xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c (revision abade675e02e1b73da0c20ffaf08fbe309038298)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~CXGB4_FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rearely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boudaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9820, 0x983c,
1383 		0x9850, 0x9864,
1384 		0x9c00, 0x9c6c,
1385 		0x9c80, 0x9cec,
1386 		0x9d00, 0x9d6c,
1387 		0x9d80, 0x9dec,
1388 		0x9e00, 0x9e6c,
1389 		0x9e80, 0x9eec,
1390 		0x9f00, 0x9f6c,
1391 		0x9f80, 0xa020,
1392 		0xd004, 0xd004,
1393 		0xd010, 0xd03c,
1394 		0xdfc0, 0xdfe0,
1395 		0xe000, 0x1106c,
1396 		0x11074, 0x11088,
1397 		0x1109c, 0x1117c,
1398 		0x11190, 0x11204,
1399 		0x19040, 0x1906c,
1400 		0x19078, 0x19080,
1401 		0x1908c, 0x190e8,
1402 		0x190f0, 0x190f8,
1403 		0x19100, 0x19110,
1404 		0x19120, 0x19124,
1405 		0x19150, 0x19194,
1406 		0x1919c, 0x191b0,
1407 		0x191d0, 0x191e8,
1408 		0x19238, 0x19290,
1409 		0x193f8, 0x19428,
1410 		0x19430, 0x19444,
1411 		0x1944c, 0x1946c,
1412 		0x19474, 0x19474,
1413 		0x19490, 0x194cc,
1414 		0x194f0, 0x194f8,
1415 		0x19c00, 0x19c08,
1416 		0x19c10, 0x19c60,
1417 		0x19c94, 0x19ce4,
1418 		0x19cf0, 0x19d40,
1419 		0x19d50, 0x19d94,
1420 		0x19da0, 0x19de8,
1421 		0x19df0, 0x19e10,
1422 		0x19e50, 0x19e90,
1423 		0x19ea0, 0x19f24,
1424 		0x19f34, 0x19f34,
1425 		0x19f40, 0x19f50,
1426 		0x19f90, 0x19fb4,
1427 		0x19fc4, 0x19fe4,
1428 		0x1a000, 0x1a004,
1429 		0x1a010, 0x1a06c,
1430 		0x1a0b0, 0x1a0e4,
1431 		0x1a0ec, 0x1a0f8,
1432 		0x1a100, 0x1a108,
1433 		0x1a114, 0x1a120,
1434 		0x1a128, 0x1a130,
1435 		0x1a138, 0x1a138,
1436 		0x1a190, 0x1a1c4,
1437 		0x1a1fc, 0x1a1fc,
1438 		0x1e008, 0x1e00c,
1439 		0x1e040, 0x1e044,
1440 		0x1e04c, 0x1e04c,
1441 		0x1e284, 0x1e290,
1442 		0x1e2c0, 0x1e2c0,
1443 		0x1e2e0, 0x1e2e0,
1444 		0x1e300, 0x1e384,
1445 		0x1e3c0, 0x1e3c8,
1446 		0x1e408, 0x1e40c,
1447 		0x1e440, 0x1e444,
1448 		0x1e44c, 0x1e44c,
1449 		0x1e684, 0x1e690,
1450 		0x1e6c0, 0x1e6c0,
1451 		0x1e6e0, 0x1e6e0,
1452 		0x1e700, 0x1e784,
1453 		0x1e7c0, 0x1e7c8,
1454 		0x1e808, 0x1e80c,
1455 		0x1e840, 0x1e844,
1456 		0x1e84c, 0x1e84c,
1457 		0x1ea84, 0x1ea90,
1458 		0x1eac0, 0x1eac0,
1459 		0x1eae0, 0x1eae0,
1460 		0x1eb00, 0x1eb84,
1461 		0x1ebc0, 0x1ebc8,
1462 		0x1ec08, 0x1ec0c,
1463 		0x1ec40, 0x1ec44,
1464 		0x1ec4c, 0x1ec4c,
1465 		0x1ee84, 0x1ee90,
1466 		0x1eec0, 0x1eec0,
1467 		0x1eee0, 0x1eee0,
1468 		0x1ef00, 0x1ef84,
1469 		0x1efc0, 0x1efc8,
1470 		0x1f008, 0x1f00c,
1471 		0x1f040, 0x1f044,
1472 		0x1f04c, 0x1f04c,
1473 		0x1f284, 0x1f290,
1474 		0x1f2c0, 0x1f2c0,
1475 		0x1f2e0, 0x1f2e0,
1476 		0x1f300, 0x1f384,
1477 		0x1f3c0, 0x1f3c8,
1478 		0x1f408, 0x1f40c,
1479 		0x1f440, 0x1f444,
1480 		0x1f44c, 0x1f44c,
1481 		0x1f684, 0x1f690,
1482 		0x1f6c0, 0x1f6c0,
1483 		0x1f6e0, 0x1f6e0,
1484 		0x1f700, 0x1f784,
1485 		0x1f7c0, 0x1f7c8,
1486 		0x1f808, 0x1f80c,
1487 		0x1f840, 0x1f844,
1488 		0x1f84c, 0x1f84c,
1489 		0x1fa84, 0x1fa90,
1490 		0x1fac0, 0x1fac0,
1491 		0x1fae0, 0x1fae0,
1492 		0x1fb00, 0x1fb84,
1493 		0x1fbc0, 0x1fbc8,
1494 		0x1fc08, 0x1fc0c,
1495 		0x1fc40, 0x1fc44,
1496 		0x1fc4c, 0x1fc4c,
1497 		0x1fe84, 0x1fe90,
1498 		0x1fec0, 0x1fec0,
1499 		0x1fee0, 0x1fee0,
1500 		0x1ff00, 0x1ff84,
1501 		0x1ffc0, 0x1ffc8,
1502 		0x30000, 0x30030,
1503 		0x30100, 0x30144,
1504 		0x30190, 0x301a0,
1505 		0x301a8, 0x301b8,
1506 		0x301c4, 0x301c8,
1507 		0x301d0, 0x301d0,
1508 		0x30200, 0x30318,
1509 		0x30400, 0x304b4,
1510 		0x304c0, 0x3052c,
1511 		0x30540, 0x3061c,
1512 		0x30800, 0x30828,
1513 		0x30834, 0x30834,
1514 		0x308c0, 0x30908,
1515 		0x30910, 0x309ac,
1516 		0x30a00, 0x30a14,
1517 		0x30a1c, 0x30a2c,
1518 		0x30a44, 0x30a50,
1519 		0x30a74, 0x30a74,
1520 		0x30a7c, 0x30afc,
1521 		0x30b08, 0x30c24,
1522 		0x30d00, 0x30d00,
1523 		0x30d08, 0x30d14,
1524 		0x30d1c, 0x30d20,
1525 		0x30d3c, 0x30d3c,
1526 		0x30d48, 0x30d50,
1527 		0x31200, 0x3120c,
1528 		0x31220, 0x31220,
1529 		0x31240, 0x31240,
1530 		0x31600, 0x3160c,
1531 		0x31a00, 0x31a1c,
1532 		0x31e00, 0x31e20,
1533 		0x31e38, 0x31e3c,
1534 		0x31e80, 0x31e80,
1535 		0x31e88, 0x31ea8,
1536 		0x31eb0, 0x31eb4,
1537 		0x31ec8, 0x31ed4,
1538 		0x31fb8, 0x32004,
1539 		0x32200, 0x32200,
1540 		0x32208, 0x32240,
1541 		0x32248, 0x32280,
1542 		0x32288, 0x322c0,
1543 		0x322c8, 0x322fc,
1544 		0x32600, 0x32630,
1545 		0x32a00, 0x32abc,
1546 		0x32b00, 0x32b10,
1547 		0x32b20, 0x32b30,
1548 		0x32b40, 0x32b50,
1549 		0x32b60, 0x32b70,
1550 		0x33000, 0x33028,
1551 		0x33030, 0x33048,
1552 		0x33060, 0x33068,
1553 		0x33070, 0x3309c,
1554 		0x330f0, 0x33128,
1555 		0x33130, 0x33148,
1556 		0x33160, 0x33168,
1557 		0x33170, 0x3319c,
1558 		0x331f0, 0x33238,
1559 		0x33240, 0x33240,
1560 		0x33248, 0x33250,
1561 		0x3325c, 0x33264,
1562 		0x33270, 0x332b8,
1563 		0x332c0, 0x332e4,
1564 		0x332f8, 0x33338,
1565 		0x33340, 0x33340,
1566 		0x33348, 0x33350,
1567 		0x3335c, 0x33364,
1568 		0x33370, 0x333b8,
1569 		0x333c0, 0x333e4,
1570 		0x333f8, 0x33428,
1571 		0x33430, 0x33448,
1572 		0x33460, 0x33468,
1573 		0x33470, 0x3349c,
1574 		0x334f0, 0x33528,
1575 		0x33530, 0x33548,
1576 		0x33560, 0x33568,
1577 		0x33570, 0x3359c,
1578 		0x335f0, 0x33638,
1579 		0x33640, 0x33640,
1580 		0x33648, 0x33650,
1581 		0x3365c, 0x33664,
1582 		0x33670, 0x336b8,
1583 		0x336c0, 0x336e4,
1584 		0x336f8, 0x33738,
1585 		0x33740, 0x33740,
1586 		0x33748, 0x33750,
1587 		0x3375c, 0x33764,
1588 		0x33770, 0x337b8,
1589 		0x337c0, 0x337e4,
1590 		0x337f8, 0x337fc,
1591 		0x33814, 0x33814,
1592 		0x3382c, 0x3382c,
1593 		0x33880, 0x3388c,
1594 		0x338e8, 0x338ec,
1595 		0x33900, 0x33928,
1596 		0x33930, 0x33948,
1597 		0x33960, 0x33968,
1598 		0x33970, 0x3399c,
1599 		0x339f0, 0x33a38,
1600 		0x33a40, 0x33a40,
1601 		0x33a48, 0x33a50,
1602 		0x33a5c, 0x33a64,
1603 		0x33a70, 0x33ab8,
1604 		0x33ac0, 0x33ae4,
1605 		0x33af8, 0x33b10,
1606 		0x33b28, 0x33b28,
1607 		0x33b3c, 0x33b50,
1608 		0x33bf0, 0x33c10,
1609 		0x33c28, 0x33c28,
1610 		0x33c3c, 0x33c50,
1611 		0x33cf0, 0x33cfc,
1612 		0x34000, 0x34030,
1613 		0x34100, 0x34144,
1614 		0x34190, 0x341a0,
1615 		0x341a8, 0x341b8,
1616 		0x341c4, 0x341c8,
1617 		0x341d0, 0x341d0,
1618 		0x34200, 0x34318,
1619 		0x34400, 0x344b4,
1620 		0x344c0, 0x3452c,
1621 		0x34540, 0x3461c,
1622 		0x34800, 0x34828,
1623 		0x34834, 0x34834,
1624 		0x348c0, 0x34908,
1625 		0x34910, 0x349ac,
1626 		0x34a00, 0x34a14,
1627 		0x34a1c, 0x34a2c,
1628 		0x34a44, 0x34a50,
1629 		0x34a74, 0x34a74,
1630 		0x34a7c, 0x34afc,
1631 		0x34b08, 0x34c24,
1632 		0x34d00, 0x34d00,
1633 		0x34d08, 0x34d14,
1634 		0x34d1c, 0x34d20,
1635 		0x34d3c, 0x34d3c,
1636 		0x34d48, 0x34d50,
1637 		0x35200, 0x3520c,
1638 		0x35220, 0x35220,
1639 		0x35240, 0x35240,
1640 		0x35600, 0x3560c,
1641 		0x35a00, 0x35a1c,
1642 		0x35e00, 0x35e20,
1643 		0x35e38, 0x35e3c,
1644 		0x35e80, 0x35e80,
1645 		0x35e88, 0x35ea8,
1646 		0x35eb0, 0x35eb4,
1647 		0x35ec8, 0x35ed4,
1648 		0x35fb8, 0x36004,
1649 		0x36200, 0x36200,
1650 		0x36208, 0x36240,
1651 		0x36248, 0x36280,
1652 		0x36288, 0x362c0,
1653 		0x362c8, 0x362fc,
1654 		0x36600, 0x36630,
1655 		0x36a00, 0x36abc,
1656 		0x36b00, 0x36b10,
1657 		0x36b20, 0x36b30,
1658 		0x36b40, 0x36b50,
1659 		0x36b60, 0x36b70,
1660 		0x37000, 0x37028,
1661 		0x37030, 0x37048,
1662 		0x37060, 0x37068,
1663 		0x37070, 0x3709c,
1664 		0x370f0, 0x37128,
1665 		0x37130, 0x37148,
1666 		0x37160, 0x37168,
1667 		0x37170, 0x3719c,
1668 		0x371f0, 0x37238,
1669 		0x37240, 0x37240,
1670 		0x37248, 0x37250,
1671 		0x3725c, 0x37264,
1672 		0x37270, 0x372b8,
1673 		0x372c0, 0x372e4,
1674 		0x372f8, 0x37338,
1675 		0x37340, 0x37340,
1676 		0x37348, 0x37350,
1677 		0x3735c, 0x37364,
1678 		0x37370, 0x373b8,
1679 		0x373c0, 0x373e4,
1680 		0x373f8, 0x37428,
1681 		0x37430, 0x37448,
1682 		0x37460, 0x37468,
1683 		0x37470, 0x3749c,
1684 		0x374f0, 0x37528,
1685 		0x37530, 0x37548,
1686 		0x37560, 0x37568,
1687 		0x37570, 0x3759c,
1688 		0x375f0, 0x37638,
1689 		0x37640, 0x37640,
1690 		0x37648, 0x37650,
1691 		0x3765c, 0x37664,
1692 		0x37670, 0x376b8,
1693 		0x376c0, 0x376e4,
1694 		0x376f8, 0x37738,
1695 		0x37740, 0x37740,
1696 		0x37748, 0x37750,
1697 		0x3775c, 0x37764,
1698 		0x37770, 0x377b8,
1699 		0x377c0, 0x377e4,
1700 		0x377f8, 0x377fc,
1701 		0x37814, 0x37814,
1702 		0x3782c, 0x3782c,
1703 		0x37880, 0x3788c,
1704 		0x378e8, 0x378ec,
1705 		0x37900, 0x37928,
1706 		0x37930, 0x37948,
1707 		0x37960, 0x37968,
1708 		0x37970, 0x3799c,
1709 		0x379f0, 0x37a38,
1710 		0x37a40, 0x37a40,
1711 		0x37a48, 0x37a50,
1712 		0x37a5c, 0x37a64,
1713 		0x37a70, 0x37ab8,
1714 		0x37ac0, 0x37ae4,
1715 		0x37af8, 0x37b10,
1716 		0x37b28, 0x37b28,
1717 		0x37b3c, 0x37b50,
1718 		0x37bf0, 0x37c10,
1719 		0x37c28, 0x37c28,
1720 		0x37c3c, 0x37c50,
1721 		0x37cf0, 0x37cfc,
1722 		0x38000, 0x38030,
1723 		0x38100, 0x38144,
1724 		0x38190, 0x381a0,
1725 		0x381a8, 0x381b8,
1726 		0x381c4, 0x381c8,
1727 		0x381d0, 0x381d0,
1728 		0x38200, 0x38318,
1729 		0x38400, 0x384b4,
1730 		0x384c0, 0x3852c,
1731 		0x38540, 0x3861c,
1732 		0x38800, 0x38828,
1733 		0x38834, 0x38834,
1734 		0x388c0, 0x38908,
1735 		0x38910, 0x389ac,
1736 		0x38a00, 0x38a14,
1737 		0x38a1c, 0x38a2c,
1738 		0x38a44, 0x38a50,
1739 		0x38a74, 0x38a74,
1740 		0x38a7c, 0x38afc,
1741 		0x38b08, 0x38c24,
1742 		0x38d00, 0x38d00,
1743 		0x38d08, 0x38d14,
1744 		0x38d1c, 0x38d20,
1745 		0x38d3c, 0x38d3c,
1746 		0x38d48, 0x38d50,
1747 		0x39200, 0x3920c,
1748 		0x39220, 0x39220,
1749 		0x39240, 0x39240,
1750 		0x39600, 0x3960c,
1751 		0x39a00, 0x39a1c,
1752 		0x39e00, 0x39e20,
1753 		0x39e38, 0x39e3c,
1754 		0x39e80, 0x39e80,
1755 		0x39e88, 0x39ea8,
1756 		0x39eb0, 0x39eb4,
1757 		0x39ec8, 0x39ed4,
1758 		0x39fb8, 0x3a004,
1759 		0x3a200, 0x3a200,
1760 		0x3a208, 0x3a240,
1761 		0x3a248, 0x3a280,
1762 		0x3a288, 0x3a2c0,
1763 		0x3a2c8, 0x3a2fc,
1764 		0x3a600, 0x3a630,
1765 		0x3aa00, 0x3aabc,
1766 		0x3ab00, 0x3ab10,
1767 		0x3ab20, 0x3ab30,
1768 		0x3ab40, 0x3ab50,
1769 		0x3ab60, 0x3ab70,
1770 		0x3b000, 0x3b028,
1771 		0x3b030, 0x3b048,
1772 		0x3b060, 0x3b068,
1773 		0x3b070, 0x3b09c,
1774 		0x3b0f0, 0x3b128,
1775 		0x3b130, 0x3b148,
1776 		0x3b160, 0x3b168,
1777 		0x3b170, 0x3b19c,
1778 		0x3b1f0, 0x3b238,
1779 		0x3b240, 0x3b240,
1780 		0x3b248, 0x3b250,
1781 		0x3b25c, 0x3b264,
1782 		0x3b270, 0x3b2b8,
1783 		0x3b2c0, 0x3b2e4,
1784 		0x3b2f8, 0x3b338,
1785 		0x3b340, 0x3b340,
1786 		0x3b348, 0x3b350,
1787 		0x3b35c, 0x3b364,
