xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c (revision bbde9fc1824aab58bc78c084163007dd6c03fe5b)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 
41 /**
42  *	t4_wait_op_done_val - wait until an operation is completed
43  *	@adapter: the adapter performing the operation
44  *	@reg: the register to check for completion
45  *	@mask: a single-bit field within @reg that indicates completion
46  *	@polarity: the value of the field when the operation is completed
47  *	@attempts: number of check iterations
48  *	@delay: delay in usecs between iterations
49  *	@valp: where to store the value of the register at completion time
50  *
51  *	Wait until an operation is completed by checking a bit in a register
52  *	up to @attempts times.  If @valp is not NULL the value of the register
53  *	at the time it indicated completion is stored there.  Returns 0 if the
54  *	operation completes and	-EAGAIN	otherwise.
55  */
56 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
57 			       int polarity, int attempts, int delay, u32 *valp)
58 {
59 	while (1) {
60 		u32 val = t4_read_reg(adapter, reg);
61 
62 		if (!!(val & mask) == polarity) {
63 			if (valp)
64 				*valp = val;
65 			return 0;
66 		}
67 		if (--attempts == 0)
68 			return -EAGAIN;
69 		if (delay)
70 			udelay(delay);
71 	}
72 }
73 
74 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
75 				  int polarity, int attempts, int delay)
76 {
77 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
78 				   delay, NULL);
79 }
80 
81 /**
82  *	t4_set_reg_field - set a register field to a value
83  *	@adapter: the adapter to program
84  *	@addr: the register address
85  *	@mask: specifies the portion of the register to modify
86  *	@val: the new value for the register field
87  *
88  *	Sets a register field specified by the supplied mask to the
89  *	given value.
90  */
91 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
92 		      u32 val)
93 {
94 	u32 v = t4_read_reg(adapter, addr) & ~mask;
95 
96 	t4_write_reg(adapter, addr, v | val);
97 	(void) t4_read_reg(adapter, addr);      /* flush */
98 }
99 
100 /**
101  *	t4_read_indirect - read indirectly addressed registers
102  *	@adap: the adapter
103  *	@addr_reg: register holding the indirect address
104  *	@data_reg: register holding the value of the indirect register
105  *	@vals: where the read register values are stored
106  *	@nregs: how many indirect registers to read
107  *	@start_idx: index of first indirect register to read
108  *
109  *	Reads registers that are accessed indirectly through an address/data
110  *	register pair.
111  */
112 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
113 			     unsigned int data_reg, u32 *vals,
114 			     unsigned int nregs, unsigned int start_idx)
115 {
116 	while (nregs--) {
117 		t4_write_reg(adap, addr_reg, start_idx);
118 		*vals++ = t4_read_reg(adap, data_reg);
119 		start_idx++;
120 	}
121 }
122 
123 /**
124  *	t4_write_indirect - write indirectly addressed registers
125  *	@adap: the adapter
126  *	@addr_reg: register holding the indirect addresses
127  *	@data_reg: register holding the value for the indirect registers
128  *	@vals: values to write
129  *	@nregs: how many indirect registers to write
130  *	@start_idx: address of first indirect register to write
131  *
132  *	Writes a sequential block of registers that are accessed indirectly
133  *	through an address/data register pair.
134  */
135 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
136 		       unsigned int data_reg, const u32 *vals,
137 		       unsigned int nregs, unsigned int start_idx)
138 {
139 	while (nregs--) {
140 		t4_write_reg(adap, addr_reg, start_idx++);
141 		t4_write_reg(adap, data_reg, *vals++);
142 	}
143 }
144 
145 /*
146  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
147  * mechanism.  This guarantees that we get the real value even if we're
148  * operating within a Virtual Machine and the Hypervisor is trapping our
149  * Configuration Space accesses.
150  */
151 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
152 {
153 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
154 
155 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
156 		req |= ENABLE_F;
157 	else
158 		req |= T6_ENABLE_F;
159 
160 	if (is_t4(adap->params.chip))
161 		req |= LOCALCFG_F;
162 
163 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
164 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
165 
166 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
167 	 * Configuration Space read.  (None of the other fields matter when
168 	 * ENABLE is 0 so a simple register write is easier than a
169 	 * read-modify-write via t4_set_reg_field().)
170 	 */
171 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
172 }
173 
174 /*
175  * t4_report_fw_error - report firmware error
176  * @adap: the adapter
177  *
178  * The adapter firmware can indicate error conditions to the host.
179  * If the firmware has indicated an error, print out the reason for
180  * the firmware error.
181  */
182 static void t4_report_fw_error(struct adapter *adap)
183 {
184 	static const char *const reason[] = {
185 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
186 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
187 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
188 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
189 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
190 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
191 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
192 		"Reserved",                     /* reserved */
193 	};
194 	u32 pcie_fw;
195 
196 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
197 	if (pcie_fw & PCIE_FW_ERR_F)
198 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
199 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
200 }
201 
202 /*
203  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
204  */
205 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
206 			 u32 mbox_addr)
207 {
208 	for ( ; nflit; nflit--, mbox_addr += 8)
209 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
210 }
211 
212 /*
213  * Handle a FW assertion reported in a mailbox.
214  */
215 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
216 {
217 	struct fw_debug_cmd asrt;
218 
219 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
220 	dev_alert(adap->pdev_dev,
221 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
222 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
223 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
224 }
225 
226 static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
227 {
228 	dev_err(adap->pdev_dev,
229 		"mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
230 		(unsigned long long)t4_read_reg64(adap, data_reg),
231 		(unsigned long long)t4_read_reg64(adap, data_reg + 8),
232 		(unsigned long long)t4_read_reg64(adap, data_reg + 16),
233 		(unsigned long long)t4_read_reg64(adap, data_reg + 24),
234 		(unsigned long long)t4_read_reg64(adap, data_reg + 32),
235 		(unsigned long long)t4_read_reg64(adap, data_reg + 40),
236 		(unsigned long long)t4_read_reg64(adap, data_reg + 48),
237 		(unsigned long long)t4_read_reg64(adap, data_reg + 56));
238 }
239 
240 /**
241  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
242  *	@adap: the adapter
243  *	@mbox: index of the mailbox to use
244  *	@cmd: the command to write
245  *	@size: command length in bytes
246  *	@rpl: where to optionally store the reply
247  *	@sleep_ok: if true we may sleep while awaiting command completion
248  *	@timeout: time to wait for command to finish before timing out
249  *
250  *	Sends the given command to FW through the selected mailbox and waits
251  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
252  *	store the FW's reply to the command.  The command and its optional
253  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
254  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
255  *	the response.  If sleeping is allowed we use progressive backoff
256  *	otherwise we spin.
257  *
258  *	The return value is 0 on success or a negative errno on failure.  A
259  *	failure can happen either because we are not able to execute the
260  *	command or FW executes it but signals an error.  In the latter case
261  *	the return value is the error code indicated by FW (negated).
262  */
263 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
264 			    int size, void *rpl, bool sleep_ok, int timeout)
265 {
266 	static const int delay[] = {
267 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
268 	};
269 
270 	u32 v;
271 	u64 res;
272 	int i, ms, delay_idx;
273 	const __be64 *p = cmd;
274 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
275 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
276 
277 	if ((size & 15) || size > MBOX_LEN)
278 		return -EINVAL;
279 
280 	/*
281 	 * If the device is off-line, as in EEH, commands will time out.
282 	 * Fail them early so we don't waste time waiting.
283 	 */
284 	if (adap->pdev->error_state != pci_channel_io_normal)
285 		return -EIO;
286 
287 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
288 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
289 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
290 
291 	if (v != MBOX_OWNER_DRV)
292 		return v ? -EBUSY : -ETIMEDOUT;
293 
294 	for (i = 0; i < size; i += 8)
295 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
296 
297 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
298 	t4_read_reg(adap, ctl_reg);          /* flush write */
299 
300 	delay_idx = 0;
301 	ms = delay[0];
302 
303 	for (i = 0; i < timeout; i += ms) {
304 		if (sleep_ok) {
305 			ms = delay[delay_idx];  /* last element may repeat */
306 			if (delay_idx < ARRAY_SIZE(delay) - 1)
307 				delay_idx++;
308 			msleep(ms);
309 		} else
310 			mdelay(ms);
311 
312 		v = t4_read_reg(adap, ctl_reg);
313 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
314 			if (!(v & MBMSGVALID_F)) {
315 				t4_write_reg(adap, ctl_reg, 0);
316 				continue;
317 			}
318 
319 			res = t4_read_reg64(adap, data_reg);
320 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
321 				fw_asrt(adap, data_reg);
322 				res = FW_CMD_RETVAL_V(EIO);
323 			} else if (rpl) {
324 				get_mbox_rpl(adap, rpl, size / 8, data_reg);
325 			}
326 
327 			if (FW_CMD_RETVAL_G((int)res))
328 				dump_mbox(adap, mbox, data_reg);
329 			t4_write_reg(adap, ctl_reg, 0);
330 			return -FW_CMD_RETVAL_G((int)res);
331 		}
332 	}
333 
334 	dump_mbox(adap, mbox, data_reg);
335 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
336 		*(const u8 *)cmd, mbox);
337 	t4_report_fw_error(adap);
338 	return -ETIMEDOUT;
339 }
340 
341 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
342 		    void *rpl, bool sleep_ok)
343 {
344 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
345 				       FW_CMD_MAX_TIMEOUT);
346 }
347 
348 static int t4_edc_err_read(struct adapter *adap, int idx)
349 {
350 	u32 edc_ecc_err_addr_reg;
351 	u32 rdata_reg;
352 
353 	if (is_t4(adap->params.chip)) {
354 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
355 		return 0;
356 	}
357 	if (idx != 0 && idx != 1) {
358 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
359 		return 0;
360 	}
361 
362 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
363 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
364 
365 	CH_WARN(adap,
366 		"edc%d err addr 0x%x: 0x%x.\n",
367 		idx, edc_ecc_err_addr_reg,
368 		t4_read_reg(adap, edc_ecc_err_addr_reg));
369 	CH_WARN(adap,
370 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
371 		rdata_reg,
372 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
373 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
374 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
375 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
376 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
377 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
378 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
379 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
380 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
381 
382 	return 0;
383 }
384 
385 /**
386  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
387  *	@adap: the adapter
388  *	@win: PCI-E Memory Window to use
389  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
390  *	@addr: address within indicated memory type
391  *	@len: amount of memory to transfer
392  *	@hbuf: host memory buffer
393  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
394  *
395  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
396  *	firmware memory address and host buffer must be aligned on 32-bit
397  *	boudaries; the length may be arbitrary.  The memory is transferred as
398  *	a raw byte sequence from/to the firmware's memory.  If this memory
399  *	contains data structures which contain multi-byte integers, it's the
400  *	caller's responsibility to perform appropriate byte order conversions.
401  */
402 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
403 		 u32 len, void *hbuf, int dir)
404 {
405 	u32 pos, offset, resid, memoffset;
406 	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
407 	u32 *buf;
408 
409 	/* Argument sanity checks ...
410 	 */
411 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
412 		return -EINVAL;
413 	buf = (u32 *)hbuf;
414 
415 	/* It's convenient to be able to handle lengths which aren't a
416 	 * multiple of 32-bits because we often end up transferring files to
417 	 * the firmware.  So we'll handle that by normalizing the length here
418 	 * and then handling any residual transfer at the end.
419 	 */
420 	resid = len & 0x3;
421 	len -= resid;
422 
423 	/* Offset into the region of memory which is being accessed
424 	 * MEM_EDC0 = 0
425 	 * MEM_EDC1 = 1
426 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
427 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
428 	 */
429 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
430 	if (mtype != MEM_MC1)
431 		memoffset = (mtype * (edc_size * 1024 * 1024));
432 	else {
433 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
434 						      MA_EXT_MEMORY0_BAR_A));
435 		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
436 	}
437 
438 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
439 	addr = addr + memoffset;
440 
441 	/* Each PCI-E Memory Window is programmed with a window size -- or
442 	 * "aperture" -- which controls the granularity of its mapping onto
443 	 * adapter memory.  We need to grab that aperture in order to know
444 	 * how to use the specified window.  The window is also programmed
445 	 * with the base address of the Memory Window in BAR0's address
446 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
447 	 * the address is relative to BAR0.
448 	 */
449 	mem_reg = t4_read_reg(adap,
450 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
451 						  win));
452 	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
453 	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
454 	if (is_t4(adap->params.chip))
455 		mem_base -= adap->t4_bar0;
456 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
457 
458 	/* Calculate our initial PCI-E Memory Window Position and Offset into
459 	 * that Window.
460 	 */
461 	pos = addr & ~(mem_aperture-1);
462 	offset = addr - pos;
463 
464 	/* Set up initial PCI-E Memory Window to cover the start of our
465 	 * transfer.  (Read it back to ensure that changes propagate before we
466 	 * attempt to use the new value.)
467 	 */
468 	t4_write_reg(adap,
469 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
470 		     pos | win_pf);
471 	t4_read_reg(adap,
472 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
473 
474 	/* Transfer data to/from the adapter as long as there's an integral
475 	 * number of 32-bit transfers to complete.
476 	 *
477 	 * A note on Endianness issues:
478 	 *
479 	 * The "register" reads and writes below from/to the PCI-E Memory
480 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
481 	 * Little-Endian "swizzel."  As a result, if we have the following
482 	 * data in adapter memory:
483 	 *
484 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
485 	 *     Address:      i+0  i+1  i+2  i+3
486 	 *
487 	 * Then a read of the adapter memory via the PCI-E Memory Window
488 	 * will yield:
489 	 *
490 	 *     x = readl(i)
491 	 *         31                  0
492 	 *         [ b3 | b2 | b1 | b0 ]
493 	 *
494 	 * If this value is stored into local memory on a Little-Endian system
495 	 * it will show up correctly in local memory as:
496 	 *
497 	 *     ( ..., b0, b1, b2, b3, ... )
498 	 *
499 	 * But on a Big-Endian system, the store will show up in memory
500 	 * incorrectly swizzled as:
501 	 *
502 	 *     ( ..., b3, b2, b1, b0, ... )
503 	 *
504 	 * So we need to account for this in the reads and writes to the
505 	 * PCI-E Memory Window below by undoing the register read/write
506 	 * swizzels.
507 	 */
508 	while (len > 0) {
509 		if (dir == T4_MEMORY_READ)
510 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
511 						mem_base + offset));
512 		else
513 			t4_write_reg(adap, mem_base + offset,
514 				     (__force u32)cpu_to_le32(*buf++));
515 		offset += sizeof(__be32);
516 		len -= sizeof(__be32);
517 
518 		/* If we've reached the end of our current window aperture,
519 		 * move the PCI-E Memory Window on to the next.  Note that
520 		 * doing this here after "len" may be 0 allows us to set up
521 		 * the PCI-E Memory Window for a possible final residual
522 		 * transfer below ...
523 		 */
524 		if (offset == mem_aperture) {
525 			pos += mem_aperture;
526 			offset = 0;
527 			t4_write_reg(adap,
528 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
529 						    win), pos | win_pf);
530 			t4_read_reg(adap,
531 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
532 						    win));
533 		}
534 	}
535 
536 	/* If the original transfer had a length which wasn't a multiple of
537 	 * 32-bits, now's where we need to finish off the transfer of the
538 	 * residual amount.  The PCI-E Memory Window has already been moved
539 	 * above (if necessary) to cover this final transfer.
540 	 */
541 	if (resid) {
542 		union {
543 			u32 word;
544 			char byte[4];
545 		} last;
546 		unsigned char *bp;
547 		int i;
548 
549 		if (dir == T4_MEMORY_READ) {
550 			last.word = le32_to_cpu(
551 					(__force __le32)t4_read_reg(adap,
552 						mem_base + offset));
553 			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
554 				bp[i] = last.byte[i];
555 		} else {
556 			last.word = *buf;
557 			for (i = resid; i < 4; i++)
558 				last.byte[i] = 0;
559 			t4_write_reg(adap, mem_base + offset,
560 				     (__force u32)cpu_to_le32(last.word));
561 		}
562 	}
563 
564 	return 0;
565 }
566 
567 /* Return the specified PCI-E Configuration Space register from our Physical
568  * Function.  We try first via a Firmware LDST Command since we prefer to let
569  * the firmware own all of these registers, but if that fails we go for it
570  * directly ourselves.
571  */
572 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
573 {
574 	u32 val, ldst_addrspace;
575 
576 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
577 	 * retrieve the specified PCI-E Configuration Space register.
578 	 */
579 	struct fw_ldst_cmd ldst_cmd;
580 	int ret;
581 
582 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
583 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
584 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
585 					       FW_CMD_REQUEST_F |
586 					       FW_CMD_READ_F |
587 					       ldst_addrspace);
588 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
589 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
590 	ldst_cmd.u.pcie.ctrl_to_fn =
591 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
592 	ldst_cmd.u.pcie.r = reg;
593 
594 	/* If the LDST Command succeeds, return the result, otherwise
595 	 * fall through to reading it directly ourselves ...
596 	 */
597 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
598 			 &ldst_cmd);
599 	if (ret == 0)
600 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
601 	else
602 		/* Read the desired Configuration Space register via the PCI-E
603 		 * Backdoor mechanism.
604 		 */
605 		t4_hw_pci_read_cfg4(adap, reg, &val);
606 	return val;
607 }
608 
609 /* Get the window based on base passed to it.
610  * Window aperture is currently unhandled, but there is no use case for it
611  * right now
612  */
613 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
614 			 u32 memwin_base)
615 {
616 	u32 ret;
617 
618 	if (is_t4(adap->params.chip)) {
619 		u32 bar0;
620 
621 		/* Truncation intentional: we only read the bottom 32-bits of
622 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
623 		 * mechanism to read BAR0 instead of using
624 		 * pci_resource_start() because we could be operating from
625 		 * within a Virtual Machine which is trapping our accesses to
626 		 * our Configuration Space and we need to set up the PCI-E
627 		 * Memory Window decoders with the actual addresses which will
628 		 * be coming across the PCI-E link.
629 		 */
630 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
631 		bar0 &= pci_mask;
632 		adap->t4_bar0 = bar0;
633 
634 		ret = bar0 + memwin_base;
635 	} else {
636 		/* For T5, only relative offset inside the PCIe BAR is passed */
637 		ret = memwin_base;
638 	}
639 	return ret;
640 }
641 
642 /* Get the default utility window (win0) used by everyone */
643 u32 t4_get_util_window(struct adapter *adap)
644 {
645 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
646 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
647 }
648 
649 /* Set up memory window for accessing adapter memory ranges.  (Read
650  * back MA register to ensure that changes propagate before we attempt
651  * to use the new values.)
652  */
653 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
654 {
655 	t4_write_reg(adap,
656 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
657 		     memwin_base | BIR_V(0) |
658 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
659 	t4_read_reg(adap,
660 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
661 }
662 
663 /**
664  *	t4_get_regs_len - return the size of the chips register set
665  *	@adapter: the adapter
666  *
667  *	Returns the size of the chip's BAR0 register space.
668  */
669 unsigned int t4_get_regs_len(struct adapter *adapter)
670 {
671 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
672 
673 	switch (chip_version) {
674 	case CHELSIO_T4:
675 		return T4_REGMAP_SIZE;
676 
677 	case CHELSIO_T5:
678 	case CHELSIO_T6:
679 		return T5_REGMAP_SIZE;
680 	}
681 
682 	dev_err(adapter->pdev_dev,
683 		"Unsupported chip version %d\n", chip_version);
684 	return 0;
685 }
686 
687 /**
688  *	t4_get_regs - read chip registers into provided buffer
689  *	@adap: the adapter
690  *	@buf: register buffer
691  *	@buf_size: size (in bytes) of register buffer
692  *
693  *	If the provided register buffer isn't large enough for the chip's
694  *	full register range, the register dump will be truncated to the
695  *	register buffer's size.
