216  * @sleep_ok: if true we may sleep while awaiting command completion
5217  *
5218  * Read TP TM PIO Registers
5219  **/
5220 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5221 		       u32 start_index, bool sleep_ok)
5222 {
5223 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5224 			  nregs, start_index, 1, sleep_ok);
5225 }
5226 
5227 /**
5228  * t4_tp_mib_read - Read TP MIB registers
5229  * @adap: the adapter
5230  * @buff: where the indirect register values are written
5231  * @nregs: how many indirect registers to read
5232  * @start_index: index of first indirect register to read
5233  * @sleep_ok: if true we may sleep while awaiting command completion
5234  *
5235  * Read TP MIB Registers
5236  **/
5237 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5238 		    bool sleep_ok)
5239 {
5240 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5241 			  start_index, 1, sleep_ok);
5242 }
5243 
5244 /**
5245  *	t4_read_rss_key - read the global RSS key
5246  *	@adap: the adapter
5247  *	@key: 10-entry array holding the 320-bit RSS key
5248  *      @sleep_ok: if true we may sleep while awaiting command completion
5249  *
5250  *	Reads the global 320-bit RSS key.
5251  */
5252 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5253 {
5254 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5255 }
5256 
5257 /**
5258  *	t4_write_rss_key - program one of the RSS keys
5259  *	@adap: the adapter
5260  *	@key: 10-entry array holding the 320-bit RSS key
5261  *	@idx: which RSS key to write
5262  *      @sleep_ok: if true we may sleep while awaiting command completion
5263  *
5264  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5265  *	0..15 the corresponding entry in the RSS key table is written,
5266  *	otherwise the global RSS key is written.
5267  */
5268 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5269 		      bool sleep_ok)
5270 {
5271 	u8 rss_key_addr_cnt = 16;
5272 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5273 
5274 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5275 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5276 	 * as index[5:4](upper 2) into key table
5277 	 */
5278 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5279 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5280 		rss_key_addr_cnt = 32;
5281 
5282 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5283 
5284 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5285 		if (rss_key_addr_cnt > 16)
5286 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5287 				     KEYWRADDRX_V(idx >> 4) |
5288 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5289 		else
5290 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5291 				     KEYWRADDR_V(idx) | KEYWREN_F);
5292 	}
5293 }
5294 
5295 /**
5296  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5297  *	@adapter: the adapter
5298  *	@index: the entry in the PF RSS table to read
5299  *	@valp: where to store the returned value
5300  *      @sleep_ok: if true we may sleep while awaiting command completion
5301  *
5302  *	Reads the PF RSS Configuration Table at the specified index and returns
5303  *	the value found there.
5304  */
5305 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5306 			   u32 *valp, bool sleep_ok)
5307 {
5308 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5309 }
5310 
5311 /**
5312  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5313  *	@adapter: the adapter
5314  *	@index: the entry in the VF RSS table to read
5315  *	@vfl: where to store the returned VFL
5316  *	@vfh: where to store the returned VFH
5317  *      @sleep_ok: if true we may sleep while awaiting command completion
5318  *
5319  *	Reads the VF RSS Configuration Table at the specified index and returns
5320  *	the (VFL, VFH) values found there.
5321  */
5322 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5323 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5324 {
5325 	u32 vrt, mask, data;
5326 
5327 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5328 		mask = VFWRADDR_V(VFWRADDR_M);
5329 		data = VFWRADDR_V(index);
5330 	} else {
5331 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5332 		 data = T6_VFWRADDR_V(index);
5333 	}
5334 
5335 	/* Request that the index'th VF Table values be read into VFL/VFH.
5336 	 */
5337 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5338 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5339 	vrt |= data | VFRDEN_F;
5340 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5341 
5342 	/* Grab the VFL/VFH values ...
5343 	 */
5344 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5345 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5346 }
5347 
5348 /**
5349  *	t4_read_rss_pf_map - read PF RSS Map
5350  *	@adapter: the adapter
5351  *      @sleep_ok: if true we may sleep while awaiting command completion
5352  *
5353  *	Reads the PF RSS Map register and returns its value.
5354  */
5355 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5356 {
5357 	u32 pfmap;
5358 
5359 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5360 	return pfmap;
5361 }
5362 
5363 /**
5364  *	t4_read_rss_pf_mask - read PF RSS Mask
5365  *	@adapter: the adapter
5366  *      @sleep_ok: if true we may sleep while awaiting command completion
5367  *
5368  *	Reads the PF RSS Mask register and returns its value.
5369  */
5370 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5371 {
5372 	u32 pfmask;
5373 
5374 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5375 	return pfmask;
5376 }
5377 
5378 /**
5379  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5380  *	@adap: the adapter
5381  *	@v4: holds the TCP/IP counter values
5382  *	@v6: holds the TCP/IPv6 counter values
5383  *      @sleep_ok: if true we may sleep while awaiting command completion
5384  *
5385  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5386  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5387  */
5388 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5389 			 struct tp_tcp_stats *v6, bool sleep_ok)
5390 {
5391 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5392 
5393 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5394 #define STAT(x)     val[STAT_IDX(x)]
5395 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5396 
5397 	if (v4) {
5398 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5399 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5400 		v4->tcp_out_rsts = STAT(OUT_RST);
5401 		v4->tcp_in_segs  = STAT64(IN_SEG);
5402 		v4->tcp_out_segs = STAT64(OUT_SEG);
5403 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5404 	}
5405 	if (v6) {
5406 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5407 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5408 		v6->tcp_out_rsts = STAT(OUT_RST);
5409 		v6->tcp_in_segs  = STAT64(IN_SEG);
5410 		v6->tcp_out_segs = STAT64(OUT_SEG);
5411 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5412 	}
5413 #undef STAT64
5414 #undef STAT
5415 #undef STAT_IDX
5416 }
5417 
5418 /**
5419  *	t4_tp_get_err_stats - read TP's error MIB counters
5420  *	@adap: the adapter
5421  *	@st: holds the counter values
5422  *      @sleep_ok: if true we may sleep while awaiting command completion
5423  *
5424  *	Returns the values of TP's error counters.
5425  */
5426 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5427 			 bool sleep_ok)
5428 {
5429 	int nchan = adap->params.arch.nchan;
5430 
5431 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5432 		       sleep_ok);
5433 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5434 		       sleep_ok);
5435 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5436 		       sleep_ok);
5437 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5438 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5439 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5440 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5441 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5442 		       sleep_ok);
5443 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5444 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5445 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5446 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5447 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5448 		       sleep_ok);
5449 }
5450 
5451 /**
5452  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5453  *	@adap: the adapter
5454  *	@st: holds the counter values
5455  *      @sleep_ok: if true we may sleep while awaiting command completion
5456  *
5457  *	Returns the values of TP's CPL counters.
5458  */
5459 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5460 			 bool sleep_ok)
5461 {
5462 	int nchan = adap->params.arch.nchan;
5463 
5464 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5465 
5466 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5467 }
5468 
5469 /**
5470  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5471  *	@adap: the adapter
5472  *	@st: holds the counter values
5473  *      @sleep_ok: if true we may sleep while awaiting command completion
5474  *
5475  *	Returns the values of TP's RDMA counters.
5476  */
5477 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5478 			  bool sleep_ok)
5479 {
5480 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5481 		       sleep_ok);
5482 }
5483 
5484 /**
5485  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5486  *	@adap: the adapter
5487  *	@idx: the port index
5488  *	@st: holds the counter values
5489  *      @sleep_ok: if true we may sleep while awaiting command completion
5490  *
5491  *	Returns the values of TP's FCoE counters for the selected port.
5492  */
5493 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5494 		       struct tp_fcoe_stats *st, bool sleep_ok)
5495 {
5496 	u32 val[2];
5497 
5498 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5499 		       sleep_ok);
5500 
5501 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5502 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5503 
5504 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5505 		       sleep_ok);
5506 
5507 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5508 }
5509 
5510 /**
5511  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5512  *	@adap: the adapter
5513  *	@st: holds the counter values
5514  *      @sleep_ok: if true we may sleep while awaiting command completion
5515  *
5516  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5517  */
5518 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5519 		      bool sleep_ok)
5520 {
5521 	u32 val[4];
5522 
5523 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5524 	st->frames = val[0];
5525 	st->drops = val[1];
5526 	st->octets = ((u64)val[2] << 32) | val[3];
5527 }
5528 
5529 /**
5530  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5531  *	@adap: the adapter
5532  *	@mtus: where to store the MTU values
5533  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5534  *
5535  *	Reads the HW path MTU table.
5536  */
5537 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5538 {
5539 	u32 v;
5540 	int i;
5541 
5542 	for (i = 0; i < NMTUS; ++i) {
5543 		t4_write_reg(adap, TP_MTU_TABLE_A,
5544 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5545 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5546 		mtus[i] = MTUVALUE_G(v);
5547 		if (mtu_log)
5548 			mtu_log[i] = MTUWIDTH_G(v);
5549 	}
5550 }
5551 
5552 /**
5553  *	t4_read_cong_tbl - reads the congestion control table
5554  *	@adap: the adapter
5555  *	@incr: where to store the alpha values
5556  *
5557  *	Reads the additive increments programmed into the HW congestion
5558  *	control table.
5559  */
5560 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5561 {
5562 	unsigned int mtu, w;
5563 
5564 	for (mtu = 0; mtu < NMTUS; ++mtu)
5565 		for (w = 0; w < NCCTRL_WIN; ++w) {
5566 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5567 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5568 			incr[mtu][w] = (u16)t4_read_reg(adap,
5569 						TP_CCTRL_TABLE_A) & 0x1fff;
5570 		}
5571 }
5572 
5573 /**
5574  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5575  *	@adap: the adapter
5576  *	@addr: the indirect TP register address
5577  *	@mask: specifies the field within the register to modify
5578  *	@val: new value for the field
5579  *
5580  *	Sets a field of an indirect TP register to the given value.
5581  */
5582 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5583 			    unsigned int mask, unsigned int val)
5584 {
5585 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5586 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5587 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5588 }
5589 
5590 /**
5591  *	init_cong_ctrl - initialize congestion control parameters
5592  *	@a: the alpha values for congestion control
5593  *	@b: the beta values for congestion control
5594  *
5595  *	Initialize the congestion control parameters.
5596  */
5597 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5598 {
5599 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5600 	a[9] = 2;
5601 	a[10] = 3;
5602 	a[11] = 4;
5603 	a[12] = 5;
5604 	a[13] = 6;
5605 	a[14] = 7;
5606 	a[15] = 8;
5607 	a[16] = 9;
5608 	a[17] = 10;
5609 	a[18] = 14;
5610 	a[19] = 17;
5611 	a[20] = 21;
5612 	a[21] = 25;
5613 	a[22] = 30;
5614 	a[23] = 35;
5615 	a[24] = 45;
5616 	a[25] = 60;
5617 	a[26] = 80;
5618 	a[27] = 100;
5619 	a[28] = 200;
5620 	a[29] = 300;
5621 	a[30] = 400;
5622 	a[31] = 500;
5623 
5624 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5625 	b[9] = b[10] = 1;
5626 	b[11] = b[12] = 2;
5627 	b[13] = b[14] = b[15] = b[16] = 3;
5628 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5629 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5630 	b[28] = b[29] = 6;
5631 	b[30] = b[31] = 7;
5632 }
5633 
5634 /* The minimum additive increment value for the congestion control table */
5635 #define CC_MIN_INCR 2U
5636 
5637 /**
5638  *	t4_load_mtus - write the MTU and congestion control HW tables
5639  *	@adap: the adapter
5640  *	@mtus: the values for the MTU table
5641  *	@alpha: the values for the congestion control alpha parameter
5642  *	@beta: the values for the congestion control beta parameter
5643  *
5644  *	Write the HW MTU table with the supplied MTUs and the high-speed
5645  *	congestion control table with the supplied alpha, beta, and MTUs.
5646  *	We write the two tables together because the additive increments
5647  *	depend on the MTUs.
5648  */
5649 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5650 		  const unsigned short *alpha, const unsigned short *beta)
5651 {
5652 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5653 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5654 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5655 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5656 	};
5657 
5658 	unsigned int i, w;
5659 
5660 	for (i = 0; i < NMTUS; ++i) {
5661 		unsigned int mtu = mtus[i];
5662 		unsigned int log2 = fls(mtu);
5663 
5664 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5665 			log2--;
5666 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5667 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5668 
5669 		for (w = 0; w < NCCTRL_WIN; ++w) {
5670 			unsigned int inc;
5671 
5672 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5673 				  CC_MIN_INCR);
5674 
5675 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5676 				     (w << 16) | (beta[w] << 13) | inc);
5677 		}
5678 	}
5679 }
5680 
5681 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5682  * clocks.  The formula is
5683  *
5684  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5685  *
5686  * which is equivalent to
5687  *
5688  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5689  */
5690 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5691 {
5692 	u64 v = bytes256 * adap->params.vpd.cclk;
5693 
5694 	return v * 62 + v / 2;
5695 }
5696 
5697 /**
5698  *	t4_get_chan_txrate - get the current per channel Tx rates
5699  *	@adap: the adapter
5700  *	@nic_rate: rates for NIC traffic
5701  *	@ofld_rate: rates for offloaded traffic
5702  *
5703  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5704  *	for each channel.
5705  */
5706 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5707 {
5708 	u32 v;
5709 
5710 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5711 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5712 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5713 	if (adap->params.arch.nchan == NCHAN) {
5714 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5715 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5716 	}
5717 
5718 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5719 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5720 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5721 	if (adap->params.arch.nchan == NCHAN) {
5722 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5723 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5724 	}
5725 }
5726 
5727 /**
5728  *	t4_set_trace_filter - configure one of the tracing filters
5729  *	@adap: the adapter
5730  *	@tp: the desired trace filter parameters
5731  *	@idx: which filter to configure
5732  *	@enable: whether to enable or disable the filter
5733  *
5734  *	Configures one of the tracing filters available in HW.  If @enable is
5735  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5736  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5737  */
5738 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5739 			int idx, int enable)
5740 {
5741 	int i, ofst = idx * 4;
5742 	u32 data_reg, mask_reg, cfg;
5743 	u32 multitrc = TRCMULTIFILTER_F;
5744 
5745 	if (!enable) {
5746 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5747 		return 0;
5748 	}
5749 
5750 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5751 	if (cfg & TRCMULTIFILTER_F) {
5752 		/* If multiple tracers are enabled, then maximum
5753 		 * capture size is 2.5KB (FIFO size of a single channel)
5754 		 * minus 2 flits for CPL_TRACE_PKT header.
5755 		 */
5756 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5757 			return -EINVAL;
5758 	} else {
5759 		/* If multiple tracers are disabled, to avoid deadlocks
5760 		 * maximum packet capture size of 9600 bytes is recommended.
5761 		 * Also in this mode, only trace0 can be enabled and running.
5762 		 */
5763 		multitrc = 0;
5764 		if (tp->snap_len > 9600 || idx)
5765 			return -EINVAL;
5766 	}
5767 
5768 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5769 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5770 	    tp->min_len > TFMINPKTSIZE_M)
5771 		return -EINVAL;
5772 
5773 	/* stop the tracer we'll be changing */
5774 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5775 
5776 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5777 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5778 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5779 
5780 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5781 		t4_write_reg(adap, data_reg, tp->data[i]);
5782 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5783 	}
5784 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5785 		     TFCAPTUREMAX_V(tp->snap_len) |
5786 		     TFMINPKTSIZE_V(tp->min_len));
5787 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5788 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5789 		     (is_t4(adap->params.chip) ?
5790 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5791 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5792 		     T5_TFINVERTMATCH_V(tp->invert)));
5793 
5794 	return 0;
5795 }
5796 
5797 /**
5798  *	t4_get_trace_filter - query one of the tracing filters
5799  *	@adap: the adapter
5800  *	@tp: the current trace filter parameters
5801  *	@idx: which trace filter to query
5802  *	@enabled: non-zero if the filter is enabled
5803  *
5804  *	Returns the current settings of one of the HW tracing filters.
5805  */
5806 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5807 			 int *enabled)
5808 {
5809 	u32 ctla, ctlb;
5810 	int i, ofst = idx * 4;
5811 	u32 data_reg, mask_reg;
5812 
5813 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5814 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5815 
5816 	if (is_t4(adap->params.chip)) {
5817 		*enabled = !!(ctla & TFEN_F);
5818 		tp->port =  TFPORT_G(ctla);
5819 		tp->invert = !!(ctla & TFINVERTMATCH_F);
5820 	} else {
5821 		*enabled = !!(ctla & T5_TFEN_F);
5822 		tp->port = T5_TFPORT_G(ctla);
5823 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5824 	}
5825 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5826 	tp->min_len = TFMINPKTSIZE_G(ctlb);
5827 	tp->skip_ofst = TFOFFSET_G(ctla);
5828 	tp->skip_len = TFLENGTH_G(ctla);
5829 
5830 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5831 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5832 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5833 
5834 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5835 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5836 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5837 	}
5838 }
5839 
5840 /**
5841  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5842  *	@adap: the adapter
5843  *	@cnt: where to store the count statistics
5844  *	@cycles: where to store the cycle statistics
5845  *
5846  *	Returns performance statistics from PMTX.
