1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) { 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 adap->flags &= ~CXGB4_FW_OK; 202 } 203 } 204 205 /* 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 207 */ 208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 209 u32 mbox_addr) 210 { 211 for ( ; nflit; nflit--, mbox_addr += 8) 212 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 213 } 214 215 /* 216 * Handle a FW assertion reported in a mailbox. 217 */ 218 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 219 { 220 struct fw_debug_cmd asrt; 221 222 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 223 dev_alert(adap->pdev_dev, 224 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 225 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 226 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 227 } 228 229 /** 230 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 231 * @adapter: the adapter 232 * @cmd: the Firmware Mailbox Command or Reply 233 * @size: command length in bytes 234 * @access: the time (ms) needed to access the Firmware Mailbox 235 * @execute: the time (ms) the command spent being executed 236 */ 237 static void t4_record_mbox(struct adapter *adapter, 238 const __be64 *cmd, unsigned int size, 239 int access, int execute) 240 { 241 struct mbox_cmd_log *log = adapter->mbox_log; 242 struct mbox_cmd *entry; 243 int i; 244 245 entry = mbox_cmd_log_entry(log, log->cursor++); 246 if (log->cursor == log->size) 247 log->cursor = 0; 248 249 for (i = 0; i < size / 8; i++) 250 entry->cmd[i] = be64_to_cpu(cmd[i]); 251 while (i < MBOX_LEN / 8) 252 entry->cmd[i++] = 0; 253 entry->timestamp = jiffies; 254 entry->seqno = log->seqno++; 255 entry->access = access; 256 entry->execute = execute; 257 } 258 259 /** 260 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 261 * @adap: the adapter 262 * @mbox: index of the mailbox to use 263 * @cmd: the command to write 264 * @size: command length in bytes 265 * @rpl: where to optionally store the reply 266 * @sleep_ok: if true we may sleep while awaiting command completion 267 * @timeout: time to wait for command to finish before timing out 268 * 269 * Sends the given command to FW through the selected mailbox and waits 270 * for the FW to execute the command. If @rpl is not %NULL it is used to 271 * store the FW's reply to the command. The command and its optional 272 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 273 * to respond. @sleep_ok determines whether we may sleep while awaiting 274 * the response. If sleeping is allowed we use progressive backoff 275 * otherwise we spin. 276 * 277 * The return value is 0 on success or a negative errno on failure. A 278 * failure can happen either because we are not able to execute the 279 * command or FW executes it but signals an error. In the latter case 280 * the return value is the error code indicated by FW (negated). 281 */ 282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 283 int size, void *rpl, bool sleep_ok, int timeout) 284 { 285 static const int delay[] = { 286 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 287 }; 288 289 struct mbox_list entry; 290 u16 access = 0; 291 u16 execute = 0; 292 u32 v; 293 u64 res; 294 int i, ms, delay_idx, ret; 295 const __be64 *p = cmd; 296 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 297 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 298 __be64 cmd_rpl[MBOX_LEN / 8]; 299 u32 pcie_fw; 300 301 if ((size & 15) || size > MBOX_LEN) 302 return -EINVAL; 303 304 /* 305 * If the device is off-line, as in EEH, commands will time out. 306 * Fail them early so we don't waste time waiting. 307 */ 308 if (adap->pdev->error_state != pci_channel_io_normal) 309 return -EIO; 310 311 /* If we have a negative timeout, that implies that we can't sleep. */ 312 if (timeout < 0) { 313 sleep_ok = false; 314 timeout = -timeout; 315 } 316 317 /* Queue ourselves onto the mailbox access list. When our entry is at 318 * the front of the list, we have rights to access the mailbox. So we 319 * wait [for a while] till we're at the front [or bail out with an 320 * EBUSY] ... 321 */ 322 spin_lock_bh(&adap->mbox_lock); 323 list_add_tail(&entry.list, &adap->mlist.list); 324 spin_unlock_bh(&adap->mbox_lock); 325 326 delay_idx = 0; 327 ms = delay[0]; 328 329 for (i = 0; ; i += ms) { 330 /* If we've waited too long, return a busy indication. This 331 * really ought to be based on our initial position in the 332 * mailbox access list but this is a start. We very rarely 333 * contend on access to the mailbox ... 334 */ 335 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 336 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 337 spin_lock_bh(&adap->mbox_lock); 338 list_del(&entry.list); 339 spin_unlock_bh(&adap->mbox_lock); 340 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 341 t4_record_mbox(adap, cmd, size, access, ret); 342 return ret; 343 } 344 345 /* If we're at the head, break out and start the mailbox 346 * protocol. 347 */ 348 if (list_first_entry(&adap->mlist.list, struct mbox_list, 349 list) == &entry) 350 break; 351 352 /* Delay for a bit before checking again ... */ 353 if (sleep_ok) { 354 ms = delay[delay_idx]; /* last element may repeat */ 355 if (delay_idx < ARRAY_SIZE(delay) - 1) 356 delay_idx++; 357 msleep(ms); 358 } else { 359 mdelay(ms); 360 } 361 } 362 363 /* Loop trying to get ownership of the mailbox. Return an error 364 * if we can't gain ownership. 365 */ 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 368 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 369 if (v != MBOX_OWNER_DRV) { 370 spin_lock_bh(&adap->mbox_lock); 371 list_del(&entry.list); 372 spin_unlock_bh(&adap->mbox_lock); 373 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 374 t4_record_mbox(adap, cmd, size, access, ret); 375 return ret; 376 } 377 378 /* Copy in the new mailbox command and send it on its way ... */ 379 t4_record_mbox(adap, cmd, size, access, 0); 380 for (i = 0; i < size; i += 8) 381 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 382 383 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 384 t4_read_reg(adap, ctl_reg); /* flush write */ 385 386 delay_idx = 0; 387 ms = delay[0]; 388 389 for (i = 0; 390 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 391 i < timeout; 392 i += ms) { 393 if (sleep_ok) { 394 ms = delay[delay_idx]; /* last element may repeat */ 395 if (delay_idx < ARRAY_SIZE(delay) - 1) 396 delay_idx++; 397 msleep(ms); 398 } else 399 mdelay(ms); 400 401 v = t4_read_reg(adap, ctl_reg); 402 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 403 if (!(v & MBMSGVALID_F)) { 404 t4_write_reg(adap, ctl_reg, 0); 405 continue; 406 } 407 408 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 409 res = be64_to_cpu(cmd_rpl[0]); 410 411 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 412 fw_asrt(adap, data_reg); 413 res = FW_CMD_RETVAL_V(EIO); 414 } else if (rpl) { 415 memcpy(rpl, cmd_rpl, size); 416 } 417 418 t4_write_reg(adap, ctl_reg, 0); 419 420 execute = i + ms; 421 t4_record_mbox(adap, cmd_rpl, 422 MBOX_LEN, access, execute); 423 spin_lock_bh(&adap->mbox_lock); 424 list_del(&entry.list); 425 spin_unlock_bh(&adap->mbox_lock); 426 return -FW_CMD_RETVAL_G((int)res); 427 } 428 } 429 430 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 431 t4_record_mbox(adap, cmd, size, access, ret); 432 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 433 *(const u8 *)cmd, mbox); 434 t4_report_fw_error(adap); 435 spin_lock_bh(&adap->mbox_lock); 436 list_del(&entry.list); 437 spin_unlock_bh(&adap->mbox_lock); 438 t4_fatal_err(adap); 439 return ret; 440 } 441 442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 443 void *rpl, bool sleep_ok) 444 { 445 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 446 FW_CMD_MAX_TIMEOUT); 447 } 448 449 static int t4_edc_err_read(struct adapter *adap, int idx) 450 { 451 u32 edc_ecc_err_addr_reg; 452 u32 rdata_reg; 453 454 if (is_t4(adap->params.chip)) { 455 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 456 return 0; 457 } 458 if (idx != 0 && idx != 1) { 459 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 460 return 0; 461 } 462 463 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 464 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 465 466 CH_WARN(adap, 467 "edc%d err addr 0x%x: 0x%x.\n", 468 idx, edc_ecc_err_addr_reg, 469 t4_read_reg(adap, edc_ecc_err_addr_reg)); 470 CH_WARN(adap, 471 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 472 rdata_reg, 473 (unsigned long long)t4_read_reg64(adap, rdata_reg), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 480 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 481 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 482 483 return 0; 484 } 485 486 /** 487 * t4_memory_rw_init - Get memory window relative offset, base, and size. 488 * @adap: the adapter 489 * @win: PCI-E Memory Window to use 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC 491 * @mem_off: memory relative offset with respect to @mtype. 492 * @mem_base: configured memory base address. 493 * @mem_aperture: configured memory window aperture. 494 * 495 * Get the configured memory window's relative offset, base, and size. 496 */ 497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off, 498 u32 *mem_base, u32 *mem_aperture) 499 { 500 u32 edc_size, mc_size, mem_reg; 501 502 /* Offset into the region of memory which is being accessed 503 * MEM_EDC0 = 0 504 * MEM_EDC1 = 1 505 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 506 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 507 * MEM_HMA = 4 508 */ 509 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 510 if (mtype == MEM_HMA) { 511 *mem_off = 2 * (edc_size * 1024 * 1024); 512 } else if (mtype != MEM_MC1) { 513 *mem_off = (mtype * (edc_size * 1024 * 1024)); 514 } else { 515 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 516 MA_EXT_MEMORY0_BAR_A)); 517 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 518 } 519 520 /* Each PCI-E Memory Window is programmed with a window size -- or 521 * "aperture" -- which controls the granularity of its mapping onto 522 * adapter memory. We need to grab that aperture in order to know 523 * how to use the specified window. The window is also programmed 524 * with the base address of the Memory Window in BAR0's address 525 * space. For T4 this is an absolute PCI-E Bus Address. For T5 526 * the address is relative to BAR0. 527 */ 528 mem_reg = t4_read_reg(adap, 529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 530 win)); 531 /* a dead adapter will return 0xffffffff for PIO reads */ 532 if (mem_reg == 0xffffffff) 533 return -ENXIO; 534 535 *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 536 *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 537 if (is_t4(adap->params.chip)) 538 *mem_base -= adap->t4_bar0; 539 540 return 0; 541 } 542 543 /** 544 * t4_memory_update_win - Move memory window to specified address. 545 * @adap: the adapter 546 * @win: PCI-E Memory Window to use 547 * @addr: location to move. 548 * 549 * Move memory window to specified address. 550 */ 551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr) 552 { 553 t4_write_reg(adap, 554 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 555 addr); 556 /* Read it back to ensure that changes propagate before we 557 * attempt to use the new value. 558 */ 559 t4_read_reg(adap, 560 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 561 } 562 563 /** 564 * t4_memory_rw_residual - Read/Write residual data. 565 * @adap: the adapter 566 * @off: relative offset within residual to start read/write. 567 * @addr: address within indicated memory type. 568 * @buf: host memory buffer 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 570 * 571 * Read/Write residual data less than 32-bits. 572 */ 573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf, 574 int dir) 575 { 576 union { 577 u32 word; 578 char byte[4]; 579 } last; 580 unsigned char *bp; 581 int i; 582 583 if (dir == T4_MEMORY_READ) { 584 last.word = le32_to_cpu((__force __le32) 585 t4_read_reg(adap, addr)); 586 for (bp = (unsigned char *)buf, i = off; i < 4; i++) 587 bp[i] = last.byte[i]; 588 } else { 589 last.word = *buf; 590 for (i = off; i < 4; i++) 591 last.byte[i] = 0; 592 t4_write_reg(adap, addr, 593 (__force u32)cpu_to_le32(last.word)); 594 } 595 } 596 597 /** 598 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 599 * @adap: the adapter 600 * @win: PCI-E Memory Window to use 601 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 602 * @addr: address within indicated memory type 603 * @len: amount of memory to transfer 604 * @hbuf: host memory buffer 605 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 606 * 607 * Reads/writes an [almost] arbitrary memory region in the firmware: the 608 * firmware memory address and host buffer must be aligned on 32-bit 609 * boundaries; the length may be arbitrary. The memory is transferred as 610 * a raw byte sequence from/to the firmware's memory. If this memory 611 * contains data structures which contain multi-byte integers, it's the 612 * caller's responsibility to perform appropriate byte order conversions. 613 */ 614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 615 u32 len, void *hbuf, int dir) 616 { 617 u32 pos, offset, resid, memoffset; 618 u32 win_pf, mem_aperture, mem_base; 619 u32 *buf; 620 int ret; 621 622 /* Argument sanity checks ... 623 */ 624 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 625 return -EINVAL; 626 buf = (u32 *)hbuf; 627 628 /* It's convenient to be able to handle lengths which aren't a 629 * multiple of 32-bits because we often end up transferring files to 630 * the firmware. So we'll handle that by normalizing the length here 631 * and then handling any residual transfer at the end. 632 */ 633 resid = len & 0x3; 634 len -= resid; 635 636 ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base, 637 &mem_aperture); 638 if (ret) 639 return ret; 640 641 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 642 addr = addr + memoffset; 643 644 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 645 646 /* Calculate our initial PCI-E Memory Window Position and Offset into 647 * that Window. 648 */ 649 pos = addr & ~(mem_aperture - 1); 650 offset = addr - pos; 651 652 /* Set up initial PCI-E Memory Window to cover the start of our 653 * transfer. 654 */ 655 t4_memory_update_win(adap, win, pos | win_pf); 656 657 /* Transfer data to/from the adapter as long as there's an integral 658 * number of 32-bit transfers to complete. 659 * 660 * A note on Endianness issues: 661 * 662 * The "register" reads and writes below from/to the PCI-E Memory 663 * Window invoke the standard adapter Big-Endian to PCI-E Link 664 * Little-Endian "swizzel." As a result, if we have the following 665 * data in adapter memory: 666 * 667 * Memory: ... | b0 | b1 | b2 | b3 | ... 668 * Address: i+0 i+1 i+2 i+3 669 * 670 * Then a read of the adapter memory via the PCI-E Memory Window 671 * will yield: 672 * 673 * x = readl(i) 674 * 31 0 675 * [ b3 | b2 | b1 | b0 ] 676 * 677 * If this value is stored into local memory on a Little-Endian system 678 * it will show up correctly in local memory as: 679 * 680 * ( ..., b0, b1, b2, b3, ... ) 681 * 682 * But on a Big-Endian system, the store will show up in memory 683 * incorrectly swizzled as: 684 * 685 * ( ..., b3, b2, b1, b0, ... ) 686 * 687 * So we need to account for this in the reads and writes to the 688 * PCI-E Memory Window below by undoing the register read/write 689 * swizzels. 690 */ 691 while (len > 0) { 692 if (dir == T4_MEMORY_READ) 693 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 694 mem_base + offset)); 695 else 696 t4_write_reg(adap, mem_base + offset, 697 (__force u32)cpu_to_le32(*buf++)); 698 offset += sizeof(__be32); 699 len -= sizeof(__be32); 700 701 /* If we've reached the end of our current window aperture, 702 * move the PCI-E Memory Window on to the next. Note that 703 * doing this here after "len" may be 0 allows us to set up 704 * the PCI-E Memory Window for a possible final residual 705 * transfer below ... 706 */ 707 if (offset == mem_aperture) { 708 pos += mem_aperture; 709 offset = 0; 710 t4_memory_update_win(adap, win, pos | win_pf); 711 } 712 } 713 714 /* If the original transfer had a length which wasn't a multiple of 715 * 32-bits, now's where we need to finish off the transfer of the 716 * residual amount. The PCI-E Memory Window has already been moved 717 * above (if necessary) to cover this final transfer. 718 */ 719 if (resid) 720 t4_memory_rw_residual(adap, resid, mem_base + offset, 721 (u8 *)buf, dir); 722 723 return 0; 724 } 725 726 /* Return the specified PCI-E Configuration Space register from our Physical 727 * Function. We try first via a Firmware LDST Command since we prefer to let 728 * the firmware own all of these registers, but if that fails we go for it 729 * directly ourselves. 730 */ 731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 732 { 733 u32 val, ldst_addrspace; 734 735 /* If fw_attach != 0, construct and send the Firmware LDST Command to 736 * retrieve the specified PCI-E Configuration Space register. 737 */ 738 struct fw_ldst_cmd ldst_cmd; 739 int ret; 740 741 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 742 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 743 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 744 FW_CMD_REQUEST_F | 745 FW_CMD_READ_F | 746 ldst_addrspace); 747 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 748 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 749 ldst_cmd.u.pcie.ctrl_to_fn = 750 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 751 ldst_cmd.u.pcie.r = reg; 752 753 /* If the LDST Command succeeds, return the result, otherwise 754 * fall through to reading it directly ourselves ... 755 */ 756 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 757 &ldst_cmd); 758 if (ret == 0) 759 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 760 else 761 /* Read the desired Configuration Space register via the PCI-E 762 * Backdoor mechanism. 763 */ 764 t4_hw_pci_read_cfg4(adap, reg, &val); 765 return val; 766 } 767 768 /* Get the window based on base passed to it. 769 * Window aperture is currently unhandled, but there is no use case for it 770 * right now 771 */ 772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 773 u32 memwin_base) 774 { 775 u32 ret; 776 777 if (is_t4(adap->params.chip)) { 778 u32 bar0; 779 780 /* Truncation intentional: we only read the bottom 32-bits of 781 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 782 * mechanism to read BAR0 instead of using 783 * pci_resource_start() because we could be operating from 784 * within a Virtual Machine which is trapping our accesses to 785 * our Configuration Space and we need to set up the PCI-E 786 * Memory Window decoders with the actual addresses which will 787 * be coming across the PCI-E link. 788 */ 789 bar0 = t4_read_pcie_cfg4(adap, pci_base); 790 bar0 &= pci_mask; 791 adap->t4_bar0 = bar0; 792 793 ret = bar0 + memwin_base; 794 } else { 795 /* For T5, only relative offset inside the PCIe BAR is passed */ 796 ret = memwin_base; 797 } 798 return ret; 799 } 800 801 /* Get the default utility window (win0) used by everyone */ 802 u32 t4_get_util_window(struct adapter *adap) 803 { 804 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 805 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 806 } 807 808 /* Set up memory window for accessing adapter memory ranges. (Read 809 * back MA register to ensure that changes propagate before we attempt 810 * to use the new values.) 811 */ 812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 813 { 814 t4_write_reg(adap, 815 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 816 memwin_base | BIR_V(0) | 817 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 818 t4_read_reg(adap, 819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 820 } 821 822 /** 823 * t4_get_regs_len - return the size of the chips register set 824 * @adapter: the adapter 825 * 826 * Returns the size of the chip's BAR0 register space. 827 */ 828 unsigned int t4_get_regs_len(struct adapter *adapter) 829 { 830 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 831 832 switch (chip_version) { 833 case CHELSIO_T4: 834 return T4_REGMAP_SIZE; 835 836 case CHELSIO_T5: 837 case CHELSIO_T6: 838 return T5_REGMAP_SIZE; 839 } 840 841 dev_err(adapter->pdev_dev, 842 "Unsupported chip version %d\n", chip_version); 843 return 0; 844 } 845 846 /** 847 * t4_get_regs - read chip registers into provided buffer 848 * @adap: the adapter 849 * @buf: register buffer 850 * @buf_size: size (in bytes) of register buffer 851 * 852 * If the provided register buffer isn't large enough for the chip's 853 * full register range, the register dump will be truncated to the 854 * register buffer's size. 855 */ 856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 857 { 858 static const unsigned int t4_reg_ranges[] = { 859 0x1008, 0x1108, 860 0x1180, 0x1184, 861 0x1190, 0x1194, 862 0x11a0, 0x11a4, 863 0x11b0, 0x11b4, 864 0x11fc, 0x123c, 865 0x1300, 0x173c, 866 0x1800, 0x18fc, 867 0x3000, 0x30d8, 868 0x30e0, 0x30e4, 869 0x30ec, 0x5910, 870 0x5920, 0x5924, 871 0x5960, 0x5960, 872 0x5968, 0x5968, 873 0x5970, 0x5970, 874 0x5978, 0x5978, 875 0x5980, 0x5980, 876 0x5988, 0x5988, 877 0x5990, 0x5990, 878 0x5998, 0x5998, 879 0x59a0, 0x59d4, 880 0x5a00, 0x5ae0, 881 0x5ae8, 0x5ae8, 882 0x5af0, 0x5af0, 883 0x5af8, 0x5af8, 884 0x6000, 0x6098, 885 0x6100, 0x6150, 886 0x6200, 0x6208, 887 0x6240, 0x6248, 888 0x6280, 0x62b0, 889 0x62c0, 0x6338, 890 0x6370, 0x638c, 891 0x6400, 0x643c, 892 0x6500, 0x6524, 893 0x6a00, 0x6a04, 894 0x6a14, 0x6a38, 895 0x6a60, 0x6a70, 896 0x6a78, 0x6a78, 897 0x6b00, 0x6b0c, 898 0x6b1c, 0x6b84, 899 0x6bf0, 0x6bf8, 900 0x6c00, 0x6c0c, 901 0x6c1c, 0x6c84, 902 0x6cf0, 0x6cf8, 903 0x6d00, 0x6d0c, 904 0x6d1c, 0x6d84, 905 0x6df0, 0x6df8, 906 0x6e00, 0x6e0c, 907 0x6e1c, 0x6e84, 908 0x6ef0, 0x6ef8, 909 0x6f00, 0x6f0c, 910 0x6f1c, 0x6f84, 911 0x6ff0, 0x6ff8, 912 0x7000, 0x700c, 913 0x701c, 0x7084, 914 0x70f0, 0x70f8, 915 0x7100, 0x710c, 916 0x711c, 0x7184, 917 0x71f0, 0x71f8, 918 0x7200, 0x720c, 919 0x721c, 0x7284, 920 0x72f0, 0x72f8, 921 0x7300, 0x730c, 922 0x731c, 0x7384, 923 0x73f0, 0x73f8, 924 0x7400, 0x7450, 925 0x7500, 0x7530, 926 0x7600, 0x760c, 927 0x7614, 0x761c, 928 0x7680, 0x76cc, 929 0x7700, 0x7798, 930 0x77c0, 0x77fc, 931 0x7900, 0x79fc, 932 0x7b00, 0x7b58, 933 0x7b60, 0x7b84, 934 0x7b8c, 0x7c38, 935 0x7d00, 0x7d38, 936 0x7d40, 0x7d80, 937 0x7d8c, 0x7ddc, 938 0x7de4, 0x7e04, 939 0x7e10, 0x7e1c, 940 0x7e24, 0x7e38, 941 0x7e40, 0x7e44, 942 0x7e4c, 0x7e78, 943 0x7e80, 0x7ea4, 944 0x7eac, 0x7edc, 945 0x7ee8, 0x7efc, 946 0x8dc0, 0x8e04, 947 0x8e10, 0x8e1c, 948 0x8e30, 0x8e78, 949 0x8ea0, 0x8eb8, 950 0x8ec0, 0x8f6c, 951 0x8fc0, 0x9008, 952 0x9010, 0x9058, 953 0x9060, 0x9060, 954 0x9068, 0x9074, 955 0x90fc, 0x90fc, 956 0x9400, 0x9408, 957 0x9410, 0x9458, 958 0x9600, 0x9600, 959 0x9608, 0x9638, 960 0x9640, 0x96bc, 961 0x9800, 0x9808, 962 0x9820, 0x983c, 963 0x9850, 0x9864, 964 0x9c00, 0x9c6c, 965 0x9c80, 0x9cec, 966 0x9d00, 0x9d6c, 967 0x9d80, 0x9dec, 968 0x9e00, 0x9e6c, 969 0x9e80, 0x9eec, 970 0x9f00, 0x9f6c, 971 0x9f80, 0x9fec, 972 0xd004, 0xd004, 973 0xd010, 0xd03c, 974 0xdfc0, 0xdfe0, 975 0xe000, 0xea7c, 976 0xf000, 0x11110, 977 0x11118, 0x11190, 978 0x19040, 0x1906c, 979 0x19078, 0x19080, 980 0x1908c, 0x190e4, 981 0x190f0, 0x190f8, 982 0x19100, 0x19110, 983 0x19120, 0x19124, 984 0x19150, 0x19194, 985 0x1919c, 0x191b0, 986 0x191d0, 0x191e8, 987 0x19238, 0x1924c, 988 0x193f8, 0x1943c, 989 0x1944c, 0x19474, 990 0x19490, 0x194e0, 991 0x194f0, 0x194f8, 992 0x19800, 0x19c08, 993 0x19c10, 0x19c90, 994 0x19ca0, 0x19ce4, 995 0x19cf0, 0x19d40, 996 0x19d50, 0x19d94, 997 0x19da0, 0x19de8, 998 0x19df0, 0x19e40, 999 0x19e50, 0x19e90, 1000 0x19ea0, 0x19f4c, 1001 0x1a000, 0x1a004, 1002 0x1a010, 0x1a06c, 1003 0x1a0b0, 0x1a0e4, 1004 0x1a0ec, 0x1a0f4, 1005 0x1a100, 0x1a108, 1006 0x1a114, 0x1a120, 1007 0x1a128, 0x1a130, 1008 0x1a138, 0x1a138, 1009 0x1a190, 0x1a1c4, 1010 0x1a1fc, 0x1a1fc, 1011 0x1e040, 0x1e04c, 1012 0x1e284, 0x1e28c, 1013 0x1e2c0, 0x1e2c0, 1014 0x1e2e0, 0x1e2e0, 1015 0x1e300, 0x1e384, 1016 0x1e3c0, 0x1e3c8, 1017 0x1e440, 0x1e44c, 1018 0x1e684, 0x1e68c, 1019 0x1e6c0, 0x1e6c0, 1020 0x1e6e0, 0x1e6e0, 1021 0x1e700, 0x1e784, 1022 0x1e7c0, 0x1e7c8, 1023 0x1e840, 0x1e84c, 1024 0x1ea84, 0x1ea8c, 1025 0x1eac0, 0x1eac0, 1026 0x1eae0, 0x1eae0, 1027 0x1eb00, 0x1eb84, 1028 0x1ebc0, 0x1ebc8, 1029 0x1ec40, 0x1ec4c, 1030 0x1ee84, 0x1ee8c, 1031 0x1eec0, 0x1eec0, 1032 0x1eee0, 0x1eee0, 1033 0x1ef00, 0x1ef84, 1034 0x1efc0, 0x1efc8, 1035 0x1f040, 0x1f04c, 1036 0x1f284, 0x1f28c, 1037 0x1f2c0, 0x1f2c0, 1038 0x1f2e0, 0x1f2e0, 1039 0x1f300, 0x1f384, 1040 0x1f3c0, 0x1f3c8, 1041 0x1f440, 0x1f44c, 1042 0x1f684, 0x1f68c, 1043 0x1f6c0, 0x1f6c0, 1044 0x1f6e0, 0x1f6e0, 1045 0x1f700, 0x1f784, 1046 0x1f7c0, 0x1f7c8, 1047 0x1f840, 0x1f84c, 1048 0x1fa84, 0x1fa8c, 1049 0x1fac0, 0x1fac0, 1050 0x1fae0, 0x1fae0, 1051 0x1fb00, 0x1fb84, 1052 0x1fbc0, 0x1fbc8, 1053 0x1fc40, 0x1fc4c, 1054 0x1fe84, 0x1fe8c, 1055 0x1fec0, 0x1fec0, 1056 0x1fee0, 0x1fee0, 1057 0x1ff00, 0x1ff84, 1058 0x1ffc0, 0x1ffc8, 1059 0x20000, 0x2002c, 1060 0x20100, 0x2013c, 1061 0x20190, 0x201a0, 1062 0x201a8, 0x201b8, 1063 0x201c4, 0x201c8, 1064 0x20200, 0x20318, 1065 0x20400, 0x204b4, 1066 0x204c0, 0x20528, 1067 0x20540, 0x20614, 1068 0x21000, 0x21040, 1069 0x2104c, 0x21060, 1070 0x210c0, 0x210ec, 1071 0x21200, 0x21268, 1072 0x21270, 0x21284, 1073 0x212fc, 0x21388, 1074 0x21400, 0x21404, 1075 0x21500, 0x21500, 1076 0x21510, 0x21518, 1077 0x2152c, 0x21530, 1078 0x2153c, 0x2153c, 1079 0x21550, 0x21554, 1080 0x21600, 0x21600, 1081 0x21608, 0x2161c, 1082 0x21624, 0x21628, 1083 0x21630, 0x21634, 1084 0x2163c, 0x2163c, 1085 0x21700, 0x2171c, 1086 0x21780, 0x2178c, 1087 0x21800, 0x21818, 1088 0x21820, 0x21828, 1089 0x21830, 0x21848, 1090 0x21850, 0x21854, 1091 0x21860, 0x21868, 1092 0x21870, 0x21870, 1093 0x21878, 0x21898, 1094 0x218a0, 0x218a8, 1095 0x218b0, 0x218c8, 1096 0x218d0, 0x218d4, 1097 0x218e0, 0x218e8, 1098 0x218f0, 0x218f0, 1099 0x218f8, 0x21a18, 1100 0x21a20, 0x21a28, 1101 0x21a30, 0x21a48, 1102 0x21a50, 0x21a54, 1103 0x21a60, 0x21a68, 1104 0x21a70, 0x21a70, 1105 0x21a78, 0x21a98, 1106 0x21aa0, 0x21aa8, 1107 0x21ab0, 0x21ac8, 1108 0x21ad0, 0x21ad4, 1109 0x21ae0, 0x21ae8, 1110 0x21af0, 0x21af0, 1111 0x21af8, 0x21c18, 1112 0x21c20, 0x21c20, 1113 0x21c28, 0x21c30, 1114 0x21c38, 0x21c38, 1115 0x21c80, 0x21c98, 1116 0x21ca0, 0x21ca8, 1117 0x21cb0, 0x21cc8, 1118 0x21cd0, 0x21cd4, 1119 0x21ce0, 0x21ce8, 1120 0x21cf0, 0x21cf0, 1121 0x21cf8, 0x21d7c, 1122 0x21e00, 0x21e04, 1123 0x22000, 0x2202c, 1124 0x22100, 0x2213c, 1125 0x22190, 0x221a0, 1126 0x221a8, 0x221b8, 1127 0x221c4, 0x221c8, 1128 0x22200, 0x22318, 1129 0x22400, 0x224b4, 1130 0x224c0, 0x22528, 1131 0x22540, 0x22614, 1132 0x23000, 0x23040, 1133 0x2304c, 0x23060, 1134 0x230c0, 0x230ec, 1135 0x23200, 0x23268, 1136 0x23270, 0x23284, 1137 0x232fc, 0x23388, 1138 0x23400, 0x23404, 1139 0x23500, 0x23500, 1140 0x23510, 0x23518, 1141 0x2352c, 0x23530, 1142 0x2353c, 0x2353c, 1143 0x23550, 0x23554, 1144 0x23600, 0x23600, 1145 0x23608, 0x2361c, 1146 0x23624, 0x23628, 1147 0x23630, 0x23634, 1148 0x2363c, 0x2363c, 1149 0x23700, 0x2371c, 1150 0x23780, 0x2378c, 1151 0x23800, 0x23818, 1152 0x23820, 0x23828, 1153 0x23830, 0x23848, 1154 0x23850, 0x23854, 1155 0x23860, 0x23868, 1156 0x23870, 0x23870, 1157 0x23878, 0x23898, 1158 0x238a0, 0x238a8, 1159 0x238b0, 0x238c8, 1160 0x238d0, 0x238d4, 1161 0x238e0, 0x238e8, 1162 0x238f0, 0x238f0, 1163 0x238f8, 0x23a18, 1164 0x23a20, 0x23a28, 1165 0x23a30, 0x23a48, 1166 0x23a50, 0x23a54, 1167 0x23a60, 0x23a68, 1168 0x23a70, 0x23a70, 1169 0x23a78, 0x23a98, 1170 0x23aa0, 0x23aa8, 1171 0x23ab0, 0x23ac8, 1172 0x23ad0, 0x23ad4, 1173 0x23ae0, 0x23ae8, 1174 0x23af0, 0x23af0, 1175 0x23af8, 0x23c18, 1176 0x23c20, 0x23c20, 1177 0x23c28, 0x23c30, 1178 0x23c38, 0x23c38, 1179 0x23c80, 0x23c98, 1180 0x23ca0, 0x23ca8, 1181 0x23cb0, 0x23cc8, 1182 0x23cd0, 0x23cd4, 1183 0x23ce0, 0x23ce8, 1184 0x23cf0, 0x23cf0, 1185 0x23cf8, 0x23d7c, 1186 0x23e00, 0x23e04, 1187 0x24000, 0x2402c, 1188 0x24100, 0x2413c, 1189 0x24190, 0x241a0, 1190 0x241a8, 0x241b8, 1191 0x241c4, 0x241c8, 1192 0x24200, 0x24318, 1193 0x24400, 0x244b4, 1194 0x244c0, 0x24528, 1195 0x24540, 0x24614, 1196 0x25000, 0x25040, 1197 0x2504c, 0x25060, 1198 0x250c0, 0x250ec, 1199 0x25200, 0x25268, 1200 0x25270, 0x25284, 1201 0x252fc, 0x25388, 1202 0x25400, 0x25404, 1203 0x25500, 0x25500, 1204 0x25510, 0x25518, 1205 0x2552c, 0x25530, 1206 0x2553c, 0x2553c, 1207 0x25550, 0x25554, 1208 0x25600, 0x25600, 1209 0x25608, 0x2561c, 1210 0x25624, 0x25628, 1211 0x25630, 0x25634, 1212 0x2563c, 0x2563c, 1213 0x25700, 0x2571c, 1214 0x25780, 0x2578c, 1215 0x25800, 0x25818, 1216 0x25820, 0x25828, 1217 0x25830, 0x25848, 1218 0x25850, 0x25854, 1219 0x25860, 0x25868, 1220 0x25870, 0x25870, 1221 0x25878, 0x25898, 1222 0x258a0, 0x258a8, 1223 0x258b0, 0x258c8, 1224 0x258d0, 0x258d4, 1225 0x258e0, 0x258e8, 1226 0x258f0, 0x258f0, 1227 0x258f8, 0x25a18, 1228 0x25a20, 0x25a28, 1229 0x25a30, 0x25a48, 1230 0x25a50, 0x25a54, 1231 0x25a60, 0x25a68, 1232 0x25a70, 0x25a70, 1233 0x25a78, 0x25a98, 1234 0x25aa0, 0x25aa8, 1235 0x25ab0, 0x25ac8, 1236 0x25ad0, 0x25ad4, 1237 0x25ae0, 0x25ae8, 1238 0x25af0, 0x25af0, 1239 0x25af8, 0x25c18, 1240 0x25c20, 0x25c20, 1241 0x25c28, 0x25c30, 1242 0x25c38, 0x25c38, 1243 0x25c80, 0x25c98, 1244 0x25ca0, 0x25ca8, 1245 0x25cb0, 0x25cc8, 1246 0x25cd0, 0x25cd4, 1247 0x25ce0, 0x25ce8, 1248 0x25cf0, 0x25cf0, 1249 0x25cf8, 0x25d7c, 1250 0x25e00, 0x25e04, 1251 0x26000, 0x2602c, 1252 0x26100, 0x2613c, 1253 0x26190, 0x261a0, 1254 0x261a8, 0x261b8, 1255 0x261c4, 0x261c8, 1256 0x26200, 0x26318, 1257 0x26400, 0x264b4, 1258 0x264c0, 0x26528, 1259 0x26540, 0x26614, 1260 0x27000, 0x27040, 1261 0x2704c, 0x27060, 1262 0x270c0, 0x270ec, 1263 0x27200, 0x27268, 1264 0x27270, 0x27284, 1265 0x272fc, 0x27388, 1266 0x27400, 0x27404, 1267 0x27500, 0x27500, 1268 0x27510, 0x27518, 1269 0x2752c, 0x27530, 1270 0x2753c, 0x2753c, 1271 0x27550, 0x27554, 1272 0x27600, 0x27600, 1273 0x27608, 0x2761c, 1274 0x27624, 0x27628, 1275 0x27630, 0x27634, 1276 0x2763c, 0x2763c, 1277 0x27700, 0x2771c, 1278 0x27780, 0x2778c, 1279 0x27800, 0x27818, 1280 0x27820, 0x27828, 1281 0x27830, 0x27848, 1282 0x27850, 0x27854, 1283 0x27860, 0x27868, 1284 0x27870, 0x27870, 1285 0x27878, 0x27898, 1286 0x278a0, 0x278a8, 1287 0x278b0, 0x278c8, 1288 0x278d0, 0x278d4, 1289 0x278e0, 0x278e8, 1290 0x278f0, 0x278f0, 1291 0x278f8, 0x27a18, 1292 0x27a20, 0x27a28, 1293 0x27a30, 0x27a48, 1294 0x27a50, 0x27a54, 1295 0x27a60, 0x27a68, 1296 0x27a70, 0x27a70, 1297 0x27a78, 0x27a98, 1298 0x27aa0, 0x27aa8, 1299 0x27ab0, 0x27ac8, 1300 0x27ad0, 0x27ad4, 1301 0x27ae0, 0x27ae8, 1302 0x27af0, 0x27af0, 1303 0x27af8, 0x27c18, 1304 0x27c20, 0x27c20, 1305 0x27c28, 0x27c30, 1306 0x27c38, 0x27c38, 1307 0x27c80, 0x27c98, 1308 0x27ca0, 0x27ca8, 1309 0x27cb0, 0x27cc8, 1310 0x27cd0, 0x27cd4, 1311 0x27ce0, 0x27ce8, 1312 0x27cf0, 0x27cf0, 1313 0x27cf8, 0x27d7c, 1314 0x27e00, 0x27e04, 1315 }; 1316 1317 static const unsigned int t5_reg_ranges[] = { 1318 0x1008, 0x10c0, 1319 0x10cc, 0x10f8, 1320 0x1100, 0x1100, 1321 0x110c, 0x1148, 1322 0x1180, 0x1184, 1323 0x1190, 0x1194, 1324 0x11a0, 0x11a4, 1325 0x11b0, 0x11b4, 1326 0x11fc, 0x123c, 1327 0x1280, 0x173c, 1328 0x1800, 0x18fc, 1329 0x3000, 0x3028, 1330 0x3060, 0x30b0, 1331 0x30b8, 0x30d8, 1332 0x30e0, 0x30fc, 1333 0x3140, 0x357c, 1334 0x35a8, 0x35cc, 1335 0x35ec, 0x35ec, 1336 0x3600, 0x5624, 1337 0x56cc, 0x56ec, 1338 0x56f4, 0x5720, 1339 0x5728, 0x575c, 1340 0x580c, 0x5814, 1341 0x5890, 0x589c, 1342 0x58a4, 0x58ac, 1343 0x58b8, 0x58bc, 1344 0x5940, 0x59c8, 1345 0x59d0, 0x59dc, 1346 0x59fc, 0x5a18, 1347 0x5a60, 0x5a70, 1348 0x5a80, 0x5a9c, 1349 0x5b94, 0x5bfc, 1350 0x6000, 0x6020, 1351 0x6028, 0x6040, 1352 0x6058, 0x609c, 1353 0x60a8, 0x614c, 1354 0x7700, 0x7798, 1355 0x77c0, 0x78fc, 1356 0x7b00, 0x7b58, 1357 0x7b60, 0x7b84, 1358 0x7b8c, 0x7c54, 1359 0x7d00, 0x7d38, 1360 0x7d40, 0x7d80, 1361 0x7d8c, 0x7ddc, 1362 0x7de4, 0x7e04, 1363 0x7e10, 0x7e1c, 1364 0x7e24, 0x7e38, 1365 0x7e40, 0x7e44, 1366 0x7e4c, 0x7e78, 1367 0x7e80, 0x7edc, 1368 0x7ee8, 0x7efc, 1369 0x8dc0, 0x8de0, 1370 0x8df8, 0x8e04, 1371 0x8e10, 0x8e84, 1372 0x8ea0, 0x8f84, 1373 0x8fc0, 0x9058, 1374 0x9060, 0x9060, 1375 0x9068, 0x90f8, 1376 0x9400, 0x9408, 1377 0x9410, 0x9470, 1378 0x9600, 0x9600, 1379 0x9608, 0x9638, 1380 0x9640, 0x96f4, 1381 0x9800, 0x9808, 1382 0x9810, 0x9864, 1383 0x9c00, 0x9c6c, 1384 0x9c80, 0x9cec, 1385 0x9d00, 0x9d6c, 1386 0x9d80, 0x9dec, 1387 0x9e00, 0x9e6c, 1388 0x9e80, 0x9eec, 1389 0x9f00, 0x9f6c, 1390 0x9f80, 0xa020, 1391 0xd000, 0xd004, 1392 0xd010, 0xd03c, 1393 0xdfc0, 0xdfe0, 1394 0xe000, 0x1106c, 1395 0x11074, 0x11088, 1396 0x1109c, 0x1117c, 1397 0x11190, 0x11204, 1398 0x19040, 0x1906c, 1399 0x19078, 0x19080, 1400 0x1908c, 0x190e8, 1401 0x190f0, 0x190f8, 1402 0x19100, 0x19110, 1403 0x19120, 0x19124, 1404 0x19150, 0x19194, 1405 0x1919c, 0x191b0, 1406 0x191d0, 0x191e8, 1407 0x19238, 0x19290, 1408 0x193f8, 0x19428, 1409 0x19430, 0x19444, 1410 0x1944c, 0x1946c, 1411 0x19474, 0x19474, 1412 0x19490, 0x194cc, 1413 0x194f0, 0x194f8, 1414 0x19c00, 0x19c08, 1415 0x19c10, 0x19c60, 1416 0x19c94, 0x19ce4, 1417 0x19cf0, 0x19d40, 1418 0x19d50, 0x19d94, 1419 0x19da0, 0x19de8, 1420 0x19df0, 0x19e10, 1421 0x19e50, 0x19e90, 1422 0x19ea0, 0x19f24, 1423 0x19f34, 0x19f34, 1424 0x19f40, 0x19f50, 1425 0x19f90, 0x19fb4, 1426 0x19fc4, 0x19fe4, 1427 0x1a000, 0x1a004, 1428 0x1a010, 0x1a06c, 1429 0x1a0b0, 0x1a0e4, 1430 0x1a0ec, 0x1a0f8, 1431 0x1a100, 0x1a108, 1432 0x1a114, 0x1a130, 1433 0x1a138, 0x1a1c4, 1434 0x1a1fc, 0x1a1fc, 1435 0x1e008, 0x1e00c, 1436 0x1e040, 0x1e044, 1437 0x1e04c, 0x1e04c, 1438 0x1e284, 0x1e290, 1439 0x1e2c0, 0x1e2c0, 1440 0x1e2e0, 0x1e2e0, 1441 0x1e300, 0x1e384, 1442 0x1e3c0, 0x1e3c8, 1443 0x1e408, 0x1e40c, 1444 0x1e440, 0x1e444, 1445 0x1e44c, 0x1e44c, 1446 0x1e684, 0x1e690, 1447 0x1e6c0, 0x1e6c0, 1448 0x1e6e0, 0x1e6e0, 1449 0x1e700, 0x1e784, 1450 0x1e7c0, 0x1e7c8, 1451 0x1e808, 0x1e80c, 1452 0x1e840, 0x1e844, 1453 0x1e84c, 0x1e84c, 1454 0x1ea84, 0x1ea90, 1455 0x1eac0, 0x1eac0, 1456 0x1eae0, 0x1eae0, 1457 0x1eb00, 0x1eb84, 1458 0x1ebc0, 0x1ebc8, 1459 0x1ec08, 0x1ec0c, 1460 0x1ec40, 0x1ec44, 1461 0x1ec4c, 0x1ec4c, 1462 0x1ee84, 0x1ee90, 1463 0x1eec0, 0x1eec0, 1464 0x1eee0, 0x1eee0, 1465 0x1ef00, 0x1ef84, 1466 0x1efc0, 0x1efc8, 1467 0x1f008, 0x1f00c, 1468 0x1f040, 0x1f044, 1469 0x1f04c, 0x1f04c, 1470 0x1f284, 0x1f290, 1471 0x1f2c0, 0x1f2c0, 1472 0x1f2e0, 0x1f2e0, 1473 0x1f300, 0x1f384, 1474 0x1f3c0, 0x1f3c8, 1475 0x1f408, 0x1f40c, 1476 0x1f440, 0x1f444, 1477 0x1f44c, 0x1f44c, 1478 0x1f684, 0x1f690, 1479 0x1f6c0, 0x1f6c0, 1480 0x1f6e0, 0x1f6e0, 1481 0x1f700, 0x1f784, 1482 0x1f7c0, 0x1f7c8, 1483 0x1f808, 0x1f80c, 1484 0x1f840, 0x1f844, 1485 0x1f84c, 0x1f84c, 1486 0x1fa84, 0x1fa90, 1487 0x1fac0, 0x1fac0, 1488 0x1fae0, 0x1fae0, 1489 0x1fb00, 0x1fb84, 1490 0x1fbc0, 0x1fbc8, 1491 0x1fc08, 0x1fc0c, 1492 0x1fc40, 0x1fc44, 1493 0x1fc4c, 0x1fc4c, 1494 0x1fe84, 0x1fe90, 1495 0x1fec0, 0x1fec0, 1496 0x1fee0, 0x1fee0, 1497 0x1ff00, 0x1ff84, 1498 0x1ffc0, 0x1ffc8, 1499 0x30000, 0x30030, 1500 0x30100, 0x30144, 1501 0x30190, 0x301a0, 1502 0x301a8, 0x301b8, 1503 0x301c4, 0x301c8, 1504 0x301d0, 0x301d0, 1505 0x30200, 0x30318, 1506 0x30400, 0x304b4, 1507 0x304c0, 0x3052c, 1508 0x30540, 0x3061c, 1509 0x30800, 0x30828, 1510 0x30834, 0x30834, 1511 0x308c0, 0x30908, 1512 0x30910, 0x309ac, 1513 0x30a00, 0x30a14, 1514 0x30a1c, 0x30a2c, 1515 0x30a44, 0x30a50, 1516 0x30a74, 0x30a74, 1517 0x30a7c, 0x30afc, 1518 0x30b08, 0x30c24, 1519 0x30d00, 0x30d00, 1520 0x30d08, 0x30d14, 1521 0x30d1c, 0x30d20, 1522 0x30d3c, 0x30d3c, 1523 0x30d48, 0x30d50, 1524 0x31200, 0x3120c, 1525 0x31220, 0x31220, 1526 0x31240, 0x31240, 1527 0x31600, 0x3160c, 1528 0x31a00, 0x31a1c, 1529 0x31e00, 0x31e20, 1530 0x31e38, 0x31e3c, 1531 0x31e80, 0x31e80, 1532 0x31e88, 0x31ea8, 1533 0x31eb0, 0x31eb4, 1534 0x31ec8, 0x31ed4, 1535 0x31fb8, 0x32004, 1536 0x32200, 0x32200, 1537 0x32208, 0x32240, 1538 0x32248, 0x32280, 1539 0x32288, 0x322c0, 1540 0x322c8, 0x322fc, 1541 0x32600, 0x32630, 1542 0x32a00, 0x32abc, 1543 0x32b00, 0x32b10, 1544 0x32b20, 0x32b30, 1545 0x32b40, 0x32b50, 1546 0x32b60, 0x32b70, 1547 0x33000, 0x33028, 1548 0x33030, 0x33048, 1549 0x33060, 0x33068, 1550 0x33070, 0x3309c, 1551 0x330f0, 0x33128, 1552 0x33130, 0x33148, 1553 0x33160, 0x33168, 1554 0x33170, 0x3319c, 1555 0x331f0, 0x33238, 1556 0x33240, 0x33240, 1557 0x33248, 0x33250, 1558 0x3325c, 0x33264, 1559 0x33270, 0x332b8, 1560 0x332c0, 0x332e4, 1561 0x332f8, 0x33338, 1562 0x33340, 0x33340, 1563 0x33348, 0x33350, 1564 0x3335c, 0x33364, 1565 0x33370, 0x333b8, 1566 0x333c0, 0x333e4, 1567 0x333f8, 0x33428, 1568 0x33430, 0x33448, 1569 0x33460, 0x33468, 1570 0x33470, 0x3349c, 1571 0x334f0, 0x33528, 1572 0x33530, 0x33548, 1573 0x33560, 0x33568, 1574 0x33570, 0x3359c, 1575 0x335f0, 0x33638, 1576 0x33640, 0x33640, 1577 0x33648, 0x33650, 1578 0x3365c, 0x33664, 1579 0x33670, 0x336b8, 1580 0x336c0, 0x336e4, 1581 0x336f8, 0x33738, 1582 0x33740, 0x33740, 1583 0x33748, 0x33750, 1584 0x3375c, 0x33764, 1585 0x33770, 0x337b8, 1586 0x337c0, 0x337e4, 1587 0x337f8, 0x337fc, 1588 0x33814, 0x33814, 1589 0x3382c, 0x3382c, 1590 0x33880, 0x3388c, 1591 0x338e8, 0x338ec, 1592 0x33900, 0x33928, 1593 0x33930, 0x33948, 1594 0x33960, 0x33968, 1595 0x33970, 0x3399c, 1596 0x339f0, 0x33a38, 1597 0x33a40, 0x33a40, 1598 0x33a48, 0x33a50, 1599 0x33a5c, 0x33a64, 1600 0x33a70, 0x33ab8, 1601 0x33ac0, 0x33ae4, 1602 0x33af8, 0x33b10, 1603 0x33b28, 0x33b28, 1604 0x33b3c, 0x33b50, 1605 0x33bf0, 0x33c10, 1606 0x33c28, 0x33c28, 1607 0x33c3c, 0x33c50, 1608 0x33cf0, 0x33cfc, 1609 0x34000, 0x34030, 1610 0x34100, 0x34144, 1611 0x34190, 0x341a0, 1612 0x341a8, 0x341b8, 1613 0x341c4, 0x341c8, 1614 0x341d0, 0x341d0, 1615 0x34200, 0x34318, 1616 0x34400, 0x344b4, 1617 0x344c0, 0x3452c, 1618 0x34540, 0x3461c, 1619 0x34800, 0x34828, 1620 0x34834, 0x34834, 1621 0x348c0, 0x34908, 1622 0x34910, 0x349ac, 1623 0x34a00, 0x34a14, 1624 0x34a1c, 0x34a2c, 1625 0x34a44, 0x34a50, 1626 0x34a74, 0x34a74, 1627 0x34a7c, 0x34afc, 1628 0x34b08, 0x34c24, 1629 0x34d00, 0x34d00, 1630 0x34d08, 0x34d14, 1631 0x34d1c, 0x34d20, 1632 0x34d3c, 0x34d3c, 1633 0x34d48, 0x34d50, 1634 0x35200, 0x3520c, 1635 0x35220, 0x35220, 1636 0x35240, 0x35240, 1637 0x35600, 0x3560c, 1638 0x35a00, 0x35a1c, 1639 0x35e00, 0x35e20, 1640 0x35e38, 0x35e3c, 1641 0x35e80, 0x35e80, 1642 0x35e88, 0x35ea8, 1643 0x35eb0, 0x35eb4, 1644 0x35ec8, 0x35ed4, 1645 0x35fb8, 0x36004, 1646 0x36200, 0x36200, 1647 0x36208, 0x36240, 1648 0x36248, 0x36280, 1649 0x36288, 0x362c0, 1650 0x362c8, 0x362fc, 1651 0x36600, 0x36630, 1652 0x36a00, 0x36abc, 1653 0x36b00, 0x36b10, 1654 0x36b20, 0x36b30, 1655 0x36b40, 0x36b50, 1656 0x36b60, 0x36b70, 1657 0x37000, 0x37028, 1658 0x37030, 0x37048, 1659 0x37060, 0x37068, 1660 0x37070, 0x3709c, 1661 0x370f0, 0x37128, 1662 0x37130, 0x37148, 1663 0x37160, 0x37168, 1664 0x37170, 0x3719c, 1665 0x371f0, 0x37238, 1666 0x37240, 0x37240, 1667 0x37248, 0x37250, 1668 0x3725c, 0x37264, 1669 0x37270, 0x372b8, 1670 0x372c0, 0x372e4, 1671 0x372f8, 0x37338, 1672 0x37340, 0x37340, 1673 0x37348, 0x37350, 1674 0x3735c, 0x37364, 1675 0x37370, 0x373b8, 1676 0x373c0, 0x373e4, 1677 0x373f8, 0x37428, 1678 0x37430, 0x37448, 1679 0x37460, 0x37468, 1680 0x37470, 0x3749c, 1681 0x374f0, 0x37528, 1682 0x37530, 0x37548, 1683 0x37560, 0x37568, 1684 0x37570, 0x3759c, 1685 0x375f0, 0x37638, 1686 0x37640, 0x37640, 1687 0x37648, 0x37650, 1688 0x3765c, 0x37664, 1689 0x37670, 0x376b8, 1690 0x376c0, 0x376e4, 1691 0x376f8, 0x37738, 1692 0x37740, 0x37740, 1693 0x37748, 0x37750, 1694 0x3775c, 0x37764, 1695 0x37770, 0x377b8, 1696 0x377c0, 0x377e4, 1697 0x377f8, 0x377fc, 1698 0x37814, 0x37814, 1699 0x3782c, 0x3782c, 1700 0x37880, 0x3788c, 1701 0x378e8, 0x378ec, 1702 0x37900, 0x37928, 1703 0x37930, 0x37948, 1704 0x37960, 0x37968, 1705 0x37970, 0x3799c, 1706 0x379f0, 0x37a38, 1707 0x37a40, 0x37a40, 1708 0x37a48, 0x37a50, 1709 0x37a5c, 0x37a64, 1710 0x37a70, 0x37ab8, 1711 0x37ac0, 0x37ae4, 1712 0x37af8, 0x37b10, 1713 0x37b28, 0x37b28, 1714 0x37b3c, 0x37b50, 1715 0x37bf0, 0x37c10, 1716 0x37c28, 0x37c28, 1717 0x37c3c, 0x37c50, 1718 0x37cf0, 0x37cfc, 1719 0x38000, 0x38030, 1720 0x38100, 0x38144, 1721 0x38190, 0x381a0, 1722 0x381a8, 0x381b8, 1723 0x381c4, 0x381c8, 1724 0x381d0, 0x381d0, 1725 0x38200, 0x38318, 1726 0x38400, 0x384b4, 1727 0x384c0, 0x3852c, 1728 0x38540, 0x3861c, 1729 0x38800, 0x38828, 1730 0x38834, 0x38834, 1731 0x388c0, 0x38908, 1732 0x38910, 0x389ac, 1733 0x38a00, 0x38a14, 1734 0x38a1c, 0x38a2c, 1735 0x38a44, 0x38a50, 1736 0x38a74, 0x38a74, 1737 0x38a7c, 0x38afc, 1738 0x38b08, 0x38c24, 1739 0x38d00, 0x38d00, 1740 0x38d08, 0x38d14, 1741 0x38d1c, 0x38d20, 1742 0x38d3c, 0x38d3c, 1743 0x38d48, 0x38d50, 1744 0x39200, 0x3920c, 1745 0x39220, 0x39220, 1746 0x39240, 0x39240, 1747 0x39600, 0x3960c, 1748 0x39a00, 0x39a1c, 1749 0x39e00, 0x39e20, 1750 0x39e38, 0x39e3c, 1751 0x39e80, 0x39e80, 1752 0x39e88, 0x39ea8, 1753 0x39eb0, 0x39eb4, 1754 0x39ec8, 0x39ed4, 1755 0x39fb8, 0x3a004, 1756 0x3a200, 0x3a200, 1757 0x3a208, 0x3a240, 1758 0x3a248, 0x3a280, 1759 0x3a288, 0x3a2c0, 1760 0x3a2c8, 0x3a2fc, 1761 0x3a600, 0x3a630, 1762 0x3aa00, 0x3aabc, 1763 0x3ab00, 0x3ab10, 1764 0x3ab20, 0x3ab30, 1765 0x3ab40, 0x3ab50, 1766 0x3ab60, 0x3ab70, 1767 0x3b000, 0x3b028, 1768 0x3b030, 0x3b048, 1769 0x3b060, 0x3b068, 1770 0x3b070, 0x3b09c, 1771 0x3b0f0, 0x3b128, 1772 0x3b130, 0x3b148, 1773 0x3b160, 0x3b168, 1774 0x3b170, 0x3b19c, 1775 0x3b1f0, 0x3b238, 1776 0x3b240, 0x3b240, 1777 0x3b248, 0x3b250, 1778 0x3b25c, 0x3b264, 1779 0x3b270, 0x3b2b8, 1780 0x3b2c0, 0x3b2e4, 1781 0x3b2f8, 0x3b338, 1782 0x3b340, 0x3b340, 1783 0x3b348, 0x3b350, 1784 0x3b35c, 0x3b364, 1785 0x3b370, 0x3b3b8, 1786 0x3b3c0, 0x3b3e4, 1787 0x3b3f8, 0x3b428, 1788 0x3b430, 0x3b448, 1789 0x3b460, 0x3b468, 1790 0x3b470, 0x3b49c, 1791 0x3b4f0, 0x3b528, 1792 0x3b530, 0x3b548, 1793 0x3b560, 0x3b568, 1794 0x3b570, 0x3b59c, 1795 0x3b5f0, 0x3b638, 1796 0x3b640, 0x3b640, 1797 0x3b648, 0x3b650, 1798 0x3b65c, 