1788 		0x3b370, 0x3b3b8,
1789 		0x3b3c0, 0x3b3e4,
1790 		0x3b3f8, 0x3b428,
1791 		0x3b430, 0x3b448,
1792 		0x3b460, 0x3b468,
1793 		0x3b470, 0x3b49c,
1794 		0x3b4f0, 0x3b528,
1795 		0x3b530, 0x3b548,
1796 		0x3b560, 0x3b568,
1797 		0x3b570, 0x3b59c,
1798 		0x3b5f0, 0x3b638,
1799 		0x3b640, 0x3b640,
1800 		0x3b648, 0x3b650,
1801 		0x3b65c, 0x3b664,
1802 		0x3b670, 0x3b6b8,
1803 		0x3b6c0, 0x3b6e4,
1804 		0x3b6f8, 0x3b738,
1805 		0x3b740, 0x3b740,
1806 		0x3b748, 0x3b750,
1807 		0x3b75c, 0x3b764,
1808 		0x3b770, 0x3b7b8,
1809 		0x3b7c0, 0x3b7e4,
1810 		0x3b7f8, 0x3b7fc,
1811 		0x3b814, 0x3b814,
1812 		0x3b82c, 0x3b82c,
1813 		0x3b880, 0x3b88c,
1814 		0x3b8e8, 0x3b8ec,
1815 		0x3b900, 0x3b928,
1816 		0x3b930, 0x3b948,
1817 		0x3b960, 0x3b968,
1818 		0x3b970, 0x3b99c,
1819 		0x3b9f0, 0x3ba38,
1820 		0x3ba40, 0x3ba40,
1821 		0x3ba48, 0x3ba50,
1822 		0x3ba5c, 0x3ba64,
1823 		0x3ba70, 0x3bab8,
1824 		0x3bac0, 0x3bae4,
1825 		0x3baf8, 0x3bb10,
1826 		0x3bb28, 0x3bb28,
1827 		0x3bb3c, 0x3bb50,
1828 		0x3bbf0, 0x3bc10,
1829 		0x3bc28, 0x3bc28,
1830 		0x3bc3c, 0x3bc50,
1831 		0x3bcf0, 0x3bcfc,
1832 		0x3c000, 0x3c030,
1833 		0x3c100, 0x3c144,
1834 		0x3c190, 0x3c1a0,
1835 		0x3c1a8, 0x3c1b8,
1836 		0x3c1c4, 0x3c1c8,
1837 		0x3c1d0, 0x3c1d0,
1838 		0x3c200, 0x3c318,
1839 		0x3c400, 0x3c4b4,
1840 		0x3c4c0, 0x3c52c,
1841 		0x3c540, 0x3c61c,
1842 		0x3c800, 0x3c828,
1843 		0x3c834, 0x3c834,
1844 		0x3c8c0, 0x3c908,
1845 		0x3c910, 0x3c9ac,
1846 		0x3ca00, 0x3ca14,
1847 		0x3ca1c, 0x3ca2c,
1848 		0x3ca44, 0x3ca50,
1849 		0x3ca74, 0x3ca74,
1850 		0x3ca7c, 0x3cafc,
1851 		0x3cb08, 0x3cc24,
1852 		0x3cd00, 0x3cd00,
1853 		0x3cd08, 0x3cd14,
1854 		0x3cd1c, 0x3cd20,
1855 		0x3cd3c, 0x3cd3c,
1856 		0x3cd48, 0x3cd50,
1857 		0x3d200, 0x3d20c,
1858 		0x3d220, 0x3d220,
1859 		0x3d240, 0x3d240,
1860 		0x3d600, 0x3d60c,
1861 		0x3da00, 0x3da1c,
1862 		0x3de00, 0x3de20,
1863 		0x3de38, 0x3de3c,
1864 		0x3de80, 0x3de80,
1865 		0x3de88, 0x3dea8,
1866 		0x3deb0, 0x3deb4,
1867 		0x3dec8, 0x3ded4,
1868 		0x3dfb8, 0x3e004,
1869 		0x3e200, 0x3e200,
1870 		0x3e208, 0x3e240,
1871 		0x3e248, 0x3e280,
1872 		0x3e288, 0x3e2c0,
1873 		0x3e2c8, 0x3e2fc,
1874 		0x3e600, 0x3e630,
1875 		0x3ea00, 0x3eabc,
1876 		0x3eb00, 0x3eb10,
1877 		0x3eb20, 0x3eb30,
1878 		0x3eb40, 0x3eb50,
1879 		0x3eb60, 0x3eb70,
1880 		0x3f000, 0x3f028,
1881 		0x3f030, 0x3f048,
1882 		0x3f060, 0x3f068,
1883 		0x3f070, 0x3f09c,
1884 		0x3f0f0, 0x3f128,
1885 		0x3f130, 0x3f148,
1886 		0x3f160, 0x3f168,
1887 		0x3f170, 0x3f19c,
1888 		0x3f1f0, 0x3f238,
1889 		0x3f240, 0x3f240,
1890 		0x3f248, 0x3f250,
1891 		0x3f25c, 0x3f264,
1892 		0x3f270, 0x3f2b8,
1893 		0x3f2c0, 0x3f2e4,
1894 		0x3f2f8, 0x3f338,
1895 		0x3f340, 0x3f340,
1896 		0x3f348, 0x3f350,
1897 		0x3f35c, 0x3f364,
1898 		0x3f370, 0x3f3b8,
1899 		0x3f3c0, 0x3f3e4,
1900 		0x3f3f8, 0x3f428,
1901 		0x3f430, 0x3f448,
1902 		0x3f460, 0x3f468,
1903 		0x3f470, 0x3f49c,
1904 		0x3f4f0, 0x3f528,
1905 		0x3f530, 0x3f548,
1906 		0x3f560, 0x3f568,
1907 		0x3f570, 0x3f59c,
1908 		0x3f5f0, 0x3f638,
1909 		0x3f640, 0x3f640,
1910 		0x3f648, 0x3f650,
1911 		0x3f65c, 0x3f664,
1912 		0x3f670, 0x3f6b8,
1913 		0x3f6c0, 0x3f6e4,
1914 		0x3f6f8, 0x3f738,
1915 		0x3f740, 0x3f740,
1916 		0x3f748, 0x3f750,
1917 		0x3f75c, 0x3f764,
1918 		0x3f770, 0x3f7b8,
1919 		0x3f7c0, 0x3f7e4,
1920 		0x3f7f8, 0x3f7fc,
1921 		0x3f814, 0x3f814,
1922 		0x3f82c, 0x3f82c,
1923 		0x3f880, 0x3f88c,
1924 		0x3f8e8, 0x3f8ec,
1925 		0x3f900, 0x3f928,
1926 		0x3f930, 0x3f948,
1927 		0x3f960, 0x3f968,
1928 		0x3f970, 0x3f99c,
1929 		0x3f9f0, 0x3fa38,
1930 		0x3fa40, 0x3fa40,
1931 		0x3fa48, 0x3fa50,
1932 		0x3fa5c, 0x3fa64,
1933 		0x3fa70, 0x3fab8,
1934 		0x3fac0, 0x3fae4,
1935 		0x3faf8, 0x3fb10,
1936 		0x3fb28, 0x3fb28,
1937 		0x3fb3c, 0x3fb50,
1938 		0x3fbf0, 0x3fc10,
1939 		0x3fc28, 0x3fc28,
1940 		0x3fc3c, 0x3fc50,
1941 		0x3fcf0, 0x3fcfc,
1942 		0x40000, 0x4000c,
1943 		0x40040, 0x40050,
1944 		0x40060, 0x40068,
1945 		0x4007c, 0x4008c,
1946 		0x40094, 0x400b0,
1947 		0x400c0, 0x40144,
1948 		0x40180, 0x4018c,
1949 		0x40200, 0x40254,
1950 		0x40260, 0x40264,
1951 		0x40270, 0x40288,
1952 		0x40290, 0x40298,
1953 		0x402ac, 0x402c8,
1954 		0x402d0, 0x402e0,
1955 		0x402f0, 0x402f0,
1956 		0x40300, 0x4033c,
1957 		0x403f8, 0x403fc,
1958 		0x41304, 0x413c4,
1959 		0x41400, 0x4140c,
1960 		0x41414, 0x4141c,
1961 		0x41480, 0x414d0,
1962 		0x44000, 0x44054,
1963 		0x4405c, 0x44078,
1964 		0x440c0, 0x44174,
1965 		0x44180, 0x441ac,
1966 		0x441b4, 0x441b8,
1967 		0x441c0, 0x44254,
1968 		0x4425c, 0x44278,
1969 		0x442c0, 0x44374,
1970 		0x44380, 0x443ac,
1971 		0x443b4, 0x443b8,
1972 		0x443c0, 0x44454,
1973 		0x4445c, 0x44478,
1974 		0x444c0, 0x44574,
1975 		0x44580, 0x445ac,
1976 		0x445b4, 0x445b8,
1977 		0x445c0, 0x44654,
1978 		0x4465c, 0x44678,
1979 		0x446c0, 0x44774,
1980 		0x44780, 0x447ac,
1981 		0x447b4, 0x447b8,
1982 		0x447c0, 0x44854,
1983 		0x4485c, 0x44878,
1984 		0x448c0, 0x44974,
1985 		0x44980, 0x449ac,
1986 		0x449b4, 0x449b8,
1987 		0x449c0, 0x449fc,
1988 		0x45000, 0x45004,
1989 		0x45010, 0x45030,
1990 		0x45040, 0x45060,
1991 		0x45068, 0x45068,
1992 		0x45080, 0x45084,
1993 		0x450a0, 0x450b0,
1994 		0x45200, 0x45204,
1995 		0x45210, 0x45230,
1996 		0x45240, 0x45260,
1997 		0x45268, 0x45268,
1998 		0x45280, 0x45284,
1999 		0x452a0, 0x452b0,
2000 		0x460c0, 0x460e4,
2001 		0x47000, 0x4703c,
2002 		0x47044, 0x4708c,
2003 		0x47200, 0x47250,
2004 		0x47400, 0x47408,
2005 		0x47414, 0x47420,
2006 		0x47600, 0x47618,
2007 		0x47800, 0x47814,
2008 		0x48000, 0x4800c,
2009 		0x48040, 0x48050,
2010 		0x48060, 0x48068,
2011 		0x4807c, 0x4808c,
2012 		0x48094, 0x480b0,
2013 		0x480c0, 0x48144,
2014 		0x48180, 0x4818c,
2015 		0x48200, 0x48254,
2016 		0x48260, 0x48264,
2017 		0x48270, 0x48288,
2018 		0x48290, 0x48298,
2019 		0x482ac, 0x482c8,
2020 		0x482d0, 0x482e0,
2021 		0x482f0, 0x482f0,
2022 		0x48300, 0x4833c,
2023 		0x483f8, 0x483fc,
2024 		0x49304, 0x493c4,
2025 		0x49400, 0x4940c,
2026 		0x49414, 0x4941c,
2027 		0x49480, 0x494d0,
2028 		0x4c000, 0x4c054,
2029 		0x4c05c, 0x4c078,
2030 		0x4c0c0, 0x4c174,
2031 		0x4c180, 0x4c1ac,
2032 		0x4c1b4, 0x4c1b8,
2033 		0x4c1c0, 0x4c254,
2034 		0x4c25c, 0x4c278,
2035 		0x4c2c0, 0x4c374,
2036 		0x4c380, 0x4c3ac,
2037 		0x4c3b4, 0x4c3b8,
2038 		0x4c3c0, 0x4c454,
2039 		0x4c45c, 0x4c478,
2040 		0x4c4c0, 0x4c574,
2041 		0x4c580, 0x4c5ac,
2042 		0x4c5b4, 0x4c5b8,
2043 		0x4c5c0, 0x4c654,
2044 		0x4c65c, 0x4c678,
2045 		0x4c6c0, 0x4c774,
2046 		0x4c780, 0x4c7ac,
2047 		0x4c7b4, 0x4c7b8,
2048 		0x4c7c0, 0x4c854,
2049 		0x4c85c, 0x4c878,
2050 		0x4c8c0, 0x4c974,
2051 		0x4c980, 0x4c9ac,
2052 		0x4c9b4, 0x4c9b8,
2053 		0x4c9c0, 0x4c9fc,
2054 		0x4d000, 0x4d004,
2055 		0x4d010, 0x4d030,
2056 		0x4d040, 0x4d060,
2057 		0x4d068, 0x4d068,
2058 		0x4d080, 0x4d084,
2059 		0x4d0a0, 0x4d0b0,
2060 		0x4d200, 0x4d204,
2061 		0x4d210, 0x4d230,
2062 		0x4d240, 0x4d260,
2063 		0x4d268, 0x4d268,
2064 		0x4d280, 0x4d284,
2065 		0x4d2a0, 0x4d2b0,
2066 		0x4e0c0, 0x4e0e4,
2067 		0x4f000, 0x4f03c,
2068 		0x4f044, 0x4f08c,
2069 		0x4f200, 0x4f250,
2070 		0x4f400, 0x4f408,
2071 		0x4f414, 0x4f420,
2072 		0x4f600, 0x4f618,
2073 		0x4f800, 0x4f814,
2074 		0x50000, 0x50084,
2075 		0x50090, 0x500cc,
2076 		0x50400, 0x50400,
2077 		0x50800, 0x50884,
2078 		0x50890, 0x508cc,
2079 		0x50c00, 0x50c00,
2080 		0x51000, 0x5101c,
2081 		0x51300, 0x51308,
2082 	};
2083 
2084 	static const unsigned int t6_reg_ranges[] = {
2085 		0x1008, 0x101c,
2086 		0x1024, 0x10a8,
2087 		0x10b4, 0x10f8,
2088 		0x1100, 0x1114,
2089 		0x111c, 0x112c,
2090 		0x1138, 0x113c,
2091 		0x1144, 0x114c,
2092 		0x1180, 0x1184,
2093 		0x1190, 0x1194,
2094 		0x11a0, 0x11a4,
2095 		0x11b0, 0x11b4,
2096 		0x11fc, 0x1274,
2097 		0x1280, 0x133c,
2098 		0x1800, 0x18fc,
2099 		0x3000, 0x302c,
2100 		0x3060, 0x30b0,
2101 		0x30b8, 0x30d8,
2102 		0x30e0, 0x30fc,
2103 		0x3140, 0x357c,
2104 		0x35a8, 0x35cc,
2105 		0x35ec, 0x35ec,
2106 		0x3600, 0x5624,
2107 		0x56cc, 0x56ec,
2108 		0x56f4, 0x5720,
2109 		0x5728, 0x575c,
2110 		0x580c, 0x5814,
2111 		0x5890, 0x589c,
2112 		0x58a4, 0x58ac,
2113 		0x58b8, 0x58bc,
2114 		0x5940, 0x595c,
2115 		0x5980, 0x598c,
2116 		0x59b0, 0x59c8,
2117 		0x59d0, 0x59dc,
2118 		0x59fc, 0x5a18,
2119 		0x5a60, 0x5a6c,
2120 		0x5a80, 0x5a8c,
2121 		0x5a94, 0x5a9c,
2122 		0x5b94, 0x5bfc,
2123 		0x5c10, 0x5e48,
2124 		0x5e50, 0x5e94,
2125 		0x5ea0, 0x5eb0,
2126 		0x5ec0, 0x5ec0,
2127 		0x5ec8, 0x5ed0,
2128 		0x5ee0, 0x5ee0,
2129 		0x5ef0, 0x5ef0,
2130 		0x5f00, 0x5f00,
2131 		0x6000, 0x6020,
2132 		0x6028, 0x6040,
2133 		0x6058, 0x609c,
2134 		0x60a8, 0x619c,
2135 		0x7700, 0x7798,
2136 		0x77c0, 0x7880,
2137 		0x78cc, 0x78fc,
2138 		0x7b00, 0x7b58,
2139 		0x7b60, 0x7b84,
2140 		0x7b8c, 0x7c54,
2141 		0x7d00, 0x7d38,
2142 		0x7d40, 0x7d84,
2143 		0x7d8c, 0x7ddc,
2144 		0x7de4, 0x7e04,
2145 		0x7e10, 0x7e1c,
2146 		0x7e24, 0x7e38,
2147 		0x7e40, 0x7e44,
2148 		0x7e4c, 0x7e78,
2149 		0x7e80, 0x7edc,
2150 		0x7ee8, 0x7efc,
2151 		0x8dc0, 0x8de4,
2152 		0x8df8, 0x8e04,
2153 		0x8e10, 0x8e84,
2154 		0x8ea0, 0x8f88,
2155 		0x8fb8, 0x9058,
2156 		0x9060, 0x9060,
2157 		0x9068, 0x90f8,
2158 		0x9100, 0x9124,
2159 		0x9400, 0x9470,
2160 		0x9600, 0x9600,
2161 		0x9608, 0x9638,
2162 		0x9640, 0x9704,
2163 		0x9710, 0x971c,
2164 		0x9800, 0x9808,
2165 		0x9820, 0x983c,
2166 		0x9850, 0x9864,
2167 		0x9c00, 0x9c6c,
2168 		0x9c80, 0x9cec,
2169 		0x9d00, 0x9d6c,
2170 		0x9d80, 0x9dec,
2171 		0x9e00, 0x9e6c,
2172 		0x9e80, 0x9eec,
2173 		0x9f00, 0x9f6c,
2174 		0x9f80, 0xa020,
2175 		0xd004, 0xd03c,
2176 		0xd100, 0xd118,
2177 		0xd200, 0xd214,
2178 		0xd220, 0xd234,
2179 		0xd240, 0xd254,
2180 		0xd260, 0xd274,
2181 		0xd280, 0xd294,
2182 		0xd2a0, 0xd2b4,
2183 		0xd2c0, 0xd2d4,
2184 		0xd2e0, 0xd2f4,
2185 		0xd300, 0xd31c,
2186 		0xdfc0, 0xdfe0,
2187 		0xe000, 0xf008,
2188 		0xf010, 0xf018,
2189 		0xf020, 0xf028,
2190 		0x11000, 0x11014,
2191 		0x11048, 0x1106c,
2192 		0x11074, 0x11088,
2193 		0x11098, 0x11120,
2194 		0x1112c, 0x1117c,
2195 		0x11190, 0x112e0,
2196 		0x11300, 0x1130c,
2197 		0x12000, 0x1206c,
2198 		0x19040, 0x1906c,
2199 		0x19078, 0x19080,
2200 		0x1908c, 0x190e8,
2201 		0x190f0, 0x190f8,
2202 		0x19100, 0x19110,
2203 		0x19120, 0x19124,
2204 		0x19150, 0x19194,
2205 		0x1919c, 0x191b0,
2206 		0x191d0, 0x191e8,
2207 		0x19238, 0x19290,
2208 		0x192a4, 0x192b0,
2209 		0x192bc, 0x192bc,
2210 		0x19348, 0x1934c,
2211 		0x193f8, 0x19418,
2212 		0x19420, 0x19428,
2213 		0x19430, 0x19444,
2214 		0x1944c, 0x1946c,
2215 		0x19474, 0x19474,