5847  */
5848 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5849 {
5850 	int i;
5851 	u32 data[2];
5852 
5853 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5854 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5855 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5856 		if (is_t4(adap->params.chip)) {
5857 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5858 		} else {
5859 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5860 					 PM_TX_DBG_DATA_A, data, 2,
5861 					 PM_TX_DBG_STAT_MSB_A);
5862 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5863 		}
5864 	}
5865 }
5866 
5867 /**
5868  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5869  *	@adap: the adapter
5870  *	@cnt: where to store the count statistics
5871  *	@cycles: where to store the cycle statistics
5872  *
5873  *	Returns performance statistics from PMRX.
5874  */
5875 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5876 {
5877 	int i;
5878 	u32 data[2];
5879 
5880 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5881 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5882 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5883 		if (is_t4(adap->params.chip)) {
5884 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5885 		} else {
5886 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5887 					 PM_RX_DBG_DATA_A, data, 2,
5888 					 PM_RX_DBG_STAT_MSB_A);
5889 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5890 		}
5891 	}
5892 }
5893 
5894 /**
5895  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
5896  *	@adap: the adapter
5897  *	@pidx: the port index
5898  *
5899  *	Computes and returns a bitmap indicating which MPS buffer groups are
5900  *	associated with the given Port.  Bit i is set if buffer group i is
5901  *	used by the Port.
5902  */
5903 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
5904 					      int pidx)
5905 {
5906 	unsigned int chip_version, nports;
5907 
5908 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5909 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5910 
5911 	switch (chip_version) {
5912 	case CHELSIO_T4:
5913 	case CHELSIO_T5:
5914 		switch (nports) {
5915 		case 1: return 0xf;
5916 		case 2: return 3 << (2 * pidx);
5917 		case 4: return 1 << pidx;
5918 		}
5919 		break;
5920 
5921 	case CHELSIO_T6:
5922 		switch (nports) {
5923 		case 2: return 1 << (2 * pidx);
5924 		}
5925 		break;
5926 	}
5927 
5928 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
5929 		chip_version, nports);
5930 
5931 	return 0;
5932 }
5933 
5934 /**
5935  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5936  *	@adapter: the adapter
5937  *	@pidx: the port index
5938  *
5939  *	Returns a bitmap indicating which MPS buffer groups are associated
5940  *	with the given Port.  Bit i is set if buffer group i is used by the
5941  *	Port.
5942  */
5943 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
5944 {
5945 	u8 *mps_bg_map;
5946 	unsigned int nports;
5947 
5948 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5949 	if (pidx >= nports) {
5950 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
5951 			pidx, nports);
5952 		return 0;
5953 	}
5954 
5955 	/* If we've already retrieved/computed this, just return the result.
5956 	 */
5957 	mps_bg_map = adapter->params.mps_bg_map;
5958 	if (mps_bg_map[pidx])
5959 		return mps_bg_map[pidx];
5960 
5961 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
5962 	 * If we're talking to such Firmware, let it tell us.  If the new
5963 	 * API isn't supported, revert back to old hardcoded way.  The value
5964 	 * obtained from Firmware is encoded in below format:
5965 	 *
5966 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
5967 	 *        ( MPSBGMAP[Port 2] << 16 ) |
5968 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
5969 	 *        ( MPSBGMAP[Port 0] <<  0 ))
5970 	 */
5971 	if (adapter->flags & FW_OK) {
5972 		u32 param, val;
5973 		int ret;
5974 
5975 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5976 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
5977 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
5978 					 0, 1, &param, &val);
5979 		if (!ret) {
5980 			int p;
5981 
5982 			/* Store the BG Map for all of the Ports in order to
5983 			 * avoid more calls to the Firmware in the future.
5984 			 */
5985 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
5986 				mps_bg_map[p] = val & 0xff;
5987 
5988 			return mps_bg_map[pidx];
5989 		}
5990 	}
5991 
5992 	/* Either we're not talking to the Firmware or we're dealing with
5993 	 * older Firmware which doesn't support the new API to get the MPS
5994 	 * Buffer Group Map.  Fall back to computing it ourselves.
5995 	 */
5996 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
5997 	return mps_bg_map[pidx];
5998 }
5999 
6000 /**
6001  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6002  *	@adapter: the adapter
6003  *	@pidx: the port index
6004  *
6005  *	Returns a bitmap indicating which TP Ingress Channels are associated
6006  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6007  *	the Port.
6008  */
6009 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6010 {
6011 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6012 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6013 
6014 	if (pidx >= nports) {
6015 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6016 			 pidx, nports);
6017 		return 0;
6018 	}
6019 
6020 	switch (chip_version) {
6021 	case CHELSIO_T4:
6022 	case CHELSIO_T5:
6023 		/* Note that this happens to be the same values as the MPS
6024 		 * Buffer Group Map for these Chips.  But we replicate the code
6025 		 * here because they're really separate concepts.
6026 		 */
6027 		switch (nports) {
6028 		case 1: return 0xf;
6029 		case 2: return 3 << (2 * pidx);
6030 		case 4: return 1 << pidx;
6031 		}
6032 		break;
6033 
6034 	case CHELSIO_T6:
6035 		switch (nports) {
6036 		case 2: return 1 << pidx;
6037 		}
6038 		break;
6039 	}
6040 
6041 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6042 		chip_version, nports);
6043 	return 0;
6044 }
6045 
6046 /**
6047  *      t4_get_port_type_description - return Port Type string description
6048  *      @port_type: firmware Port Type enumeration
6049  */
6050 const char *t4_get_port_type_description(enum fw_port_type port_type)
6051 {
6052 	static const char *const port_type_description[] = {
6053 		"Fiber_XFI",
6054 		"Fiber_XAUI",
6055 		"BT_SGMII",
6056 		"BT_XFI",
6057 		"BT_XAUI",
6058 		"KX4",
6059 		"CX4",
6060 		"KX",
6061 		"KR",
6062 		"SFP",
6063 		"BP_AP",
6064 		"BP4_AP",
6065 		"QSFP_10G",
6066 		"QSA",
6067 		"QSFP",
6068 		"BP40_BA",
6069 		"KR4_100G",
6070 		"CR4_QSFP",
6071 		"CR_QSFP",
6072 		"CR2_QSFP",
6073 		"SFP28",
6074 		"KR_SFP28",
6075 	};
6076 
6077 	if (port_type < ARRAY_SIZE(port_type_description))
6078 		return port_type_description[port_type];
6079 	return "UNKNOWN";
6080 }
6081 
6082 /**
6083  *      t4_get_port_stats_offset - collect port stats relative to a previous
6084  *                                 snapshot
6085  *      @adap: The adapter
6086  *      @idx: The port
6087  *      @stats: Current stats to fill
6088  *      @offset: Previous stats snapshot
6089  */
6090 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6091 			      struct port_stats *stats,
6092 			      struct port_stats *offset)
6093 {
6094 	u64 *s, *o;
6095 	int i;
6096 
6097 	t4_get_port_stats(adap, idx, stats);
6098 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6099 			i < (sizeof(struct port_stats) / sizeof(u64));
6100 			i++, s++, o++)
6101 		*s -= *o;
6102 }
6103 
6104 /**
6105  *	t4_get_port_stats - collect port statistics
6106  *	@adap: the adapter
6107  *	@idx: the port index
6108  *	@p: the stats structure to fill
6109  *
6110  *	Collect statistics related to the given port from HW.
6111  */
6112 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6113 {
6114 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6115 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6116 
6117 #define GET_STAT(name) \
6118 	t4_read_reg64(adap, \
6119 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6120 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6121 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6122 
6123 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6124 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6125 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6126 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6127 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6128 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6129 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6130 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6131 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6132 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6133 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6134 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6135 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6136 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6137 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6138 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6139 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6140 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6141 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6142 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6143 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6144 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6145 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6146 
6147 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6148 		if (stat_ctl & COUNTPAUSESTATTX_F)
6149 			p->tx_frames_64 -= p->tx_pause;
6150 		if (stat_ctl & COUNTPAUSEMCTX_F)
6151 			p->tx_mcast_frames -= p->tx_pause;
6152 	}
6153 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6154 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6155 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6156 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6157 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6158 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6159 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6160 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6161 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6162 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6163 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6164 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6165 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6166 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6167 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6168 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6169 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6170 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6171 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6172 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6173 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6174 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6175 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6176 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6177 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6178 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6179 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6180 
6181 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6182 		if (stat_ctl & COUNTPAUSESTATRX_F)
6183 			p->rx_frames_64 -= p->rx_pause;
6184 		if (stat_ctl & COUNTPAUSEMCRX_F)
6185 			p->rx_mcast_frames -= p->rx_pause;
6186 	}
6187 
6188 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6189 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6190 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6191 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6192 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6193 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6194 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6195 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6196 
6197 #undef GET_STAT
6198 #undef GET_STAT_COM
6199 }
6200 
6201 /**
6202  *	t4_get_lb_stats - collect loopback port statistics
6203  *	@adap: the adapter
6204  *	@idx: the loopback port index
6205  *	@p: the stats structure to fill
6206  *
6207  *	Return HW statistics for the given loopback port.
6208  */
6209 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6210 {
6211 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6212 
6213 #define GET_STAT(name) \
6214 	t4_read_reg64(adap, \
6215 	(is_t4(adap->params.chip) ? \
6216 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6217 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6218 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6219 
6220 	p->octets           = GET_STAT(BYTES);
6221 	p->frames           = GET_STAT(FRAMES);
6222 	p->bcast_frames     = GET_STAT(BCAST);
6223 	p->mcast_frames     = GET_STAT(MCAST);
6224 	p->ucast_frames     = GET_STAT(UCAST);
6225 	p->error_frames     = GET_STAT(ERROR);
6226 
6227 	p->frames_64        = GET_STAT(64B);
6228 	p->frames_65_127    = GET_STAT(65B_127B);
6229 	p->frames_128_255   = GET_STAT(128B_255B);
6230 	p->frames_256_511   = GET_STAT(256B_511B);
6231 	p->frames_512_1023  = GET_STAT(512B_1023B);
6232 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6233 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6234 	p->drop             = GET_STAT(DROP_FRAMES);
6235 
6236 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6237 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6238 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6239 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6240 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6241 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6242 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6243 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6244 
6245 #undef GET_STAT
6246 #undef GET_STAT_COM
6247 }
6248 
6249 /*     t4_mk_filtdelwr - create a delete filter WR
6250  *     @ftid: the filter ID
6251  *     @wr: the filter work request to populate
6252  *     @qid: ingress queue to receive the delete notification
6253  *
6254  *     Creates a filter work request to delete the supplied filter.  If @qid is
6255  *     negative the delete notification is suppressed.
6256  */
6257 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6258 {
6259 	memset(wr, 0, sizeof(*wr));
6260 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6261 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6262 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6263 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6264 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6265 	if (qid >= 0)
6266 		wr->rx_chan_rx_rpl_iq =
6267 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6268 }
6269 
6270 #define INIT_CMD(var, cmd, rd_wr) do { \
6271 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6272 					FW_CMD_REQUEST_F | \
6273 					FW_CMD_##rd_wr##_F); \
6274 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6275 } while (0)
6276 
6277 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6278 			  u32 addr, u32 val)
6279 {
6280 	u32 ldst_addrspace;
6281 	struct fw_ldst_cmd c;
6282 
6283 	memset(&c, 0, sizeof(c));
6284 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6285 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6286 					FW_CMD_REQUEST_F |
6287 					FW_CMD_WRITE_F |
6288 					ldst_addrspace);
6289 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6290 	c.u.addrval.addr = cpu_to_be32(addr);
6291 	c.u.addrval.val = cpu_to_be32(val);
6292 
6293 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6294 }
6295 
6296 /**
6297  *	t4_mdio_rd - read a PHY register through MDIO
6298  *	@adap: the adapter
6299  *	@mbox: mailbox to use for the FW command
6300  *	@phy_addr: the PHY address
6301  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6302  *	@reg: the register to read
6303  *	@valp: where to store the value
6304  *
6305  *	Issues a FW command through the given mailbox to read a PHY register.
6306  */
6307 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6308 	       unsigned int mmd, unsigned int reg, u16 *valp)
6309 {
6310 	int ret;
6311 	u32 ldst_addrspace;
6312 	struct fw_ldst_cmd c;
6313 
6314 	memset(&c, 0, sizeof(c));
6315 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6316 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6317 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6318 					ldst_addrspace);
6319 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6320 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6321 					 FW_LDST_CMD_MMD_V(mmd));
6322 	c.u.mdio.raddr = cpu_to_be16(reg);
6323 
6324 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6325 	if (ret == 0)
6326 		*valp = be16_to_cpu(c.u.mdio.rval);
6327 	return ret;
6328 }
6329 
6330 /**
6331  *	t4_mdio_wr - write a PHY register through MDIO
6332  *	@adap: the adapter
6333  *	@mbox: mailbox to use for the FW command
6334  *	@phy_addr: the PHY address
6335  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6336  *	@reg: the register to write
6337  *	@valp: value to write
6338  *
6339  *	Issues a FW command through the given mailbox to write a PHY register.
6340  */
6341 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6342 	       unsigned int mmd, unsigned int reg, u16 val)
6343 {
6344 	u32 ldst_addrspace;
6345 	struct fw_ldst_cmd c;
6346 
6347 	memset(&c, 0, sizeof(c));
6348 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6349 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6350 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6351 					ldst_addrspace);
6352 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6353 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6354 					 FW_LDST_CMD_MMD_V(mmd));
6355 	c.u.mdio.raddr = cpu_to_be16(reg);
6356 	c.u.mdio.rval = cpu_to_be16(val);
6357 
6358 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6359 }
6360 
6361 /**
6362  *	t4_sge_decode_idma_state - decode the idma state
6363  *	@adap: the adapter
6364  *	@state: the state idma is stuck in
6365  */
6366 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6367 {
6368 	static const char * const t4_decode[] = {
6369 		"IDMA_IDLE",
6370 		"IDMA_PUSH_MORE_CPL_FIFO",
6371 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6372 		"Not used",
6373 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6374 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6375 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6376 		"IDMA_SEND_FIFO_TO_IMSG",
6377 		"IDMA_FL_REQ_DATA_FL_PREP",
6378 		"IDMA_FL_REQ_DATA_FL",
6379 		"IDMA_FL_DROP",
6380 		"IDMA_FL_H_REQ_HEADER_FL",
6381 		"IDMA_FL_H_SEND_PCIEHDR",
6382 		"IDMA_FL_H_PUSH_CPL_FIFO",
6383 		"IDMA_FL_H_SEND_CPL",
6384 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6385 		"IDMA_FL_H_SEND_IP_HDR",
6386 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6387 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6388 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6389 		"IDMA_FL_D_SEND_PCIEHDR",
6390 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6391 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6392 		"IDMA_FL_SEND_PCIEHDR",
6393 		"IDMA_FL_PUSH_CPL_FIFO",
6394 		"IDMA_FL_SEND_CPL",
6395 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6396 		"IDMA_FL_SEND_PAYLOAD",
6397 		"IDMA_FL_REQ_NEXT_DATA_FL",
6398 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6399 		"IDMA_FL_SEND_PADDING",
6400 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6401 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6402 		"IDMA_FL_REQ_DATAFL_DONE",
6403 		"IDMA_FL_REQ_HEADERFL_DONE",
6404 	};
6405 	static const char * const t5_decode[] = {
6406 		"IDMA_IDLE",
6407 		"IDMA_ALMOST_IDLE",
6408 		"IDMA_PUSH_MORE_CPL_FIFO",
6409 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6410 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6411 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6412 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6413 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6414 		"IDMA_SEND_FIFO_TO_IMSG",
6415 		"IDMA_FL_REQ_DATA_FL",
6416 		"IDMA_FL_DROP",
6417 		"IDMA_FL_DROP_SEND_INC",
6418 		"IDMA_FL_H_REQ_HEADER_FL",
6419 		"IDMA_FL_H_SEND_PCIEHDR",
6420 		"IDMA_FL_H_PUSH_CPL_FIFO",
6421 		"IDMA_FL_H_SEND_CPL",
6422 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6423 		"IDMA_FL_H_SEND_IP_HDR",
6424 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6425 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6426 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6427 		"IDMA_FL_D_SEND_PCIEHDR",
6428 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6429 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6430 		"IDMA_FL_SEND_PCIEHDR",
6431 		"IDMA_FL_PUSH_CPL_FIFO",
6432 		"IDMA_FL_SEND_CPL",
6433 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6434 		"IDMA_FL_SEND_PAYLOAD",
6435 		"IDMA_FL_REQ_NEXT_DATA_FL",
6436 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6437 		"IDMA_FL_SEND_PADDING",
6438 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6439 	};
6440 	static const char * const t6_decode[] = {
6441 		"IDMA_IDLE",
6442 		"IDMA_PUSH_MORE_CPL_FIFO",
6443 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6444 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6445 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6446 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6447 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6448 		"IDMA_FL_REQ_DATA_FL",
6449 		"IDMA_FL_DROP",
6450 		"IDMA_FL_DROP_SEND_INC",
6451 		"IDMA_FL_H_REQ_HEADER_FL",
6452 		"IDMA_FL_H_SEND_PCIEHDR",
6453 		"IDMA_FL_H_PUSH_CPL_FIFO",
6454 		"IDMA_FL_H_SEND_CPL",
6455 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6456 		"IDMA_FL_H_SEND_IP_HDR",
6457 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6458 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6459 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6460 		"IDMA_FL_D_SEND_PCIEHDR",
6461 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6462 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6463 		"IDMA_FL_SEND_PCIEHDR",
6464 		"IDMA_FL_PUSH_CPL_FIFO",
6465 		"IDMA_FL_SEND_CPL",
6466 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6467 		"IDMA_FL_SEND_PAYLOAD",
6468 		"IDMA_FL_REQ_NEXT_DATA_FL",
6469 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6470 		"IDMA_FL_SEND_PADDING",
6471 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6472 	};
6473 	static const u32 sge_regs[] = {
6474 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6475 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6476 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6477 	};
6478 	const char **sge_idma_decode;
6479 	int sge_idma_decode_nstates;
6480 	int i;
6481 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6482 
6483 	/* Select the right set of decode strings to dump depending on the
6484 	 * adapter chip type.