0x3b664, 1799 0x3b670, 0x3b6b8, 1800 0x3b6c0, 0x3b6e4, 1801 0x3b6f8, 0x3b738, 1802 0x3b740, 0x3b740, 1803 0x3b748, 0x3b750, 1804 0x3b75c, 0x3b764, 1805 0x3b770, 0x3b7b8, 1806 0x3b7c0, 0x3b7e4, 1807 0x3b7f8, 0x3b7fc, 1808 0x3b814, 0x3b814, 1809 0x3b82c, 0x3b82c, 1810 0x3b880, 0x3b88c, 1811 0x3b8e8, 0x3b8ec, 1812 0x3b900, 0x3b928, 1813 0x3b930, 0x3b948, 1814 0x3b960, 0x3b968, 1815 0x3b970, 0x3b99c, 1816 0x3b9f0, 0x3ba38, 1817 0x3ba40, 0x3ba40, 1818 0x3ba48, 0x3ba50, 1819 0x3ba5c, 0x3ba64, 1820 0x3ba70, 0x3bab8, 1821 0x3bac0, 0x3bae4, 1822 0x3baf8, 0x3bb10, 1823 0x3bb28, 0x3bb28, 1824 0x3bb3c, 0x3bb50, 1825 0x3bbf0, 0x3bc10, 1826 0x3bc28, 0x3bc28, 1827 0x3bc3c, 0x3bc50, 1828 0x3bcf0, 0x3bcfc, 1829 0x3c000, 0x3c030, 1830 0x3c100, 0x3c144, 1831 0x3c190, 0x3c1a0, 1832 0x3c1a8, 0x3c1b8, 1833 0x3c1c4, 0x3c1c8, 1834 0x3c1d0, 0x3c1d0, 1835 0x3c200, 0x3c318, 1836 0x3c400, 0x3c4b4, 1837 0x3c4c0, 0x3c52c, 1838 0x3c540, 0x3c61c, 1839 0x3c800, 0x3c828, 1840 0x3c834, 0x3c834, 1841 0x3c8c0, 0x3c908, 1842 0x3c910, 0x3c9ac, 1843 0x3ca00, 0x3ca14, 1844 0x3ca1c, 0x3ca2c, 1845 0x3ca44, 0x3ca50, 1846 0x3ca74, 0x3ca74, 1847 0x3ca7c, 0x3cafc, 1848 0x3cb08, 0x3cc24, 1849 0x3cd00, 0x3cd00, 1850 0x3cd08, 0x3cd14, 1851 0x3cd1c, 0x3cd20, 1852 0x3cd3c, 0x3cd3c, 1853 0x3cd48, 0x3cd50, 1854 0x3d200, 0x3d20c, 1855 0x3d220, 0x3d220, 1856 0x3d240, 0x3d240, 1857 0x3d600, 0x3d60c, 1858 0x3da00, 0x3da1c, 1859 0x3de00, 0x3de20, 1860 0x3de38, 0x3de3c, 1861 0x3de80, 0x3de80, 1862 0x3de88, 0x3dea8, 1863 0x3deb0, 0x3deb4, 1864 0x3dec8, 0x3ded4, 1865 0x3dfb8, 0x3e004, 1866 0x3e200, 0x3e200, 1867 0x3e208, 0x3e240, 1868 0x3e248, 0x3e280, 1869 0x3e288, 0x3e2c0, 1870 0x3e2c8, 0x3e2fc, 1871 0x3e600, 0x3e630, 1872 0x3ea00, 0x3eabc, 1873 0x3eb00, 0x3eb10, 1874 0x3eb20, 0x3eb30, 1875 0x3eb40, 0x3eb50, 1876 0x3eb60, 0x3eb70, 1877 0x3f000, 0x3f028, 1878 0x3f030, 0x3f048, 1879 0x3f060, 0x3f068, 1880 0x3f070, 0x3f09c, 1881 0x3f0f0, 0x3f128, 1882 0x3f130, 0x3f148, 1883 0x3f160, 0x3f168, 1884 0x3f170, 0x3f19c, 1885 0x3f1f0, 0x3f238, 1886 0x3f240, 0x3f240, 1887 0x3f248, 0x3f250, 1888 0x3f25c, 0x3f264, 1889 0x3f270, 0x3f2b8, 1890 0x3f2c0, 0x3f2e4, 1891 0x3f2f8, 0x3f338, 1892 0x3f340, 0x3f340, 1893 0x3f348, 0x3f350, 1894 0x3f35c, 0x3f364, 1895 0x3f370, 0x3f3b8, 1896 0x3f3c0, 0x3f3e4, 1897 0x3f3f8, 0x3f428, 1898 0x3f430, 0x3f448, 1899 0x3f460, 0x3f468, 1900 0x3f470, 0x3f49c, 1901 0x3f4f0, 0x3f528, 1902 0x3f530, 0x3f548, 1903 0x3f560, 0x3f568, 1904 0x3f570, 0x3f59c, 1905 0x3f5f0, 0x3f638, 1906 0x3f640, 0x3f640, 1907 0x3f648, 0x3f650, 1908 0x3f65c, 0x3f664, 1909 0x3f670, 0x3f6b8, 1910 0x3f6c0, 0x3f6e4, 1911 0x3f6f8, 0x3f738, 1912 0x3f740, 0x3f740, 1913 0x3f748, 0x3f750, 1914 0x3f75c, 0x3f764, 1915 0x3f770, 0x3f7b8, 1916 0x3f7c0, 0x3f7e4, 1917 0x3f7f8, 0x3f7fc, 1918 0x3f814, 0x3f814, 1919 0x3f82c, 0x3f82c, 1920 0x3f880, 0x3f88c, 1921 0x3f8e8, 0x3f8ec, 1922 0x3f900, 0x3f928, 1923 0x3f930, 0x3f948, 1924 0x3f960, 0x3f968, 1925 0x3f970, 0x3f99c, 1926 0x3f9f0, 0x3fa38, 1927 0x3fa40, 0x3fa40, 1928 0x3fa48, 0x3fa50, 1929 0x3fa5c, 0x3fa64, 1930 0x3fa70, 0x3fab8, 1931 0x3fac0, 0x3fae4, 1932 0x3faf8, 0x3fb10, 1933 0x3fb28, 0x3fb28, 1934 0x3fb3c, 0x3fb50, 1935 0x3fbf0, 0x3fc10, 1936 0x3fc28, 0x3fc28, 1937 0x3fc3c, 0x3fc50, 1938 0x3fcf0, 0x3fcfc, 1939 0x40000, 0x4000c, 1940 0x40040, 0x40050, 1941 0x40060, 0x40068, 1942 0x4007c, 0x4008c, 1943 0x40094, 0x400b0, 1944 0x400c0, 0x40144, 1945 0x40180, 0x4018c, 1946 0x40200, 0x40254, 1947 0x40260, 0x40264, 1948 0x40270, 0x40288, 1949 0x40290, 0x40298, 1950 0x402ac, 0x402c8, 1951 0x402d0, 0x402e0, 1952 0x402f0, 0x402f0, 1953 0x40300, 0x4033c, 1954 0x403f8, 0x403fc, 1955 0x41304, 0x413c4, 1956 0x41400, 0x4140c, 1957 0x41414, 0x4141c, 1958 0x41480, 0x414d0, 1959 0x44000, 0x44054, 1960 0x4405c, 0x44078, 1961 0x440c0, 0x44174, 1962 0x44180, 0x441ac, 1963 0x441b4, 0x441b8, 1964 0x441c0, 0x44254, 1965 0x4425c, 0x44278, 1966 0x442c0, 0x44374, 1967 0x44380, 0x443ac, 1968 0x443b4, 0x443b8, 1969 0x443c0, 0x44454, 1970 0x4445c, 0x44478, 1971 0x444c0, 0x44574, 1972 0x44580, 0x445ac, 1973 0x445b4, 0x445b8, 1974 0x445c0, 0x44654, 1975 0x4465c, 0x44678, 1976 0x446c0, 0x44774, 1977 0x44780, 0x447ac, 1978 0x447b4, 0x447b8, 1979 0x447c0, 0x44854, 1980 0x4485c, 0x44878, 1981 0x448c0, 0x44974, 1982 0x44980, 0x449ac, 1983 0x449b4, 0x449b8, 1984 0x449c0, 0x449fc, 1985 0x45000, 0x45004, 1986 0x45010, 0x45030, 1987 0x45040, 0x45060, 1988 0x45068, 0x45068, 1989 0x45080, 0x45084, 1990 0x450a0, 0x450b0, 1991 0x45200, 0x45204, 1992 0x45210, 0x45230, 1993 0x45240, 0x45260, 1994 0x45268, 0x45268, 1995 0x45280, 0x45284, 1996 0x452a0, 0x452b0, 1997 0x460c0, 0x460e4, 1998 0x47000, 0x4703c, 1999 0x47044, 0x4708c, 2000 0x47200, 0x47250, 2001 0x47400, 0x47408, 2002 0x47414, 0x47420, 2003 0x47600, 0x47618, 2004 0x47800, 0x47814, 2005 0x48000, 0x4800c, 2006 0x48040, 0x48050, 2007 0x48060, 0x48068, 2008 0x4807c, 0x4808c, 2009 0x48094, 0x480b0, 2010 0x480c0, 0x48144, 2011 0x48180, 0x4818c, 2012 0x48200, 0x48254, 2013 0x48260, 0x48264, 2014 0x48270, 0x48288, 2015 0x48290, 0x48298, 2016 0x482ac, 0x482c8, 2017 0x482d0, 0x482e0, 2018 0x482f0, 0x482f0, 2019 0x48300, 0x4833c, 2020 0x483f8, 0x483fc, 2021 0x49304, 0x493c4, 2022 0x49400, 0x4940c, 2023 0x49414, 0x4941c, 2024 0x49480, 0x494d0, 2025 0x4c000, 0x4c054, 2026 0x4c05c, 0x4c078, 2027 0x4c0c0, 0x4c174, 2028 0x4c180, 0x4c1ac, 2029 0x4c1b4, 0x4c1b8, 2030 0x4c1c0, 0x4c254, 2031 0x4c25c, 0x4c278, 2032 0x4c2c0, 0x4c374, 2033 0x4c380, 0x4c3ac, 2034 0x4c3b4, 0x4c3b8, 2035 0x4c3c0, 0x4c454, 2036 0x4c45c, 0x4c478, 2037 0x4c4c0, 0x4c574, 2038 0x4c580, 0x4c5ac, 2039 0x4c5b4, 0x4c5b8, 2040 0x4c5c0, 0x4c654, 2041 0x4c65c, 0x4c678, 2042 0x4c6c0, 0x4c774, 2043 0x4c780, 0x4c7ac, 2044 0x4c7b4, 0x4c7b8, 2045 0x4c7c0, 0x4c854, 2046 0x4c85c, 0x4c878, 2047 0x4c8c0, 0x4c974, 2048 0x4c980, 0x4c9ac, 2049 0x4c9b4, 0x4c9b8, 2050 0x4c9c0, 0x4c9fc, 2051 0x4d000, 0x4d004, 2052 0x4d010, 0x4d030, 2053 0x4d040, 0x4d060, 2054 0x4d068, 0x4d068, 2055 0x4d080, 0x4d084, 2056 0x4d0a0, 0x4d0b0, 2057 0x4d200, 0x4d204, 2058 0x4d210, 0x4d230, 2059 0x4d240, 0x4d260, 2060 0x4d268, 0x4d268, 2061 0x4d280, 0x4d284, 2062 0x4d2a0, 0x4d2b0, 2063 0x4e0c0, 0x4e0e4, 2064 0x4f000, 0x4f03c, 2065 0x4f044, 0x4f08c, 2066 0x4f200, 0x4f250, 2067 0x4f400, 0x4f408, 2068 0x4f414, 0x4f420, 2069 0x4f600, 0x4f618, 2070 0x4f800, 0x4f814, 2071 0x50000, 0x50084, 2072 0x50090, 0x500cc, 2073 0x50400, 0x50400, 2074 0x50800, 0x50884, 2075 0x50890, 0x508cc, 2076 0x50c00, 0x50c00, 2077 0x51000, 0x5101c, 2078 0x51300, 0x51308, 2079 }; 2080 2081 static const unsigned int t6_reg_ranges[] = { 2082 0x1008, 0x101c, 2083 0x1024, 0x10a8, 2084 0x10b4, 0x10f8, 2085 0x1100, 0x1114, 2086 0x111c, 0x112c, 2087 0x1138, 0x113c, 2088 0x1144, 0x114c, 2089 0x1180, 0x1184, 2090 0x1190, 0x1194, 2091 0x11a0, 0x11a4, 2092 0x11b0, 0x11b4, 2093 0x11fc, 0x123c, 2094 0x1254, 0x1274, 2095 0x1280, 0x133c, 2096 0x1800, 0x18fc, 2097 0x3000, 0x302c, 2098 0x3060, 0x30b0, 2099 0x30b8, 0x30d8, 2100 0x30e0, 0x30fc, 2101 0x3140, 0x357c, 2102 0x35a8, 0x35cc, 2103 0x35ec, 0x35ec, 2104 0x3600, 0x5624, 2105 0x56cc, 0x56ec, 2106 0x56f4, 0x5720, 2107 0x5728, 0x575c, 2108 0x580c, 0x5814, 2109 0x5890, 0x589c, 2110 0x58a4, 0x58ac, 2111 0x58b8, 0x58bc, 2112 0x5940, 0x595c, 2113 0x5980, 0x598c, 2114 0x59b0, 0x59c8, 2115 0x59d0, 0x59dc, 2116 0x59fc, 0x5a18, 2117 0x5a60, 0x5a6c, 2118 0x5a80, 0x5a8c, 2119 0x5a94, 0x5a9c, 2120 0x5b94, 0x5bfc, 2121 0x5c10, 0x5e48, 2122 0x5e50, 0x5e94, 2123 0x5ea0, 0x5eb0, 2124 0x5ec0, 0x5ec0, 2125 0x5ec8, 0x5ed0, 2126 0x5ee0, 0x5ee0, 2127 0x5ef0, 0x5ef0, 2128 0x5f00, 0x5f00, 2129 0x6000, 0x6020, 2130 0x6028, 0x6040, 2131 0x6058, 0x609c, 2132 0x60a8, 0x619c, 2133 0x7700, 0x7798, 2134 0x77c0, 0x7880, 2135 0x78cc, 0x78fc, 2136 0x7b00, 0x7b58, 2137 0x7b60, 0x7b84, 2138 0x7b8c, 0x7c54, 2139 0x7d00, 0x7d38, 2140 0x7d40, 0x7d84, 2141 0x7d8c, 0x7ddc, 2142 0x7de4, 0x7e04, 2143 0x7e10, 0x7e1c, 2144 0x7e24, 0x7e38, 2145 0x7e40, 0x7e44, 2146 0x7e4c, 0x7e78, 2147 0x7e80, 0x7edc, 2148 0x7ee8, 0x7efc, 2149 0x8dc0, 0x8de4, 2150 0x8df8, 0x8e04, 2151 0x8e10, 0x8e84, 2152 0x8ea0, 0x8f88, 2153 0x8fb8, 0x9058, 2154 0x9060, 0x9060, 2155 0x9068, 0x90f8, 2156 0x9100, 0x9124, 2157 0x9400, 0x9470, 2158 0x9600, 0x9600, 2159 0x9608, 0x9638, 2160 0x9640, 0x9704, 2161 0x9710, 0x971c, 2162 0x9800, 0x9808, 2163 0x9810, 0x9864, 2164 0x9c00, 0x9c6c, 2165 0x9c80, 0x9cec, 2166 0x9d00, 0x9d6c, 2167 0x9d80, 0x9dec, 2168 0x9e00, 0x9e6c, 2169 0x9e80, 0x9eec, 2170 0x9f00, 0x9f6c, 2171 0x9f80, 0xa020, 2172 0xd000, 0xd03c, 2173 0xd100, 0xd118, 2174 0xd200, 0xd214, 2175 0xd220, 0xd234, 2176 0xd240, 0xd254, 2177 0xd260, 0xd274, 2178 0xd280, 0xd294, 2179 0xd2a0, 0xd2b4, 2180 0xd2c0, 0xd2d4, 2181 0xd2e0, 0xd2f4, 2182 0xd300, 0xd31c, 2183 0xdfc0, 0xdfe0, 2184 0xe000, 0xf008, 2185 0xf010, 0xf018, 2186 0xf020, 0xf028, 2187 0x11000, 0x11014, 2188 0x11048, 0x1106c, 2189 0x11074, 0x11088, 2190 0x11098, 0x11120, 2191 0x1112c, 0x1117c, 2192 0x11190, 0x112e0, 2193 0x11300, 0x1130c, 2194 0x12000, 0x1206c, 2195 0x19040, 0x1906c, 2196 0x19078, 0x19080, 2197 0x1908c, 0x190e8, 2198 0x190f0, 0x190f8, 2199 0x19100, 0x19110, 2200 0x19120, 0x19124, 2201 0x19150, 0x19194, 2202 0x1919c, 0x191b0, 2203 0x191d0, 0x191e8, 2204 0x19238, 0x19290, 2205 0x192a4, 0x192b0, 2206 0x192bc, 0x192bc, 2207 0x19348, 0x1934c, 2208 0x193f8, 0x19418, 2209 0x19420, 0x19428, 2210 0x19430, 0x19444, 2211 0x1944c, 0x1946c, 2212 0x19474, 0x19474, 2213 0x19490, 0x194cc, 2214 0x194f0, 0x194f8, 2215 0x19c00, 0x19c48, 2216 0x19c50, 0x19c80, 2217 0x19c94, 0x19c98, 2218 0x19ca0, 0x19cbc, 2219 0x19ce4, 0x19ce4, 2220 0x19cf0, 0x19cf8, 2221 0x19d00, 0x19d28, 2222 0x19d50, 0x19d78, 2223 0x19d94, 0x19d98, 2224 0x19da0, 0x19dc8, 2225 0x19df0, 0x19e10, 2226 0x19e50, 0x19e6c, 2227 0x19ea0, 0x19ebc, 2228 0x19ec4, 0x19ef4, 2229 0x19f04, 0x19f2c, 2230 0x19f34, 0x19f34, 2231 0x19f40, 0x19f50, 2232 0x19f90, 0x19fac, 2233 0x19fc4, 0x19fc8, 2234 0x19fd0, 0x19fe4, 2235 0x1a000, 0x1a004, 2236 0x1a010, 0x1a06c, 2237 0x1a0b0, 0x1a0e4, 2238 0x1a0ec, 0x1a0f8, 2239 0x1a100, 0x1a108, 2240 0x1a114, 0x1a130, 2241 0x1a138, 0x1a1c4, 2242 0x1a1fc, 0x1a1fc, 2243 0x1e008, 0x1e00c, 2244 0x1e040, 0x1e044, 2245 0x1e04c, 0x1e04c, 2246 0x1e284, 0x1e290, 2247 0x1e2c0, 0x1e2c0, 2248 0x1e2e0, 0x1e2e0, 2249 0x1e300, 0x1e384, 2250 0x1e3c0, 0x1e3c8, 2251 0x1e408, 0x1e40c, 2252 0x1e440, 0x1e444, 2253 0x1e44c, 0x1e44c, 2254 0x1e684, 0x1e690, 2255 0x1e6c0, 0x1e6c0, 2256 0x1e6e0, 0x1e6e0, 2257 0x1e700, 0x1e784, 2258 0x1e7c0, 0x1e7c8, 2259 0x1e808, 0x1e80c, 2260 0x1e840, 0x1e844, 2261 0x1e84c, 0x1e84c, 2262 0x1ea84, 0x1ea90, 2263 0x1eac0, 0x1eac0, 2264 0x1eae0, 0x1eae0, 2265 0x1eb00, 0x1eb84, 2266 0x1ebc0, 0x1ebc8, 2267 0x1ec08, 0x1ec0c, 2268 0x1ec40, 0x1ec44, 2269 0x1ec4c, 0x1ec4c, 2270 0x1ee84, 0x1ee90, 2271 0x1eec0, 0x1eec0, 2272 0x1eee0, 0x1eee0, 2273 0x1ef00, 0x1ef84, 2274 0x1efc0, 0x1efc8, 2275 0x1f008, 0x1f00c, 2276 0x1f040, 0x1f044, 2277 0x1f04c, 0x1f04c, 2278 0x1f284, 0x1f290, 2279 0x1f2c0, 0x1f2c0, 2280 0x1f2e0, 0x1f2e0, 2281 0x1f300, 0x1f384, 2282 0x1f3c0, 0x1f3c8, 2283 0x1f408, 0x1f40c, 2284 0x1f440, 0x1f444, 2285 0x1f44c, 0x1f44c, 2286 0x1f684, 0x1f690, 2287 0x1f6c0, 0x1f6c0, 2288 0x1f6e0, 0x1f6e0, 2289 0x1f700, 0x1f784, 2290 0x1f7c0, 0x1f7c8, 2291 0x1f808, 0x1f80c, 2292 0x1f840, 0x1f844, 2293 0x1f84c, 0x1f84c, 2294 0x1fa84, 0x1fa90, 2295 0x1fac0, 0x1fac0, 2296 0x1fae0, 0x1fae0, 2297 0x1fb00, 0x1fb84, 2298 0x1fbc0, 0x1fbc8, 2299 0x1fc08, 0x1fc0c, 2300 0x1fc40, 0x1fc44, 2301 0x1fc4c, 0x1fc4c, 2302 0x1fe84, 0x1fe90, 2303 0x1fec0, 0x1fec0, 2304 0x1fee0, 0x1fee0, 2305 0x1ff00, 0x1ff84, 2306 0x1ffc0, 0x1ffc8, 2307 0x30000, 0x30030, 2308 0x30100, 0x30168, 2309 0x30190, 0x301a0, 2310 0x301a8, 0x301b8, 2311 0x301c4, 0x301c8, 2312 0x301d0, 0x301d0, 2313 0x30200, 0x30320, 2314 0x30400, 0x304b4, 2315 0x304c0, 0x3052c, 2316 0x30540, 0x3061c, 2317 0x30800, 0x308a0, 2318 0x308c0, 0x30908, 2319 0x30910, 0x309b8, 2320 0x30a00, 0x30a04, 2321 0x30a0c, 0x30a14, 2322 0x30a1c, 0x30a2c, 2323 0x30a44, 0x30a50, 2324 0x30a74, 0x30a74, 2325 0x30a7c, 0x30afc, 2326 0x30b08, 0x30c24, 2327 0x30d00, 0x30d14, 2328 0x30d1c, 0x30d3c, 2329 0x30d44, 0x30d4c, 2330 0x30d54, 0x30d74, 2331 0x30d7c, 0x30d7c, 2332 0x30de0, 0x30de0, 2333 0x30e00, 0x30ed4, 2334 0x30f00, 0x30fa4, 2335 0x30fc0, 0x30fc4, 2336 0x31000, 0x31004, 2337 0x31080, 0x310fc, 2338 0x31208, 0x31220, 2339 0x3123c, 0x31254, 2340 0x31300, 0x31300, 2341 0x31308, 0x3131c, 2342 0x31338, 0x3133c, 2343 0x31380, 0x31380, 2344 0x31388, 0x313a8, 2345 0x313b4, 0x313b4, 2346 0x31400, 0x31420, 2347 0x31438, 0x3143c, 2348 0x31480, 0x31480, 2349 0x314a8, 0x314a8, 2350 0x314b0, 0x314b4, 2351 0x314c8, 0x314d4, 2352 0x31a40, 0x31a4c, 2353 0x31af0, 0x31b20, 2354 0x31b38, 0x31b3c, 2355 0x31b80, 0x31b80, 2356 0x31ba8, 0x31ba8, 2357 0x31bb0, 0x31bb4, 2358 0x31bc8, 0x31bd4, 2359 0x32140, 0x3218c, 2360 0x321f0, 0x321f4, 2361 0x32200, 0x32200, 2362 0x32218, 0x32218, 2363 0x32400, 0x32400, 2364 0x32408, 0x3241c, 2365 0x32618, 0x32620, 2366 0x32664, 0x32664, 2367 0x326a8, 0x326a8, 2368 0x326ec, 0x326ec, 2369 0x32a00, 0x32abc, 2370 0x32b00, 0x32b18, 2371 0x32b20, 0x32b38, 2372 0x32b40, 0x32b58, 2373 0x32b60, 0x32b78, 2374 0x32c00, 0x32c00, 2375 0x32c08, 0x32c3c, 2376 0x33000, 0x3302c, 2377 0x33034, 0x33050, 2378 0x33058, 0x33058, 2379 0x33060, 0x3308c, 2380 0x3309c, 0x330ac, 2381 0x330c0, 0x330c0, 2382 0x330c8, 0x330d0, 2383 0x330d8, 0x330e0, 2384 0x330ec, 0x3312c, 2385 0x33134, 0x33150, 2386 0x33158, 0x33158, 2387 0x33160, 0x3318c, 2388 0x3319c, 0x331ac, 2389 0x331c0, 0x331c0, 2390 0x331c8, 0x331d0, 2391 0x331d8, 0x331e0, 2392 0x331ec, 0x33290, 2393 0x33298, 0x332c4, 2394 0x332e4, 0x33390, 2395 0x33398, 0x333c4, 2396 0x333e4, 0x3342c, 2397 0x33434, 0x33450, 2398 0x33458, 0x33458, 2399 0x33460, 0x3348c, 2400 0x3349c, 0x334ac, 2401 0x334c0, 0x334c0, 2402 0x334c8, 0x334d0, 2403 0x334d8, 0x334e0, 2404 0x334ec, 0x3352c, 2405 0x33534, 0x33550, 2406 0x33558, 0x33558, 2407 0x33560, 0x3358c, 2408 0x3359c, 0x335ac, 2409 0x335c0, 0x335c0, 2410 0x335c8, 0x335d0, 2411 0x335d8, 0x335e0, 2412 0x335ec, 0x33690, 2413 0x33698, 0x336c4, 2414 0x336e4, 0x33790, 2415 0x33798, 0x337c4, 2416 0x337e4, 0x337fc, 2417 0x33814, 0x33814, 2418 0x33854, 0x33868, 2419 0x33880, 0x3388c, 2420 0x338c0, 0x338d0, 2421 0x338e8, 0x338ec, 2422 0x33900, 0x3392c, 2423 0x33934, 0x33950, 2424 0x33958, 0x33958, 2425 0x33960, 0x3398c, 2426 0x3399c, 0x339ac, 2427 0x339c0, 0x339c0, 2428 0x339c8, 0x339d0, 2429 0x339d8, 0x339e0, 2430 0x339ec, 0x33a90, 2431 0x33a98, 0x33ac4, 2432 0x33ae4, 0x33b10, 2433 0x33b24, 0x33b28, 2434 0x33b38, 0x33b50, 2435 0x33bf0, 0x33c10, 2436 0x33c24, 0x33c28, 2437 0x33c38, 0x33c50, 2438 0x33cf0, 0x33cfc, 2439 0x34000, 0x34030, 2440 0x34100, 0x34168, 2441 0x34190, 0x341a0, 2442 0x341a8, 0x341b8, 2443 0x341c4, 0x341c8, 2444 0x341d0, 0x341d0, 2445 0x34200, 0x34320, 2446 0x34400, 0x344b4, 2447 0x344c0, 0x3452c, 2448 0x34540, 0x3461c, 2449 0x34800, 0x348a0, 2450 0x348c0, 0x34908, 2451 0x34910, 0x349b8, 2452 0x34a00, 0x34a04, 2453 0x34a0c, 0x34a14, 2454 0x34a1c, 0x34a2c, 2455 0x34a44, 0x34a50, 2456 0x34a74, 0x34a74, 2457 0x34a7c, 0x34afc, 2458 0x34b08, 0x34c24, 2459 0x34d00, 0x34d14, 2460 0x34d1c, 0x34d3c, 2461 0x34d44, 0x34d4c, 2462 0x34d54, 0x34d74, 2463 0x34d7c, 0x34d7c, 2464 0x34de0, 0x34de0, 2465 0x34e00, 0x34ed4, 2466 0x34f00, 0x34fa4, 2467 0x34fc0, 0x34fc4, 2468 0x35000, 0x35004, 2469 0x35080, 0x350fc, 2470 0x35208, 0x35220, 2471 0x3523c, 0x35254, 2472 0x35300, 0x35300, 2473 0x35308, 0x3531c, 2474 0x35338, 0x3533c, 2475 0x35380, 0x35380, 2476 0x35388, 0x353a8, 2477 0x353b4, 0x353b4, 2478 0x35400, 0x35420, 2479 0x35438, 0x3543c, 2480 0x35480, 0x35480, 2481 0x354a8, 0x354a8, 2482 0x354b0, 0x354b4, 2483 0x354c8, 0x354d4, 2484 0x35a40, 0x35a4c, 2485 0x35af0, 0x35b20, 2486 0x35b38, 0x35b3c, 2487 0x35b80, 0x35b80, 2488 0x35ba8, 0x35ba8, 2489 0x35bb0, 0x35bb4, 2490 0x35bc8, 0x35bd4, 2491 0x36140, 0x3618c, 2492 0x361f0, 0x361f4, 2493 0x36200, 0x36200, 2494 0x36218, 0x36218, 2495 0x36400, 0x36400, 2496 0x36408, 0x3641c, 2497 0x36618, 0x36620, 2498 0x36664, 0x36664, 2499 0x366a8, 0x366a8, 2500 0x366ec, 0x366ec, 2501 0x36a00, 0x36abc, 2502 0x36b00, 0x36b18, 2503 0x36b20, 0x36b38, 2504 0x36b40, 0x36b58, 2505 0x36b60, 0x36b78, 2506 0x36c00, 0x36c00, 2507 0x36c08, 0x36c3c, 2508 0x37000, 0x3702c, 2509 0x37034, 0x37050, 2510 0x37058, 0x37058, 2511 0x37060, 0x3708c, 2512 0x3709c, 0x370ac, 2513 0x370c0, 0x370c0, 2514 0x370c8, 0x370d0, 2515 0x370d8, 0x370e0, 2516 0x370ec, 0x3712c, 2517 0x37134, 0x37150, 2518 0x37158, 0x37158, 2519 0x37160, 0x3718c, 2520 0x3719c, 0x371ac, 2521 0x371c0, 0x371c0, 2522 0x371c8, 0x371d0, 2523 0x371d8, 0x371e0, 2524 0x371ec, 0x37290, 2525 0x37298, 0x372c4, 2526 0x372e4, 0x37390, 2527 0x37398, 0x373c4, 2528 0x373e4, 0x3742c, 2529 0x37434, 0x37450, 2530 0x37458, 0x37458, 2531 0x37460, 0x3748c, 2532 0x3749c, 0x374ac, 2533 0x374c0, 0x374c0, 2534 0x374c8, 0x374d0, 2535 0x374d8, 0x374e0, 2536 0x374ec, 0x3752c, 2537 0x37534, 0x37550, 2538 0x37558, 0x37558, 2539 0x37560, 0x3758c, 2540 0x3759c, 0x375ac, 2541 0x375c0, 0x375c0, 2542 0x375c8, 0x375d0, 2543 0x375d8, 0x375e0, 2544 0x375ec, 0x37690, 2545 0x37698, 0x376c4, 2546 0x376e4, 0x37790, 2547 0x37798, 0x377c4, 2548 0x377e4, 0x377fc, 2549 0x37814, 0x37814, 2550 0x37854, 0x37868, 2551 0x37880, 0x3788c, 2552 0x378c0, 0x378d0, 2553 0x378e8, 0x378ec, 2554 0x37900, 0x3792c, 2555 0x37934, 0x37950, 2556 0x37958, 0x37958, 2557 0x37960, 0x3798c, 2558 0x3799c, 0x379ac, 2559 0x379c0, 0x379c0, 2560 0x379c8, 0x379d0, 2561 0x379d8, 0x379e0, 2562 0x379ec, 0x37a90, 2563 0x37a98, 0x37ac4, 2564 0x37ae4, 0x37b10, 2565 0x37b24, 0x37b28, 2566 0x37b38, 0x37b50, 2567 0x37bf0, 0x37c10, 2568 0x37c24, 0x37c28, 2569 0x37c38, 0x37c50, 2570 0x37cf0, 0x37cfc, 2571 0x40040, 0x40040, 2572 0x40080, 0x40084, 2573 0x40100, 0x40100, 2574 0x40140, 0x401bc, 2575 0x40200, 0x40214, 2576 0x40228, 0x40228, 2577 0x40240, 0x40258, 2578 0x40280, 0x40280, 2579 0x40304, 0x40304, 2580 0x40330, 0x4033c, 2581 0x41304, 0x413c8, 2582 0x413d0, 0x413dc, 2583 0x413f0, 0x413f0, 2584 0x41400, 0x4140c, 2585 0x41414, 0x4141c, 2586 0x41480, 0x414d0, 2587 0x44000, 0x4407c, 2588 0x440c0, 0x441ac, 2589 0x441b4, 0x4427c, 2590 0x442c0, 0x443ac, 2591 0x443b4, 0x4447c, 2592 0x444c0, 0x445ac, 2593 0x445b4, 0x4467c, 2594 0x446c0, 0x447ac, 2595 0x447b4, 0x4487c, 2596 0x448c0, 0x449ac, 2597 0x449b4, 0x44a7c, 2598 0x44ac0, 0x44bac, 2599 0x44bb4, 0x44c7c, 2600 0x44cc0, 0x44dac, 2601 0x44db4, 0x44e7c, 2602 0x44ec0, 0x44fac, 2603 0x44fb4, 0x4507c, 2604 0x450c0, 0x451ac, 2605 0x451b4, 0x451fc, 2606 0x45800, 0x45804, 2607 0x45810, 0x45830, 2608 0x45840, 0x45860, 2609 0x45868, 0x45868, 2610 0x45880, 0x45884, 2611 0x458a0, 0x458b0, 2612 0x45a00, 0x45a04, 2613 0x45a10, 0x45a30, 2614 0x45a40, 0x45a60, 2615 0x45a68, 0x45a68, 2616 0x45a80, 0x45a84, 2617 0x45aa0, 0x45ab0, 2618 0x460c0, 0x460e4, 2619 0x47000, 0x4703c, 2620 0x47044, 0x4708c, 2621 0x47200, 0x47250, 2622 0x47400, 0x47408, 2623 0x47414, 0x47420, 2624 0x47600, 0x47618, 2625 0x47800, 0x47814, 2626 0x47820, 0x4782c, 2627 0x50000, 0x50084, 2628 0x50090, 0x500cc, 2629 0x50300, 0x50384, 2630 0x50400, 0x50400, 2631 0x50800, 0x50884, 2632 0x50890, 0x508cc, 2633 0x50b00, 0x50b84, 2634 0x50c00, 0x50c00, 2635 0x51000, 0x51020, 2636 0x51028, 0x510b0, 2637 0x51300, 0x51324, 2638 }; 2639 2640 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2641 const unsigned int *reg_ranges; 2642 int reg_ranges_size, range; 2643 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2644 2645 /* Select the right set of register ranges to dump depending on the 2646 * adapter chip type. 2647 */ 2648 switch (chip_version) { 2649 case CHELSIO_T4: 2650 reg_ranges = t4_reg_ranges; 2651 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2652 break; 2653 2654 case CHELSIO_T5: 2655 reg_ranges = t5_reg_ranges; 2656 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2657 break; 2658 2659 case CHELSIO_T6: 2660 reg_ranges = t6_reg_ranges; 2661 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2662 break; 2663 2664 default: 2665 dev_err(adap->pdev_dev, 2666 "Unsupported chip version %d\n", chip_version); 2667 return; 2668 } 2669 2670 /* Clear the register buffer and insert the appropriate register 2671 * values selected by the above register ranges. 2672 */ 2673 memset(buf, 0, buf_size); 2674 for (range = 0; range < reg_ranges_size; range += 2) { 2675 unsigned int reg = reg_ranges[range]; 2676 unsigned int last_reg = reg_ranges[range + 1]; 2677 u32 *bufp = (u32 *)((char *)buf + reg); 2678 2679 /* Iterate across the register range filling in the register 2680 * buffer but don't write past the end of the register buffer. 2681 */ 2682 while (reg <= last_reg && bufp < buf_end) { 2683 *bufp++ = t4_read_reg(adap, reg); 2684 reg += sizeof(u32); 2685 } 2686 } 2687 } 2688 2689 #define EEPROM_STAT_ADDR 0x7bfc 2690 #define VPD_BASE 0x400 2691 #define VPD_BASE_OLD 0 2692 #define VPD_LEN 1024 2693 2694 /** 2695 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2696 * @phys_addr: the physical EEPROM address 2697 * @fn: the PCI function number 2698 * @sz: size of function-specific area 2699 * 2700 * Translate a physical EEPROM address to virtual. The first 1K is 2701 * accessed through virtual addresses starting at 31K, the rest is 2702 * accessed through virtual addresses starting at 0. 2703 * 2704 * The mapping is as follows: 2705 * [0..1K) -> [31K..32K) 2706 * [1K..1K+A) -> [31K-A..31K) 2707 * [1K+A..ES) -> [0..ES-A-1K) 2708 * 2709 * where A = @fn * @sz, and ES = EEPROM size. 2710 */ 2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2712 { 2713 fn *= sz; 2714 if (phys_addr < 1024) 2715 return phys_addr + (31 << 10); 2716 if (phys_addr < 1024 + fn) 2717 return 31744 - fn + phys_addr - 1024; 2718 if (phys_addr < EEPROMSIZE) 2719 return phys_addr - 1024 - fn; 2720 return -EINVAL; 2721 } 2722 2723 /** 2724 * t4_seeprom_wp - enable/disable EEPROM write protection 2725 * @adapter: the adapter 2726 * @enable: whether to enable or disable write protection 2727 * 2728 * Enables or disables write protection on the serial EEPROM. 2729 */ 2730 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2731 { 2732 unsigned int v = enable ? 0xc : 0; 2733 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2734 return ret < 0 ? ret : 0; 2735 } 2736 2737 /** 2738 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2739 * @adapter: adapter to read 2740 * @p: where to store the parameters 2741 * 2742 * Reads card parameters stored in VPD EEPROM. 2743 */ 2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2745 { 2746 int i, ret = 0, addr; 2747 int ec, sn, pn, na; 2748 u8 *vpd, csum, base_val = 0; 2749 unsigned int vpdr_len, kw_offset, id_len; 2750 2751 vpd = vmalloc(VPD_LEN); 2752 if (!vpd) 2753 return -ENOMEM; 2754 2755 /* Card information normally starts at VPD_BASE but early cards had 2756 * it at 0. 2757 */ 2758 ret = pci_read_vpd(adapter->pdev, VPD_BASE, 1, &base_val); 2759 if (ret < 0) 2760 goto out; 2761 2762 addr = base_val == PCI_VPD_LRDT_ID_STRING ? VPD_BASE : VPD_BASE_OLD; 2763 2764 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2765 if (ret < 0) 2766 goto out; 2767 2768 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2769 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2770 ret = -EINVAL; 2771 goto out; 2772 } 2773 2774 id_len = pci_vpd_lrdt_size(vpd); 2775 if (id_len > ID_LEN) 2776 id_len = ID_LEN; 2777 2778 i = pci_vpd_find_tag(vpd, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2779 if (i < 0) { 2780 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2781 ret = -EINVAL; 2782 goto out; 2783 } 2784 2785 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2786 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2787 if (vpdr_len + kw_offset > VPD_LEN) { 2788 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2789 ret = -EINVAL; 2790 goto out; 2791 } 2792 2793 #define FIND_VPD_KW(var, name) do { \ 2794 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2795 if (var < 0) { \ 2796 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2797 ret = -EINVAL; \ 2798 goto out; \ 2799 } \ 2800 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2801 } while (0) 2802 2803 FIND_VPD_KW(i, "RV"); 2804 for (csum = 0; i >= 0; i--) 2805 csum += vpd[i]; 2806 2807 if (csum) { 2808 dev_err(adapter->pdev_dev, 2809 "corrupted VPD EEPROM, actual csum %u\n", csum); 2810 ret = -EINVAL; 2811 goto out; 2812 } 2813 2814 FIND_VPD_KW(ec, "EC"); 2815 FIND_VPD_KW(sn, "SN"); 2816 FIND_VPD_KW(pn, "PN"); 2817 FIND_VPD_KW(na, "NA"); 2818 #undef FIND_VPD_KW 2819 2820 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2821 strim(p->id); 2822 memcpy(p->ec, vpd + ec, EC_LEN); 2823 strim(p->ec); 2824 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2825 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2826 strim(p->sn); 2827 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2828 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2829 strim(p->pn); 2830 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2831 strim((char *)p->na); 2832 2833 out: 2834 vfree(vpd); 2835 return ret < 0 ? ret : 0; 2836 } 2837 2838 /** 2839 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2840 * @adapter: adapter to read 2841 * @p: where to store the parameters 2842 * 2843 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2844 * Clock. This can only be called after a connection to the firmware 2845 * is established. 2846 */ 2847 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2848 { 2849 u32 cclk_param, cclk_val; 2850 int ret; 2851 2852 /* Grab the raw VPD parameters. 2853 */ 2854 ret = t4_get_raw_vpd_params(adapter, p); 2855 if (ret) 2856 return ret; 2857 2858 /* Ask firmware for the Core Clock since it knows how to translate the 2859 * Reference Clock ('V2') VPD field into a Core Clock value ... 2860 */ 2861 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2862 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2863 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2864 1, &cclk_param, &cclk_val); 2865 2866 if (ret) 2867 return ret; 2868 p->cclk = cclk_val; 2869 2870 return 0; 2871 } 2872 2873 /** 2874 * t4_get_pfres - retrieve VF resource limits 2875 * @adapter: the adapter 2876 * 2877 * Retrieves configured resource limits and capabilities for a physical 2878 * function. The results are stored in @adapter->pfres. 2879 */ 2880 int t4_get_pfres(struct adapter *adapter) 2881 { 2882 struct pf_resources *pfres = &adapter->params.pfres; 2883 struct fw_pfvf_cmd cmd, rpl; 2884 int v; 2885 u32 word; 2886 2887 /* Execute PFVF Read command to get VF resource limits; bail out early 2888 * with error on command failure. 2889 */ 2890 memset(&cmd, 0, sizeof(cmd)); 2891 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 2892 FW_CMD_REQUEST_F | 2893 FW_CMD_READ_F | 2894 FW_PFVF_CMD_PFN_V(adapter->pf) | 2895 FW_PFVF_CMD_VFN_V(0)); 2896 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 2897 v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl); 2898 if (v != FW_SUCCESS) 2899 return v; 2900 2901 /* Extract PF resource limits and return success. 2902 */ 2903 word = be32_to_cpu(rpl.niqflint_niq); 2904 pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); 2905 pfres->niq = FW_PFVF_CMD_NIQ_G(word); 2906 2907 word = be32_to_cpu(rpl.type_to_neq); 2908 pfres->neq = FW_PFVF_CMD_NEQ_G(word); 2909 pfres->pmask = FW_PFVF_CMD_PMASK_G(word); 2910 2911 word = be32_to_cpu(rpl.tc_to_nexactf); 2912 pfres->tc = FW_PFVF_CMD_TC_G(word); 2913 pfres->nvi = FW_PFVF_CMD_NVI_G(word); 2914 pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); 2915 2916 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 2917 pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); 2918 pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); 2919 pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); 2920 2921 return 0; 2922 } 2923 2924 /* serial flash and firmware constants */ 2925 enum { 2926 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2927 2928 /* flash command opcodes */ 2929 SF_PROG_PAGE = 2, /* program page */ 2930 SF_WR_DISABLE = 4, /* disable writes */ 2931 SF_RD_STATUS = 5, /* read status register */ 2932 SF_WR_ENABLE = 6, /* enable writes */ 2933 SF_RD_DATA_FAST = 0xb, /* read flash */ 2934 SF_RD_ID = 0x9f, /* read ID */ 2935 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2936 }; 2937 2938 /** 2939 * sf1_read - read data from the serial flash 2940 * @adapter: the adapter 2941 * @byte_cnt: number of bytes to read 2942 * @cont: whether another operation will be chained 2943 * @lock: whether to lock SF for PL access only 2944 * @valp: where to store the read data 2945 * 2946 * Reads up to 4 bytes of data from the serial flash. The location of 2947 * the read needs to be specified prior to calling this by issuing the 2948 * appropriate commands to the serial flash. 2949 */ 2950 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2951 int lock, u32 *valp) 2952 { 2953 int ret; 2954 2955 if (!byte_cnt || byte_cnt > 4) 2956 return -EINVAL; 2957 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2958 return -EBUSY; 2959 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2960 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2961 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2962 if (!ret) 2963 *valp = t4_read_reg(adapter, SF_DATA_A); 2964 return ret; 2965 } 2966 2967 /** 2968 * sf1_write - write data to the serial flash 2969 * @adapter: the adapter 2970 * @byte_cnt: number of bytes to write 2971 * @cont: whether another operation will be chained 2972 * @lock: whether to lock SF for PL access only 2973 * @val: value to write 2974 * 2975 * Writes up to 4 bytes of data to the serial flash. The location of 2976 * the write needs to be specified prior to calling this by issuing the 2977 * appropriate commands to the serial flash. 2978 */ 2979 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2980 int lock, u32 val) 2981 { 2982 if (!byte_cnt || byte_cnt > 4) 2983 return -EINVAL; 2984 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2985 return -EBUSY; 2986 t4_write_reg(adapter, SF_DATA_A, val); 2987 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2988 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2989 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2990 } 2991 2992 /** 2993 * flash_wait_op - wait for a flash operation to complete 2994 * @adapter: the adapter 2995 * @attempts: max number of polls of the status register 2996 * @delay: delay between polls in ms 2997 * 2998 * Wait for a flash operation to complete by polling the status register. 2999 */ 3000 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 3001 { 3002 int ret; 3003 u32 status; 3004 3005 while (1) { 3006 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 3007 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 3008 return ret; 3009 if (!(status & 1)) 3010 return 0; 3011 if (--attempts == 0) 3012 return -EAGAIN; 3013 if (delay) 3014 msleep(delay); 3015 } 3016 } 3017 3018 /** 3019 * t4_read_flash - read words from serial flash 3020 * @adapter: the adapter 3021 * @addr: the start address for the read 3022 * @nwords: how many 32-bit words to read 3023 * @data: where to store the read data 3024 * @byte_oriented: whether to store data as bytes or as words 3025 * 3026 * Read the specified number of 32-bit words from the serial flash. 3027 * If @byte_oriented is set the read data is stored as a byte array 3028 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3029 * natural endianness. 3030 */ 3031 int t4_read_flash(struct adapter *adapter, unsigned int addr, 3032 unsigned int nwords, u32 *data, int byte_oriented) 3033 { 3034 int ret; 3035 3036 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3037 return -EINVAL; 3038 3039 addr = swab32(addr) | SF_RD_DATA_FAST; 3040 3041 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3042 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3043 return ret; 3044 3045 for ( ; nwords; nwords--, data++) { 3046 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3047 if (nwords == 1) 3048 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3049 if (ret) 3050 return ret; 3051 if (byte_oriented) 3052 *data = (__force __u32)(cpu_to_be32(*data)); 3053 } 3054 return 0; 3055 } 3056 3057 /** 3058 * t4_write_flash - write up to a page of data to the serial flash 3059 * @adapter: the adapter 3060 * @addr: the start address to write 3061 * @n: length of data to write in bytes 3062 * @data: the data to write 3063 * @byte_oriented: whether to store data as bytes or as words 3064 * 3065 * Writes up to a page of data (256 bytes) to the serial flash starting 3066 * at the given address. All the data must be written to the same page. 3067 * If @byte_oriented is set the write data is stored as byte stream 3068 * (i.e. matches what on disk), otherwise in big-endian. 3069 */ 3070 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 3071 unsigned int n, const u8 *data, bool byte_oriented) 3072 { 3073 unsigned int i, c, left, val, offset = addr & 0xff; 3074 u32 buf[64]; 3075 int ret; 3076 3077 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3078 return -EINVAL; 3079 3080 val = swab32(addr) | SF_PROG_PAGE; 3081 3082 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3083 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3084 goto unlock; 3085 3086 for (left = n; left; left -= c, data += c) { 3087 c = min(left, 4U); 3088 for (val = 0, i = 0; i < c; ++i) { 3089 if (byte_oriented) 3090 val = (val << 8) + data[i]; 3091 else 3092 val = (val << 8) + data[c - i - 1]; 3093 } 3094 3095 ret = sf1_write(adapter, c, c != left, 1, val); 3096 if (ret) 3097 goto unlock; 3098 } 3099 ret = flash_wait_op(adapter, 8, 1); 3100 if (ret) 3101 goto unlock; 3102 3103 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3104 3105 /* Read the page to verify the write succeeded */ 3106 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 3107 byte_oriented); 3108 if (ret) 3109 return ret; 3110 3111 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3112 dev_err(adapter->pdev_dev, 3113 "failed to correctly write the flash page at %#x\n", 3114 addr); 3115 return -EIO; 3116 } 3117 return 0; 3118 3119 unlock: 3120 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3121 return ret; 3122 } 3123 3124 /** 3125 * t4_get_fw_version - read the firmware version 3126 * @adapter: the adapter 3127 * @vers: where to place the version 3128 * 3129 * Reads the FW version from flash. 3130 */ 3131 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3132 { 3133 return t4_read_flash(adapter, FLASH_FW_START + 3134 offsetof(struct fw_hdr, fw_ver), 1, 3135 vers, 0); 3136 } 3137 3138 /** 3139 * t4_get_bs_version - read the firmware bootstrap version 3140 * @adapter: the adapter 3141 * @vers: where to place the version 3142 * 3143 * Reads the FW Bootstrap version from flash. 3144 */ 3145 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3146 { 3147 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3148 offsetof(struct fw_hdr, fw_ver), 1, 3149 vers, 0); 3150 } 3151 3152 /** 3153 * t4_get_tp_version - read the TP microcode version 3154 * @adapter: the adapter 3155 * @vers: where to place the version 3156 * 3157 * Reads the TP microcode version from flash. 3158 */ 3159 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3160 { 3161 return t4_read_flash(adapter, FLASH_FW_START + 3162 offsetof(struct fw_hdr, tp_microcode_ver), 3163 1, vers, 0); 3164 } 3165 3166 /** 3167 * t4_get_exprom_version - return the Expansion ROM version (if any) 3168 * @adap: the adapter 3169 * @vers: where to place the version 3170 * 3171 * Reads the Expansion ROM header from FLASH and returns the version 3172 * number (if present) through the @vers return value pointer. We return 3173 * this in the Firmware Version Format since it's convenient. Return 3174 * 0 on success, -ENOENT if no Expansion ROM is present. 3175 */ 3176 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3177 { 3178 struct exprom_header { 3179 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3180 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3181 } *hdr; 3182 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3183 sizeof(u32))]; 3184 int ret; 3185 3186 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3187 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3188 0); 3189 if (ret) 3190 return ret; 3191 3192 hdr = (struct exprom_header *)exprom_header_buf; 3193 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3194 return -ENOENT; 3195 3196 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3197 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3198 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3199 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3200 return 0; 3201 } 3202 3203 /** 3204 * t4_get_vpd_version - return the VPD version 3205 * @adapter: the adapter 3206 * @vers: where to place the version 3207 * 3208 * Reads the VPD via the Firmware interface (thus this can only be called 3209 * once we're ready to issue Firmware commands). The format of the 3210 * VPD version is adapter specific. Returns 0 on success, an error on 3211 * failure. 3212 * 3213 * Note that early versions of the Firmware didn't include the ability 3214 * to retrieve the VPD version, so we zero-out the return-value parameter 3215 * in that case to avoid leaving it with garbage in it. 3216 * 3217 * Also note that the Firmware will return its cached copy of the VPD 3218 * Revision ID, not the actual Revision ID as written in the Serial 3219 * EEPROM. This is only an issue if a new VPD has been written and the 3220 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3221 * to defer calling this routine till after a FW_RESET_CMD has been issued 3222 * if the Host Driver will be performing a full adapter initialization. 3223 */ 3224 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3225 { 3226 u32 vpdrev_param; 3227 int ret; 3228 3229 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3230 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3231 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3232 1, &vpdrev_param, vers); 3233 if (ret) 3234 *vers = 0; 3235 return ret; 3236 } 3237 3238 /** 3239 * t4_get_scfg_version - return the Serial Configuration version 3240 * @adapter: the adapter 3241 * @vers: where to place the version 3242 * 3243 * Reads the Serial Configuration Version via the Firmware interface 3244 * (thus this can only be called once we're ready to issue Firmware 3245 * commands). The format of the Serial Configuration version is 3246 * adapter specific. Returns 0 on success, an error on failure. 3247 * 3248 * Note that early versions of the Firmware didn't include the ability 3249 * to retrieve the Serial Configuration version, so we zero-out the 3250 * return-value parameter in that case to avoid leaving it with 3251 * garbage in it. 3252 * 3253 * Also note that the Firmware will return its cached copy of the Serial 3254 * Initialization Revision ID, not the actual Revision ID as written in 3255 * the Serial EEPROM. This is only an issue if a new VPD has been written 3256 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3257 * it's best to defer calling this routine till after a FW_RESET_CMD has 3258 * been issued if the Host Driver will be performing a full adapter 3259 * initialization. 3260 */ 3261 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3262 { 3263 u32 scfgrev_param; 3264 int ret; 3265 3266 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3267 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3268 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3269 1, &scfgrev_param, vers); 3270 if (ret) 3271 *vers = 0; 3272 return ret; 3273 } 3274 3275 /** 3276 * t4_get_version_info - extract various chip/firmware version information 3277 * @adapter: the adapter 3278 * 3279 * Reads various chip/firmware version numbers and stores them into the 3280 * adapter Adapter Parameters structure. If any of the efforts fails 3281 * the first failure will be returned, but all of the version numbers 3282 * will be read. 3283 */ 3284 int t4_get_version_info(struct adapter *adapter) 3285 { 3286 int ret = 0; 3287 3288 #define FIRST_RET(__getvinfo) \ 3289 do { \ 3290 int __ret = __getvinfo; \ 3291 if (__ret && !ret) \ 3292 ret = __ret; \ 3293 } while (0) 3294 3295 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3296 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3297 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3298 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3299 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3300 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3301 3302 #undef FIRST_RET 3303 return ret; 3304 } 3305 3306 /** 3307 * t4_dump_version_info - dump all of the adapter configuration IDs 3308 * @adapter: the adapter 3309 * 3310 * Dumps all of the various bits of adapter configuration version/revision 3311 * IDs information. This is typically called at some point after 3312 * t4_get_version_info() has been called. 3313 */ 3314 void t4_dump_version_info(struct adapter *adapter) 3315 { 3316 /* Device information */ 3317 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3318 adapter->params.vpd.id, 3319 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3320 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3321 adapter->params.vpd.sn, adapter->params.vpd.pn); 3322 3323 /* Firmware Version */ 3324 if (!adapter->params.fw_vers) 3325 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3326 else 3327 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3328 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3329 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3330 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3331 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3332 3333 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3334 * Firmware, so dev_info() is more appropriate here.) 3335 */ 3336 if (!adapter->params.bs_vers) 3337 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3338 else 3339 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3340 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3341 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3342 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3343 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3344 3345 /* TP Microcode Version */ 3346 if (!adapter->params.tp_vers) 3347 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3348 else 3349 dev_info(adapter->pdev_dev, 3350 "TP Microcode version: %u.