2216 		0x19490, 0x194cc,
2217 		0x194f0, 0x194f8,
2218 		0x19c00, 0x19c48,
2219 		0x19c50, 0x19c80,
2220 		0x19c94, 0x19c98,
2221 		0x19ca0, 0x19cbc,
2222 		0x19ce4, 0x19ce4,
2223 		0x19cf0, 0x19cf8,
2224 		0x19d00, 0x19d28,
2225 		0x19d50, 0x19d78,
2226 		0x19d94, 0x19d98,
2227 		0x19da0, 0x19dc8,
2228 		0x19df0, 0x19e10,
2229 		0x19e50, 0x19e6c,
2230 		0x19ea0, 0x19ebc,
2231 		0x19ec4, 0x19ef4,
2232 		0x19f04, 0x19f2c,
2233 		0x19f34, 0x19f34,
2234 		0x19f40, 0x19f50,
2235 		0x19f90, 0x19fac,
2236 		0x19fc4, 0x19fc8,
2237 		0x19fd0, 0x19fe4,
2238 		0x1a000, 0x1a004,
2239 		0x1a010, 0x1a06c,
2240 		0x1a0b0, 0x1a0e4,
2241 		0x1a0ec, 0x1a0f8,
2242 		0x1a100, 0x1a108,
2243 		0x1a114, 0x1a120,
2244 		0x1a128, 0x1a130,
2245 		0x1a138, 0x1a138,
2246 		0x1a190, 0x1a1c4,
2247 		0x1a1fc, 0x1a1fc,
2248 		0x1e008, 0x1e00c,
2249 		0x1e040, 0x1e044,
2250 		0x1e04c, 0x1e04c,
2251 		0x1e284, 0x1e290,
2252 		0x1e2c0, 0x1e2c0,
2253 		0x1e2e0, 0x1e2e0,
2254 		0x1e300, 0x1e384,
2255 		0x1e3c0, 0x1e3c8,
2256 		0x1e408, 0x1e40c,
2257 		0x1e440, 0x1e444,
2258 		0x1e44c, 0x1e44c,
2259 		0x1e684, 0x1e690,
2260 		0x1e6c0, 0x1e6c0,
2261 		0x1e6e0, 0x1e6e0,
2262 		0x1e700, 0x1e784,
2263 		0x1e7c0, 0x1e7c8,
2264 		0x1e808, 0x1e80c,
2265 		0x1e840, 0x1e844,
2266 		0x1e84c, 0x1e84c,
2267 		0x1ea84, 0x1ea90,
2268 		0x1eac0, 0x1eac0,
2269 		0x1eae0, 0x1eae0,
2270 		0x1eb00, 0x1eb84,
2271 		0x1ebc0, 0x1ebc8,
2272 		0x1ec08, 0x1ec0c,
2273 		0x1ec40, 0x1ec44,
2274 		0x1ec4c, 0x1ec4c,
2275 		0x1ee84, 0x1ee90,
2276 		0x1eec0, 0x1eec0,
2277 		0x1eee0, 0x1eee0,
2278 		0x1ef00, 0x1ef84,
2279 		0x1efc0, 0x1efc8,
2280 		0x1f008, 0x1f00c,
2281 		0x1f040, 0x1f044,
2282 		0x1f04c, 0x1f04c,
2283 		0x1f284, 0x1f290,
2284 		0x1f2c0, 0x1f2c0,
2285 		0x1f2e0, 0x1f2e0,
2286 		0x1f300, 0x1f384,
2287 		0x1f3c0, 0x1f3c8,
2288 		0x1f408, 0x1f40c,
2289 		0x1f440, 0x1f444,
2290 		0x1f44c, 0x1f44c,
2291 		0x1f684, 0x1f690,
2292 		0x1f6c0, 0x1f6c0,
2293 		0x1f6e0, 0x1f6e0,
2294 		0x1f700, 0x1f784,
2295 		0x1f7c0, 0x1f7c8,
2296 		0x1f808, 0x1f80c,
2297 		0x1f840, 0x1f844,
2298 		0x1f84c, 0x1f84c,
2299 		0x1fa84, 0x1fa90,
2300 		0x1fac0, 0x1fac0,
2301 		0x1fae0, 0x1fae0,
2302 		0x1fb00, 0x1fb84,
2303 		0x1fbc0, 0x1fbc8,
2304 		0x1fc08, 0x1fc0c,
2305 		0x1fc40, 0x1fc44,
2306 		0x1fc4c, 0x1fc4c,
2307 		0x1fe84, 0x1fe90,
2308 		0x1fec0, 0x1fec0,
2309 		0x1fee0, 0x1fee0,
2310 		0x1ff00, 0x1ff84,
2311 		0x1ffc0, 0x1ffc8,
2312 		0x30000, 0x30030,
2313 		0x30100, 0x30168,
2314 		0x30190, 0x301a0,
2315 		0x301a8, 0x301b8,
2316 		0x301c4, 0x301c8,
2317 		0x301d0, 0x301d0,
2318 		0x30200, 0x30320,
2319 		0x30400, 0x304b4,
2320 		0x304c0, 0x3052c,
2321 		0x30540, 0x3061c,
2322 		0x30800, 0x308a0,
2323 		0x308c0, 0x30908,
2324 		0x30910, 0x309b8,
2325 		0x30a00, 0x30a04,
2326 		0x30a0c, 0x30a14,
2327 		0x30a1c, 0x30a2c,
2328 		0x30a44, 0x30a50,
2329 		0x30a74, 0x30a74,
2330 		0x30a7c, 0x30afc,
2331 		0x30b08, 0x30c24,
2332 		0x30d00, 0x30d14,
2333 		0x30d1c, 0x30d3c,
2334 		0x30d44, 0x30d4c,
2335 		0x30d54, 0x30d74,
2336 		0x30d7c, 0x30d7c,
2337 		0x30de0, 0x30de0,
2338 		0x30e00, 0x30ed4,
2339 		0x30f00, 0x30fa4,
2340 		0x30fc0, 0x30fc4,
2341 		0x31000, 0x31004,
2342 		0x31080, 0x310fc,
2343 		0x31208, 0x31220,
2344 		0x3123c, 0x31254,
2345 		0x31300, 0x31300,
2346 		0x31308, 0x3131c,
2347 		0x31338, 0x3133c,
2348 		0x31380, 0x31380,
2349 		0x31388, 0x313a8,
2350 		0x313b4, 0x313b4,
2351 		0x31400, 0x31420,
2352 		0x31438, 0x3143c,
2353 		0x31480, 0x31480,
2354 		0x314a8, 0x314a8,
2355 		0x314b0, 0x314b4,
2356 		0x314c8, 0x314d4,
2357 		0x31a40, 0x31a4c,
2358 		0x31af0, 0x31b20,
2359 		0x31b38, 0x31b3c,
2360 		0x31b80, 0x31b80,
2361 		0x31ba8, 0x31ba8,
2362 		0x31bb0, 0x31bb4,
2363 		0x31bc8, 0x31bd4,
2364 		0x32140, 0x3218c,
2365 		0x321f0, 0x321f4,
2366 		0x32200, 0x32200,
2367 		0x32218, 0x32218,
2368 		0x32400, 0x32400,
2369 		0x32408, 0x3241c,
2370 		0x32618, 0x32620,
2371 		0x32664, 0x32664,
2372 		0x326a8, 0x326a8,
2373 		0x326ec, 0x326ec,
2374 		0x32a00, 0x32abc,
2375 		0x32b00, 0x32b18,
2376 		0x32b20, 0x32b38,
2377 		0x32b40, 0x32b58,
2378 		0x32b60, 0x32b78,
2379 		0x32c00, 0x32c00,
2380 		0x32c08, 0x32c3c,
2381 		0x33000, 0x3302c,
2382 		0x33034, 0x33050,
2383 		0x33058, 0x33058,
2384 		0x33060, 0x3308c,
2385 		0x3309c, 0x330ac,
2386 		0x330c0, 0x330c0,
2387 		0x330c8, 0x330d0,
2388 		0x330d8, 0x330e0,
2389 		0x330ec, 0x3312c,
2390 		0x33134, 0x33150,
2391 		0x33158, 0x33158,
2392 		0x33160, 0x3318c,
2393 		0x3319c, 0x331ac,
2394 		0x331c0, 0x331c0,
2395 		0x331c8, 0x331d0,
2396 		0x331d8, 0x331e0,
2397 		0x331ec, 0x33290,
2398 		0x33298, 0x332c4,
2399 		0x332e4, 0x33390,
2400 		0x33398, 0x333c4,
2401 		0x333e4, 0x3342c,
2402 		0x33434, 0x33450,
2403 		0x33458, 0x33458,
2404 		0x33460, 0x3348c,
2405 		0x3349c, 0x334ac,
2406 		0x334c0, 0x334c0,
2407 		0x334c8, 0x334d0,
2408 		0x334d8, 0x334e0,
2409 		0x334ec, 0x3352c,
2410 		0x33534, 0x33550,
2411 		0x33558, 0x33558,
2412 		0x33560, 0x3358c,
2413 		0x3359c, 0x335ac,
2414 		0x335c0, 0x335c0,
2415 		0x335c8, 0x335d0,
2416 		0x335d8, 0x335e0,
2417 		0x335ec, 0x33690,
2418 		0x33698, 0x336c4,
2419 		0x336e4, 0x33790,
2420 		0x33798, 0x337c4,
2421 		0x337e4, 0x337fc,
2422 		0x33814, 0x33814,
2423 		0x33854, 0x33868,
2424 		0x33880, 0x3388c,
2425 		0x338c0, 0x338d0,
2426 		0x338e8, 0x338ec,
2427 		0x33900, 0x3392c,
2428 		0x33934, 0x33950,
2429 		0x33958, 0x33958,
2430 		0x33960, 0x3398c,
2431 		0x3399c, 0x339ac,
2432 		0x339c0, 0x339c0,
2433 		0x339c8, 0x339d0,
2434 		0x339d8, 0x339e0,
2435 		0x339ec, 0x33a90,
2436 		0x33a98, 0x33ac4,
2437 		0x33ae4, 0x33b10,
2438 		0x33b24, 0x33b28,
2439 		0x33b38, 0x33b50,
2440 		0x33bf0, 0x33c10,
2441 		0x33c24, 0x33c28,
2442 		0x33c38, 0x33c50,
2443 		0x33cf0, 0x33cfc,
2444 		0x34000, 0x34030,
2445 		0x34100, 0x34168,
2446 		0x34190, 0x341a0,
2447 		0x341a8, 0x341b8,
2448 		0x341c4, 0x341c8,
2449 		0x341d0, 0x341d0,
2450 		0x34200, 0x34320,
2451 		0x34400, 0x344b4,
2452 		0x344c0, 0x3452c,
2453 		0x34540, 0x3461c,
2454 		0x34800, 0x348a0,
2455 		0x348c0, 0x34908,
2456 		0x34910, 0x349b8,
2457 		0x34a00, 0x34a04,
2458 		0x34a0c, 0x34a14,
2459 		0x34a1c, 0x34a2c,
2460 		0x34a44, 0x34a50,
2461 		0x34a74, 0x34a74,
2462 		0x34a7c, 0x34afc,
2463 		0x34b08, 0x34c24,
2464 		0x34d00, 0x34d14,
2465 		0x34d1c, 0x34d3c,
2466 		0x34d44, 0x34d4c,
2467 		0x34d54, 0x34d74,
2468 		0x34d7c, 0x34d7c,
2469 		0x34de0, 0x34de0,
2470 		0x34e00, 0x34ed4,
2471 		0x34f00, 0x34fa4,
2472 		0x34fc0, 0x34fc4,
2473 		0x35000, 0x35004,
2474 		0x35080, 0x350fc,
2475 		0x35208, 0x35220,
2476 		0x3523c, 0x35254,
2477 		0x35300, 0x35300,
2478 		0x35308, 0x3531c,
2479 		0x35338, 0x3533c,
2480 		0x35380, 0x35380,
2481 		0x35388, 0x353a8,
2482 		0x353b4, 0x353b4,
2483 		0x35400, 0x35420,
2484 		0x35438, 0x3543c,
2485 		0x35480, 0x35480,
2486 		0x354a8, 0x354a8,
2487 		0x354b0, 0x354b4,
2488 		0x354c8, 0x354d4,
2489 		0x35a40, 0x35a4c,
2490 		0x35af0, 0x35b20,
2491 		0x35b38, 0x35b3c,
2492 		0x35b80, 0x35b80,
2493 		0x35ba8, 0x35ba8,
2494 		0x35bb0, 0x35bb4,
2495 		0x35bc8, 0x35bd4,
2496 		0x36140, 0x3618c,
2497 		0x361f0, 0x361f4,
2498 		0x36200, 0x36200,
2499 		0x36218, 0x36218,
2500 		0x36400, 0x36400,
2501 		0x36408, 0x3641c,
2502 		0x36618, 0x36620,
2503 		0x36664, 0x36664,
2504 		0x366a8, 0x366a8,
2505 		0x366ec, 0x366ec,
2506 		0x36a00, 0x36abc,
2507 		0x36b00, 0x36b18,
2508 		0x36b20, 0x36b38,
2509 		0x36b40, 0x36b58,
2510 		0x36b60, 0x36b78,
2511 		0x36c00, 0x36c00,
2512 		0x36c08, 0x36c3c,
2513 		0x37000, 0x3702c,
2514 		0x37034, 0x37050,
2515 		0x37058, 0x37058,
2516 		0x37060, 0x3708c,
2517 		0x3709c, 0x370ac,
2518 		0x370c0, 0x370c0,
2519 		0x370c8, 0x370d0,
2520 		0x370d8, 0x370e0,
2521 		0x370ec, 0x3712c,
2522 		0x37134, 0x37150,
2523 		0x37158, 0x37158,
2524 		0x37160, 0x3718c,
2525 		0x3719c, 0x371ac,
2526 		0x371c0, 0x371c0,
2527 		0x371c8, 0x371d0,
2528 		0x371d8, 0x371e0,
2529 		0x371ec, 0x37290,
2530 		0x37298, 0x372c4,
2531 		0x372e4, 0x37390,
2532 		0x37398, 0x373c4,
2533 		0x373e4, 0x3742c,
2534 		0x37434, 0x37450,
2535 		0x37458, 0x37458,
2536 		0x37460, 0x3748c,
2537 		0x3749c, 0x374ac,
2538 		0x374c0, 0x374c0,
2539 		0x374c8, 0x374d0,
2540 		0x374d8, 0x374e0,
2541 		0x374ec, 0x3752c,
2542 		0x37534, 0x37550,
2543 		0x37558, 0x37558,
2544 		0x37560, 0x3758c,
2545 		0x3759c, 0x375ac,
2546 		0x375c0, 0x375c0,
2547 		0x375c8, 0x375d0,
2548 		0x375d8, 0x375e0,
2549 		0x375ec, 0x37690,
2550 		0x37698, 0x376c4,
2551 		0x376e4, 0x37790,
2552 		0x37798, 0x377c4,
2553 		0x377e4, 0x377fc,
2554 		0x37814, 0x37814,
2555 		0x37854, 0x37868,
2556 		0x37880, 0x3788c,
2557 		0x378c0, 0x378d0,
2558 		0x378e8, 0x378ec,
2559 		0x37900, 0x3792c,
2560 		0x37934, 0x37950,
2561 		0x37958, 0x37958,
2562 		0x37960, 0x3798c,
2563 		0x3799c, 0x379ac,
2564 		0x379c0, 0x379c0,
2565 		0x379c8, 0x379d0,
2566 		0x379d8, 0x379e0,
2567 		0x379ec, 0x37a90,
2568 		0x37a98, 0x37ac4,
2569 		0x37ae4, 0x37b10,
2570 		0x37b24, 0x37b28,
2571 		0x37b38, 0x37b50,
2572 		0x37bf0, 0x37c10,
2573 		0x37c24, 0x37c28,
2574 		0x37c38, 0x37c50,
2575 		0x37cf0, 0x37cfc,
2576 		0x40040, 0x40040,
2577 		0x40080, 0x40084,
2578 		0x40100, 0x40100,
2579 		0x40140, 0x401bc,
2580 		0x40200, 0x40214,
2581 		0x40228, 0x40228,
2582 		0x40240, 0x40258,
2583 		0x40280, 0x40280,
2584 		0x40304, 0x40304,
2585 		0x40330, 0x4033c,
2586 		0x41304, 0x413c8,
2587 		0x413d0, 0x413dc,
2588 		0x413f0, 0x413f0,
2589 		0x41400, 0x4140c,
2590 		0x41414, 0x4141c,
2591 		0x41480, 0x414d0,
2592 		0x44000, 0x4407c,
2593 		0x440c0, 0x441ac,
2594 		0x441b4, 0x4427c,
2595 		0x442c0, 0x443ac,
2596 		0x443b4, 0x4447c,
2597 		0x444c0, 0x445ac,
2598 		0x445b4, 0x4467c,
2599 		0x446c0, 0x447ac,
2600 		0x447b4, 0x4487c,
2601 		0x448c0, 0x449ac,
2602 		0x449b4, 0x44a7c,
2603 		0x44ac0, 0x44bac,
2604 		0x44bb4, 0x44c7c,
2605 		0x44cc0, 0x44dac,
2606 		0x44db4, 0x44e7c,
2607 		0x44ec0, 0x44fac,
2608 		0x44fb4, 0x4507c,
2609 		0x450c0, 0x451ac,
2610 		0x451b4, 0x451fc,
2611 		0x45800, 0x45804,
2612 		0x45810, 0x45830,
2613 		0x45840, 0x45860,
2614 		0x45868, 0x45868,
2615 		0x45880, 0x45884,
2616 		0x458a0, 0x458b0,
2617 		0x45a00, 0x45a04,
2618 		0x45a10, 0x45a30,
2619 		0x45a40, 0x45a60,
2620 		0x45a68, 0x45a68,
2621 		0x45a80, 0x45a84,
2622 		0x45aa0, 0x45ab0,
2623 		0x460c0, 0x460e4,
2624 		0x47000, 0x4703c,
2625 		0x47044, 0x4708c,
2626 		0x47200, 0x47250,
2627 		0x47400, 0x47408,
2628 		0x47414, 0x47420,
2629 		0x47600, 0x47618,
2630 		0x47800, 0x47814,
2631 		0x47820, 0x4782c,
2632 		0x50000, 0x50084,
2633 		0x50090, 0x500cc,