696  */
697 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
698 {
699 	static const unsigned int t4_reg_ranges[] = {
700 		0x1008, 0x1108,
701 		0x1180, 0x11b4,
702 		0x11fc, 0x123c,
703 		0x1300, 0x173c,
704 		0x1800, 0x18fc,
705 		0x3000, 0x305c,
706 		0x3068, 0x30d8,
707 		0x30e0, 0x5924,
708 		0x5960, 0x59d4,
709 		0x5a00, 0x5af8,
710 		0x6000, 0x6098,
711 		0x6100, 0x6150,
712 		0x6200, 0x6208,
713 		0x6240, 0x6248,
714 		0x6280, 0x6338,
715 		0x6370, 0x638c,
716 		0x6400, 0x643c,
717 		0x6500, 0x6524,
718 		0x6a00, 0x6a38,
719 		0x6a60, 0x6a78,
720 		0x6b00, 0x6b84,
721 		0x6bf0, 0x6c84,
722 		0x6cf0, 0x6d84,
723 		0x6df0, 0x6e84,
724 		0x6ef0, 0x6f84,
725 		0x6ff0, 0x7084,
726 		0x70f0, 0x7184,
727 		0x71f0, 0x7284,
728 		0x72f0, 0x7384,
729 		0x73f0, 0x7450,
730 		0x7500, 0x7530,
731 		0x7600, 0x761c,
732 		0x7680, 0x76cc,
733 		0x7700, 0x7798,
734 		0x77c0, 0x77fc,
735 		0x7900, 0x79fc,
736 		0x7b00, 0x7c38,
737 		0x7d00, 0x7efc,
738 		0x8dc0, 0x8e1c,
739 		0x8e30, 0x8e78,
740 		0x8ea0, 0x8f6c,
741 		0x8fc0, 0x9074,
742 		0x90fc, 0x90fc,
743 		0x9400, 0x9458,
744 		0x9600, 0x96bc,
745 		0x9800, 0x9808,
746 		0x9820, 0x983c,
747 		0x9850, 0x9864,
748 		0x9c00, 0x9c6c,
749 		0x9c80, 0x9cec,
750 		0x9d00, 0x9d6c,
751 		0x9d80, 0x9dec,
752 		0x9e00, 0x9e6c,
753 		0x9e80, 0x9eec,
754 		0x9f00, 0x9f6c,
755 		0x9f80, 0x9fec,
756 		0xd004, 0xd03c,
757 		0xdfc0, 0xdfe0,
758 		0xe000, 0xea7c,
759 		0xf000, 0x11110,
760 		0x11118, 0x11190,
761 		0x19040, 0x1906c,
762 		0x19078, 0x19080,
763 		0x1908c, 0x19124,
764 		0x19150, 0x191b0,
765 		0x191d0, 0x191e8,
766 		0x19238, 0x1924c,
767 		0x193f8, 0x19474,
768 		0x19490, 0x194f8,
769 		0x19800, 0x19f4c,
770 		0x1a000, 0x1a06c,
771 		0x1a0b0, 0x1a120,
772 		0x1a128, 0x1a138,
773 		0x1a190, 0x1a1c4,
774 		0x1a1fc, 0x1a1fc,
775 		0x1e040, 0x1e04c,
776 		0x1e284, 0x1e28c,
777 		0x1e2c0, 0x1e2c0,
778 		0x1e2e0, 0x1e2e0,
779 		0x1e300, 0x1e384,
780 		0x1e3c0, 0x1e3c8,
781 		0x1e440, 0x1e44c,
782 		0x1e684, 0x1e68c,
783 		0x1e6c0, 0x1e6c0,
784 		0x1e6e0, 0x1e6e0,
785 		0x1e700, 0x1e784,
786 		0x1e7c0, 0x1e7c8,
787 		0x1e840, 0x1e84c,
788 		0x1ea84, 0x1ea8c,
789 		0x1eac0, 0x1eac0,
790 		0x1eae0, 0x1eae0,
791 		0x1eb00, 0x1eb84,
792 		0x1ebc0, 0x1ebc8,
793 		0x1ec40, 0x1ec4c,
794 		0x1ee84, 0x1ee8c,
795 		0x1eec0, 0x1eec0,
796 		0x1eee0, 0x1eee0,
797 		0x1ef00, 0x1ef84,
798 		0x1efc0, 0x1efc8,
799 		0x1f040, 0x1f04c,
800 		0x1f284, 0x1f28c,
801 		0x1f2c0, 0x1f2c0,
802 		0x1f2e0, 0x1f2e0,
803 		0x1f300, 0x1f384,
804 		0x1f3c0, 0x1f3c8,
805 		0x1f440, 0x1f44c,
806 		0x1f684, 0x1f68c,
807 		0x1f6c0, 0x1f6c0,
808 		0x1f6e0, 0x1f6e0,
809 		0x1f700, 0x1f784,
810 		0x1f7c0, 0x1f7c8,
811 		0x1f840, 0x1f84c,
812 		0x1fa84, 0x1fa8c,
813 		0x1fac0, 0x1fac0,
814 		0x1fae0, 0x1fae0,
815 		0x1fb00, 0x1fb84,
816 		0x1fbc0, 0x1fbc8,
817 		0x1fc40, 0x1fc4c,
818 		0x1fe84, 0x1fe8c,
819 		0x1fec0, 0x1fec0,
820 		0x1fee0, 0x1fee0,
821 		0x1ff00, 0x1ff84,
822 		0x1ffc0, 0x1ffc8,
823 		0x20000, 0x2002c,
824 		0x20100, 0x2013c,
825 		0x20190, 0x201c8,
826 		0x20200, 0x20318,
827 		0x20400, 0x20528,
828 		0x20540, 0x20614,
829 		0x21000, 0x21040,
830 		0x2104c, 0x21060,
831 		0x210c0, 0x210ec,
832 		0x21200, 0x21268,
833 		0x21270, 0x21284,
834 		0x212fc, 0x21388,
835 		0x21400, 0x21404,
836 		0x21500, 0x21518,
837 		0x2152c, 0x2153c,
838 		0x21550, 0x21554,
839 		0x21600, 0x21600,
840 		0x21608, 0x21628,
841 		0x21630, 0x2163c,
842 		0x21700, 0x2171c,
843 		0x21780, 0x2178c,
844 		0x21800, 0x21c38,
845 		0x21c80, 0x21d7c,
846 		0x21e00, 0x21e04,
847 		0x22000, 0x2202c,
848 		0x22100, 0x2213c,
849 		0x22190, 0x221c8,
850 		0x22200, 0x22318,
851 		0x22400, 0x22528,
852 		0x22540, 0x22614,
853 		0x23000, 0x23040,
854 		0x2304c, 0x23060,
855 		0x230c0, 0x230ec,
856 		0x23200, 0x23268,
857 		0x23270, 0x23284,
858 		0x232fc, 0x23388,
859 		0x23400, 0x23404,
860 		0x23500, 0x23518,
861 		0x2352c, 0x2353c,
862 		0x23550, 0x23554,
863 		0x23600, 0x23600,
864 		0x23608, 0x23628,
865 		0x23630, 0x2363c,
866 		0x23700, 0x2371c,
867 		0x23780, 0x2378c,
868 		0x23800, 0x23c38,
869 		0x23c80, 0x23d7c,
870 		0x23e00, 0x23e04,
871 		0x24000, 0x2402c,
872 		0x24100, 0x2413c,
873 		0x24190, 0x241c8,
874 		0x24200, 0x24318,
875 		0x24400, 0x24528,
876 		0x24540, 0x24614,
877 		0x25000, 0x25040,
878 		0x2504c, 0x25060,
879 		0x250c0, 0x250ec,
880 		0x25200, 0x25268,
881 		0x25270, 0x25284,
882 		0x252fc, 0x25388,
883 		0x25400, 0x25404,
884 		0x25500, 0x25518,
885 		0x2552c, 0x2553c,
886 		0x25550, 0x25554,
887 		0x25600, 0x25600,
888 		0x25608, 0x25628,
889 		0x25630, 0x2563c,
890 		0x25700, 0x2571c,
891 		0x25780, 0x2578c,
892 		0x25800, 0x25c38,
893 		0x25c80, 0x25d7c,
894 		0x25e00, 0x25e04,
895 		0x26000, 0x2602c,
896 		0x26100, 0x2613c,
897 		0x26190, 0x261c8,
898 		0x26200, 0x26318,
899 		0x26400, 0x26528,
900 		0x26540, 0x26614,
901 		0x27000, 0x27040,
902 		0x2704c, 0x27060,
903 		0x270c0, 0x270ec,
904 		0x27200, 0x27268,
905 		0x27270, 0x27284,
906 		0x272fc, 0x27388,
907 		0x27400, 0x27404,
908 		0x27500, 0x27518,
909 		0x2752c, 0x2753c,
910 		0x27550, 0x27554,
911 		0x27600, 0x27600,
912 		0x27608, 0x27628,
913 		0x27630, 0x2763c,
914 		0x27700, 0x2771c,
915 		0x27780, 0x2778c,
916 		0x27800, 0x27c38,
917 		0x27c80, 0x27d7c,
918 		0x27e00, 0x27e04,
919 	};
920 
921 	static const unsigned int t5_reg_ranges[] = {
922 		0x1008, 0x1148,
923 		0x1180, 0x11b4,
924 		0x11fc, 0x123c,
925 		0x1280, 0x173c,
926 		0x1800, 0x18fc,
927 		0x3000, 0x3028,
928 		0x3068, 0x30d8,
929 		0x30e0, 0x30fc,
930 		0x3140, 0x357c,
931 		0x35a8, 0x35cc,
932 		0x35ec, 0x35ec,
933 		0x3600, 0x5624,
934 		0x56cc, 0x575c,
935 		0x580c, 0x5814,
936 		0x5890, 0x58bc,
937 		0x5940, 0x59dc,
938 		0x59fc, 0x5a18,
939 		0x5a60, 0x5a9c,
940 		0x5b94, 0x5bfc,
941 		0x6000, 0x6040,
942 		0x6058, 0x614c,
943 		0x7700, 0x7798,
944 		0x77c0, 0x78fc,
945 		0x7b00, 0x7c54,
946 		0x7d00, 0x7efc,
947 		0x8dc0, 0x8de0,
948 		0x8df8, 0x8e84,
949 		0x8ea0, 0x8f84,
950 		0x8fc0, 0x90f8,
951 		0x9400, 0x9470,
952 		0x9600, 0x96f4,
953 		0x9800, 0x9808,
954 		0x9820, 0x983c,
955 		0x9850, 0x9864,
956 		0x9c00, 0x9c6c,
957 		0x9c80, 0x9cec,
958 		0x9d00, 0x9d6c,
959 		0x9d80, 0x9dec,
960 		0x9e00, 0x9e6c,
961 		0x9e80, 0x9eec,
962 		0x9f00, 0x9f6c,
963 		0x9f80, 0xa020,
964 		0xd004, 0xd03c,
965 		0xdfc0, 0xdfe0,
966 		0xe000, 0x11088,
967 		0x1109c, 0x11110,
968 		0x11118, 0x1117c,
969 		0x11190, 0x11204,
970 		0x19040, 0x1906c,
971 		0x19078, 0x19080,
972 		0x1908c, 0x19124,
973 		0x19150, 0x191b0,
974 		0x191d0, 0x191e8,
975 		0x19238, 0x19290,
976 		0x193f8, 0x19474,
977 		0x19490, 0x194cc,
978 		0x194f0, 0x194f8,
979 		0x19c00, 0x19c60,
980 		0x19c94, 0x19e10,
981 		0x19e50, 0x19f34,
982 		0x19f40, 0x19f50,
983 		0x19f90, 0x19fe4,
984 		0x1a000, 0x1a06c,
985 		0x1a0b0, 0x1a120,
986 		0x1a128, 0x1a138,
987 		0x1a190, 0x1a1c4,
988 		0x1a1fc, 0x1a1fc,
989 		0x1e008, 0x1e00c,
990 		0x1e040, 0x1e04c,
991 		0x1e284, 0x1e290,
992 		0x1e2c0, 0x1e2c0,
993 		0x1e2e0, 0x1e2e0,
994 		0x1e300, 0x1e384,
995 		0x1e3c0, 0x1e3c8,
996 		0x1e408, 0x1e40c,
997 		0x1e440, 0x1e44c,
998 		0x1e684, 0x1e690,
999 		0x1e6c0, 0x1e6c0,
1000 		0x1e6e0, 0x1e6e0,
1001 		0x1e700, 0x1e784,
1002 		0x1e7c0, 0x1e7c8,
1003 		0x1e808, 0x1e80c,
1004 		0x1e840, 0x1e84c,
1005 		0x1ea84, 0x1ea90,
1006 		0x1eac0, 0x1eac0,
1007 		0x1eae0, 0x1eae0,
1008 		0x1eb00, 0x1eb84,
1009 		0x1ebc0, 0x1ebc8,
1010 		0x1ec08, 0x1ec0c,
1011 		0x1ec40, 0x1ec4c,
1012 		0x1ee84, 0x1ee90,
1013 		0x1eec0, 0x1eec0,
1014 		0x1eee0, 0x1eee0,
1015 		0x1ef00, 0x1ef84,
1016 		0x1efc0, 0x1efc8,
1017 		0x1f008, 0x1f00c,
1018 		0x1f040, 0x1f04c,
1019 		0x1f284, 0x1f290,
1020 		0x1f2c0, 0x1f2c0,
1021 		0x1f2e0, 0x1f2e0,
1022 		0x1f300, 0x1f384,
1023 		0x1f3c0, 0x1f3c8,
1024 		0x1f408, 0x1f40c,
1025 		0x1f440, 0x1f44c,
1026 		0x1f684, 0x1f690,
1027 		0x1f6c0, 0x1f6c0,
1028 		0x1f6e0, 0x1f6e0,
1029 		0x1f700, 0x1f784,
1030 		0x1f7c0, 0x1f7c8,
1031 		0x1f808, 0x1f80c,
1032 		0x1f840, 0x1f84c,
1033 		0x1fa84, 0x1fa90,
1034 		0x1fac0, 0x1fac0,
1035 		0x1fae0, 0x1fae0,
1036 		0x1fb00, 0x1fb84,
1037 		0x1fbc0, 0x1fbc8,
1038 		0x1fc08, 0x1fc0c,
1039 		0x1fc40, 0x1fc4c,
1040 		0x1fe84, 0x1fe90,
1041 		0x1fec0, 0x1fec0,
1042 		0x1fee0, 0x1fee0,
1043 		0x1ff00, 0x1ff84,
1044 		0x1ffc0, 0x1ffc8,
1045 		0x30000, 0x30030,
1046 		0x30100, 0x30144,
1047 		0x30190, 0x301d0,
1048 		0x30200, 0x30318,
1049 		0x30400, 0x3052c,
1050 		0x30540, 0x3061c,
1051 		0x30800, 0x30834,
1052 		0x308c0, 0x30908,
1053 		0x30910, 0x309ac,
1054 		0x30a00, 0x30a2c,
1055 		0x30a44, 0x30a50,
1056 		0x30a74, 0x30c24,
1057 		0x30d00, 0x30d00,
1058 		0x30d08, 0x30d14,
1059 		0x30d1c, 0x30d20,
1060 		0x30d3c, 0x30d50,
1061 		0x31200, 0x3120c,
1062 		0x31220, 0x31220,
1063 		0x31240, 0x31240,
1064 		0x31600, 0x3160c,
1065 		0x31a00, 0x31a1c,
1066 		0x31e00, 0x31e20,
1067 		0x31e38, 0x31e3c,
1068 		0x31e80, 0x31e80,
1069 		0x31e88, 0x31ea8,
1070 		0x31eb0, 0x31eb4,
1071 		0x31ec8, 0x31ed4,
1072 		0x31fb8, 0x32004,
1073 		0x32200, 0x32200,
1074 		0x32208, 0x32240,
1075 		0x32248, 0x32280,
1076 		0x32288, 0x322c0,
1077 		0x322c8, 0x322fc,
1078 		0x32600, 0x32630,
1079 		0x32a00, 0x32abc,
1080 		0x32b00, 0x32b70,
1081 		0x33000, 0x33048,
1082 		0x33060, 0x3309c,
1083 		0x330f0, 0x33148,
1084 		0x33160, 0x3319c,
1085 		0x331f0, 0x332e4,
1086 		0x332f8, 0x333e4,
1087 		0x333f8, 0x33448,
1088 		0x33460, 0x3349c,
1089 		0x334f0, 0x33548,
1090 		0x33560, 0x3359c,
1091 		0x335f0, 0x336e4,
1092 		0x336f8, 0x337e4,
1093 		0x337f8, 0x337fc,
1094 		0x33814, 0x33814,
1095 		0x3382c, 0x3382c,
1096 		0x33880, 0x3388c,
1097 		0x338e8, 0x338ec,
1098 		0x33900, 0x33948,
1099 		0x33960, 0x3399c,
1100 		0x339f0, 0x33ae4,
1101 		0x33af8, 0x33b10,
1102 		0x33b28, 0x33b28,
1103 		0x33b3c, 0x33b50,
1104 		0x33bf0, 0x33c10,
1105 		0x33c28, 0x33c28,
1106 		0x33c3c, 0x33c50,
1107 		0x33cf0, 0x33cfc,
1108 		0x34000, 0x34030,
1109 		0x34100, 0x34144,
1110 		0x34190, 0x341d0,
1111 		0x34200, 0x34318,
1112 		0x34400, 0x3452c,
1113 		0x34540, 0x3461c,
1114 		0x34800, 0x34834,
1115 		0x348c0, 0x34908,
1116 		0x34910, 0x349ac,
1117 		0x34a00, 0x34a2c,
1118 		0x34a44, 0x34a50,
1119 		0x34a74, 0x34c24,
1120 		0x34d00, 0x34d00,
1121 		0x34d08, 0x34d14,
1122 		0x34d1c, 0x34d20,
1123 		0x34d3c, 0x34d50,
1124 		0x35200, 0x3520c,
1125 		0x35220, 0x35220,
1126 		0x35240, 0x35240,
1127 		0x35600, 0x3560c,
1128 		0x35a00, 0x35a1c,
1129 		0x35e00, 0x35e20,
1130 		0x35e38, 0x35e3c,
1131 		0x35e80, 0x35e80,
1132 		0x35e88, 0x35ea8,
1133 		0x35eb0, 0x35eb4,
1134 		0x35ec8, 0x35ed4,
1135 		0x35fb8, 0x36004,
1136 		0x36200, 0x36200,
1137 		0x36208, 0x36240,
1138 		0x36248, 0x36280,
1139 		0x36288, 0x362c0,
1140 		0x362c8, 0x362fc,
1141 		0x36600, 0x36630,
1142 		0x36a00, 0x36abc,
1143 		0x36b00, 0x36b70,
1144 		0x37000, 0x37048,
1145 		0x37060, 0x3709c,
1146 		0x370f0, 0x37148,
1147 		0x37160, 0x3719c,
1148 		0x371f0, 0x372e4,
1149 		0x372f8, 0x373e4,
1150 		0x373f8, 0x37448,
1151 		0x37460, 0x3749c,
1152 		0x374f0, 0x37548,
1153 		0x37560, 0x3759c,
1154 		0x375f0, 0x376e4,
1155 		0x376f8, 0x377e4,
1156 		0x377f8, 0x377fc,
1157 		0x37814, 0x37814,
1158 		0x3782c, 0x3782c,
1159 		0x37880, 0x3788c,
1160 		0x378e8, 0x378ec,
1161 		0x37900, 0x37948,
1162 		0x37960, 0x3799c,
1163 		0x379f0, 0x37ae4,
1164 		0x37af8, 0x37b10,
1165 		0x37b28, 0x37b28,
1166 		0x37b3c, 0x37b50,
1167 		0x37bf0, 0x37c10,
1168 		0x37c28, 0x37c28,
1169 		0x37c3c, 0x37c50,
1170 		0x37cf0, 0x37cfc,
1171 		0x38000, 0x38030,
1172 		0x38100, 0x38144,
1173 		0x38190, 0x381d0,
1174 		0x38200, 0x38318,
1175 		0x38400, 0x3852c,
1176 		0x38540, 0x3861c,
1177 		0x38800, 0x38834,
1178 		0x388c0, 0x38908,
1179 		0x38910, 0x389ac,
1180 		0x38a00, 0x38a2c,
1181 		0x38a44, 0x38a50,
1182 		0x38a74, 0x38c24,
1183 		0x38d00, 0x38d00,
1184 		0x38d08, 0x38d14,
1185 		0x38d1c, 0x38d20,
1186 		0x38d3c, 0x38d50,
1187 		0x39200, 0x3920c,
1188 		0x39220, 0x39220,
1189 		0x39240, 0x39240,
1190 		0x39600, 0x3960c,
1191 		0x39a00, 0x39a1c,
1192 		0x39e00, 0x39e20,
1193 		0x39e38, 0x39e3c,
1194 		0x39e80, 0x39e80,
1195 		0x39e88, 0x39ea8,
1196 		0x39eb0, 0x39eb4,
1197 		0x39ec8, 0x39ed4,
1198 		0x39fb8, 0x3a004,
1199 		0x3a200, 0x3a200,
1200 		0x3a208, 0x3a240,
1201 		0x3a248, 0x3a280,
1202 		0x3a288, 0x3a2c0,
1203 		0x3a2c8, 0x3a2fc,
1204 		0x3a600, 0x3a630,
1205 		0x3aa00, 0x3aabc,
1206 		0x3ab00, 0x3ab70,
1207 		0x3b000, 0x3b048,
1208 		0x3b060, 0x3b09c,
1209 		0x3b0f0, 0x3b148,
1210 		0x3b160, 0x3b19c,
1211 		0x3b1f0, 0x3b2e4,
1212 		0x3b2f8, 0x3b3e4,
1213 		0x3b3f8, 0x3b448,
1214 		0x3b460, 0x3b49c,
1215 		0x3b4f0, 0x3b548,
1216 		0x3b560, 0x3b59c,
1217 		0x3b5f0, 0x3b6e4,
1218 		0x3b6f8, 0x3b7e4,
1219 		0x3b7f8, 0x3b7fc,
1220 		0x3b814, 0x3b814,
1221 		0x3b82c, 0x3b82c,
1222 		0x3b880, 0x3b88c,
1223 		0x3b8e8, 0x3b8ec,
1224 		0x3b900, 0x3b948,
1225 		0x3b960, 0x3b99c,
1226 		0x3b9f0, 0x3bae4,
1227 		0x3baf8, 0x3bb10,
1228 		0x3bb28, 0x3bb28,
1229 		0x3bb3c, 0x3bb50,
1230 		0x3bbf0, 0x3bc10,
1231 		0x3bc28, 0x3bc28,
1232 		0x3bc3c, 0x3bc50,
1233 		0x3bcf0, 0x3bcfc,
1234 		0x3c000, 0x3c030,
1235 		0x3c100, 0x3c144,
1236 		0x3c190, 0x3c1d0,
1237 		0x3c200, 0x3c318,
1238 		0x3c400, 0x3c52c,
1239 		0x3c540, 0x3c61c,
1240 		0x3c800, 0x3c834,
1241 		0x3c8c0, 0x3c908,
1242 		0x3c910, 0x3c9ac,
1243 		0x3ca00, 0x3ca2c,
1244 		0x3ca44, 0x3ca50,
1245 		0x3ca74, 0x3cc24,
1246 		0x3cd00, 0x3cd00,
1247 		0x3cd08, 0x3cd14,
1248 		0x3cd1c, 0x3cd20,
1249 		0x3cd3c, 0x3cd50,
1250 		0x3d200, 0x3d20c,
1251 		0x3d220, 0x3d220,
1252 		0x3d240, 0x3d240,
1253 		0x3d600, 0x3d60c,
1254 		0x3da00, 0x3da1c,
1255 		0x3de00, 0x3de20,
1256 		0x3de38, 0x3de3c,
1257 		0x3de80, 0x3de80,
1258 		0x3de88, 0x3dea8,
1259 		0x3deb0, 0x3deb4,
1260 		0x3dec8, 0x3ded4,
1261 		0x3dfb8, 0x3e004,
1262 		0x3e200, 0x3e200,
1263 		0x3e208, 0x3e240,
1264 		0x3e248, 0x3e280,
1265 		0x3e288, 0x3e2c0,
1266 		0x3e2c8, 0x3e2fc,
1267 		0x3e600, 0x3e630,
1268 		0x3ea00, 0x3eabc,
1269 		0x3eb00, 0x3eb70,
1270 		0x3f000, 0x3f048,
1271 		0x3f060, 0x3f09c,
1272 		0x3f0f0, 0x3f148,
1273 		0x3f160, 0x3f19c,
1274 		0x3f1f0, 0x3f2e4,
1275 		0x3f2f8, 0x3f3e4,
1276 		0x3f3f8, 0x3f448,
1277 		0x3f460, 0x3f49c,
1278 		0x3f4f0, 0x3f548,
1279 		0x3f560, 0x3f59c,
1280 		0x3f5f0, 0x3f6e4,
1281 		0x3f6f8, 0x3f7e4,
1282 		0x3f7f8, 0x3f7fc,
1283 		0x3f814, 0x3f814,
1284 		0x3f82c, 0x3f82c,
1285 		0x3f880, 0x3f88c,
1286 		0x3f8e8, 0x3f8ec,
1287 		0x3f900, 0x3f948,
1288 		0x3f960, 0x3f99c,
1289 		0x3f9f0, 0x3fae4,
1290 		0x3faf8, 0x3fb10,
1291 		0x3fb28, 0x3fb28,
1292 		0x3fb3c, 0x3fb50,
1293 		0x3fbf0, 0x3fc10,
1294 		0x3fc28, 0x3fc28,
1295 		0x3fc3c, 0x3fc50,
1296 		0x3fcf0, 0x3fcfc,
1297 		0x40000, 0x4000c,
1298 		0x40040, 0x40068,
1299 		0x4007c, 0x40144,
1300 		0x40180, 0x4018c,
1301 		0x40200, 0x40298,
1302 		0x402ac, 0x4033c,
1303 		0x403f8, 0x403fc,
1304 		0x41304, 0x413c4,
1305 		0x41400, 0x4141c,
1306 		0x41480, 0x414d0,
1307 		0x44000, 0x44078,
1308 		0x440c0, 0x44278,
1309 		0x442c0, 0x44478,
1310 		0x444c0, 0x44678,
1311 		0x446c0, 0x44878,
1312 		0x448c0, 0x449fc,
1313 		0x45000, 0x45068,
1314 		0x45080, 0x45084,
1315 		0x450a0, 0x450b0,
1316 		0x45200, 0x45268,
1317 		0x45280, 0x45284,
1318 		0x452a0, 0x452b0,
1319 		0x460c0, 0x460e4,
1320 		0x47000, 0x4708c,
1321 		0x47200, 0x47250,
1322 		0x47400, 0x47420,
1323 		0x47600, 0x47618,
1324 		0x47800, 0x47814,
1325 		0x48000, 0x4800c,
1326 		0x48040, 0x48068,
1327 		0x4807c, 0x48144,
1328 		0x48180, 0x4818c,
1329 		0x48200, 0x48298,
1330 		0x482ac, 0x4833c,
1331 		0x483f8, 0x483fc,
1332 		0x49304, 0x493c4,
1333 		0x49400, 0x4941c,
1334 		0x49480, 0x494d0,
1335 		0x4c000, 0x4c078,
1336 		0x4c0c0, 0x4c278,
1337 		0x4c2c0, 0x4c478,
1338 		0x4c4c0, 0x4c678,
1339 		0x4c6c0, 0x4c878,
1340 		0x4c8c0, 0x4c9fc,
1341 		0x4d000, 0x4d068,
1342 		0x4d080, 0x4d084,
1343 		0x4d0a0, 0x4d0b0,
1344 		0x4d200, 0x4d268,
1345 		0x4d280, 0x4d284,
1346 		0x4d2a0, 0x4d2b0,
1347 		0x4e0c0, 0x4e0e4,
1348 		0x4f000, 0x4f08c,
1349 		0x4f200, 0x4f250,
1350 		0x4f400, 0x4f420,
1351 		0x4f600, 0x4f618,
1352 		0x4f800, 0x4f814,
1353 		0x50000, 0x500cc,
1354 		0x50400, 0x50400,
1355 		0x50800, 0x508cc,
1356 		0x50c00, 0x50c00,
1357 		0x51000, 0x5101c,
1358 		0x51300, 0x51308,
1359 	};
1360 
1361 	static const unsigned int t6_reg_ranges[] = {
1362 		0x1008, 0x1124,
1363 		0x1138, 0x114c,
1364 		0x1180, 0x11b4,
1365 		0x11fc, 0x1254,
1366 		0x1280, 0x133c,
1367 		0x1800, 0x18fc,
1368 		0x3000, 0x302c,
1369 		0x3060, 0x30d8,
1370 		0x30e0, 0x30fc,
1371 		0x3140, 0x357c,
1372 		0x35a8, 0x35cc,
1373 		0x35ec, 0x35ec,
1374 		0x3600, 0x5624,
1375 		0x56cc, 0x575c,
1376 		0x580c, 0x5814,
1377 		0x5890, 0x58bc,
1378 		0x5940, 0x595c,
1379 		0x5980, 0x598c,
1380 		0x59b0, 0x59dc,
1381 		0x59fc, 0x5a18,
1382 		0x5a60, 0x5a6c,
1383 		0x5a80, 0x5a9c,
1384 		0x5b94, 0x5bfc,
1385 		0x5c10, 0x5ec0,
1386 		0x5ec8, 0x5ecc,
1387 		0x6000, 0x6040,
1388 		0x6058, 0x619c,
1389 		0x7700, 0x7798,
1390 		0x77c0, 0x7880,
1391 		0x78cc, 0x78fc,
1392 		0x7b00, 0x7c54,
1393 		0x7d00, 0x7efc,
1394 		0x8dc0, 0x8de4,
1395 		0x8df8, 0x8e84,
1396 		0x8ea0, 0x8f88,
1397 		0x8fb8, 0x9124,
1398 		0x9400, 0x9470,
1399 		0x9600, 0x971c,
1400 		0x9800, 0x9808,
1401 		0x9820, 0x983c,
1402 		0x9850, 0x9864,
1403 		0x9c00, 0x9c6c,
1404 		0x9c80, 0x9cec,
1405 		0x9d00, 0x9d6c,
1406 		0x9d80, 0x9dec,
1407 		0x9e00, 0x9e6c,
1408 		0x9e80, 0x9eec,
1409 		0x9f00, 0x9f6c,
1410 		0x9f80, 0xa020,
1411 		0xd004, 0xd03c,
1412 		0xd100, 0xd118,
1413 		0xd200, 0xd31c,
1414 		0xdfc0, 0xdfe0,
1415 		0xe000, 0xf008,
1416 		0x11000, 0x11014,
1417 		0x11048, 0x1117c,
1418 		0x11190, 0x11270,
1419 		0x11300, 0x1130c,
1420 		0x12000, 0x1206c,
1421 		0x19040, 0x1906c,
1422 		0x19078, 0x19080,
1423 		0x1908c, 0x19124,
1424 		0x19150, 0x191b0,
1425 		0x191d0, 0x191e8,
1426 		0x19238, 0x192bc,
1427 		0x193f8, 0x19474,
1428 		0x19490, 0x194cc,
1429 		0x194f0, 0x194f8,
1430 		0x19c00, 0x19c80,
1431 		0x19c94, 0x19cbc,
1432 		0x19ce4, 0x19d28,
1433 		0x19d50, 0x19d78,
1434 		0x19d94, 0x19dc8,
1435 		0x19df0, 0x19e10,
1436 		0x19e50, 0x19e6c,
1437 		0x19ea0, 0x19f34,
1438 		0x19f40, 0x19f50,
1439 		0x19f90, 0x19fac,
1440 		0x19fc4, 0x19fe4,
1441 		0x1a000, 0x1a06c,
1442 		0x1a0b0, 0x1a120,
1443 		0x1a128, 0x1a138,
1444 		0x1a190, 0x1a1c4,
1445 		0x1a1fc, 0x1a1fc,
1446 		0x1e008, 0x1e00c,
1447 		0x1e040, 0x1e04c,
1448 		0x1e284, 0x1e290,
1449 		0x1e2c0, 0x1e2c0,
1450 		0x1e2e0, 0x1e2e0,
1451 		0x1e300, 0x1e384,
1452 		0x1e3c0, 0x1e3c8,
1453 		0x1e408, 0x1e40c,
1454 		0x1e440, 0x1e44c,
1455 		0x1e684, 0x1e690,
1456 		0x1e6c0, 0x1e6c0,
1457 		0x1e6e0, 0x1e6e0,
1458 		0x1e700, 0x1e784,
1459 		0x1e7c0, 0x1e7c8,
1460 		0x1e808, 0x1e80c,
1461 		0x1e840, 0x1e84c,
1462 		0x1ea84, 0x1ea90,
1463 		0x1eac0, 0x1eac0,
1464 		0x1eae0, 0x1eae0,
1465 		0x1eb00, 0x1eb84,
1466 		0x1ebc0, 0x1ebc8,
1467 		0x1ec08, 0x1ec0c,
1468 		0x1ec40, 0x1ec4c,
1469 		0x1ee84, 0x1ee90,
1470 		0x1eec0, 0x1eec0,
1471 		0x1eee0, 0x1eee0,
1472 		0x1ef00, 0x1ef84,
1473 		0x1efc0, 0x1efc8,
1474 		0x1f008, 0x1f00c,
1475 		0x1f040, 0x1f04c,
1476 		0x1f284, 0x1f290,
1477 		0x1f2c0, 0x1f2c0,
1478 		0x1f2e0, 0x1f2e0,
1479 		0x1f300, 0x1f384,
1480 		0x1f3c0, 0x1f3c8,
1481 		0x1f408, 0x1f40c,
1482 		0x1f440, 0x1f44c,
1483 		0x1f684, 0x1f690,
1484 		0x1f6c0, 0x1f6c0,
1485 		0x1f6e0, 0x1f6e0,
1486 		0x1f700, 0x1f784,
1487 		0x1f7c0, 0x1f7c8,
1488 		0x1f808, 0x1f80c,
1489 		0x1f840, 0x1f84c,
1490 		0x1fa84, 0x1fa90,
1491 		0x1fac0, 0x1fac0,
1492 		0x1fae0, 0x1fae0,
1493 		0x1fb00, 0x1fb84,
1494 		0x1fbc0, 0x1fbc8,
1495 		0x1fc08, 0x1fc0c,
1496 		0x1fc40, 0x1fc4c,
1497 		0x1fe84, 0x1fe90,
1498 		0x1fec0, 0x1fec0,
1499 		0x1fee0, 0x1fee0,
1500 		0x1ff00, 0x1ff84,
1501 		0x1ffc0, 0x1ffc8,
1502 		0x30000, 0x30070,
1503 		0x30100, 0x301d0,
1504 		0x30200, 0x30320,
1505 		0x30400, 0x3052c,
1506 		0x30540, 0x3061c,
1507 		0x30800, 0x30890,
1508 		0x308c0, 0x30908,
1509 		0x30910, 0x309b8,
1510 		0x30a00, 0x30a04,
1511 		0x30a0c, 0x30a2c,
1512 		0x30a44, 0x30a50,
1513 		0x30a74, 0x30c24,
1514 		0x30d00, 0x30d3c,
1515 		0x30d44, 0x30d7c,
1516 		0x30de0, 0x30de0,
1517 		0x30e00, 0x30ed4,
1518 		0x30f00, 0x30fa4,
1519 		0x30fc0, 0x30fc4,
1520 		0x31000, 0x31004,
1521 		0x31080, 0x310fc,
1522 		0x31208, 0x31220,
1523 		0x3123c, 0x31254,
1524 		0x31300, 0x31300,
1525 		0x31308, 0x3131c,
1526 		0x31338, 0x3133c,
1527 		0x31380, 0x31380,
1528 		0x31388, 0x313a8,
1529 		0x313b4, 0x313b4,
1530 		0x31400, 0x31420,
1531 		0x31438, 0x3143c,
1532 		0x31480, 0x31480,
1533 		0x314a8, 0x314a8,
1534 		0x314b0, 0x314b4,
1535 		0x314c8, 0x314d4,
1536 		0x31a40, 0x31a4c,
1537 		0x31af0, 0x31b20,
1538 		0x31b38, 0x31b3c,
1539 		0x31b80, 0x31b80,
1540 		0x31ba8, 0x31ba8,
1541 		0x31bb0, 0x31bb4,
1542 		0x31bc8, 0x31bd4,
1543 		0x32140, 0x3218c,
1544 		0x321f0, 0x32200,
1545 		0x32218, 0x32218,
1546 		0x32400, 0x32400,
1547 		0x32408, 0x3241c,
1548 		0x32618, 0x32620,
1549 		0x32664, 0x32664,
1550 		0x326a8, 0x326a8,
1551 		0x326ec, 0x326ec,
1552 		0x32a00, 0x32abc,
1553 		0x32b00, 0x32b78,
1554 		0x32c00, 0x32c00,
1555 		0x32c08, 0x32c3c,
1556 		0x32e00, 0x32e2c,
1557 		0x32f00, 0x32f2c,
1558 		0x33000, 0x330ac,
1559 		0x330c0, 0x331ac,
1560 		0x331c0, 0x332c4,
1561 		0x332e4, 0x333c4,
1562 		0x333e4, 0x334ac,
1563 		0x334c0, 0x335ac,
1564 		0x335c0, 0x336c4,
1565 		0x336e4, 0x337c4,
1566 		0x337e4, 0x337fc,
1567 		0x33814, 0x33814,
1568 		0x33854, 0x33868,
1569 		0x33880, 0x3388c,
1570 		0x338c0, 0x338d0,
1571 		0x338e8, 0x338ec,
1572 		0x33900, 0x339ac,
1573 		0x339c0, 0x33ac4,
1574 		0x33ae4, 0x33b10,
1575 		0x33b24, 0x33b50,
1576 		0x33bf0, 0x33c10,
1577 		0x33c24, 0x33c50,
1578 		0x33cf0, 0x33cfc,
1579 		0x34000, 0x34070,
1580 		0x34100, 0x341d0,
1581 		0x34200, 0x34320,
1582 		0x34400, 0x3452c,
1583 		0x34540, 0x3461c,
1584 		0x34800, 0x34890,
1585 		0x348c0, 0x34908,
1586 		0x34910, 0x349b8,
1587 		0x34a00, 0x34a04,
1588 		0x34a0c, 0x34a2c,
1589 		0x34a44, 0x34a50,
1590 		0x34a74, 0x34c24,
1591 		0x34d00, 0x34d3c,
1592 		0x34d44, 0x34d7c,
1593 		0x34de0, 0x34de0,
1594 		0x34e00, 0x34ed4,
1595 		0x34f00, 0x34fa4,
1596 		0x34fc0, 0x34fc4,
1597 		0x35000, 0x35004,
1598 		0x35080, 0x350fc,
1599 		0x35208, 0x35220,
1600 		0x3523c, 0x35254,
1601 		0x35300, 0x35300,
1602 		0x35308, 0x3531c,
1603 		0x35338, 0x3533c,
1604 		0x35380, 0x35380,
1605 		0x35388, 0x353a8,
1606 		0x353b4, 0x353b4,
1607 		0x35400, 0x35420,
1608 		0x35438, 0x3543c,
1609 		0x35480, 0x35480,
1610 		0x354a8, 0x354a8,
1611 		0x354b0, 0x354b4,
1612 		0x354c8, 0x354d4,
1613 		0x35a40, 0x35a4c,
1614 		0x35af0, 0x35b20,
1615 		0x35b38, 0x35b3c,
1616 		0x35b80, 0x35b80,
1617 		0x35ba8, 0x35ba8,
1618 		0x35bb0, 0x35bb4,
1619 		0x35bc8, 0x35bd4,
1620 		0x36140, 0x3618c,
1621 		0x361f0, 0x36200,
1622 		0x36218, 0x36218,
1623 		0x36400, 0x36400,
1624 		0x36408, 0x3641c,
1625 		0x36618, 0x36620,
1626 		0x36664, 0x36664,
1627 		0x366a8, 0x366a8,
1628 		0x366ec, 0x366ec,
1629 		0x36a00, 0x36abc,
1630 		0x36b00, 0x36b78,
1631 		0x36c00, 0x36c00,
1632 		0x36c08, 0x36c3c,
1633 		0x36e00, 0x36e2c,
1634 		0x36f00, 0x36f2c,
1635 		0x37000, 0x370ac,
1636 		0x370c0, 0x371ac,
1637 		0x371c0, 0x372c4,
1638 		0x372e4, 0x373c4,
1639 		0x373e4, 0x374ac,
1640 		0x374c0, 0x375ac,
1641 		0x375c0, 0x376c4,
1642 		0x376e4, 0x377c4,
1643 		0x377e4, 0x377fc,
1644 		0x37814, 0x37814,
1645 		0x37854, 0x37868,
1646 		0x37880, 0x3788c,
1647 		0x378c0, 0x378d0,
1648 		0x378e8, 0x378ec,
1649 		0x37900, 0x379ac,
1650 		0x379c0, 0x37ac4,
1651 		0x37ae4, 0x37b10,
1652 		0x37b24, 0x37b50,
1653 		0x37bf0, 0x37c10,
1654 		0x37c24, 0x37c50,
1655 		0x37cf0, 0x37cfc,
1656 		0x40040, 0x40040,
1657 		0x40080, 0x40084,
1658 		0x40100, 0x40100,
1659 		0x40140, 0x401bc,
1660 		0x40200, 0x40214,
1661 		0x40228, 0x40228,
1662 		0x40240, 0x40258,
1663 		0x40280, 0x40280,
1664 		0x40304, 0x40304,
1665 		0x40330, 0x4033c,
1666 		0x41304, 0x413dc,
1667 		0x41400, 0x4141c,
1668 		0x41480, 0x414d0,
1669 		0x44000, 0x4407c,
1670 		0x440c0, 0x4427c,
1671 		0x442c0, 0x4447c,
1672 		0x444c0, 0x4467c,
1673 		0x446c0, 0x4487c,
1674 		0x448c0, 0x44a7c,
1675 		0x44ac0, 0x44c7c,
1676 		0x44cc0, 0x44e7c,
1677 		0x44ec0, 0x4507c,
1678 		0x450c0, 0x451fc,
1679 		0x45800, 0x45868,
1680 		0x45880, 0x45884,
1681 		0x458a0, 0x458b0,
1682 		0x45a00, 0x45a68,
1683 		0x45a80, 0x45a84,
1684 		0x45aa0, 0x45ab0,
1685 		0x460c0, 0x460e4,
1686 		0x47000, 0x4708c,
1687 		0x47200, 0x47250,
1688 		0x47400, 0x47420,
1689 		0x47600, 0x47618,
1690 		0x47800, 0x4782c,
1691 		0x50000, 0x500cc,
1692 		0x50400, 0x50400,
1693 		0x50800, 0x508cc,
1694 		0x50c00, 0x50c00,
1695 		0x51000, 0x510b0,
1696 		0x51300, 0x51324,
1697 	};
1698 
1699 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
1700 	const unsigned int *reg_ranges;
1701 	int reg_ranges_size, range;
1702 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
1703 
1704 	/* Select the right set of register ranges to dump depending on the
1705 	 * adapter chip type.