%u.%u.%u\n", 3351 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3352 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3353 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3354 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3355 3356 /* Expansion ROM version */ 3357 if (!adapter->params.er_vers) 3358 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3359 else 3360 dev_info(adapter->pdev_dev, 3361 "Expansion ROM version: %u.%u.%u.%u\n", 3362 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3363 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3364 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3365 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3366 3367 /* Serial Configuration version */ 3368 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3369 adapter->params.scfg_vers); 3370 3371 /* VPD Version */ 3372 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3373 adapter->params.vpd_vers); 3374 } 3375 3376 /** 3377 * t4_check_fw_version - check if the FW is supported with this driver 3378 * @adap: the adapter 3379 * 3380 * Checks if an adapter's FW is compatible with the driver. Returns 0 3381 * if there's exact match, a negative error if the version could not be 3382 * read or there's a major version mismatch 3383 */ 3384 int t4_check_fw_version(struct adapter *adap) 3385 { 3386 int i, ret, major, minor, micro; 3387 int exp_major, exp_minor, exp_micro; 3388 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3389 3390 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3391 /* Try multiple times before returning error */ 3392 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3393 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3394 3395 if (ret) 3396 return ret; 3397 3398 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3399 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3400 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3401 3402 switch (chip_version) { 3403 case CHELSIO_T4: 3404 exp_major = T4FW_MIN_VERSION_MAJOR; 3405 exp_minor = T4FW_MIN_VERSION_MINOR; 3406 exp_micro = T4FW_MIN_VERSION_MICRO; 3407 break; 3408 case CHELSIO_T5: 3409 exp_major = T5FW_MIN_VERSION_MAJOR; 3410 exp_minor = T5FW_MIN_VERSION_MINOR; 3411 exp_micro = T5FW_MIN_VERSION_MICRO; 3412 break; 3413 case CHELSIO_T6: 3414 exp_major = T6FW_MIN_VERSION_MAJOR; 3415 exp_minor = T6FW_MIN_VERSION_MINOR; 3416 exp_micro = T6FW_MIN_VERSION_MICRO; 3417 break; 3418 default: 3419 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3420 adap->chip); 3421 return -EINVAL; 3422 } 3423 3424 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3425 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3426 dev_err(adap->pdev_dev, 3427 "Card has firmware version %u.%u.%u, minimum " 3428 "supported firmware is %u.%u.%u.\n", major, minor, 3429 micro, exp_major, exp_minor, exp_micro); 3430 return -EFAULT; 3431 } 3432 return 0; 3433 } 3434 3435 /* Is the given firmware API compatible with the one the driver was compiled 3436 * with? 3437 */ 3438 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3439 { 3440 3441 /* short circuit if it's the exact same firmware version */ 3442 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3443 return 1; 3444 3445 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3446 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3447 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3448 return 1; 3449 #undef SAME_INTF 3450 3451 return 0; 3452 } 3453 3454 /* The firmware in the filesystem is usable, but should it be installed? 3455 * This routine explains itself in detail if it indicates the filesystem 3456 * firmware should be installed. 3457 */ 3458 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3459 int k, int c) 3460 { 3461 const char *reason; 3462 3463 if (!card_fw_usable) { 3464 reason = "incompatible or unusable"; 3465 goto install; 3466 } 3467 3468 if (k > c) { 3469 reason = "older than the version supported with this driver"; 3470 goto install; 3471 } 3472 3473 return 0; 3474 3475 install: 3476 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3477 "installing firmware %u.%u.%u.%u on card.\n", 3478 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3479 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3480 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3481 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3482 3483 return 1; 3484 } 3485 3486 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3487 const u8 *fw_data, unsigned int fw_size, 3488 struct fw_hdr *card_fw, enum dev_state state, 3489 int *reset) 3490 { 3491 int ret, card_fw_usable, fs_fw_usable; 3492 const struct fw_hdr *fs_fw; 3493 const struct fw_hdr *drv_fw; 3494 3495 drv_fw = &fw_info->fw_hdr; 3496 3497 /* Read the header of the firmware on the card */ 3498 ret = t4_read_flash(adap, FLASH_FW_START, 3499 sizeof(*card_fw) / sizeof(uint32_t), 3500 (uint32_t *)card_fw, 1); 3501 if (ret == 0) { 3502 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3503 } else { 3504 dev_err(adap->pdev_dev, 3505 "Unable to read card's firmware header: %d\n", ret); 3506 card_fw_usable = 0; 3507 } 3508 3509 if (fw_data != NULL) { 3510 fs_fw = (const void *)fw_data; 3511 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3512 } else { 3513 fs_fw = NULL; 3514 fs_fw_usable = 0; 3515 } 3516 3517 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3518 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3519 /* Common case: the firmware on the card is an exact match and 3520 * the filesystem one is an exact match too, or the filesystem 3521 * one is absent/incompatible. 3522 */ 3523 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3524 should_install_fs_fw(adap, card_fw_usable, 3525 be32_to_cpu(fs_fw->fw_ver), 3526 be32_to_cpu(card_fw->fw_ver))) { 3527 ret = t4_fw_upgrade(adap, adap->mbox, fw_data, 3528 fw_size, 0); 3529 if (ret != 0) { 3530 dev_err(adap->pdev_dev, 3531 "failed to install firmware: %d\n", ret); 3532 goto bye; 3533 } 3534 3535 /* Installed successfully, update the cached header too. */ 3536 *card_fw = *fs_fw; 3537 card_fw_usable = 1; 3538 *reset = 0; /* already reset as part of load_fw */ 3539 } 3540 3541 if (!card_fw_usable) { 3542 uint32_t d, c, k; 3543 3544 d = be32_to_cpu(drv_fw->fw_ver); 3545 c = be32_to_cpu(card_fw->fw_ver); 3546 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3547 3548 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3549 "chip state %d, " 3550 "driver compiled with %d.%d.%d.%d, " 3551 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3552 state, 3553 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3554 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3555 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3556 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3557 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3558 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3559 ret = -EINVAL; 3560 goto bye; 3561 } 3562 3563 /* We're using whatever's on the card and it's known to be good. */ 3564 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3565 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3566 3567 bye: 3568 return ret; 3569 } 3570 3571 /** 3572 * t4_flash_erase_sectors - erase a range of flash sectors 3573 * @adapter: the adapter 3574 * @start: the first sector to erase 3575 * @end: the last sector to erase 3576 * 3577 * Erases the sectors in the given inclusive range. 3578 */ 3579 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3580 { 3581 int ret = 0; 3582 3583 if (end >= adapter->params.sf_nsec) 3584 return -EINVAL; 3585 3586 while (start <= end) { 3587 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3588 (ret = sf1_write(adapter, 4, 0, 1, 3589 SF_ERASE_SECTOR | (start << 8))) != 0 || 3590 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3591 dev_err(adapter->pdev_dev, 3592 "erase of flash sector %d failed, error %d\n", 3593 start, ret); 3594 break; 3595 } 3596 start++; 3597 } 3598 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3599 return ret; 3600 } 3601 3602 /** 3603 * t4_flash_cfg_addr - return the address of the flash configuration file 3604 * @adapter: the adapter 3605 * 3606 * Return the address within the flash where the Firmware Configuration 3607 * File is stored. 3608 */ 3609 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3610 { 3611 if (adapter->params.sf_size == 0x100000) 3612 return FLASH_FPGA_CFG_START; 3613 else 3614 return FLASH_CFG_START; 3615 } 3616 3617 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3618 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3619 * and emit an error message for mismatched firmware to save our caller the 3620 * effort ... 3621 */ 3622 static bool t4_fw_matches_chip(const struct adapter *adap, 3623 const struct fw_hdr *hdr) 3624 { 3625 /* The expression below will return FALSE for any unsupported adapter 3626 * which will keep us "honest" in the future ... 3627 */ 3628 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3629 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3630 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3631 return true; 3632 3633 dev_err(adap->pdev_dev, 3634 "FW image (%d) is not suitable for this adapter (%d)\n", 3635 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3636 return false; 3637 } 3638 3639 /** 3640 * t4_load_fw - download firmware 3641 * @adap: the adapter 3642 * @fw_data: the firmware image to write 3643 * @size: image size 3644 * 3645 * Write the supplied firmware image to the card's serial flash. 3646 */ 3647 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3648 { 3649 u32 csum; 3650 int ret, addr; 3651 unsigned int i; 3652 u8 first_page[SF_PAGE_SIZE]; 3653 const __be32 *p = (const __be32 *)fw_data; 3654 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3655 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3656 unsigned int fw_start_sec = FLASH_FW_START_SEC; 3657 unsigned int fw_size = FLASH_FW_MAX_SIZE; 3658 unsigned int fw_start = FLASH_FW_START; 3659 3660 if (!size) { 3661 dev_err(adap->pdev_dev, "FW image has no data\n"); 3662 return -EINVAL; 3663 } 3664 if (size & 511) { 3665 dev_err(adap->pdev_dev, 3666 "FW image size not multiple of 512 bytes\n"); 3667 return -EINVAL; 3668 } 3669 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3670 dev_err(adap->pdev_dev, 3671 "FW image size differs from size in FW header\n"); 3672 return -EINVAL; 3673 } 3674 if (size > fw_size) { 3675 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3676 fw_size); 3677 return -EFBIG; 3678 } 3679 if (!t4_fw_matches_chip(adap, hdr)) 3680 return -EINVAL; 3681 3682 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3683 csum += be32_to_cpu(p[i]); 3684 3685 if (csum != 0xffffffff) { 3686 dev_err(adap->pdev_dev, 3687 "corrupted firmware image, checksum %#x\n", csum); 3688 return -EINVAL; 3689 } 3690 3691 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3692 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3693 if (ret) 3694 goto out; 3695 3696 /* 3697 * We write the correct version at the end so the driver can see a bad 3698 * version if the FW write fails. Start by writing a copy of the 3699 * first page with a bad version. 3700 */ 3701 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3702 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3703 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, true); 3704 if (ret) 3705 goto out; 3706 3707 addr = fw_start; 3708 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3709 addr += SF_PAGE_SIZE; 3710 fw_data += SF_PAGE_SIZE; 3711 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, true); 3712 if (ret) 3713 goto out; 3714 } 3715 3716 ret = t4_write_flash(adap, fw_start + offsetof(struct fw_hdr, fw_ver), 3717 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 3718 true); 3719 out: 3720 if (ret) 3721 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3722 ret); 3723 else 3724 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3725 return ret; 3726 } 3727 3728 /** 3729 * t4_phy_fw_ver - return current PHY firmware version 3730 * @adap: the adapter 3731 * @phy_fw_ver: return value buffer for PHY firmware version 3732 * 3733 * Returns the current version of external PHY firmware on the 3734 * adapter. 3735 */ 3736 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3737 { 3738 u32 param, val; 3739 int ret; 3740 3741 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3742 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3743 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3744 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3745 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3746 ¶m, &val); 3747 if (ret) 3748 return ret; 3749 *phy_fw_ver = val; 3750 return 0; 3751 } 3752 3753 /** 3754 * t4_load_phy_fw - download port PHY firmware 3755 * @adap: the adapter 3756 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3757 * @phy_fw_version: function to check PHY firmware versions 3758 * @phy_fw_data: the PHY firmware image to write 3759 * @phy_fw_size: image size 3760 * 3761 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3762 * @phy_fw_version is supplied, then it will be used to determine if 3763 * it's necessary to perform the transfer by comparing the version 3764 * of any existing adapter PHY firmware with that of the passed in 3765 * PHY firmware image. 3766 * 3767 * A negative error number will be returned if an error occurs. If 3768 * version number support is available and there's no need to upgrade 3769 * the firmware, 0 will be returned. If firmware is successfully 3770 * transferred to the adapter, 1 will be returned. 3771 * 3772 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3773 * a result, a RESET of the adapter would cause that RAM to lose its 3774 * contents. Thus, loading PHY firmware on such adapters must happen 3775 * after any FW_RESET_CMDs ... 3776 */ 3777 int t4_load_phy_fw(struct adapter *adap, int win, 3778 int (*phy_fw_version)(const u8 *, size_t), 3779 const u8 *phy_fw_data, size_t phy_fw_size) 3780 { 3781 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3782 unsigned long mtype = 0, maddr = 0; 3783 u32 param, val; 3784 int ret; 3785 3786 /* If we have version number support, then check to see if the adapter 3787 * already has up-to-date PHY firmware loaded. 3788 */ 3789 if (phy_fw_version) { 3790 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3791 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3792 if (ret < 0) 3793 return ret; 3794 3795 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3796 CH_WARN(adap, "PHY Firmware already up-to-date, " 3797 "version %#x\n", cur_phy_fw_ver); 3798 return 0; 3799 } 3800 } 3801 3802 /* Ask the firmware where it wants us to copy the PHY firmware image. 3803 * The size of the file requires a special version of the READ command 3804 * which will pass the file size via the values field in PARAMS_CMD and 3805 * retrieve the return value from firmware and place it in the same 3806 * buffer values 3807 */ 3808 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3809 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3810 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3811 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3812 val = phy_fw_size; 3813 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3814 ¶m, &val, 1, true); 3815 if (ret < 0) 3816 return ret; 3817 mtype = val >> 8; 3818 maddr = (val & 0xff) << 16; 3819 3820 /* Copy the supplied PHY Firmware image to the adapter memory location 3821 * allocated by the adapter firmware. 3822 */ 3823 spin_lock_bh(&adap->win0_lock); 3824 ret = t4_memory_rw(adap, win, mtype, maddr, 3825 phy_fw_size, (__be32 *)phy_fw_data, 3826 T4_MEMORY_WRITE); 3827 spin_unlock_bh(&adap->win0_lock); 3828 if (ret) 3829 return ret; 3830 3831 /* Tell the firmware that the PHY firmware image has been written to 3832 * RAM and it can now start copying it over to the PHYs. The chip 3833 * firmware will RESET the affected PHYs as part of this operation 3834 * leaving them running the new PHY firmware image. 3835 */ 3836 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3837 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3838 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3839 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3840 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3841 ¶m, &val, 30000); 3842 3843 /* If we have version number support, then check to see that the new 3844 * firmware got loaded properly. 3845 */ 3846 if (phy_fw_version) { 3847 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3848 if (ret < 0) 3849 return ret; 3850 3851 if (cur_phy_fw_ver != new_phy_fw_vers) { 3852 CH_WARN(adap, "PHY Firmware did not update: " 3853 "version on adapter %#x, " 3854 "version flashed %#x\n", 3855 cur_phy_fw_ver, new_phy_fw_vers); 3856 return -ENXIO; 3857 } 3858 } 3859 3860 return 1; 3861 } 3862 3863 /** 3864 * t4_fwcache - firmware cache operation 3865 * @adap: the adapter 3866 * @op : the operation (flush or flush and invalidate) 3867 */ 3868 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3869 { 3870 struct fw_params_cmd c; 3871 3872 memset(&c, 0, sizeof(c)); 3873 c.op_to_vfn = 3874 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3875 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3876 FW_PARAMS_CMD_PFN_V(adap->pf) | 3877 FW_PARAMS_CMD_VFN_V(0)); 3878 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3879 c.param[0].mnem = 3880 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3881 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3882 c.param[0].val = cpu_to_be32(op); 3883 3884 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3885 } 3886 3887 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3888 unsigned int *pif_req_wrptr, 3889 unsigned int *pif_rsp_wrptr) 3890 { 3891 int i, j; 3892 u32 cfg, val, req, rsp; 3893 3894 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3895 if (cfg & LADBGEN_F) 3896 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3897 3898 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3899 req = POLADBGWRPTR_G(val); 3900 rsp = PILADBGWRPTR_G(val); 3901 if (pif_req_wrptr) 3902 *pif_req_wrptr = req; 3903 if (pif_rsp_wrptr) 3904 *pif_rsp_wrptr = rsp; 3905 3906 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3907 for (j = 0; j < 6; j++) { 3908 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3909 PILADBGRDPTR_V(rsp)); 3910 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3911 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3912 req++; 3913 rsp++; 3914 } 3915 req = (req + 2) & POLADBGRDPTR_M; 3916 rsp = (rsp + 2) & PILADBGRDPTR_M; 3917 } 3918 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3919 } 3920 3921 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3922 { 3923 u32 cfg; 3924 int i, j, idx; 3925 3926 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3927 if (cfg & LADBGEN_F) 3928 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3929 3930 for (i = 0; i < CIM_MALA_SIZE; i++) { 3931 for (j = 0; j < 5; j++) { 3932 idx = 8 * i + j; 3933 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3934 PILADBGRDPTR_V(idx)); 3935 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3936 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3937 } 3938 } 3939 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3940 } 3941 3942 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3943 { 3944 unsigned int i, j; 3945 3946 for (i = 0; i < 8; i++) { 3947 u32 *p = la_buf + i; 3948 3949 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3950 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3951 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3952 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3953 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3954 } 3955 } 3956 3957 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port 3958 * Capabilities which we control with separate controls -- see, for instance, 3959 * Pause Frames and Forward Error Correction. In order to determine what the 3960 * full set of Advertised Port Capabilities are, the base Advertised Port 3961 * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised 3962 * Port Capabilities associated with those other controls. See 3963 * t4_link_acaps() for how this is done. 3964 */ 3965 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3966 FW_PORT_CAP32_ANEG) 3967 3968 /** 3969 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3970 * @caps16: a 16-bit Port Capabilities value 3971 * 3972 * Returns the equivalent 32-bit Port Capabilities value. 3973 */ 3974 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3975 { 3976 fw_port_cap32_t caps32 = 0; 3977 3978 #define CAP16_TO_CAP32(__cap) \ 3979 do { \ 3980 if (caps16 & FW_PORT_CAP_##__cap) \ 3981 caps32 |= FW_PORT_CAP32_##__cap; \ 3982 } while (0) 3983 3984 CAP16_TO_CAP32(SPEED_100M); 3985 CAP16_TO_CAP32(SPEED_1G); 3986 CAP16_TO_CAP32(SPEED_25G); 3987 CAP16_TO_CAP32(SPEED_10G); 3988 CAP16_TO_CAP32(SPEED_40G); 3989 CAP16_TO_CAP32(SPEED_100G); 3990 CAP16_TO_CAP32(FC_RX); 3991 CAP16_TO_CAP32(FC_TX); 3992 CAP16_TO_CAP32(ANEG); 3993 CAP16_TO_CAP32(FORCE_PAUSE); 3994 CAP16_TO_CAP32(MDIAUTO); 3995 CAP16_TO_CAP32(MDISTRAIGHT); 3996 CAP16_TO_CAP32(FEC_RS); 3997 CAP16_TO_CAP32(FEC_BASER_RS); 3998 CAP16_TO_CAP32(802_3_PAUSE); 3999 CAP16_TO_CAP32(802_3_ASM_DIR); 4000 4001 #undef CAP16_TO_CAP32 4002 4003 return caps32; 4004 } 4005 4006 /** 4007 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 4008 * @caps32: a 32-bit Port Capabilities value 4009 * 4010 * Returns the equivalent 16-bit Port Capabilities value. Note that 4011 * not all 32-bit Port Capabilities can be represented in the 16-bit 4012 * Port Capabilities and some fields/values may not make it. 4013 */ 4014 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 4015 { 4016 fw_port_cap16_t caps16 = 0; 4017 4018 #define CAP32_TO_CAP16(__cap) \ 4019 do { \ 4020 if (caps32 & FW_PORT_CAP32_##__cap) \ 4021 caps16 |= FW_PORT_CAP_##__cap; \ 4022 } while (0) 4023 4024 CAP32_TO_CAP16(SPEED_100M); 4025 CAP32_TO_CAP16(SPEED_1G); 4026 CAP32_TO_CAP16(SPEED_10G); 4027 CAP32_TO_CAP16(SPEED_25G); 4028 CAP32_TO_CAP16(SPEED_40G); 4029 CAP32_TO_CAP16(SPEED_100G); 4030 CAP32_TO_CAP16(FC_RX); 4031 CAP32_TO_CAP16(FC_TX); 4032 CAP32_TO_CAP16(802_3_PAUSE); 4033 CAP32_TO_CAP16(802_3_ASM_DIR); 4034 CAP32_TO_CAP16(ANEG); 4035 CAP32_TO_CAP16(FORCE_PAUSE); 4036 CAP32_TO_CAP16(MDIAUTO); 4037 CAP32_TO_CAP16(MDISTRAIGHT); 4038 CAP32_TO_CAP16(FEC_RS); 4039 CAP32_TO_CAP16(FEC_BASER_RS); 4040 4041 #undef CAP32_TO_CAP16 4042 4043 return caps16; 4044 } 4045 4046 /* Translate Firmware Port Capabilities Pause specification to Common Code */ 4047 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 4048 { 4049 enum cc_pause cc_pause = 0; 4050 4051 if (fw_pause & FW_PORT_CAP32_FC_RX) 4052 cc_pause |= PAUSE_RX; 4053 if (fw_pause & FW_PORT_CAP32_FC_TX) 4054 cc_pause |= PAUSE_TX; 4055 4056 return cc_pause; 4057 } 4058 4059 /* Translate Common Code Pause specification into Firmware Port Capabilities */ 4060 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 4061 { 4062 /* Translate orthogonal RX/TX Pause Controls for L1 Configure 4063 * commands, etc. 4064 */ 4065 fw_port_cap32_t fw_pause = 0; 4066 4067 if (cc_pause & PAUSE_RX) 4068 fw_pause |= FW_PORT_CAP32_FC_RX; 4069 if (cc_pause & PAUSE_TX) 4070 fw_pause |= FW_PORT_CAP32_FC_TX; 4071 if (!(cc_pause & PAUSE_AUTONEG)) 4072 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE; 4073 4074 /* Translate orthogonal Pause controls into IEEE 802.3 Pause, 4075 * Asymmetrical Pause for use in reporting to upper layer OS code, etc. 4076 * Note that these bits are ignored in L1 Configure commands. 4077 */ 4078 if (cc_pause & PAUSE_RX) { 4079 if (cc_pause & PAUSE_TX) 4080 fw_pause |= FW_PORT_CAP32_802_3_PAUSE; 4081 else 4082 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR | 4083 FW_PORT_CAP32_802_3_PAUSE; 4084 } else if (cc_pause & PAUSE_TX) { 4085 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR; 4086 } 4087 4088 return fw_pause; 4089 } 4090 4091 /* Translate Firmware Forward Error Correction specification to Common Code */ 4092 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 4093 { 4094 enum cc_fec cc_fec = 0; 4095 4096 if (fw_fec & FW_PORT_CAP32_FEC_RS) 4097 cc_fec |= FEC_RS; 4098 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 4099 cc_fec |= FEC_BASER_RS; 4100 4101 return cc_fec; 4102 } 4103 4104 /* Translate Common Code Forward Error Correction specification to Firmware */ 4105 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 4106 { 4107 fw_port_cap32_t fw_fec = 0; 4108 4109 if (cc_fec & FEC_RS) 4110 fw_fec |= FW_PORT_CAP32_FEC_RS; 4111 if (cc_fec & FEC_BASER_RS) 4112 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 4113 4114 return fw_fec; 4115 } 4116 4117 /** 4118 * t4_link_acaps - compute Link Advertised Port Capabilities 4119 * @adapter: the adapter 4120 * @port: the Port ID 4121 * @lc: the Port's Link Configuration 4122 * 4123 * Synthesize the Advertised Port Capabilities we'll be using based on 4124 * the base Advertised Port Capabilities (which have been filtered by 4125 * ADVERT_MASK) plus the individual controls for things like Pause 4126 * Frames, Forward Error Correction, MDI, etc. 4127 */ 4128 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port, 4129 struct link_config *lc) 4130 { 4131 fw_port_cap32_t fw_fc, fw_fec, acaps; 4132 unsigned int fw_mdi; 4133 char cc_fec; 4134 4135 fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps); 4136 4137 /* Convert driver coding of Pause Frame Flow Control settings into the 4138 * Firmware's API. 4139 */ 4140 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4141 4142 /* Convert Common Code Forward Error Control settings into the 4143 * Firmware's API. If the current Requested FEC has "Automatic" 4144 * (IEEE 802.3) specified, then we use whatever the Firmware 4145 * sent us as part of its IEEE 802.3-based interpretation of 4146 * the Transceiver Module EPROM FEC parameters. Otherwise we 4147 * use whatever is in the current Requested FEC settings. 4148 */ 4149 if (lc->requested_fec & FEC_AUTO) 4150 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4151 else 4152 cc_fec = lc->requested_fec; 4153 fw_fec = cc_to_fwcap_fec(cc_fec); 4154 4155 /* Figure out what our Requested Port Capabilities are going to be. 4156 * Note parallel structure in t4_handle_get_port_info() and 4157 * init_link_config(). 4158 */ 4159 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4160 acaps = lc->acaps | fw_fc | fw_fec; 4161 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4162 lc->fec = cc_fec; 4163 } else if (lc->autoneg == AUTONEG_DISABLE) { 4164 acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4165 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4166 lc->fec = cc_fec; 4167 } else { 4168 acaps = lc->acaps | fw_fc | fw_fec | fw_mdi; 4169 } 4170 4171 /* Some Requested Port Capabilities are trivially wrong if they exceed 4172 * the Physical Port Capabilities. We can check that here and provide 4173 * moderately useful feedback in the system log. 4174 * 4175 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so 4176 * we need to exclude this from this check in order to maintain 4177 * compatibility ... 4178 */ 4179 if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) { 4180 dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n", 4181 acaps, lc->pcaps); 4182 return -EINVAL; 4183 } 4184 4185 return acaps; 4186 } 4187 4188 /** 4189 * t4_link_l1cfg_core - apply link configuration to MAC/PHY 4190 * @adapter: the adapter 4191 * @mbox: the Firmware Mailbox to use 4192 * @port: the Port ID 4193 * @lc: the Port's Link Configuration 4194 * @sleep_ok: if true we may sleep while awaiting command completion 4195 * @timeout: time to wait for command to finish before timing out 4196 * (negative implies @sleep_ok=false) 4197 * 4198 * Set up a port's MAC and PHY according to a desired link configuration. 4199 * - If the PHY can auto-negotiate first decide what to advertise, then 4200 * enable/disable auto-negotiation as desired, and reset. 4201 * - If the PHY does not auto-negotiate just reset it. 4202 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4203 * otherwise do it later based on the outcome of auto-negotiation. 4204 */ 4205 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox, 4206 unsigned int port, struct link_config *lc, 4207 u8 sleep_ok, int timeout) 4208 { 4209 unsigned int fw_caps = adapter->params.fw_caps_support; 4210 struct fw_port_cmd cmd; 4211 fw_port_cap32_t rcap; 4212 int ret; 4213 4214 if (!(lc->pcaps & FW_PORT_CAP32_ANEG) && 4215 lc->autoneg == AUTONEG_ENABLE) { 4216 return -EINVAL; 4217 } 4218 4219 /* Compute our Requested Port Capabilities and send that on to the 4220 * Firmware. 4221 */ 4222 rcap = t4_link_acaps(adapter, port, lc); 4223 memset(&cmd, 0, sizeof(cmd)); 4224 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4225 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4226 FW_PORT_CMD_PORTID_V(port)); 4227 cmd.action_to_len16 = 4228 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4229 ? FW_PORT_ACTION_L1_CFG 4230 : FW_PORT_ACTION_L1_CFG32) | 4231 FW_LEN16(cmd)); 4232 if (fw_caps == FW_CAPS16) 4233 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4234 else 4235 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4236 4237 ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL, 4238 sleep_ok, timeout); 4239 4240 /* Unfortunately, even if the Requested Port Capabilities "fit" within 4241 * the Physical Port Capabilities, some combinations of features may 4242 * still not be legal. For example, 40Gb/s and Reed-Solomon Forward 4243 * Error Correction. So if the Firmware rejects the L1 Configure 4244 * request, flag that here. 4245 */ 4246 if (ret) { 4247 dev_err(adapter->pdev_dev, 4248 "Requested Port Capabilities %#x rejected, error %d\n", 4249 rcap, -ret); 4250 return ret; 4251 } 4252 return 0; 4253 } 4254 4255 /** 4256 * t4_restart_aneg - restart autonegotiation 4257 * @adap: the adapter 4258 * @mbox: mbox to use for the FW command 4259 * @port: the port id 4260 * 4261 * Restarts autonegotiation for the selected port. 4262 */ 4263 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4264 { 4265 unsigned int fw_caps = adap->params.fw_caps_support; 4266 struct fw_port_cmd c; 4267 4268 memset(&c, 0, sizeof(c)); 4269 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4270 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4271 FW_PORT_CMD_PORTID_V(port)); 4272 c.action_to_len16 = 4273 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4274 ? FW_PORT_ACTION_L1_CFG 4275 : FW_PORT_ACTION_L1_CFG32) | 4276 FW_LEN16(c)); 4277 if (fw_caps == FW_CAPS16) 4278 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 4279 else 4280 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG); 4281 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4282 } 4283 4284 typedef void (*int_handler_t)(struct adapter *adap); 4285 4286 struct intr_info { 4287 unsigned int mask; /* bits to check in interrupt status */ 4288 const char *msg; /* message to print or NULL */ 4289 short stat_idx; /* stat counter to increment or -1 */ 4290 unsigned short fatal; /* whether the condition reported is fatal */ 4291 int_handler_t int_handler; /* platform-specific int handler */ 4292 }; 4293 4294 /** 4295 * t4_handle_intr_status - table driven interrupt handler 4296 * @adapter: the adapter that generated the interrupt 4297 * @reg: the interrupt status register to process 4298 * @acts: table of interrupt actions 4299 * 4300 * A table driven interrupt handler that applies a set of masks to an 4301 * interrupt status word and performs the corresponding actions if the 4302 * interrupts described by the mask have occurred. The actions include 4303 * optionally emitting a warning or alert message. The table is terminated 4304 * by an entry specifying mask 0. Returns the number of fatal interrupt 4305 * conditions. 4306 */ 4307 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4308 const struct intr_info *acts) 4309 { 4310 int fatal = 0; 4311 unsigned int mask = 0; 4312 unsigned int status = t4_read_reg(adapter, reg); 4313 4314 for ( ; acts->mask; ++acts) { 4315 if (!(status & acts->mask)) 4316 continue; 4317 if (acts->fatal) { 4318 fatal++; 4319 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4320 status & acts->mask); 4321 } else if (acts->msg && printk_ratelimit()) 4322 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4323 status & acts->mask); 4324 if (acts->int_handler) 4325 acts->int_handler(adapter); 4326 mask |= acts->mask; 4327 } 4328 status &= mask; 4329 if (status) /* clear processed interrupts */ 4330 t4_write_reg(adapter, reg, status); 4331 return fatal; 4332 } 4333 4334 /* 4335 * Interrupt handler for the PCIE module. 4336 */ 4337 static void pcie_intr_handler(struct adapter *adapter) 4338 { 4339 static const struct intr_info sysbus_intr_info[] = { 4340 { RNPP_F, "RXNP array parity error", -1, 1 }, 4341 { RPCP_F, "RXPC array parity error", -1, 1 }, 4342 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4343 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4344 { RFTP_F, "RXFT array parity error", -1, 1 }, 4345 { 0 } 4346 }; 4347 static const struct intr_info pcie_port_intr_info[] = { 4348 { TPCP_F, "TXPC array parity error", -1, 1 }, 4349 { TNPP_F, "TXNP array parity error", -1, 1 }, 4350 { TFTP_F, "TXFT array parity error", -1, 1 }, 4351 { TCAP_F, "TXCA array parity error", -1, 1 }, 4352 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4353 { RCAP_F, "RXCA array parity error", -1, 1 }, 4354 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4355 { RDPE_F, "Rx data parity error", -1, 1 }, 4356 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4357 { 0 } 4358 }; 4359 static const struct intr_info pcie_intr_info[] = { 4360 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4361 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4362 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4363 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4364 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4365 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4366 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4367 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4368 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4369 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4370 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4371 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4372 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4373 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4374 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4375 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4376 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4377 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4378 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4379 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4380 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4381 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4382 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4383 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4384 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4385 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4386 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4387 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4388 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4389 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4390 -1, 0 }, 4391 { 0 } 4392 }; 4393 4394 static struct intr_info t5_pcie_intr_info[] = { 4395 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4396 -1, 1 }, 4397 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4398 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4399 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4400 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4401 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4402 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4403 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4404 -1, 1 }, 4405 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4406 -1, 1 }, 4407 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4408 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4409 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4410 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4411 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4412 -1, 1 }, 4413 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4414 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4415 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4416 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4417 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4418 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4419 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4420 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4421 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4422 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4423 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4424 -1, 1 }, 4425 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4426 -1, 1 }, 4427 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4428 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4429 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4430 { READRSPERR_F, "Outbound read error", -1, 0 }, 4431 { 0 } 4432 }; 4433 4434 int fat; 4435 4436 if (is_t4(adapter->params.chip)) 4437 fat = t4_handle_intr_status(adapter, 4438 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4439 sysbus_intr_info) + 4440 t4_handle_intr_status(adapter, 4441 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4442 pcie_port_intr_info) + 4443 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4444 pcie_intr_info); 4445 else 4446 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4447 t5_pcie_intr_info); 4448 4449 if (fat) 4450 t4_fatal_err(adapter); 4451 } 4452 4453 /* 4454 * TP interrupt handler. 4455 */ 4456 static void tp_intr_handler(struct adapter *adapter) 4457 { 4458 static const struct intr_info tp_intr_info[] = { 4459 { 0x3fffffff, "TP parity error", -1, 1 }, 4460 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4461 { 0 } 4462 }; 4463 4464 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4465 t4_fatal_err(adapter); 4466 } 4467 4468 /* 4469 * SGE interrupt handler. 4470 */ 4471 static void sge_intr_handler(struct adapter *adapter) 4472 { 4473 u32 v = 0, perr; 4474 u32 err; 4475 4476 static const struct intr_info sge_intr_info[] = { 4477 { ERR_CPL_EXCEED_IQE_SIZE_F, 4478 "SGE received CPL exceeding IQE size", -1, 1 }, 4479 { ERR_INVALID_CIDX_INC_F, 4480 "SGE GTS CIDX increment too large", -1, 0 }, 4481 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4482 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4483 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4484 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4485 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4486 0 }, 4487 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4488 0 }, 4489 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4490 0 }, 4491 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4492 0 }, 4493 { ERR_ING_CTXT_PRIO_F, 4494 "SGE too many priority ingress contexts", -1, 0 }, 4495 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4496 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4497 { 0 } 4498 }; 4499 4500 static struct intr_info t4t5_sge_intr_info[] = { 4501 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4502 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4503 { ERR_EGR_CTXT_PRIO_F, 4504 "SGE too many priority egress contexts", -1, 0 }, 4505 { 0 } 4506 }; 4507 4508 perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A); 4509 if (perr) { 4510 v |= perr; 4511 dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n", 4512 perr); 4513 } 4514 4515 perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A); 4516 if (perr) { 4517 v |= perr; 4518 dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n", 4519 perr); 4520 } 4521 4522 if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) { 4523 perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A); 4524 /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */ 4525 perr &= ~ERR_T_RXCRC_F; 4526 if (perr) { 4527 v |= perr; 4528 dev_alert(adapter->pdev_dev, 4529 "SGE Cause5 Parity Error %#x\n", perr); 4530 } 4531 } 4532 4533 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4534 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4535 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4536 t4t5_sge_intr_info); 4537 4538 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4539 if (err & ERROR_QID_VALID_F) { 4540 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4541 ERROR_QID_G(err)); 4542 if (err & UNCAPTURED_ERROR_F) 4543 dev_err(adapter->pdev_dev, 4544 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4545 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4546 UNCAPTURED_ERROR_F); 4547 } 4548 4549 if (v != 0) 4550 t4_fatal_err(adapter); 4551 } 4552 4553 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4554 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4555 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4556 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4557 4558 /* 4559 * CIM interrupt handler. 