6485 	 */
6486 	switch (chip_version) {
6487 	case CHELSIO_T4:
6488 		sge_idma_decode = (const char **)t4_decode;
6489 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6490 		break;
6491 
6492 	case CHELSIO_T5:
6493 		sge_idma_decode = (const char **)t5_decode;
6494 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6495 		break;
6496 
6497 	case CHELSIO_T6:
6498 		sge_idma_decode = (const char **)t6_decode;
6499 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6500 		break;
6501 
6502 	default:
6503 		dev_err(adapter->pdev_dev,
6504 			"Unsupported chip version %d\n", chip_version);
6505 		return;
6506 	}
6507 
6508 	if (is_t4(adapter->params.chip)) {
6509 		sge_idma_decode = (const char **)t4_decode;
6510 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6511 	} else {
6512 		sge_idma_decode = (const char **)t5_decode;
6513 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6514 	}
6515 
6516 	if (state < sge_idma_decode_nstates)
6517 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6518 	else
6519 		CH_WARN(adapter, "idma state %d unknown\n", state);
6520 
6521 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6522 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6523 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6524 }
6525 
6526 /**
6527  *      t4_sge_ctxt_flush - flush the SGE context cache
6528  *      @adap: the adapter
6529  *      @mbox: mailbox to use for the FW command
6530  *
6531  *      Issues a FW command through the given mailbox to flush the
6532  *      SGE context cache.
6533  */
6534 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6535 {
6536 	int ret;
6537 	u32 ldst_addrspace;
6538 	struct fw_ldst_cmd c;
6539 
6540 	memset(&c, 0, sizeof(c));
6541 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
6542 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6543 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6544 					ldst_addrspace);
6545 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6546 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6547 
6548 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6549 	return ret;
6550 }
6551 
6552 /**
6553  *      t4_fw_hello - establish communication with FW
6554  *      @adap: the adapter
6555  *      @mbox: mailbox to use for the FW command
6556  *      @evt_mbox: mailbox to receive async FW events
6557  *      @master: specifies the caller's willingness to be the device master
6558  *	@state: returns the current device state (if non-NULL)
6559  *
6560  *	Issues a command to establish communication with FW.  Returns either
6561  *	an error (negative integer) or the mailbox of the Master PF.
6562  */
6563 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6564 		enum dev_master master, enum dev_state *state)
6565 {
6566 	int ret;
6567 	struct fw_hello_cmd c;
6568 	u32 v;
6569 	unsigned int master_mbox;
6570 	int retries = FW_CMD_HELLO_RETRIES;
6571 
6572 retry:
6573 	memset(&c, 0, sizeof(c));
6574 	INIT_CMD(c, HELLO, WRITE);
6575 	c.err_to_clearinit = cpu_to_be32(
6576 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6577 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6578 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6579 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6580 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6581 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6582 		FW_HELLO_CMD_CLEARINIT_F);
6583 
6584 	/*
6585 	 * Issue the HELLO command to the firmware.  If it's not successful
6586 	 * but indicates that we got a "busy" or "timeout" condition, retry
6587 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6588 	 * retry limit, check to see if the firmware left us any error
6589 	 * information and report that if so.
6590 	 */
6591 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6592 	if (ret < 0) {
6593 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6594 			goto retry;
6595 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6596 			t4_report_fw_error(adap);
6597 		return ret;
6598 	}
6599 
6600 	v = be32_to_cpu(c.err_to_clearinit);
6601 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6602 	if (state) {
6603 		if (v & FW_HELLO_CMD_ERR_F)
6604 			*state = DEV_STATE_ERR;
6605 		else if (v & FW_HELLO_CMD_INIT_F)
6606 			*state = DEV_STATE_INIT;
6607 		else
6608 			*state = DEV_STATE_UNINIT;
6609 	}
6610 
6611 	/*
6612 	 * If we're not the Master PF then we need to wait around for the
6613 	 * Master PF Driver to finish setting up the adapter.
6614 	 *
6615 	 * Note that we also do this wait if we're a non-Master-capable PF and
6616 	 * there is no current Master PF; a Master PF may show up momentarily
6617 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6618 	 * OS loads lots of different drivers rapidly at the same time).  In
6619 	 * this case, the Master PF returned by the firmware will be
6620 	 * PCIE_FW_MASTER_M so the test below will work ...
6621 	 */
6622 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6623 	    master_mbox != mbox) {
6624 		int waiting = FW_CMD_HELLO_TIMEOUT;
6625 
6626 		/*
6627 		 * Wait for the firmware to either indicate an error or
6628 		 * initialized state.  If we see either of these we bail out
6629 		 * and report the issue to the caller.  If we exhaust the
6630 		 * "hello timeout" and we haven't exhausted our retries, try
6631 		 * again.  Otherwise bail with a timeout error.
6632 		 */
6633 		for (;;) {
6634 			u32 pcie_fw;
6635 
6636 			msleep(50);
6637 			waiting -= 50;
6638 
6639 			/*
6640 			 * If neither Error nor Initialialized are indicated
6641 			 * by the firmware keep waiting till we exaust our
6642 			 * timeout ... and then retry if we haven't exhausted
6643 			 * our retries ...
6644 			 */
6645 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6646 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6647 				if (waiting <= 0) {
6648 					if (retries-- > 0)
6649 						goto retry;
6650 
6651 					return -ETIMEDOUT;
6652 				}
6653 				continue;
6654 			}
6655 
6656 			/*
6657 			 * We either have an Error or Initialized condition
6658 			 * report errors preferentially.
6659 			 */
6660 			if (state) {
6661 				if (pcie_fw & PCIE_FW_ERR_F)
6662 					*state = DEV_STATE_ERR;
6663 				else if (pcie_fw & PCIE_FW_INIT_F)
6664 					*state = DEV_STATE_INIT;
6665 			}
6666 
6667 			/*
6668 			 * If we arrived before a Master PF was selected and
6669 			 * there's not a valid Master PF, grab its identity
6670 			 * for our caller.
6671 			 */
6672 			if (master_mbox == PCIE_FW_MASTER_M &&
6673 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6674 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6675 			break;
6676 		}
6677 	}
6678 
6679 	return master_mbox;
6680 }
6681 
6682 /**
6683  *	t4_fw_bye - end communication with FW
6684  *	@adap: the adapter
6685  *	@mbox: mailbox to use for the FW command
6686  *
6687  *	Issues a command to terminate communication with FW.
6688  */
6689 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6690 {
6691 	struct fw_bye_cmd c;
6692 
6693 	memset(&c, 0, sizeof(c));
6694 	INIT_CMD(c, BYE, WRITE);
6695 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6696 }
6697 
6698 /**
6699  *	t4_init_cmd - ask FW to initialize the device
6700  *	@adap: the adapter
6701  *	@mbox: mailbox to use for the FW command
6702  *
6703  *	Issues a command to FW to partially initialize the device.  This
6704  *	performs initialization that generally doesn't depend on user input.
6705  */
6706 int t4_early_init(struct adapter *adap, unsigned int mbox)
6707 {
6708 	struct fw_initialize_cmd c;
6709 
6710 	memset(&c, 0, sizeof(c));
6711 	INIT_CMD(c, INITIALIZE, WRITE);
6712 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6713 }
6714 
6715 /**
6716  *	t4_fw_reset - issue a reset to FW
6717  *	@adap: the adapter
6718  *	@mbox: mailbox to use for the FW command
6719  *	@reset: specifies the type of reset to perform
6720  *
6721  *	Issues a reset command of the specified type to FW.
6722  */
6723 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6724 {
6725 	struct fw_reset_cmd c;
6726 
6727 	memset(&c, 0, sizeof(c));
6728 	INIT_CMD(c, RESET, WRITE);
6729 	c.val = cpu_to_be32(reset);
6730 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6731 }
6732 
6733 /**
6734  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6735  *	@adap: the adapter
6736  *	@mbox: mailbox to use for the FW RESET command (if desired)
6737  *	@force: force uP into RESET even if FW RESET command fails
6738  *
6739  *	Issues a RESET command to firmware (if desired) with a HALT indication
6740  *	and then puts the microprocessor into RESET state.  The RESET command
6741  *	will only be issued if a legitimate mailbox is provided (mbox <=
6742  *	PCIE_FW_MASTER_M).
6743  *
6744  *	This is generally used in order for the host to safely manipulate the
6745  *	adapter without fear of conflicting with whatever the firmware might
6746  *	be doing.  The only way out of this state is to RESTART the firmware
6747  *	...
6748  */
6749 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6750 {
6751 	int ret = 0;
6752 
6753 	/*
6754 	 * If a legitimate mailbox is provided, issue a RESET command
6755 	 * with a HALT indication.
6756 	 */
6757 	if (mbox <= PCIE_FW_MASTER_M) {
6758 		struct fw_reset_cmd c;
6759 
6760 		memset(&c, 0, sizeof(c));
6761 		INIT_CMD(c, RESET, WRITE);
6762 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6763 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6764 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6765 	}
6766 
6767 	/*
6768 	 * Normally we won't complete the operation if the firmware RESET
6769 	 * command fails but if our caller insists we'll go ahead and put the
6770 	 * uP into RESET.  This can be useful if the firmware is hung or even
6771 	 * missing ...  We'll have to take the risk of putting the uP into
6772 	 * RESET without the cooperation of firmware in that case.
6773 	 *
6774 	 * We also force the firmware's HALT flag to be on in case we bypassed
6775 	 * the firmware RESET command above or we're dealing with old firmware
6776 	 * which doesn't have the HALT capability.  This will serve as a flag
6777 	 * for the incoming firmware to know that it's coming out of a HALT
6778 	 * rather than a RESET ... if it's new enough to understand that ...
6779 	 */
6780 	if (ret == 0 || force) {
6781 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6782 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6783 				 PCIE_FW_HALT_F);
6784 	}
6785 
6786 	/*
6787 	 * And we always return the result of the firmware RESET command
6788 	 * even when we force the uP into RESET ...
6789 	 */
6790 	return ret;
6791 }
6792 
6793 /**
6794  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6795  *	@adap: the adapter
6796  *	@reset: if we want to do a RESET to restart things
6797  *
6798  *	Restart firmware previously halted by t4_fw_halt().  On successful
6799  *	return the previous PF Master remains as the new PF Master and there
6800  *	is no need to issue a new HELLO command, etc.
6801  *
6802  *	We do this in two ways:
6803  *
6804  *	 1. If we're dealing with newer firmware we'll simply want to take
6805  *	    the chip's microprocessor out of RESET.  This will cause the
6806  *	    firmware to start up from its start vector.  And then we'll loop
6807  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6808  *	    reset to 0) or we timeout.
6809  *
6810  *	 2. If we're dealing with older firmware then we'll need to RESET
6811  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6812  *	    flag and automatically RESET itself on startup.
6813  */
6814 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6815 {
6816 	if (reset) {
6817 		/*
6818 		 * Since we're directing the RESET instead of the firmware
6819 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6820 		 * bit.
6821 		 */
6822 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6823 
6824 		/*
6825 		 * If we've been given a valid mailbox, first try to get the
6826 		 * firmware to do the RESET.  If that works, great and we can
6827 		 * return success.  Otherwise, if we haven't been given a
6828 		 * valid mailbox or the RESET command failed, fall back to
6829 		 * hitting the chip with a hammer.
6830 		 */
6831 		if (mbox <= PCIE_FW_MASTER_M) {
6832 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6833 			msleep(100);
6834 			if (t4_fw_reset(adap, mbox,
6835 					PIORST_F | PIORSTMODE_F) == 0)
6836 				return 0;
6837 		}
6838 
6839 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6840 		msleep(2000);
6841 	} else {
6842 		int ms;
6843 
6844 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6845 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6846 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6847 				return 0;
6848 			msleep(100);
6849 			ms += 100;
6850 		}
6851 		return -ETIMEDOUT;
6852 	}
6853 	return 0;
6854 }
6855 
6856 /**
6857  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6858  *	@adap: the adapter
6859  *	@mbox: mailbox to use for the FW RESET command (if desired)
6860  *	@fw_data: the firmware image to write
6861  *	@size: image size
6862  *	@force: force upgrade even if firmware doesn't cooperate
6863  *
6864  *	Perform all of the steps necessary for upgrading an adapter's
6865  *	firmware image.  Normally this requires the cooperation of the
6866  *	existing firmware in order to halt all existing activities
6867  *	but if an invalid mailbox token is passed in we skip that step
6868  *	(though we'll still put the adapter microprocessor into RESET in
6869  *	that case).
6870  *
6871  *	On successful return the new firmware will have been loaded and
6872  *	the adapter will have been fully RESET losing all previous setup
6873  *	state.  On unsuccessful return the adapter may be completely hosed ...
6874  *	positive errno indicates that the adapter is ~probably~ intact, a
6875  *	negative errno indicates that things are looking bad ...
6876  */
6877 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6878 		  const u8 *fw_data, unsigned int size, int force)
6879 {
6880 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6881 	int reset, ret;
6882 
6883 	if (!t4_fw_matches_chip(adap, fw_hdr))
6884 		return -EINVAL;
6885 
6886 	/* Disable FW_OK flag so that mbox commands with FW_OK flag set
6887 	 * wont be sent when we are flashing FW.
6888 	 */
6889 	adap->flags &= ~FW_OK;
6890 
6891 	ret = t4_fw_halt(adap, mbox, force);
6892 	if (ret < 0 && !force)
6893 		goto out;
6894 
6895 	ret = t4_load_fw(adap, fw_data, size);
6896 	if (ret < 0)
6897 		goto out;
6898 
6899 	/*
6900 	 * If there was a Firmware Configuration File stored in FLASH,
6901 	 * there's a good chance that it won't be compatible with the new
6902 	 * Firmware.  In order to prevent difficult to diagnose adapter
6903 	 * initialization issues, we clear out the Firmware Configuration File
6904 	 * portion of the FLASH .  The user will need to re-FLASH a new
6905 	 * Firmware Configuration File which is compatible with the new
6906 	 * Firmware if that's desired.
6907 	 */
6908 	(void)t4_load_cfg(adap, NULL, 0);
6909 
6910 	/*
6911 	 * Older versions of the firmware don't understand the new
6912 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6913 	 * restart.  So for newly loaded older firmware we'll have to do the
6914 	 * RESET for it so it starts up on a clean slate.  We can tell if
6915 	 * the newly loaded firmware will handle this right by checking
6916 	 * its header flags to see if it advertises the capability.
6917 	 */
6918 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6919 	ret = t4_fw_restart(adap, mbox, reset);
6920 
6921 	/* Grab potentially new Firmware Device Log parameters so we can see
6922 	 * how healthy the new Firmware is.  It's okay to contact the new
6923 	 * Firmware for these parameters even though, as far as it's
6924 	 * concerned, we've never said "HELLO" to it ...
6925 	 */
6926 	(void)t4_init_devlog_params(adap);
6927 out:
6928 	adap->flags |= FW_OK;
6929 	return ret;
6930 }
6931 
6932 /**
6933  *	t4_fl_pkt_align - return the fl packet alignment
6934  *	@adap: the adapter
6935  *
6936  *	T4 has a single field to specify the packing and padding boundary.
6937  *	T5 onwards has separate fields for this and hence the alignment for
6938  *	next packet offset is maximum of these two.
6939  *
6940  */
6941 int t4_fl_pkt_align(struct adapter *adap)
6942 {
6943 	u32 sge_control, sge_control2;
6944 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6945 
6946 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6947 
6948 	/* T4 uses a single control field to specify both the PCIe Padding and
6949 	 * Packing Boundary.  T5 introduced the ability to specify these
6950 	 * separately.  The actual Ingress Packet Data alignment boundary
6951 	 * within Packed Buffer Mode is the maximum of these two
6952 	 * specifications.  (Note that it makes no real practical sense to
6953 	 * have the Pading Boudary be larger than the Packing Boundary but you
6954 	 * could set the chip up that way and, in fact, legacy T4 code would
6955 	 * end doing this because it would initialize the Padding Boundary and
6956 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
6957 	 * Padding Boundary values in T6 starts from 8B,
6958 	 * where as it is 32B for T4 and T5.