2634 		0x50300, 0x50384,
2635 		0x50400, 0x50400,
2636 		0x50800, 0x50884,
2637 		0x50890, 0x508cc,
2638 		0x50b00, 0x50b84,
2639 		0x50c00, 0x50c00,
2640 		0x51000, 0x51020,
2641 		0x51028, 0x510b0,
2642 		0x51300, 0x51324,
2643 	};
2644 
2645 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2646 	const unsigned int *reg_ranges;
2647 	int reg_ranges_size, range;
2648 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2649 
2650 	/* Select the right set of register ranges to dump depending on the
2651 	 * adapter chip type.
2652 	 */
2653 	switch (chip_version) {
2654 	case CHELSIO_T4:
2655 		reg_ranges = t4_reg_ranges;
2656 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2657 		break;
2658 
2659 	case CHELSIO_T5:
2660 		reg_ranges = t5_reg_ranges;
2661 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2662 		break;
2663 
2664 	case CHELSIO_T6:
2665 		reg_ranges = t6_reg_ranges;
2666 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2667 		break;
2668 
2669 	default:
2670 		dev_err(adap->pdev_dev,
2671 			"Unsupported chip version %d\n", chip_version);
2672 		return;
2673 	}
2674 
2675 	/* Clear the register buffer and insert the appropriate register
2676 	 * values selected by the above register ranges.
2677 	 */
2678 	memset(buf, 0, buf_size);
2679 	for (range = 0; range < reg_ranges_size; range += 2) {
2680 		unsigned int reg = reg_ranges[range];
2681 		unsigned int last_reg = reg_ranges[range + 1];
2682 		u32 *bufp = (u32 *)((char *)buf + reg);
2683 
2684 		/* Iterate across the register range filling in the register
2685 		 * buffer but don't write past the end of the register buffer.
2686 		 */
2687 		while (reg <= last_reg && bufp < buf_end) {
2688 			*bufp++ = t4_read_reg(adap, reg);
2689 			reg += sizeof(u32);
2690 		}
2691 	}
2692 }
2693 
2694 #define EEPROM_STAT_ADDR   0x7bfc
2695 #define VPD_BASE           0x400
2696 #define VPD_BASE_OLD       0
2697 #define VPD_LEN            1024
2698 #define CHELSIO_VPD_UNIQUE_ID 0x82
2699 
2700 /**
2701  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2702  * @phys_addr: the physical EEPROM address
2703  * @fn: the PCI function number
2704  * @sz: size of function-specific area
2705  *
2706  * Translate a physical EEPROM address to virtual.  The first 1K is
2707  * accessed through virtual addresses starting at 31K, the rest is
2708  * accessed through virtual addresses starting at 0.
2709  *
2710  * The mapping is as follows:
2711  * [0..1K) -> [31K..32K)
2712  * [1K..1K+A) -> [31K-A..31K)
2713  * [1K+A..ES) -> [0..ES-A-1K)
2714  *
2715  * where A = @fn * @sz, and ES = EEPROM size.
2716  */
2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2718 {
2719 	fn *= sz;
2720 	if (phys_addr < 1024)
2721 		return phys_addr + (31 << 10);
2722 	if (phys_addr < 1024 + fn)
2723 		return 31744 - fn + phys_addr - 1024;
2724 	if (phys_addr < EEPROMSIZE)
2725 		return phys_addr - 1024 - fn;
2726 	return -EINVAL;
2727 }
2728 
2729 /**
2730  *	t4_seeprom_wp - enable/disable EEPROM write protection
2731  *	@adapter: the adapter
2732  *	@enable: whether to enable or disable write protection
2733  *
2734  *	Enables or disables write protection on the serial EEPROM.
2735  */
2736 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2737 {
2738 	unsigned int v = enable ? 0xc : 0;
2739 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2740 	return ret < 0 ? ret : 0;
2741 }
2742 
2743 /**
2744  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2745  *	@adapter: adapter to read
2746  *	@p: where to store the parameters
2747  *
2748  *	Reads card parameters stored in VPD EEPROM.
2749  */
2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2751 {
2752 	int i, ret = 0, addr;
2753 	int ec, sn, pn, na;
2754 	u8 *vpd, csum;
2755 	unsigned int vpdr_len, kw_offset, id_len;
2756 
2757 	vpd = vmalloc(VPD_LEN);
2758 	if (!vpd)
2759 		return -ENOMEM;
2760 
2761 	/* Card information normally starts at VPD_BASE but early cards had
2762 	 * it at 0.
2763 	 */
2764 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2765 	if (ret < 0)
2766 		goto out;
2767 
2768 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2769 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2770 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2771 	 * is expected to automatically put this entry at the
2772 	 * beginning of the VPD.
2773 	 */
2774 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2775 
2776 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2777 	if (ret < 0)
2778 		goto out;
2779 
2780 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2781 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2782 		ret = -EINVAL;
2783 		goto out;
2784 	}
2785 
2786 	id_len = pci_vpd_lrdt_size(vpd);
2787 	if (id_len > ID_LEN)
2788 		id_len = ID_LEN;
2789 
2790 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2791 	if (i < 0) {
2792 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2793 		ret = -EINVAL;
2794 		goto out;
2795 	}
2796 
2797 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2798 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2799 	if (vpdr_len + kw_offset > VPD_LEN) {
2800 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2801 		ret = -EINVAL;
2802 		goto out;
2803 	}
2804 
2805 #define FIND_VPD_KW(var, name) do { \
2806 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2807 	if (var < 0) { \
2808 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2809 		ret = -EINVAL; \
2810 		goto out; \
2811 	} \
2812 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2813 } while (0)
2814 
2815 	FIND_VPD_KW(i, "RV");
2816 	for (csum = 0; i >= 0; i--)
2817 		csum += vpd[i];
2818 
2819 	if (csum) {
2820 		dev_err(adapter->pdev_dev,
2821 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2822 		ret = -EINVAL;
2823 		goto out;
2824 	}
2825 
2826 	FIND_VPD_KW(ec, "EC");
2827 	FIND_VPD_KW(sn, "SN");
2828 	FIND_VPD_KW(pn, "PN");
2829 	FIND_VPD_KW(na, "NA");
2830 #undef FIND_VPD_KW
2831 
2832 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2833 	strim(p->id);
2834 	memcpy(p->ec, vpd + ec, EC_LEN);
2835 	strim(p->ec);
2836 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2837 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2838 	strim(p->sn);
2839 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2840 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2841 	strim(p->pn);
2842 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2843 	strim((char *)p->na);
2844 
2845 out:
2846 	vfree(vpd);
2847 	return ret < 0 ? ret : 0;
2848 }
2849 
2850 /**
2851  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2852  *	@adapter: adapter to read
2853  *	@p: where to store the parameters
2854  *
2855  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2856  *	Clock.  This can only be called after a connection to the firmware
2857  *	is established.
2858  */
2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2860 {
2861 	u32 cclk_param, cclk_val;
2862 	int ret;
2863 
2864 	/* Grab the raw VPD parameters.
2865 	 */
2866 	ret = t4_get_raw_vpd_params(adapter, p);
2867 	if (ret)
2868 		return ret;
2869 
2870 	/* Ask firmware for the Core Clock since it knows how to translate the
2871 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2872 	 */
2873 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2874 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2875 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2876 			      1, &cclk_param, &cclk_val);
2877 
2878 	if (ret)
2879 		return ret;
2880 	p->cclk = cclk_val;
2881 
2882 	return 0;
2883 }
2884 
2885 /**
2886  *	t4_get_pfres - retrieve VF resource limits
2887  *	@adapter: the adapter
2888  *
2889  *	Retrieves configured resource limits and capabilities for a physical
2890  *	function.  The results are stored in @adapter->pfres.
2891  */
2892 int t4_get_pfres(struct adapter *adapter)
2893 {
2894 	struct pf_resources *pfres = &adapter->params.pfres;
2895 	struct fw_pfvf_cmd cmd, rpl;
2896 	int v;
2897 	u32 word;
2898 
2899 	/* Execute PFVF Read command to get VF resource limits; bail out early
2900 	 * with error on command failure.
2901 	 */
2902 	memset(&cmd, 0, sizeof(cmd));
2903 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2904 				    FW_CMD_REQUEST_F |
2905 				    FW_CMD_READ_F |
2906 				    FW_PFVF_CMD_PFN_V(adapter->pf) |
2907 				    FW_PFVF_CMD_VFN_V(0));
2908 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2909 	v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2910 	if (v != FW_SUCCESS)
2911 		return v;
2912 
2913 	/* Extract PF resource limits and return success.
2914 	 */
2915 	word = be32_to_cpu(rpl.niqflint_niq);
2916 	pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2917 	pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2918 
2919 	word = be32_to_cpu(rpl.type_to_neq);
2920 	pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2921 	pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2922 
2923 	word = be32_to_cpu(rpl.tc_to_nexactf);
2924 	pfres->tc = FW_PFVF_CMD_TC_G(word);
2925 	pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2926 	pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2927 
2928 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2929 	pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2930 	pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2931 	pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2932 
2933 	return 0;
2934 }
2935 
2936 /* serial flash and firmware constants */
2937 enum {
2938 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2939 
2940 	/* flash command opcodes */
2941 	SF_PROG_PAGE    = 2,          /* program page */
2942 	SF_WR_DISABLE   = 4,          /* disable writes */
2943 	SF_RD_STATUS    = 5,          /* read status register */
2944 	SF_WR_ENABLE    = 6,          /* enable writes */
2945 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2946 	SF_RD_ID        = 0x9f,       /* read ID */
2947 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2948 };
2949 
2950 /**
2951  *	sf1_read - read data from the serial flash
2952  *	@adapter: the adapter
2953  *	@byte_cnt: number of bytes to read
2954  *	@cont: whether another operation will be chained
2955  *	@lock: whether to lock SF for PL access only
2956  *	@valp: where to store the read data
2957  *
2958  *	Reads up to 4 bytes of data from the serial flash.  The location of
2959  *	the read needs to be specified prior to calling this by issuing the
2960  *	appropriate commands to the serial flash.