4560 */ 4561 static void cim_intr_handler(struct adapter *adapter) 4562 { 4563 static const struct intr_info cim_intr_info[] = { 4564 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4565 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4566 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4567 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4568 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4569 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4570 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4571 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4572 { 0 } 4573 }; 4574 static const struct intr_info cim_upintr_info[] = { 4575 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4576 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4577 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4578 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4579 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4580 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4581 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4582 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4583 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4584 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4585 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4586 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4587 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4588 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4589 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4590 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4591 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4592 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4593 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4594 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4595 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4596 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4597 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4598 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4599 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4600 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4601 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4602 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4603 { 0 } 4604 }; 4605 4606 u32 val, fw_err; 4607 int fat; 4608 4609 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4610 if (fw_err & PCIE_FW_ERR_F) 4611 t4_report_fw_error(adapter); 4612 4613 /* When the Firmware detects an internal error which normally 4614 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4615 * in order to make sure the Host sees the Firmware Crash. So 4616 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4617 * ignore the Timer0 interrupt. 4618 */ 4619 4620 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4621 if (val & TIMER0INT_F) 4622 if (!(fw_err & PCIE_FW_ERR_F) || 4623 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4624 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4625 TIMER0INT_F); 4626 4627 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4628 cim_intr_info) + 4629 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4630 cim_upintr_info); 4631 if (fat) 4632 t4_fatal_err(adapter); 4633 } 4634 4635 /* 4636 * ULP RX interrupt handler. 4637 */ 4638 static void ulprx_intr_handler(struct adapter *adapter) 4639 { 4640 static const struct intr_info ulprx_intr_info[] = { 4641 { 0x1800000, "ULPRX context error", -1, 1 }, 4642 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4643 { 0 } 4644 }; 4645 4646 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4647 t4_fatal_err(adapter); 4648 } 4649 4650 /* 4651 * ULP TX interrupt handler. 4652 */ 4653 static void ulptx_intr_handler(struct adapter *adapter) 4654 { 4655 static const struct intr_info ulptx_intr_info[] = { 4656 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4657 0 }, 4658 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4659 0 }, 4660 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4661 0 }, 4662 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4663 0 }, 4664 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4665 { 0 } 4666 }; 4667 4668 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4669 t4_fatal_err(adapter); 4670 } 4671 4672 /* 4673 * PM TX interrupt handler. 4674 */ 4675 static void pmtx_intr_handler(struct adapter *adapter) 4676 { 4677 static const struct intr_info pmtx_intr_info[] = { 4678 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4679 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4680 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4681 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4682 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4683 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4684 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4685 -1, 1 }, 4686 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4687 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4688 { 0 } 4689 }; 4690 4691 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4692 t4_fatal_err(adapter); 4693 } 4694 4695 /* 4696 * PM RX interrupt handler. 4697 */ 4698 static void pmrx_intr_handler(struct adapter *adapter) 4699 { 4700 static const struct intr_info pmrx_intr_info[] = { 4701 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4702 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4703 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4704 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4705 -1, 1 }, 4706 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4707 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4708 { 0 } 4709 }; 4710 4711 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4712 t4_fatal_err(adapter); 4713 } 4714 4715 /* 4716 * CPL switch interrupt handler. 4717 */ 4718 static void cplsw_intr_handler(struct adapter *adapter) 4719 { 4720 static const struct intr_info cplsw_intr_info[] = { 4721 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4722 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4723 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4724 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4725 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4726 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4727 { 0 } 4728 }; 4729 4730 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4731 t4_fatal_err(adapter); 4732 } 4733 4734 /* 4735 * LE interrupt handler. 4736 */ 4737 static void le_intr_handler(struct adapter *adap) 4738 { 4739 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4740 static const struct intr_info le_intr_info[] = { 4741 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4742 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4743 { PARITYERR_F, "LE parity error", -1, 1 }, 4744 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4745 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4746 { 0 } 4747 }; 4748 4749 static struct intr_info t6_le_intr_info[] = { 4750 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4751 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4752 { CMDTIDERR_F, "LE cmd tid error", -1, 1 }, 4753 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4754 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4755 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4756 { HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 }, 4757 { 0 } 4758 }; 4759 4760 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4761 (chip <= CHELSIO_T5) ? 4762 le_intr_info : t6_le_intr_info)) 4763 t4_fatal_err(adap); 4764 } 4765 4766 /* 4767 * MPS interrupt handler. 4768 */ 4769 static void mps_intr_handler(struct adapter *adapter) 4770 { 4771 static const struct intr_info mps_rx_intr_info[] = { 4772 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4773 { 0 } 4774 }; 4775 static const struct intr_info mps_tx_intr_info[] = { 4776 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4777 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4778 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4779 -1, 1 }, 4780 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4781 -1, 1 }, 4782 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4783 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4784 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4785 { 0 } 4786 }; 4787 static const struct intr_info t6_mps_tx_intr_info[] = { 4788 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4789 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4790 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4791 -1, 1 }, 4792 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4793 -1, 1 }, 4794 /* MPS Tx Bubble is normal for T6 */ 4795 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4796 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4797 { 0 } 4798 }; 4799 static const struct intr_info mps_trc_intr_info[] = { 4800 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4801 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4802 -1, 1 }, 4803 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4804 { 0 } 4805 }; 4806 static const struct intr_info mps_stat_sram_intr_info[] = { 4807 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4808 { 0 } 4809 }; 4810 static const struct intr_info mps_stat_tx_intr_info[] = { 4811 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4812 { 0 } 4813 }; 4814 static const struct intr_info mps_stat_rx_intr_info[] = { 4815 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4816 { 0 } 4817 }; 4818 static const struct intr_info mps_cls_intr_info[] = { 4819 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4820 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4821 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4822 { 0 } 4823 }; 4824 4825 int fat; 4826 4827 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4828 mps_rx_intr_info) + 4829 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4830 is_t6(adapter->params.chip) 4831 ? t6_mps_tx_intr_info 4832 : mps_tx_intr_info) + 4833 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4834 mps_trc_intr_info) + 4835 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4836 mps_stat_sram_intr_info) + 4837 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4838 mps_stat_tx_intr_info) + 4839 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4840 mps_stat_rx_intr_info) + 4841 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4842 mps_cls_intr_info); 4843 4844 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4845 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4846 if (fat) 4847 t4_fatal_err(adapter); 4848 } 4849 4850 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4851 ECC_UE_INT_CAUSE_F) 4852 4853 /* 4854 * EDC/MC interrupt handler. 4855 */ 4856 static void mem_intr_handler(struct adapter *adapter, int idx) 4857 { 4858 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4859 4860 unsigned int addr, cnt_addr, v; 4861 4862 if (idx <= MEM_EDC1) { 4863 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4864 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4865 } else if (idx == MEM_MC) { 4866 if (is_t4(adapter->params.chip)) { 4867 addr = MC_INT_CAUSE_A; 4868 cnt_addr = MC_ECC_STATUS_A; 4869 } else { 4870 addr = MC_P_INT_CAUSE_A; 4871 cnt_addr = MC_P_ECC_STATUS_A; 4872 } 4873 } else { 4874 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4875 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4876 } 4877 4878 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4879 if (v & PERR_INT_CAUSE_F) 4880 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4881 name[idx]); 4882 if (v & ECC_CE_INT_CAUSE_F) { 4883 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4884 4885 t4_edc_err_read(adapter, idx); 4886 4887 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4888 if (printk_ratelimit()) 4889 dev_warn(adapter->pdev_dev, 4890 "%u %s correctable ECC data error%s\n", 4891 cnt, name[idx], cnt > 1 ? "s" : ""); 4892 } 4893 if (v & ECC_UE_INT_CAUSE_F) 4894 dev_alert(adapter->pdev_dev, 4895 "%s uncorrectable ECC data error\n", name[idx]); 4896 4897 t4_write_reg(adapter, addr, v); 4898 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4899 t4_fatal_err(adapter); 4900 } 4901 4902 /* 4903 * MA interrupt handler. 4904 */ 4905 static void ma_intr_handler(struct adapter *adap) 4906 { 4907 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4908 4909 if (status & MEM_PERR_INT_CAUSE_F) { 4910 dev_alert(adap->pdev_dev, 4911 "MA parity error, parity status %#x\n", 4912 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4913 if (is_t5(adap->params.chip)) 4914 dev_alert(adap->pdev_dev, 4915 "MA parity error, parity status %#x\n", 4916 t4_read_reg(adap, 4917 MA_PARITY_ERROR_STATUS2_A)); 4918 } 4919 if (status & MEM_WRAP_INT_CAUSE_F) { 4920 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4921 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4922 "client %u to address %#x\n", 4923 MEM_WRAP_CLIENT_NUM_G(v), 4924 MEM_WRAP_ADDRESS_G(v) << 4); 4925 } 4926 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4927 t4_fatal_err(adap); 4928 } 4929 4930 /* 4931 * SMB interrupt handler. 4932 */ 4933 static void smb_intr_handler(struct adapter *adap) 4934 { 4935 static const struct intr_info smb_intr_info[] = { 4936 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4937 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4938 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4939 { 0 } 4940 }; 4941 4942 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4943 t4_fatal_err(adap); 4944 } 4945 4946 /* 4947 * NC-SI interrupt handler. 4948 */ 4949 static void ncsi_intr_handler(struct adapter *adap) 4950 { 4951 static const struct intr_info ncsi_intr_info[] = { 4952 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4953 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4954 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4955 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4956 { 0 } 4957 }; 4958 4959 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4960 t4_fatal_err(adap); 4961 } 4962 4963 /* 4964 * XGMAC interrupt handler. 4965 */ 4966 static void xgmac_intr_handler(struct adapter *adap, int port) 4967 { 4968 u32 v, int_cause_reg; 4969 4970 if (is_t4(adap->params.chip)) 4971 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4972 else 4973 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4974 4975 v = t4_read_reg(adap, int_cause_reg); 4976 4977 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4978 if (!v) 4979 return; 4980 4981 if (v & TXFIFO_PRTY_ERR_F) 4982 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4983 port); 4984 if (v & RXFIFO_PRTY_ERR_F) 4985 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4986 port); 4987 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4988 t4_fatal_err(adap); 4989 } 4990 4991 /* 4992 * PL interrupt handler. 4993 */ 4994 static void pl_intr_handler(struct adapter *adap) 4995 { 4996 static const struct intr_info pl_intr_info[] = { 4997 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4998 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4999 { 0 } 5000 }; 5001 5002 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 5003 t4_fatal_err(adap); 5004 } 5005 5006 #define PF_INTR_MASK (PFSW_F) 5007 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 5008 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 5009 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 5010 5011 /** 5012 * t4_slow_intr_handler - control path interrupt handler 5013 * @adapter: the adapter 5014 * 5015 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 5016 * The designation 'slow' is because it involves register reads, while 5017 * data interrupts typically don't involve any MMIOs. 5018 */ 5019 int t4_slow_intr_handler(struct adapter *adapter) 5020 { 5021 /* There are rare cases where a PL_INT_CAUSE bit may end up getting 5022 * set when the corresponding PL_INT_ENABLE bit isn't set. It's 5023 * easiest just to mask that case here. 5024 */ 5025 u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 5026 u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A); 5027 u32 cause = raw_cause & enable; 5028 5029 if (!(cause & GLBL_INTR_MASK)) 5030 return 0; 5031 if (cause & CIM_F) 5032 cim_intr_handler(adapter); 5033 if (cause & MPS_F) 5034 mps_intr_handler(adapter); 5035 if (cause & NCSI_F) 5036 ncsi_intr_handler(adapter); 5037 if (cause & PL_F) 5038 pl_intr_handler(adapter); 5039 if (cause & SMB_F) 5040 smb_intr_handler(adapter); 5041 if (cause & XGMAC0_F) 5042 xgmac_intr_handler(adapter, 0); 5043 if (cause & XGMAC1_F) 5044 xgmac_intr_handler(adapter, 1); 5045 if (cause & XGMAC_KR0_F) 5046 xgmac_intr_handler(adapter, 2); 5047 if (cause & XGMAC_KR1_F) 5048 xgmac_intr_handler(adapter, 3); 5049 if (cause & PCIE_F) 5050 pcie_intr_handler(adapter); 5051 if (cause & MC_F) 5052 mem_intr_handler(adapter, MEM_MC); 5053 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 5054 mem_intr_handler(adapter, MEM_MC1); 5055 if (cause & EDC0_F) 5056 mem_intr_handler(adapter, MEM_EDC0); 5057 if (cause & EDC1_F) 5058 mem_intr_handler(adapter, MEM_EDC1); 5059 if (cause & LE_F) 5060 le_intr_handler(adapter); 5061 if (cause & TP_F) 5062 tp_intr_handler(adapter); 5063 if (cause & MA_F) 5064 ma_intr_handler(adapter); 5065 if (cause & PM_TX_F) 5066 pmtx_intr_handler(adapter); 5067 if (cause & PM_RX_F) 5068 pmrx_intr_handler(adapter); 5069 if (cause & ULP_RX_F) 5070 ulprx_intr_handler(adapter); 5071 if (cause & CPL_SWITCH_F) 5072 cplsw_intr_handler(adapter); 5073 if (cause & SGE_F) 5074 sge_intr_handler(adapter); 5075 if (cause & ULP_TX_F) 5076 ulptx_intr_handler(adapter); 5077 5078 /* Clear the interrupts just processed for which we are the master. */ 5079 t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK); 5080 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 5081 return 1; 5082 } 5083 5084 /** 5085 * t4_intr_enable - enable interrupts 5086 * @adapter: the adapter whose interrupts should be enabled 5087 * 5088 * Enable PF-specific interrupts for the calling function and the top-level 5089 * interrupt concentrator for global interrupts. Interrupts are already 5090 * enabled at each module, here we just enable the roots of the interrupt 5091 * hierarchies. 5092 * 5093 * Note: this function should be called only when the driver manages 5094 * non PF-specific interrupts from the various HW modules. Only one PCI 5095 * function at a time should be doing this. 5096 */ 5097 void t4_intr_enable(struct adapter *adapter) 5098 { 5099 u32 val = 0; 5100 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5101 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5102 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5103 5104 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 5105 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 5106 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 5107 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 5108 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 5109 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 5110 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 5111 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 5112 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 5113 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 5114 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 5115 } 5116 5117 /** 5118 * t4_intr_disable - disable interrupts 5119 * @adapter: the adapter whose interrupts should be disabled 5120 * 5121 * Disable interrupts. We only disable the top-level interrupt 5122 * concentrators. The caller must be a PCI function managing global 5123 * interrupts. 5124 */ 5125 void t4_intr_disable(struct adapter *adapter) 5126 { 5127 u32 whoami, pf; 5128 5129 if (pci_channel_offline(adapter->pdev)) 5130 return; 5131 5132 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5133 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5134 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5135 5136 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 5137 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 5138 } 5139 5140 unsigned int t4_chip_rss_size(struct adapter *adap) 5141 { 5142 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 5143 return RSS_NENTRIES; 5144 else 5145 return T6_RSS_NENTRIES; 5146 } 5147 5148 /** 5149 * t4_config_rss_range - configure a portion of the RSS mapping table 5150 * @adapter: the adapter 5151 * @mbox: mbox to use for the FW command 5152 * @viid: virtual interface whose RSS subtable is to be written 5153 * @start: start entry in the table to write 5154 * @n: how many table entries to write 5155 * @rspq: values for the response queue lookup table 5156 * @nrspq: number of values in @rspq 5157 * 5158 * Programs the selected part of the VI's RSS mapping table with the 5159 * provided values. If @nrspq < @n the supplied values are used repeatedly 5160 * until the full table range is populated. 5161 * 5162 * The caller must ensure the values in @rspq are in the range allowed for 5163 * @viid. 5164 */ 5165 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5166 int start, int n, const u16 *rspq, unsigned int nrspq) 5167 { 5168 int ret; 5169 const u16 *rsp = rspq; 5170 const u16 *rsp_end = rspq + nrspq; 5171 struct fw_rss_ind_tbl_cmd cmd; 5172 5173 memset(&cmd, 0, sizeof(cmd)); 5174 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 5175 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5176 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 5177 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5178 5179 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 5180 while (n > 0) { 5181 int nq = min(n, 32); 5182 __be32 *qp = &cmd.iq0_to_iq2; 5183 5184 cmd.niqid = cpu_to_be16(nq); 5185 cmd.startidx = cpu_to_be16(start); 5186 5187 start += nq; 5188 n -= nq; 5189 5190 while (nq > 0) { 5191 unsigned int v; 5192 5193 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 5194 if (++rsp >= rsp_end) 5195 rsp = rspq; 5196 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 5197 if (++rsp >= rsp_end) 5198 rsp = rspq; 5199 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 5200 if (++rsp >= rsp_end) 5201 rsp = rspq; 5202 5203 *qp++ = cpu_to_be32(v); 5204 nq -= 3; 5205 } 5206 5207 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5208 if (ret) 5209 return ret; 5210 } 5211 return 0; 5212 } 5213 5214 /** 5215 * t4_config_glbl_rss - configure the global RSS mode 5216 * @adapter: the adapter 5217 * @mbox: mbox to use for the FW command 5218 * @mode: global RSS mode 5219 * @flags: mode-specific flags 5220 * 5221 * Sets the global RSS mode. 5222 */ 5223 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5224 unsigned int flags) 5225 { 5226 struct fw_rss_glb_config_cmd c; 5227 5228 memset(&c, 0, sizeof(c)); 5229 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5230 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5231 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5232 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5233 c.u.manual.mode_pkd = 5234 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5235 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5236 c.u.basicvirtual.mode_pkd = 5237 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5238 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5239 } else 5240 return -EINVAL; 5241 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5242 } 5243 5244 /** 5245 * t4_config_vi_rss - configure per VI RSS settings 5246 * @adapter: the adapter 5247 * @mbox: mbox to use for the FW command 5248 * @viid: the VI id 5249 * @flags: RSS flags 5250 * @defq: id of the default RSS queue for the VI. 5251 * 5252 * Configures VI-specific RSS properties. 5253 */ 5254 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5255 unsigned int flags, unsigned int defq) 5256 { 5257 struct fw_rss_vi_config_cmd c; 5258 5259 memset(&c, 0, sizeof(c)); 5260 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5261 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5262 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5263 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5264 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5265 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5266 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5267 } 5268 5269 /* Read an RSS table row */ 5270 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5271 { 5272 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5273 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5274 5, 0, val); 5275 } 5276 5277 /** 5278 * t4_read_rss - read the contents of the RSS mapping table 5279 * @adapter: the adapter 5280 * @map: holds the contents of the RSS mapping table 5281 * 5282 * Reads the contents of the RSS hash->queue mapping table. 5283 */ 5284 int t4_read_rss(struct adapter *adapter, u16 *map) 5285 { 5286 int i, ret, nentries; 5287 u32 val; 5288 5289 nentries = t4_chip_rss_size(adapter); 5290 for (i = 0; i < nentries / 2; ++i) { 5291 ret = rd_rss_row(adapter, i, &val); 5292 if (ret) 5293 return ret; 5294 *map++ = LKPTBLQUEUE0_G(val); 5295 *map++ = LKPTBLQUEUE1_G(val); 5296 } 5297 return 0; 5298 } 5299 5300 static unsigned int t4_use_ldst(struct adapter *adap) 5301 { 5302 return (adap->flags & CXGB4_FW_OK) && !adap->use_bd; 5303 } 5304 5305 /** 5306 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5307 * @adap: the adapter 5308 * @cmd: TP fw ldst address space type 5309 * @vals: where the indirect register values are stored/written 5310 * @nregs: how many indirect registers to read/write 5311 * @start_index: index of first indirect register to read/write 5312 * @rw: Read (1) or Write (0) 5313 * @sleep_ok: if true we may sleep while awaiting command completion 5314 * 5315 * Access TP indirect registers through LDST 5316 */ 5317 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5318 unsigned int nregs, unsigned int start_index, 5319 unsigned int rw, bool sleep_ok) 5320 { 5321 int ret = 0; 5322 unsigned int i; 5323 struct fw_ldst_cmd c; 5324 5325 for (i = 0; i < nregs; i++) { 5326 memset(&c, 0, sizeof(c)); 5327 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5328 FW_CMD_REQUEST_F | 5329 (rw ? FW_CMD_READ_F : 5330 FW_CMD_WRITE_F) | 5331 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5332 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5333 5334 c.u.addrval.addr = cpu_to_be32(start_index + i); 5335 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5336 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5337 sleep_ok); 5338 if (ret) 5339 return ret; 5340 5341 if (rw) 5342 vals[i] = be32_to_cpu(c.u.addrval.val); 5343 } 5344 return 0; 5345 } 5346 5347 /** 5348 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5349 * @adap: the adapter 5350 * @reg_addr: Address Register 5351 * @reg_data: Data register 5352 * @buff: where the indirect register values are stored/written 5353 * @nregs: how many indirect registers to read/write 5354 * @start_index: index of first indirect register to read/write 5355 * @rw: READ(1) or WRITE(0) 5356 * @sleep_ok: if true we may sleep while awaiting command completion 5357 * 5358 * Read/Write TP indirect registers through LDST if possible. 5359 * Else, use backdoor access 5360 **/ 5361 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5362 u32 *buff, u32 nregs, u32 start_index, int rw, 5363 bool sleep_ok) 5364 { 5365 int rc = -EINVAL; 5366 int cmd; 5367 5368 switch (reg_addr) { 5369 case TP_PIO_ADDR_A: 5370 cmd = FW_LDST_ADDRSPC_TP_PIO; 5371 break; 5372 case TP_TM_PIO_ADDR_A: 5373 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5374 break; 5375 case TP_MIB_INDEX_A: 5376 cmd = FW_LDST_ADDRSPC_TP_MIB; 5377 break; 5378 default: 5379 goto indirect_access; 5380 } 5381 5382 if (t4_use_ldst(adap)) 5383 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5384 sleep_ok); 5385 5386 indirect_access: 5387 5388 if (rc) { 5389 if (rw) 5390 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5391 start_index); 5392 else 5393 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5394 start_index); 5395 } 5396 } 5397 5398 /** 5399 * t4_tp_pio_read - Read TP PIO registers 5400 * @adap: the adapter 5401 * @buff: where the indirect register values are written 5402 * @nregs: how many indirect registers to read 5403 * @start_index: index of first indirect register to read 5404 * @sleep_ok: if true we may sleep while awaiting command completion 5405 * 5406 * Read TP PIO Registers 5407 **/ 5408 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5409 u32 start_index, bool sleep_ok) 5410 { 5411 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5412 start_index, 1, sleep_ok); 5413 } 5414 5415 /** 5416 * t4_tp_pio_write - Write TP PIO registers 5417 * @adap: the adapter 5418 * @buff: where the indirect register values are stored 5419 * @nregs: how many indirect registers to write 5420 * @start_index: index of first indirect register to write 5421 * @sleep_ok: if true we may sleep while awaiting command completion 5422 * 5423 * Write TP PIO Registers 5424 **/ 5425 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5426 u32 start_index, bool sleep_ok) 5427 { 5428 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5429 start_index, 0, sleep_ok); 5430 } 5431 5432 /** 5433 * t4_tp_tm_pio_read - Read TP TM PIO registers 5434 * @adap: the adapter 5435 * @buff: where the indirect register values are written 5436 * @nregs: how many indirect registers to read 5437 * @start_index: index of first indirect register to read 5438 * @sleep_ok: if true we may sleep while awaiting command completion 5439 * 5440 * Read TP TM PIO Registers 5441 **/ 5442 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5443 u32 start_index, bool sleep_ok) 5444 { 5445 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5446 nregs, start_index, 1, sleep_ok); 5447 } 5448 5449 /** 5450 * t4_tp_mib_read - Read TP MIB registers 5451 * @adap: the adapter 5452 * @buff: where the indirect register values are written 5453 * @nregs: how many indirect registers to read 5454 * @start_index: index of first indirect register to read 5455 * @sleep_ok: if true we may sleep while awaiting command completion 5456 * 5457 * Read TP MIB Registers 5458 **/ 5459 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5460 bool sleep_ok) 5461 { 5462 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5463 start_index, 1, sleep_ok); 5464 } 5465 5466 /** 5467 * t4_read_rss_key - read the global RSS key 5468 * @adap: the adapter 5469 * @key: 10-entry array holding the 320-bit RSS key 5470 * @sleep_ok: if true we may sleep while awaiting command completion 5471 * 5472 * Reads the global 320-bit RSS key. 5473 */ 5474 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5475 { 5476 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5477 } 5478 5479 /** 5480 * t4_write_rss_key - program one of the RSS keys 5481 * @adap: the adapter 5482 * @key: 10-entry array holding the 320-bit RSS key 5483 * @idx: which RSS key to write 5484 * @sleep_ok: if true we may sleep while awaiting command completion 5485 * 5486 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5487 * 0..15 the corresponding entry in the RSS key table is written, 5488 * otherwise the global RSS key is written. 5489 */ 5490 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5491 bool sleep_ok) 5492 { 5493 u8 rss_key_addr_cnt = 16; 5494 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5495 5496 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5497 * allows access to key addresses 16-63 by using KeyWrAddrX 5498 * as index[5:4](upper 2) into key table 5499 */ 5500 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5501 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5502 rss_key_addr_cnt = 32; 5503 5504 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5505 5506 if (idx >= 0 && idx < rss_key_addr_cnt) { 5507 if (rss_key_addr_cnt > 16) 5508 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5509 KEYWRADDRX_V(idx >> 4) | 5510 T6_VFWRADDR_V(idx) | KEYWREN_F); 5511 else 5512 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5513 KEYWRADDR_V(idx) | KEYWREN_F); 5514 } 5515 } 5516 5517 /** 5518 * t4_read_rss_pf_config - read PF RSS Configuration Table 5519 * @adapter: the adapter 5520 * @index: the entry in the PF RSS table to read 5521 * @valp: where to store the returned value 5522 * @sleep_ok: if true we may sleep while awaiting command completion 5523 * 5524 * Reads the PF RSS Configuration Table at the specified index and returns 5525 * the value found there. 5526 */ 5527 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5528 u32 *valp, bool sleep_ok) 5529 { 5530 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5531 } 5532 5533 /** 5534 * t4_read_rss_vf_config - read VF RSS Configuration Table 5535 * @adapter: the adapter 5536 * @index: the entry in the VF RSS table to read 5537 * @vfl: where to store the returned VFL 5538 * @vfh: where to store the returned VFH 5539 * @sleep_ok: if true we may sleep while awaiting command completion 5540 * 5541 * Reads the VF RSS Configuration Table at the specified index and returns 5542 * the (VFL, VFH) values found there. 5543 */ 5544 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5545 u32 *vfl, u32 *vfh, bool sleep_ok) 5546 { 5547 u32 vrt, mask, data; 5548 5549 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5550 mask = VFWRADDR_V(VFWRADDR_M); 5551 data = VFWRADDR_V(index); 5552 } else { 5553 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5554 data = T6_VFWRADDR_V(index); 5555 } 5556 5557 /* Request that the index'th VF Table values be read into VFL/VFH. 5558 */ 5559 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5560 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5561 vrt |= data | VFRDEN_F; 5562 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5563 5564 /* Grab the VFL/VFH values ... 5565 */ 5566 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5567 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5568 } 5569 5570 /** 5571 * t4_read_rss_pf_map - read PF RSS Map 5572 * @adapter: the adapter 5573 * @sleep_ok: if true we may sleep while awaiting command completion 5574 * 5575 * Reads the PF RSS Map register and returns its value. 5576 */ 5577 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5578 { 5579 u32 pfmap; 5580 5581 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5582 return pfmap; 5583 } 5584 5585 /** 5586 * t4_read_rss_pf_mask - read PF RSS Mask 5587 * @adapter: the adapter 5588 * @sleep_ok: if true we may sleep while awaiting command completion 5589 * 5590 * Reads the PF RSS Mask register and returns its value. 5591 */ 5592 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5593 { 5594 u32 pfmask; 5595 5596 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5597 return pfmask; 5598 } 5599 5600 /** 5601 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5602 * @adap: the adapter 5603 * @v4: holds the TCP/IP counter values 5604 * @v6: holds the TCP/IPv6 counter values 5605 * @sleep_ok: if true we may sleep while awaiting command completion 5606 * 5607 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5608 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5609 */ 5610 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5611 struct tp_tcp_stats *v6, bool sleep_ok) 5612 { 5613 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5614 5615 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5616 #define STAT(x) val[STAT_IDX(x)] 5617 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5618 5619 if (v4) { 5620 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5621 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5622 v4->tcp_out_rsts = STAT(OUT_RST); 5623 v4->tcp_in_segs = STAT64(IN_SEG); 5624 v4->tcp_out_segs = STAT64(OUT_SEG); 5625 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5626 } 5627 if (v6) { 5628 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5629 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5630 v6->tcp_out_rsts = STAT(OUT_RST); 5631 v6->tcp_in_segs = STAT64(IN_SEG); 5632 v6->tcp_out_segs = STAT64(OUT_SEG); 5633 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5634 } 5635 #undef STAT64 5636 #undef STAT 5637 #undef STAT_IDX 5638 } 5639 5640 /** 5641 * t4_tp_get_err_stats - read TP's error MIB counters 5642 * @adap: the adapter 5643 * @st: holds the counter values 5644 * @sleep_ok: if true we may sleep while awaiting command completion 5645 * 5646 * Returns the values of TP's error counters. 5647 */ 5648 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5649 bool sleep_ok) 5650 { 5651 int nchan = adap->params.arch.nchan; 5652 5653 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5654 sleep_ok); 5655 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5656 sleep_ok); 5657 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5658 sleep_ok); 5659 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5660 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5661 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5662 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5663 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5664 sleep_ok); 5665 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5666 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5667 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5668 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5669 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5670 sleep_ok); 5671 } 5672 5673 /** 5674 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5675 * @adap: the adapter 5676 * @st: holds the counter values 5677 * @sleep_ok: if true we may sleep while awaiting command completion 5678 * 5679 * Returns the values of TP's CPL counters. 5680 */ 5681 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5682 bool sleep_ok) 5683 { 5684 int nchan = adap->params.arch.nchan; 5685 5686 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5687 5688 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5689 } 5690 5691 /** 5692 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5693 * @adap: the adapter 5694 * @st: holds the counter values 5695 * @sleep_ok: if true we may sleep while awaiting command completion 5696 * 5697 * Returns the values of TP's RDMA counters. 5698 */ 5699 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5700 bool sleep_ok) 5701 { 5702 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5703 sleep_ok); 5704 } 5705 5706 /** 5707 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5708 * @adap: the adapter 5709 * @idx: the port index 5710 * @st: holds the counter values 5711 * @sleep_ok: if true we may sleep while awaiting command completion 5712 * 5713 * Returns the values of TP's FCoE counters for the selected port. 5714 */ 5715 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5716 struct tp_fcoe_stats *st, bool sleep_ok) 5717 { 5718 u32 val[2]; 5719 5720 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5721 sleep_ok); 5722 5723 t4_tp_mib_read(adap, &st->frames_drop, 1, 5724 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5725 5726 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5727 sleep_ok); 5728 5729 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5730 } 5731 5732 /** 5733 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5734 * @adap: the adapter 5735 * @st: holds the counter values 5736 * @sleep_ok: if true we may sleep while awaiting command completion 5737 * 5738 * Returns the values of TP's counters for non-TCP directly-placed packets. 5739 */ 5740 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5741 bool sleep_ok) 5742 { 5743 u32 val[4]; 5744 5745 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5746 st->frames = val[0]; 5747 st->drops = val[1]; 5748 st->octets = ((u64)val[2] << 32) | val[3]; 5749 } 5750 5751 /** 5752 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5753 * @adap: the adapter 5754 * @mtus: where to store the MTU values 5755 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5756 * 5757 * Reads the HW path MTU table. 5758 */ 5759 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5760 { 5761 u32 v; 5762 int i; 5763 5764 for (i = 0; i < NMTUS; ++i) { 5765 t4_write_reg(adap, TP_MTU_TABLE_A, 5766 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5767 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5768 mtus[i] = MTUVALUE_G(v); 5769 if (mtu_log) 5770 mtu_log[i] = MTUWIDTH_G(v); 5771 } 5772 } 5773 5774 /** 5775 * t4_read_cong_tbl - reads the congestion control table 5776 * @adap: the adapter 5777 * @incr: where to store the alpha values 5778 * 5779 * Reads the additive increments programmed into the HW congestion 5780 * control table. 5781 */ 5782 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5783 { 5784 unsigned int mtu, w; 5785 5786 for (mtu = 0; mtu < NMTUS; ++mtu) 5787 for (w = 0; w < NCCTRL_WIN; ++w) { 5788 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5789 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5790 incr[mtu][w] = (u16)t4_read_reg(adap, 5791 TP_CCTRL_TABLE_A) & 0x1fff; 5792 } 5793 } 5794 5795 /** 5796 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5797 * @adap: the adapter 5798 * @addr: the indirect TP register address 5799 * @mask: specifies the field within the register to modify 5800 * @val: new value for the field 5801 * 5802 * Sets a field of an indirect TP register to the given value. 5803 */ 5804 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5805 unsigned int mask, unsigned int val) 5806 { 5807 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5808 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5809 t4_write_reg(adap, TP_PIO_DATA_A, val); 5810 } 5811 5812 /** 5813 * init_cong_ctrl - initialize congestion control parameters 5814 * @a: the alpha values for congestion control 5815 * @b: the beta values for congestion control 5816 * 5817 * Initialize the congestion control parameters. 