1706 	 */
1707 	switch (chip_version) {
1708 	case CHELSIO_T4:
1709 		reg_ranges = t4_reg_ranges;
1710 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
1711 		break;
1712 
1713 	case CHELSIO_T5:
1714 		reg_ranges = t5_reg_ranges;
1715 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
1716 		break;
1717 
1718 	case CHELSIO_T6:
1719 		reg_ranges = t6_reg_ranges;
1720 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
1721 		break;
1722 
1723 	default:
1724 		dev_err(adap->pdev_dev,
1725 			"Unsupported chip version %d\n", chip_version);
1726 		return;
1727 	}
1728 
1729 	/* Clear the register buffer and insert the appropriate register
1730 	 * values selected by the above register ranges.
1731 	 */
1732 	memset(buf, 0, buf_size);
1733 	for (range = 0; range < reg_ranges_size; range += 2) {
1734 		unsigned int reg = reg_ranges[range];
1735 		unsigned int last_reg = reg_ranges[range + 1];
1736 		u32 *bufp = (u32 *)((char *)buf + reg);
1737 
1738 		/* Iterate across the register range filling in the register
1739 		 * buffer but don't write past the end of the register buffer.
1740 		 */
1741 		while (reg <= last_reg && bufp < buf_end) {
1742 			*bufp++ = t4_read_reg(adap, reg);
1743 			reg += sizeof(u32);
1744 		}
1745 	}
1746 }
1747 
1748 #define EEPROM_STAT_ADDR   0x7bfc
1749 #define VPD_BASE           0x400
1750 #define VPD_BASE_OLD       0
1751 #define VPD_LEN            1024
1752 #define CHELSIO_VPD_UNIQUE_ID 0x82
1753 
1754 /**
1755  *	t4_seeprom_wp - enable/disable EEPROM write protection
1756  *	@adapter: the adapter
1757  *	@enable: whether to enable or disable write protection
1758  *
1759  *	Enables or disables write protection on the serial EEPROM.
1760  */
1761 int t4_seeprom_wp(struct adapter *adapter, bool enable)
1762 {
1763 	unsigned int v = enable ? 0xc : 0;
1764 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
1765 	return ret < 0 ? ret : 0;
1766 }
1767 
1768 /**
1769  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
1770  *	@adapter: adapter to read
1771  *	@p: where to store the parameters
1772  *
1773  *	Reads card parameters stored in VPD EEPROM.
1774  */
1775 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
1776 {
1777 	int i, ret = 0, addr;
1778 	int ec, sn, pn, na;
1779 	u8 *vpd, csum;
1780 	unsigned int vpdr_len, kw_offset, id_len;
1781 
1782 	vpd = vmalloc(VPD_LEN);
1783 	if (!vpd)
1784 		return -ENOMEM;
1785 
1786 	/* Card information normally starts at VPD_BASE but early cards had
1787 	 * it at 0.
1788 	 */
1789 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
1790 	if (ret < 0)
1791 		goto out;
1792 
1793 	/* The VPD shall have a unique identifier specified by the PCI SIG.
1794 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
1795 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
1796 	 * is expected to automatically put this entry at the
1797 	 * beginning of the VPD.
1798 	 */
1799 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
1800 
1801 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
1802 	if (ret < 0)
1803 		goto out;
1804 
1805 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
1806 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
1807 		ret = -EINVAL;
1808 		goto out;
1809 	}
1810 
1811 	id_len = pci_vpd_lrdt_size(vpd);
1812 	if (id_len > ID_LEN)
1813 		id_len = ID_LEN;
1814 
1815 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
1816 	if (i < 0) {
1817 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
1818 		ret = -EINVAL;
1819 		goto out;
1820 	}
1821 
1822 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
1823 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
1824 	if (vpdr_len + kw_offset > VPD_LEN) {
1825 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
1826 		ret = -EINVAL;
1827 		goto out;
1828 	}
1829 
1830 #define FIND_VPD_KW(var, name) do { \
1831 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
1832 	if (var < 0) { \
1833 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
1834 		ret = -EINVAL; \
1835 		goto out; \
1836 	} \
1837 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
1838 } while (0)
1839 
1840 	FIND_VPD_KW(i, "RV");
1841 	for (csum = 0; i >= 0; i--)
1842 		csum += vpd[i];
1843 
1844 	if (csum) {
1845 		dev_err(adapter->pdev_dev,
1846 			"corrupted VPD EEPROM, actual csum %u\n", csum);
1847 		ret = -EINVAL;
1848 		goto out;
1849 	}
1850 
1851 	FIND_VPD_KW(ec, "EC");
1852 	FIND_VPD_KW(sn, "SN");
1853 	FIND_VPD_KW(pn, "PN");
1854 	FIND_VPD_KW(na, "NA");
1855 #undef FIND_VPD_KW
1856 
1857 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
1858 	strim(p->id);
1859 	memcpy(p->ec, vpd + ec, EC_LEN);
1860 	strim(p->ec);
1861 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
1862 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
1863 	strim(p->sn);
1864 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
1865 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
1866 	strim(p->pn);
1867 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
1868 	strim((char *)p->na);
1869 
1870 out:
1871 	vfree(vpd);
1872 	return ret;
1873 }
1874 
1875 /**
1876  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
1877  *	@adapter: adapter to read
1878  *	@p: where to store the parameters
1879  *
1880  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
1881  *	Clock.  This can only be called after a connection to the firmware
1882  *	is established.
1883  */
1884 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
1885 {
1886 	u32 cclk_param, cclk_val;
1887 	int ret;
1888 
1889 	/* Grab the raw VPD parameters.
1890 	 */
1891 	ret = t4_get_raw_vpd_params(adapter, p);
1892 	if (ret)
1893 		return ret;
1894 
1895 	/* Ask firmware for the Core Clock since it knows how to translate the
1896 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
1897 	 */
1898 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1899 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
1900 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
1901 			      1, &cclk_param, &cclk_val);
1902 
1903 	if (ret)
1904 		return ret;
1905 	p->cclk = cclk_val;
1906 
1907 	return 0;
1908 }
1909 
1910 /* serial flash and firmware constants */
1911 enum {
1912 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
1913 
1914 	/* flash command opcodes */
1915 	SF_PROG_PAGE    = 2,          /* program page */
1916 	SF_WR_DISABLE   = 4,          /* disable writes */
1917 	SF_RD_STATUS    = 5,          /* read status register */
1918 	SF_WR_ENABLE    = 6,          /* enable writes */
1919 	SF_RD_DATA_FAST = 0xb,        /* read flash */
1920 	SF_RD_ID        = 0x9f,       /* read ID */
1921 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
1922 
1923 	FW_MAX_SIZE = 16 * SF_SEC_SIZE,
1924 };
1925 
1926 /**
1927  *	sf1_read - read data from the serial flash
1928  *	@adapter: the adapter
1929  *	@byte_cnt: number of bytes to read
1930  *	@cont: whether another operation will be chained
1931  *	@lock: whether to lock SF for PL access only
1932  *	@valp: where to store the read data
1933  *
1934  *	Reads up to 4 bytes of data from the serial flash.  The location of
1935  *	the read needs to be specified prior to calling this by issuing the
1936  *	appropriate commands to the serial flash.
1937  */
1938 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
1939 		    int lock, u32 *valp)
1940 {
1941 	int ret;
1942 
1943 	if (!byte_cnt || byte_cnt > 4)
1944 		return -EINVAL;
1945 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
1946 		return -EBUSY;
1947 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
1948 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
1949 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
1950 	if (!ret)
1951 		*valp = t4_read_reg(adapter, SF_DATA_A);
1952 	return ret;
1953 }
1954 
1955 /**
1956  *	sf1_write - write data to the serial flash
1957  *	@adapter: the adapter
1958  *	@byte_cnt: number of bytes to write
1959  *	@cont: whether another operation will be chained
1960  *	@lock: whether to lock SF for PL access only
1961  *	@val: value to write
1962  *
1963  *	Writes up to 4 bytes of data to the serial flash.  The location of
1964  *	the write needs to be specified prior to calling this by issuing the
1965  *	appropriate commands to the serial flash.
1966  */
1967 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
1968 		     int lock, u32 val)
1969 {
1970 	if (!byte_cnt || byte_cnt > 4)
1971 		return -EINVAL;
1972 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
1973 		return -EBUSY;
1974 	t4_write_reg(adapter, SF_DATA_A, val);
1975 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
1976 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
1977 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
1978 }
1979 
1980 /**
1981  *	flash_wait_op - wait for a flash operation to complete
1982  *	@adapter: the adapter
1983  *	@attempts: max number of polls of the status register
1984  *	@delay: delay between polls in ms
1985  *
1986  *	Wait for a flash operation to complete by polling the status register.
1987  */
1988 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
1989 {
1990 	int ret;
1991 	u32 status;
1992 
1993 	while (1) {
1994 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
1995 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
1996 			return ret;
1997 		if (!(status & 1))
1998 			return 0;
1999 		if (--attempts == 0)
2000 			return -EAGAIN;
2001 		if (delay)
2002 			msleep(delay);
2003 	}
2004 }
2005 
2006 /**
2007  *	t4_read_flash - read words from serial flash
2008  *	@adapter: the adapter
2009  *	@addr: the start address for the read
2010  *	@nwords: how many 32-bit words to read
2011  *	@data: where to store the read data
2012  *	@byte_oriented: whether to store data as bytes or as words
2013  *
2014  *	Read the specified number of 32-bit words from the serial flash.
2015  *	If @byte_oriented is set the read data is stored as a byte array
2016  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2017  *	natural endianness.
2018  */
2019 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2020 		  unsigned int nwords, u32 *data, int byte_oriented)
2021 {
2022 	int ret;
2023 
2024 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2025 		return -EINVAL;
2026 
2027 	addr = swab32(addr) | SF_RD_DATA_FAST;
2028 
2029 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2030 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2031 		return ret;
2032 
2033 	for ( ; nwords; nwords--, data++) {
2034 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2035 		if (nwords == 1)
2036 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2037 		if (ret)
2038 			return ret;
2039 		if (byte_oriented)
2040 			*data = (__force __u32)(cpu_to_be32(*data));
2041 	}
2042 	return 0;
2043 }
2044 
2045 /**
2046  *	t4_write_flash - write up to a page of data to the serial flash
2047  *	@adapter: the adapter
2048  *	@addr: the start address to write
2049  *	@n: length of data to write in bytes
2050  *	@data: the data to write
2051  *
2052  *	Writes up to a page of data (256 bytes) to the serial flash starting
2053  *	at the given address.  All the data must be written to the same page.
2054  */
2055 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2056 			  unsigned int n, const u8 *data)
2057 {
2058 	int ret;
2059 	u32 buf[64];
2060 	unsigned int i, c, left, val, offset = addr & 0xff;
2061 
2062 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2063 		return -EINVAL;
2064 
2065 	val = swab32(addr) | SF_PROG_PAGE;
2066 
2067 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2068 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2069 		goto unlock;
2070 
2071 	for (left = n; left; left -= c) {
2072 		c = min(left, 4U);
2073 		for (val = 0, i = 0; i < c; ++i)
2074 			val = (val << 8) + *data++;
2075 
2076 		ret = sf1_write(adapter, c, c != left, 1, val);
2077 		if (ret)
2078 			goto unlock;
2079 	}
2080 	ret = flash_wait_op(adapter, 8, 1);
2081 	if (ret)
2082 		goto unlock;
2083 
2084 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2085 
2086 	/* Read the page to verify the write succeeded */
2087 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2088 	if (ret)
2089 		return ret;
2090 
2091 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
2092 		dev_err(adapter->pdev_dev,
2093 			"failed to correctly write the flash page at %#x\n",
2094 			addr);
2095 		return -EIO;
2096 	}
2097 	return 0;
2098 
2099 unlock:
2100 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2101 	return ret;
2102 }
2103 
2104 /**
2105  *	t4_get_fw_version - read the firmware version
2106  *	@adapter: the adapter
2107  *	@vers: where to place the version
2108  *
2109  *	Reads the FW version from flash.
2110  */
2111 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2112 {
2113 	return t4_read_flash(adapter, FLASH_FW_START +
2114 			     offsetof(struct fw_hdr, fw_ver), 1,
2115 			     vers, 0);
2116 }
2117 
2118 /**
2119  *	t4_get_tp_version - read the TP microcode version
2120  *	@adapter: the adapter
2121  *	@vers: where to place the version
2122  *
2123  *	Reads the TP microcode version from flash.
2124  */
2125 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2126 {
2127 	return t4_read_flash(adapter, FLASH_FW_START +
2128 			     offsetof(struct fw_hdr, tp_microcode_ver),
2129 			     1, vers, 0);
2130 }
2131 
2132 /**
2133  *	t4_get_exprom_version - return the Expansion ROM version (if any)
2134  *	@adapter: the adapter
2135  *	@vers: where to place the version
2136  *
2137  *	Reads the Expansion ROM header from FLASH and returns the version
2138  *	number (if present) through the @vers return value pointer.  We return
2139  *	this in the Firmware Version Format since it's convenient.  Return
2140  *	0 on success, -ENOENT if no Expansion ROM is present.
2141  */
2142 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2143 {
2144 	struct exprom_header {
2145 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
2146 		unsigned char hdr_ver[4];	/* Expansion ROM version */
2147 	} *hdr;
2148 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2149 					   sizeof(u32))];
2150 	int ret;
2151 
2152 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2153 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2154 			    0);
2155 	if (ret)
2156 		return ret;
2157 
2158 	hdr = (struct exprom_header *)exprom_header_buf;
2159 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2160 		return -ENOENT;
2161 
2162 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2163 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2164 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
2165 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
2166 	return 0;
2167 }
2168 
2169 /* Is the given firmware API compatible with the one the driver was compiled
2170  * with?
2171  */
2172 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
2173 {
2174 
2175 	/* short circuit if it's the exact same firmware version */
2176 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
2177 		return 1;
2178 
2179 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
2180 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
2181 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
2182 		return 1;
2183 #undef SAME_INTF
2184 
2185 	return 0;
2186 }
2187 
2188 /* The firmware in the filesystem is usable, but should it be installed?
2189  * This routine explains itself in detail if it indicates the filesystem
2190  * firmware should be installed.
2191  */
2192 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
2193 				int k, int c)
2194 {
2195 	const char *reason;
2196 
2197 	if (!card_fw_usable) {
2198 		reason = "incompatible or unusable";
2199 		goto install;
2200 	}
2201 
2202 	if (k > c) {
2203 		reason = "older than the version supported with this driver";
2204 		goto install;
2205 	}
2206 
2207 	return 0;
2208 
2209 install:
2210 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
2211 		"installing firmware %u.%u.%u.%u on card.\n",
2212 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2213 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
2214 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2215 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2216 
2217 	return 1;
2218 }
2219 
2220 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
2221 	       const u8 *fw_data, unsigned int fw_size,
2222 	       struct fw_hdr *card_fw, enum dev_state state,
2223 	       int *reset)
2224 {
2225 	int ret, card_fw_usable, fs_fw_usable;
2226 	const struct fw_hdr *fs_fw;
2227 	const struct fw_hdr *drv_fw;
2228 
2229 	drv_fw = &fw_info->fw_hdr;
2230 
2231 	/* Read the header of the firmware on the card */
2232 	ret = -t4_read_flash(adap, FLASH_FW_START,
2233 			    sizeof(*card_fw) / sizeof(uint32_t),
2234 			    (uint32_t *)card_fw, 1);
2235 	if (ret == 0) {
2236 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
2237 	} else {
2238 		dev_err(adap->pdev_dev,
2239 			"Unable to read card's firmware header: %d\n", ret);
2240 		card_fw_usable = 0;
2241 	}
2242 
2243 	if (fw_data != NULL) {
2244 		fs_fw = (const void *)fw_data;
2245 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
2246 	} else {
2247 		fs_fw = NULL;
2248 		fs_fw_usable = 0;
2249 	}
2250 
2251 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
2252 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
2253 		/* Common case: the firmware on the card is an exact match and
2254 		 * the filesystem one is an exact match too, or the filesystem
2255 		 * one is absent/incompatible.
2256 		 */
2257 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
2258 		   should_install_fs_fw(adap, card_fw_usable,
2259 					be32_to_cpu(fs_fw->fw_ver),
2260 					be32_to_cpu(card_fw->fw_ver))) {
2261 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
2262 				     fw_size, 0);
2263 		if (ret != 0) {
2264 			dev_err(adap->pdev_dev,
2265 				"failed to install firmware: %d\n", ret);
2266 			goto bye;
2267 		}
2268 
2269 		/* Installed successfully, update the cached header too. */
2270 		*card_fw = *fs_fw;
2271 		card_fw_usable = 1;
2272 		*reset = 0;	/* already reset as part of load_fw */
2273 	}
2274 
2275 	if (!card_fw_usable) {
2276 		uint32_t d, c, k;
2277 
2278 		d = be32_to_cpu(drv_fw->fw_ver);
2279 		c = be32_to_cpu(card_fw->fw_ver);
2280 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
2281 
2282 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
2283 			"chip state %d, "
2284 			"driver compiled with %d.%d.%d.%d, "
2285 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
2286 			state,
2287 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
2288 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
2289 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2290 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
2291 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2292 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2293 		ret = EINVAL;
2294 		goto bye;
2295 	}
2296 
2297 	/* We're using whatever's on the card and it's known to be good. */
2298 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
2299 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
2300 
2301 bye:
2302 	return ret;
2303 }
2304 
2305 /**
2306  *	t4_flash_erase_sectors - erase a range of flash sectors
2307  *	@adapter: the adapter
2308  *	@start: the first sector to erase
2309  *	@end: the last sector to erase
2310  *
2311  *	Erases the sectors in the given inclusive range.
2312  */
2313 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
2314 {
2315 	int ret = 0;
2316 
2317 	if (end >= adapter->params.sf_nsec)
2318 		return -EINVAL;
2319 
2320 	while (start <= end) {
2321 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2322 		    (ret = sf1_write(adapter, 4, 0, 1,
2323 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
2324 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
2325 			dev_err(adapter->pdev_dev,
2326 				"erase of flash sector %d failed, error %d\n",
2327 				start, ret);
2328 			break;
2329 		}
2330 		start++;
2331 	}
2332 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2333 	return ret;
2334 }
2335 
2336 /**
2337  *	t4_flash_cfg_addr - return the address of the flash configuration file
2338  *	@adapter: the adapter
2339  *
2340  *	Return the address within the flash where the Firmware Configuration
2341  *	File is stored.
2342  */
2343 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
2344 {
2345 	if (adapter->params.sf_size == 0x100000)
2346 		return FLASH_FPGA_CFG_START;
2347 	else
2348 		return FLASH_CFG_START;
2349 }
2350 
2351 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
2352  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
2353  * and emit an error message for mismatched firmware to save our caller the
2354  * effort ...
2355  */
2356 static bool t4_fw_matches_chip(const struct adapter *adap,
2357 			       const struct fw_hdr *hdr)
2358 {
2359 	/* The expression below will return FALSE for any unsupported adapter
2360 	 * which will keep us "honest" in the future ...
2361 	 */
2362 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
2363 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
2364 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
2365 		return true;
2366 
2367 	dev_err(adap->pdev_dev,
2368 		"FW image (%d) is not suitable for this adapter (%d)\n",
2369 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
2370 	return false;
2371 }
2372 
2373 /**
2374  *	t4_load_fw - download firmware
2375  *	@adap: the adapter
2376  *	@fw_data: the firmware image to write
2377  *	@size: image size
2378  *
2379  *	Write the supplied firmware image to the card's serial flash.