6959 	 */
6960 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6961 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6962 	else
6963 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6964 
6965 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6966 
6967 	fl_align = ingpadboundary;
6968 	if (!is_t4(adap->params.chip)) {
6969 		/* T5 has a weird interpretation of one of the PCIe Packing
6970 		 * Boundary values.  No idea why ...
6971 		 */
6972 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6973 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6974 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6975 			ingpackboundary = 16;
6976 		else
6977 			ingpackboundary = 1 << (ingpackboundary +
6978 						INGPACKBOUNDARY_SHIFT_X);
6979 
6980 		fl_align = max(ingpadboundary, ingpackboundary);
6981 	}
6982 	return fl_align;
6983 }
6984 
6985 /**
6986  *	t4_fixup_host_params - fix up host-dependent parameters
6987  *	@adap: the adapter
6988  *	@page_size: the host's Base Page Size
6989  *	@cache_line_size: the host's Cache Line Size
6990  *
6991  *	Various registers in T4 contain values which are dependent on the
6992  *	host's Base Page and Cache Line Sizes.  This function will fix all of
6993  *	those registers with the appropriate values as passed in ...
6994  */
6995 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6996 			 unsigned int cache_line_size)
6997 {
6998 	unsigned int page_shift = fls(page_size) - 1;
6999 	unsigned int sge_hps = page_shift - 10;
7000 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7001 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7002 	unsigned int fl_align_log = fls(fl_align) - 1;
7003 
7004 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7005 		     HOSTPAGESIZEPF0_V(sge_hps) |
7006 		     HOSTPAGESIZEPF1_V(sge_hps) |
7007 		     HOSTPAGESIZEPF2_V(sge_hps) |
7008 		     HOSTPAGESIZEPF3_V(sge_hps) |
7009 		     HOSTPAGESIZEPF4_V(sge_hps) |
7010 		     HOSTPAGESIZEPF5_V(sge_hps) |
7011 		     HOSTPAGESIZEPF6_V(sge_hps) |
7012 		     HOSTPAGESIZEPF7_V(sge_hps));
7013 
7014 	if (is_t4(adap->params.chip)) {
7015 		t4_set_reg_field(adap, SGE_CONTROL_A,
7016 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7017 				 EGRSTATUSPAGESIZE_F,
7018 				 INGPADBOUNDARY_V(fl_align_log -
7019 						  INGPADBOUNDARY_SHIFT_X) |
7020 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7021 	} else {
7022 		unsigned int pack_align;
7023 		unsigned int ingpad, ingpack;
7024 		unsigned int pcie_cap;
7025 
7026 		/* T5 introduced the separation of the Free List Padding and
7027 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7028 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7029 		 * Bandwidth, and use a Packing Boundary which is large enough
7030 		 * to avoid false sharing between CPUs, etc.
7031 		 *
7032 		 * For the PCI Link, the smaller the Padding Boundary the
7033 		 * better.  For the Memory Controller, a smaller Padding
7034 		 * Boundary is better until we cross under the Memory Line
7035 		 * Size (the minimum unit of transfer to/from Memory).  If we
7036 		 * have a Padding Boundary which is smaller than the Memory
7037 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7038 		 * Memory Controller which is never good.
7039 		 */
7040 
7041 		/* We want the Packing Boundary to be based on the Cache Line
7042 		 * Size in order to help avoid False Sharing performance
7043 		 * issues between CPUs, etc.  We also want the Packing
7044 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7045 		 * get best performance when the Packing Boundary is a
7046 		 * multiple of the Maximum Payload Size.
7047 		 */
7048 		pack_align = fl_align;
7049 		pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
7050 		if (pcie_cap) {
7051 			unsigned int mps, mps_log;
7052 			u16 devctl;
7053 
7054 			/* The PCIe Device Control Maximum Payload Size field
7055 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7056 			 * 128 bytes.
7057 			 */
7058 			pci_read_config_word(adap->pdev,
7059 					     pcie_cap + PCI_EXP_DEVCTL,
7060 					     &devctl);
7061 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7062 			mps = 1 << mps_log;
7063 			if (mps > pack_align)
7064 				pack_align = mps;
7065 		}
7066 
7067 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7068 		 * value for the Packing Boundary.  This corresponds to 16
7069 		 * bytes instead of the expected 32 bytes.  So if we want 32
7070 		 * bytes, the best we can really do is 64 bytes ...
7071 		 */
7072 		if (pack_align <= 16) {
7073 			ingpack = INGPACKBOUNDARY_16B_X;
7074 			fl_align = 16;
7075 		} else if (pack_align == 32) {
7076 			ingpack = INGPACKBOUNDARY_64B_X;
7077 			fl_align = 64;
7078 		} else {
7079 			unsigned int pack_align_log = fls(pack_align) - 1;
7080 
7081 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7082 			fl_align = pack_align;
7083 		}
7084 
7085 		/* Use the smallest Ingress Padding which isn't smaller than
7086 		 * the Memory Controller Read/Write Size.  We'll take that as
7087 		 * being 8 bytes since we don't know of any system with a
7088 		 * wider Memory Controller Bus Width.
7089 		 */
7090 		if (is_t5(adap->params.chip))
7091 			ingpad = INGPADBOUNDARY_32B_X;
7092 		else
7093 			ingpad = T6_INGPADBOUNDARY_8B_X;
7094 
7095 		t4_set_reg_field(adap, SGE_CONTROL_A,
7096 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7097 				 EGRSTATUSPAGESIZE_F,
7098 				 INGPADBOUNDARY_V(ingpad) |
7099 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7100 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7101 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7102 				 INGPACKBOUNDARY_V(ingpack));
7103 	}
7104 	/*
7105 	 * Adjust various SGE Free List Host Buffer Sizes.
7106 	 *
7107 	 * This is something of a crock since we're using fixed indices into
7108 	 * the array which are also known by the sge.c code and the T4
7109 	 * Firmware Configuration File.  We need to come up with a much better
7110 	 * approach to managing this array.  For now, the first four entries
7111 	 * are:
7112 	 *
7113 	 *   0: Host Page Size
7114 	 *   1: 64KB
7115 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7116 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7117 	 *
7118 	 * For the single-MTU buffers in unpacked mode we need to include
7119 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7120 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7121 	 * Padding boundary.  All of these are accommodated in the Factory
7122 	 * Default Firmware Configuration File but we need to adjust it for
7123 	 * this host's cache line size.
7124 	 */
7125 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7126 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7127 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7128 		     & ~(fl_align-1));
7129 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7130 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7131 		     & ~(fl_align-1));
7132 
7133 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7134 
7135 	return 0;
7136 }
7137 
7138 /**
7139  *	t4_fw_initialize - ask FW to initialize the device
7140  *	@adap: the adapter
7141  *	@mbox: mailbox to use for the FW command
7142  *
7143  *	Issues a command to FW to partially initialize the device.  This
7144  *	performs initialization that generally doesn't depend on user input.
7145  */
7146 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7147 {
7148 	struct fw_initialize_cmd c;
7149 
7150 	memset(&c, 0, sizeof(c));
7151 	INIT_CMD(c, INITIALIZE, WRITE);
7152 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7153 }
7154 
7155 /**
7156  *	t4_query_params_rw - query FW or device parameters
7157  *	@adap: the adapter
7158  *	@mbox: mailbox to use for the FW command
7159  *	@pf: the PF
7160  *	@vf: the VF
7161  *	@nparams: the number of parameters
7162  *	@params: the parameter names
7163  *	@val: the parameter values
7164  *	@rw: Write and read flag
7165  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7166  *
7167  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7168  *	queried at once.
7169  */
7170 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7171 		       unsigned int vf, unsigned int nparams, const u32 *params,
7172 		       u32 *val, int rw, bool sleep_ok)
7173 {
7174 	int i, ret;
7175 	struct fw_params_cmd c;
7176 	__be32 *p = &c.param[0].mnem;
7177 
7178 	if (nparams > 7)
7179 		return -EINVAL;
7180 
7181 	memset(&c, 0, sizeof(c));
7182 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7183 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7184 				  FW_PARAMS_CMD_PFN_V(pf) |
7185 				  FW_PARAMS_CMD_VFN_V(vf));
7186 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7187 
7188 	for (i = 0; i < nparams; i++) {
7189 		*p++ = cpu_to_be32(*params++);
7190 		if (rw)
7191 			*p = cpu_to_be32(*(val + i));
7192 		p++;
7193 	}
7194 
7195 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7196 	if (ret == 0)
7197 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7198 			*val++ = be32_to_cpu(*p);
7199 	return ret;
7200 }
7201 
7202 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7203 		    unsigned int vf, unsigned int nparams, const u32 *params,
7204 		    u32 *val)
7205 {
7206 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7207 				  true);
7208 }
7209 
7210 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7211 		       unsigned int vf, unsigned int nparams, const u32 *params,
7212 		       u32 *val)
7213 {
7214 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7215 				  false);
7216 }
7217 
7218 /**
7219  *      t4_set_params_timeout - sets FW or device parameters
7220  *      @adap: the adapter
7221  *      @mbox: mailbox to use for the FW command
7222  *      @pf: the PF
7223  *      @vf: the VF
7224  *      @nparams: the number of parameters
7225  *      @params: the parameter names
7226  *      @val: the parameter values
7227  *      @timeout: the timeout time
7228  *
7229  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7230  *      specified at once.
7231  */
7232 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7233 			  unsigned int pf, unsigned int vf,
7234 			  unsigned int nparams, const u32 *params,
7235 			  const u32 *val, int timeout)
7236 {
7237 	struct fw_params_cmd c;
7238 	__be32 *p = &c.param[0].mnem;
7239 
7240 	if (nparams > 7)
7241 		return -EINVAL;
7242 
7243 	memset(&c, 0, sizeof(c));
7244 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7245 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7246 				  FW_PARAMS_CMD_PFN_V(pf) |
7247 				  FW_PARAMS_CMD_VFN_V(vf));
7248 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7249 
7250 	while (nparams--) {
7251 		*p++ = cpu_to_be32(*params++);
7252 		*p++ = cpu_to_be32(*val++);
7253 	}
7254 
7255 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7256 }
7257 
7258 /**
7259  *	t4_set_params - sets FW or device parameters
7260  *	@adap: the adapter
7261  *	@mbox: mailbox to use for the FW command
7262  *	@pf: the PF
7263  *	@vf: the VF
7264  *	@nparams: the number of parameters
7265  *	@params: the parameter names
7266  *	@val: the parameter values
7267  *
7268  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7269  *	specified at once.
7270  */
7271 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7272 		  unsigned int vf, unsigned int nparams, const u32 *params,
7273 		  const u32 *val)
7274 {
7275 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7276 				     FW_CMD_MAX_TIMEOUT);
7277 }
7278 
7279 /**
7280  *	t4_cfg_pfvf - configure PF/VF resource limits
7281  *	@adap: the adapter
7282  *	@mbox: mailbox to use for the FW command
7283  *	@pf: the PF being configured
7284  *	@vf: the VF being configured
7285  *	@txq: the max number of egress queues
7286  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7287  *	@rxqi: the max number of interrupt-capable ingress queues
7288  *	@rxq: the max number of interruptless ingress queues
7289  *	@tc: the PCI traffic class
7290  *	@vi: the max number of virtual interfaces
7291  *	@cmask: the channel access rights mask for the PF/VF
7292  *	@pmask: the port access rights mask for the PF/VF
7293  *	@nexact: the maximum number of exact MPS filters
7294  *	@rcaps: read capabilities
7295  *	@wxcaps: write/execute capabilities
7296  *
7297  *	Configures resource limits and capabilities for a physical or virtual
7298  *	function.
7299  */
7300 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7301 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7302 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7303 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7304 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7305 {
7306 	struct fw_pfvf_cmd c;
7307 
7308 	memset(&c, 0, sizeof(c));
7309 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7310 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7311 				  FW_PFVF_CMD_VFN_V(vf));
7312 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7313 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7314 				     FW_PFVF_CMD_NIQ_V(rxq));
7315 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7316 				    FW_PFVF_CMD_PMASK_V(pmask) |
7317 				    FW_PFVF_CMD_NEQ_V(txq));
7318 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7319 				      FW_PFVF_CMD_NVI_V(vi) |
7320 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7321 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7322 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7323 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7324 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7325 }
7326 
7327 /**
7328  *	t4_alloc_vi - allocate a virtual interface
7329  *	@adap: the adapter
7330  *	@mbox: mailbox to use for the FW command
7331  *	@port: physical port associated with the VI
7332  *	@pf: the PF owning the VI
7333  *	@vf: the VF owning the VI
7334  *	@nmac: number of MAC addresses needed (1 to 5)
7335  *	@mac: the MAC addresses of the VI
7336  *	@rss_size: size of RSS table slice associated with this VI
7337  *
7338  *	Allocates a virtual interface for the given physical port.  If @mac is
7339  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7340  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7341  *	stored consecutively so the space needed is @nmac * 6 bytes.
7342  *	Returns a negative error number or the non-negative VI id.
7343  */
7344 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7345 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7346 		unsigned int *rss_size)
7347 {
7348 	int ret;
7349 	struct fw_vi_cmd c;
7350 
7351 	memset(&c, 0, sizeof(c));
7352 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7353 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7354 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7355 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7356 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7357 	c.nmac = nmac - 1;
7358 
7359 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7360 	if (ret)
7361 		return ret;
7362 
7363 	if (mac) {
7364 		memcpy(mac, c.mac, sizeof(c.mac));
7365 		switch (nmac) {
7366 		case 5:
7367 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7368 		case 4:
7369 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7370 		case 3:
7371 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7372 		case 2:
7373 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7374 		}
7375 	}
7376 	if (rss_size)
7377 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7378 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7379 }
7380 
7381 /**
7382  *	t4_free_vi - free a virtual interface
7383  *	@adap: the adapter
7384  *	@mbox: mailbox to use for the FW command
7385  *	@pf: the PF owning the VI
7386  *	@vf: the VF owning the VI
7387  *	@viid: virtual interface identifiler
7388  *
7389  *	Free a previously allocated virtual interface.
7390  */
7391 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7392 	       unsigned int vf, unsigned int viid)
7393 {
7394 	struct fw_vi_cmd c;
7395 
7396 	memset(&c, 0, sizeof(c));
7397 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7398 				  FW_CMD_REQUEST_F |
7399 				  FW_CMD_EXEC_F |
7400 				  FW_VI_CMD_PFN_V(pf) |
7401 				  FW_VI_CMD_VFN_V(vf));
7402 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7403 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7404 
7405 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7406 }
7407 
7408 /**
7409  *	t4_set_rxmode - set Rx properties of a virtual interface
7410  *	@adap: the adapter
7411  *	@mbox: mailbox to use for the FW command
7412  *	@viid: the VI id
7413  *	@mtu: the new MTU or -1
7414  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7415  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7416  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7417  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7418  *	@sleep_ok: if true we may sleep while awaiting command completion
7419  *
7420  *	Sets Rx properties of a virtual interface.
7421  */
7422 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7423 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7424 		  bool sleep_ok)
7425 {
7426 	struct fw_vi_rxmode_cmd c;
7427 
7428 	/* convert to FW values */
7429 	if (mtu < 0)
7430 		mtu = FW_RXMODE_MTU_NO_CHG;
7431 	if (promisc < 0)
7432 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7433 	if (all_multi < 0)
7434 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7435 	if (bcast < 0)
7436 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7437 	if (vlanex < 0)
7438 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7439 
7440 	memset(&c, 0, sizeof(c));
7441 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7442 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7443 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7444 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7445 	c.mtu_to_vlanexen =
7446 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7447 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7448 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7449 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7450 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7451 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7452 }
7453 
7454 /**
7455  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7456  *	@adap: the adapter
7457  *	@mbox: mailbox to use for the FW command
7458  *	@viid: the VI id
7459  *	@free: if true any existing filters for this VI id are first removed
7460  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7461  *	@addr: the MAC address(es)
7462  *	@idx: where to store the index of each allocated filter
7463  *	@hash: pointer to hash address filter bitmap
7464  *	@sleep_ok: call is allowed to sleep
7465  *
7466  *	Allocates an exact-match filter for each of the supplied addresses and
7467  *	sets it to the corresponding address.  If @idx is not %NULL it should
7468  *	have at least @naddr entries, each of which will be set to the index of
7469  *	the filter allocated for the corresponding MAC address.  If a filter
7470  *	could not be allocated for an address its index is set to 0xffff.
7471  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7472  *	are hashed and update the hash filter bitmap pointed at by @hash.
7473  *
7474  *	Returns a negative error number or the number of filters allocated.