2961  */
2962 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2963 		    int lock, u32 *valp)
2964 {
2965 	int ret;
2966 
2967 	if (!byte_cnt || byte_cnt > 4)
2968 		return -EINVAL;
2969 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2970 		return -EBUSY;
2971 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2972 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2973 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2974 	if (!ret)
2975 		*valp = t4_read_reg(adapter, SF_DATA_A);
2976 	return ret;
2977 }
2978 
2979 /**
2980  *	sf1_write - write data to the serial flash
2981  *	@adapter: the adapter
2982  *	@byte_cnt: number of bytes to write
2983  *	@cont: whether another operation will be chained
2984  *	@lock: whether to lock SF for PL access only
2985  *	@val: value to write
2986  *
2987  *	Writes up to 4 bytes of data to the serial flash.  The location of
2988  *	the write needs to be specified prior to calling this by issuing the
2989  *	appropriate commands to the serial flash.
2990  */
2991 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2992 		     int lock, u32 val)
2993 {
2994 	if (!byte_cnt || byte_cnt > 4)
2995 		return -EINVAL;
2996 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2997 		return -EBUSY;
2998 	t4_write_reg(adapter, SF_DATA_A, val);
2999 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
3000 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
3001 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
3002 }
3003 
3004 /**
3005  *	flash_wait_op - wait for a flash operation to complete
3006  *	@adapter: the adapter
3007  *	@attempts: max number of polls of the status register
3008  *	@delay: delay between polls in ms
3009  *
3010  *	Wait for a flash operation to complete by polling the status register.
3011  */
3012 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3013 {
3014 	int ret;
3015 	u32 status;
3016 
3017 	while (1) {
3018 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3019 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3020 			return ret;
3021 		if (!(status & 1))
3022 			return 0;
3023 		if (--attempts == 0)
3024 			return -EAGAIN;
3025 		if (delay)
3026 			msleep(delay);
3027 	}
3028 }
3029 
3030 /**
3031  *	t4_read_flash - read words from serial flash
3032  *	@adapter: the adapter
3033  *	@addr: the start address for the read
3034  *	@nwords: how many 32-bit words to read
3035  *	@data: where to store the read data
3036  *	@byte_oriented: whether to store data as bytes or as words
3037  *
3038  *	Read the specified number of 32-bit words from the serial flash.
3039  *	If @byte_oriented is set the read data is stored as a byte array
3040  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3041  *	natural endianness.
3042  */
3043 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3044 		  unsigned int nwords, u32 *data, int byte_oriented)
3045 {
3046 	int ret;
3047 
3048 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3049 		return -EINVAL;
3050 
3051 	addr = swab32(addr) | SF_RD_DATA_FAST;
3052 
3053 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3054 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3055 		return ret;
3056 
3057 	for ( ; nwords; nwords--, data++) {
3058 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3059 		if (nwords == 1)
3060 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3061 		if (ret)
3062 			return ret;
3063 		if (byte_oriented)
3064 			*data = (__force __u32)(cpu_to_be32(*data));
3065 	}
3066 	return 0;
3067 }
3068 
3069 /**
3070  *	t4_write_flash - write up to a page of data to the serial flash
3071  *	@adapter: the adapter
3072  *	@addr: the start address to write
3073  *	@n: length of data to write in bytes
3074  *	@data: the data to write
3075  *
3076  *	Writes up to a page of data (256 bytes) to the serial flash starting
3077  *	at the given address.  All the data must be written to the same page.
3078  */
3079 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3080 			  unsigned int n, const u8 *data)
3081 {
3082 	int ret;
3083 	u32 buf[64];
3084 	unsigned int i, c, left, val, offset = addr & 0xff;
3085 
3086 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3087 		return -EINVAL;
3088 
3089 	val = swab32(addr) | SF_PROG_PAGE;
3090 
3091 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3092 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3093 		goto unlock;
3094 
3095 	for (left = n; left; left -= c) {
3096 		c = min(left, 4U);
3097 		for (val = 0, i = 0; i < c; ++i)
3098 			val = (val << 8) + *data++;
3099 
3100 		ret = sf1_write(adapter, c, c != left, 1, val);
3101 		if (ret)
3102 			goto unlock;
3103 	}
3104 	ret = flash_wait_op(adapter, 8, 1);
3105 	if (ret)
3106 		goto unlock;
3107 
3108 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3109 
3110 	/* Read the page to verify the write succeeded */
3111 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3112 	if (ret)
3113 		return ret;
3114 
3115 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3116 		dev_err(adapter->pdev_dev,
3117 			"failed to correctly write the flash page at %#x\n",
3118 			addr);
3119 		return -EIO;
3120 	}
3121 	return 0;
3122 
3123 unlock:
3124 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3125 	return ret;
3126 }
3127 
3128 /**
3129  *	t4_get_fw_version - read the firmware version
3130  *	@adapter: the adapter
3131  *	@vers: where to place the version
3132  *
3133  *	Reads the FW version from flash.
3134  */
3135 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3136 {
3137 	return t4_read_flash(adapter, FLASH_FW_START +
3138 			     offsetof(struct fw_hdr, fw_ver), 1,
3139 			     vers, 0);
3140 }
3141 
3142 /**
3143  *	t4_get_bs_version - read the firmware bootstrap version
3144  *	@adapter: the adapter
3145  *	@vers: where to place the version
3146  *
3147  *	Reads the FW Bootstrap version from flash.
3148  */
3149 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3150 {
3151 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3152 			     offsetof(struct fw_hdr, fw_ver), 1,
3153 			     vers, 0);
3154 }
3155 
3156 /**
3157  *	t4_get_tp_version - read the TP microcode version
3158  *	@adapter: the adapter
3159  *	@vers: where to place the version
3160  *
3161  *	Reads the TP microcode version from flash.
3162  */
3163 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3164 {
3165 	return t4_read_flash(adapter, FLASH_FW_START +
3166 			     offsetof(struct fw_hdr, tp_microcode_ver),
3167 			     1, vers, 0);
3168 }
3169 
3170 /**
3171  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3172  *	@adapter: the adapter
3173  *	@vers: where to place the version
3174  *
3175  *	Reads the Expansion ROM header from FLASH and returns the version
3176  *	number (if present) through the @vers return value pointer.  We return
3177  *	this in the Firmware Version Format since it's convenient.  Return
3178  *	0 on success, -ENOENT if no Expansion ROM is present.
3179  */
3180 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3181 {
3182 	struct exprom_header {
3183 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3184 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3185 	} *hdr;
3186 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3187 					   sizeof(u32))];
3188 	int ret;
3189 
3190 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3191 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3192 			    0);
3193 	if (ret)
3194 		return ret;
3195 
3196 	hdr = (struct exprom_header *)exprom_header_buf;
3197 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3198 		return -ENOENT;
3199 
3200 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3201 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3202 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3203 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3204 	return 0;
3205 }
3206 
3207 /**
3208  *      t4_get_vpd_version - return the VPD version
3209  *      @adapter: the adapter
3210  *      @vers: where to place the version
3211  *
3212  *      Reads the VPD via the Firmware interface (thus this can only be called
3213  *      once we're ready to issue Firmware commands).  The format of the
3214  *      VPD version is adapter specific.  Returns 0 on success, an error on
3215  *      failure.
3216  *
3217  *      Note that early versions of the Firmware didn't include the ability
3218  *      to retrieve the VPD version, so we zero-out the return-value parameter
3219  *      in that case to avoid leaving it with garbage in it.
3220  *
3221  *      Also note that the Firmware will return its cached copy of the VPD
3222  *      Revision ID, not the actual Revision ID as written in the Serial
3223  *      EEPROM.  This is only an issue if a new VPD has been written and the
3224  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3225  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3226  *      if the Host Driver will be performing a full adapter initialization.
3227  */
3228 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3229 {
3230 	u32 vpdrev_param;
3231 	int ret;
3232 
3233 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3234 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3235 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3236 			      1, &vpdrev_param, vers);
3237 	if (ret)
3238 		*vers = 0;
3239 	return ret;
3240 }
3241 
3242 /**
3243  *      t4_get_scfg_version - return the Serial Configuration version
3244  *      @adapter: the adapter
3245  *      @vers: where to place the version
3246  *
3247  *      Reads the Serial Configuration Version via the Firmware interface
3248  *      (thus this can only be called once we're ready to issue Firmware
3249  *      commands).  The format of the Serial Configuration version is
3250  *      adapter specific.  Returns 0 on success, an error on failure.
3251  *
3252  *      Note that early versions of the Firmware didn't include the ability
3253  *      to retrieve the Serial Configuration version, so we zero-out the
3254  *      return-value parameter in that case to avoid leaving it with
3255  *      garbage in it.
3256  *
3257  *      Also note that the Firmware will return its cached copy of the Serial
3258  *      Initialization Revision ID, not the actual Revision ID as written in
3259  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3260  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3261  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3262  *      been issued if the Host Driver will be performing a full adapter
3263  *      initialization.
3264  */
3265 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3266 {
3267 	u32 scfgrev_param;
3268 	int ret;
3269 
3270 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3271 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3272 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3273 			      1, &scfgrev_param, vers);
3274 	if (ret)
3275 		*vers = 0;
3276 	return ret;
3277 }
3278 
3279 /**
3280  *      t4_get_version_info - extract various chip/firmware version information
3281  *      @adapter: the adapter
3282  *
3283  *      Reads various chip/firmware version numbers and stores them into the
3284  *      adapter Adapter Parameters structure.  If any of the efforts fails
3285  *      the first failure will be returned, but all of the version numbers
3286  *      will be read.
3287  */
3288 int t4_get_version_info(struct adapter *adapter)
3289 {
3290 	int ret = 0;
3291 
3292 	#define FIRST_RET(__getvinfo) \
3293 	do { \
3294 		int __ret = __getvinfo; \
3295 		if (__ret && !ret) \
3296 			ret = __ret; \
3297 	} while (0)
3298 
3299 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3300 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3301 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3302 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3303 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3304 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3305 
3306 	#undef FIRST_RET
3307 	return ret;
3308 }
3309 
3310 /**
3311  *      t4_dump_version_info - dump all of the adapter configuration IDs
3312  *      @adapter: the adapter
3313  *
3314  *      Dumps all of the various bits of adapter configuration version/revision
3315  *      IDs information.  This is typically called at some point after
3316  *      t4_get_version_info() has been called.
3317  */
3318 void t4_dump_version_info(struct adapter *adapter)
3319 {
3320 	/* Device information */
3321 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3322 		 adapter->params.vpd.id,
3323 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3324 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3325 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3326 
3327 	/* Firmware Version */
3328 	if (!adapter->params.fw_vers)
3329 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3330 	else
3331 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3332 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3333 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3334 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3335 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3336 
3337 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3338 	 * Firmware, so dev_info() is more appropriate here.)
3339 	 */
3340 	if (!adapter->params.bs_vers)
3341 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3342 	else
3343 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3344 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3345 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3346 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3347 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3348 
3349 	/* TP Microcode Version */
3350 	if (!adapter->params.tp_vers)
3351 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3352 	else
3353 		dev_info(adapter->pdev_dev,
3354 			 "TP Microcode version: %u.%u.%u.%u\n",
3355 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3356 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3357 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3358 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3359 
3360 	/* Expansion ROM version */
3361 	if (!adapter->params.er_vers)
3362 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3363 	else
3364 		dev_info(adapter->pdev_dev,
3365 			 "Expansion ROM version: %u.%u.%u.%u\n",
3366 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3367 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3368 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3369 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3370 
3371 	/* Serial Configuration version */
3372 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3373 		 adapter->params.scfg_vers);
3374 
3375 	/* VPD Version */
3376 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3377 		 adapter->params.vpd_vers);
3378 }
3379 
3380 /**
3381  *	t4_check_fw_version - check if the FW is supported with this driver
3382  *	@adap: the adapter
3383  *
3384  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3385  *	if there's exact match, a negative error if the version could not be
3386  *	read or there's a major version mismatch
3387  */
3388 int t4_check_fw_version(struct adapter *adap)
3389 {
3390 	int i, ret, major, minor, micro;
3391 	int exp_major, exp_minor, exp_micro;
3392 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3393 
3394 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3395 	/* Try multiple times before returning error */
3396 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3397 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3398 
3399 	if (ret)
3400 		return ret;
3401 
3402 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3403 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3404 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3405 
3406 	switch (chip_version) {
3407 	case CHELSIO_T4:
3408 		exp_major = T4FW_MIN_VERSION_MAJOR;
3409 		exp_minor = T4FW_MIN_VERSION_MINOR;
3410 		exp_micro = T4FW_MIN_VERSION_MICRO;
3411 		break;
3412 	case CHELSIO_T5:
3413 		exp_major = T5FW_MIN_VERSION_MAJOR;
3414 		exp_minor = T5FW_MIN_VERSION_MINOR;
3415 		exp_micro = T5FW_MIN_VERSION_MICRO;
3416 		break;
3417 	case CHELSIO_T6:
3418 		exp_major = T6FW_MIN_VERSION_MAJOR;
3419 		exp_minor = T6FW_MIN_VERSION_MINOR;
3420 		exp_micro = T6FW_MIN_VERSION_MICRO;
3421 		break;
3422 	default:
3423 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3424 			adap->chip);
3425 		return -EINVAL;
3426 	}
3427 
3428 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3429 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3430 		dev_err(adap->pdev_dev,
3431 			"Card has firmware version %u.%u.%u, minimum "
3432 			"supported firmware is %u.%u.%u.\n", major, minor,
3433 			micro, exp_major, exp_minor, exp_micro);
3434 		return -EFAULT;
3435 	}
3436 	return 0;
3437 }
3438 
3439 /* Is the given firmware API compatible with the one the driver was compiled
3440  * with?
3441  */
3442 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3443 {
3444 
3445 	/* short circuit if it's the exact same firmware version */
3446 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3447 		return 1;
3448 
3449 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3450 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3451 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3452 		return 1;
3453 #undef SAME_INTF
3454 
3455 	return 0;
3456 }
3457 
3458 /* The firmware in the filesystem is usable, but should it be installed?
3459  * This routine explains itself in detail if it indicates the filesystem
3460  * firmware should be installed.
3461  */
3462 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3463 				int k, int c)
3464 {
3465 	const char *reason;
3466 
3467 	if (!card_fw_usable) {
3468 		reason = "incompatible or unusable";
3469 		goto install;
3470 	}
3471 
3472 	if (k > c) {
3473 		reason = "older than the version supported with this driver";
3474 		goto install;
3475 	}
3476 
3477 	return 0;
3478 
3479 install:
3480 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3481 		"installing firmware %u.%u.%u.%u on card.\n",
3482 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3483 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3484 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3485 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3486 
3487 	return 1;
3488 }
3489 
3490 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3491 	       const u8 *fw_data, unsigned int fw_size,
3492 	       struct fw_hdr *card_fw, enum dev_state state,
3493 	       int *reset)
3494 {
3495 	int ret, card_fw_usable, fs_fw_usable;
3496 	const struct fw_hdr *fs_fw;
3497 	const struct fw_hdr *drv_fw;
3498 
3499 	drv_fw = &fw_info->fw_hdr;
3500 
3501 	/* Read the header of the firmware on the card */
3502 	ret = -t4_read_flash(adap, FLASH_FW_START,
3503 			    sizeof(*card_fw) / sizeof(uint32_t),
3504 			    (uint32_t *)card_fw, 1);
3505 	if (ret == 0) {
3506 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3507 	} else {
3508 		dev_err(adap->pdev_dev,
3509 			"Unable to read card's firmware header: %d\n", ret);
3510 		card_fw_usable = 0;
3511 	}
3512 
3513 	if (fw_data != NULL) {
3514 		fs_fw = (const void *)fw_data;
3515 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3516 	} else {
3517 		fs_fw = NULL;
3518 		fs_fw_usable = 0;
3519 	}
3520 
3521 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3522 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3523 		/* Common case: the firmware on the card is an exact match and
3524 		 * the filesystem one is an exact match too, or the filesystem
3525 		 * one is absent/incompatible.