5818 */ 5819 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5820 { 5821 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5822 a[9] = 2; 5823 a[10] = 3; 5824 a[11] = 4; 5825 a[12] = 5; 5826 a[13] = 6; 5827 a[14] = 7; 5828 a[15] = 8; 5829 a[16] = 9; 5830 a[17] = 10; 5831 a[18] = 14; 5832 a[19] = 17; 5833 a[20] = 21; 5834 a[21] = 25; 5835 a[22] = 30; 5836 a[23] = 35; 5837 a[24] = 45; 5838 a[25] = 60; 5839 a[26] = 80; 5840 a[27] = 100; 5841 a[28] = 200; 5842 a[29] = 300; 5843 a[30] = 400; 5844 a[31] = 500; 5845 5846 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5847 b[9] = b[10] = 1; 5848 b[11] = b[12] = 2; 5849 b[13] = b[14] = b[15] = b[16] = 3; 5850 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5851 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5852 b[28] = b[29] = 6; 5853 b[30] = b[31] = 7; 5854 } 5855 5856 /* The minimum additive increment value for the congestion control table */ 5857 #define CC_MIN_INCR 2U 5858 5859 /** 5860 * t4_load_mtus - write the MTU and congestion control HW tables 5861 * @adap: the adapter 5862 * @mtus: the values for the MTU table 5863 * @alpha: the values for the congestion control alpha parameter 5864 * @beta: the values for the congestion control beta parameter 5865 * 5866 * Write the HW MTU table with the supplied MTUs and the high-speed 5867 * congestion control table with the supplied alpha, beta, and MTUs. 5868 * We write the two tables together because the additive increments 5869 * depend on the MTUs. 5870 */ 5871 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5872 const unsigned short *alpha, const unsigned short *beta) 5873 { 5874 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5875 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5876 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5877 28672, 40960, 57344, 81920, 114688, 163840, 229376 5878 }; 5879 5880 unsigned int i, w; 5881 5882 for (i = 0; i < NMTUS; ++i) { 5883 unsigned int mtu = mtus[i]; 5884 unsigned int log2 = fls(mtu); 5885 5886 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5887 log2--; 5888 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5889 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5890 5891 for (w = 0; w < NCCTRL_WIN; ++w) { 5892 unsigned int inc; 5893 5894 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5895 CC_MIN_INCR); 5896 5897 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5898 (w << 16) | (beta[w] << 13) | inc); 5899 } 5900 } 5901 } 5902 5903 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5904 * clocks. The formula is 5905 * 5906 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5907 * 5908 * which is equivalent to 5909 * 5910 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5911 */ 5912 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5913 { 5914 u64 v = bytes256 * adap->params.vpd.cclk; 5915 5916 return v * 62 + v / 2; 5917 } 5918 5919 /** 5920 * t4_get_chan_txrate - get the current per channel Tx rates 5921 * @adap: the adapter 5922 * @nic_rate: rates for NIC traffic 5923 * @ofld_rate: rates for offloaded traffic 5924 * 5925 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5926 * for each channel. 5927 */ 5928 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5929 { 5930 u32 v; 5931 5932 v = t4_read_reg(adap, TP_TX_TRATE_A); 5933 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5934 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5935 if (adap->params.arch.nchan == NCHAN) { 5936 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5937 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5938 } 5939 5940 v = t4_read_reg(adap, TP_TX_ORATE_A); 5941 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5942 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5943 if (adap->params.arch.nchan == NCHAN) { 5944 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5945 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5946 } 5947 } 5948 5949 /** 5950 * t4_set_trace_filter - configure one of the tracing filters 5951 * @adap: the adapter 5952 * @tp: the desired trace filter parameters 5953 * @idx: which filter to configure 5954 * @enable: whether to enable or disable the filter 5955 * 5956 * Configures one of the tracing filters available in HW. If @enable is 5957 * %0 @tp is not examined and may be %NULL. The user is responsible to 5958 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5959 */ 5960 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5961 int idx, int enable) 5962 { 5963 int i, ofst = idx * 4; 5964 u32 data_reg, mask_reg, cfg; 5965 5966 if (!enable) { 5967 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5968 return 0; 5969 } 5970 5971 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5972 if (cfg & TRCMULTIFILTER_F) { 5973 /* If multiple tracers are enabled, then maximum 5974 * capture size is 2.5KB (FIFO size of a single channel) 5975 * minus 2 flits for CPL_TRACE_PKT header. 5976 */ 5977 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5978 return -EINVAL; 5979 } else { 5980 /* If multiple tracers are disabled, to avoid deadlocks 5981 * maximum packet capture size of 9600 bytes is recommended. 5982 * Also in this mode, only trace0 can be enabled and running. 5983 */ 5984 if (tp->snap_len > 9600 || idx) 5985 return -EINVAL; 5986 } 5987 5988 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5989 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5990 tp->min_len > TFMINPKTSIZE_M) 5991 return -EINVAL; 5992 5993 /* stop the tracer we'll be changing */ 5994 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5995 5996 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5997 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5998 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5999 6000 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6001 t4_write_reg(adap, data_reg, tp->data[i]); 6002 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 6003 } 6004 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 6005 TFCAPTUREMAX_V(tp->snap_len) | 6006 TFMINPKTSIZE_V(tp->min_len)); 6007 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 6008 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 6009 (is_t4(adap->params.chip) ? 6010 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 6011 T5_TFPORT_V(tp->port) | T5_TFEN_F | 6012 T5_TFINVERTMATCH_V(tp->invert))); 6013 6014 return 0; 6015 } 6016 6017 /** 6018 * t4_get_trace_filter - query one of the tracing filters 6019 * @adap: the adapter 6020 * @tp: the current trace filter parameters 6021 * @idx: which trace filter to query 6022 * @enabled: non-zero if the filter is enabled 6023 * 6024 * Returns the current settings of one of the HW tracing filters. 6025 */ 6026 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 6027 int *enabled) 6028 { 6029 u32 ctla, ctlb; 6030 int i, ofst = idx * 4; 6031 u32 data_reg, mask_reg; 6032 6033 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 6034 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 6035 6036 if (is_t4(adap->params.chip)) { 6037 *enabled = !!(ctla & TFEN_F); 6038 tp->port = TFPORT_G(ctla); 6039 tp->invert = !!(ctla & TFINVERTMATCH_F); 6040 } else { 6041 *enabled = !!(ctla & T5_TFEN_F); 6042 tp->port = T5_TFPORT_G(ctla); 6043 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 6044 } 6045 tp->snap_len = TFCAPTUREMAX_G(ctlb); 6046 tp->min_len = TFMINPKTSIZE_G(ctlb); 6047 tp->skip_ofst = TFOFFSET_G(ctla); 6048 tp->skip_len = TFLENGTH_G(ctla); 6049 6050 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 6051 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 6052 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 6053 6054 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6055 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 6056 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 6057 } 6058 } 6059 6060 /** 6061 * t4_pmtx_get_stats - returns the HW stats from PMTX 6062 * @adap: the adapter 6063 * @cnt: where to store the count statistics 6064 * @cycles: where to store the cycle statistics 6065 * 6066 * Returns performance statistics from PMTX. 6067 */ 6068 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6069 { 6070 int i; 6071 u32 data[2]; 6072 6073 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6074 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 6075 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 6076 if (is_t4(adap->params.chip)) { 6077 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 6078 } else { 6079 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 6080 PM_TX_DBG_DATA_A, data, 2, 6081 PM_TX_DBG_STAT_MSB_A); 6082 cycles[i] = (((u64)data[0] << 32) | data[1]); 6083 } 6084 } 6085 } 6086 6087 /** 6088 * t4_pmrx_get_stats - returns the HW stats from PMRX 6089 * @adap: the adapter 6090 * @cnt: where to store the count statistics 6091 * @cycles: where to store the cycle statistics 6092 * 6093 * Returns performance statistics from PMRX. 6094 */ 6095 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6096 { 6097 int i; 6098 u32 data[2]; 6099 6100 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6101 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 6102 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 6103 if (is_t4(adap->params.chip)) { 6104 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 6105 } else { 6106 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 6107 PM_RX_DBG_DATA_A, data, 2, 6108 PM_RX_DBG_STAT_MSB_A); 6109 cycles[i] = (((u64)data[0] << 32) | data[1]); 6110 } 6111 } 6112 } 6113 6114 /** 6115 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 6116 * @adapter: the adapter 6117 * @pidx: the port index 6118 * 6119 * Computes and returns a bitmap indicating which MPS buffer groups are 6120 * associated with the given Port. Bit i is set if buffer group i is 6121 * used by the Port. 6122 */ 6123 static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 6124 int pidx) 6125 { 6126 unsigned int chip_version, nports; 6127 6128 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6129 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6130 6131 switch (chip_version) { 6132 case CHELSIO_T4: 6133 case CHELSIO_T5: 6134 switch (nports) { 6135 case 1: return 0xf; 6136 case 2: return 3 << (2 * pidx); 6137 case 4: return 1 << pidx; 6138 } 6139 break; 6140 6141 case CHELSIO_T6: 6142 switch (nports) { 6143 case 2: return 1 << (2 * pidx); 6144 } 6145 break; 6146 } 6147 6148 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 6149 chip_version, nports); 6150 6151 return 0; 6152 } 6153 6154 /** 6155 * t4_get_mps_bg_map - return the buffer groups associated with a port 6156 * @adapter: the adapter 6157 * @pidx: the port index 6158 * 6159 * Returns a bitmap indicating which MPS buffer groups are associated 6160 * with the given Port. Bit i is set if buffer group i is used by the 6161 * Port. 6162 */ 6163 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 6164 { 6165 u8 *mps_bg_map; 6166 unsigned int nports; 6167 6168 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6169 if (pidx >= nports) { 6170 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 6171 pidx, nports); 6172 return 0; 6173 } 6174 6175 /* If we've already retrieved/computed this, just return the result. 6176 */ 6177 mps_bg_map = adapter->params.mps_bg_map; 6178 if (mps_bg_map[pidx]) 6179 return mps_bg_map[pidx]; 6180 6181 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 6182 * If we're talking to such Firmware, let it tell us. If the new 6183 * API isn't supported, revert back to old hardcoded way. The value 6184 * obtained from Firmware is encoded in below format: 6185 * 6186 * val = (( MPSBGMAP[Port 3] << 24 ) | 6187 * ( MPSBGMAP[Port 2] << 16 ) | 6188 * ( MPSBGMAP[Port 1] << 8 ) | 6189 * ( MPSBGMAP[Port 0] << 0 )) 6190 */ 6191 if (adapter->flags & CXGB4_FW_OK) { 6192 u32 param, val; 6193 int ret; 6194 6195 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6196 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 6197 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6198 0, 1, ¶m, &val); 6199 if (!ret) { 6200 int p; 6201 6202 /* Store the BG Map for all of the Ports in order to 6203 * avoid more calls to the Firmware in the future. 6204 */ 6205 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 6206 mps_bg_map[p] = val & 0xff; 6207 6208 return mps_bg_map[pidx]; 6209 } 6210 } 6211 6212 /* Either we're not talking to the Firmware or we're dealing with 6213 * older Firmware which doesn't support the new API to get the MPS 6214 * Buffer Group Map. Fall back to computing it ourselves. 6215 */ 6216 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 6217 return mps_bg_map[pidx]; 6218 } 6219 6220 /** 6221 * t4_get_tp_e2c_map - return the E2C channel map associated with a port 6222 * @adapter: the adapter 6223 * @pidx: the port index 6224 */ 6225 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx) 6226 { 6227 unsigned int nports; 6228 u32 param, val = 0; 6229 int ret; 6230 6231 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6232 if (pidx >= nports) { 6233 CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n", 6234 pidx, nports); 6235 return 0; 6236 } 6237 6238 /* FW version >= 1.16.44.0 can determine E2C channel map using 6239 * FW_PARAMS_PARAM_DEV_TPCHMAP API. 6240 */ 6241 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6242 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP)); 6243 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6244 0, 1, ¶m, &val); 6245 if (!ret) 6246 return (val >> (8 * pidx)) & 0xff; 6247 6248 return 0; 6249 } 6250 6251 /** 6252 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6253 * @adap: the adapter 6254 * @pidx: the port index 6255 * 6256 * Returns a bitmap indicating which TP Ingress Channels are associated 6257 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6258 * the Port. 6259 */ 6260 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6261 { 6262 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6263 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6264 6265 if (pidx >= nports) { 6266 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6267 pidx, nports); 6268 return 0; 6269 } 6270 6271 switch (chip_version) { 6272 case CHELSIO_T4: 6273 case CHELSIO_T5: 6274 /* Note that this happens to be the same values as the MPS 6275 * Buffer Group Map for these Chips. But we replicate the code 6276 * here because they're really separate concepts. 6277 */ 6278 switch (nports) { 6279 case 1: return 0xf; 6280 case 2: return 3 << (2 * pidx); 6281 case 4: return 1 << pidx; 6282 } 6283 break; 6284 6285 case CHELSIO_T6: 6286 switch (nports) { 6287 case 1: 6288 case 2: return 1 << pidx; 6289 } 6290 break; 6291 } 6292 6293 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6294 chip_version, nports); 6295 return 0; 6296 } 6297 6298 /** 6299 * t4_get_port_type_description - return Port Type string description 6300 * @port_type: firmware Port Type enumeration 6301 */ 6302 const char *t4_get_port_type_description(enum fw_port_type port_type) 6303 { 6304 static const char *const port_type_description[] = { 6305 "Fiber_XFI", 6306 "Fiber_XAUI", 6307 "BT_SGMII", 6308 "BT_XFI", 6309 "BT_XAUI", 6310 "KX4", 6311 "CX4", 6312 "KX", 6313 "KR", 6314 "SFP", 6315 "BP_AP", 6316 "BP4_AP", 6317 "QSFP_10G", 6318 "QSA", 6319 "QSFP", 6320 "BP40_BA", 6321 "KR4_100G", 6322 "CR4_QSFP", 6323 "CR_QSFP", 6324 "CR2_QSFP", 6325 "SFP28", 6326 "KR_SFP28", 6327 "KR_XLAUI" 6328 }; 6329 6330 if (port_type < ARRAY_SIZE(port_type_description)) 6331 return port_type_description[port_type]; 6332 return "UNKNOWN"; 6333 } 6334 6335 /** 6336 * t4_get_port_stats_offset - collect port stats relative to a previous 6337 * snapshot 6338 * @adap: The adapter 6339 * @idx: The port 6340 * @stats: Current stats to fill 6341 * @offset: Previous stats snapshot 6342 */ 6343 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6344 struct port_stats *stats, 6345 struct port_stats *offset) 6346 { 6347 u64 *s, *o; 6348 int i; 6349 6350 t4_get_port_stats(adap, idx, stats); 6351 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6352 i < (sizeof(struct port_stats) / sizeof(u64)); 6353 i++, s++, o++) 6354 *s -= *o; 6355 } 6356 6357 /** 6358 * t4_get_port_stats - collect port statistics 6359 * @adap: the adapter 6360 * @idx: the port index 6361 * @p: the stats structure to fill 6362 * 6363 * Collect statistics related to the given port from HW. 6364 */ 6365 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6366 { 6367 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6368 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6369 6370 #define GET_STAT(name) \ 6371 t4_read_reg64(adap, \ 6372 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6373 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6374 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6375 6376 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6377 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6378 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6379 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6380 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6381 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6382 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6383 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6384 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6385 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6386 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6387 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6388 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6389 p->tx_drop = GET_STAT(TX_PORT_DROP); 6390 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6391 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6392 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6393 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6394 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6395 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6396 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6397 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6398 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6399 6400 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6401 if (stat_ctl & COUNTPAUSESTATTX_F) 6402 p->tx_frames_64 -= p->tx_pause; 6403 if (stat_ctl & COUNTPAUSEMCTX_F) 6404 p->tx_mcast_frames -= p->tx_pause; 6405 } 6406 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6407 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6408 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6409 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6410 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6411 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6412 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6413 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6414 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6415 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6416 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6417 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6418 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6419 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6420 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6421 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6422 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6423 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6424 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6425 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6426 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6427 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6428 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6429 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6430 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6431 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6432 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6433 6434 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6435 if (stat_ctl & COUNTPAUSESTATRX_F) 6436 p->rx_frames_64 -= p->rx_pause; 6437 if (stat_ctl & COUNTPAUSEMCRX_F) 6438 p->rx_mcast_frames -= p->rx_pause; 6439 } 6440 6441 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6442 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6443 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6444 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6445 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6446 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6447 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6448 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6449 6450 #undef GET_STAT 6451 #undef GET_STAT_COM 6452 } 6453 6454 /** 6455 * t4_get_lb_stats - collect loopback port statistics 6456 * @adap: the adapter 6457 * @idx: the loopback port index 6458 * @p: the stats structure to fill 6459 * 6460 * Return HW statistics for the given loopback port. 6461 */ 6462 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6463 { 6464 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6465 6466 #define GET_STAT(name) \ 6467 t4_read_reg64(adap, \ 6468 (is_t4(adap->params.chip) ? \ 6469 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6470 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6471 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6472 6473 p->octets = GET_STAT(BYTES); 6474 p->frames = GET_STAT(FRAMES); 6475 p->bcast_frames = GET_STAT(BCAST); 6476 p->mcast_frames = GET_STAT(MCAST); 6477 p->ucast_frames = GET_STAT(UCAST); 6478 p->error_frames = GET_STAT(ERROR); 6479 6480 p->frames_64 = GET_STAT(64B); 6481 p->frames_65_127 = GET_STAT(65B_127B); 6482 p->frames_128_255 = GET_STAT(128B_255B); 6483 p->frames_256_511 = GET_STAT(256B_511B); 6484 p->frames_512_1023 = GET_STAT(512B_1023B); 6485 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6486 p->frames_1519_max = GET_STAT(1519B_MAX); 6487 p->drop = GET_STAT(DROP_FRAMES); 6488 6489 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6490 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6491 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6492 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6493 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6494 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6495 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6496 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6497 6498 #undef GET_STAT 6499 #undef GET_STAT_COM 6500 } 6501 6502 /* t4_mk_filtdelwr - create a delete filter WR 6503 * @ftid: the filter ID 6504 * @wr: the filter work request to populate 6505 * @qid: ingress queue to receive the delete notification 6506 * 6507 * Creates a filter work request to delete the supplied filter. If @qid is 6508 * negative the delete notification is suppressed. 6509 */ 6510 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6511 { 6512 memset(wr, 0, sizeof(*wr)); 6513 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6514 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6515 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6516 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6517 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6518 if (qid >= 0) 6519 wr->rx_chan_rx_rpl_iq = 6520 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6521 } 6522 6523 #define INIT_CMD(var, cmd, rd_wr) do { \ 6524 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6525 FW_CMD_REQUEST_F | \ 6526 FW_CMD_##rd_wr##_F); \ 6527 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6528 } while (0) 6529 6530 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6531 u32 addr, u32 val) 6532 { 6533 u32 ldst_addrspace; 6534 struct fw_ldst_cmd c; 6535 6536 memset(&c, 0, sizeof(c)); 6537 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6538 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6539 FW_CMD_REQUEST_F | 6540 FW_CMD_WRITE_F | 6541 ldst_addrspace); 6542 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6543 c.u.addrval.addr = cpu_to_be32(addr); 6544 c.u.addrval.val = cpu_to_be32(val); 6545 6546 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6547 } 6548 6549 /** 6550 * t4_mdio_rd - read a PHY register through MDIO 6551 * @adap: the adapter 6552 * @mbox: mailbox to use for the FW command 6553 * @phy_addr: the PHY address 6554 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6555 * @reg: the register to read 6556 * @valp: where to store the value 6557 * 6558 * Issues a FW command through the given mailbox to read a PHY register. 6559 */ 6560 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6561 unsigned int mmd, unsigned int reg, u16 *valp) 6562 { 6563 int ret; 6564 u32 ldst_addrspace; 6565 struct fw_ldst_cmd c; 6566 6567 memset(&c, 0, sizeof(c)); 6568 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6569 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6570 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6571 ldst_addrspace); 6572 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6573 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6574 FW_LDST_CMD_MMD_V(mmd)); 6575 c.u.mdio.raddr = cpu_to_be16(reg); 6576 6577 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6578 if (ret == 0) 6579 *valp = be16_to_cpu(c.u.mdio.rval); 6580 return ret; 6581 } 6582 6583 /** 6584 * t4_mdio_wr - write a PHY register through MDIO 6585 * @adap: the adapter 6586 * @mbox: mailbox to use for the FW command 6587 * @phy_addr: the PHY address 6588 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6589 * @reg: the register to write 6590 * @val: value to write 6591 * 6592 * Issues a FW command through the given mailbox to write a PHY register. 6593 */ 6594 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6595 unsigned int mmd, unsigned int reg, u16 val) 6596 { 6597 u32 ldst_addrspace; 6598 struct fw_ldst_cmd c; 6599 6600 memset(&c, 0, sizeof(c)); 6601 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6602 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6603 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6604 ldst_addrspace); 6605 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6606 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6607 FW_LDST_CMD_MMD_V(mmd)); 6608 c.u.mdio.raddr = cpu_to_be16(reg); 6609 c.u.mdio.rval = cpu_to_be16(val); 6610 6611 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6612 } 6613 6614 /** 6615 * t4_sge_decode_idma_state - decode the idma state 6616 * @adapter: the adapter 6617 * @state: the state idma is stuck in 6618 */ 6619 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6620 { 6621 static const char * const t4_decode[] = { 6622 "IDMA_IDLE", 6623 "IDMA_PUSH_MORE_CPL_FIFO", 6624 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6625 "Not used", 6626 "IDMA_PHYSADDR_SEND_PCIEHDR", 6627 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6628 "IDMA_PHYSADDR_SEND_PAYLOAD", 6629 "IDMA_SEND_FIFO_TO_IMSG", 6630 "IDMA_FL_REQ_DATA_FL_PREP", 6631 "IDMA_FL_REQ_DATA_FL", 6632 "IDMA_FL_DROP", 6633 "IDMA_FL_H_REQ_HEADER_FL", 6634 "IDMA_FL_H_SEND_PCIEHDR", 6635 "IDMA_FL_H_PUSH_CPL_FIFO", 6636 "IDMA_FL_H_SEND_CPL", 6637 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6638 "IDMA_FL_H_SEND_IP_HDR", 6639 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6640 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6641 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6642 "IDMA_FL_D_SEND_PCIEHDR", 6643 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6644 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6645 "IDMA_FL_SEND_PCIEHDR", 6646 "IDMA_FL_PUSH_CPL_FIFO", 6647 "IDMA_FL_SEND_CPL", 6648 "IDMA_FL_SEND_PAYLOAD_FIRST", 6649 "IDMA_FL_SEND_PAYLOAD", 6650 "IDMA_FL_REQ_NEXT_DATA_FL", 6651 "IDMA_FL_SEND_NEXT_PCIEHDR", 6652 "IDMA_FL_SEND_PADDING", 6653 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6654 "IDMA_FL_SEND_FIFO_TO_IMSG", 6655 "IDMA_FL_REQ_DATAFL_DONE", 6656 "IDMA_FL_REQ_HEADERFL_DONE", 6657 }; 6658 static const char * const t5_decode[] = { 6659 "IDMA_IDLE", 6660 "IDMA_ALMOST_IDLE", 6661 "IDMA_PUSH_MORE_CPL_FIFO", 6662 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6663 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6664 "IDMA_PHYSADDR_SEND_PCIEHDR", 6665 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6666 "IDMA_PHYSADDR_SEND_PAYLOAD", 6667 "IDMA_SEND_FIFO_TO_IMSG", 6668 "IDMA_FL_REQ_DATA_FL", 6669 "IDMA_FL_DROP", 6670 "IDMA_FL_DROP_SEND_INC", 6671 "IDMA_FL_H_REQ_HEADER_FL", 6672 "IDMA_FL_H_SEND_PCIEHDR", 6673 "IDMA_FL_H_PUSH_CPL_FIFO", 6674 "IDMA_FL_H_SEND_CPL", 6675 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6676 "IDMA_FL_H_SEND_IP_HDR", 6677 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6678 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6679 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6680 "IDMA_FL_D_SEND_PCIEHDR", 6681 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6682 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6683 "IDMA_FL_SEND_PCIEHDR", 6684 "IDMA_FL_PUSH_CPL_FIFO", 6685 "IDMA_FL_SEND_CPL", 6686 "IDMA_FL_SEND_PAYLOAD_FIRST", 6687 "IDMA_FL_SEND_PAYLOAD", 6688 "IDMA_FL_REQ_NEXT_DATA_FL", 6689 "IDMA_FL_SEND_NEXT_PCIEHDR", 6690 "IDMA_FL_SEND_PADDING", 6691 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6692 }; 6693 static const char * const t6_decode[] = { 6694 "IDMA_IDLE", 6695 "IDMA_PUSH_MORE_CPL_FIFO", 6696 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6697 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6698 "IDMA_PHYSADDR_SEND_PCIEHDR", 6699 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6700 "IDMA_PHYSADDR_SEND_PAYLOAD", 6701 "IDMA_FL_REQ_DATA_FL", 6702 "IDMA_FL_DROP", 6703 "IDMA_FL_DROP_SEND_INC", 6704 "IDMA_FL_H_REQ_HEADER_FL", 6705 "IDMA_FL_H_SEND_PCIEHDR", 6706 "IDMA_FL_H_PUSH_CPL_FIFO", 6707 "IDMA_FL_H_SEND_CPL", 6708 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6709 "IDMA_FL_H_SEND_IP_HDR", 6710 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6711 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6712 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6713 "IDMA_FL_D_SEND_PCIEHDR", 6714 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6715 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6716 "IDMA_FL_SEND_PCIEHDR", 6717 "IDMA_FL_PUSH_CPL_FIFO", 6718 "IDMA_FL_SEND_CPL", 6719 "IDMA_FL_SEND_PAYLOAD_FIRST", 6720 "IDMA_FL_SEND_PAYLOAD", 6721 "IDMA_FL_REQ_NEXT_DATA_FL", 6722 "IDMA_FL_SEND_NEXT_PCIEHDR", 6723 "IDMA_FL_SEND_PADDING", 6724 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6725 }; 6726 static const u32 sge_regs[] = { 6727 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6728 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6729 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6730 }; 6731 const char **sge_idma_decode; 6732 int sge_idma_decode_nstates; 6733 int i; 6734 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6735 6736 /* Select the right set of decode strings to dump depending on the 6737 * adapter chip type. 6738 */ 6739 switch (chip_version) { 6740 case CHELSIO_T4: 6741 sge_idma_decode = (const char **)t4_decode; 6742 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6743 break; 6744 6745 case CHELSIO_T5: 6746 sge_idma_decode = (const char **)t5_decode; 6747 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6748 break; 6749 6750 case CHELSIO_T6: 6751 sge_idma_decode = (const char **)t6_decode; 6752 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6753 break; 6754 6755 default: 6756 dev_err(adapter->pdev_dev, 6757 "Unsupported chip version %d\n", chip_version); 6758 return; 6759 } 6760 6761 if (is_t4(adapter->params.chip)) { 6762 sge_idma_decode = (const char **)t4_decode; 6763 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6764 } else { 6765 sge_idma_decode = (const char **)t5_decode; 6766 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6767 } 6768 6769 if (state < sge_idma_decode_nstates) 6770 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6771 else 6772 CH_WARN(adapter, "idma state %d unknown\n", state); 6773 6774 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6775 CH_WARN(adapter, "SGE register %#x value %#x\n", 6776 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6777 } 6778 6779 /** 6780 * t4_sge_ctxt_flush - flush the SGE context cache 6781 * @adap: the adapter 6782 * @mbox: mailbox to use for the FW command 6783 * @ctxt_type: Egress or Ingress 6784 * 6785 * Issues a FW command through the given mailbox to flush the 6786 * SGE context cache. 6787 */ 6788 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 6789 { 6790 int ret; 6791 u32 ldst_addrspace; 6792 struct fw_ldst_cmd c; 6793 6794 memset(&c, 0, sizeof(c)); 6795 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ? 6796 FW_LDST_ADDRSPC_SGE_EGRC : 6797 FW_LDST_ADDRSPC_SGE_INGC); 6798 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6799 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6800 ldst_addrspace); 6801 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6802 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6803 6804 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6805 return ret; 6806 } 6807 6808 /** 6809 * t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values 6810 * @adap: the adapter 6811 * @ndbqtimers: size of the provided SGE Doorbell Queue Timer table 6812 * @dbqtimers: SGE Doorbell Queue Timer table 6813 * 6814 * Reads the SGE Doorbell Queue Timer values into the provided table. 6815 * Returns 0 on success (Firmware and Hardware support this feature), 6816 * an error on failure. 6817 */ 6818 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers, 6819 u16 *dbqtimers) 6820 { 6821 int ret, dbqtimerix; 6822 6823 ret = 0; 6824 dbqtimerix = 0; 6825 while (dbqtimerix < ndbqtimers) { 6826 int nparams, param; 6827 u32 params[7], vals[7]; 6828 6829 nparams = ndbqtimers - dbqtimerix; 6830 if (nparams > ARRAY_SIZE(params)) 6831 nparams = ARRAY_SIZE(params); 6832 6833 for (param = 0; param < nparams; param++) 6834 params[param] = 6835 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6836 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) | 6837 FW_PARAMS_PARAM_Y_V(dbqtimerix + param)); 6838 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6839 nparams, params, vals); 6840 if (ret) 6841 break; 6842 6843 for (param = 0; param < nparams; param++) 6844 dbqtimers[dbqtimerix++] = vals[param]; 6845 } 6846 return ret; 6847 } 6848 6849 /** 6850 * t4_fw_hello - establish communication with FW 6851 * @adap: the adapter 6852 * @mbox: mailbox to use for the FW command 6853 * @evt_mbox: mailbox to receive async FW events 6854 * @master: specifies the caller's willingness to be the device master 6855 * @state: returns the current device state (if non-NULL) 6856 * 6857 * Issues a command to establish communication with FW. Returns either 6858 * an error (negative integer) or the mailbox of the Master PF. 6859 */ 6860 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6861 enum dev_master master, enum dev_state *state) 6862 { 6863 int ret; 6864 struct fw_hello_cmd c; 6865 u32 v; 6866 unsigned int master_mbox; 6867 int retries = FW_CMD_HELLO_RETRIES; 6868 6869 retry: 6870 memset(&c, 0, sizeof(c)); 6871 INIT_CMD(c, HELLO, WRITE); 6872 c.err_to_clearinit = cpu_to_be32( 6873 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6874 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6875 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6876 mbox : FW_HELLO_CMD_MBMASTER_M) | 6877 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6878 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6879 FW_HELLO_CMD_CLEARINIT_F); 6880 6881 /* 6882 * Issue the HELLO command to the firmware. If it's not successful 6883 * but indicates that we got a "busy" or "timeout" condition, retry 6884 * the HELLO until we exhaust our retry limit. If we do exceed our 6885 * retry limit, check to see if the firmware left us any error 6886 * information and report that if so. 6887 */ 6888 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6889 if (ret < 0) { 6890 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6891 goto retry; 6892 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6893 t4_report_fw_error(adap); 6894 return ret; 6895 } 6896 6897 v = be32_to_cpu(c.err_to_clearinit); 6898 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6899 if (state) { 6900 if (v & FW_HELLO_CMD_ERR_F) 6901 *state = DEV_STATE_ERR; 6902 else if (v & FW_HELLO_CMD_INIT_F) 6903 *state = DEV_STATE_INIT; 6904 else 6905 *state = DEV_STATE_UNINIT; 6906 } 6907 6908 /* 6909 * If we're not the Master PF then we need to wait around for the 6910 * Master PF Driver to finish setting up the adapter. 6911 * 6912 * Note that we also do this wait if we're a non-Master-capable PF and 6913 * there is no current Master PF; a Master PF may show up momentarily 6914 * and we wouldn't want to fail pointlessly. (This can happen when an 6915 * OS loads lots of different drivers rapidly at the same time). In 6916 * this case, the Master PF returned by the firmware will be 6917 * PCIE_FW_MASTER_M so the test below will work ... 6918 */ 6919 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6920 master_mbox != mbox) { 6921 int waiting = FW_CMD_HELLO_TIMEOUT; 6922 6923 /* 6924 * Wait for the firmware to either indicate an error or 6925 * initialized state. If we see either of these we bail out 6926 * and report the issue to the caller. If we exhaust the 6927 * "hello timeout" and we haven't exhausted our retries, try 6928 * again. Otherwise bail with a timeout error. 6929 */ 6930 for (;;) { 6931 u32 pcie_fw; 6932 6933 msleep(50); 6934 waiting -= 50; 6935 6936 /* 6937 * If neither Error nor Initialized are indicated 6938 * by the firmware keep waiting till we exhaust our 6939 * timeout ... and then retry if we haven't exhausted 6940 * our retries ... 6941 */ 6942 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6943 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6944 if (waiting <= 0) { 6945 if (retries-- > 0) 6946 goto retry; 6947 6948 return -ETIMEDOUT; 6949 } 6950 continue; 6951 } 6952 6953 /* 6954 * We either have an Error or Initialized condition 6955 * report errors preferentially. 6956 */ 6957 if (state) { 6958 if (pcie_fw & PCIE_FW_ERR_F) 6959 *state = DEV_STATE_ERR; 6960 else if (pcie_fw & PCIE_FW_INIT_F) 6961 *state = DEV_STATE_INIT; 6962 } 6963 6964 /* 6965 * If we arrived before a Master PF was selected and 6966 * there's not a valid Master PF, grab its identity 6967 * for our caller. 6968 */ 6969 if (master_mbox == PCIE_FW_MASTER_M && 6970 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6971 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6972 break; 6973 } 6974 } 6975 6976 return master_mbox; 6977 } 6978 6979 /** 6980 * t4_fw_bye - end communication with FW 6981 * @adap: the adapter 6982 * @mbox: mailbox to use for the FW command 6983 * 6984 * Issues a command to terminate communication with FW. 6985 */ 6986 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6987 { 6988 struct fw_bye_cmd c; 6989 6990 memset(&c, 0, sizeof(c)); 6991 INIT_CMD(c, BYE, WRITE); 6992 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6993 } 6994 6995 /** 6996 * t4_init_cmd - ask FW to initialize the device 6997 * @adap: the adapter 6998 * @mbox: mailbox to use for the FW command 6999 * 7000 * Issues a command to FW to partially initialize the device. This 7001 * performs initialization that generally doesn't depend on user input. 7002 */ 7003 int t4_early_init(struct adapter *adap, unsigned int mbox) 7004 { 7005 struct fw_initialize_cmd c; 7006 7007 memset(&c, 0, sizeof(c)); 7008 INIT_CMD(c, INITIALIZE, WRITE); 7009 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7010 } 7011 7012 /** 7013 * t4_fw_reset - issue a reset to FW 7014 * @adap: the adapter 7015 * @mbox: mailbox to use for the FW command 7016 * @reset: specifies the type of reset to perform 7017 * 7018 * Issues a reset command of the specified type to FW. 7019 */ 7020 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 7021 { 7022 struct fw_reset_cmd c; 7023 7024 memset(&c, 0, sizeof(c)); 7025 INIT_CMD(c, RESET, WRITE); 7026 c.val = cpu_to_be32(reset); 7027 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7028 } 7029 7030 /** 7031 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 7032 * @adap: the adapter 7033 * @mbox: mailbox to use for the FW RESET command (if desired) 7034 * @force: force uP into RESET even if FW RESET command fails 7035 * 7036 * Issues a RESET command to firmware (if desired) with a HALT indication 7037 * and then puts the microprocessor into RESET state. The RESET command 7038 * will only be issued if a legitimate mailbox is provided (mbox <= 7039 * PCIE_FW_MASTER_M). 7040 * 7041 * This is generally used in order for the host to safely manipulate the 7042 * adapter without fear of conflicting with whatever the firmware might 7043 * be doing. The only way out of this state is to RESTART the firmware 7044 * ... 7045 */ 7046 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 7047 { 7048 int ret = 0; 7049 7050 /* 7051 * If a legitimate mailbox is provided, issue a RESET command 7052 * with a HALT indication. 7053 */ 7054 if (mbox <= PCIE_FW_MASTER_M) { 7055 struct fw_reset_cmd c; 7056 7057 memset(&c, 0, sizeof(c)); 7058 INIT_CMD(c, RESET, WRITE); 7059 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 7060 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 7061 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7062 } 7063 7064 /* 7065 * Normally we won't complete the operation if the firmware RESET 7066 * command fails but if our caller insists we'll go ahead and put the 7067 * uP into RESET. This can be useful if the firmware is hung or even 7068 * missing ... We'll have to take the risk of putting the uP into 7069 * RESET without the cooperation of firmware in that case. 7070 * 7071 * We also force the firmware's HALT flag to be on in case we bypassed 7072 * the firmware RESET command above or we're dealing with old firmware 7073 * which doesn't have the HALT capability. This will serve as a flag 7074 * for the incoming firmware to know that it's coming out of a HALT 7075 * rather than a RESET ... if it's new enough to understand that ... 7076 */ 7077 if (ret == 0 || force) { 7078 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 7079 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 7080 PCIE_FW_HALT_F); 7081 } 7082 7083 /* 7084 * And we always return the result of the firmware RESET command 7085 * even when we force the uP into RESET ... 