2380  */
2381 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
2382 {
2383 	u32 csum;
2384 	int ret, addr;
2385 	unsigned int i;
2386 	u8 first_page[SF_PAGE_SIZE];
2387 	const __be32 *p = (const __be32 *)fw_data;
2388 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
2389 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
2390 	unsigned int fw_img_start = adap->params.sf_fw_start;
2391 	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
2392 
2393 	if (!size) {
2394 		dev_err(adap->pdev_dev, "FW image has no data\n");
2395 		return -EINVAL;
2396 	}
2397 	if (size & 511) {
2398 		dev_err(adap->pdev_dev,
2399 			"FW image size not multiple of 512 bytes\n");
2400 		return -EINVAL;
2401 	}
2402 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
2403 		dev_err(adap->pdev_dev,
2404 			"FW image size differs from size in FW header\n");
2405 		return -EINVAL;
2406 	}
2407 	if (size > FW_MAX_SIZE) {
2408 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
2409 			FW_MAX_SIZE);
2410 		return -EFBIG;
2411 	}
2412 	if (!t4_fw_matches_chip(adap, hdr))
2413 		return -EINVAL;
2414 
2415 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
2416 		csum += be32_to_cpu(p[i]);
2417 
2418 	if (csum != 0xffffffff) {
2419 		dev_err(adap->pdev_dev,
2420 			"corrupted firmware image, checksum %#x\n", csum);
2421 		return -EINVAL;
2422 	}
2423 
2424 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
2425 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
2426 	if (ret)
2427 		goto out;
2428 
2429 	/*
2430 	 * We write the correct version at the end so the driver can see a bad
2431 	 * version if the FW write fails.  Start by writing a copy of the
2432 	 * first page with a bad version.
2433 	 */
2434 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
2435 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
2436 	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
2437 	if (ret)
2438 		goto out;
2439 
2440 	addr = fw_img_start;
2441 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
2442 		addr += SF_PAGE_SIZE;
2443 		fw_data += SF_PAGE_SIZE;
2444 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
2445 		if (ret)
2446 			goto out;
2447 	}
2448 
2449 	ret = t4_write_flash(adap,
2450 			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
2451 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
2452 out:
2453 	if (ret)
2454 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
2455 			ret);
2456 	else
2457 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2458 	return ret;
2459 }
2460 
2461 /**
2462  *	t4_phy_fw_ver - return current PHY firmware version
2463  *	@adap: the adapter
2464  *	@phy_fw_ver: return value buffer for PHY firmware version
2465  *
2466  *	Returns the current version of external PHY firmware on the
2467  *	adapter.
2468  */
2469 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
2470 {
2471 	u32 param, val;
2472 	int ret;
2473 
2474 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2475 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2476 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2477 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
2478 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
2479 			      &param, &val);
2480 	if (ret < 0)
2481 		return ret;
2482 	*phy_fw_ver = val;
2483 	return 0;
2484 }
2485 
2486 /**
2487  *	t4_load_phy_fw - download port PHY firmware
2488  *	@adap: the adapter
2489  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
2490  *	@win_lock: the lock to use to guard the memory copy
2491  *	@phy_fw_version: function to check PHY firmware versions
2492  *	@phy_fw_data: the PHY firmware image to write
2493  *	@phy_fw_size: image size
2494  *
2495  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
2496  *	@phy_fw_version is supplied, then it will be used to determine if
2497  *	it's necessary to perform the transfer by comparing the version
2498  *	of any existing adapter PHY firmware with that of the passed in
2499  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
2500  *	around the call to t4_memory_rw() which transfers the PHY firmware
2501  *	to the adapter.
2502  *
2503  *	A negative error number will be returned if an error occurs.  If
2504  *	version number support is available and there's no need to upgrade
2505  *	the firmware, 0 will be returned.  If firmware is successfully
2506  *	transferred to the adapter, 1 will be retured.
2507  *
2508  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
2509  *	a result, a RESET of the adapter would cause that RAM to lose its
2510  *	contents.  Thus, loading PHY firmware on such adapters must happen
2511  *	after any FW_RESET_CMDs ...
2512  */
2513 int t4_load_phy_fw(struct adapter *adap,
2514 		   int win, spinlock_t *win_lock,
2515 		   int (*phy_fw_version)(const u8 *, size_t),
2516 		   const u8 *phy_fw_data, size_t phy_fw_size)
2517 {
2518 	unsigned long mtype = 0, maddr = 0;
2519 	u32 param, val;
2520 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
2521 	int ret;
2522 
2523 	/* If we have version number support, then check to see if the adapter
2524 	 * already has up-to-date PHY firmware loaded.
2525 	 */
2526 	 if (phy_fw_version) {
2527 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
2528 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
2529 		if (ret < 0)
2530 			return ret;
2531 
2532 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
2533 			CH_WARN(adap, "PHY Firmware already up-to-date, "
2534 				"version %#x\n", cur_phy_fw_ver);
2535 			return 0;
2536 		}
2537 	}
2538 
2539 	/* Ask the firmware where it wants us to copy the PHY firmware image.
2540 	 * The size of the file requires a special version of the READ coommand
2541 	 * which will pass the file size via the values field in PARAMS_CMD and
2542 	 * retrieve the return value from firmware and place it in the same
2543 	 * buffer values
2544 	 */
2545 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2546 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2547 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2548 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
2549 	val = phy_fw_size;
2550 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
2551 				 &param, &val, 1);
2552 	if (ret < 0)
2553 		return ret;
2554 	mtype = val >> 8;
2555 	maddr = (val & 0xff) << 16;
2556 
2557 	/* Copy the supplied PHY Firmware image to the adapter memory location
2558 	 * allocated by the adapter firmware.
2559 	 */
2560 	if (win_lock)
2561 		spin_lock_bh(win_lock);
2562 	ret = t4_memory_rw(adap, win, mtype, maddr,
2563 			   phy_fw_size, (__be32 *)phy_fw_data,
2564 			   T4_MEMORY_WRITE);
2565 	if (win_lock)
2566 		spin_unlock_bh(win_lock);
2567 	if (ret)
2568 		return ret;
2569 
2570 	/* Tell the firmware that the PHY firmware image has been written to
2571 	 * RAM and it can now start copying it over to the PHYs.  The chip
2572 	 * firmware will RESET the affected PHYs as part of this operation
2573 	 * leaving them running the new PHY firmware image.
2574 	 */
2575 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2576 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2577 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2578 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
2579 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
2580 				    &param, &val, 30000);
2581 
2582 	/* If we have version number support, then check to see that the new
2583 	 * firmware got loaded properly.
2584 	 */
2585 	if (phy_fw_version) {
2586 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
2587 		if (ret < 0)
2588 			return ret;
2589 
2590 		if (cur_phy_fw_ver != new_phy_fw_vers) {
2591 			CH_WARN(adap, "PHY Firmware did not update: "
2592 				"version on adapter %#x, "
2593 				"version flashed %#x\n",
2594 				cur_phy_fw_ver, new_phy_fw_vers);
2595 			return -ENXIO;
2596 		}
2597 	}
2598 
2599 	return 1;
2600 }
2601 
2602 /**
2603  *	t4_fwcache - firmware cache operation
2604  *	@adap: the adapter
2605  *	@op  : the operation (flush or flush and invalidate)
2606  */
2607 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
2608 {
2609 	struct fw_params_cmd c;
2610 
2611 	memset(&c, 0, sizeof(c));
2612 	c.op_to_vfn =
2613 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
2614 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
2615 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
2616 			    FW_PARAMS_CMD_VFN_V(0));
2617 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2618 	c.param[0].mnem =
2619 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2620 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
2621 	c.param[0].val = (__force __be32)op;
2622 
2623 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
2624 }
2625 
2626 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
2627 			unsigned int *pif_req_wrptr,
2628 			unsigned int *pif_rsp_wrptr)
2629 {
2630 	int i, j;
2631 	u32 cfg, val, req, rsp;
2632 
2633 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
2634 	if (cfg & LADBGEN_F)
2635 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
2636 
2637 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
2638 	req = POLADBGWRPTR_G(val);
2639 	rsp = PILADBGWRPTR_G(val);
2640 	if (pif_req_wrptr)
2641 		*pif_req_wrptr = req;
2642 	if (pif_rsp_wrptr)
2643 		*pif_rsp_wrptr = rsp;
2644 
2645 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
2646 		for (j = 0; j < 6; j++) {
2647 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
2648 				     PILADBGRDPTR_V(rsp));
2649 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
2650 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
2651 			req++;
2652 			rsp++;
2653 		}
2654 		req = (req + 2) & POLADBGRDPTR_M;
2655 		rsp = (rsp + 2) & PILADBGRDPTR_M;
2656 	}
2657 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
2658 }
2659 
2660 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
2661 {
2662 	u32 cfg;
2663 	int i, j, idx;
2664 
2665 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
2666 	if (cfg & LADBGEN_F)
2667 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
2668 
2669 	for (i = 0; i < CIM_MALA_SIZE; i++) {
2670 		for (j = 0; j < 5; j++) {
2671 			idx = 8 * i + j;
2672 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
2673 				     PILADBGRDPTR_V(idx));
2674 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
2675 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
2676 		}
2677 	}
2678 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
2679 }
2680 
2681 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
2682 {
2683 	unsigned int i, j;
2684 
2685 	for (i = 0; i < 8; i++) {
2686 		u32 *p = la_buf + i;
2687 
2688 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
2689 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
2690 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
2691 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
2692 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
2693 	}
2694 }
2695 
2696 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
2697 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
2698 		     FW_PORT_CAP_ANEG)
2699 
2700 /**
2701  *	t4_link_l1cfg - apply link configuration to MAC/PHY
2702  *	@phy: the PHY to setup
2703  *	@mac: the MAC to setup
2704  *	@lc: the requested link configuration
2705  *
2706  *	Set up a port's MAC and PHY according to a desired link configuration.
2707  *	- If the PHY can auto-negotiate first decide what to advertise, then
2708  *	  enable/disable auto-negotiation as desired, and reset.
2709  *	- If the PHY does not auto-negotiate just reset it.
2710  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
2711  *	  otherwise do it later based on the outcome of auto-negotiation.
2712  */
2713 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
2714 		  struct link_config *lc)
2715 {
2716 	struct fw_port_cmd c;
2717 	unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
2718 
2719 	lc->link_ok = 0;
2720 	if (lc->requested_fc & PAUSE_RX)
2721 		fc |= FW_PORT_CAP_FC_RX;
2722 	if (lc->requested_fc & PAUSE_TX)
2723 		fc |= FW_PORT_CAP_FC_TX;
2724 
2725 	memset(&c, 0, sizeof(c));
2726 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2727 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
2728 				     FW_PORT_CMD_PORTID_V(port));
2729 	c.action_to_len16 =
2730 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
2731 			    FW_LEN16(c));
2732 
2733 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2734 		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
2735 					     fc);
2736 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
2737 	} else if (lc->autoneg == AUTONEG_DISABLE) {
2738 		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
2739 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
2740 	} else
2741 		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
2742 
2743 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2744 }
2745 
2746 /**
2747  *	t4_restart_aneg - restart autonegotiation
2748  *	@adap: the adapter
2749  *	@mbox: mbox to use for the FW command
2750  *	@port: the port id
2751  *
2752  *	Restarts autonegotiation for the selected port.
2753  */
2754 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
2755 {
2756 	struct fw_port_cmd c;
2757 
2758 	memset(&c, 0, sizeof(c));
2759 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2760 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
2761 				     FW_PORT_CMD_PORTID_V(port));
2762 	c.action_to_len16 =
2763 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
2764 			    FW_LEN16(c));
2765 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
2766 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2767 }
2768 
2769 typedef void (*int_handler_t)(struct adapter *adap);
2770 
2771 struct intr_info {
2772 	unsigned int mask;       /* bits to check in interrupt status */
2773 	const char *msg;         /* message to print or NULL */
2774 	short stat_idx;          /* stat counter to increment or -1 */
2775 	unsigned short fatal;    /* whether the condition reported is fatal */
2776 	int_handler_t int_handler; /* platform-specific int handler */
2777 };
2778 
2779 /**
2780  *	t4_handle_intr_status - table driven interrupt handler
2781  *	@adapter: the adapter that generated the interrupt
2782  *	@reg: the interrupt status register to process
2783  *	@acts: table of interrupt actions
2784  *
2785  *	A table driven interrupt handler that applies a set of masks to an
2786  *	interrupt status word and performs the corresponding actions if the
2787  *	interrupts described by the mask have occurred.  The actions include
2788  *	optionally emitting a warning or alert message.  The table is terminated
2789  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
2790  *	conditions.
2791  */
2792 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
2793 				 const struct intr_info *acts)
2794 {
2795 	int fatal = 0;
2796 	unsigned int mask = 0;
2797 	unsigned int status = t4_read_reg(adapter, reg);
2798 
2799 	for ( ; acts->mask; ++acts) {
2800 		if (!(status & acts->mask))
2801 			continue;
2802 		if (acts->fatal) {
2803 			fatal++;
2804 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
2805 				  status & acts->mask);
2806 		} else if (acts->msg && printk_ratelimit())
2807 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
2808 				 status & acts->mask);
2809 		if (acts->int_handler)
2810 			acts->int_handler(adapter);
2811 		mask |= acts->mask;
2812 	}
2813 	status &= mask;
2814 	if (status)                           /* clear processed interrupts */
2815 		t4_write_reg(adapter, reg, status);
2816 	return fatal;
2817 }
2818 
2819 /*
2820  * Interrupt handler for the PCIE module.
2821  */
2822 static void pcie_intr_handler(struct adapter *adapter)
2823 {
2824 	static const struct intr_info sysbus_intr_info[] = {
2825 		{ RNPP_F, "RXNP array parity error", -1, 1 },
2826 		{ RPCP_F, "RXPC array parity error", -1, 1 },
2827 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
2828 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
2829 		{ RFTP_F, "RXFT array parity error", -1, 1 },
2830 		{ 0 }
2831 	};
2832 	static const struct intr_info pcie_port_intr_info[] = {
2833 		{ TPCP_F, "TXPC array parity error", -1, 1 },
2834 		{ TNPP_F, "TXNP array parity error", -1, 1 },
2835 		{ TFTP_F, "TXFT array parity error", -1, 1 },
2836 		{ TCAP_F, "TXCA array parity error", -1, 1 },
2837 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
2838 		{ RCAP_F, "RXCA array parity error", -1, 1 },
2839 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
2840 		{ RDPE_F, "Rx data parity error", -1, 1 },
2841 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
2842 		{ 0 }
2843 	};
2844 	static const struct intr_info pcie_intr_info[] = {
2845 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
2846 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
2847 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
2848 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
2849 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
2850 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
2851 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
2852 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
2853 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
2854 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
2855 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
2856 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
2857 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
2858 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
2859 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
2860 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
2861 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
2862 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
2863 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
2864 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
2865 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
2866 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
2867 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
2868 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
2869 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
2870 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
2871 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
2872 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
2873 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
2874 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
2875 		  -1, 0 },
2876 		{ 0 }
2877 	};
2878 
2879 	static struct intr_info t5_pcie_intr_info[] = {
2880 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
2881 		  -1, 1 },
2882 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
2883 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
2884 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
2885 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
2886 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
2887 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
2888 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
2889 		  -1, 1 },
2890 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
2891 		  -1, 1 },
2892 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
2893 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
2894 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
2895 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
2896 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
2897 		  -1, 1 },
2898 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
2899 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
2900 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
2901 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
2902 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
2903 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
2904 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
2905 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
2906 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
2907 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
2908 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
2909 		  -1, 1 },
2910 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
2911 		  -1, 1 },
2912 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
2913 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
2914 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
2915 		{ READRSPERR_F, "Outbound read error", -1, 0 },
2916 		{ 0 }
2917 	};
2918 
2919 	int fat;
2920 
2921 	if (is_t4(adapter->params.chip))
2922 		fat = t4_handle_intr_status(adapter,
2923 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
2924 				sysbus_intr_info) +
2925 			t4_handle_intr_status(adapter,
2926 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
2927 					pcie_port_intr_info) +
2928 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
2929 					      pcie_intr_info);
2930 	else
2931 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
2932 					    t5_pcie_intr_info);
2933 
2934 	if (fat)
2935 		t4_fatal_err(adapter);
2936 }
2937 
2938 /*
2939  * TP interrupt handler.
2940  */
2941 static void tp_intr_handler(struct adapter *adapter)
2942 {
2943 	static const struct intr_info tp_intr_info[] = {
2944 		{ 0x3fffffff, "TP parity error", -1, 1 },
2945 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
2946 		{ 0 }
2947 	};
2948 
2949 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
2950 		t4_fatal_err(adapter);
2951 }
2952 
2953 /*
2954  * SGE interrupt handler.
2955  */
2956 static void sge_intr_handler(struct adapter *adapter)
2957 {
2958 	u64 v;
2959 	u32 err;
2960 
2961 	static const struct intr_info sge_intr_info[] = {
2962 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
2963 		  "SGE received CPL exceeding IQE size", -1, 1 },
2964 		{ ERR_INVALID_CIDX_INC_F,
2965 		  "SGE GTS CIDX increment too large", -1, 0 },
2966 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
2967 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
2968 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
2969 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
2970 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
2971 		  0 },
2972 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
2973 		  0 },
2974 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
2975 		  0 },
2976 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
2977 		  0 },
2978 		{ ERR_ING_CTXT_PRIO_F,
2979 		  "SGE too many priority ingress contexts", -1, 0 },
2980 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
2981 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
2982 		{ 0 }
2983 	};
2984 
2985 	static struct intr_info t4t5_sge_intr_info[] = {
2986 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
2987 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
2988 		{ ERR_EGR_CTXT_PRIO_F,
2989 		  "SGE too many priority egress contexts", -1, 0 },
2990 		{ 0 }
2991 	};
2992 
2993 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
2994 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
2995 	if (v) {
2996 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
2997 				(unsigned long long)v);
2998 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
2999 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3000 	}
3001 
3002 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3003 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3004 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3005 					   t4t5_sge_intr_info);
3006 
3007 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3008 	if (err & ERROR_QID_VALID_F) {
3009 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3010 			ERROR_QID_G(err));
3011 		if (err & UNCAPTURED_ERROR_F)
3012 			dev_err(adapter->pdev_dev,
3013 				"SGE UNCAPTURED_ERROR set (clearing)\n");
3014 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3015 			     UNCAPTURED_ERROR_F);
3016 	}
3017 
3018 	if (v != 0)
3019 		t4_fatal_err(adapter);
3020 }
3021 
3022 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3023 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3024 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3025 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3026 
3027 /*
3028  * CIM interrupt handler.
3029  */
3030 static void cim_intr_handler(struct adapter *adapter)
3031 {
3032 	static const struct intr_info cim_intr_info[] = {
3033 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3034 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3035 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3036 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3037 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3038 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3039 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3040 		{ 0 }
3041 	};
3042 	static const struct intr_info cim_upintr_info[] = {
3043 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3044 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3045 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
3046 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
3047 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3048 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3049 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3050 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3051 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3052 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3053 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3054 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3055 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3056 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3057 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3058 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3059 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3060 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3061 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3062 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3063 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3064 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3065 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3066 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3067 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3068 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3069 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3070 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3071 		{ 0 }
3072 	};
3073 
3074 	int fat;
3075 
3076 	if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
3077 		t4_report_fw_error(adapter);
3078 
3079 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
3080 				    cim_intr_info) +
3081 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
3082 				    cim_upintr_info);
3083 	if (fat)
3084 		t4_fatal_err(adapter);
3085 }
3086 
3087 /*
3088  * ULP RX interrupt handler.
3089  */
3090 static void ulprx_intr_handler(struct adapter *adapter)
3091 {
3092 	static const struct intr_info ulprx_intr_info[] = {
3093 		{ 0x1800000, "ULPRX context error", -1, 1 },
3094 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
3095 		{ 0 }
3096 	};
3097 
3098 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3099 		t4_fatal_err(adapter);
3100 }
3101 
3102 /*
3103  * ULP TX interrupt handler.
3104  */
3105 static void ulptx_intr_handler(struct adapter *adapter)
3106 {
3107 	static const struct intr_info ulptx_intr_info[] = {
3108 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3109 		  0 },
3110 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3111 		  0 },
3112 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3113 		  0 },
3114 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3115 		  0 },
3116 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
3117 		{ 0 }
3118 	};
3119 
3120 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3121 		t4_fatal_err(adapter);
3122 }
3123 
3124 /*
3125  * PM TX interrupt handler.
3126  */
3127 static void pmtx_intr_handler(struct adapter *adapter)
3128 {
3129 	static const struct intr_info pmtx_intr_info[] = {
3130 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
3131 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
3132 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
3133 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
3134 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
3135 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
3136 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
3137 		  -1, 1 },
3138 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
3139 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
3140 		{ 0 }
3141 	};
3142 
3143 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
3144 		t4_fatal_err(adapter);
3145 }
3146 
3147 /*
3148  * PM RX interrupt handler.
3149  */
3150 static void pmrx_intr_handler(struct adapter *adapter)
3151 {
3152 	static const struct intr_info pmrx_intr_info[] = {
3153 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
3154 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
3155 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
3156 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
3157 		  -1, 1 },
3158 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
3159 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
3160 		{ 0 }
3161 	};
3162 
3163 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
3164 		t4_fatal_err(adapter);
3165 }
3166 
3167 /*
3168  * CPL switch interrupt handler.
3169  */
3170 static void cplsw_intr_handler(struct adapter *adapter)
3171 {
3172 	static const struct intr_info cplsw_intr_info[] = {
3173 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
3174 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
3175 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
3176 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
3177 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
3178 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
3179 		{ 0 }
3180 	};
3181 
3182 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
3183 		t4_fatal_err(adapter);
3184 }
3185 
3186 /*
3187  * LE interrupt handler.
3188  */
3189 static void le_intr_handler(struct adapter *adap)
3190 {
3191 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
3192 	static const struct intr_info le_intr_info[] = {
3193 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
3194 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
3195 		{ PARITYERR_F, "LE parity error", -1, 1 },
3196 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3197 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
3198 		{ 0 }
3199 	};
3200 
3201 	static struct intr_info t6_le_intr_info[] = {
3202 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
3203 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
3204 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
3205 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3206 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
3207 		{ 0 }
3208 	};
3209 
3210 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
3211 				  (chip <= CHELSIO_T5) ?
3212 				  le_intr_info : t6_le_intr_info))
3213 		t4_fatal_err(adap);
3214 }
3215 
3216 /*
3217  * MPS interrupt handler.
3218  */
3219 static void mps_intr_handler(struct adapter *adapter)
3220 {
3221 	static const struct intr_info mps_rx_intr_info[] = {
3222 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
3223 		{ 0 }
3224 	};
3225 	static const struct intr_info mps_tx_intr_info[] = {
3226 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
3227 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3228 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
3229 		  -1, 1 },
3230 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
3231 		  -1, 1 },
3232 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
3233 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
3234 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
3235 		{ 0 }
3236 	};
3237 	static const struct intr_info mps_trc_intr_info[] = {
3238 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
3239 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
3240 		  -1, 1 },
3241 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
3242 		{ 0 }
3243 	};
3244 	static const struct intr_info mps_stat_sram_intr_info[] = {
3245 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3246 		{ 0 }
3247 	};
3248 	static const struct intr_info mps_stat_tx_intr_info[] = {
3249 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3250 		{ 0 }
3251 	};
3252 	static const struct intr_info mps_stat_rx_intr_info[] = {
3253 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3254 		{ 0 }
3255 	};
3256 	static const struct intr_info mps_cls_intr_info[] = {
3257 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
3258 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
3259 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
3260 		{ 0 }
3261 	};
3262 
3263 	int fat;
3264 
3265 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
3266 				    mps_rx_intr_info) +
3267 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
3268 				    mps_tx_intr_info) +
3269 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
3270 				    mps_trc_intr_info) +
3271 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
3272 				    mps_stat_sram_intr_info) +
3273 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
3274 				    mps_stat_tx_intr_info) +
3275 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
3276 				    mps_stat_rx_intr_info) +
3277 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
3278 				    mps_cls_intr_info);
3279 
3280 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
3281 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
3282 	if (fat)
3283 		t4_fatal_err(adapter);
3284 }
3285 
3286 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3287 		      ECC_UE_INT_CAUSE_F)
3288 
3289 /*
3290  * EDC/MC interrupt handler.
3291  */
3292 static void mem_intr_handler(struct adapter *adapter, int idx)
3293 {
3294 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
3295 
3296 	unsigned int addr, cnt_addr, v;
3297 
3298 	if (idx <= MEM_EDC1) {
3299 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3300 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3301 	} else if (idx == MEM_MC) {
3302 		if (is_t4(adapter->params.chip)) {
3303 			addr = MC_INT_CAUSE_A;
3304 			cnt_addr = MC_ECC_STATUS_A;
3305 		} else {
3306 			addr = MC_P_INT_CAUSE_A;
3307 			cnt_addr = MC_P_ECC_STATUS_A;
3308 		}
3309 	} else {
3310 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
3311 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
3312 	}
3313 
3314 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
3315 	if (v & PERR_INT_CAUSE_F)
3316 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
3317 			  name[idx]);
3318 	if (v & ECC_CE_INT_CAUSE_F) {
3319 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
3320 
3321 		t4_edc_err_read(adapter, idx);
3322 
3323 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
3324 		if (printk_ratelimit())
3325 			dev_warn(adapter->pdev_dev,
3326 				 "%u %s correctable ECC data error%s\n",
3327 				 cnt, name[idx], cnt > 1 ? "s" : "");
3328 	}
3329 	if (v & ECC_UE_INT_CAUSE_F)
3330 		dev_alert(adapter->pdev_dev,
3331 			  "%s uncorrectable ECC data error\n", name[idx]);
3332 
3333 	t4_write_reg(adapter, addr, v);
3334 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3335 		t4_fatal_err(adapter);
3336 }
3337 
3338 /*
3339  * MA interrupt handler.
3340  */
3341 static void ma_intr_handler(struct adapter *adap)
3342 {
3343 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
3344 
3345 	if (status & MEM_PERR_INT_CAUSE_F) {
3346 		dev_alert(adap->pdev_dev,
3347 			  "MA parity error, parity status %#x\n",
3348 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
3349 		if (is_t5(adap->params.chip))
3350 			dev_alert(adap->pdev_dev,
3351 				  "MA parity error, parity status %#x\n",
3352 				  t4_read_reg(adap,
3353 					      MA_PARITY_ERROR_STATUS2_A));
3354 	}
3355 	if (status & MEM_WRAP_INT_CAUSE_F) {
3356 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
3357 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
3358 			  "client %u to address %#x\n",
3359 			  MEM_WRAP_CLIENT_NUM_G(v),
3360 			  MEM_WRAP_ADDRESS_G(v) << 4);
3361 	}
3362 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
3363 	t4_fatal_err(adap);
3364 }
3365 
3366 /*
3367  * SMB interrupt handler.
3368  */
3369 static void smb_intr_handler(struct adapter *adap)
3370 {
3371 	static const struct intr_info smb_intr_info[] = {
3372 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3373 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3374 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3375 		{ 0 }
3376 	};
3377 
3378 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
3379 		t4_fatal_err(adap);
3380 }
3381 
3382 /*
3383  * NC-SI interrupt handler.