7475  */
7476 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7477 		      unsigned int viid, bool free, unsigned int naddr,
7478 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7479 {
7480 	int offset, ret = 0;
7481 	struct fw_vi_mac_cmd c;
7482 	unsigned int nfilters = 0;
7483 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7484 	unsigned int rem = naddr;
7485 
7486 	if (naddr > max_naddr)
7487 		return -EINVAL;
7488 
7489 	for (offset = 0; offset < naddr ; /**/) {
7490 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7491 					 rem : ARRAY_SIZE(c.u.exact));
7492 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7493 						     u.exact[fw_naddr]), 16);
7494 		struct fw_vi_mac_exact *p;
7495 		int i;
7496 
7497 		memset(&c, 0, sizeof(c));
7498 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7499 					   FW_CMD_REQUEST_F |
7500 					   FW_CMD_WRITE_F |
7501 					   FW_CMD_EXEC_V(free) |
7502 					   FW_VI_MAC_CMD_VIID_V(viid));
7503 		c.freemacs_to_len16 =
7504 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7505 				    FW_CMD_LEN16_V(len16));
7506 
7507 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7508 			p->valid_to_idx =
7509 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7510 					    FW_VI_MAC_CMD_IDX_V(
7511 						    FW_VI_MAC_ADD_MAC));
7512 			memcpy(p->macaddr, addr[offset + i],
7513 			       sizeof(p->macaddr));
7514 		}
7515 
7516 		/* It's okay if we run out of space in our MAC address arena.
7517 		 * Some of the addresses we submit may get stored so we need
7518 		 * to run through the reply to see what the results were ...
7519 		 */
7520 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7521 		if (ret && ret != -FW_ENOMEM)
7522 			break;
7523 
7524 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7525 			u16 index = FW_VI_MAC_CMD_IDX_G(
7526 					be16_to_cpu(p->valid_to_idx));
7527 
7528 			if (idx)
7529 				idx[offset + i] = (index >= max_naddr ?
7530 						   0xffff : index);
7531 			if (index < max_naddr)
7532 				nfilters++;
7533 			else if (hash)
7534 				*hash |= (1ULL <<
7535 					  hash_mac_addr(addr[offset + i]));
7536 		}
7537 
7538 		free = false;
7539 		offset += fw_naddr;
7540 		rem -= fw_naddr;
7541 	}
7542 
7543 	if (ret == 0 || ret == -FW_ENOMEM)
7544 		ret = nfilters;
7545 	return ret;
7546 }
7547 
7548 /**
7549  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
7550  *	@adap: the adapter
7551  *	@mbox: mailbox to use for the FW command
7552  *	@viid: the VI id
7553  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7554  *	@addr: the MAC address(es)
7555  *	@sleep_ok: call is allowed to sleep
7556  *
7557  *	Frees the exact-match filter for each of the supplied addresses
7558  *
7559  *	Returns a negative error number or the number of filters freed.
7560  */
7561 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
7562 		     unsigned int viid, unsigned int naddr,
7563 		     const u8 **addr, bool sleep_ok)
7564 {
7565 	int offset, ret = 0;
7566 	struct fw_vi_mac_cmd c;
7567 	unsigned int nfilters = 0;
7568 	unsigned int max_naddr = is_t4(adap->params.chip) ?
7569 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
7570 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7571 	unsigned int rem = naddr;
7572 
7573 	if (naddr > max_naddr)
7574 		return -EINVAL;
7575 
7576 	for (offset = 0; offset < (int)naddr ; /**/) {
7577 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7578 					 ? rem
7579 					 : ARRAY_SIZE(c.u.exact));
7580 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7581 						     u.exact[fw_naddr]), 16);
7582 		struct fw_vi_mac_exact *p;
7583 		int i;
7584 
7585 		memset(&c, 0, sizeof(c));
7586 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7587 				     FW_CMD_REQUEST_F |
7588 				     FW_CMD_WRITE_F |
7589 				     FW_CMD_EXEC_V(0) |
7590 				     FW_VI_MAC_CMD_VIID_V(viid));
7591 		c.freemacs_to_len16 =
7592 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7593 					    FW_CMD_LEN16_V(len16));
7594 
7595 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
7596 			p->valid_to_idx = cpu_to_be16(
7597 				FW_VI_MAC_CMD_VALID_F |
7598 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
7599 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7600 		}
7601 
7602 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7603 		if (ret)
7604 			break;
7605 
7606 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7607 			u16 index = FW_VI_MAC_CMD_IDX_G(
7608 						be16_to_cpu(p->valid_to_idx));
7609 
7610 			if (index < max_naddr)
7611 				nfilters++;
7612 		}
7613 
7614 		offset += fw_naddr;
7615 		rem -= fw_naddr;
7616 	}
7617 
7618 	if (ret == 0)
7619 		ret = nfilters;
7620 	return ret;
7621 }
7622 
7623 /**
7624  *	t4_change_mac - modifies the exact-match filter for a MAC address
7625  *	@adap: the adapter
7626  *	@mbox: mailbox to use for the FW command
7627  *	@viid: the VI id
7628  *	@idx: index of existing filter for old value of MAC address, or -1
7629  *	@addr: the new MAC address value
7630  *	@persist: whether a new MAC allocation should be persistent
7631  *	@add_smt: if true also add the address to the HW SMT
7632  *
7633  *	Modifies an exact-match filter and sets it to the new MAC address.
7634  *	Note that in general it is not possible to modify the value of a given
7635  *	filter so the generic way to modify an address filter is to free the one
7636  *	being used by the old address value and allocate a new filter for the
7637  *	new address value.  @idx can be -1 if the address is a new addition.
7638  *
7639  *	Returns a negative error number or the index of the filter with the new
7640  *	MAC value.
7641  */
7642 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7643 		  int idx, const u8 *addr, bool persist, bool add_smt)
7644 {
7645 	int ret, mode;
7646 	struct fw_vi_mac_cmd c;
7647 	struct fw_vi_mac_exact *p = c.u.exact;
7648 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
7649 
7650 	if (idx < 0)                             /* new allocation */
7651 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7652 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7653 
7654 	memset(&c, 0, sizeof(c));
7655 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7656 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7657 				   FW_VI_MAC_CMD_VIID_V(viid));
7658 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
7659 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7660 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
7661 				      FW_VI_MAC_CMD_IDX_V(idx));
7662 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7663 
7664 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7665 	if (ret == 0) {
7666 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7667 		if (ret >= max_mac_addr)
7668 			ret = -ENOMEM;
7669 	}
7670 	return ret;
7671 }
7672 
7673 /**
7674  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7675  *	@adap: the adapter
7676  *	@mbox: mailbox to use for the FW command
7677  *	@viid: the VI id
7678  *	@ucast: whether the hash filter should also match unicast addresses
7679  *	@vec: the value to be written to the hash filter
7680  *	@sleep_ok: call is allowed to sleep
7681  *
7682  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7683  */
7684 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7685 		     bool ucast, u64 vec, bool sleep_ok)
7686 {
7687 	struct fw_vi_mac_cmd c;
7688 
7689 	memset(&c, 0, sizeof(c));
7690 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7691 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7692 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7693 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
7694 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
7695 					  FW_CMD_LEN16_V(1));
7696 	c.u.hash.hashvec = cpu_to_be64(vec);
7697 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7698 }
7699 
7700 /**
7701  *      t4_enable_vi_params - enable/disable a virtual interface
7702  *      @adap: the adapter
7703  *      @mbox: mailbox to use for the FW command
7704  *      @viid: the VI id
7705  *      @rx_en: 1=enable Rx, 0=disable Rx
7706  *      @tx_en: 1=enable Tx, 0=disable Tx
7707  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7708  *
7709  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7710  *      only makes sense when enabling a Virtual Interface ...
7711  */
7712 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7713 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7714 {
7715 	struct fw_vi_enable_cmd c;
7716 
7717 	memset(&c, 0, sizeof(c));
7718 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7719 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7720 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7721 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
7722 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
7723 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
7724 				     FW_LEN16(c));
7725 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7726 }
7727 
7728 /**
7729  *	t4_enable_vi - enable/disable a virtual interface
7730  *	@adap: the adapter
7731  *	@mbox: mailbox to use for the FW command
7732  *	@viid: the VI id
7733  *	@rx_en: 1=enable Rx, 0=disable Rx
7734  *	@tx_en: 1=enable Tx, 0=disable Tx
7735  *
7736  *	Enables/disables a virtual interface.
7737  */
7738 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7739 		 bool rx_en, bool tx_en)
7740 {
7741 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7742 }
7743 
7744 /**
7745  *	t4_identify_port - identify a VI's port by blinking its LED
7746  *	@adap: the adapter
7747  *	@mbox: mailbox to use for the FW command
7748  *	@viid: the VI id
7749  *	@nblinks: how many times to blink LED at 2.5 Hz
7750  *
7751  *	Identifies a VI's port by blinking its LED.
7752  */
7753 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7754 		     unsigned int nblinks)
7755 {
7756 	struct fw_vi_enable_cmd c;
7757 
7758 	memset(&c, 0, sizeof(c));
7759 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7760 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7761 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7762 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7763 	c.blinkdur = cpu_to_be16(nblinks);
7764 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7765 }
7766 
7767 /**
7768  *	t4_iq_stop - stop an ingress queue and its FLs
7769  *	@adap: the adapter
7770  *	@mbox: mailbox to use for the FW command
7771  *	@pf: the PF owning the queues
7772  *	@vf: the VF owning the queues
7773  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7774  *	@iqid: ingress queue id
7775  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7776  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7777  *
7778  *	Stops an ingress queue and its associated FLs, if any.  This causes
7779  *	any current or future data/messages destined for these queues to be
7780  *	tossed.
7781  */
7782 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7783 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7784 	       unsigned int fl0id, unsigned int fl1id)
7785 {
7786 	struct fw_iq_cmd c;
7787 
7788 	memset(&c, 0, sizeof(c));
7789 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7790 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7791 				  FW_IQ_CMD_VFN_V(vf));
7792 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7793 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7794 	c.iqid = cpu_to_be16(iqid);
7795 	c.fl0id = cpu_to_be16(fl0id);
7796 	c.fl1id = cpu_to_be16(fl1id);
7797 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7798 }
7799 
7800 /**
7801  *	t4_iq_free - free an ingress queue and its FLs
7802  *	@adap: the adapter
7803  *	@mbox: mailbox to use for the FW command
7804  *	@pf: the PF owning the queues
7805  *	@vf: the VF owning the queues
7806  *	@iqtype: the ingress queue type
7807  *	@iqid: ingress queue id
7808  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7809  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7810  *
7811  *	Frees an ingress queue and its associated FLs, if any.
7812  */
7813 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7814 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7815 	       unsigned int fl0id, unsigned int fl1id)
7816 {
7817 	struct fw_iq_cmd c;
7818 
7819 	memset(&c, 0, sizeof(c));
7820 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7821 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7822 				  FW_IQ_CMD_VFN_V(vf));
7823 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7824 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7825 	c.iqid = cpu_to_be16(iqid);
7826 	c.fl0id = cpu_to_be16(fl0id);
7827 	c.fl1id = cpu_to_be16(fl1id);
7828 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7829 }
7830 
7831 /**
7832  *	t4_eth_eq_free - free an Ethernet egress queue
7833  *	@adap: the adapter
7834  *	@mbox: mailbox to use for the FW command
7835  *	@pf: the PF owning the queue
7836  *	@vf: the VF owning the queue
7837  *	@eqid: egress queue id
7838  *
7839  *	Frees an Ethernet egress queue.
7840  */
7841 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7842 		   unsigned int vf, unsigned int eqid)
7843 {
7844 	struct fw_eq_eth_cmd c;
7845 
7846 	memset(&c, 0, sizeof(c));
7847 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7848 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7849 				  FW_EQ_ETH_CMD_PFN_V(pf) |
7850 				  FW_EQ_ETH_CMD_VFN_V(vf));
7851 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7852 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
7853 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7854 }
7855 
7856 /**
7857  *	t4_ctrl_eq_free - free a control egress queue
7858  *	@adap: the adapter
7859  *	@mbox: mailbox to use for the FW command
7860  *	@pf: the PF owning the queue
7861  *	@vf: the VF owning the queue
7862  *	@eqid: egress queue id
7863  *
7864  *	Frees a control egress queue.
7865  */
7866 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7867 		    unsigned int vf, unsigned int eqid)
7868 {
7869 	struct fw_eq_ctrl_cmd c;
7870 
7871 	memset(&c, 0, sizeof(c));
7872 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7873 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7874 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
7875 				  FW_EQ_CTRL_CMD_VFN_V(vf));
7876 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7877 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
7878 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7879 }
7880 
7881 /**
7882  *	t4_ofld_eq_free - free an offload egress queue
7883  *	@adap: the adapter
7884  *	@mbox: mailbox to use for the FW command
7885  *	@pf: the PF owning the queue
7886  *	@vf: the VF owning the queue
7887  *	@eqid: egress queue id
7888  *
7889  *	Frees a control egress queue.
7890  */
7891 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7892 		    unsigned int vf, unsigned int eqid)
7893 {
7894 	struct fw_eq_ofld_cmd c;
7895 
7896 	memset(&c, 0, sizeof(c));
7897 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7898 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7899 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
7900 				  FW_EQ_OFLD_CMD_VFN_V(vf));
7901 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7902 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
7903 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7904 }
7905 
7906 /**
7907  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7908  *	@adap: the adapter
7909  *	@link_down_rc: Link Down Reason Code
7910  *
7911  *	Returns a string representation of the Link Down Reason Code.
7912  */
7913 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
7914 {
7915 	static const char * const reason[] = {
7916 		"Link Down",
7917 		"Remote Fault",
7918 		"Auto-negotiation Failure",
7919 		"Reserved",
7920 		"Insufficient Airflow",
7921 		"Unable To Determine Reason",
7922 		"No RX Signal Detected",
7923 		"Reserved",
7924 	};
7925 
7926 	if (link_down_rc >= ARRAY_SIZE(reason))
7927 		return "Bad Reason Code";
7928 
7929 	return reason[link_down_rc];
7930 }
7931 
7932 /**
7933  * Return the highest speed set in the port capabilities, in Mb/s.
7934  */
7935 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
7936 {
7937 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
7938 		do { \
7939 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
7940 				return __speed; \
7941 		} while (0)
7942 
7943 	TEST_SPEED_RETURN(400G, 400000);
7944 	TEST_SPEED_RETURN(200G, 200000);
7945 	TEST_SPEED_RETURN(100G, 100000);
7946 	TEST_SPEED_RETURN(50G,   50000);
7947 	TEST_SPEED_RETURN(40G,   40000);
7948 	TEST_SPEED_RETURN(25G,   25000);
7949 	TEST_SPEED_RETURN(10G,   10000);
7950 	TEST_SPEED_RETURN(1G,     1000);
7951 	TEST_SPEED_RETURN(100M,    100);
7952 
7953 	#undef TEST_SPEED_RETURN
7954 
7955 	return 0;
7956 }
7957 
7958 /**
7959  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
7960  *	@acaps: advertised Port Capabilities
7961  *
7962  *	Get the highest speed for the port from the advertised Port
7963  *	Capabilities.  It will be either the highest speed from the list of
7964  *	speeds or whatever user has set using ethtool.
7965  */
7966 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
7967 {
7968 	#define TEST_SPEED_RETURN(__caps_speed) \
7969 		do { \
7970 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
7971 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
7972 		} while (0)
7973 
7974 	TEST_SPEED_RETURN(400G);
7975 	TEST_SPEED_RETURN(200G);
7976 	TEST_SPEED_RETURN(100G);
7977 	TEST_SPEED_RETURN(50G);
7978 	TEST_SPEED_RETURN(40G);
7979 	TEST_SPEED_RETURN(25G);
7980 	TEST_SPEED_RETURN(10G);
7981 	TEST_SPEED_RETURN(1G);
7982 	TEST_SPEED_RETURN(100M);
7983 
7984 	#undef TEST_SPEED_RETURN
7985 
7986 	return 0;
7987 }
7988 
7989 /**
7990  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
7991  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
7992  *
7993  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
7994  *	32-bit Port Capabilities value.
7995  */
7996 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
7997 {
7998 	fw_port_cap32_t linkattr = 0;
7999 
8000 	/* Unfortunately the format of the Link Status in the old
8001 	 * 16-bit Port Information message isn't the same as the
8002 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8003 	 */
8004 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8005 		linkattr |= FW_PORT_CAP32_FC_RX;
8006 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8007 		linkattr |= FW_PORT_CAP32_FC_TX;
8008 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8009 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8010 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8011 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8012 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8013 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8014 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8015 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8016 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8017 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8018 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8019 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8020 
8021 	return linkattr;
8022 }
8023 
8024 /**
8025  *	t4_handle_get_port_info - process a FW reply message
8026  *	@pi: the port info
8027  *	@rpl: start of the FW message
8028  *
8029  *	Processes a GET_PORT_INFO FW reply message.
8030  */
8031 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8032 {
8033 	const struct fw_port_cmd *cmd = (const void *)rpl;
8034 	int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8035 	struct adapter *adapter = pi->adapter;
8036 	struct link_config *lc = &pi->link_cfg;
8037 	int link_ok, linkdnrc;
8038 	enum fw_port_type port_type;
8039 	enum fw_port_module_type mod_type;
8040 	unsigned int speed, fc, fec;
8041 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8042 
8043 	/* Extract the various fields from the Port Information message.