7086 */ 7087 return ret; 7088 } 7089 7090 /** 7091 * t4_fw_restart - restart the firmware by taking the uP out of RESET 7092 * @adap: the adapter 7093 * @mbox: mailbox to use for the FW command 7094 * @reset: if we want to do a RESET to restart things 7095 * 7096 * Restart firmware previously halted by t4_fw_halt(). On successful 7097 * return the previous PF Master remains as the new PF Master and there 7098 * is no need to issue a new HELLO command, etc. 7099 * 7100 * We do this in two ways: 7101 * 7102 * 1. If we're dealing with newer firmware we'll simply want to take 7103 * the chip's microprocessor out of RESET. This will cause the 7104 * firmware to start up from its start vector. And then we'll loop 7105 * until the firmware indicates it's started again (PCIE_FW.HALT 7106 * reset to 0) or we timeout. 7107 * 7108 * 2. If we're dealing with older firmware then we'll need to RESET 7109 * the chip since older firmware won't recognize the PCIE_FW.HALT 7110 * flag and automatically RESET itself on startup. 7111 */ 7112 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 7113 { 7114 if (reset) { 7115 /* 7116 * Since we're directing the RESET instead of the firmware 7117 * doing it automatically, we need to clear the PCIE_FW.HALT 7118 * bit. 7119 */ 7120 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 7121 7122 /* 7123 * If we've been given a valid mailbox, first try to get the 7124 * firmware to do the RESET. If that works, great and we can 7125 * return success. Otherwise, if we haven't been given a 7126 * valid mailbox or the RESET command failed, fall back to 7127 * hitting the chip with a hammer. 7128 */ 7129 if (mbox <= PCIE_FW_MASTER_M) { 7130 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7131 msleep(100); 7132 if (t4_fw_reset(adap, mbox, 7133 PIORST_F | PIORSTMODE_F) == 0) 7134 return 0; 7135 } 7136 7137 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 7138 msleep(2000); 7139 } else { 7140 int ms; 7141 7142 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7143 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 7144 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 7145 return 0; 7146 msleep(100); 7147 ms += 100; 7148 } 7149 return -ETIMEDOUT; 7150 } 7151 return 0; 7152 } 7153 7154 /** 7155 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7156 * @adap: the adapter 7157 * @mbox: mailbox to use for the FW RESET command (if desired) 7158 * @fw_data: the firmware image to write 7159 * @size: image size 7160 * @force: force upgrade even if firmware doesn't cooperate 7161 * 7162 * Perform all of the steps necessary for upgrading an adapter's 7163 * firmware image. Normally this requires the cooperation of the 7164 * existing firmware in order to halt all existing activities 7165 * but if an invalid mailbox token is passed in we skip that step 7166 * (though we'll still put the adapter microprocessor into RESET in 7167 * that case). 7168 * 7169 * On successful return the new firmware will have been loaded and 7170 * the adapter will have been fully RESET losing all previous setup 7171 * state. On unsuccessful return the adapter may be completely hosed ... 7172 * positive errno indicates that the adapter is ~probably~ intact, a 7173 * negative errno indicates that things are looking bad ... 7174 */ 7175 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7176 const u8 *fw_data, unsigned int size, int force) 7177 { 7178 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7179 int reset, ret; 7180 7181 if (!t4_fw_matches_chip(adap, fw_hdr)) 7182 return -EINVAL; 7183 7184 /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag 7185 * set wont be sent when we are flashing FW. 7186 */ 7187 adap->flags &= ~CXGB4_FW_OK; 7188 7189 ret = t4_fw_halt(adap, mbox, force); 7190 if (ret < 0 && !force) 7191 goto out; 7192 7193 ret = t4_load_fw(adap, fw_data, size); 7194 if (ret < 0) 7195 goto out; 7196 7197 /* 7198 * If there was a Firmware Configuration File stored in FLASH, 7199 * there's a good chance that it won't be compatible with the new 7200 * Firmware. In order to prevent difficult to diagnose adapter 7201 * initialization issues, we clear out the Firmware Configuration File 7202 * portion of the FLASH . The user will need to re-FLASH a new 7203 * Firmware Configuration File which is compatible with the new 7204 * Firmware if that's desired. 7205 */ 7206 (void)t4_load_cfg(adap, NULL, 0); 7207 7208 /* 7209 * Older versions of the firmware don't understand the new 7210 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 7211 * restart. So for newly loaded older firmware we'll have to do the 7212 * RESET for it so it starts up on a clean slate. We can tell if 7213 * the newly loaded firmware will handle this right by checking 7214 * its header flags to see if it advertises the capability. 7215 */ 7216 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 7217 ret = t4_fw_restart(adap, mbox, reset); 7218 7219 /* Grab potentially new Firmware Device Log parameters so we can see 7220 * how healthy the new Firmware is. It's okay to contact the new 7221 * Firmware for these parameters even though, as far as it's 7222 * concerned, we've never said "HELLO" to it ... 7223 */ 7224 (void)t4_init_devlog_params(adap); 7225 out: 7226 adap->flags |= CXGB4_FW_OK; 7227 return ret; 7228 } 7229 7230 /** 7231 * t4_fl_pkt_align - return the fl packet alignment 7232 * @adap: the adapter 7233 * 7234 * T4 has a single field to specify the packing and padding boundary. 7235 * T5 onwards has separate fields for this and hence the alignment for 7236 * next packet offset is maximum of these two. 7237 * 7238 */ 7239 int t4_fl_pkt_align(struct adapter *adap) 7240 { 7241 u32 sge_control, sge_control2; 7242 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 7243 7244 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 7245 7246 /* T4 uses a single control field to specify both the PCIe Padding and 7247 * Packing Boundary. T5 introduced the ability to specify these 7248 * separately. The actual Ingress Packet Data alignment boundary 7249 * within Packed Buffer Mode is the maximum of these two 7250 * specifications. (Note that it makes no real practical sense to 7251 * have the Padding Boundary be larger than the Packing Boundary but you 7252 * could set the chip up that way and, in fact, legacy T4 code would 7253 * end doing this because it would initialize the Padding Boundary and 7254 * leave the Packing Boundary initialized to 0 (16 bytes).) 7255 * Padding Boundary values in T6 starts from 8B, 7256 * where as it is 32B for T4 and T5. 7257 */ 7258 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 7259 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 7260 else 7261 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 7262 7263 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 7264 7265 fl_align = ingpadboundary; 7266 if (!is_t4(adap->params.chip)) { 7267 /* T5 has a weird interpretation of one of the PCIe Packing 7268 * Boundary values. No idea why ... 7269 */ 7270 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 7271 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 7272 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 7273 ingpackboundary = 16; 7274 else 7275 ingpackboundary = 1 << (ingpackboundary + 7276 INGPACKBOUNDARY_SHIFT_X); 7277 7278 fl_align = max(ingpadboundary, ingpackboundary); 7279 } 7280 return fl_align; 7281 } 7282 7283 /** 7284 * t4_fixup_host_params - fix up host-dependent parameters 7285 * @adap: the adapter 7286 * @page_size: the host's Base Page Size 7287 * @cache_line_size: the host's Cache Line Size 7288 * 7289 * Various registers in T4 contain values which are dependent on the 7290 * host's Base Page and Cache Line Sizes. This function will fix all of 7291 * those registers with the appropriate values as passed in ... 7292 */ 7293 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 7294 unsigned int cache_line_size) 7295 { 7296 unsigned int page_shift = fls(page_size) - 1; 7297 unsigned int sge_hps = page_shift - 10; 7298 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7299 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7300 unsigned int fl_align_log = fls(fl_align) - 1; 7301 7302 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 7303 HOSTPAGESIZEPF0_V(sge_hps) | 7304 HOSTPAGESIZEPF1_V(sge_hps) | 7305 HOSTPAGESIZEPF2_V(sge_hps) | 7306 HOSTPAGESIZEPF3_V(sge_hps) | 7307 HOSTPAGESIZEPF4_V(sge_hps) | 7308 HOSTPAGESIZEPF5_V(sge_hps) | 7309 HOSTPAGESIZEPF6_V(sge_hps) | 7310 HOSTPAGESIZEPF7_V(sge_hps)); 7311 7312 if (is_t4(adap->params.chip)) { 7313 t4_set_reg_field(adap, SGE_CONTROL_A, 7314 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7315 EGRSTATUSPAGESIZE_F, 7316 INGPADBOUNDARY_V(fl_align_log - 7317 INGPADBOUNDARY_SHIFT_X) | 7318 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7319 } else { 7320 unsigned int pack_align; 7321 unsigned int ingpad, ingpack; 7322 7323 /* T5 introduced the separation of the Free List Padding and 7324 * Packing Boundaries. Thus, we can select a smaller Padding 7325 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7326 * Bandwidth, and use a Packing Boundary which is large enough 7327 * to avoid false sharing between CPUs, etc. 7328 * 7329 * For the PCI Link, the smaller the Padding Boundary the 7330 * better. For the Memory Controller, a smaller Padding 7331 * Boundary is better until we cross under the Memory Line 7332 * Size (the minimum unit of transfer to/from Memory). If we 7333 * have a Padding Boundary which is smaller than the Memory 7334 * Line Size, that'll involve a Read-Modify-Write cycle on the 7335 * Memory Controller which is never good. 7336 */ 7337 7338 /* We want the Packing Boundary to be based on the Cache Line 7339 * Size in order to help avoid False Sharing performance 7340 * issues between CPUs, etc. We also want the Packing 7341 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7342 * get best performance when the Packing Boundary is a 7343 * multiple of the Maximum Payload Size. 7344 */ 7345 pack_align = fl_align; 7346 if (pci_is_pcie(adap->pdev)) { 7347 unsigned int mps, mps_log; 7348 u16 devctl; 7349 7350 /* The PCIe Device Control Maximum Payload Size field 7351 * [bits 7:5] encodes sizes as powers of 2 starting at 7352 * 128 bytes. 7353 */ 7354 pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL, 7355 &devctl); 7356 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7357 mps = 1 << mps_log; 7358 if (mps > pack_align) 7359 pack_align = mps; 7360 } 7361 7362 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7363 * value for the Packing Boundary. This corresponds to 16 7364 * bytes instead of the expected 32 bytes. So if we want 32 7365 * bytes, the best we can really do is 64 bytes ... 7366 */ 7367 if (pack_align <= 16) { 7368 ingpack = INGPACKBOUNDARY_16B_X; 7369 fl_align = 16; 7370 } else if (pack_align == 32) { 7371 ingpack = INGPACKBOUNDARY_64B_X; 7372 fl_align = 64; 7373 } else { 7374 unsigned int pack_align_log = fls(pack_align) - 1; 7375 7376 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7377 fl_align = pack_align; 7378 } 7379 7380 /* Use the smallest Ingress Padding which isn't smaller than 7381 * the Memory Controller Read/Write Size. We'll take that as 7382 * being 8 bytes since we don't know of any system with a 7383 * wider Memory Controller Bus Width. 7384 */ 7385 if (is_t5(adap->params.chip)) 7386 ingpad = INGPADBOUNDARY_32B_X; 7387 else 7388 ingpad = T6_INGPADBOUNDARY_8B_X; 7389 7390 t4_set_reg_field(adap, SGE_CONTROL_A, 7391 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7392 EGRSTATUSPAGESIZE_F, 7393 INGPADBOUNDARY_V(ingpad) | 7394 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7395 t4_set_reg_field(adap, SGE_CONTROL2_A, 7396 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7397 INGPACKBOUNDARY_V(ingpack)); 7398 } 7399 /* 7400 * Adjust various SGE Free List Host Buffer Sizes. 7401 * 7402 * This is something of a crock since we're using fixed indices into 7403 * the array which are also known by the sge.c code and the T4 7404 * Firmware Configuration File. We need to come up with a much better 7405 * approach to managing this array. For now, the first four entries 7406 * are: 7407 * 7408 * 0: Host Page Size 7409 * 1: 64KB 7410 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7411 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7412 * 7413 * For the single-MTU buffers in unpacked mode we need to include 7414 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7415 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7416 * Padding boundary. All of these are accommodated in the Factory 7417 * Default Firmware Configuration File but we need to adjust it for 7418 * this host's cache line size. 7419 */ 7420 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7421 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7422 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7423 & ~(fl_align-1)); 7424 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7425 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7426 & ~(fl_align-1)); 7427 7428 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7429 7430 return 0; 7431 } 7432 7433 /** 7434 * t4_fw_initialize - ask FW to initialize the device 7435 * @adap: the adapter 7436 * @mbox: mailbox to use for the FW command 7437 * 7438 * Issues a command to FW to partially initialize the device. This 7439 * performs initialization that generally doesn't depend on user input. 7440 */ 7441 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7442 { 7443 struct fw_initialize_cmd c; 7444 7445 memset(&c, 0, sizeof(c)); 7446 INIT_CMD(c, INITIALIZE, WRITE); 7447 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7448 } 7449 7450 /** 7451 * t4_query_params_rw - query FW or device parameters 7452 * @adap: the adapter 7453 * @mbox: mailbox to use for the FW command 7454 * @pf: the PF 7455 * @vf: the VF 7456 * @nparams: the number of parameters 7457 * @params: the parameter names 7458 * @val: the parameter values 7459 * @rw: Write and read flag 7460 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7461 * 7462 * Reads the value of FW or device parameters. Up to 7 parameters can be 7463 * queried at once. 7464 */ 7465 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7466 unsigned int vf, unsigned int nparams, const u32 *params, 7467 u32 *val, int rw, bool sleep_ok) 7468 { 7469 int i, ret; 7470 struct fw_params_cmd c; 7471 __be32 *p = &c.param[0].mnem; 7472 7473 if (nparams > 7) 7474 return -EINVAL; 7475 7476 memset(&c, 0, sizeof(c)); 7477 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7478 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7479 FW_PARAMS_CMD_PFN_V(pf) | 7480 FW_PARAMS_CMD_VFN_V(vf)); 7481 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7482 7483 for (i = 0; i < nparams; i++) { 7484 *p++ = cpu_to_be32(*params++); 7485 if (rw) 7486 *p = cpu_to_be32(*(val + i)); 7487 p++; 7488 } 7489 7490 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7491 if (ret == 0) 7492 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7493 *val++ = be32_to_cpu(*p); 7494 return ret; 7495 } 7496 7497 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7498 unsigned int vf, unsigned int nparams, const u32 *params, 7499 u32 *val) 7500 { 7501 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7502 true); 7503 } 7504 7505 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7506 unsigned int vf, unsigned int nparams, const u32 *params, 7507 u32 *val) 7508 { 7509 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7510 false); 7511 } 7512 7513 /** 7514 * t4_set_params_timeout - sets FW or device parameters 7515 * @adap: the adapter 7516 * @mbox: mailbox to use for the FW command 7517 * @pf: the PF 7518 * @vf: the VF 7519 * @nparams: the number of parameters 7520 * @params: the parameter names 7521 * @val: the parameter values 7522 * @timeout: the timeout time 7523 * 7524 * Sets the value of FW or device parameters. Up to 7 parameters can be 7525 * specified at once. 7526 */ 7527 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7528 unsigned int pf, unsigned int vf, 7529 unsigned int nparams, const u32 *params, 7530 const u32 *val, int timeout) 7531 { 7532 struct fw_params_cmd c; 7533 __be32 *p = &c.param[0].mnem; 7534 7535 if (nparams > 7) 7536 return -EINVAL; 7537 7538 memset(&c, 0, sizeof(c)); 7539 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7540 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7541 FW_PARAMS_CMD_PFN_V(pf) | 7542 FW_PARAMS_CMD_VFN_V(vf)); 7543 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7544 7545 while (nparams--) { 7546 *p++ = cpu_to_be32(*params++); 7547 *p++ = cpu_to_be32(*val++); 7548 } 7549 7550 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7551 } 7552 7553 /** 7554 * t4_set_params - sets FW or device parameters 7555 * @adap: the adapter 7556 * @mbox: mailbox to use for the FW command 7557 * @pf: the PF 7558 * @vf: the VF 7559 * @nparams: the number of parameters 7560 * @params: the parameter names 7561 * @val: the parameter values 7562 * 7563 * Sets the value of FW or device parameters. Up to 7 parameters can be 7564 * specified at once. 7565 */ 7566 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7567 unsigned int vf, unsigned int nparams, const u32 *params, 7568 const u32 *val) 7569 { 7570 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7571 FW_CMD_MAX_TIMEOUT); 7572 } 7573 7574 /** 7575 * t4_cfg_pfvf - configure PF/VF resource limits 7576 * @adap: the adapter 7577 * @mbox: mailbox to use for the FW command 7578 * @pf: the PF being configured 7579 * @vf: the VF being configured 7580 * @txq: the max number of egress queues 7581 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7582 * @rxqi: the max number of interrupt-capable ingress queues 7583 * @rxq: the max number of interruptless ingress queues 7584 * @tc: the PCI traffic class 7585 * @vi: the max number of virtual interfaces 7586 * @cmask: the channel access rights mask for the PF/VF 7587 * @pmask: the port access rights mask for the PF/VF 7588 * @nexact: the maximum number of exact MPS filters 7589 * @rcaps: read capabilities 7590 * @wxcaps: write/execute capabilities 7591 * 7592 * Configures resource limits and capabilities for a physical or virtual 7593 * function. 7594 */ 7595 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7596 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7597 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7598 unsigned int vi, unsigned int cmask, unsigned int pmask, 7599 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7600 { 7601 struct fw_pfvf_cmd c; 7602 7603 memset(&c, 0, sizeof(c)); 7604 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7605 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7606 FW_PFVF_CMD_VFN_V(vf)); 7607 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7608 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7609 FW_PFVF_CMD_NIQ_V(rxq)); 7610 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7611 FW_PFVF_CMD_PMASK_V(pmask) | 7612 FW_PFVF_CMD_NEQ_V(txq)); 7613 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7614 FW_PFVF_CMD_NVI_V(vi) | 7615 FW_PFVF_CMD_NEXACTF_V(nexact)); 7616 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7617 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7618 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7619 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7620 } 7621 7622 /** 7623 * t4_alloc_vi - allocate a virtual interface 7624 * @adap: the adapter 7625 * @mbox: mailbox to use for the FW command 7626 * @port: physical port associated with the VI 7627 * @pf: the PF owning the VI 7628 * @vf: the VF owning the VI 7629 * @nmac: number of MAC addresses needed (1 to 5) 7630 * @mac: the MAC addresses of the VI 7631 * @rss_size: size of RSS table slice associated with this VI 7632 * @vivld: the destination to store the VI Valid value. 7633 * @vin: the destination to store the VIN value. 7634 * 7635 * Allocates a virtual interface for the given physical port. If @mac is 7636 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7637 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7638 * stored consecutively so the space needed is @nmac * 6 bytes. 7639 * Returns a negative error number or the non-negative VI id. 7640 */ 7641 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7642 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7643 unsigned int *rss_size, u8 *vivld, u8 *vin) 7644 { 7645 int ret; 7646 struct fw_vi_cmd c; 7647 7648 memset(&c, 0, sizeof(c)); 7649 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7650 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7651 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7652 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7653 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7654 c.nmac = nmac - 1; 7655 7656 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7657 if (ret) 7658 return ret; 7659 7660 if (mac) { 7661 memcpy(mac, c.mac, sizeof(c.mac)); 7662 switch (nmac) { 7663 case 5: 7664 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7665 fallthrough; 7666 case 4: 7667 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7668 fallthrough; 7669 case 3: 7670 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7671 fallthrough; 7672 case 2: 7673 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7674 } 7675 } 7676 if (rss_size) 7677 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7678 7679 if (vivld) 7680 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16)); 7681 7682 if (vin) 7683 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16)); 7684 7685 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7686 } 7687 7688 /** 7689 * t4_free_vi - free a virtual interface 7690 * @adap: the adapter 7691 * @mbox: mailbox to use for the FW command 7692 * @pf: the PF owning the VI 7693 * @vf: the VF owning the VI 7694 * @viid: virtual interface identifiler 7695 * 7696 * Free a previously allocated virtual interface. 7697 */ 7698 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7699 unsigned int vf, unsigned int viid) 7700 { 7701 struct fw_vi_cmd c; 7702 7703 memset(&c, 0, sizeof(c)); 7704 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7705 FW_CMD_REQUEST_F | 7706 FW_CMD_EXEC_F | 7707 FW_VI_CMD_PFN_V(pf) | 7708 FW_VI_CMD_VFN_V(vf)); 7709 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7710 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7711 7712 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7713 } 7714 7715 /** 7716 * t4_set_rxmode - set Rx properties of a virtual interface 7717 * @adap: the adapter 7718 * @mbox: mailbox to use for the FW command 7719 * @viid: the VI id 7720 * @viid_mirror: the mirror VI id 7721 * @mtu: the new MTU or -1 7722 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7723 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7724 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7725 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7726 * @sleep_ok: if true we may sleep while awaiting command completion 7727 * 7728 * Sets Rx properties of a virtual interface. 7729 */ 7730 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7731 unsigned int viid_mirror, int mtu, int promisc, int all_multi, 7732 int bcast, int vlanex, bool sleep_ok) 7733 { 7734 struct fw_vi_rxmode_cmd c, c_mirror; 7735 int ret; 7736 7737 /* convert to FW values */ 7738 if (mtu < 0) 7739 mtu = FW_RXMODE_MTU_NO_CHG; 7740 if (promisc < 0) 7741 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7742 if (all_multi < 0) 7743 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7744 if (bcast < 0) 7745 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7746 if (vlanex < 0) 7747 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7748 7749 memset(&c, 0, sizeof(c)); 7750 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7751 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7752 FW_VI_RXMODE_CMD_VIID_V(viid)); 7753 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7754 c.mtu_to_vlanexen = 7755 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7756 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7757 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7758 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7759 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7760 7761 if (viid_mirror) { 7762 memcpy(&c_mirror, &c, sizeof(c_mirror)); 7763 c_mirror.op_to_viid = 7764 cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7765 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7766 FW_VI_RXMODE_CMD_VIID_V(viid_mirror)); 7767 } 7768 7769 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7770 if (ret) 7771 return ret; 7772 7773 if (viid_mirror) 7774 ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror), 7775 NULL, sleep_ok); 7776 7777 return ret; 7778 } 7779 7780 /** 7781 * t4_free_encap_mac_filt - frees MPS entry at given index 7782 * @adap: the adapter 7783 * @viid: the VI id 7784 * @idx: index of MPS entry to be freed 7785 * @sleep_ok: call is allowed to sleep 7786 * 7787 * Frees the MPS entry at supplied index 7788 * 7789 * Returns a negative error number or zero on success 7790 */ 7791 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, 7792 int idx, bool sleep_ok) 7793 { 7794 struct fw_vi_mac_exact *p; 7795 u8 addr[] = {0, 0, 0, 0, 0, 0}; 7796 struct fw_vi_mac_cmd c; 7797 int ret = 0; 7798 u32 exact; 7799 7800 memset(&c, 0, sizeof(c)); 7801 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7802 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7803 FW_CMD_EXEC_V(0) | 7804 FW_VI_MAC_CMD_VIID_V(viid)); 7805 exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC); 7806 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7807 exact | 7808 FW_CMD_LEN16_V(1)); 7809 p = c.u.exact; 7810 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7811 FW_VI_MAC_CMD_IDX_V(idx)); 7812 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7813 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7814 return ret; 7815 } 7816 7817 /** 7818 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam 7819 * @adap: the adapter 7820 * @viid: the VI id 7821 * @addr: the MAC address 7822 * @mask: the mask 7823 * @idx: index of the entry in mps tcam 7824 * @lookup_type: MAC address for inner (1) or outer (0) header 7825 * @port_id: the port index 7826 * @sleep_ok: call is allowed to sleep 7827 * 7828 * Removes the mac entry at the specified index using raw mac interface. 7829 * 7830 * Returns a negative error number on failure. 7831 */ 7832 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, 7833 const u8 *addr, const u8 *mask, unsigned int idx, 7834 u8 lookup_type, u8 port_id, bool sleep_ok) 7835 { 7836 struct fw_vi_mac_cmd c; 7837 struct fw_vi_mac_raw *p = &c.u.raw; 7838 u32 val; 7839 7840 memset(&c, 0, sizeof(c)); 7841 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7842 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7843 FW_CMD_EXEC_V(0) | 7844 FW_VI_MAC_CMD_VIID_V(viid)); 7845 val = FW_CMD_LEN16_V(1) | 7846 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7847 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7848 FW_CMD_LEN16_V(val)); 7849 7850 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) | 7851 FW_VI_MAC_ID_BASED_FREE); 7852 7853 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7854 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7855 DATAPORTNUM_V(port_id)); 7856 /* Lookup mask and port mask */ 7857 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7858 DATAPORTNUM_V(DATAPORTNUM_M)); 7859 7860 /* Copy the address and the mask */ 7861 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7862 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7863 7864 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7865 } 7866 7867 /** 7868 * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support 7869 * @adap: the adapter 7870 * @viid: the VI id 7871 * @addr: the MAC address 7872 * @mask: the mask 7873 * @vni: the VNI id for the tunnel protocol 7874 * @vni_mask: mask for the VNI id 7875 * @dip_hit: to enable DIP match for the MPS entry 7876 * @lookup_type: MAC address for inner (1) or outer (0) header 7877 * @sleep_ok: call is allowed to sleep 7878 * 7879 * Allocates an MPS entry with specified MAC address and VNI value. 7880 * 7881 * Returns a negative error number or the allocated index for this mac. 7882 */ 7883 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, 7884 const u8 *addr, const u8 *mask, unsigned int vni, 7885 unsigned int vni_mask, u8 dip_hit, u8 lookup_type, 7886 bool sleep_ok) 7887 { 7888 struct fw_vi_mac_cmd c; 7889 struct fw_vi_mac_vni *p = c.u.exact_vni; 7890 int ret = 0; 7891 u32 val; 7892 7893 memset(&c, 0, sizeof(c)); 7894 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7895 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7896 FW_VI_MAC_CMD_VIID_V(viid)); 7897 val = FW_CMD_LEN16_V(1) | 7898 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI); 7899 c.freemacs_to_len16 = cpu_to_be32(val); 7900 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7901 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 7902 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7903 memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); 7904 7905 p->lookup_type_to_vni = 7906 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) | 7907 FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) | 7908 FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type)); 7909 p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask)); 7910 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7911 if (ret == 0) 7912 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7913 return ret; 7914 } 7915 7916 /** 7917 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam 7918 * @adap: the adapter 7919 * @viid: the VI id 7920 * @addr: the MAC address 7921 * @mask: the mask 7922 * @idx: index at which to add this entry 7923 * @lookup_type: MAC address for inner (1) or outer (0) header 7924 * @port_id: the port index 7925 * @sleep_ok: call is allowed to sleep 7926 * 7927 * Adds the mac entry at the specified index using raw mac interface. 7928 * 7929 * Returns a negative error number or the allocated index for this mac. 7930 */ 7931 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, 7932 const u8 *addr, const u8 *mask, unsigned int idx, 7933 u8 lookup_type, u8 port_id, bool sleep_ok) 7934 { 7935 int ret = 0; 7936 struct fw_vi_mac_cmd c; 7937 struct fw_vi_mac_raw *p = &c.u.raw; 7938 u32 val; 7939 7940 memset(&c, 0, sizeof(c)); 7941 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7942 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7943 FW_VI_MAC_CMD_VIID_V(viid)); 7944 val = FW_CMD_LEN16_V(1) | 7945 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7946 c.freemacs_to_len16 = cpu_to_be32(val); 7947 7948 /* Specify that this is an inner mac address */ 7949 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx)); 7950 7951 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7952 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7953 DATAPORTNUM_V(port_id)); 7954 /* Lookup mask and port mask */ 7955 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7956 DATAPORTNUM_V(DATAPORTNUM_M)); 7957 7958 /* Copy the address and the mask */ 7959 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7960 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7961 7962 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7963 if (ret == 0) { 7964 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd)); 7965 if (ret != idx) 7966 ret = -ENOMEM; 7967 } 7968 7969 return ret; 7970 } 7971 7972 /** 7973 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7974 * @adap: the adapter 7975 * @mbox: mailbox to use for the FW command 7976 * @viid: the VI id 7977 * @free: if true any existing filters for this VI id are first removed 7978 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7979 * @addr: the MAC address(es) 7980 * @idx: where to store the index of each allocated filter 7981 * @hash: pointer to hash address filter bitmap 7982 * @sleep_ok: call is allowed to sleep 7983 * 7984 * Allocates an exact-match filter for each of the supplied addresses and 7985 * sets it to the corresponding address. If @idx is not %NULL it should 7986 * have at least @naddr entries, each of which will be set to the index of 7987 * the filter allocated for the corresponding MAC address. If a filter 7988 * could not be allocated for an address its index is set to 0xffff. 7989 * If @hash is not %NULL addresses that fail to allocate an exact filter 7990 * are hashed and update the hash filter bitmap pointed at by @hash. 7991 * 7992 * Returns a negative error number or the number of filters allocated. 7993 */ 7994 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7995 unsigned int viid, bool free, unsigned int naddr, 7996 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7997 { 7998 int offset, ret = 0; 7999 struct fw_vi_mac_cmd c; 8000 unsigned int nfilters = 0; 8001 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 8002 unsigned int rem = naddr; 8003 8004 if (naddr > max_naddr) 8005 return -EINVAL; 8006 8007 for (offset = 0; offset < naddr ; /**/) { 8008 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 8009 rem : ARRAY_SIZE(c.u.exact)); 8010 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8011 u.exact[fw_naddr]), 16); 8012 struct fw_vi_mac_exact *p; 8013 int i; 8014 8015 memset(&c, 0, sizeof(c)); 8016 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8017 FW_CMD_REQUEST_F | 8018 FW_CMD_WRITE_F | 8019 FW_CMD_EXEC_V(free) | 8020 FW_VI_MAC_CMD_VIID_V(viid)); 8021 c.freemacs_to_len16 = 8022 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 8023 FW_CMD_LEN16_V(len16)); 8024 8025 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8026 p->valid_to_idx = 8027 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8028 FW_VI_MAC_CMD_IDX_V( 8029 FW_VI_MAC_ADD_MAC)); 8030 memcpy(p->macaddr, addr[offset + i], 8031 sizeof(p->macaddr)); 8032 } 8033 8034 /* It's okay if we run out of space in our MAC address arena. 8035 * Some of the addresses we submit may get stored so we need 8036 * to run through the reply to see what the results were ... 8037 */ 8038 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8039 if (ret && ret != -FW_ENOMEM) 8040 break; 8041 8042 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8043 u16 index = FW_VI_MAC_CMD_IDX_G( 8044 be16_to_cpu(p->valid_to_idx)); 8045 8046 if (idx) 8047 idx[offset + i] = (index >= max_naddr ? 8048 0xffff : index); 8049 if (index < max_naddr) 8050 nfilters++; 8051 else if (hash) 8052 *hash |= (1ULL << 8053 hash_mac_addr(addr[offset + i])); 8054 } 8055 8056 free = false; 8057 offset += fw_naddr; 8058 rem -= fw_naddr; 8059 } 8060 8061 if (ret == 0 || ret == -FW_ENOMEM) 8062 ret = nfilters; 8063 return ret; 8064 } 8065 8066 /** 8067 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 8068 * @adap: the adapter 8069 * @mbox: mailbox to use for the FW command 8070 * @viid: the VI id 8071 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 8072 * @addr: the MAC address(es) 8073 * @sleep_ok: call is allowed to sleep 8074 * 8075 * Frees the exact-match filter for each of the supplied addresses 8076 * 8077 * Returns a negative error number or the number of filters freed. 8078 */ 8079 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 8080 unsigned int viid, unsigned int naddr, 8081 const u8 **addr, bool sleep_ok) 8082 { 8083 int offset, ret = 0; 8084 struct fw_vi_mac_cmd c; 8085 unsigned int nfilters = 0; 8086 unsigned int max_naddr = is_t4(adap->params.chip) ? 8087 NUM_MPS_CLS_SRAM_L_INSTANCES : 8088 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8089 unsigned int rem = naddr; 8090 8091 if (naddr > max_naddr) 8092 return -EINVAL; 8093 8094 for (offset = 0; offset < (int)naddr ; /**/) { 8095 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 8096 ? rem 8097 : ARRAY_SIZE(c.u.exact)); 8098 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8099 u.exact[fw_naddr]), 16); 8100 struct fw_vi_mac_exact *p; 8101 int i; 8102 8103 memset(&c, 0, sizeof(c)); 8104 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8105 FW_CMD_REQUEST_F | 8106 FW_CMD_WRITE_F | 8107 FW_CMD_EXEC_V(0) | 8108 FW_VI_MAC_CMD_VIID_V(viid)); 8109 c.freemacs_to_len16 = 8110 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 8111 FW_CMD_LEN16_V(len16)); 8112 8113 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 8114 p->valid_to_idx = cpu_to_be16( 8115 FW_VI_MAC_CMD_VALID_F | 8116 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 8117 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 8118 } 8119 8120 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8121 if (ret) 8122 break; 8123 8124 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8125 u16 index = FW_VI_MAC_CMD_IDX_G( 8126 be16_to_cpu(p->valid_to_idx)); 8127 8128 if (index < max_naddr) 8129 nfilters++; 8130 } 8131 8132 offset += fw_naddr; 8133 rem -= fw_naddr; 8134 } 8135 8136 if (ret == 0) 8137 ret = nfilters; 8138 return ret; 8139 } 8140 8141 /** 8142 * t4_change_mac - modifies the exact-match filter for a MAC address 8143 * @adap: the adapter 8144 * @mbox: mailbox to use for the FW command 8145 * @viid: the VI id 8146 * @idx: index of existing filter for old value of MAC address, or -1 8147 * @addr: the new MAC address value 8148 * @persist: whether a new MAC allocation should be persistent 8149 * @smt_idx: the destination to store the new SMT index. 8150 * 8151 * Modifies an exact-match filter and sets it to the new MAC address. 8152 * Note that in general it is not possible to modify the value of a given 8153 * filter so the generic way to modify an address filter is to free the one 8154 * being used by the old address value and allocate a new filter for the 8155 * new address value. @idx can be -1 if the address is a new addition. 8156 * 8157 * Returns a negative error number or the index of the filter with the new 8158 * MAC value. 8159 */ 8160 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 8161 int idx, const u8 *addr, bool persist, u8 *smt_idx) 8162 { 8163 int ret, mode; 8164 struct fw_vi_mac_cmd c; 8165 struct fw_vi_mac_exact *p = c.u.exact; 8166 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 8167 8168 if (idx < 0) /* new allocation */ 8169 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 8170 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 8171 8172 memset(&c, 0, sizeof(c)); 8173 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8174 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8175 FW_VI_MAC_CMD_VIID_V(viid)); 8176 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 8177 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8178 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 8179 FW_VI_MAC_CMD_IDX_V(idx)); 8180 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8181 8182 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8183 if (ret == 0) { 8184 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 8185 if (ret >= max_mac_addr) 8186 ret = -ENOMEM; 8187 if (smt_idx) { 8188 if (adap->params.viid_smt_extn_support) { 8189 *smt_idx = FW_VI_MAC_CMD_SMTID_G 8190 (be32_to_cpu(c.op_to_viid)); 8191 } else { 8192 /* In T4/T5, SMT contains 256 SMAC entries 8193 * organized in 128 rows of 2 entries each. 8194 * In T6, SMT contains 256 SMAC entries in 8195 * 256 rows. 8196 */ 8197 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= 8198 CHELSIO_T5) 8199 *smt_idx = (viid & FW_VIID_VIN_M) << 1; 8200 else 8201 *smt_idx = (viid & FW_VIID_VIN_M); 8202 } 8203 } 8204 } 8205 return ret; 8206 } 8207 8208 /** 8209 * t4_set_addr_hash - program the MAC inexact-match hash filter 8210 * @adap: the adapter 8211 * @mbox: mailbox to use for the FW command 8212 * @viid: the VI id 8213 * @ucast: whether the hash filter should also match unicast addresses 8214 * @vec: the value to be written to the hash filter 8215 * @sleep_ok: call is allowed to sleep 8216 * 8217 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8218 */ 8219 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8220 bool ucast, u64 vec, bool sleep_ok) 8221 { 8222 struct fw_vi_mac_cmd c; 8223 8224 memset(&c, 0, sizeof(c)); 8225 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8226 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8227 FW_VI_ENABLE_CMD_VIID_V(viid)); 8228 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 8229 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 8230 FW_CMD_LEN16_V(1)); 8231 c.u.hash.hashvec = cpu_to_be64(vec); 8232 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8233 } 8234 8235 /** 8236 * t4_enable_vi_params - enable/disable a virtual interface 8237 * @adap: the adapter 8238 * @mbox: mailbox to use for the FW command 8239 * @viid: the VI id 8240 * @rx_en: 1=enable Rx, 0=disable Rx 8241 * @tx_en: 1=enable Tx, 0=disable Tx 8242 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8243 * 8244 * Enables/disables a virtual interface. Note that setting DCB Enable 8245 * only makes sense when enabling a Virtual Interface ... 8246 */ 8247 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8248 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8249 { 8250 struct fw_vi_enable_cmd c; 8251 8252 memset(&c, 0, sizeof(c)); 8253 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8254 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8255 FW_VI_ENABLE_CMD_VIID_V(viid)); 8256 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 8257 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 8258 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 8259 FW_LEN16(c)); 8260 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8261 } 8262 8263 /** 8264 * t4_enable_vi - enable/disable a virtual interface 8265 * @adap: the adapter 8266 * @mbox: mailbox to use for the FW command 8267 * @viid: the VI id 8268 * @rx_en: 1=enable Rx, 0=disable Rx 8269 * @tx_en: 1=enable Tx, 0=disable Tx 8270 * 8271 * Enables/disables a virtual interface. 