3526 		 */
3527 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3528 		   should_install_fs_fw(adap, card_fw_usable,
3529 					be32_to_cpu(fs_fw->fw_ver),
3530 					be32_to_cpu(card_fw->fw_ver))) {
3531 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3532 				     fw_size, 0);
3533 		if (ret != 0) {
3534 			dev_err(adap->pdev_dev,
3535 				"failed to install firmware: %d\n", ret);
3536 			goto bye;
3537 		}
3538 
3539 		/* Installed successfully, update the cached header too. */
3540 		*card_fw = *fs_fw;
3541 		card_fw_usable = 1;
3542 		*reset = 0;	/* already reset as part of load_fw */
3543 	}
3544 
3545 	if (!card_fw_usable) {
3546 		uint32_t d, c, k;
3547 
3548 		d = be32_to_cpu(drv_fw->fw_ver);
3549 		c = be32_to_cpu(card_fw->fw_ver);
3550 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3551 
3552 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3553 			"chip state %d, "
3554 			"driver compiled with %d.%d.%d.%d, "
3555 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3556 			state,
3557 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3558 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3559 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3560 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3561 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3562 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3563 		ret = EINVAL;
3564 		goto bye;
3565 	}
3566 
3567 	/* We're using whatever's on the card and it's known to be good. */
3568 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3569 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3570 
3571 bye:
3572 	return ret;
3573 }
3574 
3575 /**
3576  *	t4_flash_erase_sectors - erase a range of flash sectors
3577  *	@adapter: the adapter
3578  *	@start: the first sector to erase
3579  *	@end: the last sector to erase
3580  *
3581  *	Erases the sectors in the given inclusive range.
3582  */
3583 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3584 {
3585 	int ret = 0;
3586 
3587 	if (end >= adapter->params.sf_nsec)
3588 		return -EINVAL;
3589 
3590 	while (start <= end) {
3591 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3592 		    (ret = sf1_write(adapter, 4, 0, 1,
3593 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3594 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3595 			dev_err(adapter->pdev_dev,
3596 				"erase of flash sector %d failed, error %d\n",
3597 				start, ret);
3598 			break;
3599 		}
3600 		start++;
3601 	}
3602 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3603 	return ret;
3604 }
3605 
3606 /**
3607  *	t4_flash_cfg_addr - return the address of the flash configuration file
3608  *	@adapter: the adapter
3609  *
3610  *	Return the address within the flash where the Firmware Configuration
3611  *	File is stored.
3612  */
3613 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3614 {
3615 	if (adapter->params.sf_size == 0x100000)
3616 		return FLASH_FPGA_CFG_START;
3617 	else
3618 		return FLASH_CFG_START;
3619 }
3620 
3621 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3622  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3623  * and emit an error message for mismatched firmware to save our caller the
3624  * effort ...
3625  */
3626 static bool t4_fw_matches_chip(const struct adapter *adap,
3627 			       const struct fw_hdr *hdr)
3628 {
3629 	/* The expression below will return FALSE for any unsupported adapter
3630 	 * which will keep us "honest" in the future ...
3631 	 */
3632 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3633 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3634 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3635 		return true;
3636 
3637 	dev_err(adap->pdev_dev,
3638 		"FW image (%d) is not suitable for this adapter (%d)\n",
3639 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3640 	return false;
3641 }
3642 
3643 /**
3644  *	t4_load_fw - download firmware
3645  *	@adap: the adapter
3646  *	@fw_data: the firmware image to write
3647  *	@size: image size
3648  *
3649  *	Write the supplied firmware image to the card's serial flash.
3650  */
3651 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3652 {
3653 	u32 csum;
3654 	int ret, addr;
3655 	unsigned int i;
3656 	u8 first_page[SF_PAGE_SIZE];
3657 	const __be32 *p = (const __be32 *)fw_data;
3658 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3659 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3660 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3661 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3662 	unsigned int fw_start = FLASH_FW_START;
3663 
3664 	if (!size) {
3665 		dev_err(adap->pdev_dev, "FW image has no data\n");
3666 		return -EINVAL;
3667 	}
3668 	if (size & 511) {
3669 		dev_err(adap->pdev_dev,
3670 			"FW image size not multiple of 512 bytes\n");
3671 		return -EINVAL;
3672 	}
3673 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3674 		dev_err(adap->pdev_dev,
3675 			"FW image size differs from size in FW header\n");
3676 		return -EINVAL;
3677 	}
3678 	if (size > fw_size) {
3679 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3680 			fw_size);
3681 		return -EFBIG;
3682 	}
3683 	if (!t4_fw_matches_chip(adap, hdr))
3684 		return -EINVAL;
3685 
3686 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3687 		csum += be32_to_cpu(p[i]);
3688 
3689 	if (csum != 0xffffffff) {
3690 		dev_err(adap->pdev_dev,
3691 			"corrupted firmware image, checksum %#x\n", csum);
3692 		return -EINVAL;
3693 	}
3694 
3695 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3696 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3697 	if (ret)
3698 		goto out;
3699 
3700 	/*
3701 	 * We write the correct version at the end so the driver can see a bad
3702 	 * version if the FW write fails.  Start by writing a copy of the
3703 	 * first page with a bad version.
3704 	 */
3705 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3706 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3707 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3708 	if (ret)
3709 		goto out;
3710 
3711 	addr = fw_start;
3712 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3713 		addr += SF_PAGE_SIZE;
3714 		fw_data += SF_PAGE_SIZE;
3715 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3716 		if (ret)
3717 			goto out;
3718 	}
3719 
3720 	ret = t4_write_flash(adap,
3721 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3722 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3723 out:
3724 	if (ret)
3725 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3726 			ret);
3727 	else
3728 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3729 	return ret;
3730 }
3731 
3732 /**
3733  *	t4_phy_fw_ver - return current PHY firmware version
3734  *	@adap: the adapter
3735  *	@phy_fw_ver: return value buffer for PHY firmware version
3736  *
3737  *	Returns the current version of external PHY firmware on the
3738  *	adapter.
3739  */
3740 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3741 {
3742 	u32 param, val;
3743 	int ret;
3744 
3745 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3746 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3747 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3748 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3749 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3750 			      &param, &val);
3751 	if (ret < 0)
3752 		return ret;
3753 	*phy_fw_ver = val;
3754 	return 0;
3755 }
3756 
3757 /**
3758  *	t4_load_phy_fw - download port PHY firmware
3759  *	@adap: the adapter
3760  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3761  *	@win_lock: the lock to use to guard the memory copy
3762  *	@phy_fw_version: function to check PHY firmware versions
3763  *	@phy_fw_data: the PHY firmware image to write
3764  *	@phy_fw_size: image size
3765  *
3766  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3767  *	@phy_fw_version is supplied, then it will be used to determine if
3768  *	it's necessary to perform the transfer by comparing the version
3769  *	of any existing adapter PHY firmware with that of the passed in
3770  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3771  *	around the call to t4_memory_rw() which transfers the PHY firmware
3772  *	to the adapter.
3773  *
3774  *	A negative error number will be returned if an error occurs.  If
3775  *	version number support is available and there's no need to upgrade
3776  *	the firmware, 0 will be returned.  If firmware is successfully
3777  *	transferred to the adapter, 1 will be retured.
3778  *
3779  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3780  *	a result, a RESET of the adapter would cause that RAM to lose its
3781  *	contents.  Thus, loading PHY firmware on such adapters must happen
3782  *	after any FW_RESET_CMDs ...
3783  */
3784 int t4_load_phy_fw(struct adapter *adap,
3785 		   int win, spinlock_t *win_lock,
3786 		   int (*phy_fw_version)(const u8 *, size_t),
3787 		   const u8 *phy_fw_data, size_t phy_fw_size)
3788 {
3789 	unsigned long mtype = 0, maddr = 0;
3790 	u32 param, val;
3791 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3792 	int ret;
3793 
3794 	/* If we have version number support, then check to see if the adapter
3795 	 * already has up-to-date PHY firmware loaded.
3796 	 */
3797 	if (phy_fw_version) {
3798 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3799 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3800 		if (ret < 0)
3801 			return ret;
3802 
3803 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3804 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3805 				"version %#x\n", cur_phy_fw_ver);
3806 			return 0;
3807 		}
3808 	}
3809 
3810 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3811 	 * The size of the file requires a special version of the READ coommand
3812 	 * which will pass the file size via the values field in PARAMS_CMD and
3813 	 * retrieve the return value from firmware and place it in the same
3814 	 * buffer values
3815 	 */
3816 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3817 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3818 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3819 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3820 	val = phy_fw_size;
3821 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3822 				 &param, &val, 1, true);
3823 	if (ret < 0)
3824 		return ret;
3825 	mtype = val >> 8;
3826 	maddr = (val & 0xff) << 16;
3827 
3828 	/* Copy the supplied PHY Firmware image to the adapter memory location
3829 	 * allocated by the adapter firmware.
3830 	 */
3831 	if (win_lock)
3832 		spin_lock_bh(win_lock);
3833 	ret = t4_memory_rw(adap, win, mtype, maddr,
3834 			   phy_fw_size, (__be32 *)phy_fw_data,
3835 			   T4_MEMORY_WRITE);
3836 	if (win_lock)
3837 		spin_unlock_bh(win_lock);
3838 	if (ret)
3839 		return ret;
3840 
3841 	/* Tell the firmware that the PHY firmware image has been written to
3842 	 * RAM and it can now start copying it over to the PHYs.  The chip
3843 	 * firmware will RESET the affected PHYs as part of this operation
3844 	 * leaving them running the new PHY firmware image.
3845 	 */
3846 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3847 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3848 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3849 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3850 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3851 				    &param, &val, 30000);
3852 
3853 	/* If we have version number support, then check to see that the new
3854 	 * firmware got loaded properly.
3855 	 */
3856 	if (phy_fw_version) {
3857 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3858 		if (ret < 0)
3859 			return ret;
3860 
3861 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3862 			CH_WARN(adap, "PHY Firmware did not update: "
3863 				"version on adapter %#x, "
3864 				"version flashed %#x\n",
3865 				cur_phy_fw_ver, new_phy_fw_vers);
3866 			return -ENXIO;
3867 		}
3868 	}
3869 
3870 	return 1;
3871 }
3872 
3873 /**
3874  *	t4_fwcache - firmware cache operation
3875  *	@adap: the adapter
3876  *	@op  : the operation (flush or flush and invalidate)
3877  */
3878 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3879 {
3880 	struct fw_params_cmd c;
3881 
3882 	memset(&c, 0, sizeof(c));
3883 	c.op_to_vfn =
3884 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3885 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3886 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3887 			    FW_PARAMS_CMD_VFN_V(0));
3888 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3889 	c.param[0].mnem =
3890 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3891 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3892 	c.param[0].val = cpu_to_be32(op);
3893 
3894 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3895 }
3896 
3897 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3898 			unsigned int *pif_req_wrptr,
3899 			unsigned int *pif_rsp_wrptr)
3900 {
3901 	int i, j;
3902 	u32 cfg, val, req, rsp;
3903 
3904 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3905 	if (cfg & LADBGEN_F)
3906 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3907 
3908 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3909 	req = POLADBGWRPTR_G(val);
3910 	rsp = PILADBGWRPTR_G(val);
3911 	if (pif_req_wrptr)
3912 		*pif_req_wrptr = req;
3913 	if (pif_rsp_wrptr)
3914 		*pif_rsp_wrptr = rsp;
3915 
3916 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3917 		for (j = 0; j < 6; j++) {
3918 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3919 				     PILADBGRDPTR_V(rsp));
3920 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3921 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3922 			req++;
3923 			rsp++;
3924 		}
3925 		req = (req + 2) & POLADBGRDPTR_M;
3926 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3927 	}
3928 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3929 }
3930 
3931 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3932 {
3933 	u32 cfg;
3934 	int i, j, idx;
3935 
3936 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3937 	if (cfg & LADBGEN_F)
3938 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3939 
3940 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3941 		for (j = 0; j < 5; j++) {
3942 			idx = 8 * i + j;
3943 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3944 				     PILADBGRDPTR_V(idx));
3945 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3946 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3947 		}
3948 	}
3949 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3950 }
3951 
3952 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3953 {
3954 	unsigned int i, j;
3955 
3956 	for (i = 0; i < 8; i++) {
3957 		u32 *p = la_buf + i;
3958 
3959 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3960 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3961 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3962 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3963 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3964 	}
3965 }
3966 
3967 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3968  * Capabilities which we control with separate controls -- see, for instance,
3969  * Pause Frames and Forward Error Correction.  In order to determine what the
3970  * full set of Advertised Port Capabilities are, the base Advertised Port
3971  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3972  * Port Capabilities associated with those other controls.  See
3973  * t4_link_acaps() for how this is done.
3974  */
3975 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3976 		     FW_PORT_CAP32_ANEG)
3977 
3978 /**
3979  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3980  *	@caps16: a 16-bit Port Capabilities value
3981  *
3982  *	Returns the equivalent 32-bit Port Capabilities value.
3983  */
3984 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3985 {
3986 	fw_port_cap32_t caps32 = 0;
3987 
3988 	#define CAP16_TO_CAP32(__cap) \
3989 		do { \
3990 			if (caps16 & FW_PORT_CAP_##__cap) \
3991 				caps32 |= FW_PORT_CAP32_##__cap; \
3992 		} while (0)
3993 
3994 	CAP16_TO_CAP32(SPEED_100M);
3995 	CAP16_TO_CAP32(SPEED_1G);
3996 	CAP16_TO_CAP32(SPEED_25G);
3997 	CAP16_TO_CAP32(SPEED_10G);
3998 	CAP16_TO_CAP32(SPEED_40G);
3999 	CAP16_TO_CAP32(SPEED_100G);
4000 	CAP16_TO_CAP32(FC_RX);
4001 	CAP16_TO_CAP32(FC_TX);
4002 	CAP16_TO_CAP32(ANEG);
4003 	CAP16_TO_CAP32(FORCE_PAUSE);
4004 	CAP16_TO_CAP32(MDIAUTO);
4005 	CAP16_TO_CAP32(MDISTRAIGHT);
4006 	CAP16_TO_CAP32(FEC_RS);
4007 	CAP16_TO_CAP32(FEC_BASER_RS);
4008 	CAP16_TO_CAP32(802_3_PAUSE);
4009 	CAP16_TO_CAP32(802_3_ASM_DIR);
4010 
4011 	#undef CAP16_TO_CAP32
4012 
4013 	return caps32;
4014 }
4015 
4016 /**
4017  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4018  *	@caps32: a 32-bit Port Capabilities value
4019  *
4020  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
4021  *	not all 32-bit Port Capabilities can be represented in the 16-bit
4022  *	Port Capabilities and some fields/values may not make it.
4023  */
4024 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4025 {
4026 	fw_port_cap16_t caps16 = 0;
4027 
4028 	#define CAP32_TO_CAP16(__cap) \
4029 		do { \
4030 			if (caps32 & FW_PORT_CAP32_##__cap) \
4031 				caps16 |= FW_PORT_CAP_##__cap; \
4032 		} while (0)
4033 
4034 	CAP32_TO_CAP16(SPEED_100M);
4035 	CAP32_TO_CAP16(SPEED_1G);
4036 	CAP32_TO_CAP16(SPEED_10G);
4037 	CAP32_TO_CAP16(SPEED_25G);
4038 	CAP32_TO_CAP16(SPEED_40G);
4039 	CAP32_TO_CAP16(SPEED_100G);
4040 	CAP32_TO_CAP16(FC_RX);
4041 	CAP32_TO_CAP16(FC_TX);
4042 	CAP32_TO_CAP16(802_3_PAUSE);
4043 	CAP32_TO_CAP16(802_3_ASM_DIR);
4044 	CAP32_TO_CAP16(ANEG);
4045 	CAP32_TO_CAP16(FORCE_PAUSE);
4046 	CAP32_TO_CAP16(MDIAUTO);
4047 	CAP32_TO_CAP16(MDISTRAIGHT);
4048 	CAP32_TO_CAP16(FEC_RS);
4049 	CAP32_TO_CAP16(FEC_BASER_RS);
4050 
4051 	#undef CAP32_TO_CAP16
4052 
4053 	return caps16;
4054 }
4055 
4056 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4057 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4058 {
4059 	enum cc_pause cc_pause = 0;
4060 
4061 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4062 		cc_pause |= PAUSE_RX;
4063 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4064 		cc_pause |= PAUSE_TX;
4065 
4066 	return cc_pause;
4067 }
4068 
4069 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4070 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4071 {
4072 	/* Translate orthogonal RX/TX Pause Controls for L1 Configure
4073 	 * commands, etc.