8044 	 */
8045 	switch (action) {
8046 	case FW_PORT_ACTION_GET_PORT_INFO: {
8047 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8048 
8049 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8050 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8051 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8052 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8053 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8054 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8055 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8056 		linkattr = lstatus_to_fwcap(lstatus);
8057 		break;
8058 	}
8059 
8060 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8061 		u32 lstatus32;
8062 
8063 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8064 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8065 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8066 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8067 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8068 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8069 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8070 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8071 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8072 		break;
8073 	}
8074 
8075 	default:
8076 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8077 			be32_to_cpu(cmd->action_to_len16));
8078 		return;
8079 	}
8080 
8081 	fec = fwcap_to_cc_fec(acaps);
8082 	fc = fwcap_to_cc_pause(linkattr);
8083 	speed = fwcap_to_speed(linkattr);
8084 
8085 	if (mod_type != pi->mod_type) {
8086 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8087 		 * various fundamental Port Capabilities which used to be
8088 		 * immutable can now change radically.  We can now have
8089 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8090 		 * all change based on what Transceiver Module is inserted.
8091 		 * So we need to record the Physical "Port" Capabilities on
8092 		 * every Transceiver Module change.
8093 		 */
8094 		lc->pcaps = pcaps;
8095 
8096 		/* When a new Transceiver Module is inserted, the Firmware
8097 		 * will examine its i2c EPROM to determine its type and
8098 		 * general operating parameters including things like Forward
8099 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8100 		 * how to interpret these i2c values to determine default
8101 		 * "sutomatic" settings.  We record these for future use when
8102 		 * the user explicitly requests these standards-based values.
8103 		 */
8104 		lc->def_acaps = acaps;
8105 
8106 		/* Some versions of the early T6 Firmware "cheated" when
8107 		 * handling different Transceiver Modules by changing the
8108 		 * underlaying Port Type reported to the Host Drivers.  As
8109 		 * such we need to capture whatever Port Type the Firmware
8110 		 * sends us and record it in case it's different from what we
8111 		 * were told earlier.  Unfortunately, since Firmware is
8112 		 * forever, we'll need to keep this code here forever, but in
8113 		 * later T6 Firmware it should just be an assignment of the
8114 		 * same value already recorded.
8115 		 */
8116 		pi->port_type = port_type;
8117 
8118 		pi->mod_type = mod_type;
8119 		t4_os_portmod_changed(adapter, pi->port_id);
8120 	}
8121 
8122 	if (link_ok != lc->link_ok || speed != lc->speed ||
8123 	    fc != lc->fc || fec != lc->fec) {	/* something changed */
8124 		if (!link_ok && lc->link_ok) {
8125 			lc->link_down_rc = linkdnrc;
8126 			dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
8127 				 pi->tx_chan, t4_link_down_rc_str(linkdnrc));
8128 		}
8129 		lc->link_ok = link_ok;
8130 		lc->speed = speed;
8131 		lc->fc = fc;
8132 		lc->fec = fec;
8133 
8134 		lc->lpacaps = lpacaps;
8135 		lc->acaps = acaps & ADVERT_MASK;
8136 
8137 		if (lc->acaps & FW_PORT_CAP32_ANEG) {
8138 			lc->autoneg = AUTONEG_ENABLE;
8139 		} else {
8140 			/* When Autoneg is disabled, user needs to set
8141 			 * single speed.
8142 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8143 			 */
8144 			lc->acaps = 0;
8145 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8146 			lc->autoneg = AUTONEG_DISABLE;
8147 		}
8148 
8149 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8150 	}
8151 }
8152 
8153 /**
8154  *	t4_update_port_info - retrieve and update port information if changed
8155  *	@pi: the port_info
8156  *
8157  *	We issue a Get Port Information Command to the Firmware and, if
8158  *	successful, we check to see if anything is different from what we
8159  *	last recorded and update things accordingly.
8160  */
8161 int t4_update_port_info(struct port_info *pi)
8162 {
8163 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8164 	struct fw_port_cmd port_cmd;
8165 	int ret;
8166 
8167 	memset(&port_cmd, 0, sizeof(port_cmd));
8168 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8169 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8170 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8171 	port_cmd.action_to_len16 = cpu_to_be32(
8172 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8173 				     ? FW_PORT_ACTION_GET_PORT_INFO
8174 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8175 		FW_LEN16(port_cmd));
8176 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8177 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8178 	if (ret)
8179 		return ret;
8180 
8181 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8182 	return 0;
8183 }
8184 
8185 /**
8186  *	t4_get_link_params - retrieve basic link parameters for given port
8187  *	@pi: the port
8188  *	@link_okp: value return pointer for link up/down
8189  *	@speedp: value return pointer for speed (Mb/s)
8190  *	@mtup: value return pointer for mtu
8191  *
8192  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8193  *	and MTU for a specified port.  A negative error is returned on
8194  *	failure; 0 on success.
8195  */
8196 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8197 		       unsigned int *speedp, unsigned int *mtup)
8198 {
8199 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8200 	struct fw_port_cmd port_cmd;
8201 	unsigned int action, link_ok, speed, mtu;
8202 	fw_port_cap32_t linkattr;
8203 	int ret;
8204 
8205 	memset(&port_cmd, 0, sizeof(port_cmd));
8206 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8207 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8208 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8209 	action = (fw_caps == FW_CAPS16
8210 		  ? FW_PORT_ACTION_GET_PORT_INFO
8211 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8212 	port_cmd.action_to_len16 = cpu_to_be32(
8213 		FW_PORT_CMD_ACTION_V(action) |
8214 		FW_LEN16(port_cmd));
8215 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8216 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8217 	if (ret)
8218 		return ret;
8219 
8220 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8221 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8222 
8223 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8224 		linkattr = lstatus_to_fwcap(lstatus);
8225 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8226 	} else {
8227 		u32 lstatus32 =
8228 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8229 
8230 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8231 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8232 		mtu = FW_PORT_CMD_MTU32_G(
8233 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8234 	}
8235 	speed = fwcap_to_speed(linkattr);
8236 
8237 	*link_okp = link_ok;
8238 	*speedp = fwcap_to_speed(linkattr);
8239 	*mtup = mtu;
8240 
8241 	return 0;
8242 }
8243 
8244 /**
8245  *      t4_handle_fw_rpl - process a FW reply message
8246  *      @adap: the adapter
8247  *      @rpl: start of the FW message
8248  *
8249  *      Processes a FW message, such as link state change messages.
8250  */
8251 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8252 {
8253 	u8 opcode = *(const u8 *)rpl;
8254 
8255 	/* This might be a port command ... this simplifies the following
8256 	 * conditionals ...  We can get away with pre-dereferencing
8257 	 * action_to_len16 because it's in the first 16 bytes and all messages
8258 	 * will be at least that long.
8259 	 */
8260 	const struct fw_port_cmd *p = (const void *)rpl;
8261 	unsigned int action =
8262 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8263 
8264 	if (opcode == FW_PORT_CMD &&
8265 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8266 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8267 		int i;
8268 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8269 		struct port_info *pi = NULL;
8270 
8271 		for_each_port(adap, i) {
8272 			pi = adap2pinfo(adap, i);
8273 			if (pi->tx_chan == chan)
8274 				break;
8275 		}
8276 
8277 		t4_handle_get_port_info(pi, rpl);
8278 	} else {
8279 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8280 			 opcode);
8281 		return -EINVAL;
8282 	}
8283 	return 0;
8284 }
8285 
8286 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8287 {
8288 	u16 val;
8289 
8290 	if (pci_is_pcie(adapter->pdev)) {
8291 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8292 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8293 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8294 	}
8295 }
8296 
8297 /**
8298  *	init_link_config - initialize a link's SW state
8299  *	@lc: pointer to structure holding the link state
8300  *	@pcaps: link Port Capabilities
8301  *	@acaps: link current Advertised Port Capabilities
8302  *
8303  *	Initializes the SW state maintained for each link, including the link's
8304  *	capabilities and default speed/flow-control/autonegotiation settings.
8305  */
8306 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8307 			     fw_port_cap32_t acaps)
8308 {
8309 	lc->pcaps = pcaps;
8310 	lc->def_acaps = acaps;
8311 	lc->lpacaps = 0;
8312 	lc->speed_caps = 0;
8313 	lc->speed = 0;
8314 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8315 
8316 	/* For Forward Error Control, we default to whatever the Firmware
8317 	 * tells us the Link is currently advertising.
8318 	 */
8319 	lc->requested_fec = FEC_AUTO;
8320 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8321 
8322 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8323 		lc->acaps = lc->pcaps & ADVERT_MASK;
8324 		lc->autoneg = AUTONEG_ENABLE;
8325 		lc->requested_fc |= PAUSE_AUTONEG;
8326 	} else {
8327 		lc->acaps = 0;
8328 		lc->autoneg = AUTONEG_DISABLE;
8329 	}
8330 }
8331 
8332 #define CIM_PF_NOACCESS 0xeeeeeeee
8333 
8334 int t4_wait_dev_ready(void __iomem *regs)
8335 {
8336 	u32 whoami;
8337 
8338 	whoami = readl(regs + PL_WHOAMI_A);
8339 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8340 		return 0;
8341 
8342 	msleep(500);
8343 	whoami = readl(regs + PL_WHOAMI_A);
8344 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8345 }
8346 
8347 struct flash_desc {
8348 	u32 vendor_and_model_id;
8349 	u32 size_mb;
8350 };
8351 
8352 static int t4_get_flash_params(struct adapter *adap)
8353 {
8354 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8355 	 * to the preexisting code.  All flash parts have 64KB sectors.
8356 	 */
8357 	static struct flash_desc supported_flash[] = {
8358 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8359 	};
8360 
8361 	unsigned int part, manufacturer;
8362 	unsigned int density, size;
8363 	u32 flashid = 0;
8364 	int ret;
8365 
8366 	/* Issue a Read ID Command to the Flash part.  We decode supported
8367 	 * Flash parts and their sizes from this.  There's a newer Query
8368 	 * Command which can retrieve detailed geometry information but many
8369 	 * Flash parts don't support it.
8370 	 */
8371 
8372 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8373 	if (!ret)
8374 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8375 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8376 	if (ret)
8377 		return ret;
8378 
8379 	/* Check to see if it's one of our non-standard supported Flash parts.
8380 	 */
8381 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8382 		if (supported_flash[part].vendor_and_model_id == flashid) {
8383 			adap->params.sf_size = supported_flash[part].size_mb;
8384 			adap->params.sf_nsec =
8385 				adap->params.sf_size / SF_SEC_SIZE;
8386 			goto found;
8387 		}
8388 
8389 	/* Decode Flash part size.  The code below looks repetative with
8390 	 * common encodings, but that's not guaranteed in the JEDEC
8391 	 * specification for the Read JADEC ID command.  The only thing that
8392 	 * we're guaranteed by the JADEC specification is where the
8393 	 * Manufacturer ID is in the returned result.  After that each
8394 	 * Manufacturer ~could~ encode things completely differently.
8395 	 * Note, all Flash parts must have 64KB sectors.
8396 	 */
8397 	manufacturer = flashid & 0xff;
8398 	switch (manufacturer) {
8399 	case 0x20: { /* Micron/Numonix */
8400 		/* This Density -> Size decoding table is taken from Micron
8401 		 * Data Sheets.
8402 		 */
8403 		density = (flashid >> 16) & 0xff;
8404 		switch (density) {
8405 		case 0x14: /* 1MB */
8406 			size = 1 << 20;
8407 			break;
8408 		case 0x15: /* 2MB */
8409 			size = 1 << 21;
8410 			break;
8411 		case 0x16: /* 4MB */
8412 			size = 1 << 22;
8413 			break;
8414 		case 0x17: /* 8MB */
8415 			size = 1 << 23;
8416 			break;
8417 		case 0x18: /* 16MB */
8418 			size = 1 << 24;
8419 			break;
8420 		case 0x19: /* 32MB */
8421 			size = 1 << 25;
8422 			break;
8423 		case 0x20: /* 64MB */
8424 			size = 1 << 26;
8425 			break;
8426 		case 0x21: /* 128MB */
8427 			size = 1 << 27;
8428 			break;
8429 		case 0x22: /* 256MB */
8430 			size = 1 << 28;
8431 			break;
8432 
8433 		default:
8434 			dev_err(adap->pdev_dev, "Micron Flash Part has bad size, ID = %#x, Density code = %#x\n",
8435 				flashid, density);
8436 			return -EINVAL;
8437 		}
8438 		break;
8439 	}
8440 	case 0xc2: { /* Macronix */
8441 		/* This Density -> Size decoding table is taken from Macronix
8442 		 * Data Sheets.
8443 		 */
8444 		density = (flashid >> 16) & 0xff;
8445 		switch (density) {
8446 		case 0x17: /* 8MB */
8447 			size = 1 << 23;
8448 			break;
8449 		case 0x18: /* 16MB */
8450 			size = 1 << 24;
8451 			break;
8452 		default:
8453 			dev_err(adap->pdev_dev, "Macronix Flash Part has bad size, ID = %#x, Density code = %#x\n",
8454 				flashid, density);
8455 			return -EINVAL;
8456 		}
8457 		break;
8458 	}
8459 	case 0xef: { /* Winbond */
8460 		/* This Density -> Size decoding table is taken from Winbond
8461 		 * Data Sheets.
8462 		 */
8463 		density = (flashid >> 16) & 0xff;
8464 		switch (density) {
8465 		case 0x17: /* 8MB */
8466 			size = 1 << 23;
8467 			break;
8468 		case 0x18: /* 16MB */
8469 			size = 1 << 24;
8470 			break;
8471 		default:
8472 			dev_err(adap->pdev_dev, "Winbond Flash Part has bad size, ID = %#x, Density code = %#x\n",
8473 				flashid, density);
8474 			return -EINVAL;
8475 		}
8476 		break;
8477 	}
8478 	default:
8479 		dev_err(adap->pdev_dev, "Unsupported Flash Part, ID = %#x\n",
8480 			flashid);
8481 		return -EINVAL;
8482 	}
8483 
8484 	/* Store decoded Flash size and fall through into vetting code. */
8485 	adap->params.sf_size = size;
8486 	adap->params.sf_nsec = size / SF_SEC_SIZE;
8487 
8488 found:
8489 	if (adap->params.sf_size < FLASH_MIN_SIZE)
8490 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8491 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
8492 	return 0;
8493 }
8494 
8495 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
8496 {
8497 	u16 val;
8498 	u32 pcie_cap;
8499 
8500 	pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
8501 	if (pcie_cap) {
8502 		pci_read_config_word(adapter->pdev,
8503 				     pcie_cap + PCI_EXP_DEVCTL2, &val);
8504 		val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
8505 		val |= range;
8506 		pci_write_config_word(adapter->pdev,
8507 				      pcie_cap + PCI_EXP_DEVCTL2, val);
8508 	}
8509 }
8510 
8511 /**
8512  *	t4_prep_adapter - prepare SW and HW for operation
8513  *	@adapter: the adapter
8514  *	@reset: if true perform a HW reset
8515  *
8516  *	Initialize adapter SW state for the various HW modules, set initial
8517  *	values for some adapter tunables, take PHYs out of reset, and
8518  *	initialize the MDIO interface.
8519  */
8520 int t4_prep_adapter(struct adapter *adapter)
8521 {
8522 	int ret, ver;
8523 	uint16_t device_id;
8524 	u32 pl_rev;
8525 
8526 	get_pci_mode(adapter, &adapter->params.pci);
8527 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
8528 
8529 	ret = t4_get_flash_params(adapter);
8530 	if (ret < 0) {
8531 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
8532 		return ret;
8533 	}
8534 
8535 	/* Retrieve adapter's device ID
8536 	 */
8537 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
8538 	ver = device_id >> 12;
8539 	adapter->params.chip = 0;
8540 	switch (ver) {
8541 	case CHELSIO_T4:
8542 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
8543 		adapter->params.arch.sge_fl_db = DBPRIO_F;
8544 		adapter->params.arch.mps_tcam_size =
8545 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
8546 		adapter->params.arch.mps_rplc_size = 128;
8547 		adapter->params.arch.nchan = NCHAN;
8548 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8549 		adapter->params.arch.vfcount = 128;
8550 		/* Congestion map is for 4 channels so that
8551 		 * MPS can have 4 priority per port.
8552 		 */
8553 		adapter->params.arch.cng_ch_bits_log = 2;
8554 		break;
8555 	case CHELSIO_T5:
8556 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
8557 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
8558 		adapter->params.arch.mps_tcam_size =
8559 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8560 		adapter->params.arch.mps_rplc_size = 128;
8561 		adapter->params.arch.nchan = NCHAN;
8562 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8563 		adapter->params.arch.vfcount = 128;
8564 		adapter->params.arch.cng_ch_bits_log = 2;
8565 		break;
8566 	case CHELSIO_T6:
8567 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
8568 		adapter->params.arch.sge_fl_db = 0;
8569 		adapter->params.arch.mps_tcam_size =
8570 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8571 		adapter->params.arch.mps_rplc_size = 256;
8572 		adapter->params.arch.nchan = 2;
8573 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
8574 		adapter->params.arch.vfcount = 256;
8575 		/* Congestion map will be for 2 channels so that
8576 		 * MPS can have 8 priority per port.