3384  */
3385 static void ncsi_intr_handler(struct adapter *adap)
3386 {
3387 	static const struct intr_info ncsi_intr_info[] = {
3388 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3389 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3390 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3391 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3392 		{ 0 }
3393 	};
3394 
3395 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
3396 		t4_fatal_err(adap);
3397 }
3398 
3399 /*
3400  * XGMAC interrupt handler.
3401  */
3402 static void xgmac_intr_handler(struct adapter *adap, int port)
3403 {
3404 	u32 v, int_cause_reg;
3405 
3406 	if (is_t4(adap->params.chip))
3407 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
3408 	else
3409 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
3410 
3411 	v = t4_read_reg(adap, int_cause_reg);
3412 
3413 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3414 	if (!v)
3415 		return;
3416 
3417 	if (v & TXFIFO_PRTY_ERR_F)
3418 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
3419 			  port);
3420 	if (v & RXFIFO_PRTY_ERR_F)
3421 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
3422 			  port);
3423 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
3424 	t4_fatal_err(adap);
3425 }
3426 
3427 /*
3428  * PL interrupt handler.
3429  */
3430 static void pl_intr_handler(struct adapter *adap)
3431 {
3432 	static const struct intr_info pl_intr_info[] = {
3433 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
3434 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3435 		{ 0 }
3436 	};
3437 
3438 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
3439 		t4_fatal_err(adap);
3440 }
3441 
3442 #define PF_INTR_MASK (PFSW_F)
3443 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
3444 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
3445 		CPL_SWITCH_F | SGE_F | ULP_TX_F)
3446 
3447 /**
3448  *	t4_slow_intr_handler - control path interrupt handler
3449  *	@adapter: the adapter
3450  *
3451  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
3452  *	The designation 'slow' is because it involves register reads, while
3453  *	data interrupts typically don't involve any MMIOs.
3454  */
3455 int t4_slow_intr_handler(struct adapter *adapter)
3456 {
3457 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
3458 
3459 	if (!(cause & GLBL_INTR_MASK))
3460 		return 0;
3461 	if (cause & CIM_F)
3462 		cim_intr_handler(adapter);
3463 	if (cause & MPS_F)
3464 		mps_intr_handler(adapter);
3465 	if (cause & NCSI_F)
3466 		ncsi_intr_handler(adapter);
3467 	if (cause & PL_F)
3468 		pl_intr_handler(adapter);
3469 	if (cause & SMB_F)
3470 		smb_intr_handler(adapter);
3471 	if (cause & XGMAC0_F)
3472 		xgmac_intr_handler(adapter, 0);
3473 	if (cause & XGMAC1_F)
3474 		xgmac_intr_handler(adapter, 1);
3475 	if (cause & XGMAC_KR0_F)
3476 		xgmac_intr_handler(adapter, 2);
3477 	if (cause & XGMAC_KR1_F)
3478 		xgmac_intr_handler(adapter, 3);
3479 	if (cause & PCIE_F)
3480 		pcie_intr_handler(adapter);
3481 	if (cause & MC_F)
3482 		mem_intr_handler(adapter, MEM_MC);
3483 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
3484 		mem_intr_handler(adapter, MEM_MC1);
3485 	if (cause & EDC0_F)
3486 		mem_intr_handler(adapter, MEM_EDC0);
3487 	if (cause & EDC1_F)
3488 		mem_intr_handler(adapter, MEM_EDC1);
3489 	if (cause & LE_F)
3490 		le_intr_handler(adapter);
3491 	if (cause & TP_F)
3492 		tp_intr_handler(adapter);
3493 	if (cause & MA_F)
3494 		ma_intr_handler(adapter);
3495 	if (cause & PM_TX_F)
3496 		pmtx_intr_handler(adapter);
3497 	if (cause & PM_RX_F)
3498 		pmrx_intr_handler(adapter);
3499 	if (cause & ULP_RX_F)
3500 		ulprx_intr_handler(adapter);
3501 	if (cause & CPL_SWITCH_F)
3502 		cplsw_intr_handler(adapter);
3503 	if (cause & SGE_F)
3504 		sge_intr_handler(adapter);
3505 	if (cause & ULP_TX_F)
3506 		ulptx_intr_handler(adapter);
3507 
3508 	/* Clear the interrupts just processed for which we are the master. */
3509 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
3510 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
3511 	return 1;
3512 }
3513 
3514 /**
3515  *	t4_intr_enable - enable interrupts
3516  *	@adapter: the adapter whose interrupts should be enabled
3517  *
3518  *	Enable PF-specific interrupts for the calling function and the top-level
3519  *	interrupt concentrator for global interrupts.  Interrupts are already
3520  *	enabled at each module,	here we just enable the roots of the interrupt
3521  *	hierarchies.
3522  *
3523  *	Note: this function should be called only when the driver manages
3524  *	non PF-specific interrupts from the various HW modules.  Only one PCI
3525  *	function at a time should be doing this.
3526  */
3527 void t4_intr_enable(struct adapter *adapter)
3528 {
3529 	u32 val = 0;
3530 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
3531 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
3532 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
3533 
3534 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3535 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
3536 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
3537 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
3538 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
3539 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
3540 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
3541 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
3542 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
3543 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
3544 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
3545 }
3546 
3547 /**
3548  *	t4_intr_disable - disable interrupts
3549  *	@adapter: the adapter whose interrupts should be disabled
3550  *
3551  *	Disable interrupts.  We only disable the top-level interrupt
3552  *	concentrators.  The caller must be a PCI function managing global
3553  *	interrupts.
3554  */
3555 void t4_intr_disable(struct adapter *adapter)
3556 {
3557 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
3558 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
3559 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
3560 
3561 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
3562 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
3563 }
3564 
3565 /**
3566  *	hash_mac_addr - return the hash value of a MAC address
3567  *	@addr: the 48-bit Ethernet MAC address
3568  *
3569  *	Hashes a MAC address according to the hash function used by HW inexact
3570  *	(hash) address matching.
3571  */
3572 static int hash_mac_addr(const u8 *addr)
3573 {
3574 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
3575 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
3576 	a ^= b;
3577 	a ^= (a >> 12);
3578 	a ^= (a >> 6);
3579 	return a & 0x3f;
3580 }
3581 
3582 /**
3583  *	t4_config_rss_range - configure a portion of the RSS mapping table
3584  *	@adapter: the adapter
3585  *	@mbox: mbox to use for the FW command
3586  *	@viid: virtual interface whose RSS subtable is to be written
3587  *	@start: start entry in the table to write
3588  *	@n: how many table entries to write
3589  *	@rspq: values for the response queue lookup table
3590  *	@nrspq: number of values in @rspq
3591  *
3592  *	Programs the selected part of the VI's RSS mapping table with the
3593  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
3594  *	until the full table range is populated.
3595  *
3596  *	The caller must ensure the values in @rspq are in the range allowed for
3597  *	@viid.
3598  */
3599 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
3600 			int start, int n, const u16 *rspq, unsigned int nrspq)
3601 {
3602 	int ret;
3603 	const u16 *rsp = rspq;
3604 	const u16 *rsp_end = rspq + nrspq;
3605 	struct fw_rss_ind_tbl_cmd cmd;
3606 
3607 	memset(&cmd, 0, sizeof(cmd));
3608 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
3609 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3610 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
3611 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
3612 
3613 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
3614 	while (n > 0) {
3615 		int nq = min(n, 32);
3616 		__be32 *qp = &cmd.iq0_to_iq2;
3617 
3618 		cmd.niqid = cpu_to_be16(nq);
3619 		cmd.startidx = cpu_to_be16(start);
3620 
3621 		start += nq;
3622 		n -= nq;
3623 
3624 		while (nq > 0) {
3625 			unsigned int v;
3626 
3627 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
3628 			if (++rsp >= rsp_end)
3629 				rsp = rspq;
3630 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
3631 			if (++rsp >= rsp_end)
3632 				rsp = rspq;
3633 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
3634 			if (++rsp >= rsp_end)
3635 				rsp = rspq;
3636 
3637 			*qp++ = cpu_to_be32(v);
3638 			nq -= 3;
3639 		}
3640 
3641 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
3642 		if (ret)
3643 			return ret;
3644 	}
3645 	return 0;
3646 }
3647 
3648 /**
3649  *	t4_config_glbl_rss - configure the global RSS mode
3650  *	@adapter: the adapter
3651  *	@mbox: mbox to use for the FW command
3652  *	@mode: global RSS mode
3653  *	@flags: mode-specific flags
3654  *
3655  *	Sets the global RSS mode.
3656  */
3657 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
3658 		       unsigned int flags)
3659 {
3660 	struct fw_rss_glb_config_cmd c;
3661 
3662 	memset(&c, 0, sizeof(c));
3663 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
3664 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3665 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3666 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
3667 		c.u.manual.mode_pkd =
3668 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
3669 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
3670 		c.u.basicvirtual.mode_pkd =
3671 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
3672 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
3673 	} else
3674 		return -EINVAL;
3675 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
3676 }
3677 
3678 /**
3679  *	t4_config_vi_rss - configure per VI RSS settings
3680  *	@adapter: the adapter
3681  *	@mbox: mbox to use for the FW command
3682  *	@viid: the VI id
3683  *	@flags: RSS flags
3684  *	@defq: id of the default RSS queue for the VI.
3685  *
3686  *	Configures VI-specific RSS properties.
3687  */
3688 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
3689 		     unsigned int flags, unsigned int defq)
3690 {
3691 	struct fw_rss_vi_config_cmd c;
3692 
3693 	memset(&c, 0, sizeof(c));
3694 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
3695 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3696 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
3697 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3698 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
3699 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
3700 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
3701 }
3702 
3703 /* Read an RSS table row */
3704 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
3705 {
3706 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
3707 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
3708 				   5, 0, val);
3709 }
3710 
3711 /**
3712  *	t4_read_rss - read the contents of the RSS mapping table
3713  *	@adapter: the adapter
3714  *	@map: holds the contents of the RSS mapping table
3715  *
3716  *	Reads the contents of the RSS hash->queue mapping table.
3717  */
3718 int t4_read_rss(struct adapter *adapter, u16 *map)
3719 {
3720 	u32 val;
3721 	int i, ret;
3722 
3723 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
3724 		ret = rd_rss_row(adapter, i, &val);
3725 		if (ret)
3726 			return ret;
3727 		*map++ = LKPTBLQUEUE0_G(val);
3728 		*map++ = LKPTBLQUEUE1_G(val);
3729 	}
3730 	return 0;
3731 }
3732 
3733 static unsigned int t4_use_ldst(struct adapter *adap)
3734 {
3735 	return (adap->flags & FW_OK) || !adap->use_bd;
3736 }
3737 
3738 /**
3739  *	t4_fw_tp_pio_rw - Access TP PIO through LDST
3740  *	@adap: the adapter
3741  *	@vals: where the indirect register values are stored/written
3742  *	@nregs: how many indirect registers to read/write
3743  *	@start_idx: index of first indirect register to read/write
3744  *	@rw: Read (1) or Write (0)
3745  *
3746  *	Access TP PIO registers through LDST
3747  */
3748 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
3749 			    unsigned int start_index, unsigned int rw)
3750 {
3751 	int ret, i;
3752 	int cmd = FW_LDST_ADDRSPC_TP_PIO;
3753 	struct fw_ldst_cmd c;
3754 
3755 	for (i = 0 ; i < nregs; i++) {
3756 		memset(&c, 0, sizeof(c));
3757 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
3758 						FW_CMD_REQUEST_F |
3759 						(rw ? FW_CMD_READ_F :
3760 						      FW_CMD_WRITE_F) |
3761 						FW_LDST_CMD_ADDRSPACE_V(cmd));
3762 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
3763 
3764 		c.u.addrval.addr = cpu_to_be32(start_index + i);
3765 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
3766 		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3767 		if (!ret && rw)
3768 			vals[i] = be32_to_cpu(c.u.addrval.val);
3769 	}
3770 }
3771 
3772 /**
3773  *	t4_read_rss_key - read the global RSS key
3774  *	@adap: the adapter
3775  *	@key: 10-entry array holding the 320-bit RSS key
3776  *
3777  *	Reads the global 320-bit RSS key.
3778  */
3779 void t4_read_rss_key(struct adapter *adap, u32 *key)
3780 {
3781 	if (t4_use_ldst(adap))
3782 		t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
3783 	else
3784 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
3785 				 TP_RSS_SECRET_KEY0_A);
3786 }
3787 
3788 /**
3789  *	t4_write_rss_key - program one of the RSS keys
3790  *	@adap: the adapter
3791  *	@key: 10-entry array holding the 320-bit RSS key
3792  *	@idx: which RSS key to write
3793  *
3794  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
3795  *	0..15 the corresponding entry in the RSS key table is written,
3796  *	otherwise the global RSS key is written.
3797  */
3798 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
3799 {
3800 	u8 rss_key_addr_cnt = 16;
3801 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
3802 
3803 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
3804 	 * allows access to key addresses 16-63 by using KeyWrAddrX
3805 	 * as index[5:4](upper 2) into key table
3806 	 */
3807 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
3808 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
3809 		rss_key_addr_cnt = 32;
3810 
3811 	if (t4_use_ldst(adap))
3812 		t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
3813 	else
3814 		t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
3815 				  TP_RSS_SECRET_KEY0_A);
3816 
3817 	if (idx >= 0 && idx < rss_key_addr_cnt) {
3818 		if (rss_key_addr_cnt > 16)
3819 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
3820 				     KEYWRADDRX_V(idx >> 4) |
3821 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
3822 		else
3823 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
3824 				     KEYWRADDR_V(idx) | KEYWREN_F);
3825 	}
3826 }
3827 
3828 /**
3829  *	t4_read_rss_pf_config - read PF RSS Configuration Table
3830  *	@adapter: the adapter
3831  *	@index: the entry in the PF RSS table to read
3832  *	@valp: where to store the returned value
3833  *
3834  *	Reads the PF RSS Configuration Table at the specified index and returns
3835  *	the value found there.
3836  */
3837 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
3838 			   u32 *valp)
3839 {
3840 	if (t4_use_ldst(adapter))
3841 		t4_fw_tp_pio_rw(adapter, valp, 1,
3842 				TP_RSS_PF0_CONFIG_A + index, 1);
3843 	else
3844 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3845 				 valp, 1, TP_RSS_PF0_CONFIG_A + index);
3846 }
3847 
3848 /**
3849  *	t4_read_rss_vf_config - read VF RSS Configuration Table
3850  *	@adapter: the adapter
3851  *	@index: the entry in the VF RSS table to read
3852  *	@vfl: where to store the returned VFL
3853  *	@vfh: where to store the returned VFH
3854  *
3855  *	Reads the VF RSS Configuration Table at the specified index and returns
3856  *	the (VFL, VFH) values found there.
3857  */
3858 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
3859 			   u32 *vfl, u32 *vfh)
3860 {
3861 	u32 vrt, mask, data;
3862 
3863 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
3864 		mask = VFWRADDR_V(VFWRADDR_M);
3865 		data = VFWRADDR_V(index);
3866 	} else {
3867 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
3868 		 data = T6_VFWRADDR_V(index);
3869 	}
3870 
3871 	/* Request that the index'th VF Table values be read into VFL/VFH.
3872 	 */
3873 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
3874 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
3875 	vrt |= data | VFRDEN_F;
3876 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
3877 
3878 	/* Grab the VFL/VFH values ...
3879 	 */
3880 	if (t4_use_ldst(adapter)) {
3881 		t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
3882 		t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
3883 	} else {
3884 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3885 				 vfl, 1, TP_RSS_VFL_CONFIG_A);
3886 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3887 				 vfh, 1, TP_RSS_VFH_CONFIG_A);
3888 	}
3889 }
3890 
3891 /**
3892  *	t4_read_rss_pf_map - read PF RSS Map
3893  *	@adapter: the adapter
3894  *
3895  *	Reads the PF RSS Map register and returns its value.
3896  */
3897 u32 t4_read_rss_pf_map(struct adapter *adapter)
3898 {
3899 	u32 pfmap;
3900 
3901 	if (t4_use_ldst(adapter))
3902 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
3903 	else
3904 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3905 				 &pfmap, 1, TP_RSS_PF_MAP_A);
3906 	return pfmap;
3907 }
3908 
3909 /**
3910  *	t4_read_rss_pf_mask - read PF RSS Mask
3911  *	@adapter: the adapter
3912  *
3913  *	Reads the PF RSS Mask register and returns its value.
3914  */
3915 u32 t4_read_rss_pf_mask(struct adapter *adapter)
3916 {
3917 	u32 pfmask;
3918 
3919 	if (t4_use_ldst(adapter))
3920 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
3921 	else
3922 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3923 				 &pfmask, 1, TP_RSS_PF_MSK_A);
3924 	return pfmask;
3925 }
3926 
3927 /**
3928  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
3929  *	@adap: the adapter
3930  *	@v4: holds the TCP/IP counter values
3931  *	@v6: holds the TCP/IPv6 counter values
3932  *
3933  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
3934  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
3935  */
3936 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
3937 			 struct tp_tcp_stats *v6)
3938 {
3939 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
3940 
3941 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
3942 #define STAT(x)     val[STAT_IDX(x)]
3943 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
3944 
3945 	if (v4) {
3946 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
3947 				 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
3948 		v4->tcp_out_rsts = STAT(OUT_RST);
3949 		v4->tcp_in_segs  = STAT64(IN_SEG);
3950 		v4->tcp_out_segs = STAT64(OUT_SEG);
3951 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
3952 	}
3953 	if (v6) {
3954 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
3955 				 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
3956 		v6->tcp_out_rsts = STAT(OUT_RST);
3957 		v6->tcp_in_segs  = STAT64(IN_SEG);
3958 		v6->tcp_out_segs = STAT64(OUT_SEG);
3959 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
3960 	}
3961 #undef STAT64
3962 #undef STAT
3963 #undef STAT_IDX
3964 }
3965 
3966 /**
3967  *	t4_tp_get_err_stats - read TP's error MIB counters
3968  *	@adap: the adapter
3969  *	@st: holds the counter values
3970  *
3971  *	Returns the values of TP's error counters.
3972  */
3973 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
3974 {
3975 	int nchan = adap->params.arch.nchan;
3976 
3977 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3978 			 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
3979 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3980 			 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
3981 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3982 			 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
3983 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3984 			 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
3985 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3986 			 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
3987 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3988 			 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
3989 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3990 			 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
3991 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3992 			 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
3993 
3994 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3995 			 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
3996 }
3997 
3998 /**
3999  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
4000  *	@adap: the adapter
4001  *	@st: holds the counter values
4002  *
4003  *	Returns the values of TP's CPL counters.
4004  */
4005 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4006 {
4007 	int nchan = adap->params.arch.nchan;
4008 
4009 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4010 			 nchan, TP_MIB_CPL_IN_REQ_0_A);
4011 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4012 			 nchan, TP_MIB_CPL_OUT_RSP_0_A);
4013 
4014 }
4015 
4016 /**
4017  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4018  *	@adap: the adapter
4019  *	@st: holds the counter values
4020  *
4021  *	Returns the values of TP's RDMA counters.
4022  */
4023 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4024 {
4025 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4026 			 2, TP_MIB_RQE_DFR_PKT_A);
4027 }
4028 
4029 /**
4030  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4031  *	@adap: the adapter
4032  *	@idx: the port index
4033  *	@st: holds the counter values
4034  *
4035  *	Returns the values of TP's FCoE counters for the selected port.
4036  */
4037 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4038 		       struct tp_fcoe_stats *st)
4039 {
4040 	u32 val[2];
4041 
4042 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4043 			 1, TP_MIB_FCOE_DDP_0_A + idx);
4044 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4045 			 1, TP_MIB_FCOE_DROP_0_A + idx);
4046 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4047 			 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4048 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
4049 }
4050 
4051 /**
4052  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4053  *	@adap: the adapter
4054  *	@st: holds the counter values
4055  *
4056  *	Returns the values of TP's counters for non-TCP directly-placed packets.
4057  */
4058 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4059 {
4060 	u32 val[4];
4061 
4062 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4063 			 TP_MIB_USM_PKTS_A);
4064 	st->frames = val[0];
4065 	st->drops = val[1];
4066 	st->octets = ((u64)val[2] << 32) | val[3];
4067 }
4068 
4069 /**
4070  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
4071  *	@adap: the adapter
4072  *	@mtus: where to store the MTU values
4073  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
4074  *
4075  *	Reads the HW path MTU table.
4076  */
4077 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4078 {
4079 	u32 v;
4080 	int i;
4081 
4082 	for (i = 0; i < NMTUS; ++i) {
4083 		t4_write_reg(adap, TP_MTU_TABLE_A,
4084 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
4085 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
4086 		mtus[i] = MTUVALUE_G(v);
4087 		if (mtu_log)
4088 			mtu_log[i] = MTUWIDTH_G(v);
4089 	}
4090 }
4091 
4092 /**
4093  *	t4_read_cong_tbl - reads the congestion control table
4094  *	@adap: the adapter
4095  *	@incr: where to store the alpha values
4096  *
4097  *	Reads the additive increments programmed into the HW congestion
4098  *	control table.
4099  */
4100 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
4101 {
4102 	unsigned int mtu, w;
4103 
4104 	for (mtu = 0; mtu < NMTUS; ++mtu)
4105 		for (w = 0; w < NCCTRL_WIN; ++w) {
4106 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
4107 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
4108 			incr[mtu][w] = (u16)t4_read_reg(adap,
4109 						TP_CCTRL_TABLE_A) & 0x1fff;
4110 		}
4111 }
4112 
4113 /**
4114  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
4115  *	@adap: the adapter
4116  *	@addr: the indirect TP register address
4117  *	@mask: specifies the field within the register to modify
4118  *	@val: new value for the field
4119  *
4120  *	Sets a field of an indirect TP register to the given value.
4121  */
4122 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
4123 			    unsigned int mask, unsigned int val)
4124 {
4125 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
4126 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
4127 	t4_write_reg(adap, TP_PIO_DATA_A, val);
4128 }
4129 
4130 /**
4131  *	init_cong_ctrl - initialize congestion control parameters
4132  *	@a: the alpha values for congestion control
4133  *	@b: the beta values for congestion control
4134  *
4135  *	Initialize the congestion control parameters.
4136  */
4137 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
4138 {
4139 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
4140 	a[9] = 2;
4141 	a[10] = 3;
4142 	a[11] = 4;
4143 	a[12] = 5;
4144 	a[13] = 6;
4145 	a[14] = 7;
4146 	a[15] = 8;
4147 	a[16] = 9;
4148 	a[17] = 10;
4149 	a[18] = 14;
4150 	a[19] = 17;
4151 	a[20] = 21;
4152 	a[21] = 25;
4153 	a[22] = 30;
4154 	a[23] = 35;
4155 	a[24] = 45;
4156 	a[25] = 60;
4157 	a[26] = 80;
4158 	a[27] = 100;
4159 	a[28] = 200;
4160 	a[29] = 300;
4161 	a[30] = 400;
4162 	a[31] = 500;
4163 
4164 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
4165 	b[9] = b[10] = 1;
4166 	b[11] = b[12] = 2;
4167 	b[13] = b[14] = b[15] = b[16] = 3;
4168 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
4169 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
4170 	b[28] = b[29] = 6;
4171 	b[30] = b[31] = 7;
4172 }
4173 
4174 /* The minimum additive increment value for the congestion control table */
4175 #define CC_MIN_INCR 2U
4176 
4177 /**
4178  *	t4_load_mtus - write the MTU and congestion control HW tables
4179  *	@adap: the adapter
4180  *	@mtus: the values for the MTU table
4181  *	@alpha: the values for the congestion control alpha parameter
4182  *	@beta: the values for the congestion control beta parameter
4183  *
4184  *	Write the HW MTU table with the supplied MTUs and the high-speed
4185  *	congestion control table with the supplied alpha, beta, and MTUs.
4186  *	We write the two tables together because the additive increments
4187  *	depend on the MTUs.
4188  */
4189 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
4190 		  const unsigned short *alpha, const unsigned short *beta)
4191 {
4192 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
4193 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
4194 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
4195 		28672, 40960, 57344, 81920, 114688, 163840, 229376
4196 	};
4197 
4198 	unsigned int i, w;
4199 
4200 	for (i = 0; i < NMTUS; ++i) {
4201 		unsigned int mtu = mtus[i];
4202 		unsigned int log2 = fls(mtu);
4203 
4204 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
4205 			log2--;
4206 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
4207 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
4208 
4209 		for (w = 0; w < NCCTRL_WIN; ++w) {
4210 			unsigned int inc;
4211 
4212 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
4213 				  CC_MIN_INCR);
4214 
4215 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
4216 				     (w << 16) | (beta[w] << 13) | inc);
4217 		}
4218 	}
4219 }
4220 
4221 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
4222  * clocks.  The formula is
4223  *
4224  * bytes/s = bytes256 * 256 * ClkFreq / 4096
4225  *
4226  * which is equivalent to
4227  *
4228  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
4229  */
4230 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
4231 {
4232 	u64 v = bytes256 * adap->params.vpd.cclk;
4233 
4234 	return v * 62 + v / 2;
4235 }
4236 
4237 /**
4238  *	t4_get_chan_txrate - get the current per channel Tx rates
4239  *	@adap: the adapter
4240  *	@nic_rate: rates for NIC traffic
4241  *	@ofld_rate: rates for offloaded traffic
4242  *
4243  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
4244  *	for each channel.
4245  */
4246 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
4247 {
4248 	u32 v;
4249 
4250 	v = t4_read_reg(adap, TP_TX_TRATE_A);
4251 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
4252 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
4253 	if (adap->params.arch.nchan == NCHAN) {
4254 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
4255 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
4256 	}
4257 
4258 	v = t4_read_reg(adap, TP_TX_ORATE_A);
4259 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
4260 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
4261 	if (adap->params.arch.nchan == NCHAN) {
4262 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
4263 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
4264 	}
4265 }
4266 
4267 /**
4268  *	t4_pmtx_get_stats - returns the HW stats from PMTX
4269  *	@adap: the adapter
4270  *	@cnt: where to store the count statistics
4271  *	@cycles: where to store the cycle statistics
4272  *
4273  *	Returns performance statistics from PMTX.
4274  */
4275 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
4276 {
4277 	int i;
4278 	u32 data[2];
4279 
4280 	for (i = 0; i < PM_NSTATS; i++) {
4281 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
4282 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
4283 		if (is_t4(adap->params.chip)) {
4284 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
4285 		} else {
4286 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
4287 					 PM_TX_DBG_DATA_A, data, 2,
4288 					 PM_TX_DBG_STAT_MSB_A);
4289 			cycles[i] = (((u64)data[0] << 32) | data[1]);
4290 		}
4291 	}
4292 }
4293 
4294 /**
4295  *	t4_pmrx_get_stats - returns the HW stats from PMRX
4296  *	@adap: the adapter
4297  *	@cnt: where to store the count statistics
4298  *	@cycles: where to store the cycle statistics
4299  *
4300  *	Returns performance statistics from PMRX.
4301  */
4302 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
4303 {
4304 	int i;
4305 	u32 data[2];
4306 
4307 	for (i = 0; i < PM_NSTATS; i++) {
4308 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
4309 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
4310 		if (is_t4(adap->params.chip)) {
4311 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
4312 		} else {
4313 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
4314 					 PM_RX_DBG_DATA_A, data, 2,
4315 					 PM_RX_DBG_STAT_MSB_A);
4316 			cycles[i] = (((u64)data[0] << 32) | data[1]);
4317 		}
4318 	}
4319 }
4320 
4321 /**
4322  *	t4_get_mps_bg_map - return the buffer groups associated with a port
4323  *	@adap: the adapter
4324  *	@idx: the port index
4325  *
4326  *	Returns a bitmap indicating which MPS buffer groups are associated
4327  *	with the given port.  Bit i is set if buffer group i is used by the
4328  *	port.