8272 */ 8273 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8274 bool rx_en, bool tx_en) 8275 { 8276 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8277 } 8278 8279 /** 8280 * t4_enable_pi_params - enable/disable a Port's Virtual Interface 8281 * @adap: the adapter 8282 * @mbox: mailbox to use for the FW command 8283 * @pi: the Port Information structure 8284 * @rx_en: 1=enable Rx, 0=disable Rx 8285 * @tx_en: 1=enable Tx, 0=disable Tx 8286 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8287 * 8288 * Enables/disables a Port's Virtual Interface. Note that setting DCB 8289 * Enable only makes sense when enabling a Virtual Interface ... 8290 * If the Virtual Interface enable/disable operation is successful, 8291 * we notify the OS-specific code of a potential Link Status change 8292 * via the OS Contract API t4_os_link_changed(). 8293 */ 8294 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox, 8295 struct port_info *pi, 8296 bool rx_en, bool tx_en, bool dcb_en) 8297 { 8298 int ret = t4_enable_vi_params(adap, mbox, pi->viid, 8299 rx_en, tx_en, dcb_en); 8300 if (ret) 8301 return ret; 8302 t4_os_link_changed(adap, pi->port_id, 8303 rx_en && tx_en && pi->link_cfg.link_ok); 8304 return 0; 8305 } 8306 8307 /** 8308 * t4_identify_port - identify a VI's port by blinking its LED 8309 * @adap: the adapter 8310 * @mbox: mailbox to use for the FW command 8311 * @viid: the VI id 8312 * @nblinks: how many times to blink LED at 2.5 Hz 8313 * 8314 * Identifies a VI's port by blinking its LED. 8315 */ 8316 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8317 unsigned int nblinks) 8318 { 8319 struct fw_vi_enable_cmd c; 8320 8321 memset(&c, 0, sizeof(c)); 8322 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8323 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8324 FW_VI_ENABLE_CMD_VIID_V(viid)); 8325 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 8326 c.blinkdur = cpu_to_be16(nblinks); 8327 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8328 } 8329 8330 /** 8331 * t4_iq_stop - stop an ingress queue and its FLs 8332 * @adap: the adapter 8333 * @mbox: mailbox to use for the FW command 8334 * @pf: the PF owning the queues 8335 * @vf: the VF owning the queues 8336 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8337 * @iqid: ingress queue id 8338 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8339 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8340 * 8341 * Stops an ingress queue and its associated FLs, if any. This causes 8342 * any current or future data/messages destined for these queues to be 8343 * tossed. 8344 */ 8345 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8346 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8347 unsigned int fl0id, unsigned int fl1id) 8348 { 8349 struct fw_iq_cmd c; 8350 8351 memset(&c, 0, sizeof(c)); 8352 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8353 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8354 FW_IQ_CMD_VFN_V(vf)); 8355 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 8356 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8357 c.iqid = cpu_to_be16(iqid); 8358 c.fl0id = cpu_to_be16(fl0id); 8359 c.fl1id = cpu_to_be16(fl1id); 8360 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8361 } 8362 8363 /** 8364 * t4_iq_free - free an ingress queue and its FLs 8365 * @adap: the adapter 8366 * @mbox: mailbox to use for the FW command 8367 * @pf: the PF owning the queues 8368 * @vf: the VF owning the queues 8369 * @iqtype: the ingress queue type 8370 * @iqid: ingress queue id 8371 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8372 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8373 * 8374 * Frees an ingress queue and its associated FLs, if any. 8375 */ 8376 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8377 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8378 unsigned int fl0id, unsigned int fl1id) 8379 { 8380 struct fw_iq_cmd c; 8381 8382 memset(&c, 0, sizeof(c)); 8383 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8384 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8385 FW_IQ_CMD_VFN_V(vf)); 8386 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 8387 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8388 c.iqid = cpu_to_be16(iqid); 8389 c.fl0id = cpu_to_be16(fl0id); 8390 c.fl1id = cpu_to_be16(fl1id); 8391 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8392 } 8393 8394 /** 8395 * t4_eth_eq_free - free an Ethernet egress queue 8396 * @adap: the adapter 8397 * @mbox: mailbox to use for the FW command 8398 * @pf: the PF owning the queue 8399 * @vf: the VF owning the queue 8400 * @eqid: egress queue id 8401 * 8402 * Frees an Ethernet egress queue. 8403 */ 8404 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8405 unsigned int vf, unsigned int eqid) 8406 { 8407 struct fw_eq_eth_cmd c; 8408 8409 memset(&c, 0, sizeof(c)); 8410 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 8411 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8412 FW_EQ_ETH_CMD_PFN_V(pf) | 8413 FW_EQ_ETH_CMD_VFN_V(vf)); 8414 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 8415 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 8416 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8417 } 8418 8419 /** 8420 * t4_ctrl_eq_free - free a control egress queue 8421 * @adap: the adapter 8422 * @mbox: mailbox to use for the FW command 8423 * @pf: the PF owning the queue 8424 * @vf: the VF owning the queue 8425 * @eqid: egress queue id 8426 * 8427 * Frees a control egress queue. 8428 */ 8429 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8430 unsigned int vf, unsigned int eqid) 8431 { 8432 struct fw_eq_ctrl_cmd c; 8433 8434 memset(&c, 0, sizeof(c)); 8435 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 8436 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8437 FW_EQ_CTRL_CMD_PFN_V(pf) | 8438 FW_EQ_CTRL_CMD_VFN_V(vf)); 8439 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 8440 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 8441 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8442 } 8443 8444 /** 8445 * t4_ofld_eq_free - free an offload egress queue 8446 * @adap: the adapter 8447 * @mbox: mailbox to use for the FW command 8448 * @pf: the PF owning the queue 8449 * @vf: the VF owning the queue 8450 * @eqid: egress queue id 8451 * 8452 * Frees a control egress queue. 8453 */ 8454 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8455 unsigned int vf, unsigned int eqid) 8456 { 8457 struct fw_eq_ofld_cmd c; 8458 8459 memset(&c, 0, sizeof(c)); 8460 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 8461 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8462 FW_EQ_OFLD_CMD_PFN_V(pf) | 8463 FW_EQ_OFLD_CMD_VFN_V(vf)); 8464 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 8465 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 8466 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8467 } 8468 8469 /** 8470 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8471 * @link_down_rc: Link Down Reason Code 8472 * 8473 * Returns a string representation of the Link Down Reason Code. 8474 */ 8475 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 8476 { 8477 static const char * const reason[] = { 8478 "Link Down", 8479 "Remote Fault", 8480 "Auto-negotiation Failure", 8481 "Reserved", 8482 "Insufficient Airflow", 8483 "Unable To Determine Reason", 8484 "No RX Signal Detected", 8485 "Reserved", 8486 }; 8487 8488 if (link_down_rc >= ARRAY_SIZE(reason)) 8489 return "Bad Reason Code"; 8490 8491 return reason[link_down_rc]; 8492 } 8493 8494 /* Return the highest speed set in the port capabilities, in Mb/s. */ 8495 static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 8496 { 8497 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8498 do { \ 8499 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8500 return __speed; \ 8501 } while (0) 8502 8503 TEST_SPEED_RETURN(400G, 400000); 8504 TEST_SPEED_RETURN(200G, 200000); 8505 TEST_SPEED_RETURN(100G, 100000); 8506 TEST_SPEED_RETURN(50G, 50000); 8507 TEST_SPEED_RETURN(40G, 40000); 8508 TEST_SPEED_RETURN(25G, 25000); 8509 TEST_SPEED_RETURN(10G, 10000); 8510 TEST_SPEED_RETURN(1G, 1000); 8511 TEST_SPEED_RETURN(100M, 100); 8512 8513 #undef TEST_SPEED_RETURN 8514 8515 return 0; 8516 } 8517 8518 /** 8519 * fwcap_to_fwspeed - return highest speed in Port Capabilities 8520 * @acaps: advertised Port Capabilities 8521 * 8522 * Get the highest speed for the port from the advertised Port 8523 * Capabilities. It will be either the highest speed from the list of 8524 * speeds or whatever user has set using ethtool. 8525 */ 8526 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 8527 { 8528 #define TEST_SPEED_RETURN(__caps_speed) \ 8529 do { \ 8530 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8531 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8532 } while (0) 8533 8534 TEST_SPEED_RETURN(400G); 8535 TEST_SPEED_RETURN(200G); 8536 TEST_SPEED_RETURN(100G); 8537 TEST_SPEED_RETURN(50G); 8538 TEST_SPEED_RETURN(40G); 8539 TEST_SPEED_RETURN(25G); 8540 TEST_SPEED_RETURN(10G); 8541 TEST_SPEED_RETURN(1G); 8542 TEST_SPEED_RETURN(100M); 8543 8544 #undef TEST_SPEED_RETURN 8545 8546 return 0; 8547 } 8548 8549 /** 8550 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8551 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8552 * 8553 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8554 * 32-bit Port Capabilities value. 8555 */ 8556 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 8557 { 8558 fw_port_cap32_t linkattr = 0; 8559 8560 /* Unfortunately the format of the Link Status in the old 8561 * 16-bit Port Information message isn't the same as the 8562 * 16-bit Port Capabilities bitfield used everywhere else ... 8563 */ 8564 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8565 linkattr |= FW_PORT_CAP32_FC_RX; 8566 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8567 linkattr |= FW_PORT_CAP32_FC_TX; 8568 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8569 linkattr |= FW_PORT_CAP32_SPEED_100M; 8570 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8571 linkattr |= FW_PORT_CAP32_SPEED_1G; 8572 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8573 linkattr |= FW_PORT_CAP32_SPEED_10G; 8574 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8575 linkattr |= FW_PORT_CAP32_SPEED_25G; 8576 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8577 linkattr |= FW_PORT_CAP32_SPEED_40G; 8578 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8579 linkattr |= FW_PORT_CAP32_SPEED_100G; 8580 8581 return linkattr; 8582 } 8583 8584 /** 8585 * t4_handle_get_port_info - process a FW reply message 8586 * @pi: the port info 8587 * @rpl: start of the FW message 8588 * 8589 * Processes a GET_PORT_INFO FW reply message. 8590 */ 8591 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8592 { 8593 const struct fw_port_cmd *cmd = (const void *)rpl; 8594 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8595 struct link_config *lc = &pi->link_cfg; 8596 struct adapter *adapter = pi->adapter; 8597 unsigned int speed, fc, fec, adv_fc; 8598 enum fw_port_module_type mod_type; 8599 int action, link_ok, linkdnrc; 8600 enum fw_port_type port_type; 8601 8602 /* Extract the various fields from the Port Information message. 8603 */ 8604 action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8605 switch (action) { 8606 case FW_PORT_ACTION_GET_PORT_INFO: { 8607 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8608 8609 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8610 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8611 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8612 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8613 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8614 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8615 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8616 linkattr = lstatus_to_fwcap(lstatus); 8617 break; 8618 } 8619 8620 case FW_PORT_ACTION_GET_PORT_INFO32: { 8621 u32 lstatus32; 8622 8623 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8624 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8625 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8626 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8627 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8628 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8629 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8630 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8631 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8632 break; 8633 } 8634 8635 default: 8636 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8637 be32_to_cpu(cmd->action_to_len16)); 8638 return; 8639 } 8640 8641 fec = fwcap_to_cc_fec(acaps); 8642 adv_fc = fwcap_to_cc_pause(acaps); 8643 fc = fwcap_to_cc_pause(linkattr); 8644 speed = fwcap_to_speed(linkattr); 8645 8646 /* Reset state for communicating new Transceiver Module status and 8647 * whether the OS-dependent layer wants us to redo the current 8648 * "sticky" L1 Configure Link Parameters. 8649 */ 8650 lc->new_module = false; 8651 lc->redo_l1cfg = false; 8652 8653 if (mod_type != pi->mod_type) { 8654 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8655 * various fundamental Port Capabilities which used to be 8656 * immutable can now change radically. We can now have 8657 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8658 * all change based on what Transceiver Module is inserted. 8659 * So we need to record the Physical "Port" Capabilities on 8660 * every Transceiver Module change. 8661 */ 8662 lc->pcaps = pcaps; 8663 8664 /* When a new Transceiver Module is inserted, the Firmware 8665 * will examine its i2c EPROM to determine its type and 8666 * general operating parameters including things like Forward 8667 * Error Control, etc. Various IEEE 802.3 standards dictate 8668 * how to interpret these i2c values to determine default 8669 * "sutomatic" settings. We record these for future use when 8670 * the user explicitly requests these standards-based values. 8671 */ 8672 lc->def_acaps = acaps; 8673 8674 /* Some versions of the early T6 Firmware "cheated" when 8675 * handling different Transceiver Modules by changing the 8676 * underlaying Port Type reported to the Host Drivers. As 8677 * such we need to capture whatever Port Type the Firmware 8678 * sends us and record it in case it's different from what we 8679 * were told earlier. Unfortunately, since Firmware is 8680 * forever, we'll need to keep this code here forever, but in 8681 * later T6 Firmware it should just be an assignment of the 8682 * same value already recorded. 8683 */ 8684 pi->port_type = port_type; 8685 8686 /* Record new Module Type information. 8687 */ 8688 pi->mod_type = mod_type; 8689 8690 /* Let the OS-dependent layer know if we have a new 8691 * Transceiver Module inserted. 8692 */ 8693 lc->new_module = t4_is_inserted_mod_type(mod_type); 8694 8695 t4_os_portmod_changed(adapter, pi->port_id); 8696 } 8697 8698 if (link_ok != lc->link_ok || speed != lc->speed || 8699 fc != lc->fc || adv_fc != lc->advertised_fc || 8700 fec != lc->fec) { 8701 /* something changed */ 8702 if (!link_ok && lc->link_ok) { 8703 lc->link_down_rc = linkdnrc; 8704 dev_warn_ratelimited(adapter->pdev_dev, 8705 "Port %d link down, reason: %s\n", 8706 pi->tx_chan, 8707 t4_link_down_rc_str(linkdnrc)); 8708 } 8709 lc->link_ok = link_ok; 8710 lc->speed = speed; 8711 lc->advertised_fc = adv_fc; 8712 lc->fc = fc; 8713 lc->fec = fec; 8714 8715 lc->lpacaps = lpacaps; 8716 lc->acaps = acaps & ADVERT_MASK; 8717 8718 /* If we're not physically capable of Auto-Negotiation, note 8719 * this as Auto-Negotiation disabled. Otherwise, we track 8720 * what Auto-Negotiation settings we have. Note parallel 8721 * structure in t4_link_l1cfg_core() and init_link_config(). 8722 */ 8723 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) { 8724 lc->autoneg = AUTONEG_DISABLE; 8725 } else if (lc->acaps & FW_PORT_CAP32_ANEG) { 8726 lc->autoneg = AUTONEG_ENABLE; 8727 } else { 8728 /* When Autoneg is disabled, user needs to set 8729 * single speed. 8730 * Similar to cxgb4_ethtool.c: set_link_ksettings 8731 */ 8732 lc->acaps = 0; 8733 lc->speed_caps = fwcap_to_fwspeed(acaps); 8734 lc->autoneg = AUTONEG_DISABLE; 8735 } 8736 8737 t4_os_link_changed(adapter, pi->port_id, link_ok); 8738 } 8739 8740 /* If we have a new Transceiver Module and the OS-dependent code has 8741 * told us that it wants us to redo whatever "sticky" L1 Configuration 8742 * Link Parameters are set, do that now. 8743 */ 8744 if (lc->new_module && lc->redo_l1cfg) { 8745 struct link_config old_lc; 8746 int ret; 8747 8748 /* Save the current L1 Configuration and restore it if an 8749 * error occurs. We probably should fix the l1_cfg*() 8750 * routines not to change the link_config when an error 8751 * occurs ... 8752 */ 8753 old_lc = *lc; 8754 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc); 8755 if (ret) { 8756 *lc = old_lc; 8757 dev_warn(adapter->pdev_dev, 8758 "Attempt to update new Transceiver Module settings failed\n"); 8759 } 8760 } 8761 lc->new_module = false; 8762 lc->redo_l1cfg = false; 8763 } 8764 8765 /** 8766 * t4_update_port_info - retrieve and update port information if changed 8767 * @pi: the port_info 8768 * 8769 * We issue a Get Port Information Command to the Firmware and, if 8770 * successful, we check to see if anything is different from what we 8771 * last recorded and update things accordingly. 8772 */ 8773 int t4_update_port_info(struct port_info *pi) 8774 { 8775 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8776 struct fw_port_cmd port_cmd; 8777 int ret; 8778 8779 memset(&port_cmd, 0, sizeof(port_cmd)); 8780 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8781 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8782 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8783 port_cmd.action_to_len16 = cpu_to_be32( 8784 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8785 ? FW_PORT_ACTION_GET_PORT_INFO 8786 : FW_PORT_ACTION_GET_PORT_INFO32) | 8787 FW_LEN16(port_cmd)); 8788 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8789 &port_cmd, sizeof(port_cmd), &port_cmd); 8790 if (ret) 8791 return ret; 8792 8793 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8794 return 0; 8795 } 8796 8797 /** 8798 * t4_get_link_params - retrieve basic link parameters for given port 8799 * @pi: the port 8800 * @link_okp: value return pointer for link up/down 8801 * @speedp: value return pointer for speed (Mb/s) 8802 * @mtup: value return pointer for mtu 8803 * 8804 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8805 * and MTU for a specified port. A negative error is returned on 8806 * failure; 0 on success. 8807 */ 8808 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8809 unsigned int *speedp, unsigned int *mtup) 8810 { 8811 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8812 unsigned int action, link_ok, mtu; 8813 struct fw_port_cmd port_cmd; 8814 fw_port_cap32_t linkattr; 8815 int ret; 8816 8817 memset(&port_cmd, 0, sizeof(port_cmd)); 8818 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8819 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8820 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8821 action = (fw_caps == FW_CAPS16 8822 ? FW_PORT_ACTION_GET_PORT_INFO 8823 : FW_PORT_ACTION_GET_PORT_INFO32); 8824 port_cmd.action_to_len16 = cpu_to_be32( 8825 FW_PORT_CMD_ACTION_V(action) | 8826 FW_LEN16(port_cmd)); 8827 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8828 &port_cmd, sizeof(port_cmd), &port_cmd); 8829 if (ret) 8830 return ret; 8831 8832 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8833 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8834 8835 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8836 linkattr = lstatus_to_fwcap(lstatus); 8837 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8838 } else { 8839 u32 lstatus32 = 8840 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8841 8842 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8843 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8844 mtu = FW_PORT_CMD_MTU32_G( 8845 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8846 } 8847 8848 if (link_okp) 8849 *link_okp = link_ok; 8850 if (speedp) 8851 *speedp = fwcap_to_speed(linkattr); 8852 if (mtup) 8853 *mtup = mtu; 8854 8855 return 0; 8856 } 8857 8858 /** 8859 * t4_handle_fw_rpl - process a FW reply message 8860 * @adap: the adapter 8861 * @rpl: start of the FW message 8862 * 8863 * Processes a FW message, such as link state change messages. 8864 */ 8865 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8866 { 8867 u8 opcode = *(const u8 *)rpl; 8868 8869 /* This might be a port command ... this simplifies the following 8870 * conditionals ... We can get away with pre-dereferencing 8871 * action_to_len16 because it's in the first 16 bytes and all messages 8872 * will be at least that long. 8873 */ 8874 const struct fw_port_cmd *p = (const void *)rpl; 8875 unsigned int action = 8876 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8877 8878 if (opcode == FW_PORT_CMD && 8879 (action == FW_PORT_ACTION_GET_PORT_INFO || 8880 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8881 int i; 8882 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8883 struct port_info *pi = NULL; 8884 8885 for_each_port(adap, i) { 8886 pi = adap2pinfo(adap, i); 8887 if (pi->tx_chan == chan) 8888 break; 8889 } 8890 8891 t4_handle_get_port_info(pi, rpl); 8892 } else { 8893 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8894 opcode); 8895 return -EINVAL; 8896 } 8897 return 0; 8898 } 8899 8900 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8901 { 8902 u16 val; 8903 8904 if (pci_is_pcie(adapter->pdev)) { 8905 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8906 p->speed = val & PCI_EXP_LNKSTA_CLS; 8907 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8908 } 8909 } 8910 8911 /** 8912 * init_link_config - initialize a link's SW state 8913 * @lc: pointer to structure holding the link state 8914 * @pcaps: link Port Capabilities 8915 * @acaps: link current Advertised Port Capabilities 8916 * 8917 * Initializes the SW state maintained for each link, including the link's 8918 * capabilities and default speed/flow-control/autonegotiation settings. 8919 */ 8920 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8921 fw_port_cap32_t acaps) 8922 { 8923 lc->pcaps = pcaps; 8924 lc->def_acaps = acaps; 8925 lc->lpacaps = 0; 8926 lc->speed_caps = 0; 8927 lc->speed = 0; 8928 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8929 8930 /* For Forward Error Control, we default to whatever the Firmware 8931 * tells us the Link is currently advertising. 8932 */ 8933 lc->requested_fec = FEC_AUTO; 8934 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8935 8936 /* If the Port is capable of Auto-Negtotiation, initialize it as 8937 * "enabled" and copy over all of the Physical Port Capabilities 8938 * to the Advertised Port Capabilities. Otherwise mark it as 8939 * Auto-Negotiate disabled and select the highest supported speed 8940 * for the link. Note parallel structure in t4_link_l1cfg_core() 8941 * and t4_handle_get_port_info(). 8942 */ 8943 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8944 lc->acaps = lc->pcaps & ADVERT_MASK; 8945 lc->autoneg = AUTONEG_ENABLE; 8946 lc->requested_fc |= PAUSE_AUTONEG; 8947 } else { 8948 lc->acaps = 0; 8949 lc->autoneg = AUTONEG_DISABLE; 8950 lc->speed_caps = fwcap_to_fwspeed(acaps); 8951 } 8952 } 8953 8954 #define CIM_PF_NOACCESS 0xeeeeeeee 8955 8956 int t4_wait_dev_ready(void __iomem *regs) 8957 { 8958 u32 whoami; 8959 8960 whoami = readl(regs + PL_WHOAMI_A); 8961 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8962 return 0; 8963 8964 msleep(500); 8965 whoami = readl(regs + PL_WHOAMI_A); 8966 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8967 } 8968 8969 struct flash_desc { 8970 u32 vendor_and_model_id; 8971 u32 size_mb; 8972 }; 8973 8974 static int t4_get_flash_params(struct adapter *adap) 8975 { 8976 /* Table for non-Numonix supported flash parts. Numonix parts are left 8977 * to the preexisting code. All flash parts have 64KB sectors. 8978 */ 8979 static struct flash_desc supported_flash[] = { 8980 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8981 }; 8982 8983 unsigned int part, manufacturer; 8984 unsigned int density, size = 0; 8985 u32 flashid = 0; 8986 int ret; 8987 8988 /* Issue a Read ID Command to the Flash part. We decode supported 8989 * Flash parts and their sizes from this. There's a newer Query 8990 * Command which can retrieve detailed geometry information but many 8991 * Flash parts don't support it. 8992 */ 8993 8994 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8995 if (!ret) 8996 ret = sf1_read(adap, 3, 0, 1, &flashid); 8997 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8998 if (ret) 8999 return ret; 9000 9001 /* Check to see if it's one of our non-standard supported Flash parts. 9002 */ 9003 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 9004 if (supported_flash[part].vendor_and_model_id == flashid) { 9005 adap->params.sf_size = supported_flash[part].size_mb; 9006 adap->params.sf_nsec = 9007 adap->params.sf_size / SF_SEC_SIZE; 9008 goto found; 9009 } 9010 9011 /* Decode Flash part size. The code below looks repetitive with 9012 * common encodings, but that's not guaranteed in the JEDEC 9013 * specification for the Read JEDEC ID command. The only thing that 9014 * we're guaranteed by the JEDEC specification is where the 9015 * Manufacturer ID is in the returned result. After that each 9016 * Manufacturer ~could~ encode things completely differently. 9017 * Note, all Flash parts must have 64KB sectors. 9018 */ 9019 manufacturer = flashid & 0xff; 9020 switch (manufacturer) { 9021 case 0x20: { /* Micron/Numonix */ 9022 /* This Density -> Size decoding table is taken from Micron 9023 * Data Sheets. 9024 */ 9025 density = (flashid >> 16) & 0xff; 9026 switch (density) { 9027 case 0x14: /* 1MB */ 9028 size = 1 << 20; 9029 break; 9030 case 0x15: /* 2MB */ 9031 size = 1 << 21; 9032 break; 9033 case 0x16: /* 4MB */ 9034 size = 1 << 22; 9035 break; 9036 case 0x17: /* 8MB */ 9037 size = 1 << 23; 9038 break; 9039 case 0x18: /* 16MB */ 9040 size = 1 << 24; 9041 break; 9042 case 0x19: /* 32MB */ 9043 size = 1 << 25; 9044 break; 9045 case 0x20: /* 64MB */ 9046 size = 1 << 26; 9047 break; 9048 case 0x21: /* 128MB */ 9049 size = 1 << 27; 9050 break; 9051 case 0x22: /* 256MB */ 9052 size = 1 << 28; 9053 break; 9054 } 9055 break; 9056 } 9057 case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ 9058 /* This Density -> Size decoding table is taken from ISSI 9059 * Data Sheets. 9060 */ 9061 density = (flashid >> 16) & 0xff; 9062 switch (density) { 9063 case 0x16: /* 32 MB */ 9064 size = 1 << 25; 9065 break; 9066 case 0x17: /* 64MB */ 9067 size = 1 << 26; 9068 break; 9069 } 9070 break; 9071 } 9072 case 0xc2: { /* Macronix */ 9073 /* This Density -> Size decoding table is taken from Macronix 9074 * Data Sheets. 9075 */ 9076 density = (flashid >> 16) & 0xff; 9077 switch (density) { 9078 case 0x17: /* 8MB */ 9079 size = 1 << 23; 9080 break; 9081 case 0x18: /* 16MB */ 9082 size = 1 << 24; 9083 break; 9084 } 9085 break; 9086 } 9087 case 0xef: { /* Winbond */ 9088 /* This Density -> Size decoding table is taken from Winbond 9089 * Data Sheets. 9090 */ 9091 density = (flashid >> 16) & 0xff; 9092 switch (density) { 9093 case 0x17: /* 8MB */ 9094 size = 1 << 23; 9095 break; 9096 case 0x18: /* 16MB */ 9097 size = 1 << 24; 9098 break; 9099 } 9100 break; 9101 } 9102 } 9103 9104 /* If we didn't recognize the FLASH part, that's no real issue: the 9105 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 9106 * use a FLASH part which is at least 4MB in size and has 64KB 9107 * sectors. The unrecognized FLASH part is likely to be much larger 9108 * than 4MB, but that's all we really need. 9109 */ 9110 if (size == 0) { 9111 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n", 9112 flashid); 9113 size = 1 << 22; 9114 } 9115 9116 /* Store decoded Flash size and fall through into vetting code. */ 9117 adap->params.sf_size = size; 9118 adap->params.sf_nsec = size / SF_SEC_SIZE; 9119 9120 found: 9121 if (adap->params.sf_size < FLASH_MIN_SIZE) 9122 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 9123 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 9124 return 0; 9125 } 9126 9127 /** 9128 * t4_prep_adapter - prepare SW and HW for operation 9129 * @adapter: the adapter 9130 * 9131 * Initialize adapter SW state for the various HW modules, set initial 9132 * values for some adapter tunables, take PHYs out of reset, and 9133 * initialize the MDIO interface. 9134 */ 9135 int t4_prep_adapter(struct adapter *adapter) 9136 { 9137 int ret, ver; 9138 uint16_t device_id; 9139 u32 pl_rev; 9140 9141 get_pci_mode(adapter, &adapter->params.pci); 9142 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 9143 9144 ret = t4_get_flash_params(adapter); 9145 if (ret < 0) { 9146 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 9147 return ret; 9148 } 9149 9150 /* Retrieve adapter's device ID 9151 */ 9152 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 9153 ver = device_id >> 12; 9154 adapter->params.chip = 0; 9155 switch (ver) { 9156 case CHELSIO_T4: 9157 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 9158 adapter->params.arch.sge_fl_db = DBPRIO_F; 9159 adapter->params.arch.mps_tcam_size = 9160 NUM_MPS_CLS_SRAM_L_INSTANCES; 9161 adapter->params.arch.mps_rplc_size = 128; 9162 adapter->params.arch.nchan = NCHAN; 9163 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9164 adapter->params.arch.vfcount = 128; 9165 /* Congestion map is for 4 channels so that 9166 * MPS can have 4 priority per port. 9167 */ 9168 adapter->params.arch.cng_ch_bits_log = 2; 9169 break; 9170 case CHELSIO_T5: 9171 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 9172 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 9173 adapter->params.arch.mps_tcam_size = 9174 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9175 adapter->params.arch.mps_rplc_size = 128; 9176 adapter->params.arch.nchan = NCHAN; 9177 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9178 adapter->params.arch.vfcount = 128; 9179 adapter->params.arch.cng_ch_bits_log = 2; 9180 break; 9181 case CHELSIO_T6: 9182 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 9183 adapter->params.arch.sge_fl_db = 0; 9184 adapter->params.arch.mps_tcam_size = 9185 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9186 adapter->params.arch.mps_rplc_size = 256; 9187 adapter->params.arch.nchan = 2; 9188 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 9189 adapter->params.arch.vfcount = 256; 9190 /* Congestion map will be for 2 channels so that 9191 * MPS can have 8 priority per port. 9192 */ 9193 adapter->params.arch.cng_ch_bits_log = 3; 9194 break; 9195 default: 9196 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 9197 device_id); 9198 return -EINVAL; 9199 } 9200 9201 adapter->params.cim_la_size = CIMLA_SIZE; 9202 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 9203 9204 /* 9205 * Default port for debugging in case we can't reach FW. 9206 */ 9207 adapter->params.nports = 1; 9208 adapter->params.portvec = 1; 9209 adapter->params.vpd.cclk = 50000; 9210 9211 /* Set PCIe completion timeout to 4 seconds. */ 9212 pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2, 9213 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); 9214 return 0; 9215 } 9216 9217 /** 9218 * t4_shutdown_adapter - shut down adapter, host & wire 9219 * @adapter: the adapter 9220 * 9221 * Perform an emergency shutdown of the adapter and stop it from 9222 * continuing any further communication on the ports or DMA to the 9223 * host. This is typically used when the adapter and/or firmware 9224 * have crashed and we want to prevent any further accidental 9225 * communication with the rest of the world. This will also force 9226 * the port Link Status to go down -- if register writes work -- 9227 * which should help our peers figure out that we're down. 9228 */ 9229 int t4_shutdown_adapter(struct adapter *adapter) 9230 { 9231 int port; 9232 9233 t4_intr_disable(adapter); 9234 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 9235 for_each_port(adapter, port) { 9236 u32 a_port_cfg = is_t4(adapter->params.chip) ? 9237 PORT_REG(port, XGMAC_PORT_CFG_A) : 9238 T5_PORT_REG(port, MAC_PORT_CFG_A); 9239 9240 t4_write_reg(adapter, a_port_cfg, 9241 t4_read_reg(adapter, a_port_cfg) 9242 & ~SIGNAL_DET_V(1)); 9243 } 9244 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 9245 9246 return 0; 9247 } 9248 9249 /** 9250 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 9251 * @adapter: the adapter 9252 * @qid: the Queue ID 9253 * @qtype: the Ingress or Egress type for @qid 9254 * @user: true if this request is for a user mode queue 9255 * @pbar2_qoffset: BAR2 Queue Offset 9256 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 9257 * 9258 * Returns the BAR2 SGE Queue Registers information associated with the 9259 * indicated Absolute Queue ID. These are passed back in return value 9260 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 9261 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 9262 * 9263 * This may return an error which indicates that BAR2 SGE Queue 9264 * registers aren't available. If an error is not returned, then the 9265 * following values are returned: 9266 * 9267 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 9268 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 9269 * 9270 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 9271 * require the "Inferred Queue ID" ability may be used. E.g. the 9272 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 9273 * then these "Inferred Queue ID" register may not be used. 9274 */ 9275 int t4_bar2_sge_qregs(struct adapter *adapter, 9276 unsigned int qid, 9277 enum t4_bar2_qtype qtype, 9278 int user, 9279 u64 *pbar2_qoffset, 9280 unsigned int *pbar2_qid) 9281 { 9282 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9283 u64 bar2_page_offset, bar2_qoffset; 9284 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9285 9286 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 9287 if (!user && is_t4(adapter->params.chip)) 9288 return -EINVAL; 9289 9290 /* Get our SGE Page Size parameters. 9291 */ 9292 page_shift = adapter->params.sge.hps + 10; 9293 page_size = 1 << page_shift; 9294 9295 /* Get the right Queues per Page parameters for our Queue. 9296 */ 9297 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9298 ? adapter->params.sge.eq_qpp 9299 : adapter->params.sge.iq_qpp); 9300 qpp_mask = (1 << qpp_shift) - 1; 9301 9302 /* Calculate the basics of the BAR2 SGE Queue register area: 9303 * o The BAR2 page the Queue registers will be in. 9304 * o The BAR2 Queue ID. 9305 * o The BAR2 Queue ID Offset into the BAR2 page. 9306 */ 9307 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9308 bar2_qid = qid & qpp_mask; 9309 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9310 9311 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9312 * hardware will infer the Absolute Queue ID simply from the writes to 9313 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9314 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9315 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9316 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9317 * from the BAR2 Page and BAR2 Queue ID. 9318 * 9319 * One important censequence of this is that some BAR2 SGE registers 9320 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9321 * there. But other registers synthesize the SGE Queue ID purely 9322 * from the writes to the registers -- the Write Combined Doorbell 9323 * Buffer is a good example. These BAR2 SGE Registers are only 9324 * available for those BAR2 SGE Register areas where the SGE Absolute 9325 * Queue ID can be inferred from simple writes. 9326 */ 9327 bar2_qoffset = bar2_page_offset; 9328 bar2_qinferred = (bar2_qid_offset < page_size); 9329 if (bar2_qinferred) { 9330 bar2_qoffset += bar2_qid_offset; 9331 bar2_qid = 0; 9332 } 9333 9334 *pbar2_qoffset = bar2_qoffset; 9335 *pbar2_qid = bar2_qid; 9336 return 0; 9337 } 9338 9339 /** 9340 * t4_init_devlog_params - initialize adapter->params.devlog 9341 * @adap: the adapter 9342 * 9343 * Initialize various fields of the adapter's Firmware Device Log 9344 * Parameters structure. 9345 */ 9346 int t4_init_devlog_params(struct adapter *adap) 9347 { 9348 struct devlog_params *dparams = &adap->params.devlog; 9349 u32 pf_dparams; 9350 unsigned int devlog_meminfo; 9351 struct fw_devlog_cmd devlog_cmd; 9352 int ret; 9353 9354 /* If we're dealing with newer firmware, the Device Log Parameters 9355 * are stored in a designated register which allows us to access the 9356 * Device Log even if we can't talk to the firmware. 9357 */ 9358 pf_dparams = 9359 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 9360 if (pf_dparams) { 9361 unsigned int nentries, nentries128; 9362 9363 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 9364 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 9365 9366 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 9367 nentries = (nentries128 + 1) * 128; 9368 dparams->size = nentries * sizeof(struct fw_devlog_e); 9369 9370 return 0; 9371 } 9372 9373 /* Otherwise, ask the firmware for it's Device Log Parameters. 9374 */ 9375 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 9376 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 9377 FW_CMD_REQUEST_F | FW_CMD_READ_F); 9378 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9379 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9380 &devlog_cmd); 9381 if (ret) 9382 return ret; 9383 9384 devlog_meminfo = 9385 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9386 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 9387 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 9388 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9389 9390 return 0; 9391 } 9392 9393 /** 9394 * t4_init_sge_params - initialize adap->params.sge 9395 * @adapter: the adapter 9396 * 9397 * Initialize various fields of the adapter's SGE Parameters structure. 9398 */ 9399 int t4_init_sge_params(struct adapter *adapter) 9400 { 9401 struct sge_params *sge_params = &adapter->params.sge; 9402 u32 hps, qpp; 9403 unsigned int s_hps, s_qpp; 9404 9405 /* Extract the SGE Page Size for our PF. 9406 */ 9407 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 9408 s_hps = (HOSTPAGESIZEPF0_S + 9409 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 9410 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 9411 9412 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 9413 */ 9414 s_qpp = (QUEUESPERPAGEPF0_S + 9415 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 9416 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 9417 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9418 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 9419 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9420 9421 return 0; 9422 } 9423 9424 /** 9425 * t4_init_tp_params - initialize adap->params.tp 9426 * @adap: the adapter 9427 * @sleep_ok: if true we may sleep while awaiting command completion 9428 * 9429 * Initialize various fields of the adapter's TP Parameters structure. 9430 */ 9431 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9432 { 9433 u32 param, val, v; 9434 int chan, ret; 9435 9436 9437 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 9438 adap->params.tp.tre = TIMERRESOLUTION_G(v); 9439 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 9440 9441 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9442 for (chan = 0; chan < NCHAN; chan++) 9443 adap->params.tp.tx_modq[chan] = chan; 9444 9445 /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress 9446 * Configuration. 9447 */ 9448 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 9449 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) | 9450 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK)); 9451 9452 /* Read current value */ 9453 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 9454 ¶m, &val); 9455 if (ret == 0) { 9456 dev_info(adap->pdev_dev, 9457 "Current filter mode/mask 0x%x:0x%x\n", 9458 FW_PARAMS_PARAM_FILTER_MODE_G(val), 9459 FW_PARAMS_PARAM_FILTER_MASK_G(val)); 9460 adap->params.tp.vlan_pri_map = 9461 FW_PARAMS_PARAM_FILTER_MODE_G(val); 9462 adap->params.tp.filter_mask = 9463 FW_PARAMS_PARAM_FILTER_MASK_G(val); 9464 } else { 9465 dev_info(adap->pdev_dev, 9466 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n"); 9467 9468 /* Incase of older-fw (which doesn't expose the api 9469 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses 9470 * the fw api) combination, fall-back to older method of reading 9471 * the filter mode from indirect-register 9472 */ 9473 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 9474 TP_VLAN_PRI_MAP_A, sleep_ok); 9475 9476 /* With the older-fw and newer-driver combination we might run 9477 * into an issue when user wants to use hash filter region but 9478 * the filter_mask is zero, in this case filter_mask validation 9479 * is tough. To avoid that we set the filter_mask same as filter 9480 * mode, which will behave exactly as the older way of ignoring 9481 * the filter mask validation. 9482 */ 9483 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map; 9484 } 9485 9486 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 9487 TP_INGRESS_CONFIG_A, sleep_ok); 9488 9489 /* For T6, cache the adapter's compressed error vector 9490 * and passing outer header info for encapsulated packets. 9491 */ 9492 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 9493 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 9494 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 9495 } 9496 9497 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9498 * shift positions of several elements of the Compressed Filter Tuple 9499 * for this adapter which we need frequently ... 