8577 		 */
8578 		adapter->params.arch.cng_ch_bits_log = 3;
8579 		break;
8580 	default:
8581 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
8582 			device_id);
8583 		return -EINVAL;
8584 	}
8585 
8586 	adapter->params.cim_la_size = CIMLA_SIZE;
8587 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8588 
8589 	/*
8590 	 * Default port for debugging in case we can't reach FW.
8591 	 */
8592 	adapter->params.nports = 1;
8593 	adapter->params.portvec = 1;
8594 	adapter->params.vpd.cclk = 50000;
8595 
8596 	/* Set pci completion timeout value to 4 seconds. */
8597 	set_pcie_completion_timeout(adapter, 0xd);
8598 	return 0;
8599 }
8600 
8601 /**
8602  *	t4_shutdown_adapter - shut down adapter, host & wire
8603  *	@adapter: the adapter
8604  *
8605  *	Perform an emergency shutdown of the adapter and stop it from
8606  *	continuing any further communication on the ports or DMA to the
8607  *	host.  This is typically used when the adapter and/or firmware
8608  *	have crashed and we want to prevent any further accidental
8609  *	communication with the rest of the world.  This will also force
8610  *	the port Link Status to go down -- if register writes work --
8611  *	which should help our peers figure out that we're down.
8612  */
8613 int t4_shutdown_adapter(struct adapter *adapter)
8614 {
8615 	int port;
8616 
8617 	t4_intr_disable(adapter);
8618 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
8619 	for_each_port(adapter, port) {
8620 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
8621 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
8622 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
8623 
8624 		t4_write_reg(adapter, a_port_cfg,
8625 			     t4_read_reg(adapter, a_port_cfg)
8626 			     & ~SIGNAL_DET_V(1));
8627 	}
8628 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
8629 
8630 	return 0;
8631 }
8632 
8633 /**
8634  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8635  *	@adapter: the adapter
8636  *	@qid: the Queue ID
8637  *	@qtype: the Ingress or Egress type for @qid
8638  *	@user: true if this request is for a user mode queue
8639  *	@pbar2_qoffset: BAR2 Queue Offset
8640  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8641  *
8642  *	Returns the BAR2 SGE Queue Registers information associated with the
8643  *	indicated Absolute Queue ID.  These are passed back in return value
8644  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8645  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8646  *
8647  *	This may return an error which indicates that BAR2 SGE Queue
8648  *	registers aren't available.  If an error is not returned, then the
8649  *	following values are returned:
8650  *
8651  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8652  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8653  *
8654  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8655  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8656  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8657  *	then these "Inferred Queue ID" register may not be used.
8658  */
8659 int t4_bar2_sge_qregs(struct adapter *adapter,
8660 		      unsigned int qid,
8661 		      enum t4_bar2_qtype qtype,
8662 		      int user,
8663 		      u64 *pbar2_qoffset,
8664 		      unsigned int *pbar2_qid)
8665 {
8666 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8667 	u64 bar2_page_offset, bar2_qoffset;
8668 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8669 
8670 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
8671 	if (!user && is_t4(adapter->params.chip))
8672 		return -EINVAL;
8673 
8674 	/* Get our SGE Page Size parameters.
8675 	 */
8676 	page_shift = adapter->params.sge.hps + 10;
8677 	page_size = 1 << page_shift;
8678 
8679 	/* Get the right Queues per Page parameters for our Queue.
8680 	 */
8681 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8682 		     ? adapter->params.sge.eq_qpp
8683 		     : adapter->params.sge.iq_qpp);
8684 	qpp_mask = (1 << qpp_shift) - 1;
8685 
8686 	/*  Calculate the basics of the BAR2 SGE Queue register area:
8687 	 *  o The BAR2 page the Queue registers will be in.
8688 	 *  o The BAR2 Queue ID.
8689 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
8690 	 */
8691 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8692 	bar2_qid = qid & qpp_mask;
8693 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8694 
8695 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
8696 	 * hardware will infer the Absolute Queue ID simply from the writes to
8697 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8698 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8699 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8700 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8701 	 * from the BAR2 Page and BAR2 Queue ID.
8702 	 *
8703 	 * One important censequence of this is that some BAR2 SGE registers
8704 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8705 	 * there.  But other registers synthesize the SGE Queue ID purely
8706 	 * from the writes to the registers -- the Write Combined Doorbell
8707 	 * Buffer is a good example.  These BAR2 SGE Registers are only
8708 	 * available for those BAR2 SGE Register areas where the SGE Absolute
8709 	 * Queue ID can be inferred from simple writes.
8710 	 */
8711 	bar2_qoffset = bar2_page_offset;
8712 	bar2_qinferred = (bar2_qid_offset < page_size);
8713 	if (bar2_qinferred) {
8714 		bar2_qoffset += bar2_qid_offset;
8715 		bar2_qid = 0;
8716 	}
8717 
8718 	*pbar2_qoffset = bar2_qoffset;
8719 	*pbar2_qid = bar2_qid;
8720 	return 0;
8721 }
8722 
8723 /**
8724  *	t4_init_devlog_params - initialize adapter->params.devlog
8725  *	@adap: the adapter
8726  *
8727  *	Initialize various fields of the adapter's Firmware Device Log
8728  *	Parameters structure.
8729  */
8730 int t4_init_devlog_params(struct adapter *adap)
8731 {
8732 	struct devlog_params *dparams = &adap->params.devlog;
8733 	u32 pf_dparams;
8734 	unsigned int devlog_meminfo;
8735 	struct fw_devlog_cmd devlog_cmd;
8736 	int ret;
8737 
8738 	/* If we're dealing with newer firmware, the Device Log Paramerters
8739 	 * are stored in a designated register which allows us to access the
8740 	 * Device Log even if we can't talk to the firmware.
8741 	 */
8742 	pf_dparams =
8743 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
8744 	if (pf_dparams) {
8745 		unsigned int nentries, nentries128;
8746 
8747 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
8748 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
8749 
8750 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
8751 		nentries = (nentries128 + 1) * 128;
8752 		dparams->size = nentries * sizeof(struct fw_devlog_e);
8753 
8754 		return 0;
8755 	}
8756 
8757 	/* Otherwise, ask the firmware for it's Device Log Parameters.
8758 	 */
8759 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
8760 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
8761 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
8762 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8763 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8764 			 &devlog_cmd);
8765 	if (ret)
8766 		return ret;
8767 
8768 	devlog_meminfo =
8769 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8770 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
8771 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
8772 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8773 
8774 	return 0;
8775 }
8776 
8777 /**
8778  *	t4_init_sge_params - initialize adap->params.sge
8779  *	@adapter: the adapter
8780  *
8781  *	Initialize various fields of the adapter's SGE Parameters structure.
8782  */
8783 int t4_init_sge_params(struct adapter *adapter)
8784 {
8785 	struct sge_params *sge_params = &adapter->params.sge;
8786 	u32 hps, qpp;
8787 	unsigned int s_hps, s_qpp;
8788 
8789 	/* Extract the SGE Page Size for our PF.
8790 	 */
8791 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
8792 	s_hps = (HOSTPAGESIZEPF0_S +
8793 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
8794 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
8795 
8796 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
8797 	 */
8798 	s_qpp = (QUEUESPERPAGEPF0_S +
8799 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
8800 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
8801 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8802 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
8803 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8804 
8805 	return 0;
8806 }
8807 
8808 /**
8809  *      t4_init_tp_params - initialize adap->params.tp
8810  *      @adap: the adapter
8811  *      @sleep_ok: if true we may sleep while awaiting command completion
8812  *
8813  *      Initialize various fields of the adapter's TP Parameters structure.
8814  */
8815 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8816 {
8817 	int chan;
8818 	u32 v;
8819 
8820 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
8821 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
8822 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
8823 
8824 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8825 	for (chan = 0; chan < NCHAN; chan++)
8826 		adap->params.tp.tx_modq[chan] = chan;
8827 
8828 	/* Cache the adapter's Compressed Filter Mode and global Incress
8829 	 * Configuration.
8830 	 */
8831 	t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
8832 		       TP_VLAN_PRI_MAP_A, sleep_ok);
8833 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
8834 		       TP_INGRESS_CONFIG_A, sleep_ok);
8835 
8836 	/* For T6, cache the adapter's compressed error vector
8837 	 * and passing outer header info for encapsulated packets.
8838 	 */
8839 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
8840 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
8841 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
8842 	}
8843 
8844 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8845 	 * shift positions of several elements of the Compressed Filter Tuple
8846 	 * for this adapter which we need frequently ...
8847 	 */
8848 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
8849 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
8850 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
8851 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
8852 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
8853 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
8854 							       PROTOCOL_F);
8855 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
8856 								ETHERTYPE_F);
8857 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
8858 							       MACMATCH_F);
8859 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
8860 								MPSHITTYPE_F);
8861 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
8862 							   FRAGMENTATION_F);
8863 
8864 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
8865 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
8866 	 */
8867 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
8868 		adap->params.tp.vnic_shift = -1;
8869 
8870 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
8871 	adap->params.tp.hash_filter_mask = v;
8872 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
8873 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
8874 	return 0;
8875 }
8876 
8877 /**
8878  *      t4_filter_field_shift - calculate filter field shift
8879  *      @adap: the adapter
8880  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8881  *
8882  *      Return the shift position of a filter field within the Compressed
8883  *      Filter Tuple.  The filter field is specified via its selection bit
8884  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8885  */
8886 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8887 {
8888 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8889 	unsigned int sel;
8890 	int field_shift;
8891 
8892 	if ((filter_mode & filter_sel) == 0)
8893 		return -1;
8894 
8895 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8896 		switch (filter_mode & sel) {
8897 		case FCOE_F:
8898 			field_shift += FT_FCOE_W;
8899 			break;
8900 		case PORT_F:
8901 			field_shift += FT_PORT_W;
8902 			break;
8903 		case VNIC_ID_F:
8904 			field_shift += FT_VNIC_ID_W;
8905 			break;
8906 		case VLAN_F:
8907 			field_shift += FT_VLAN_W;
8908 			break;
8909 		case TOS_F:
8910 			field_shift += FT_TOS_W;
8911 			break;
8912 		case PROTOCOL_F:
8913 			field_shift += FT_PROTOCOL_W;
8914 			break;
8915 		case ETHERTYPE_F:
8916 			field_shift += FT_ETHERTYPE_W;
8917 			break;
8918 		case MACMATCH_F:
8919 			field_shift += FT_MACMATCH_W;
8920 			break;
8921 		case MPSHITTYPE_F:
8922 			field_shift += FT_MPSHITTYPE_W;
8923 			break;
8924 		case FRAGMENTATION_F:
8925 			field_shift += FT_FRAGMENTATION_W;
8926 			break;
8927 		}
8928 	}
8929 	return field_shift;
8930 }
8931 
8932 int t4_init_rss_mode(struct adapter *adap, int mbox)
8933 {
8934 	int i, ret;
8935 	struct fw_rss_vi_config_cmd rvc;
8936 
8937 	memset(&rvc, 0, sizeof(rvc));
8938 
8939 	for_each_port(adap, i) {
8940 		struct port_info *p = adap2pinfo(adap, i);
8941 
8942 		rvc.op_to_viid =
8943 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
8944 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8945 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
8946 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
8947 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
8948 		if (ret)
8949 			return ret;
8950 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
8951 	}
8952 	return 0;
8953 }
8954 
8955 /**
8956  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
8957  *	@pi: the port_info
8958  *	@mbox: mailbox to use for the FW command
8959  *	@port: physical port associated with the VI
8960  *	@pf: the PF owning the VI
8961  *	@vf: the VF owning the VI
8962  *	@mac: the MAC address of the VI
8963  *
8964  *	Allocates a virtual interface for the given physical port.  If @mac is
8965  *	not %NULL it contains the MAC address of the VI as assigned by FW.
8966  *	@mac should be large enough to hold an Ethernet address.
8967  *	Returns < 0 on error.
8968  */
8969 int t4_init_portinfo(struct port_info *pi, int mbox,
8970 		     int port, int pf, int vf, u8 mac[])
8971 {
8972 	struct adapter *adapter = pi->adapter;
8973 	unsigned int fw_caps = adapter->params.fw_caps_support;
8974 	struct fw_port_cmd cmd;
8975 	unsigned int rss_size;
8976 	enum fw_port_type port_type;
8977 	int mdio_addr;
8978 	fw_port_cap32_t pcaps, acaps;
8979 	int ret;
8980 
8981 	/* If we haven't yet determined whether we're talking to Firmware
8982 	 * which knows the new 32-bit Port Capabilities, it's time to find
8983 	 * out now.  This will also tell new Firmware to send us Port Status
8984 	 * Updates using the new 32-bit Port Capabilities version of the
8985 	 * Port Information message.
8986 	 */
8987 	if (fw_caps == FW_CAPS_UNKNOWN) {
8988 		u32 param, val;
8989 
8990 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
8991 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
8992 		val = 1;
8993 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
8994 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
8995 		adapter->params.fw_caps_support = fw_caps;
8996 	}
8997 
8998 	memset(&cmd, 0, sizeof(cmd));
8999 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9000 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9001 				       FW_PORT_CMD_PORTID_V(port));
9002 	cmd.action_to_len16 = cpu_to_be32(
9003 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9004 				     ? FW_PORT_ACTION_GET_PORT_INFO
9005 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9006 		FW_LEN16(cmd));
9007 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9008 	if (ret)
9009 		return ret;
9010 
9011 	/* Extract the various fields from the Port Information message.
9012 	 */
9013 	if (fw_caps == FW_CAPS16) {
9014 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9015 
9016 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9017 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9018 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9019 			     : -1);
9020 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9021 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9022 	} else {
9023 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9024 
9025 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9026 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9027 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9028 			     : -1);
9029 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9030 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9031 	}
9032 
9033 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
9034 	if (ret < 0)
9035 		return ret;
9036 
9037 	pi->viid = ret;
9038 	pi->tx_chan = port;
9039 	pi->lport = port;
9040 	pi->rss_size = rss_size;
9041 
9042 	pi->port_type = port_type;
9043 	pi->mdio_addr = mdio_addr;
9044 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9045 
9046 	init_link_config(&pi->link_cfg, pcaps, acaps);
9047 	return 0;
9048 }
9049 
9050 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9051 {
9052 	u8 addr[6];
9053 	int ret, i, j = 0;
9054 
9055 	for_each_port(adap, i) {
9056 		struct port_info *pi = adap2pinfo(adap, i);
9057 
9058 		while ((adap->params.portvec & (1 << j)) == 0)
9059 			j++;
9060 
9061 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9062 		if (ret)
9063 			return ret;
9064 
9065 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9066 		j++;
9067 	}
9068 	return 0;
9069 }
9070 
9071 /**
9072  *	t4_read_cimq_cfg - read CIM queue configuration
9073  *	@adap: the adapter
9074  *	@base: holds the queue base addresses in bytes
9075  *	@size: holds the queue sizes in bytes
9076  *	@thres: holds the queue full thresholds in bytes
9077  *
9078  *	Returns the current configuration of the CIM queues, starting with
9079  *	the IBQs, then the OBQs.
9080  */
9081 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9082 {
9083 	unsigned int i, v;
9084 	int cim_num_obq = is_t4(adap->params.chip) ?
9085 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9086 
9087 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9088 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9089 			     QUENUMSELECT_V(i));
9090 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9091 		/* value is in 256-byte units */
9092 		*base++ = CIMQBASE_G(v) * 256;
9093 		*size++ = CIMQSIZE_G(v) * 256;
9094 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9095 	}
9096 	for (i = 0; i < cim_num_obq; i++) {
9097 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9098 			     QUENUMSELECT_V(i));
9099 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9100 		/* value is in 256-byte units */
9101 		*base++ = CIMQBASE_G(v) * 256;
9102 		*size++ = CIMQSIZE_G(v) * 256;
9103 	}
9104 }
9105 
9106 /**
9107  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9108  *	@adap: the adapter
9109  *	@qid: the queue index
9110  *	@data: where to store the queue contents
9111  *	@n: capacity of @data in 32-bit words
9112  *
9113  *	Reads the contents of the selected CIM queue starting at address 0 up
9114  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9115  *	error and the number of 32-bit words actually read on success.
9116  */
9117 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9118 {
9119 	int i, err, attempts;
9120 	unsigned int addr;
9121 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9122 
9123 	if (qid > 5 || (n & 3))
9124 		return -EINVAL;
9125 
9126 	addr = qid * nwords;
9127 	if (n > nwords)
9128 		n = nwords;
9129 
9130 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9131 	 * Wait for 1 Sec with a delay of 1 usec.
9132 	 */
9133 	attempts = 1000000;
9134 
9135 	for (i = 0; i < n; i++, addr++) {
9136 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9137 			     IBQDBGEN_F);
9138 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9139 				      attempts, 1);
9140 		if (err)
9141 			return err;
9142 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9143 	}
9144 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9145 	return i;
9146 }
9147 
9148 /**
9149  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9150  *	@adap: the adapter
9151  *	@qid: the queue index
9152  *	@data: where to store the queue contents
9153  *	@n: capacity of @data in 32-bit words
9154  *
9155  *	Reads the contents of the selected CIM queue starting at address 0 up
9156  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9157  *	error and the number of 32-bit words actually read on success.