4074 	 */
4075 	fw_port_cap32_t fw_pause = 0;
4076 
4077 	if (cc_pause & PAUSE_RX)
4078 		fw_pause |= FW_PORT_CAP32_FC_RX;
4079 	if (cc_pause & PAUSE_TX)
4080 		fw_pause |= FW_PORT_CAP32_FC_TX;
4081 	if (!(cc_pause & PAUSE_AUTONEG))
4082 		fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4083 
4084 	/* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4085 	 * Asymetrical Pause for use in reporting to upper layer OS code, etc.
4086 	 * Note that these bits are ignored in L1 Configure commands.
4087 	 */
4088 	if (cc_pause & PAUSE_RX) {
4089 		if (cc_pause & PAUSE_TX)
4090 			fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4091 		else
4092 			fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4093 	} else if (cc_pause & PAUSE_TX) {
4094 		fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4095 	}
4096 
4097 	return fw_pause;
4098 }
4099 
4100 /* Translate Firmware Forward Error Correction specification to Common Code */
4101 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4102 {
4103 	enum cc_fec cc_fec = 0;
4104 
4105 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4106 		cc_fec |= FEC_RS;
4107 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4108 		cc_fec |= FEC_BASER_RS;
4109 
4110 	return cc_fec;
4111 }
4112 
4113 /* Translate Common Code Forward Error Correction specification to Firmware */
4114 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4115 {
4116 	fw_port_cap32_t fw_fec = 0;
4117 
4118 	if (cc_fec & FEC_RS)
4119 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4120 	if (cc_fec & FEC_BASER_RS)
4121 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4122 
4123 	return fw_fec;
4124 }
4125 
4126 /**
4127  *	t4_link_acaps - compute Link Advertised Port Capabilities
4128  *	@adapter: the adapter
4129  *	@port: the Port ID
4130  *	@lc: the Port's Link Configuration
4131  *
4132  *	Synthesize the Advertised Port Capabilities we'll be using based on
4133  *	the base Advertised Port Capabilities (which have been filtered by
4134  *	ADVERT_MASK) plus the individual controls for things like Pause
4135  *	Frames, Forward Error Correction, MDI, etc.
4136  */
4137 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4138 			      struct link_config *lc)
4139 {
4140 	fw_port_cap32_t fw_fc, fw_fec, acaps;
4141 	unsigned int fw_mdi;
4142 	char cc_fec;
4143 
4144 	fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4145 
4146 	/* Convert driver coding of Pause Frame Flow Control settings into the
4147 	 * Firmware's API.
4148 	 */
4149 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4150 
4151 	/* Convert Common Code Forward Error Control settings into the
4152 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4153 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4154 	 * sent us as part of it's IEEE 802.3-based interpratation of
4155 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4156 	 * use whatever is in the current Requested FEC settings.
4157 	 */
4158 	if (lc->requested_fec & FEC_AUTO)
4159 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4160 	else
4161 		cc_fec = lc->requested_fec;
4162 	fw_fec = cc_to_fwcap_fec(cc_fec);
4163 
4164 	/* Figure out what our Requested Port Capabilities are going to be.
4165 	 * Note parallel structure in t4_handle_get_port_info() and
4166 	 * init_link_config().
4167 	 */
4168 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4169 		acaps = lc->acaps | fw_fc | fw_fec;
4170 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4171 		lc->fec = cc_fec;
4172 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4173 		acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4174 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4175 		lc->fec = cc_fec;
4176 	} else {
4177 		acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4178 	}
4179 
4180 	/* Some Requested Port Capabilities are trivially wrong if they exceed
4181 	 * the Physical Port Capabilities.  We can check that here and provide
4182 	 * moderately useful feedback in the system log.
4183 	 *
4184 	 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4185 	 * we need to exclude this from this check in order to maintain
4186 	 * compatibility ...
4187 	 */
4188 	if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4189 		dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4190 			acaps, lc->pcaps);
4191 		return -EINVAL;
4192 	}
4193 
4194 	return acaps;
4195 }
4196 
4197 /**
4198  *	t4_link_l1cfg_core - apply link configuration to MAC/PHY
4199  *	@adapter: the adapter
4200  *	@mbox: the Firmware Mailbox to use
4201  *	@port: the Port ID
4202  *	@lc: the Port's Link Configuration
4203  *	@sleep_ok: if true we may sleep while awaiting command completion
4204  *	@timeout: time to wait for command to finish before timing out
4205  *		(negative implies @sleep_ok=false)
4206  *
4207  *	Set up a port's MAC and PHY according to a desired link configuration.
4208  *	- If the PHY can auto-negotiate first decide what to advertise, then
4209  *	  enable/disable auto-negotiation as desired, and reset.
4210  *	- If the PHY does not auto-negotiate just reset it.
4211  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4212  *	  otherwise do it later based on the outcome of auto-negotiation.
4213  */
4214 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4215 		       unsigned int port, struct link_config *lc,
4216 		       u8 sleep_ok, int timeout)
4217 {
4218 	unsigned int fw_caps = adapter->params.fw_caps_support;
4219 	struct fw_port_cmd cmd;
4220 	fw_port_cap32_t rcap;
4221 	int ret;
4222 
4223 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4224 	    lc->autoneg == AUTONEG_ENABLE) {
4225 		return -EINVAL;
4226 	}
4227 
4228 	/* Compute our Requested Port Capabilities and send that on to the
4229 	 * Firmware.
4230 	 */
4231 	rcap = t4_link_acaps(adapter, port, lc);
4232 	memset(&cmd, 0, sizeof(cmd));
4233 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4234 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4235 				       FW_PORT_CMD_PORTID_V(port));
4236 	cmd.action_to_len16 =
4237 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4238 						 ? FW_PORT_ACTION_L1_CFG
4239 						 : FW_PORT_ACTION_L1_CFG32) |
4240 						 FW_LEN16(cmd));
4241 	if (fw_caps == FW_CAPS16)
4242 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4243 	else
4244 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4245 
4246 	ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4247 				      sleep_ok, timeout);
4248 
4249 	/* Unfortunately, even if the Requested Port Capabilities "fit" within
4250 	 * the Physical Port Capabilities, some combinations of features may
4251 	 * still not be leagal.  For example, 40Gb/s and Reed-Solomon Forward
4252 	 * Error Correction.  So if the Firmware rejects the L1 Configure
4253 	 * request, flag that here.
4254 	 */
4255 	if (ret) {
4256 		dev_err(adapter->pdev_dev,
4257 			"Requested Port Capabilities %#x rejected, error %d\n",
4258 			rcap, -ret);
4259 		return ret;
4260 	}
4261 	return 0;
4262 }
4263 
4264 /**
4265  *	t4_restart_aneg - restart autonegotiation
4266  *	@adap: the adapter
4267  *	@mbox: mbox to use for the FW command
4268  *	@port: the port id
4269  *
4270  *	Restarts autonegotiation for the selected port.
4271  */
4272 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4273 {
4274 	unsigned int fw_caps = adap->params.fw_caps_support;
4275 	struct fw_port_cmd c;
4276 
4277 	memset(&c, 0, sizeof(c));
4278 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4279 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4280 				     FW_PORT_CMD_PORTID_V(port));
4281 	c.action_to_len16 =
4282 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4283 						 ? FW_PORT_ACTION_L1_CFG
4284 						 : FW_PORT_ACTION_L1_CFG32) |
4285 			    FW_LEN16(c));
4286 	if (fw_caps == FW_CAPS16)
4287 		c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4288 	else
4289 		c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4290 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4291 }
4292 
4293 typedef void (*int_handler_t)(struct adapter *adap);
4294 
4295 struct intr_info {
4296 	unsigned int mask;       /* bits to check in interrupt status */
4297 	const char *msg;         /* message to print or NULL */
4298 	short stat_idx;          /* stat counter to increment or -1 */
4299 	unsigned short fatal;    /* whether the condition reported is fatal */
4300 	int_handler_t int_handler; /* platform-specific int handler */
4301 };
4302 
4303 /**
4304  *	t4_handle_intr_status - table driven interrupt handler
4305  *	@adapter: the adapter that generated the interrupt
4306  *	@reg: the interrupt status register to process
4307  *	@acts: table of interrupt actions
4308  *
4309  *	A table driven interrupt handler that applies a set of masks to an
4310  *	interrupt status word and performs the corresponding actions if the
4311  *	interrupts described by the mask have occurred.  The actions include
4312  *	optionally emitting a warning or alert message.  The table is terminated
4313  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4314  *	conditions.
4315  */
4316 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4317 				 const struct intr_info *acts)
4318 {
4319 	int fatal = 0;
4320 	unsigned int mask = 0;
4321 	unsigned int status = t4_read_reg(adapter, reg);
4322 
4323 	for ( ; acts->mask; ++acts) {
4324 		if (!(status & acts->mask))
4325 			continue;
4326 		if (acts->fatal) {
4327 			fatal++;
4328 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4329 				  status & acts->mask);
4330 		} else if (acts->msg && printk_ratelimit())
4331 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4332 				 status & acts->mask);
4333 		if (acts->int_handler)
4334 			acts->int_handler(adapter);
4335 		mask |= acts->mask;
4336 	}
4337 	status &= mask;
4338 	if (status)                           /* clear processed interrupts */
4339 		t4_write_reg(adapter, reg, status);
4340 	return fatal;
4341 }
4342 
4343 /*
4344  * Interrupt handler for the PCIE module.
4345  */
4346 static void pcie_intr_handler(struct adapter *adapter)
4347 {
4348 	static const struct intr_info sysbus_intr_info[] = {
4349 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4350 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4351 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4352 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4353 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4354 		{ 0 }
4355 	};
4356 	static const struct intr_info pcie_port_intr_info[] = {
4357 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4358 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4359 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4360 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4361 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4362 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4363 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4364 		{ RDPE_F, "Rx data parity error", -1, 1 },
4365 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4366 		{ 0 }
4367 	};
4368 	static const struct intr_info pcie_intr_info[] = {
4369 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4370 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4371 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4372 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4373 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4374 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4375 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4376 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4377 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4378 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4379 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4380 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4381 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4382 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4383 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4384 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4385 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4386 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4387 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4388 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4389 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4390 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4391 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4392 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4393 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4394 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4395 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4396 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4397 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4398 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4399 		  -1, 0 },
4400 		{ 0 }
4401 	};
4402 
4403 	static struct intr_info t5_pcie_intr_info[] = {
4404 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4405 		  -1, 1 },
4406 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4407 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4408 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4409 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4410 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4411 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4412 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4413 		  -1, 1 },
4414 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4415 		  -1, 1 },
4416 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4417 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4418 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4419 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4420 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4421 		  -1, 1 },
4422 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4423 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4424 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4425 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4426 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4427 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4428 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4429 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4430 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4431 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4432 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4433 		  -1, 1 },
4434 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4435 		  -1, 1 },
4436 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4437 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4438 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4439 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4440 		{ 0 }
4441 	};
4442 
4443 	int fat;
4444 
4445 	if (is_t4(adapter->params.chip))
4446 		fat = t4_handle_intr_status(adapter,
4447 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4448 				sysbus_intr_info) +
4449 			t4_handle_intr_status(adapter,
4450 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4451 					pcie_port_intr_info) +
4452 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4453 					      pcie_intr_info);
4454 	else
4455 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4456 					    t5_pcie_intr_info);
4457 
4458 	if (fat)
4459 		t4_fatal_err(adapter);
4460 }
4461 
4462 /*
4463  * TP interrupt handler.
4464  */
4465 static void tp_intr_handler(struct adapter *adapter)
4466 {
4467 	static const struct intr_info tp_intr_info[] = {
4468 		{ 0x3fffffff, "TP parity error", -1, 1 },
4469 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4470 		{ 0 }
4471 	};
4472 
4473 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4474 		t4_fatal_err(adapter);
4475 }
4476 
4477 /*
4478  * SGE interrupt handler.
4479  */
4480 static void sge_intr_handler(struct adapter *adapter)
4481 {
4482 	u64 v;
4483 	u32 err;
4484 
4485 	static const struct intr_info sge_intr_info[] = {
4486 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4487 		  "SGE received CPL exceeding IQE size", -1, 1 },
4488 		{ ERR_INVALID_CIDX_INC_F,
4489 		  "SGE GTS CIDX increment too large", -1, 0 },
4490 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4491 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4492 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4493 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4494 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4495 		  0 },
4496 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4497 		  0 },
4498 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4499 		  0 },
4500 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4501 		  0 },
4502 		{ ERR_ING_CTXT_PRIO_F,
4503 		  "SGE too many priority ingress contexts", -1, 0 },
4504 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4505 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4506 		{ 0 }
4507 	};
4508 
4509 	static struct intr_info t4t5_sge_intr_info[] = {
4510 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4511 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4512 		{ ERR_EGR_CTXT_PRIO_F,
4513 		  "SGE too many priority egress contexts", -1, 0 },
4514 		{ 0 }
4515 	};
4516 
4517 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4518 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
4519 	if (v) {
4520 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4521 				(unsigned long long)v);
4522 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4523 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4524 	}
4525 
4526 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4527 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4528 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4529 					   t4t5_sge_intr_info);
4530 
4531 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4532 	if (err & ERROR_QID_VALID_F) {
4533 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4534 			ERROR_QID_G(err));
4535 		if (err & UNCAPTURED_ERROR_F)
4536 			dev_err(adapter->pdev_dev,
4537 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4538 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4539 			     UNCAPTURED_ERROR_F);
4540 	}
4541 
4542 	if (v != 0)
4543 		t4_fatal_err(adapter);
4544 }
4545 
4546 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4547 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4548 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4549 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4550 
4551 /*
4552  * CIM interrupt handler.
4553  */
4554 static void cim_intr_handler(struct adapter *adapter)
4555 {
4556 	static const struct intr_info cim_intr_info[] = {
4557 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4558 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4559 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4560 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4561 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4562 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4563 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4564 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4565 		{ 0 }
4566 	};
4567 	static const struct intr_info cim_upintr_info[] = {
4568 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4569 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4570 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4571 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4572 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4573 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4574 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4575 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4576 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4577 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4578 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4579 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4580 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4581 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4582 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4583 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4584 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4585 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4586 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4587 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4588 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4589 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4590 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4591 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4592 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4593 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4594 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4595 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4596 		{ 0 }
4597 	};
4598 
4599 	u32 val, fw_err;
4600 	int fat;
4601 
4602 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4603 	if (fw_err & PCIE_FW_ERR_F)
4604 		t4_report_fw_error(adapter);
4605 
4606 	/* When the Firmware detects an internal error which normally
4607 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4608 	 * in order to make sure the Host sees the Firmware Crash.  So
4609 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4610 	 * ignore the Timer0 interrupt.
4611 	 */
4612 
4613 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4614 	if (val & TIMER0INT_F)
4615 		if (!(fw_err & PCIE_FW_ERR_F) ||
4616 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4617 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4618 				     TIMER0INT_F);
4619 
4620 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4621 				    cim_intr_info) +
4622 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4623 				    cim_upintr_info);
4624 	if (fat)
4625 		t4_fatal_err(adapter);
4626 }
4627 
4628 /*
4629  * ULP RX interrupt handler.
4630  */
4631 static void ulprx_intr_handler(struct adapter *adapter)
4632 {
4633 	static const struct intr_info ulprx_intr_info[] = {
4634 		{ 0x1800000, "ULPRX context error", -1, 1 },
4635 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4636 		{ 0 }
4637 	};
4638 
4639 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4640 		t4_fatal_err(adapter);
4641 }
4642 
4643 /*
4644  * ULP TX interrupt handler.
4645  */
4646 static void ulptx_intr_handler(struct adapter *adapter)
4647 {
4648 	static const struct intr_info ulptx_intr_info[] = {
4649 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4650 		  0 },
4651 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4652 		  0 },
4653 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4654 		  0 },
4655 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4656 		  0 },
4657 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4658 		{ 0 }
4659 	};
4660 
4661 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4662 		t4_fatal_err(adapter);
4663 }
4664 
4665 /*
4666  * PM TX interrupt handler.