4329  */
4330 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
4331 {
4332 	u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
4333 
4334 	if (n == 0)
4335 		return idx == 0 ? 0xf : 0;
4336 	if (n == 1)
4337 		return idx < 2 ? (3 << (2 * idx)) : 0;
4338 	return 1 << idx;
4339 }
4340 
4341 /**
4342  *      t4_get_port_type_description - return Port Type string description
4343  *      @port_type: firmware Port Type enumeration
4344  */
4345 const char *t4_get_port_type_description(enum fw_port_type port_type)
4346 {
4347 	static const char *const port_type_description[] = {
4348 		"R XFI",
4349 		"R XAUI",
4350 		"T SGMII",
4351 		"T XFI",
4352 		"T XAUI",
4353 		"KX4",
4354 		"CX4",
4355 		"KX",
4356 		"KR",
4357 		"R SFP+",
4358 		"KR/KX",
4359 		"KR/KX/KX4",
4360 		"R QSFP_10G",
4361 		"R QSA",
4362 		"R QSFP",
4363 		"R BP40_BA",
4364 	};
4365 
4366 	if (port_type < ARRAY_SIZE(port_type_description))
4367 		return port_type_description[port_type];
4368 	return "UNKNOWN";
4369 }
4370 
4371 /**
4372  *      t4_get_port_stats_offset - collect port stats relative to a previous
4373  *                                 snapshot
4374  *      @adap: The adapter
4375  *      @idx: The port
4376  *      @stats: Current stats to fill
4377  *      @offset: Previous stats snapshot
4378  */
4379 void t4_get_port_stats_offset(struct adapter *adap, int idx,
4380 			      struct port_stats *stats,
4381 			      struct port_stats *offset)
4382 {
4383 	u64 *s, *o;
4384 	int i;
4385 
4386 	t4_get_port_stats(adap, idx, stats);
4387 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
4388 			i < (sizeof(struct port_stats) / sizeof(u64));
4389 			i++, s++, o++)
4390 		*s -= *o;
4391 }
4392 
4393 /**
4394  *	t4_get_port_stats - collect port statistics
4395  *	@adap: the adapter
4396  *	@idx: the port index
4397  *	@p: the stats structure to fill
4398  *
4399  *	Collect statistics related to the given port from HW.
4400  */
4401 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
4402 {
4403 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
4404 
4405 #define GET_STAT(name) \
4406 	t4_read_reg64(adap, \
4407 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
4408 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
4409 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
4410 
4411 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
4412 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
4413 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
4414 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
4415 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
4416 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
4417 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
4418 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
4419 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
4420 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
4421 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
4422 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
4423 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
4424 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
4425 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
4426 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
4427 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
4428 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
4429 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
4430 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
4431 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
4432 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
4433 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
4434 
4435 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
4436 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
4437 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
4438 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
4439 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
4440 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
4441 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
4442 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
4443 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
4444 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
4445 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
4446 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
4447 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
4448 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
4449 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
4450 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
4451 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
4452 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
4453 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
4454 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
4455 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
4456 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
4457 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
4458 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
4459 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
4460 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
4461 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
4462 
4463 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
4464 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
4465 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
4466 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
4467 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
4468 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
4469 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
4470 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
4471 
4472 #undef GET_STAT
4473 #undef GET_STAT_COM
4474 }
4475 
4476 /**
4477  *	t4_get_lb_stats - collect loopback port statistics
4478  *	@adap: the adapter
4479  *	@idx: the loopback port index
4480  *	@p: the stats structure to fill
4481  *
4482  *	Return HW statistics for the given loopback port.
4483  */
4484 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
4485 {
4486 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
4487 
4488 #define GET_STAT(name) \
4489 	t4_read_reg64(adap, \
4490 	(is_t4(adap->params.chip) ? \
4491 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
4492 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
4493 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
4494 
4495 	p->octets           = GET_STAT(BYTES);
4496 	p->frames           = GET_STAT(FRAMES);
4497 	p->bcast_frames     = GET_STAT(BCAST);
4498 	p->mcast_frames     = GET_STAT(MCAST);
4499 	p->ucast_frames     = GET_STAT(UCAST);
4500 	p->error_frames     = GET_STAT(ERROR);
4501 
4502 	p->frames_64        = GET_STAT(64B);
4503 	p->frames_65_127    = GET_STAT(65B_127B);
4504 	p->frames_128_255   = GET_STAT(128B_255B);
4505 	p->frames_256_511   = GET_STAT(256B_511B);
4506 	p->frames_512_1023  = GET_STAT(512B_1023B);
4507 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
4508 	p->frames_1519_max  = GET_STAT(1519B_MAX);
4509 	p->drop             = GET_STAT(DROP_FRAMES);
4510 
4511 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
4512 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
4513 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
4514 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
4515 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
4516 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
4517 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
4518 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
4519 
4520 #undef GET_STAT
4521 #undef GET_STAT_COM
4522 }
4523 
4524 /*     t4_mk_filtdelwr - create a delete filter WR
4525  *     @ftid: the filter ID
4526  *     @wr: the filter work request to populate
4527  *     @qid: ingress queue to receive the delete notification
4528  *
4529  *     Creates a filter work request to delete the supplied filter.  If @qid is
4530  *     negative the delete notification is suppressed.
4531  */
4532 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
4533 {
4534 	memset(wr, 0, sizeof(*wr));
4535 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
4536 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
4537 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
4538 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
4539 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
4540 	if (qid >= 0)
4541 		wr->rx_chan_rx_rpl_iq =
4542 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
4543 }
4544 
4545 #define INIT_CMD(var, cmd, rd_wr) do { \
4546 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
4547 					FW_CMD_REQUEST_F | \
4548 					FW_CMD_##rd_wr##_F); \
4549 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
4550 } while (0)
4551 
4552 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
4553 			  u32 addr, u32 val)
4554 {
4555 	u32 ldst_addrspace;
4556 	struct fw_ldst_cmd c;
4557 
4558 	memset(&c, 0, sizeof(c));
4559 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
4560 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4561 					FW_CMD_REQUEST_F |
4562 					FW_CMD_WRITE_F |
4563 					ldst_addrspace);
4564 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4565 	c.u.addrval.addr = cpu_to_be32(addr);
4566 	c.u.addrval.val = cpu_to_be32(val);
4567 
4568 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4569 }
4570 
4571 /**
4572  *	t4_mdio_rd - read a PHY register through MDIO
4573  *	@adap: the adapter
4574  *	@mbox: mailbox to use for the FW command
4575  *	@phy_addr: the PHY address
4576  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
4577  *	@reg: the register to read
4578  *	@valp: where to store the value
4579  *
4580  *	Issues a FW command through the given mailbox to read a PHY register.
4581  */
4582 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4583 	       unsigned int mmd, unsigned int reg, u16 *valp)
4584 {
4585 	int ret;
4586 	u32 ldst_addrspace;
4587 	struct fw_ldst_cmd c;
4588 
4589 	memset(&c, 0, sizeof(c));
4590 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
4591 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4592 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
4593 					ldst_addrspace);
4594 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4595 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
4596 					 FW_LDST_CMD_MMD_V(mmd));
4597 	c.u.mdio.raddr = cpu_to_be16(reg);
4598 
4599 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4600 	if (ret == 0)
4601 		*valp = be16_to_cpu(c.u.mdio.rval);
4602 	return ret;
4603 }
4604 
4605 /**
4606  *	t4_mdio_wr - write a PHY register through MDIO
4607  *	@adap: the adapter
4608  *	@mbox: mailbox to use for the FW command
4609  *	@phy_addr: the PHY address
4610  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
4611  *	@reg: the register to write
4612  *	@valp: value to write
4613  *
4614  *	Issues a FW command through the given mailbox to write a PHY register.
4615  */
4616 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4617 	       unsigned int mmd, unsigned int reg, u16 val)
4618 {
4619 	u32 ldst_addrspace;
4620 	struct fw_ldst_cmd c;
4621 
4622 	memset(&c, 0, sizeof(c));
4623 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
4624 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4625 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4626 					ldst_addrspace);
4627 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4628 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
4629 					 FW_LDST_CMD_MMD_V(mmd));
4630 	c.u.mdio.raddr = cpu_to_be16(reg);
4631 	c.u.mdio.rval = cpu_to_be16(val);
4632 
4633 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4634 }
4635 
4636 /**
4637  *	t4_sge_decode_idma_state - decode the idma state
4638  *	@adap: the adapter
4639  *	@state: the state idma is stuck in
4640  */
4641 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
4642 {
4643 	static const char * const t4_decode[] = {
4644 		"IDMA_IDLE",
4645 		"IDMA_PUSH_MORE_CPL_FIFO",
4646 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
4647 		"Not used",
4648 		"IDMA_PHYSADDR_SEND_PCIEHDR",
4649 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
4650 		"IDMA_PHYSADDR_SEND_PAYLOAD",
4651 		"IDMA_SEND_FIFO_TO_IMSG",
4652 		"IDMA_FL_REQ_DATA_FL_PREP",
4653 		"IDMA_FL_REQ_DATA_FL",
4654 		"IDMA_FL_DROP",
4655 		"IDMA_FL_H_REQ_HEADER_FL",
4656 		"IDMA_FL_H_SEND_PCIEHDR",
4657 		"IDMA_FL_H_PUSH_CPL_FIFO",
4658 		"IDMA_FL_H_SEND_CPL",
4659 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
4660 		"IDMA_FL_H_SEND_IP_HDR",
4661 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
4662 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
4663 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
4664 		"IDMA_FL_D_SEND_PCIEHDR",
4665 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
4666 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
4667 		"IDMA_FL_SEND_PCIEHDR",
4668 		"IDMA_FL_PUSH_CPL_FIFO",
4669 		"IDMA_FL_SEND_CPL",
4670 		"IDMA_FL_SEND_PAYLOAD_FIRST",
4671 		"IDMA_FL_SEND_PAYLOAD",
4672 		"IDMA_FL_REQ_NEXT_DATA_FL",
4673 		"IDMA_FL_SEND_NEXT_PCIEHDR",
4674 		"IDMA_FL_SEND_PADDING",
4675 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
4676 		"IDMA_FL_SEND_FIFO_TO_IMSG",
4677 		"IDMA_FL_REQ_DATAFL_DONE",
4678 		"IDMA_FL_REQ_HEADERFL_DONE",
4679 	};
4680 	static const char * const t5_decode[] = {
4681 		"IDMA_IDLE",
4682 		"IDMA_ALMOST_IDLE",
4683 		"IDMA_PUSH_MORE_CPL_FIFO",
4684 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
4685 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
4686 		"IDMA_PHYSADDR_SEND_PCIEHDR",
4687 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
4688 		"IDMA_PHYSADDR_SEND_PAYLOAD",
4689 		"IDMA_SEND_FIFO_TO_IMSG",
4690 		"IDMA_FL_REQ_DATA_FL",
4691 		"IDMA_FL_DROP",
4692 		"IDMA_FL_DROP_SEND_INC",
4693 		"IDMA_FL_H_REQ_HEADER_FL",
4694 		"IDMA_FL_H_SEND_PCIEHDR",
4695 		"IDMA_FL_H_PUSH_CPL_FIFO",
4696 		"IDMA_FL_H_SEND_CPL",
4697 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
4698 		"IDMA_FL_H_SEND_IP_HDR",
4699 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
4700 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
4701 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
4702 		"IDMA_FL_D_SEND_PCIEHDR",
4703 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
4704 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
4705 		"IDMA_FL_SEND_PCIEHDR",
4706 		"IDMA_FL_PUSH_CPL_FIFO",
4707 		"IDMA_FL_SEND_CPL",
4708 		"IDMA_FL_SEND_PAYLOAD_FIRST",
4709 		"IDMA_FL_SEND_PAYLOAD",
4710 		"IDMA_FL_REQ_NEXT_DATA_FL",
4711 		"IDMA_FL_SEND_NEXT_PCIEHDR",
4712 		"IDMA_FL_SEND_PADDING",
4713 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
4714 	};
4715 	static const u32 sge_regs[] = {
4716 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
4717 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
4718 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
4719 	};
4720 	const char **sge_idma_decode;
4721 	int sge_idma_decode_nstates;
4722 	int i;
4723 
4724 	if (is_t4(adapter->params.chip)) {
4725 		sge_idma_decode = (const char **)t4_decode;
4726 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
4727 	} else {
4728 		sge_idma_decode = (const char **)t5_decode;
4729 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
4730 	}
4731 
4732 	if (state < sge_idma_decode_nstates)
4733 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
4734 	else
4735 		CH_WARN(adapter, "idma state %d unknown\n", state);
4736 
4737 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
4738 		CH_WARN(adapter, "SGE register %#x value %#x\n",
4739 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
4740 }
4741 
4742 /**
4743  *      t4_sge_ctxt_flush - flush the SGE context cache
4744  *      @adap: the adapter
4745  *      @mbox: mailbox to use for the FW command
4746  *
4747  *      Issues a FW command through the given mailbox to flush the
4748  *      SGE context cache.
4749  */
4750 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
4751 {
4752 	int ret;
4753 	u32 ldst_addrspace;
4754 	struct fw_ldst_cmd c;
4755 
4756 	memset(&c, 0, sizeof(c));
4757 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
4758 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4759 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
4760 					ldst_addrspace);
4761 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4762 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
4763 
4764 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4765 	return ret;
4766 }
4767 
4768 /**
4769  *      t4_fw_hello - establish communication with FW
4770  *      @adap: the adapter
4771  *      @mbox: mailbox to use for the FW command
4772  *      @evt_mbox: mailbox to receive async FW events
4773  *      @master: specifies the caller's willingness to be the device master
4774  *	@state: returns the current device state (if non-NULL)
4775  *
4776  *	Issues a command to establish communication with FW.  Returns either
4777  *	an error (negative integer) or the mailbox of the Master PF.
4778  */
4779 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
4780 		enum dev_master master, enum dev_state *state)
4781 {
4782 	int ret;
4783 	struct fw_hello_cmd c;
4784 	u32 v;
4785 	unsigned int master_mbox;
4786 	int retries = FW_CMD_HELLO_RETRIES;
4787 
4788 retry:
4789 	memset(&c, 0, sizeof(c));
4790 	INIT_CMD(c, HELLO, WRITE);
4791 	c.err_to_clearinit = cpu_to_be32(
4792 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
4793 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
4794 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
4795 					mbox : FW_HELLO_CMD_MBMASTER_M) |
4796 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
4797 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
4798 		FW_HELLO_CMD_CLEARINIT_F);
4799 
4800 	/*
4801 	 * Issue the HELLO command to the firmware.  If it's not successful
4802 	 * but indicates that we got a "busy" or "timeout" condition, retry
4803 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
4804 	 * retry limit, check to see if the firmware left us any error
4805 	 * information and report that if so.
4806 	 */
4807 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4808 	if (ret < 0) {
4809 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
4810 			goto retry;
4811 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
4812 			t4_report_fw_error(adap);
4813 		return ret;
4814 	}
4815 
4816 	v = be32_to_cpu(c.err_to_clearinit);
4817 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
4818 	if (state) {
4819 		if (v & FW_HELLO_CMD_ERR_F)
4820 			*state = DEV_STATE_ERR;
4821 		else if (v & FW_HELLO_CMD_INIT_F)
4822 			*state = DEV_STATE_INIT;
4823 		else
4824 			*state = DEV_STATE_UNINIT;
4825 	}
4826 
4827 	/*
4828 	 * If we're not the Master PF then we need to wait around for the
4829 	 * Master PF Driver to finish setting up the adapter.
4830 	 *
4831 	 * Note that we also do this wait if we're a non-Master-capable PF and
4832 	 * there is no current Master PF; a Master PF may show up momentarily
4833 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
4834 	 * OS loads lots of different drivers rapidly at the same time).  In
4835 	 * this case, the Master PF returned by the firmware will be
4836 	 * PCIE_FW_MASTER_M so the test below will work ...
4837 	 */
4838 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
4839 	    master_mbox != mbox) {
4840 		int waiting = FW_CMD_HELLO_TIMEOUT;
4841 
4842 		/*
4843 		 * Wait for the firmware to either indicate an error or
4844 		 * initialized state.  If we see either of these we bail out
4845 		 * and report the issue to the caller.  If we exhaust the
4846 		 * "hello timeout" and we haven't exhausted our retries, try
4847 		 * again.  Otherwise bail with a timeout error.
4848 		 */
4849 		for (;;) {
4850 			u32 pcie_fw;
4851 
4852 			msleep(50);
4853 			waiting -= 50;
4854 
4855 			/*
4856 			 * If neither Error nor Initialialized are indicated
4857 			 * by the firmware keep waiting till we exaust our
4858 			 * timeout ... and then retry if we haven't exhausted
4859 			 * our retries ...
4860 			 */
4861 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
4862 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
4863 				if (waiting <= 0) {
4864 					if (retries-- > 0)
4865 						goto retry;
4866 
4867 					return -ETIMEDOUT;
4868 				}
4869 				continue;
4870 			}
4871 
4872 			/*
4873 			 * We either have an Error or Initialized condition
4874 			 * report errors preferentially.
4875 			 */
4876 			if (state) {
4877 				if (pcie_fw & PCIE_FW_ERR_F)
4878 					*state = DEV_STATE_ERR;
4879 				else if (pcie_fw & PCIE_FW_INIT_F)
4880 					*state = DEV_STATE_INIT;
4881 			}
4882 
4883 			/*
4884 			 * If we arrived before a Master PF was selected and
4885 			 * there's not a valid Master PF, grab its identity
4886 			 * for our caller.
4887 			 */
4888 			if (master_mbox == PCIE_FW_MASTER_M &&
4889 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
4890 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
4891 			break;
4892 		}
4893 	}
4894 
4895 	return master_mbox;
4896 }
4897 
4898 /**
4899  *	t4_fw_bye - end communication with FW
4900  *	@adap: the adapter
4901  *	@mbox: mailbox to use for the FW command
4902  *
4903  *	Issues a command to terminate communication with FW.
4904  */
4905 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
4906 {
4907 	struct fw_bye_cmd c;
4908 
4909 	memset(&c, 0, sizeof(c));
4910 	INIT_CMD(c, BYE, WRITE);
4911 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4912 }
4913 
4914 /**
4915  *	t4_init_cmd - ask FW to initialize the device
4916  *	@adap: the adapter
4917  *	@mbox: mailbox to use for the FW command
4918  *
4919  *	Issues a command to FW to partially initialize the device.  This
4920  *	performs initialization that generally doesn't depend on user input.
4921  */
4922 int t4_early_init(struct adapter *adap, unsigned int mbox)
4923 {
4924 	struct fw_initialize_cmd c;
4925 
4926 	memset(&c, 0, sizeof(c));
4927 	INIT_CMD(c, INITIALIZE, WRITE);
4928 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4929 }
4930 
4931 /**
4932  *	t4_fw_reset - issue a reset to FW
4933  *	@adap: the adapter
4934  *	@mbox: mailbox to use for the FW command
4935  *	@reset: specifies the type of reset to perform
4936  *
4937  *	Issues a reset command of the specified type to FW.
4938  */
4939 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
4940 {
4941 	struct fw_reset_cmd c;
4942 
4943 	memset(&c, 0, sizeof(c));
4944 	INIT_CMD(c, RESET, WRITE);
4945 	c.val = cpu_to_be32(reset);
4946 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4947 }
4948 
4949 /**
4950  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
4951  *	@adap: the adapter
4952  *	@mbox: mailbox to use for the FW RESET command (if desired)
4953  *	@force: force uP into RESET even if FW RESET command fails
4954  *
4955  *	Issues a RESET command to firmware (if desired) with a HALT indication
4956  *	and then puts the microprocessor into RESET state.  The RESET command
4957  *	will only be issued if a legitimate mailbox is provided (mbox <=
4958  *	PCIE_FW_MASTER_M).
4959  *
4960  *	This is generally used in order for the host to safely manipulate the
4961  *	adapter without fear of conflicting with whatever the firmware might
4962  *	be doing.  The only way out of this state is to RESTART the firmware
4963  *	...
4964  */
4965 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
4966 {
4967 	int ret = 0;
4968 
4969 	/*
4970 	 * If a legitimate mailbox is provided, issue a RESET command
4971 	 * with a HALT indication.
4972 	 */
4973 	if (mbox <= PCIE_FW_MASTER_M) {
4974 		struct fw_reset_cmd c;
4975 
4976 		memset(&c, 0, sizeof(c));
4977 		INIT_CMD(c, RESET, WRITE);
4978 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
4979 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
4980 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4981 	}
4982 
4983 	/*
4984 	 * Normally we won't complete the operation if the firmware RESET
4985 	 * command fails but if our caller insists we'll go ahead and put the
4986 	 * uP into RESET.  This can be useful if the firmware is hung or even
4987 	 * missing ...  We'll have to take the risk of putting the uP into
4988 	 * RESET without the cooperation of firmware in that case.
4989 	 *
4990 	 * We also force the firmware's HALT flag to be on in case we bypassed
4991 	 * the firmware RESET command above or we're dealing with old firmware
4992 	 * which doesn't have the HALT capability.  This will serve as a flag
4993 	 * for the incoming firmware to know that it's coming out of a HALT
4994 	 * rather than a RESET ... if it's new enough to understand that ...
4995 	 */
4996 	if (ret == 0 || force) {
4997 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
4998 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
4999 				 PCIE_FW_HALT_F);
5000 	}
5001 
5002 	/*
5003 	 * And we always return the result of the firmware RESET command
5004 	 * even when we force the uP into RESET ...
5005 	 */
5006 	return ret;
5007 }
5008 
5009 /**
5010  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
5011  *	@adap: the adapter
5012  *	@reset: if we want to do a RESET to restart things
5013  *
5014  *	Restart firmware previously halted by t4_fw_halt().  On successful
5015  *	return the previous PF Master remains as the new PF Master and there
5016  *	is no need to issue a new HELLO command, etc.
5017  *
5018  *	We do this in two ways:
5019  *
5020  *	 1. If we're dealing with newer firmware we'll simply want to take
5021  *	    the chip's microprocessor out of RESET.  This will cause the
5022  *	    firmware to start up from its start vector.  And then we'll loop
5023  *	    until the firmware indicates it's started again (PCIE_FW.HALT
5024  *	    reset to 0) or we timeout.
5025  *
5026  *	 2. If we're dealing with older firmware then we'll need to RESET
5027  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
5028  *	    flag and automatically RESET itself on startup.
5029  */
5030 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
5031 {
5032 	if (reset) {
5033 		/*
5034 		 * Since we're directing the RESET instead of the firmware
5035 		 * doing it automatically, we need to clear the PCIE_FW.HALT
5036 		 * bit.
5037 		 */
5038 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
5039 
5040 		/*
5041 		 * If we've been given a valid mailbox, first try to get the
5042 		 * firmware to do the RESET.  If that works, great and we can
5043 		 * return success.  Otherwise, if we haven't been given a
5044 		 * valid mailbox or the RESET command failed, fall back to
5045 		 * hitting the chip with a hammer.
5046 		 */
5047 		if (mbox <= PCIE_FW_MASTER_M) {
5048 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
5049 			msleep(100);
5050 			if (t4_fw_reset(adap, mbox,
5051 					PIORST_F | PIORSTMODE_F) == 0)
5052 				return 0;
5053 		}
5054 
5055 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
5056 		msleep(2000);
5057 	} else {
5058 		int ms;
5059 
5060 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
5061 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
5062 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
5063 				return 0;
5064 			msleep(100);
5065 			ms += 100;
5066 		}
5067 		return -ETIMEDOUT;
5068 	}
5069 	return 0;
5070 }
5071 
5072 /**
5073  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
5074  *	@adap: the adapter
5075  *	@mbox: mailbox to use for the FW RESET command (if desired)
5076  *	@fw_data: the firmware image to write
5077  *	@size: image size
5078  *	@force: force upgrade even if firmware doesn't cooperate
5079  *
5080  *	Perform all of the steps necessary for upgrading an adapter's
5081  *	firmware image.  Normally this requires the cooperation of the
5082  *	existing firmware in order to halt all existing activities
5083  *	but if an invalid mailbox token is passed in we skip that step
5084  *	(though we'll still put the adapter microprocessor into RESET in
5085  *	that case).
5086  *
5087  *	On successful return the new firmware will have been loaded and
5088  *	the adapter will have been fully RESET losing all previous setup
5089  *	state.  On unsuccessful return the adapter may be completely hosed ...
5090  *	positive errno indicates that the adapter is ~probably~ intact, a
5091  *	negative errno indicates that things are looking bad ...
5092  */
5093 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
5094 		  const u8 *fw_data, unsigned int size, int force)
5095 {
5096 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
5097 	int reset, ret;
5098 
5099 	if (!t4_fw_matches_chip(adap, fw_hdr))
5100 		return -EINVAL;
5101 
5102 	ret = t4_fw_halt(adap, mbox, force);
5103 	if (ret < 0 && !force)
5104 		return ret;
5105 
5106 	ret = t4_load_fw(adap, fw_data, size);
5107 	if (ret < 0)
5108 		return ret;
5109 
5110 	/*
5111 	 * Older versions of the firmware don't understand the new
5112 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
5113 	 * restart.  So for newly loaded older firmware we'll have to do the
5114 	 * RESET for it so it starts up on a clean slate.  We can tell if
5115 	 * the newly loaded firmware will handle this right by checking
5116 	 * its header flags to see if it advertises the capability.
5117 	 */
5118 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
5119 	return t4_fw_restart(adap, mbox, reset);
5120 }
5121 
5122 /**
5123  *	t4_fixup_host_params - fix up host-dependent parameters
5124  *	@adap: the adapter
5125  *	@page_size: the host's Base Page Size
5126  *	@cache_line_size: the host's Cache Line Size
5127  *
5128  *	Various registers in T4 contain values which are dependent on the
5129  *	host's Base Page and Cache Line Sizes.  This function will fix all of
5130  *	those registers with the appropriate values as passed in ...
5131  */
5132 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
5133 			 unsigned int cache_line_size)
5134 {
5135 	unsigned int page_shift = fls(page_size) - 1;
5136 	unsigned int sge_hps = page_shift - 10;
5137 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
5138 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
5139 	unsigned int fl_align_log = fls(fl_align) - 1;
5140 
5141 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
5142 		     HOSTPAGESIZEPF0_V(sge_hps) |
5143 		     HOSTPAGESIZEPF1_V(sge_hps) |
5144 		     HOSTPAGESIZEPF2_V(sge_hps) |
5145 		     HOSTPAGESIZEPF3_V(sge_hps) |
5146 		     HOSTPAGESIZEPF4_V(sge_hps) |
5147 		     HOSTPAGESIZEPF5_V(sge_hps) |
5148 		     HOSTPAGESIZEPF6_V(sge_hps) |
5149 		     HOSTPAGESIZEPF7_V(sge_hps));
5150 
5151 	if (is_t4(adap->params.chip)) {
5152 		t4_set_reg_field(adap, SGE_CONTROL_A,
5153 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
5154 				 EGRSTATUSPAGESIZE_F,
5155 				 INGPADBOUNDARY_V(fl_align_log -
5156 						  INGPADBOUNDARY_SHIFT_X) |
5157 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
5158 	} else {
5159 		/* T5 introduced the separation of the Free List Padding and
5160 		 * Packing Boundaries.  Thus, we can select a smaller Padding
5161 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
5162 		 * Bandwidth, and use a Packing Boundary which is large enough
5163 		 * to avoid false sharing between CPUs, etc.