9158  */
9159 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9160 {
9161 	int i, err;
9162 	unsigned int addr, v, nwords;
9163 	int cim_num_obq = is_t4(adap->params.chip) ?
9164 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9165 
9166 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9167 		return -EINVAL;
9168 
9169 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9170 		     QUENUMSELECT_V(qid));
9171 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9172 
9173 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9174 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9175 	if (n > nwords)
9176 		n = nwords;
9177 
9178 	for (i = 0; i < n; i++, addr++) {
9179 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9180 			     OBQDBGEN_F);
9181 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9182 				      2, 1);
9183 		if (err)
9184 			return err;
9185 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9186 	}
9187 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9188 	return i;
9189 }
9190 
9191 /**
9192  *	t4_cim_read - read a block from CIM internal address space
9193  *	@adap: the adapter
9194  *	@addr: the start address within the CIM address space
9195  *	@n: number of words to read
9196  *	@valp: where to store the result
9197  *
9198  *	Reads a block of 4-byte words from the CIM intenal address space.
9199  */
9200 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9201 		unsigned int *valp)
9202 {
9203 	int ret = 0;
9204 
9205 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9206 		return -EBUSY;
9207 
9208 	for ( ; !ret && n--; addr += 4) {
9209 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9210 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9211 				      0, 5, 2);
9212 		if (!ret)
9213 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9214 	}
9215 	return ret;
9216 }
9217 
9218 /**
9219  *	t4_cim_write - write a block into CIM internal address space
9220  *	@adap: the adapter
9221  *	@addr: the start address within the CIM address space
9222  *	@n: number of words to write
9223  *	@valp: set of values to write
9224  *
9225  *	Writes a block of 4-byte words into the CIM intenal address space.
9226  */
9227 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9228 		 const unsigned int *valp)
9229 {
9230 	int ret = 0;
9231 
9232 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9233 		return -EBUSY;
9234 
9235 	for ( ; !ret && n--; addr += 4) {
9236 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9237 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9238 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9239 				      0, 5, 2);
9240 	}
9241 	return ret;
9242 }
9243 
9244 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9245 			 unsigned int val)
9246 {
9247 	return t4_cim_write(adap, addr, 1, &val);
9248 }
9249 
9250 /**
9251  *	t4_cim_read_la - read CIM LA capture buffer
9252  *	@adap: the adapter
9253  *	@la_buf: where to store the LA data
9254  *	@wrptr: the HW write pointer within the capture buffer
9255  *
9256  *	Reads the contents of the CIM LA buffer with the most recent entry at
9257  *	the end	of the returned data and with the entry at @wrptr first.
9258  *	We try to leave the LA in the running state we find it in.
9259  */
9260 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9261 {
9262 	int i, ret;
9263 	unsigned int cfg, val, idx;
9264 
9265 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9266 	if (ret)
9267 		return ret;
9268 
9269 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9270 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9271 		if (ret)
9272 			return ret;
9273 	}
9274 
9275 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9276 	if (ret)
9277 		goto restart;
9278 
9279 	idx = UPDBGLAWRPTR_G(val);
9280 	if (wrptr)
9281 		*wrptr = idx;
9282 
9283 	for (i = 0; i < adap->params.cim_la_size; i++) {
9284 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9285 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9286 		if (ret)
9287 			break;
9288 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9289 		if (ret)
9290 			break;
9291 		if (val & UPDBGLARDEN_F) {
9292 			ret = -ETIMEDOUT;
9293 			break;
9294 		}
9295 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9296 		if (ret)
9297 			break;
9298 
9299 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9300 		 * identify the 32-bit portion of the full 312-bit data
9301 		 */
9302 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9303 			idx = (idx & 0xff0) + 0x10;
9304 		else
9305 			idx++;
9306 		/* address can't exceed 0xfff */
9307 		idx &= UPDBGLARDPTR_M;
9308 	}
9309 restart:
9310 	if (cfg & UPDBGLAEN_F) {
9311 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9312 				      cfg & ~UPDBGLARDEN_F);
9313 		if (!ret)
9314 			ret = r;
9315 	}
9316 	return ret;
9317 }
9318 
9319 /**
9320  *	t4_tp_read_la - read TP LA capture buffer
9321  *	@adap: the adapter
9322  *	@la_buf: where to store the LA data
9323  *	@wrptr: the HW write pointer within the capture buffer
9324  *
9325  *	Reads the contents of the TP LA buffer with the most recent entry at
9326  *	the end	of the returned data and with the entry at @wrptr first.
9327  *	We leave the LA in the running state we find it in.
9328  */
9329 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9330 {
9331 	bool last_incomplete;
9332 	unsigned int i, cfg, val, idx;
9333 
9334 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9335 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9336 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9337 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9338 
9339 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9340 	idx = DBGLAWPTR_G(val);
9341 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9342 	if (last_incomplete)
9343 		idx = (idx + 1) & DBGLARPTR_M;
9344 	if (wrptr)
9345 		*wrptr = idx;
9346 
9347 	val &= 0xffff;
9348 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
9349 	val |= adap->params.tp.la_mask;
9350 
9351 	for (i = 0; i < TPLA_SIZE; i++) {
9352 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
9353 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
9354 		idx = (idx + 1) & DBGLARPTR_M;
9355 	}
9356 
9357 	/* Wipe out last entry if it isn't valid */
9358 	if (last_incomplete)
9359 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9360 
9361 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
9362 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9363 			     cfg | adap->params.tp.la_mask);
9364 }
9365 
9366 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9367  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9368  * state for more than the Warning Threshold then we'll issue a warning about
9369  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9370  * appears to be hung every Warning Repeat second till the situation clears.
9371  * If the situation clears, we'll note that as well.
9372  */
9373 #define SGE_IDMA_WARN_THRESH 1
9374 #define SGE_IDMA_WARN_REPEAT 300
9375 
9376 /**
9377  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9378  *	@adapter: the adapter
9379  *	@idma: the adapter IDMA Monitor state
9380  *
9381  *	Initialize the state of an SGE Ingress DMA Monitor.
9382  */
9383 void t4_idma_monitor_init(struct adapter *adapter,
9384 			  struct sge_idma_monitor_state *idma)
9385 {
9386 	/* Initialize the state variables for detecting an SGE Ingress DMA
9387 	 * hang.  The SGE has internal counters which count up on each clock
9388 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9389 	 * same state they were on the previous clock tick.  The clock used is
9390 	 * the Core Clock so we have a limit on the maximum "time" they can
9391 	 * record; typically a very small number of seconds.  For instance,
9392 	 * with a 600MHz Core Clock, we can only count up to a bit more than
9393 	 * 7s.  So we'll synthesize a larger counter in order to not run the
9394 	 * risk of having the "timers" overflow and give us the flexibility to
9395 	 * maintain a Hung SGE State Machine of our own which operates across
9396 	 * a longer time frame.
9397 	 */
9398 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9399 	idma->idma_stalled[0] = 0;
9400 	idma->idma_stalled[1] = 0;
9401 }
9402 
9403 /**
9404  *	t4_idma_monitor - monitor SGE Ingress DMA state
9405  *	@adapter: the adapter
9406  *	@idma: the adapter IDMA Monitor state
9407  *	@hz: number of ticks/second
9408  *	@ticks: number of ticks since the last IDMA Monitor call
9409  */
9410 void t4_idma_monitor(struct adapter *adapter,
9411 		     struct sge_idma_monitor_state *idma,
9412 		     int hz, int ticks)
9413 {
9414 	int i, idma_same_state_cnt[2];
9415 
9416 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9417 	  * are counters inside the SGE which count up on each clock when the
9418 	  * SGE finds its Ingress DMA State Engines in the same states they
9419 	  * were in the previous clock.  The counters will peg out at
9420 	  * 0xffffffff without wrapping around so once they pass the 1s
9421 	  * threshold they'll stay above that till the IDMA state changes.
9422 	  */
9423 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
9424 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
9425 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9426 
9427 	for (i = 0; i < 2; i++) {
9428 		u32 debug0, debug11;
9429 
9430 		/* If the Ingress DMA Same State Counter ("timer") is less
9431 		 * than 1s, then we can reset our synthesized Stall Timer and
9432 		 * continue.  If we have previously emitted warnings about a
9433 		 * potential stalled Ingress Queue, issue a note indicating
9434 		 * that the Ingress Queue has resumed forward progress.
9435 		 */
9436 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9437 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
9438 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
9439 					 "resumed after %d seconds\n",
9440 					 i, idma->idma_qid[i],
9441 					 idma->idma_stalled[i] / hz);
9442 			idma->idma_stalled[i] = 0;
9443 			continue;
9444 		}
9445 
9446 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9447 		 * domain.  The first time we get here it'll be because we
9448 		 * passed the 1s Threshold; each additional time it'll be
9449 		 * because the RX Timer Callback is being fired on its regular
9450 		 * schedule.
9451 		 *
9452 		 * If the stall is below our Potential Hung Ingress Queue
9453 		 * Warning Threshold, continue.
9454 		 */
9455 		if (idma->idma_stalled[i] == 0) {
9456 			idma->idma_stalled[i] = hz;
9457 			idma->idma_warn[i] = 0;
9458 		} else {
9459 			idma->idma_stalled[i] += ticks;
9460 			idma->idma_warn[i] -= ticks;
9461 		}
9462 
9463 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
9464 			continue;
9465 
9466 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9467 		 */
9468 		if (idma->idma_warn[i] > 0)
9469 			continue;
9470 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
9471 
9472 		/* Read and save the SGE IDMA State and Queue ID information.
9473 		 * We do this every time in case it changes across time ...
9474 		 * can't be too careful ...
9475 		 */
9476 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
9477 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9478 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9479 
9480 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
9481 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9482 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9483 
9484 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
9485 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9486 			 i, idma->idma_qid[i], idma->idma_state[i],
9487 			 idma->idma_stalled[i] / hz,
9488 			 debug0, debug11);
9489 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9490 	}
9491 }
9492 
9493 /**
9494  *	t4_load_cfg - download config file
9495  *	@adap: the adapter
9496  *	@cfg_data: the cfg text file to write
9497  *	@size: text file size
9498  *
9499  *	Write the supplied config text file to the card's serial flash.
9500  */
9501 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9502 {
9503 	int ret, i, n, cfg_addr;
9504 	unsigned int addr;
9505 	unsigned int flash_cfg_start_sec;
9506 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9507 
9508 	cfg_addr = t4_flash_cfg_addr(adap);
9509 	if (cfg_addr < 0)
9510 		return cfg_addr;
9511 
9512 	addr = cfg_addr;
9513 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9514 
9515 	if (size > FLASH_CFG_MAX_SIZE) {
9516 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
9517 			FLASH_CFG_MAX_SIZE);
9518 		return -EFBIG;
9519 	}
9520 
9521 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9522 			 sf_sec_size);
9523 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9524 				     flash_cfg_start_sec + i - 1);
9525 	/* If size == 0 then we're simply erasing the FLASH sectors associated
9526 	 * with the on-adapter Firmware Configuration File.
9527 	 */
9528 	if (ret || size == 0)
9529 		goto out;
9530 
9531 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9532 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
9533 		if ((size - i) <  SF_PAGE_SIZE)
9534 			n = size - i;
9535 		else
9536 			n = SF_PAGE_SIZE;
9537 		ret = t4_write_flash(adap, addr, n, cfg_data);
9538 		if (ret)
9539 			goto out;
9540 
9541 		addr += SF_PAGE_SIZE;
9542 		cfg_data += SF_PAGE_SIZE;
9543 	}
9544 
9545 out:
9546 	if (ret)
9547 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
9548 			(size == 0 ? "clear" : "download"), ret);
9549 	return ret;
9550 }
9551 
9552 /**
9553  *	t4_set_vf_mac - Set MAC address for the specified VF
9554  *	@adapter: The adapter
9555  *	@vf: one of the VFs instantiated by the specified PF
9556  *	@naddr: the number of MAC addresses
9557  *	@addr: the MAC address(es) to be set to the specified VF
9558  */
9559 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
9560 		      unsigned int naddr, u8 *addr)
9561 {
9562 	struct fw_acl_mac_cmd cmd;
9563 
9564 	memset(&cmd, 0, sizeof(cmd));
9565 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
9566 				    FW_CMD_REQUEST_F |
9567 				    FW_CMD_WRITE_F |
9568 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
9569 				    FW_ACL_MAC_CMD_VFN_V(vf));
9570 
9571 	/* Note: Do not enable the ACL */
9572 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
9573 	cmd.nmac = naddr;
9574 
9575 	switch (adapter->pf) {
9576 	case 3:
9577 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
9578 		break;
9579 	case 2:
9580 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
9581 		break;
9582 	case 1:
9583 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
9584 		break;
9585 	case 0:
9586 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
9587 		break;
9588 	}
9589 
9590 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
9591 }
9592 
9593 /**
9594  * t4_read_pace_tbl - read the pace table
9595  * @adap: the adapter
9596  * @pace_vals: holds the returned values
9597  *
9598  * Returns the values of TP's pace table in microseconds.
9599  */
9600 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9601 {
9602 	unsigned int i, v;
9603 
9604 	for (i = 0; i < NTX_SCHED; i++) {
9605 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
9606 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
9607 		pace_vals[i] = dack_ticks_to_usec(adap, v);
9608 	}
9609 }
9610 
9611 /**
9612  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9613  * @adap: the adapter
9614  * @sched: the scheduler index
9615  * @kbps: the byte rate in Kbps
9616  * @ipg: the interpacket delay in tenths of nanoseconds
9617  * @sleep_ok: if true we may sleep while awaiting command completion
9618  *
9619  * Return the current configuration of a HW Tx scheduler.
9620  */
9621 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
9622 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
9623 {
9624 	unsigned int v, addr, bpt, cpt;
9625 
9626 	if (kbps) {
9627 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
9628 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9629 		if (sched & 1)
9630 			v >>= 16;
9631 		bpt = (v >> 8) & 0xff;
9632 		cpt = v & 0xff;
9633 		if (!cpt) {
9634 			*kbps = 0;	/* scheduler disabled */
9635 		} else {
9636 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9637 			*kbps = (v * bpt) / 125;
9638 		}
9639 	}
9640 	if (ipg) {
9641 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
9642 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9643 		if (sched & 1)
9644 			v >>= 16;
9645 		v &= 0xffff;
9646 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9647 	}
9648 }
9649 
9650 /* t4_sge_ctxt_rd - read an SGE context through FW
9651  * @adap: the adapter
9652  * @mbox: mailbox to use for the FW command
9653  * @cid: the context id
9654  * @ctype: the context type
9655  * @data: where to store the context data
9656  *
9657  * Issues a FW command through the given mailbox to read an SGE context.
9658  */
9659 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9660 		   enum ctxt_type ctype, u32 *data)
9661 {
9662 	struct fw_ldst_cmd c;
9663 	int ret;
9664 
9665 	if (ctype == CTXT_FLM)
9666 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9667 	else
9668 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9669 
9670 	memset(&c, 0, sizeof(c));
9671 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
9672 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
9673 					FW_LDST_CMD_ADDRSPACE_V(ret));
9674 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9675 	c.u.idctxt.physid = cpu_to_be32(cid);
9676 
9677 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9678 	if (ret == 0) {
9679 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9680 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9681 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9682 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9683 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9684 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9685 	}
9686 	return ret;
9687 }
9688 
9689 /**
9690  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9691  * @adap: the adapter
9692  * @cid: the context id
9693  * @ctype: the context type
9694  * @data: where to store the context data
9695  *
9696  * Reads an SGE context directly, bypassing FW.  This is only for
9697  * debugging when FW is unavailable.
9698  */
9699 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
9700 		      enum ctxt_type ctype, u32 *data)
9701 {
9702 	int i, ret;
9703 
9704 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
9705 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
9706 	if (!ret)
9707 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
9708 			*data++ = t4_read_reg(adap, i);
9709 	return ret;
9710 }
9711 
9712 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9713 		    int rateunit, int ratemode, int channel, int class,
9714 		    int minrate, int maxrate, int weight, int pktsize)
9715 {
9716 	struct fw_sched_cmd cmd;
9717 
9718 	memset(&cmd, 0, sizeof(cmd));
9719 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
9720 				      FW_CMD_REQUEST_F |
9721 				      FW_CMD_WRITE_F);
9722 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9723 
9724 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9725 	cmd.u.params.type = type;
9726 	cmd.u.params.level = level;
9727 	cmd.u.params.mode = mode;
9728 	cmd.u.params.ch = channel;
9729 	cmd.u.params.cl = class;
9730 	cmd.u.params.unit = rateunit;
9731 	cmd.u.params.rate = ratemode;
9732 	cmd.u.params.min = cpu_to_be32(minrate);
9733 	cmd.u.params.max = cpu_to_be32(maxrate);
9734 	cmd.u.params.weight = cpu_to_be16(weight);
9735 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9736 
9737 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
9738 			       NULL, 1);
9739 }
9740