9500 */ 9501 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 9502 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 9503 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 9504 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 9505 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 9506 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 9507 PROTOCOL_F); 9508 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 9509 ETHERTYPE_F); 9510 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 9511 MACMATCH_F); 9512 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 9513 MPSHITTYPE_F); 9514 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 9515 FRAGMENTATION_F); 9516 9517 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 9518 * represents the presence of an Outer VLAN instead of a VNIC ID. 9519 */ 9520 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 9521 adap->params.tp.vnic_shift = -1; 9522 9523 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 9524 adap->params.tp.hash_filter_mask = v; 9525 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 9526 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 9527 return 0; 9528 } 9529 9530 /** 9531 * t4_filter_field_shift - calculate filter field shift 9532 * @adap: the adapter 9533 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9534 * 9535 * Return the shift position of a filter field within the Compressed 9536 * Filter Tuple. The filter field is specified via its selection bit 9537 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9538 */ 9539 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9540 { 9541 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9542 unsigned int sel; 9543 int field_shift; 9544 9545 if ((filter_mode & filter_sel) == 0) 9546 return -1; 9547 9548 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9549 switch (filter_mode & sel) { 9550 case FCOE_F: 9551 field_shift += FT_FCOE_W; 9552 break; 9553 case PORT_F: 9554 field_shift += FT_PORT_W; 9555 break; 9556 case VNIC_ID_F: 9557 field_shift += FT_VNIC_ID_W; 9558 break; 9559 case VLAN_F: 9560 field_shift += FT_VLAN_W; 9561 break; 9562 case TOS_F: 9563 field_shift += FT_TOS_W; 9564 break; 9565 case PROTOCOL_F: 9566 field_shift += FT_PROTOCOL_W; 9567 break; 9568 case ETHERTYPE_F: 9569 field_shift += FT_ETHERTYPE_W; 9570 break; 9571 case MACMATCH_F: 9572 field_shift += FT_MACMATCH_W; 9573 break; 9574 case MPSHITTYPE_F: 9575 field_shift += FT_MPSHITTYPE_W; 9576 break; 9577 case FRAGMENTATION_F: 9578 field_shift += FT_FRAGMENTATION_W; 9579 break; 9580 } 9581 } 9582 return field_shift; 9583 } 9584 9585 int t4_init_rss_mode(struct adapter *adap, int mbox) 9586 { 9587 int i, ret; 9588 struct fw_rss_vi_config_cmd rvc; 9589 9590 memset(&rvc, 0, sizeof(rvc)); 9591 9592 for_each_port(adap, i) { 9593 struct port_info *p = adap2pinfo(adap, i); 9594 9595 rvc.op_to_viid = 9596 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 9597 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9598 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 9599 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 9600 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 9601 if (ret) 9602 return ret; 9603 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 9604 } 9605 return 0; 9606 } 9607 9608 /** 9609 * t4_init_portinfo - allocate a virtual interface and initialize port_info 9610 * @pi: the port_info 9611 * @mbox: mailbox to use for the FW command 9612 * @port: physical port associated with the VI 9613 * @pf: the PF owning the VI 9614 * @vf: the VF owning the VI 9615 * @mac: the MAC address of the VI 9616 * 9617 * Allocates a virtual interface for the given physical port. If @mac is 9618 * not %NULL it contains the MAC address of the VI as assigned by FW. 9619 * @mac should be large enough to hold an Ethernet address. 9620 * Returns < 0 on error. 9621 */ 9622 int t4_init_portinfo(struct port_info *pi, int mbox, 9623 int port, int pf, int vf, u8 mac[]) 9624 { 9625 struct adapter *adapter = pi->adapter; 9626 unsigned int fw_caps = adapter->params.fw_caps_support; 9627 struct fw_port_cmd cmd; 9628 unsigned int rss_size; 9629 enum fw_port_type port_type; 9630 int mdio_addr; 9631 fw_port_cap32_t pcaps, acaps; 9632 u8 vivld = 0, vin = 0; 9633 int ret; 9634 9635 /* If we haven't yet determined whether we're talking to Firmware 9636 * which knows the new 32-bit Port Capabilities, it's time to find 9637 * out now. This will also tell new Firmware to send us Port Status 9638 * Updates using the new 32-bit Port Capabilities version of the 9639 * Port Information message. 9640 */ 9641 if (fw_caps == FW_CAPS_UNKNOWN) { 9642 u32 param, val; 9643 9644 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 9645 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 9646 val = 1; 9647 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 9648 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 9649 adapter->params.fw_caps_support = fw_caps; 9650 } 9651 9652 memset(&cmd, 0, sizeof(cmd)); 9653 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 9654 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9655 FW_PORT_CMD_PORTID_V(port)); 9656 cmd.action_to_len16 = cpu_to_be32( 9657 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9658 ? FW_PORT_ACTION_GET_PORT_INFO 9659 : FW_PORT_ACTION_GET_PORT_INFO32) | 9660 FW_LEN16(cmd)); 9661 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9662 if (ret) 9663 return ret; 9664 9665 /* Extract the various fields from the Port Information message. 9666 */ 9667 if (fw_caps == FW_CAPS16) { 9668 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9669 9670 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9671 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9672 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9673 : -1); 9674 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9675 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9676 } else { 9677 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9678 9679 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9680 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9681 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9682 : -1); 9683 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9684 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9685 } 9686 9687 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size, 9688 &vivld, &vin); 9689 if (ret < 0) 9690 return ret; 9691 9692 pi->viid = ret; 9693 pi->tx_chan = port; 9694 pi->lport = port; 9695 pi->rss_size = rss_size; 9696 pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port); 9697 9698 /* If fw supports returning the VIN as part of FW_VI_CMD, 9699 * save the returned values. 9700 */ 9701 if (adapter->params.viid_smt_extn_support) { 9702 pi->vivld = vivld; 9703 pi->vin = vin; 9704 } else { 9705 /* Retrieve the values from VIID */ 9706 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 9707 pi->vin = FW_VIID_VIN_G(pi->viid); 9708 } 9709 9710 pi->port_type = port_type; 9711 pi->mdio_addr = mdio_addr; 9712 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9713 9714 init_link_config(&pi->link_cfg, pcaps, acaps); 9715 return 0; 9716 } 9717 9718 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9719 { 9720 u8 addr[6]; 9721 int ret, i, j = 0; 9722 9723 for_each_port(adap, i) { 9724 struct port_info *pi = adap2pinfo(adap, i); 9725 9726 while ((adap->params.portvec & (1 << j)) == 0) 9727 j++; 9728 9729 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9730 if (ret) 9731 return ret; 9732 9733 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 9734 j++; 9735 } 9736 return 0; 9737 } 9738 9739 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf, 9740 u16 *mirror_viid) 9741 { 9742 int ret; 9743 9744 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL, 9745 NULL, NULL); 9746 if (ret < 0) 9747 return ret; 9748 9749 if (mirror_viid) 9750 *mirror_viid = ret; 9751 9752 return 0; 9753 } 9754 9755 /** 9756 * t4_read_cimq_cfg - read CIM queue configuration 9757 * @adap: the adapter 9758 * @base: holds the queue base addresses in bytes 9759 * @size: holds the queue sizes in bytes 9760 * @thres: holds the queue full thresholds in bytes 9761 * 9762 * Returns the current configuration of the CIM queues, starting with 9763 * the IBQs, then the OBQs. 9764 */ 9765 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9766 { 9767 unsigned int i, v; 9768 int cim_num_obq = is_t4(adap->params.chip) ? 9769 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9770 9771 for (i = 0; i < CIM_NUM_IBQ; i++) { 9772 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9773 QUENUMSELECT_V(i)); 9774 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9775 /* value is in 256-byte units */ 9776 *base++ = CIMQBASE_G(v) * 256; 9777 *size++ = CIMQSIZE_G(v) * 256; 9778 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9779 } 9780 for (i = 0; i < cim_num_obq; i++) { 9781 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9782 QUENUMSELECT_V(i)); 9783 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9784 /* value is in 256-byte units */ 9785 *base++ = CIMQBASE_G(v) * 256; 9786 *size++ = CIMQSIZE_G(v) * 256; 9787 } 9788 } 9789 9790 /** 9791 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9792 * @adap: the adapter 9793 * @qid: the queue index 9794 * @data: where to store the queue contents 9795 * @n: capacity of @data in 32-bit words 9796 * 9797 * Reads the contents of the selected CIM queue starting at address 0 up 9798 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9799 * error and the number of 32-bit words actually read on success. 9800 */ 9801 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9802 { 9803 int i, err, attempts; 9804 unsigned int addr; 9805 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9806 9807 if (qid > 5 || (n & 3)) 9808 return -EINVAL; 9809 9810 addr = qid * nwords; 9811 if (n > nwords) 9812 n = nwords; 9813 9814 /* It might take 3-10ms before the IBQ debug read access is allowed. 9815 * Wait for 1 Sec with a delay of 1 usec. 9816 */ 9817 attempts = 1000000; 9818 9819 for (i = 0; i < n; i++, addr++) { 9820 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9821 IBQDBGEN_F); 9822 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9823 attempts, 1); 9824 if (err) 9825 return err; 9826 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9827 } 9828 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9829 return i; 9830 } 9831 9832 /** 9833 * t4_read_cim_obq - read the contents of a CIM outbound queue 9834 * @adap: the adapter 9835 * @qid: the queue index 9836 * @data: where to store the queue contents 9837 * @n: capacity of @data in 32-bit words 9838 * 9839 * Reads the contents of the selected CIM queue starting at address 0 up 9840 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9841 * error and the number of 32-bit words actually read on success. 9842 */ 9843 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9844 { 9845 int i, err; 9846 unsigned int addr, v, nwords; 9847 int cim_num_obq = is_t4(adap->params.chip) ? 9848 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9849 9850 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9851 return -EINVAL; 9852 9853 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9854 QUENUMSELECT_V(qid)); 9855 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9856 9857 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9858 nwords = CIMQSIZE_G(v) * 64; /* same */ 9859 if (n > nwords) 9860 n = nwords; 9861 9862 for (i = 0; i < n; i++, addr++) { 9863 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9864 OBQDBGEN_F); 9865 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9866 2, 1); 9867 if (err) 9868 return err; 9869 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9870 } 9871 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9872 return i; 9873 } 9874 9875 /** 9876 * t4_cim_read - read a block from CIM internal address space 9877 * @adap: the adapter 9878 * @addr: the start address within the CIM address space 9879 * @n: number of words to read 9880 * @valp: where to store the result 9881 * 9882 * Reads a block of 4-byte words from the CIM intenal address space. 9883 */ 9884 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9885 unsigned int *valp) 9886 { 9887 int ret = 0; 9888 9889 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9890 return -EBUSY; 9891 9892 for ( ; !ret && n--; addr += 4) { 9893 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9894 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9895 0, 5, 2); 9896 if (!ret) 9897 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9898 } 9899 return ret; 9900 } 9901 9902 /** 9903 * t4_cim_write - write a block into CIM internal address space 9904 * @adap: the adapter 9905 * @addr: the start address within the CIM address space 9906 * @n: number of words to write 9907 * @valp: set of values to write 9908 * 9909 * Writes a block of 4-byte words into the CIM intenal address space. 9910 */ 9911 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9912 const unsigned int *valp) 9913 { 9914 int ret = 0; 9915 9916 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9917 return -EBUSY; 9918 9919 for ( ; !ret && n--; addr += 4) { 9920 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9921 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9922 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9923 0, 5, 2); 9924 } 9925 return ret; 9926 } 9927 9928 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9929 unsigned int val) 9930 { 9931 return t4_cim_write(adap, addr, 1, &val); 9932 } 9933 9934 /** 9935 * t4_cim_read_la - read CIM LA capture buffer 9936 * @adap: the adapter 9937 * @la_buf: where to store the LA data 9938 * @wrptr: the HW write pointer within the capture buffer 9939 * 9940 * Reads the contents of the CIM LA buffer with the most recent entry at 9941 * the end of the returned data and with the entry at @wrptr first. 9942 * We try to leave the LA in the running state we find it in. 9943 */ 9944 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9945 { 9946 int i, ret; 9947 unsigned int cfg, val, idx; 9948 9949 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9950 if (ret) 9951 return ret; 9952 9953 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9954 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9955 if (ret) 9956 return ret; 9957 } 9958 9959 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9960 if (ret) 9961 goto restart; 9962 9963 idx = UPDBGLAWRPTR_G(val); 9964 if (wrptr) 9965 *wrptr = idx; 9966 9967 for (i = 0; i < adap->params.cim_la_size; i++) { 9968 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9969 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9970 if (ret) 9971 break; 9972 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9973 if (ret) 9974 break; 9975 if (val & UPDBGLARDEN_F) { 9976 ret = -ETIMEDOUT; 9977 break; 9978 } 9979 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9980 if (ret) 9981 break; 9982 9983 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9984 * identify the 32-bit portion of the full 312-bit data 9985 */ 9986 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9987 idx = (idx & 0xff0) + 0x10; 9988 else 9989 idx++; 9990 /* address can't exceed 0xfff */ 9991 idx &= UPDBGLARDPTR_M; 9992 } 9993 restart: 9994 if (cfg & UPDBGLAEN_F) { 9995 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9996 cfg & ~UPDBGLARDEN_F); 9997 if (!ret) 9998 ret = r; 9999 } 10000 return ret; 10001 } 10002 10003 /** 10004 * t4_tp_read_la - read TP LA capture buffer 10005 * @adap: the adapter 10006 * @la_buf: where to store the LA data 10007 * @wrptr: the HW write pointer within the capture buffer 10008 * 10009 * Reads the contents of the TP LA buffer with the most recent entry at 10010 * the end of the returned data and with the entry at @wrptr first. 10011 * We leave the LA in the running state we find it in. 10012 */ 10013 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 10014 { 10015 bool last_incomplete; 10016 unsigned int i, cfg, val, idx; 10017 10018 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 10019 if (cfg & DBGLAENABLE_F) /* freeze LA */ 10020 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 10021 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 10022 10023 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 10024 idx = DBGLAWPTR_G(val); 10025 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 10026 if (last_incomplete) 10027 idx = (idx + 1) & DBGLARPTR_M; 10028 if (wrptr) 10029 *wrptr = idx; 10030 10031 val &= 0xffff; 10032 val &= ~DBGLARPTR_V(DBGLARPTR_M); 10033 val |= adap->params.tp.la_mask; 10034 10035 for (i = 0; i < TPLA_SIZE; i++) { 10036 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 10037 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 10038 idx = (idx + 1) & DBGLARPTR_M; 10039 } 10040 10041 /* Wipe out last entry if it isn't valid */ 10042 if (last_incomplete) 10043 la_buf[TPLA_SIZE - 1] = ~0ULL; 10044 10045 if (cfg & DBGLAENABLE_F) /* restore running state */ 10046 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 10047 cfg | adap->params.tp.la_mask); 10048 } 10049 10050 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 10051 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 10052 * state for more than the Warning Threshold then we'll issue a warning about 10053 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 10054 * appears to be hung every Warning Repeat second till the situation clears. 10055 * If the situation clears, we'll note that as well. 10056 */ 10057 #define SGE_IDMA_WARN_THRESH 1 10058 #define SGE_IDMA_WARN_REPEAT 300 10059 10060 /** 10061 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 10062 * @adapter: the adapter 10063 * @idma: the adapter IDMA Monitor state 10064 * 10065 * Initialize the state of an SGE Ingress DMA Monitor. 10066 */ 10067 void t4_idma_monitor_init(struct adapter *adapter, 10068 struct sge_idma_monitor_state *idma) 10069 { 10070 /* Initialize the state variables for detecting an SGE Ingress DMA 10071 * hang. The SGE has internal counters which count up on each clock 10072 * tick whenever the SGE finds its Ingress DMA State Engines in the 10073 * same state they were on the previous clock tick. The clock used is 10074 * the Core Clock so we have a limit on the maximum "time" they can 10075 * record; typically a very small number of seconds. For instance, 10076 * with a 600MHz Core Clock, we can only count up to a bit more than 10077 * 7s. So we'll synthesize a larger counter in order to not run the 10078 * risk of having the "timers" overflow and give us the flexibility to 10079 * maintain a Hung SGE State Machine of our own which operates across 10080 * a longer time frame. 10081 */ 10082 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 10083 idma->idma_stalled[0] = 0; 10084 idma->idma_stalled[1] = 0; 10085 } 10086 10087 /** 10088 * t4_idma_monitor - monitor SGE Ingress DMA state 10089 * @adapter: the adapter 10090 * @idma: the adapter IDMA Monitor state 10091 * @hz: number of ticks/second 10092 * @ticks: number of ticks since the last IDMA Monitor call 10093 */ 10094 void t4_idma_monitor(struct adapter *adapter, 10095 struct sge_idma_monitor_state *idma, 10096 int hz, int ticks) 10097 { 10098 int i, idma_same_state_cnt[2]; 10099 10100 /* Read the SGE Debug Ingress DMA Same State Count registers. These 10101 * are counters inside the SGE which count up on each clock when the 10102 * SGE finds its Ingress DMA State Engines in the same states they 10103 * were in the previous clock. The counters will peg out at 10104 * 0xffffffff without wrapping around so once they pass the 1s 10105 * threshold they'll stay above that till the IDMA state changes. 10106 */ 10107 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 10108 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 10109 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10110 10111 for (i = 0; i < 2; i++) { 10112 u32 debug0, debug11; 10113 10114 /* If the Ingress DMA Same State Counter ("timer") is less 10115 * than 1s, then we can reset our synthesized Stall Timer and 10116 * continue. If we have previously emitted warnings about a 10117 * potential stalled Ingress Queue, issue a note indicating 10118 * that the Ingress Queue has resumed forward progress. 10119 */ 10120 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 10121 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 10122 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 10123 "resumed after %d seconds\n", 10124 i, idma->idma_qid[i], 10125 idma->idma_stalled[i] / hz); 10126 idma->idma_stalled[i] = 0; 10127 continue; 10128 } 10129 10130 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 10131 * domain. The first time we get here it'll be because we 10132 * passed the 1s Threshold; each additional time it'll be 10133 * because the RX Timer Callback is being fired on its regular 10134 * schedule. 10135 * 10136 * If the stall is below our Potential Hung Ingress Queue 10137 * Warning Threshold, continue. 10138 */ 10139 if (idma->idma_stalled[i] == 0) { 10140 idma->idma_stalled[i] = hz; 10141 idma->idma_warn[i] = 0; 10142 } else { 10143 idma->idma_stalled[i] += ticks; 10144 idma->idma_warn[i] -= ticks; 10145 } 10146 10147 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 10148 continue; 10149 10150 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 10151 */ 10152 if (idma->idma_warn[i] > 0) 10153 continue; 10154 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 10155 10156 /* Read and save the SGE IDMA State and Queue ID information. 10157 * We do this every time in case it changes across time ... 10158 * can't be too careful ... 10159 */ 10160 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 10161 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10162 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 10163 10164 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 10165 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10166 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 10167 10168 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 10169 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 10170 i, idma->idma_qid[i], idma->idma_state[i], 10171 idma->idma_stalled[i] / hz, 10172 debug0, debug11); 10173 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 10174 } 10175 } 10176 10177 /** 10178 * t4_load_cfg - download config file 10179 * @adap: the adapter 10180 * @cfg_data: the cfg text file to write 10181 * @size: text file size 10182 * 10183 * Write the supplied config text file to the card's serial flash. 10184 */ 10185 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10186 { 10187 int ret, i, n, cfg_addr; 10188 unsigned int addr; 10189 unsigned int flash_cfg_start_sec; 10190 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10191 10192 cfg_addr = t4_flash_cfg_addr(adap); 10193 if (cfg_addr < 0) 10194 return cfg_addr; 10195 10196 addr = cfg_addr; 10197 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10198 10199 if (size > FLASH_CFG_MAX_SIZE) { 10200 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 10201 FLASH_CFG_MAX_SIZE); 10202 return -EFBIG; 10203 } 10204 10205 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 10206 sf_sec_size); 10207 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10208 flash_cfg_start_sec + i - 1); 10209 /* If size == 0 then we're simply erasing the FLASH sectors associated 10210 * with the on-adapter Firmware Configuration File. 10211 */ 10212 if (ret || size == 0) 10213 goto out; 10214 10215 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10216 for (i = 0; i < size; i += SF_PAGE_SIZE) { 10217 if ((size - i) < SF_PAGE_SIZE) 10218 n = size - i; 10219 else 10220 n = SF_PAGE_SIZE; 10221 ret = t4_write_flash(adap, addr, n, cfg_data, true); 10222 if (ret) 10223 goto out; 10224 10225 addr += SF_PAGE_SIZE; 10226 cfg_data += SF_PAGE_SIZE; 10227 } 10228 10229 out: 10230 if (ret) 10231 dev_err(adap->pdev_dev, "config file %s failed %d\n", 10232 (size == 0 ? "clear" : "download"), ret); 10233 return ret; 10234 } 10235 10236 /** 10237 * t4_set_vf_mac - Set MAC address for the specified VF 10238 * @adapter: The adapter 10239 * @vf: one of the VFs instantiated by the specified PF 10240 * @naddr: the number of MAC addresses 10241 * @addr: the MAC address(es) to be set to the specified VF 10242 */ 10243 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 10244 unsigned int naddr, u8 *addr) 10245 { 10246 struct fw_acl_mac_cmd cmd; 10247 10248 memset(&cmd, 0, sizeof(cmd)); 10249 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 10250 FW_CMD_REQUEST_F | 10251 FW_CMD_WRITE_F | 10252 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 10253 FW_ACL_MAC_CMD_VFN_V(vf)); 10254 10255 /* Note: Do not enable the ACL */ 10256 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 10257 cmd.nmac = naddr; 10258 10259 switch (adapter->pf) { 10260 case 3: 10261 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 10262 break; 10263 case 2: 10264 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 10265 break; 10266 case 1: 10267 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 10268 break; 10269 case 0: 10270 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 10271 break; 10272 } 10273 10274 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 10275 } 10276 10277 /** 10278 * t4_read_pace_tbl - read the pace table 10279 * @adap: the adapter 10280 * @pace_vals: holds the returned values 10281 * 10282 * Returns the values of TP's pace table in microseconds. 10283 */ 10284 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 10285 { 10286 unsigned int i, v; 10287 10288 for (i = 0; i < NTX_SCHED; i++) { 10289 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 10290 v = t4_read_reg(adap, TP_PACE_TABLE_A); 10291 pace_vals[i] = dack_ticks_to_usec(adap, v); 10292 } 10293 } 10294 10295 /** 10296 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 10297 * @adap: the adapter 10298 * @sched: the scheduler index 10299 * @kbps: the byte rate in Kbps 10300 * @ipg: the interpacket delay in tenths of nanoseconds 10301 * @sleep_ok: if true we may sleep while awaiting command completion 10302 * 10303 * Return the current configuration of a HW Tx scheduler. 10304 */ 10305 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 10306 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 10307 { 10308 unsigned int v, addr, bpt, cpt; 10309 10310 if (kbps) { 10311 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 10312 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10313 if (sched & 1) 10314 v >>= 16; 10315 bpt = (v >> 8) & 0xff; 10316 cpt = v & 0xff; 10317 if (!cpt) { 10318 *kbps = 0; /* scheduler disabled */ 10319 } else { 10320 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 10321 *kbps = (v * bpt) / 125; 10322 } 10323 } 10324 if (ipg) { 10325 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 10326 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10327 if (sched & 1) 10328 v >>= 16; 10329 v &= 0xffff; 10330 *ipg = (10000 * v) / core_ticks_per_usec(adap); 10331 } 10332 } 10333 10334 /* t4_sge_ctxt_rd - read an SGE context through FW 10335 * @adap: the adapter 10336 * @mbox: mailbox to use for the FW command 10337 * @cid: the context id 10338 * @ctype: the context type 10339 * @data: where to store the context data 10340 * 10341 * Issues a FW command through the given mailbox to read an SGE context. 10342 */ 10343 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 10344 enum ctxt_type ctype, u32 *data) 10345 { 10346 struct fw_ldst_cmd c; 10347 int ret; 10348 10349 if (ctype == CTXT_FLM) 10350 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10351 else 10352 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10353 10354 memset(&c, 0, sizeof(c)); 10355 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10356 FW_CMD_REQUEST_F | FW_CMD_READ_F | 10357 FW_LDST_CMD_ADDRSPACE_V(ret)); 10358 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10359 c.u.idctxt.physid = cpu_to_be32(cid); 10360 10361 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10362 if (ret == 0) { 10363 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10364 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10365 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10366 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10367 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10368 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10369 } 10370 return ret; 10371 } 10372 10373 /** 10374 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10375 * @adap: the adapter 10376 * @cid: the context id 10377 * @ctype: the context type 10378 * @data: where to store the context data 10379 * 10380 * Reads an SGE context directly, bypassing FW. This is only for 10381 * debugging when FW is unavailable. 10382 */ 10383 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 10384 enum ctxt_type ctype, u32 *data) 10385 { 10386 int i, ret; 10387 10388 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 10389 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 10390 if (!ret) 10391 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 10392 *data++ = t4_read_reg(adap, i); 10393 return ret; 10394 } 10395 10396 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode, 10397 u8 rateunit, u8 ratemode, u8 channel, u8 class, 10398 u32 minrate, u32 maxrate, u16 weight, u16 pktsize, 10399 u16 burstsize) 10400 { 10401 struct fw_sched_cmd cmd; 10402 10403 memset(&cmd, 0, sizeof(cmd)); 10404 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 10405 FW_CMD_REQUEST_F | 10406 FW_CMD_WRITE_F); 10407 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10408 10409 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10410 cmd.u.params.type = type; 10411 cmd.u.params.level = level; 10412 cmd.u.params.mode = mode; 10413 cmd.u.params.ch = channel; 10414 cmd.u.params.cl = class; 10415 cmd.u.params.unit = rateunit; 10416 cmd.u.params.rate = ratemode; 10417 cmd.u.params.min = cpu_to_be32(minrate); 10418 cmd.u.params.max = cpu_to_be32(maxrate); 10419 cmd.u.params.weight = cpu_to_be16(weight); 10420 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10421 cmd.u.params.burstsize = cpu_to_be16(burstsize); 10422 10423 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 10424 NULL, 1); 10425 } 10426 10427 /** 10428 * t4_i2c_rd - read I2C data from adapter 10429 * @adap: the adapter 10430 * @mbox: mailbox to use for the FW command 10431 * @port: Port number if per-port device; <0 if not 10432 * @devid: per-port device ID or absolute device ID 10433 * @offset: byte offset into device I2C space 10434 * @len: byte length of I2C space data 10435 * @buf: buffer in which to return I2C data 10436 * 10437 * Reads the I2C data from the indicated device and location. 10438 */ 10439 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, 10440 unsigned int devid, unsigned int offset, 10441 unsigned int len, u8 *buf) 10442 { 10443 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 10444 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 10445 int ret = 0; 10446 10447 if (len > I2C_PAGE_SIZE) 10448 return -EINVAL; 10449 10450 /* Dont allow reads that spans multiple pages */ 10451 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 10452 return -EINVAL; 10453 10454 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10455 ldst_cmd.op_to_addrspace = 10456 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10457 FW_CMD_REQUEST_F | 10458 FW_CMD_READ_F | 10459 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C)); 10460 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 10461 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 10462 ldst_cmd.u.i2c.did = devid; 10463 10464 while (len > 0) { 10465 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 10466 10467 ldst_cmd.u.i2c.boffset = offset; 10468 ldst_cmd.u.i2c.blen = i2c_len; 10469 10470 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 10471 &ldst_rpl); 10472 if (ret) 10473 break; 10474 10475 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 10476 offset += i2c_len; 10477 buf += i2c_len; 10478 len -= i2c_len; 10479 } 10480 10481 return ret; 10482 } 10483 10484 /** 10485 * t4_set_vlan_acl - Set a VLAN id for the specified VF 10486 * @adap: the adapter 10487 * @mbox: mailbox to use for the FW command 10488 * @vf: one of the VFs instantiated by the specified PF 10489 * @vlan: The vlanid to be set 10490 */ 10491 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, 10492 u16 vlan) 10493 { 10494 struct fw_acl_vlan_cmd vlan_cmd; 10495 unsigned int enable; 10496 10497 enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0); 10498 memset(&vlan_cmd, 0, sizeof(vlan_cmd)); 10499 vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | 10500 FW_CMD_REQUEST_F | 10501 FW_CMD_WRITE_F | 10502 FW_CMD_EXEC_F | 10503 FW_ACL_VLAN_CMD_PFN_V(adap->pf) | 10504 FW_ACL_VLAN_CMD_VFN_V(vf)); 10505 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); 10506 /* Drop all packets that donot match vlan id */ 10507 vlan_cmd.dropnovlan_fm = (enable 10508 ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F | 10509 FW_ACL_VLAN_CMD_FM_F) : 0); 10510 if (enable != 0) { 10511 vlan_cmd.nvlan = 1; 10512 vlan_cmd.vlanid[0] = cpu_to_be16(vlan); 10513 } 10514 10515 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); 10516 } 10517 10518 /** 10519 * modify_device_id - Modifies the device ID of the Boot BIOS image 10520 * @device_id: the device ID to write. 10521 * @boot_data: the boot image to modify. 10522 * 10523 * Write the supplied device ID to the boot BIOS image. 10524 */ 10525 static void modify_device_id(int device_id, u8 *boot_data) 10526 { 10527 struct cxgb4_pcir_data *pcir_header; 10528 struct legacy_pci_rom_hdr *header; 10529 u8 *cur_header = boot_data; 10530 u16 pcir_offset; 10531 10532 /* Loop through all chained images and change the device ID's */ 10533 do { 10534 header = (struct legacy_pci_rom_hdr *)cur_header; 10535 pcir_offset = le16_to_cpu(header->pcir_offset); 10536 pcir_header = (struct cxgb4_pcir_data *)(cur_header + 10537 pcir_offset); 10538 10539 /** 10540 * Only modify the Device ID if code type is Legacy or HP. 10541 * 0x00: Okay to modify 10542 * 0x01: FCODE. Do not modify 10543 * 0x03: Okay to modify 10544 * 0x04-0xFF: Do not modify 10545 */ 10546 if (pcir_header->code_type == CXGB4_HDR_CODE1) { 10547 u8 csum = 0; 10548 int i; 10549 10550 /** 10551 * Modify Device ID to match current adatper 10552 */ 10553 pcir_header->device_id = cpu_to_le16(device_id); 10554 10555 /** 10556 * Set checksum temporarily to 0. 10557 * We will recalculate it later. 10558 */ 10559 header->cksum = 0x0; 10560 10561 /** 10562 * Calculate and update checksum 10563 */ 10564 for (i = 0; i < (header->size512 * 512); i++) 10565 csum += cur_header[i]; 10566 10567 /** 10568 * Invert summed value to create the checksum 10569 * Writing new checksum value directly to the boot data 10570 */ 10571 cur_header[7] = -csum; 10572 10573 } else if (pcir_header->code_type == CXGB4_HDR_CODE2) { 10574 /** 10575 * Modify Device ID to match current adatper 10576 */ 10577 pcir_header->device_id = cpu_to_le16(device_id); 10578 } 10579 10580 /** 10581 * Move header pointer up to the next image in the ROM. 10582 */ 10583 cur_header += header->size512 * 512; 10584 } while (!(pcir_header->indicator & CXGB4_HDR_INDI)); 10585 } 10586 10587 /** 10588 * t4_load_boot - download boot flash 10589 * @adap: the adapter 10590 * @boot_data: the boot image to write 10591 * @boot_addr: offset in flash to write boot_data 10592 * @size: image size 10593 * 10594 * Write the supplied boot image to the card's serial flash. 10595 * The boot image has the following sections: a 28-byte header and the 10596 * boot image. 10597 */ 10598 int t4_load_boot(struct adapter *adap, u8 *boot_data, 10599 unsigned int boot_addr, unsigned int size) 10600 { 10601 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10602 unsigned int boot_sector = (boot_addr * 1024); 10603 struct cxgb4_pci_exp_rom_header *header; 10604 struct cxgb4_pcir_data *pcir_header; 10605 int pcir_offset; 10606 unsigned int i; 10607 u16 device_id; 10608 int ret, addr; 10609 10610 /** 10611 * Make sure the boot image does not encroach on the firmware region 10612 */ 10613 if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) { 10614 dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n"); 10615 return -EFBIG; 10616 } 10617 10618 /* Get boot header */ 10619 header = (struct cxgb4_pci_exp_rom_header *)boot_data; 10620 pcir_offset = le16_to_cpu(header->pcir_offset); 10621 /* PCIR Data Structure */ 10622 pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset]; 10623 10624 /** 10625 * Perform some primitive sanity testing to avoid accidentally 10626 * writing garbage over the boot sectors. We ought to check for 10627 * more but it's not worth it for now ... 10628 */ 10629 if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) { 10630 dev_err(adap->pdev_dev, "boot image too small/large\n"); 10631 return -EFBIG; 10632 } 10633 10634 if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) { 10635 dev_err(adap->pdev_dev, "Boot image missing signature\n"); 10636 return -EINVAL; 10637 } 10638 10639 /* Check PCI header signature */ 10640 if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) { 10641 dev_err(adap->pdev_dev, "PCI header missing signature\n"); 10642 return -EINVAL; 10643 } 10644 10645 /* Check Vendor ID matches Chelsio ID*/ 10646 if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) { 10647 dev_err(adap->pdev_dev, "Vendor ID missing signature\n"); 10648 return -EINVAL; 10649 } 10650 10651 /** 10652 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot, 10653 * and Boot configuration data sections. These 3 boot sections span 10654 * sectors 0 to 7 in flash and live right before the FW image location. 10655 */ 10656 i = DIV_ROUND_UP(size ? size : FLASH_FW_START, sf_sec_size); 10657 ret = t4_flash_erase_sectors(adap, boot_sector >> 16, 10658 (boot_sector >> 16) + i - 1); 10659 10660 /** 10661 * If size == 0 then we're simply erasing the FLASH sectors associated 10662 * with the on-adapter option ROM file 10663 */ 10664 if (ret || size == 0) 10665 goto out; 10666 /* Retrieve adapter's device ID */ 10667 pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id); 10668 /* Want to deal with PF 0 so I strip off PF 4 indicator */ 10669 device_id = device_id & 0xf0ff; 10670 10671 /* Check PCIE Device ID */ 10672 if (le16_to_cpu(pcir_header->device_id) != device_id) { 10673 /** 10674 * Change the device ID in the Boot BIOS image to match 10675 * the Device ID of the current adapter. 10676 */ 10677 modify_device_id(device_id, boot_data); 10678 } 10679 10680 /** 10681 * Skip over the first SF_PAGE_SIZE worth of data and write it after 10682 * we finish copying the rest of the boot image. This will ensure 10683 * that the BIOS boot header will only be written if the boot image 10684 * was written in full. 10685 */ 10686 addr = boot_sector; 10687 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 10688 addr += SF_PAGE_SIZE; 10689 boot_data += SF_PAGE_SIZE; 10690 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 10691 false); 10692 if (ret) 10693 goto out; 10694 } 10695 10696 ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, 10697 (const u8 *)header, false); 10698 10699 out: 10700 if (ret) 10701 dev_err(adap->pdev_dev, "boot image load failed, error %d\n", 10702 ret); 10703 return ret; 10704 } 10705 10706 /** 10707 * t4_flash_bootcfg_addr - return the address of the flash 10708 * optionrom configuration 10709 * @adapter: the adapter 10710 * 10711 * Return the address within the flash where the OptionROM Configuration 10712 * is stored, or an error if the device FLASH is too small to contain 10713 * a OptionROM Configuration. 10714 */ 10715 static int t4_flash_bootcfg_addr(struct adapter *adapter) 10716 { 10717 /** 10718 * If the device FLASH isn't large enough to hold a Firmware 10719 * Configuration File, return an error. 10720 */ 10721 if (adapter->params.sf_size < 10722 FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE) 10723 return -ENOSPC; 10724 10725 return FLASH_BOOTCFG_START; 10726 } 10727 10728 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10729 { 10730 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10731 struct cxgb4_bootcfg_data *header; 10732 unsigned int flash_cfg_start_sec; 10733 unsigned int addr, npad; 10734 int ret, i, n, cfg_addr; 10735 10736 cfg_addr = t4_flash_bootcfg_addr(adap); 10737 if (cfg_addr < 0) 10738 return cfg_addr; 10739 10740 addr = cfg_addr; 10741 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10742 10743 if (size > FLASH_BOOTCFG_MAX_SIZE) { 10744 dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n", 10745 FLASH_BOOTCFG_MAX_SIZE); 10746 return -EFBIG; 10747 } 10748 10749 header = (struct cxgb4_bootcfg_data *)cfg_data; 10750 if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) { 10751 dev_err(adap->pdev_dev, "Wrong bootcfg signature\n"); 10752 ret = -EINVAL; 10753 goto out; 10754 } 10755 10756 i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE, 10757 sf_sec_size); 10758 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10759 flash_cfg_start_sec + i - 1); 10760 10761 /** 10762 * If size == 0 then we're simply erasing the FLASH sectors associated 10763 * with the on-adapter OptionROM Configuration File. 10764 */ 10765 if (ret || size == 0) 10766 goto out; 10767 10768 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10769 for (i = 0; i < size; i += SF_PAGE_SIZE) { 10770 n = min_t(u32, size - i, SF_PAGE_SIZE); 10771 10772 ret = t4_write_flash(adap, addr, n, cfg_data, false); 10773 if (ret) 10774 goto out; 10775 10776 addr += SF_PAGE_SIZE; 10777 cfg_data += SF_PAGE_SIZE; 10778 } 10779 10780 npad = ((size + 4 - 1) & ~3) - size; 10781 for (i = 0; i < npad; i++) { 10782 u8 data = 0; 10783 10784 ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data, 10785 false); 10786 if (ret) 10787 goto out; 10788 } 10789 10790 out: 10791 if (ret) 10792 dev_err(adap->pdev_dev, "boot config data %s failed %d\n", 10793 (size == 0 ? "clear" : "download"), ret); 10794 return ret; 10795 } 10796