5164 		 *
5165 		 * For the PCI Link, the smaller the Padding Boundary the
5166 		 * better.  For the Memory Controller, a smaller Padding
5167 		 * Boundary is better until we cross under the Memory Line
5168 		 * Size (the minimum unit of transfer to/from Memory).  If we
5169 		 * have a Padding Boundary which is smaller than the Memory
5170 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
5171 		 * Memory Controller which is never good.  For T5 the smallest
5172 		 * Padding Boundary which we can select is 32 bytes which is
5173 		 * larger than any known Memory Controller Line Size so we'll
5174 		 * use that.
5175 		 *
5176 		 * T5 has a different interpretation of the "0" value for the
5177 		 * Packing Boundary.  This corresponds to 16 bytes instead of
5178 		 * the expected 32 bytes.  We never have a Packing Boundary
5179 		 * less than 32 bytes so we can't use that special value but
5180 		 * on the other hand, if we wanted 32 bytes, the best we can
5181 		 * really do is 64 bytes.
5182 		*/
5183 		if (fl_align <= 32) {
5184 			fl_align = 64;
5185 			fl_align_log = 6;
5186 		}
5187 		t4_set_reg_field(adap, SGE_CONTROL_A,
5188 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
5189 				 EGRSTATUSPAGESIZE_F,
5190 				 INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) |
5191 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
5192 		t4_set_reg_field(adap, SGE_CONTROL2_A,
5193 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
5194 				 INGPACKBOUNDARY_V(fl_align_log -
5195 						   INGPACKBOUNDARY_SHIFT_X));
5196 	}
5197 	/*
5198 	 * Adjust various SGE Free List Host Buffer Sizes.
5199 	 *
5200 	 * This is something of a crock since we're using fixed indices into
5201 	 * the array which are also known by the sge.c code and the T4
5202 	 * Firmware Configuration File.  We need to come up with a much better
5203 	 * approach to managing this array.  For now, the first four entries
5204 	 * are:
5205 	 *
5206 	 *   0: Host Page Size
5207 	 *   1: 64KB
5208 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
5209 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
5210 	 *
5211 	 * For the single-MTU buffers in unpacked mode we need to include
5212 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
5213 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
5214 	 * Padding boundary.  All of these are accommodated in the Factory
5215 	 * Default Firmware Configuration File but we need to adjust it for
5216 	 * this host's cache line size.
5217 	 */
5218 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
5219 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
5220 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
5221 		     & ~(fl_align-1));
5222 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
5223 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
5224 		     & ~(fl_align-1));
5225 
5226 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
5227 
5228 	return 0;
5229 }
5230 
5231 /**
5232  *	t4_fw_initialize - ask FW to initialize the device
5233  *	@adap: the adapter
5234  *	@mbox: mailbox to use for the FW command
5235  *
5236  *	Issues a command to FW to partially initialize the device.  This
5237  *	performs initialization that generally doesn't depend on user input.
5238  */
5239 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
5240 {
5241 	struct fw_initialize_cmd c;
5242 
5243 	memset(&c, 0, sizeof(c));
5244 	INIT_CMD(c, INITIALIZE, WRITE);
5245 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5246 }
5247 
5248 /**
5249  *	t4_query_params_rw - query FW or device parameters
5250  *	@adap: the adapter
5251  *	@mbox: mailbox to use for the FW command
5252  *	@pf: the PF
5253  *	@vf: the VF
5254  *	@nparams: the number of parameters
5255  *	@params: the parameter names
5256  *	@val: the parameter values
5257  *	@rw: Write and read flag
5258  *
5259  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
5260  *	queried at once.
5261  */
5262 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
5263 		       unsigned int vf, unsigned int nparams, const u32 *params,
5264 		       u32 *val, int rw)
5265 {
5266 	int i, ret;
5267 	struct fw_params_cmd c;
5268 	__be32 *p = &c.param[0].mnem;
5269 
5270 	if (nparams > 7)
5271 		return -EINVAL;
5272 
5273 	memset(&c, 0, sizeof(c));
5274 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
5275 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
5276 				  FW_PARAMS_CMD_PFN_V(pf) |
5277 				  FW_PARAMS_CMD_VFN_V(vf));
5278 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5279 
5280 	for (i = 0; i < nparams; i++) {
5281 		*p++ = cpu_to_be32(*params++);
5282 		if (rw)
5283 			*p = cpu_to_be32(*(val + i));
5284 		p++;
5285 	}
5286 
5287 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5288 	if (ret == 0)
5289 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
5290 			*val++ = be32_to_cpu(*p);
5291 	return ret;
5292 }
5293 
5294 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
5295 		    unsigned int vf, unsigned int nparams, const u32 *params,
5296 		    u32 *val)
5297 {
5298 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
5299 }
5300 
5301 /**
5302  *      t4_set_params_timeout - sets FW or device parameters
5303  *      @adap: the adapter
5304  *      @mbox: mailbox to use for the FW command
5305  *      @pf: the PF
5306  *      @vf: the VF
5307  *      @nparams: the number of parameters
5308  *      @params: the parameter names
5309  *      @val: the parameter values
5310  *      @timeout: the timeout time
5311  *
5312  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
5313  *      specified at once.
5314  */
5315 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
5316 			  unsigned int pf, unsigned int vf,
5317 			  unsigned int nparams, const u32 *params,
5318 			  const u32 *val, int timeout)
5319 {
5320 	struct fw_params_cmd c;
5321 	__be32 *p = &c.param[0].mnem;
5322 
5323 	if (nparams > 7)
5324 		return -EINVAL;
5325 
5326 	memset(&c, 0, sizeof(c));
5327 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
5328 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5329 				  FW_PARAMS_CMD_PFN_V(pf) |
5330 				  FW_PARAMS_CMD_VFN_V(vf));
5331 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5332 
5333 	while (nparams--) {
5334 		*p++ = cpu_to_be32(*params++);
5335 		*p++ = cpu_to_be32(*val++);
5336 	}
5337 
5338 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
5339 }
5340 
5341 /**
5342  *	t4_set_params - sets FW or device parameters
5343  *	@adap: the adapter
5344  *	@mbox: mailbox to use for the FW command
5345  *	@pf: the PF
5346  *	@vf: the VF
5347  *	@nparams: the number of parameters
5348  *	@params: the parameter names
5349  *	@val: the parameter values
5350  *
5351  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
5352  *	specified at once.
5353  */
5354 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
5355 		  unsigned int vf, unsigned int nparams, const u32 *params,
5356 		  const u32 *val)
5357 {
5358 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
5359 				     FW_CMD_MAX_TIMEOUT);
5360 }
5361 
5362 /**
5363  *	t4_cfg_pfvf - configure PF/VF resource limits
5364  *	@adap: the adapter
5365  *	@mbox: mailbox to use for the FW command
5366  *	@pf: the PF being configured
5367  *	@vf: the VF being configured
5368  *	@txq: the max number of egress queues
5369  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
5370  *	@rxqi: the max number of interrupt-capable ingress queues
5371  *	@rxq: the max number of interruptless ingress queues
5372  *	@tc: the PCI traffic class
5373  *	@vi: the max number of virtual interfaces
5374  *	@cmask: the channel access rights mask for the PF/VF
5375  *	@pmask: the port access rights mask for the PF/VF
5376  *	@nexact: the maximum number of exact MPS filters
5377  *	@rcaps: read capabilities
5378  *	@wxcaps: write/execute capabilities
5379  *
5380  *	Configures resource limits and capabilities for a physical or virtual
5381  *	function.
5382  */
5383 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
5384 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
5385 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
5386 		unsigned int vi, unsigned int cmask, unsigned int pmask,
5387 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
5388 {
5389 	struct fw_pfvf_cmd c;
5390 
5391 	memset(&c, 0, sizeof(c));
5392 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
5393 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
5394 				  FW_PFVF_CMD_VFN_V(vf));
5395 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5396 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
5397 				     FW_PFVF_CMD_NIQ_V(rxq));
5398 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
5399 				    FW_PFVF_CMD_PMASK_V(pmask) |
5400 				    FW_PFVF_CMD_NEQ_V(txq));
5401 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
5402 				      FW_PFVF_CMD_NVI_V(vi) |
5403 				      FW_PFVF_CMD_NEXACTF_V(nexact));
5404 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
5405 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
5406 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
5407 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5408 }
5409 
5410 /**
5411  *	t4_alloc_vi - allocate a virtual interface
5412  *	@adap: the adapter
5413  *	@mbox: mailbox to use for the FW command
5414  *	@port: physical port associated with the VI
5415  *	@pf: the PF owning the VI
5416  *	@vf: the VF owning the VI
5417  *	@nmac: number of MAC addresses needed (1 to 5)
5418  *	@mac: the MAC addresses of the VI
5419  *	@rss_size: size of RSS table slice associated with this VI
5420  *
5421  *	Allocates a virtual interface for the given physical port.  If @mac is
5422  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
5423  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
5424  *	stored consecutively so the space needed is @nmac * 6 bytes.
5425  *	Returns a negative error number or the non-negative VI id.
5426  */
5427 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
5428 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
5429 		unsigned int *rss_size)
5430 {
5431 	int ret;
5432 	struct fw_vi_cmd c;
5433 
5434 	memset(&c, 0, sizeof(c));
5435 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
5436 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
5437 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
5438 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
5439 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
5440 	c.nmac = nmac - 1;
5441 
5442 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5443 	if (ret)
5444 		return ret;
5445 
5446 	if (mac) {
5447 		memcpy(mac, c.mac, sizeof(c.mac));
5448 		switch (nmac) {
5449 		case 5:
5450 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
5451 		case 4:
5452 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
5453 		case 3:
5454 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
5455 		case 2:
5456 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
5457 		}
5458 	}
5459 	if (rss_size)
5460 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
5461 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
5462 }
5463 
5464 /**
5465  *	t4_free_vi - free a virtual interface
5466  *	@adap: the adapter
5467  *	@mbox: mailbox to use for the FW command
5468  *	@pf: the PF owning the VI
5469  *	@vf: the VF owning the VI
5470  *	@viid: virtual interface identifiler
5471  *
5472  *	Free a previously allocated virtual interface.
5473  */
5474 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
5475 	       unsigned int vf, unsigned int viid)
5476 {
5477 	struct fw_vi_cmd c;
5478 
5479 	memset(&c, 0, sizeof(c));
5480 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
5481 				  FW_CMD_REQUEST_F |
5482 				  FW_CMD_EXEC_F |
5483 				  FW_VI_CMD_PFN_V(pf) |
5484 				  FW_VI_CMD_VFN_V(vf));
5485 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
5486 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
5487 
5488 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5489 }
5490 
5491 /**
5492  *	t4_set_rxmode - set Rx properties of a virtual interface
5493  *	@adap: the adapter
5494  *	@mbox: mailbox to use for the FW command
5495  *	@viid: the VI id
5496  *	@mtu: the new MTU or -1
5497  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
5498  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
5499  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
5500  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
5501  *	@sleep_ok: if true we may sleep while awaiting command completion
5502  *
5503  *	Sets Rx properties of a virtual interface.
5504  */
5505 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
5506 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
5507 		  bool sleep_ok)
5508 {
5509 	struct fw_vi_rxmode_cmd c;
5510 
5511 	/* convert to FW values */
5512 	if (mtu < 0)
5513 		mtu = FW_RXMODE_MTU_NO_CHG;
5514 	if (promisc < 0)
5515 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
5516 	if (all_multi < 0)
5517 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
5518 	if (bcast < 0)
5519 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
5520 	if (vlanex < 0)
5521 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
5522 
5523 	memset(&c, 0, sizeof(c));
5524 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
5525 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5526 				   FW_VI_RXMODE_CMD_VIID_V(viid));
5527 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5528 	c.mtu_to_vlanexen =
5529 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
5530 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
5531 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
5532 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
5533 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
5534 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5535 }
5536 
5537 /**
5538  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
5539  *	@adap: the adapter
5540  *	@mbox: mailbox to use for the FW command
5541  *	@viid: the VI id
5542  *	@free: if true any existing filters for this VI id are first removed
5543  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
5544  *	@addr: the MAC address(es)
5545  *	@idx: where to store the index of each allocated filter
5546  *	@hash: pointer to hash address filter bitmap
5547  *	@sleep_ok: call is allowed to sleep
5548  *
5549  *	Allocates an exact-match filter for each of the supplied addresses and
5550  *	sets it to the corresponding address.  If @idx is not %NULL it should
5551  *	have at least @naddr entries, each of which will be set to the index of
5552  *	the filter allocated for the corresponding MAC address.  If a filter
5553  *	could not be allocated for an address its index is set to 0xffff.
5554  *	If @hash is not %NULL addresses that fail to allocate an exact filter
5555  *	are hashed and update the hash filter bitmap pointed at by @hash.
5556  *
5557  *	Returns a negative error number or the number of filters allocated.
5558  */
5559 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
5560 		      unsigned int viid, bool free, unsigned int naddr,
5561 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
5562 {
5563 	int offset, ret = 0;
5564 	struct fw_vi_mac_cmd c;
5565 	unsigned int nfilters = 0;
5566 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
5567 	unsigned int rem = naddr;
5568 
5569 	if (naddr > max_naddr)
5570 		return -EINVAL;
5571 
5572 	for (offset = 0; offset < naddr ; /**/) {
5573 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
5574 					 rem : ARRAY_SIZE(c.u.exact));
5575 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
5576 						     u.exact[fw_naddr]), 16);
5577 		struct fw_vi_mac_exact *p;
5578 		int i;
5579 
5580 		memset(&c, 0, sizeof(c));
5581 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5582 					   FW_CMD_REQUEST_F |
5583 					   FW_CMD_WRITE_F |
5584 					   FW_CMD_EXEC_V(free) |
5585 					   FW_VI_MAC_CMD_VIID_V(viid));
5586 		c.freemacs_to_len16 =
5587 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
5588 				    FW_CMD_LEN16_V(len16));
5589 
5590 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5591 			p->valid_to_idx =
5592 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
5593 					    FW_VI_MAC_CMD_IDX_V(
5594 						    FW_VI_MAC_ADD_MAC));
5595 			memcpy(p->macaddr, addr[offset + i],
5596 			       sizeof(p->macaddr));
5597 		}
5598 
5599 		/* It's okay if we run out of space in our MAC address arena.
5600 		 * Some of the addresses we submit may get stored so we need
5601 		 * to run through the reply to see what the results were ...
5602 		 */
5603 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
5604 		if (ret && ret != -FW_ENOMEM)
5605 			break;
5606 
5607 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5608 			u16 index = FW_VI_MAC_CMD_IDX_G(
5609 					be16_to_cpu(p->valid_to_idx));
5610 
5611 			if (idx)
5612 				idx[offset + i] = (index >= max_naddr ?
5613 						   0xffff : index);
5614 			if (index < max_naddr)
5615 				nfilters++;
5616 			else if (hash)
5617 				*hash |= (1ULL <<
5618 					  hash_mac_addr(addr[offset + i]));
5619 		}
5620 
5621 		free = false;
5622 		offset += fw_naddr;
5623 		rem -= fw_naddr;
5624 	}
5625 
5626 	if (ret == 0 || ret == -FW_ENOMEM)
5627 		ret = nfilters;
5628 	return ret;
5629 }
5630 
5631 /**
5632  *	t4_change_mac - modifies the exact-match filter for a MAC address
5633  *	@adap: the adapter
5634  *	@mbox: mailbox to use for the FW command
5635  *	@viid: the VI id
5636  *	@idx: index of existing filter for old value of MAC address, or -1
5637  *	@addr: the new MAC address value
5638  *	@persist: whether a new MAC allocation should be persistent
5639  *	@add_smt: if true also add the address to the HW SMT
5640  *
5641  *	Modifies an exact-match filter and sets it to the new MAC address.
5642  *	Note that in general it is not possible to modify the value of a given
5643  *	filter so the generic way to modify an address filter is to free the one
5644  *	being used by the old address value and allocate a new filter for the
5645  *	new address value.  @idx can be -1 if the address is a new addition.
5646  *
5647  *	Returns a negative error number or the index of the filter with the new
5648  *	MAC value.
5649  */
5650 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
5651 		  int idx, const u8 *addr, bool persist, bool add_smt)
5652 {
5653 	int ret, mode;
5654 	struct fw_vi_mac_cmd c;
5655 	struct fw_vi_mac_exact *p = c.u.exact;
5656 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
5657 
5658 	if (idx < 0)                             /* new allocation */
5659 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
5660 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
5661 
5662 	memset(&c, 0, sizeof(c));
5663 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5664 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5665 				   FW_VI_MAC_CMD_VIID_V(viid));
5666 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
5667 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
5668 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
5669 				      FW_VI_MAC_CMD_IDX_V(idx));
5670 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
5671 
5672 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5673 	if (ret == 0) {
5674 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
5675 		if (ret >= max_mac_addr)
5676 			ret = -ENOMEM;
5677 	}
5678 	return ret;
5679 }
5680 
5681 /**
5682  *	t4_set_addr_hash - program the MAC inexact-match hash filter
5683  *	@adap: the adapter
5684  *	@mbox: mailbox to use for the FW command
5685  *	@viid: the VI id
5686  *	@ucast: whether the hash filter should also match unicast addresses
5687  *	@vec: the value to be written to the hash filter
5688  *	@sleep_ok: call is allowed to sleep
5689  *
5690  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
5691  */
5692 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
5693 		     bool ucast, u64 vec, bool sleep_ok)
5694 {
5695 	struct fw_vi_mac_cmd c;
5696 
5697 	memset(&c, 0, sizeof(c));
5698 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5699 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5700 				   FW_VI_ENABLE_CMD_VIID_V(viid));
5701 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
5702 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
5703 					  FW_CMD_LEN16_V(1));
5704 	c.u.hash.hashvec = cpu_to_be64(vec);
5705 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5706 }
5707 
5708 /**
5709  *      t4_enable_vi_params - enable/disable a virtual interface
5710  *      @adap: the adapter
5711  *      @mbox: mailbox to use for the FW command
5712  *      @viid: the VI id
5713  *      @rx_en: 1=enable Rx, 0=disable Rx
5714  *      @tx_en: 1=enable Tx, 0=disable Tx
5715  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
5716  *
5717  *      Enables/disables a virtual interface.  Note that setting DCB Enable
5718  *      only makes sense when enabling a Virtual Interface ...
5719  */
5720 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
5721 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
5722 {
5723 	struct fw_vi_enable_cmd c;
5724 
5725 	memset(&c, 0, sizeof(c));
5726 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
5727 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5728 				   FW_VI_ENABLE_CMD_VIID_V(viid));
5729 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
5730 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
5731 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
5732 				     FW_LEN16(c));
5733 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
5734 }
5735 
5736 /**
5737  *	t4_enable_vi - enable/disable a virtual interface
5738  *	@adap: the adapter
5739  *	@mbox: mailbox to use for the FW command
5740  *	@viid: the VI id
5741  *	@rx_en: 1=enable Rx, 0=disable Rx
5742  *	@tx_en: 1=enable Tx, 0=disable Tx
5743  *
5744  *	Enables/disables a virtual interface.
5745  */
5746 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
5747 		 bool rx_en, bool tx_en)
5748 {
5749 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
5750 }
5751 
5752 /**
5753  *	t4_identify_port - identify a VI's port by blinking its LED
5754  *	@adap: the adapter
5755  *	@mbox: mailbox to use for the FW command
5756  *	@viid: the VI id
5757  *	@nblinks: how many times to blink LED at 2.5 Hz
5758  *
5759  *	Identifies a VI's port by blinking its LED.
5760  */
5761 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
5762 		     unsigned int nblinks)
5763 {
5764 	struct fw_vi_enable_cmd c;
5765 
5766 	memset(&c, 0, sizeof(c));
5767 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
5768 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5769 				   FW_VI_ENABLE_CMD_VIID_V(viid));
5770 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
5771 	c.blinkdur = cpu_to_be16(nblinks);
5772 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5773 }
5774 
5775 /**
5776  *	t4_iq_free - free an ingress queue and its FLs
5777  *	@adap: the adapter
5778  *	@mbox: mailbox to use for the FW command
5779  *	@pf: the PF owning the queues
5780  *	@vf: the VF owning the queues
5781  *	@iqtype: the ingress queue type
5782  *	@iqid: ingress queue id
5783  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
5784  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
5785  *
5786  *	Frees an ingress queue and its associated FLs, if any.
5787  */
5788 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5789 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
5790 	       unsigned int fl0id, unsigned int fl1id)
5791 {
5792 	struct fw_iq_cmd c;
5793 
5794 	memset(&c, 0, sizeof(c));
5795 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
5796 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
5797 				  FW_IQ_CMD_VFN_V(vf));
5798 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
5799 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
5800 	c.iqid = cpu_to_be16(iqid);
5801 	c.fl0id = cpu_to_be16(fl0id);
5802 	c.fl1id = cpu_to_be16(fl1id);
5803 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5804 }
5805 
5806 /**
5807  *	t4_eth_eq_free - free an Ethernet egress queue
5808  *	@adap: the adapter
5809  *	@mbox: mailbox to use for the FW command
5810  *	@pf: the PF owning the queue
5811  *	@vf: the VF owning the queue
5812  *	@eqid: egress queue id
5813  *
5814  *	Frees an Ethernet egress queue.
5815  */
5816 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5817 		   unsigned int vf, unsigned int eqid)
5818 {
5819 	struct fw_eq_eth_cmd c;
5820 
5821 	memset(&c, 0, sizeof(c));
5822 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
5823 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5824 				  FW_EQ_ETH_CMD_PFN_V(pf) |
5825 				  FW_EQ_ETH_CMD_VFN_V(vf));
5826 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
5827 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
5828 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5829 }
5830 
5831 /**
5832  *	t4_ctrl_eq_free - free a control egress queue
5833  *	@adap: the adapter
5834  *	@mbox: mailbox to use for the FW command
5835  *	@pf: the PF owning the queue
5836  *	@vf: the VF owning the queue
5837  *	@eqid: egress queue id
5838  *
5839  *	Frees a control egress queue.
5840  */
5841 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5842 		    unsigned int vf, unsigned int eqid)
5843 {
5844 	struct fw_eq_ctrl_cmd c;
5845 
5846 	memset(&c, 0, sizeof(c));
5847 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
5848 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5849 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
5850 				  FW_EQ_CTRL_CMD_VFN_V(vf));
5851 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
5852 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
5853 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5854 }
5855 
5856 /**
5857  *	t4_ofld_eq_free - free an offload egress queue
5858  *	@adap: the adapter
5859  *	@mbox: mailbox to use for the FW command
5860  *	@pf: the PF owning the queue
5861  *	@vf: the VF owning the queue
5862  *	@eqid: egress queue id
5863  *
5864  *	Frees a control egress queue.
5865  */
5866 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5867 		    unsigned int vf, unsigned int eqid)
5868 {
5869 	struct fw_eq_ofld_cmd c;
5870 
5871 	memset(&c, 0, sizeof(c));
5872 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
5873 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5874 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
5875 				  FW_EQ_OFLD_CMD_VFN_V(vf));
5876 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
5877 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
5878 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5879 }
5880 
5881 /**
5882  *	t4_handle_fw_rpl - process a FW reply message
5883  *	@adap: the adapter
5884  *	@rpl: start of the FW message
5885  *
5886  *	Processes a FW message, such as link state change messages.
5887  */
5888 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
5889 {
5890 	u8 opcode = *(const u8 *)rpl;
5891 
5892 	if (opcode == FW_PORT_CMD) {    /* link/module state change message */
5893 		int speed = 0, fc = 0;
5894 		const struct fw_port_cmd *p = (void *)rpl;
5895 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
5896 		int port = adap->chan_map[chan];
5897 		struct port_info *pi = adap2pinfo(adap, port);
5898 		struct link_config *lc = &pi->link_cfg;
5899 		u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
5900 		int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
5901 		u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
5902 
5903 		if (stat & FW_PORT_CMD_RXPAUSE_F)
5904 			fc |= PAUSE_RX;
5905 		if (stat & FW_PORT_CMD_TXPAUSE_F)
5906 			fc |= PAUSE_TX;
5907 		if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
5908 			speed = 100;
5909 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
5910 			speed = 1000;
5911 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
5912 			speed = 10000;
5913 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
5914 			speed = 40000;
5915 
5916 		if (link_ok != lc->link_ok || speed != lc->speed ||
5917 		    fc != lc->fc) {                    /* something changed */
5918 			lc->link_ok = link_ok;
5919 			lc->speed = speed;
5920 			lc->fc = fc;
5921 			lc->supported = be16_to_cpu(p->u.info.pcap);
5922 			t4_os_link_changed(adap, port, link_ok);
5923 		}
5924 		if (mod != pi->mod_type) {
5925 			pi->mod_type = mod;
5926 			t4_os_portmod_changed(adap, port);
5927 		}
5928 	}
5929 	return 0;
5930 }
5931 
5932 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
5933 {
5934 	u16 val;
5935 
5936 	if (pci_is_pcie(adapter->pdev)) {
5937 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
5938 		p->speed = val & PCI_EXP_LNKSTA_CLS;
5939 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
5940 	}
5941 }
5942 
5943 /**
5944  *	init_link_config - initialize a link's SW state
5945  *	@lc: structure holding the link state
5946  *	@caps: link capabilities
5947  *
5948  *	Initializes the SW state maintained for each link, including the link's
5949  *	capabilities and default speed/flow-control/autonegotiation settings.
5950  */
5951 static void init_link_config(struct link_config *lc, unsigned int caps)
5952 {
5953 	lc->supported = caps;
5954 	lc->requested_speed = 0;
5955 	lc->speed = 0;
5956 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
5957 	if (lc->supported & FW_PORT_CAP_ANEG) {
5958 		lc->advertising = lc->supported & ADVERT_MASK;
5959 		lc->autoneg = AUTONEG_ENABLE;
5960 		lc->requested_fc |= PAUSE_AUTONEG;
5961 	} else {
5962 		lc->advertising = 0;
5963 		lc->autoneg = AUTONEG_DISABLE;
5964 	}
5965 }
5966 
5967 #define CIM_PF_NOACCESS 0xeeeeeeee
5968 
5969 int t4_wait_dev_ready(void __iomem *regs)
5970 {
5971 	u32 whoami;
5972 
5973 	whoami = readl(regs + PL_WHOAMI_A);
5974 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
5975 		return 0;
5976 
5977 	msleep(500);
5978 	whoami = readl(regs + PL_WHOAMI_A);
5979 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
5980 }
5981 
5982 struct flash_desc {
5983 	u32 vendor_and_model_id;
5984 	u32 size_mb;
5985 };
5986 
5987 static int get_flash_params(struct adapter *adap)
5988 {
5989 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
5990 	 * to the preexisting code.  All flash parts have 64KB sectors.
5991 	 */
5992 	static struct flash_desc supported_flash[] = {
5993 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
5994 	};
5995 
5996 	int ret;
5997 	u32 info;
5998 
5999 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
6000 	if (!ret)
6001 		ret = sf1_read(adap, 3, 0, 1, &info);
6002 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
6003 	if (ret)
6004 		return ret;
6005 
6006 	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
6007 		if (supported_flash[ret].vendor_and_model_id == info) {
6008 			adap->params.sf_size = supported_flash[ret].size_mb;
6009 			adap->params.sf_nsec =
6010 				adap->params.sf_size / SF_SEC_SIZE;
6011 			return 0;
6012 		}
6013 
6014 	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
6015 		return -EINVAL;
6016 	info >>= 16;                           /* log2 of size */
6017 	if (info >= 0x14 && info < 0x18)
6018 		adap->params.sf_nsec = 1 << (info - 16);
6019 	else if (info == 0x18)
6020 		adap->params.sf_nsec = 64;
6021 	else
6022 		return -EINVAL;
6023 	adap->params.sf_size = 1 << info;
6024 	adap->params.sf_fw_start =
6025 		t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
6026 
6027 	if (adap->params.sf_size < FLASH_MIN_SIZE)
6028 		dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
6029 			 adap->params.sf_size, FLASH_MIN_SIZE);
6030 	return 0;
6031 }
6032 
6033 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
6034 {
6035 	u16 val;
6036 	u32 pcie_cap;
6037 
6038 	pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6039 	if (pcie_cap) {
6040 		pci_read_config_word(adapter->pdev,
6041 				     pcie_cap + PCI_EXP_DEVCTL2, &val);
6042 		val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
6043 		val |= range;
6044 		pci_write_config_word(adapter->pdev,
6045 				      pcie_cap + PCI_EXP_DEVCTL2, val);
6046 	}
6047 }
6048 
6049 /**
6050  *	t4_prep_adapter - prepare SW and HW for operation
6051  *	@adapter: the adapter
6052  *	@reset: if true perform a HW reset
6053  *
6054  *	Initialize adapter SW state for the various HW modules, set initial
6055  *	values for some adapter tunables, take PHYs out of reset, and
6056  *	initialize the MDIO interface.
6057  */
6058 int t4_prep_adapter(struct adapter *adapter)
6059 {
6060 	int ret, ver;
6061 	uint16_t device_id;
6062 	u32 pl_rev;
6063 
6064 	get_pci_mode(adapter, &adapter->params.pci);
6065 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
6066 
6067 	ret = get_flash_params(adapter);
6068 	if (ret < 0) {
6069 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
6070 		return ret;
6071 	}
6072 
6073 	/* Retrieve adapter's device ID
6074 	 */
6075 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
6076 	ver = device_id >> 12;
6077 	adapter->params.chip = 0;
6078 	switch (ver) {
6079 	case CHELSIO_T4:
6080 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
6081 		adapter->params.arch.sge_fl_db = DBPRIO_F;
6082 		adapter->params.arch.mps_tcam_size =
6083 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
6084 		adapter->params.arch.mps_rplc_size = 128;
6085 		adapter->params.arch.nchan = NCHAN;
6086 		adapter->params.arch.vfcount = 128;
6087 		break;
6088 	case CHELSIO_T5:
6089 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
6090 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
6091 		adapter->params.arch.mps_tcam_size =
6092 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6093 		adapter->params.arch.mps_rplc_size = 128;
6094 		adapter->params.arch.nchan = NCHAN;
6095 		adapter->params.arch.vfcount = 128;
6096 		break;
6097 	case CHELSIO_T6:
6098 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
6099 		adapter->params.arch.sge_fl_db = 0;
6100 		adapter->params.arch.mps_tcam_size =
6101 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6102 		adapter->params.arch.mps_rplc_size = 256;
6103 		adapter->params.arch.nchan = 2;
6104 		adapter->params.arch.vfcount = 256;
6105 		break;
6106 	default:
6107 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
6108 			device_id);
6109 		return -EINVAL;
6110 	}
6111 
6112 	adapter->params.cim_la_size = CIMLA_SIZE;
6113 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
6114 
6115 	/*
6116 	 * Default port for debugging in case we can't reach FW.
6117 	 */
6118 	adapter->params.nports = 1;
6119 	adapter->params.portvec = 1;
6120 	adapter->params.vpd.cclk = 50000;
6121 
6122 	/* Set pci completion timeout value to 4 seconds. */
6123 	set_pcie_completion_timeout(adapter, 0xd);
6124 	return 0;
6125 }
6126 
6127 /**
6128  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
6129  *	@adapter: the adapter
6130  *	@qid: the Queue ID
6131  *	@qtype: the Ingress or Egress type for @qid
6132  *	@user: true if this request is for a user mode queue
6133  *	@pbar2_qoffset: BAR2 Queue Offset
6134  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
6135  *
6136  *	Returns the BAR2 SGE Queue Registers information associated with the
6137  *	indicated Absolute Queue ID.  These are passed back in return value
6138  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
6139  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
6140  *
6141  *	This may return an error which indicates that BAR2 SGE Queue
6142  *	registers aren't available.  If an error is not returned, then the
6143  *	following values are returned:
6144  *
6145  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
6146  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
6147  *
6148  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
6149  *	require the "Inferred Queue ID" ability may be used.  E.g. the
6150  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
6151  *	then these "Inferred Queue ID" register may not be used.
6152  */
6153 int t4_bar2_sge_qregs(struct adapter *adapter,
6154 		      unsigned int qid,
6155 		      enum t4_bar2_qtype qtype,
6156 		      int user,
6157 		      u64 *pbar2_qoffset,
6158 		      unsigned int *pbar2_qid)
6159 {
6160 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
6161 	u64 bar2_page_offset, bar2_qoffset;
6162 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
6163 
6164 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
6165 	if (!user && is_t4(adapter->params.chip))
6166 		return -EINVAL;
6167 
6168 	/* Get our SGE Page Size parameters.
6169 	 */
6170 	page_shift = adapter->params.sge.hps + 10;
6171 	page_size = 1 << page_shift;
6172 
6173 	/* Get the right Queues per Page parameters for our Queue.
6174 	 */
6175 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
6176 		     ? adapter->params.sge.eq_qpp
6177 		     : adapter->params.sge.iq_qpp);
6178 	qpp_mask = (1 << qpp_shift) - 1;
6179 
6180 	/*  Calculate the basics of the BAR2 SGE Queue register area:
6181 	 *  o The BAR2 page the Queue registers will be in.
6182 	 *  o The BAR2 Queue ID.
6183 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
6184 	 */
6185 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
6186 	bar2_qid = qid & qpp_mask;
6187 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
6188 
6189 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
6190 	 * hardware will infer the Absolute Queue ID simply from the writes to
6191 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
6192 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
6193 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
6194 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
6195 	 * from the BAR2 Page and BAR2 Queue ID.
6196 	 *
6197 	 * One important censequence of this is that some BAR2 SGE registers
6198 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
6199 	 * there.  But other registers synthesize the SGE Queue ID purely
6200 	 * from the writes to the registers -- the Write Combined Doorbell
6201 	 * Buffer is a good example.  These BAR2 SGE Registers are only
6202 	 * available for those BAR2 SGE Register areas where the SGE Absolute
6203 	 * Queue ID can be inferred from simple writes.
6204 	 */
6205 	bar2_qoffset = bar2_page_offset;
6206 	bar2_qinferred = (bar2_qid_offset < page_size);
6207 	if (bar2_qinferred) {
6208 		bar2_qoffset += bar2_qid_offset;
6209 		bar2_qid = 0;
6210 	}
6211 
6212 	*pbar2_qoffset = bar2_qoffset;
6213 	*pbar2_qid = bar2_qid;
6214 	return 0;
6215 }
6216 
6217 /**
6218  *	t4_init_devlog_params - initialize adapter->params.devlog
6219  *	@adap: the adapter
6220  *
6221  *	Initialize various fields of the adapter's Firmware Device Log
6222  *	Parameters structure.
6223  */
6224 int t4_init_devlog_params(struct adapter *adap)
6225 {
6226 	struct devlog_params *dparams = &adap->params.devlog;
6227 	u32 pf_dparams;
6228 	unsigned int devlog_meminfo;
6229 	struct fw_devlog_cmd devlog_cmd;
6230 	int ret;
6231 
6232 	/* If we're dealing with newer firmware, the Device Log Paramerters
6233 	 * are stored in a designated register which allows us to access the
6234 	 * Device Log even if we can't talk to the firmware.
6235 	 */
6236 	pf_dparams =
6237 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
6238 	if (pf_dparams) {
6239 		unsigned int nentries, nentries128;
6240 
6241 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
6242 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
6243 
6244 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
6245 		nentries = (nentries128 + 1) * 128;
6246 		dparams->size = nentries * sizeof(struct fw_devlog_e);
6247 
6248 		return 0;
6249 	}
6250 
6251 	/* Otherwise, ask the firmware for it's Device Log Parameters.
6252 	 */
6253 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
6254 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
6255 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
6256 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
6257 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
6258 			 &devlog_cmd);
6259 	if (ret)
6260 		return ret;
6261 
6262 	devlog_meminfo =
6263 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
6264 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
6265 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
6266 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
6267 
6268 	return 0;
6269 }
6270 
6271 /**
6272  *	t4_init_sge_params - initialize adap->params.sge
6273  *	@adapter: the adapter
6274  *
6275  *	Initialize various fields of the adapter's SGE Parameters structure.
6276  */
6277 int t4_init_sge_params(struct adapter *adapter)
6278 {
6279 	struct sge_params *sge_params = &adapter->params.sge;
6280 	u32 hps, qpp;
6281 	unsigned int s_hps, s_qpp;
6282 
6283 	/* Extract the SGE Page Size for our PF.
6284 	 */
6285 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
6286 	s_hps = (HOSTPAGESIZEPF0_S +
6287 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
6288 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
6289 
6290 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
6291 	 */
6292 	s_qpp = (QUEUESPERPAGEPF0_S +
6293 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
6294 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
6295 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
6296 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
6297 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
6298 
6299 	return 0;
6300 }
6301 
6302 /**
6303  *      t4_init_tp_params - initialize adap->params.tp
6304  *      @adap: the adapter
6305  *
6306  *      Initialize various fields of the adapter's TP Parameters structure.
6307  */
6308 int t4_init_tp_params(struct adapter *adap)
6309 {
6310 	int chan;
6311 	u32 v;
6312 
6313 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
6314 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
6315 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
6316 
6317 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
6318 	for (chan = 0; chan < NCHAN; chan++)
6319 		adap->params.tp.tx_modq[chan] = chan;
6320 
6321 	/* Cache the adapter's Compressed Filter Mode and global Incress
6322 	 * Configuration.
6323 	 */
6324 	if (t4_use_ldst(adap)) {
6325 		t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
6326 				TP_VLAN_PRI_MAP_A, 1);
6327 		t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
6328 				TP_INGRESS_CONFIG_A, 1);
6329 	} else {
6330 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
6331 				 &adap->params.tp.vlan_pri_map, 1,
6332 				 TP_VLAN_PRI_MAP_A);
6333 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
6334 				 &adap->params.tp.ingress_config, 1,
6335 				 TP_INGRESS_CONFIG_A);
6336 	}
6337 
6338 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
6339 	 * shift positions of several elements of the Compressed Filter Tuple
6340 	 * for this adapter which we need frequently ...
6341 	 */
6342 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
6343 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
6344 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
6345 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
6346 							       PROTOCOL_F);
6347 
6348 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
6349 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
6350 	 */
6351 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
6352 		adap->params.tp.vnic_shift = -1;
6353 
6354 	return 0;
6355 }
6356 
6357 /**
6358  *      t4_filter_field_shift - calculate filter field shift
6359  *      @adap: the adapter
6360  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
6361  *
6362  *      Return the shift position of a filter field within the Compressed
6363  *      Filter Tuple.  The filter field is specified via its selection bit
6364  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
6365  */
6366 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
6367 {
6368 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
6369 	unsigned int sel;
6370 	int field_shift;
6371 
6372 	if ((filter_mode & filter_sel) == 0)
6373 		return -1;
6374 
6375 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
6376 		switch (filter_mode & sel) {
6377 		case FCOE_F:
6378 			field_shift += FT_FCOE_W;
6379 			break;
6380 		case PORT_F:
6381 			field_shift += FT_PORT_W;
6382 			break;
6383 		case VNIC_ID_F:
6384 			field_shift += FT_VNIC_ID_W;
6385 			break;
6386 		case VLAN_F:
6387 			field_shift += FT_VLAN_W;
6388 			break;
6389 		case TOS_F:
6390 			field_shift += FT_TOS_W;
6391 			break;
6392 		case PROTOCOL_F:
6393 			field_shift += FT_PROTOCOL_W;
6394 			break;
6395 		case ETHERTYPE_F:
6396 			field_shift += FT_ETHERTYPE_W;
6397 			break;
6398 		case MACMATCH_F:
6399 			field_shift += FT_MACMATCH_W;
6400 			break;
6401 		case MPSHITTYPE_F:
6402 			field_shift += FT_MPSHITTYPE_W;
6403 			break;
6404 		case FRAGMENTATION_F:
6405 			field_shift += FT_FRAGMENTATION_W;
6406 			break;
6407 		}
6408 	}
6409 	return field_shift;
6410 }
6411 
6412 int t4_init_rss_mode(struct adapter *adap, int mbox)
6413 {
6414 	int i, ret;
6415 	struct fw_rss_vi_config_cmd rvc;
6416 
6417 	memset(&rvc, 0, sizeof(rvc));
6418 
6419 	for_each_port(adap, i) {
6420 		struct port_info *p = adap2pinfo(adap, i);
6421 
6422 		rvc.op_to_viid =
6423 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
6424 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
6425 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
6426 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
6427 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
6428 		if (ret)
6429 			return ret;
6430 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
6431 	}
6432 	return 0;
6433 }
6434 
6435 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
6436 {
6437 	u8 addr[6];
6438 	int ret, i, j = 0;
6439 	struct fw_port_cmd c;
6440 	struct fw_rss_vi_config_cmd rvc;
6441 
6442 	memset(&c, 0, sizeof(c));
6443 	memset(&rvc, 0, sizeof(rvc));
6444 
6445 	for_each_port(adap, i) {
6446 		unsigned int rss_size;
6447 		struct port_info *p = adap2pinfo(adap, i);
6448 
6449 		while ((adap->params.portvec & (1 << j)) == 0)
6450 			j++;
6451 
6452 		c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
6453 					     FW_CMD_REQUEST_F | FW_CMD_READ_F |
6454 					     FW_PORT_CMD_PORTID_V(j));
6455 		c.action_to_len16 = cpu_to_be32(
6456 			FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
6457 			FW_LEN16(c));
6458 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6459 		if (ret)
6460 			return ret;
6461 
6462 		ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
6463 		if (ret < 0)
6464 			return ret;
6465 
6466 		p->viid = ret;
6467 		p->tx_chan = j;
6468 		p->lport = j;
6469 		p->rss_size = rss_size;
6470 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
6471 		adap->port[i]->dev_port = j;
6472 
6473 		ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
6474 		p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
6475 			FW_PORT_CMD_MDIOADDR_G(ret) : -1;
6476 		p->port_type = FW_PORT_CMD_PTYPE_G(ret);
6477 		p->mod_type = FW_PORT_MOD_TYPE_NA;
6478 
6479 		rvc.op_to_viid =
6480 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
6481 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
6482 				    FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
6483 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
6484 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
6485 		if (ret)
6486 			return ret;
6487 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
6488 
6489 		init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
6490 		j++;
6491 	}
6492 	return 0;
6493 }
6494 
6495 /**
6496  *	t4_read_cimq_cfg - read CIM queue configuration
6497  *	@adap: the adapter
6498  *	@base: holds the queue base addresses in bytes
6499  *	@size: holds the queue sizes in bytes
6500  *	@thres: holds the queue full thresholds in bytes
6501  *
6502  *	Returns the current configuration of the CIM queues, starting with
6503  *	the IBQs, then the OBQs.
6504  */
6505 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
6506 {
6507 	unsigned int i, v;
6508 	int cim_num_obq = is_t4(adap->params.chip) ?
6509 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
6510 
6511 	for (i = 0; i < CIM_NUM_IBQ; i++) {
6512 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
6513 			     QUENUMSELECT_V(i));
6514 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6515 		/* value is in 256-byte units */
6516 		*base++ = CIMQBASE_G(v) * 256;
6517 		*size++ = CIMQSIZE_G(v) * 256;
6518 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
6519 	}
6520 	for (i = 0; i < cim_num_obq; i++) {
6521 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
6522 			     QUENUMSELECT_V(i));
6523 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6524 		/* value is in 256-byte units */
6525 		*base++ = CIMQBASE_G(v) * 256;
6526 		*size++ = CIMQSIZE_G(v) * 256;
6527 	}
6528 }
6529 
6530 /**
6531  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
6532  *	@adap: the adapter
6533  *	@qid: the queue index
6534  *	@data: where to store the queue contents
6535  *	@n: capacity of @data in 32-bit words
6536  *
6537  *	Reads the contents of the selected CIM queue starting at address 0 up
6538  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
6539  *	error and the number of 32-bit words actually read on success.
6540  */
6541 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
6542 {
6543 	int i, err, attempts;
6544 	unsigned int addr;
6545 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
6546 
6547 	if (qid > 5 || (n & 3))
6548 		return -EINVAL;
6549 
6550 	addr = qid * nwords;
6551 	if (n > nwords)
6552 		n = nwords;
6553 
6554 	/* It might take 3-10ms before the IBQ debug read access is allowed.
6555 	 * Wait for 1 Sec with a delay of 1 usec.
6556 	 */
6557 	attempts = 1000000;
6558 
6559 	for (i = 0; i < n; i++, addr++) {
6560 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
6561 			     IBQDBGEN_F);
6562 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
6563 				      attempts, 1);
6564 		if (err)
6565 			return err;
6566 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
6567 	}
6568 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
6569 	return i;
6570 }
6571 
6572 /**
6573  *	t4_read_cim_obq - read the contents of a CIM outbound queue
6574  *	@adap: the adapter
6575  *	@qid: the queue index
6576  *	@data: where to store the queue contents
6577  *	@n: capacity of @data in 32-bit words
6578  *
6579  *	Reads the contents of the selected CIM queue starting at address 0 up
6580  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
6581  *	error and the number of 32-bit words actually read on success.
6582  */
6583 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
6584 {
6585 	int i, err;
6586 	unsigned int addr, v, nwords;
6587 	int cim_num_obq = is_t4(adap->params.chip) ?
6588 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
6589 
6590 	if ((qid > (cim_num_obq - 1)) || (n & 3))
6591 		return -EINVAL;
6592 
6593 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
6594 		     QUENUMSELECT_V(qid));
6595 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6596 
6597 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
6598 	nwords = CIMQSIZE_G(v) * 64;  /* same */
6599 	if (n > nwords)
6600 		n = nwords;
6601 
6602 	for (i = 0; i < n; i++, addr++) {
6603 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
6604 			     OBQDBGEN_F);
6605 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
6606 				      2, 1);
6607 		if (err)
6608 			return err;
6609 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
6610 	}
6611 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
6612 	return i;
6613 }
6614 
6615 /**
6616  *	t4_cim_read - read a block from CIM internal address space
6617  *	@adap: the adapter
6618  *	@addr: the start address within the CIM address space
6619  *	@n: number of words to read
6620  *	@valp: where to store the result
6621  *
6622  *	Reads a block of 4-byte words from the CIM intenal address space.
6623  */
6624 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
6625 		unsigned int *valp)
6626 {
6627 	int ret = 0;
6628 
6629 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
6630 		return -EBUSY;
6631 
6632 	for ( ; !ret && n--; addr += 4) {
6633 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
6634 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
6635 				      0, 5, 2);
6636 		if (!ret)
6637 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
6638 	}
6639 	return ret;
6640 }
6641 
6642 /**
6643  *	t4_cim_write - write a block into CIM internal address space
6644  *	@adap: the adapter
6645  *	@addr: the start address within the CIM address space
6646  *	@n: number of words to write
6647  *	@valp: set of values to write
6648  *
6649  *	Writes a block of 4-byte words into the CIM intenal address space.
6650  */
6651 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
6652 		 const unsigned int *valp)
6653 {
6654 	int ret = 0;
6655 
6656 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
6657 		return -EBUSY;
6658 
6659 	for ( ; !ret && n--; addr += 4) {
6660 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
6661 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
6662 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
6663 				      0, 5, 2);
6664 	}
6665 	return ret;
6666 }
6667 
6668 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
6669 			 unsigned int val)
6670 {
6671 	return t4_cim_write(adap, addr, 1, &val);
6672 }
6673 
6674 /**
6675  *	t4_cim_read_la - read CIM LA capture buffer
6676  *	@adap: the adapter
6677  *	@la_buf: where to store the LA data
6678  *	@wrptr: the HW write pointer within the capture buffer
6679  *
6680  *	Reads the contents of the CIM LA buffer with the most recent entry at
6681  *	the end	of the returned data and with the entry at @wrptr first.
6682  *	We try to leave the LA in the running state we find it in.
6683  */
6684 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
6685 {
6686 	int i, ret;
6687 	unsigned int cfg, val, idx;
6688 
6689 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
6690 	if (ret)
6691 		return ret;
6692 
6693 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
6694 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
6695 		if (ret)
6696 			return ret;
6697 	}
6698 
6699 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
6700 	if (ret)
6701 		goto restart;
6702 
6703 	idx = UPDBGLAWRPTR_G(val);
6704 	if (wrptr)
6705 		*wrptr = idx;
6706 
6707 	for (i = 0; i < adap->params.cim_la_size; i++) {
6708 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
6709 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
6710 		if (ret)
6711 			break;
6712 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
6713 		if (ret)
6714 			break;
6715 		if (val & UPDBGLARDEN_F) {
6716 			ret = -ETIMEDOUT;
6717 			break;
6718 		}
6719 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
6720 		if (ret)
6721 			break;
6722 		idx = (idx + 1) & UPDBGLARDPTR_M;
6723 	}
6724 restart:
6725 	if (cfg & UPDBGLAEN_F) {
6726 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
6727 				      cfg & ~UPDBGLARDEN_F);
6728 		if (!ret)
6729 			ret = r;
6730 	}
6731 	return ret;
6732 }
6733 
6734 /**
6735  *	t4_tp_read_la - read TP LA capture buffer
6736  *	@adap: the adapter
6737  *	@la_buf: where to store the LA data
6738  *	@wrptr: the HW write pointer within the capture buffer
6739  *
6740  *	Reads the contents of the TP LA buffer with the most recent entry at
6741  *	the end	of the returned data and with the entry at @wrptr first.
6742  *	We leave the LA in the running state we find it in.
6743  */
6744 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
6745 {
6746 	bool last_incomplete;
6747 	unsigned int i, cfg, val, idx;
6748 
6749 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
6750 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
6751 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
6752 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
6753 
6754 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
6755 	idx = DBGLAWPTR_G(val);
6756 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
6757 	if (last_incomplete)
6758 		idx = (idx + 1) & DBGLARPTR_M;
6759 	if (wrptr)
6760 		*wrptr = idx;
6761 
6762 	val &= 0xffff;
6763 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
6764 	val |= adap->params.tp.la_mask;
6765 
6766 	for (i = 0; i < TPLA_SIZE; i++) {
6767 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
6768 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
6769 		idx = (idx + 1) & DBGLARPTR_M;
6770 	}
6771 
6772 	/* Wipe out last entry if it isn't valid */
6773 	if (last_incomplete)
6774 		la_buf[TPLA_SIZE - 1] = ~0ULL;
6775 
6776 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
6777 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
6778 			     cfg | adap->params.tp.la_mask);
6779 }
6780 
6781 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
6782  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
6783  * state for more than the Warning Threshold then we'll issue a warning about
6784  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
6785  * appears to be hung every Warning Repeat second till the situation clears.
6786  * If the situation clears, we'll note that as well.
6787  */
6788 #define SGE_IDMA_WARN_THRESH 1
6789 #define SGE_IDMA_WARN_REPEAT 300
6790 
6791 /**
6792  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
6793  *	@adapter: the adapter
6794  *	@idma: the adapter IDMA Monitor state
6795  *
6796  *	Initialize the state of an SGE Ingress DMA Monitor.
6797  */
6798 void t4_idma_monitor_init(struct adapter *adapter,
6799 			  struct sge_idma_monitor_state *idma)
6800 {
6801 	/* Initialize the state variables for detecting an SGE Ingress DMA
6802 	 * hang.  The SGE has internal counters which count up on each clock
6803 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
6804 	 * same state they were on the previous clock tick.  The clock used is
6805 	 * the Core Clock so we have a limit on the maximum "time" they can
6806 	 * record; typically a very small number of seconds.  For instance,
6807 	 * with a 600MHz Core Clock, we can only count up to a bit more than
6808 	 * 7s.  So we'll synthesize a larger counter in order to not run the
6809 	 * risk of having the "timers" overflow and give us the flexibility to
6810 	 * maintain a Hung SGE State Machine of our own which operates across
6811 	 * a longer time frame.
6812 	 */
6813 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
6814 	idma->idma_stalled[0] = 0;
6815 	idma->idma_stalled[1] = 0;
6816 }
6817 
6818 /**
6819  *	t4_idma_monitor - monitor SGE Ingress DMA state
6820  *	@adapter: the adapter
6821  *	@idma: the adapter IDMA Monitor state
6822  *	@hz: number of ticks/second
6823  *	@ticks: number of ticks since the last IDMA Monitor call
6824  */
6825 void t4_idma_monitor(struct adapter *adapter,
6826 		     struct sge_idma_monitor_state *idma,
6827 		     int hz, int ticks)
6828 {
6829 	int i, idma_same_state_cnt[2];
6830 
6831 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
6832 	  * are counters inside the SGE which count up on each clock when the
6833 	  * SGE finds its Ingress DMA State Engines in the same states they
6834 	  * were in the previous clock.  The counters will peg out at
6835 	  * 0xffffffff without wrapping around so once they pass the 1s
6836 	  * threshold they'll stay above that till the IDMA state changes.
6837 	  */
6838 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
6839 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
6840 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
6841 
6842 	for (i = 0; i < 2; i++) {
6843 		u32 debug0, debug11;
6844 
6845 		/* If the Ingress DMA Same State Counter ("timer") is less
6846 		 * than 1s, then we can reset our synthesized Stall Timer and
6847 		 * continue.  If we have previously emitted warnings about a
6848 		 * potential stalled Ingress Queue, issue a note indicating
6849 		 * that the Ingress Queue has resumed forward progress.
6850 		 */
6851 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
6852 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
6853 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
6854 					 "resumed after %d seconds\n",
6855 					 i, idma->idma_qid[i],
6856 					 idma->idma_stalled[i] / hz);
6857 			idma->idma_stalled[i] = 0;
6858 			continue;
6859 		}
6860 
6861 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
6862 		 * domain.  The first time we get here it'll be because we
6863 		 * passed the 1s Threshold; each additional time it'll be
6864 		 * because the RX Timer Callback is being fired on its regular
6865 		 * schedule.
6866 		 *
6867 		 * If the stall is below our Potential Hung Ingress Queue
6868 		 * Warning Threshold, continue.
6869 		 */
6870 		if (idma->idma_stalled[i] == 0) {
6871 			idma->idma_stalled[i] = hz;
6872 			idma->idma_warn[i] = 0;
6873 		} else {
6874 			idma->idma_stalled[i] += ticks;
6875 			idma->idma_warn[i] -= ticks;
6876 		}
6877 
6878 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
6879 			continue;
6880 
6881 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
6882 		 */
6883 		if (idma->idma_warn[i] > 0)
6884 			continue;
6885 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
6886 
6887 		/* Read and save the SGE IDMA State and Queue ID information.
6888 		 * We do this every time in case it changes across time ...
6889 		 * can't be too careful ...
6890 		 */
6891 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
6892 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
6893 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
6894 
6895 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
6896 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
6897 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
6898 
6899 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
6900 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
6901 			 i, idma->idma_qid[i], idma->idma_state[i],
6902 			 idma->idma_stalled[i] / hz,
6903 			 debug0, debug11);
6904 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
6905 	}
6906 }
6907