4667  */
4668 static void pmtx_intr_handler(struct adapter *adapter)
4669 {
4670 	static const struct intr_info pmtx_intr_info[] = {
4671 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4672 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4673 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4674 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4675 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4676 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4677 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4678 		  -1, 1 },
4679 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4680 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4681 		{ 0 }
4682 	};
4683 
4684 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4685 		t4_fatal_err(adapter);
4686 }
4687 
4688 /*
4689  * PM RX interrupt handler.
4690  */
4691 static void pmrx_intr_handler(struct adapter *adapter)
4692 {
4693 	static const struct intr_info pmrx_intr_info[] = {
4694 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4695 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4696 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4697 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4698 		  -1, 1 },
4699 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4700 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4701 		{ 0 }
4702 	};
4703 
4704 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4705 		t4_fatal_err(adapter);
4706 }
4707 
4708 /*
4709  * CPL switch interrupt handler.
4710  */
4711 static void cplsw_intr_handler(struct adapter *adapter)
4712 {
4713 	static const struct intr_info cplsw_intr_info[] = {
4714 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4715 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4716 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4717 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4718 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4719 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4720 		{ 0 }
4721 	};
4722 
4723 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4724 		t4_fatal_err(adapter);
4725 }
4726 
4727 /*
4728  * LE interrupt handler.
4729  */
4730 static void le_intr_handler(struct adapter *adap)
4731 {
4732 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4733 	static const struct intr_info le_intr_info[] = {
4734 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4735 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4736 		{ PARITYERR_F, "LE parity error", -1, 1 },
4737 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4738 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4739 		{ 0 }
4740 	};
4741 
4742 	static struct intr_info t6_le_intr_info[] = {
4743 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4744 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4745 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4746 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4747 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4748 		{ 0 }
4749 	};
4750 
4751 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4752 				  (chip <= CHELSIO_T5) ?
4753 				  le_intr_info : t6_le_intr_info))
4754 		t4_fatal_err(adap);
4755 }
4756 
4757 /*
4758  * MPS interrupt handler.
4759  */
4760 static void mps_intr_handler(struct adapter *adapter)
4761 {
4762 	static const struct intr_info mps_rx_intr_info[] = {
4763 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4764 		{ 0 }
4765 	};
4766 	static const struct intr_info mps_tx_intr_info[] = {
4767 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4768 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4769 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4770 		  -1, 1 },
4771 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4772 		  -1, 1 },
4773 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4774 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4775 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4776 		{ 0 }
4777 	};
4778 	static const struct intr_info t6_mps_tx_intr_info[] = {
4779 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4780 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4781 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4782 		  -1, 1 },
4783 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4784 		  -1, 1 },
4785 		/* MPS Tx Bubble is normal for T6 */
4786 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4787 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4788 		{ 0 }
4789 	};
4790 	static const struct intr_info mps_trc_intr_info[] = {
4791 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4792 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4793 		  -1, 1 },
4794 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4795 		{ 0 }
4796 	};
4797 	static const struct intr_info mps_stat_sram_intr_info[] = {
4798 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4799 		{ 0 }
4800 	};
4801 	static const struct intr_info mps_stat_tx_intr_info[] = {
4802 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4803 		{ 0 }
4804 	};
4805 	static const struct intr_info mps_stat_rx_intr_info[] = {
4806 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4807 		{ 0 }
4808 	};
4809 	static const struct intr_info mps_cls_intr_info[] = {
4810 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4811 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4812 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4813 		{ 0 }
4814 	};
4815 
4816 	int fat;
4817 
4818 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4819 				    mps_rx_intr_info) +
4820 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4821 				    is_t6(adapter->params.chip)
4822 				    ? t6_mps_tx_intr_info
4823 				    : mps_tx_intr_info) +
4824 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4825 				    mps_trc_intr_info) +
4826 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4827 				    mps_stat_sram_intr_info) +
4828 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4829 				    mps_stat_tx_intr_info) +
4830 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4831 				    mps_stat_rx_intr_info) +
4832 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4833 				    mps_cls_intr_info);
4834 
4835 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4836 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4837 	if (fat)
4838 		t4_fatal_err(adapter);
4839 }
4840 
4841 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4842 		      ECC_UE_INT_CAUSE_F)
4843 
4844 /*
4845  * EDC/MC interrupt handler.
4846  */
4847 static void mem_intr_handler(struct adapter *adapter, int idx)
4848 {
4849 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4850 
4851 	unsigned int addr, cnt_addr, v;
4852 
4853 	if (idx <= MEM_EDC1) {
4854 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4855 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4856 	} else if (idx == MEM_MC) {
4857 		if (is_t4(adapter->params.chip)) {
4858 			addr = MC_INT_CAUSE_A;
4859 			cnt_addr = MC_ECC_STATUS_A;
4860 		} else {
4861 			addr = MC_P_INT_CAUSE_A;
4862 			cnt_addr = MC_P_ECC_STATUS_A;
4863 		}
4864 	} else {
4865 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4866 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4867 	}
4868 
4869 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4870 	if (v & PERR_INT_CAUSE_F)
4871 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4872 			  name[idx]);
4873 	if (v & ECC_CE_INT_CAUSE_F) {
4874 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4875 
4876 		t4_edc_err_read(adapter, idx);
4877 
4878 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4879 		if (printk_ratelimit())
4880 			dev_warn(adapter->pdev_dev,
4881 				 "%u %s correctable ECC data error%s\n",
4882 				 cnt, name[idx], cnt > 1 ? "s" : "");
4883 	}
4884 	if (v & ECC_UE_INT_CAUSE_F)
4885 		dev_alert(adapter->pdev_dev,
4886 			  "%s uncorrectable ECC data error\n", name[idx]);
4887 
4888 	t4_write_reg(adapter, addr, v);
4889 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4890 		t4_fatal_err(adapter);
4891 }
4892 
4893 /*
4894  * MA interrupt handler.
4895  */
4896 static void ma_intr_handler(struct adapter *adap)
4897 {
4898 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4899 
4900 	if (status & MEM_PERR_INT_CAUSE_F) {
4901 		dev_alert(adap->pdev_dev,
4902 			  "MA parity error, parity status %#x\n",
4903 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4904 		if (is_t5(adap->params.chip))
4905 			dev_alert(adap->pdev_dev,
4906 				  "MA parity error, parity status %#x\n",
4907 				  t4_read_reg(adap,
4908 					      MA_PARITY_ERROR_STATUS2_A));
4909 	}
4910 	if (status & MEM_WRAP_INT_CAUSE_F) {
4911 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4912 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4913 			  "client %u to address %#x\n",
4914 			  MEM_WRAP_CLIENT_NUM_G(v),
4915 			  MEM_WRAP_ADDRESS_G(v) << 4);
4916 	}
4917 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4918 	t4_fatal_err(adap);
4919 }
4920 
4921 /*
4922  * SMB interrupt handler.
4923  */
4924 static void smb_intr_handler(struct adapter *adap)
4925 {
4926 	static const struct intr_info smb_intr_info[] = {
4927 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4928 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4929 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4930 		{ 0 }
4931 	};
4932 
4933 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4934 		t4_fatal_err(adap);
4935 }
4936 
4937 /*
4938  * NC-SI interrupt handler.
4939  */
4940 static void ncsi_intr_handler(struct adapter *adap)
4941 {
4942 	static const struct intr_info ncsi_intr_info[] = {
4943 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4944 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4945 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4946 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4947 		{ 0 }
4948 	};
4949 
4950 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4951 		t4_fatal_err(adap);
4952 }
4953 
4954 /*
4955  * XGMAC interrupt handler.
4956  */
4957 static void xgmac_intr_handler(struct adapter *adap, int port)
4958 {
4959 	u32 v, int_cause_reg;
4960 
4961 	if (is_t4(adap->params.chip))
4962 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4963 	else
4964 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4965 
4966 	v = t4_read_reg(adap, int_cause_reg);
4967 
4968 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4969 	if (!v)
4970 		return;
4971 
4972 	if (v & TXFIFO_PRTY_ERR_F)
4973 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4974 			  port);
4975 	if (v & RXFIFO_PRTY_ERR_F)
4976 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4977 			  port);
4978 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4979 	t4_fatal_err(adap);
4980 }
4981 
4982 /*
4983  * PL interrupt handler.
4984  */
4985 static void pl_intr_handler(struct adapter *adap)
4986 {
4987 	static const struct intr_info pl_intr_info[] = {
4988 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4989 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4990 		{ 0 }
4991 	};
4992 
4993 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4994 		t4_fatal_err(adap);
4995 }
4996 
4997 #define PF_INTR_MASK (PFSW_F)
4998 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4999 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
5000 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
5001 
5002 /**
5003  *	t4_slow_intr_handler - control path interrupt handler
5004  *	@adapter: the adapter
5005  *
5006  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5007  *	The designation 'slow' is because it involves register reads, while
5008  *	data interrupts typically don't involve any MMIOs.
5009  */
5010 int t4_slow_intr_handler(struct adapter *adapter)
5011 {
5012 	/* There are rare cases where a PL_INT_CAUSE bit may end up getting
5013 	 * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5014 	 * easiest just to mask that case here.
5015 	 */
5016 	u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5017 	u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5018 	u32 cause = raw_cause & enable;
5019 
5020 	if (!(cause & GLBL_INTR_MASK))
5021 		return 0;
5022 	if (cause & CIM_F)
5023 		cim_intr_handler(adapter);
5024 	if (cause & MPS_F)
5025 		mps_intr_handler(adapter);
5026 	if (cause & NCSI_F)
5027 		ncsi_intr_handler(adapter);
5028 	if (cause & PL_F)
5029 		pl_intr_handler(adapter);
5030 	if (cause & SMB_F)
5031 		smb_intr_handler(adapter);
5032 	if (cause & XGMAC0_F)
5033 		xgmac_intr_handler(adapter, 0);
5034 	if (cause & XGMAC1_F)
5035 		xgmac_intr_handler(adapter, 1);
5036 	if (cause & XGMAC_KR0_F)
5037 		xgmac_intr_handler(adapter, 2);
5038 	if (cause & XGMAC_KR1_F)
5039 		xgmac_intr_handler(adapter, 3);
5040 	if (cause & PCIE_F)
5041 		pcie_intr_handler(adapter);
5042 	if (cause & MC_F)
5043 		mem_intr_handler(adapter, MEM_MC);
5044 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
5045 		mem_intr_handler(adapter, MEM_MC1);
5046 	if (cause & EDC0_F)
5047 		mem_intr_handler(adapter, MEM_EDC0);
5048 	if (cause & EDC1_F)
5049 		mem_intr_handler(adapter, MEM_EDC1);
5050 	if (cause & LE_F)
5051 		le_intr_handler(adapter);
5052 	if (cause & TP_F)
5053 		tp_intr_handler(adapter);
5054 	if (cause & MA_F)
5055 		ma_intr_handler(adapter);
5056 	if (cause & PM_TX_F)
5057 		pmtx_intr_handler(adapter);
5058 	if (cause & PM_RX_F)
5059 		pmrx_intr_handler(adapter);
5060 	if (cause & ULP_RX_F)
5061 		ulprx_intr_handler(adapter);
5062 	if (cause & CPL_SWITCH_F)
5063 		cplsw_intr_handler(adapter);
5064 	if (cause & SGE_F)
5065 		sge_intr_handler(adapter);
5066 	if (cause & ULP_TX_F)
5067 		ulptx_intr_handler(adapter);
5068 
5069 	/* Clear the interrupts just processed for which we are the master. */
5070 	t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5071 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5072 	return 1;
5073 }
5074 
5075 /**
5076  *	t4_intr_enable - enable interrupts
5077  *	@adapter: the adapter whose interrupts should be enabled
5078  *
5079  *	Enable PF-specific interrupts for the calling function and the top-level
5080  *	interrupt concentrator for global interrupts.  Interrupts are already
5081  *	enabled at each module,	here we just enable the roots of the interrupt
5082  *	hierarchies.
5083  *
5084  *	Note: this function should be called only when the driver manages
5085  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5086  *	function at a time should be doing this.
5087  */
5088 void t4_intr_enable(struct adapter *adapter)
5089 {
5090 	u32 val = 0;
5091 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5092 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5093 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5094 
5095 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5096 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5097 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5098 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5099 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5100 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5101 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5102 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5103 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5104 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5105 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5106 }
5107 
5108 /**
5109  *	t4_intr_disable - disable interrupts
5110  *	@adapter: the adapter whose interrupts should be disabled
5111  *
5112  *	Disable interrupts.  We only disable the top-level interrupt
5113  *	concentrators.  The caller must be a PCI function managing global
5114  *	interrupts.
5115  */
5116 void t4_intr_disable(struct adapter *adapter)
5117 {
5118 	u32 whoami, pf;
5119 
5120 	if (pci_channel_offline(adapter->pdev))
5121 		return;
5122 
5123 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5124 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5125 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5126 
5127 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5128 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5129 }
5130 
5131 unsigned int t4_chip_rss_size(struct adapter *adap)
5132 {
5133 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5134 		return RSS_NENTRIES;
5135 	else
5136 		return T6_RSS_NENTRIES;
5137 }
5138 
5139 /**
5140  *	t4_config_rss_range - configure a portion of the RSS mapping table
5141  *	@adapter: the adapter
5142  *	@mbox: mbox to use for the FW command
5143  *	@viid: virtual interface whose RSS subtable is to be written
5144  *	@start: start entry in the table to write
5145  *	@n: how many table entries to write
5146  *	@rspq: values for the response queue lookup table
5147  *	@nrspq: number of values in @rspq
5148  *
5149  *	Programs the selected part of the VI's RSS mapping table with the
5150  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5151  *	until the full table range is populated.
5152  *
5153  *	The caller must ensure the values in @rspq are in the range allowed for
5154  *	@viid.
5155  */
5156 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5157 			int start, int n, const u16 *rspq, unsigned int nrspq)
5158 {
5159 	int ret;
5160 	const u16 *rsp = rspq;
5161 	const u16 *rsp_end = rspq + nrspq;
5162 	struct fw_rss_ind_tbl_cmd cmd;
5163 
5164 	memset(&cmd, 0, sizeof(cmd));
5165 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5166 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5167 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5168 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5169 
5170 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5171 	while (n > 0) {
5172 		int nq = min(n, 32);
5173 		__be32 *qp = &cmd.iq0_to_iq2;
5174 
5175 		cmd.niqid = cpu_to_be16(nq);
5176 		cmd.startidx = cpu_to_be16(start);
5177 
5178 		start += nq;
5179 		n -= nq;
5180 
5181 		while (nq > 0) {
5182 			unsigned int v;
5183 
5184 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5185 			if (++rsp >= rsp_end)
5186 				rsp = rspq;
5187 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5188 			if (++rsp >= rsp_end)
5189 				rsp = rspq;
5190 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5191 			if (++rsp >= rsp_end)
5192 				rsp = rspq;
5193 
5194 			*qp++ = cpu_to_be32(v);
5195 			nq -= 3;
5196 		}
5197 
5198 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5199 		if (ret)
5200 			return ret;
5201 	}
5202 	return 0;
5203 }
5204 
5205 /**
5206  *	t4_config_glbl_rss - configure the global RSS mode
5207  *	@adapter: the adapter
5208  *	@mbox: mbox to use for the FW command
5209  *	@mode: global RSS mode
5210  *	@flags: mode-specific flags
5211  *
5212  *	Sets the global RSS mode.
5213  */
5214 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5215 		       unsigned int flags)
5216 {
5217 	struct fw_rss_glb_config_cmd c;
5218 
5219 	memset(&c, 0, sizeof(c));
5220 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5221 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5222 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5223 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5224 		c.u.manual.mode_pkd =
5225 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5226 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5227 		c.u.basicvirtual.mode_pkd =
5228 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5229 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5230 	} else
5231 		return -EINVAL;
5232 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5233 }
5234 
5235 /**
5236  *	t4_config_vi_rss - configure per VI RSS settings
5237  *	@adapter: the adapter
5238  *	@mbox: mbox to use for the FW command
5239  *	@viid: the VI id
5240  *	@flags: RSS flags
5241  *	@defq: id of the default RSS queue for the VI.
5242  *
5243  *	Configures VI-specific RSS properties.
5244  */
5245 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5246 		     unsigned int flags, unsigned int defq)
5247 {
5248 	struct fw_rss_vi_config_cmd c;
5249 
5250 	memset(&c, 0, sizeof(c));
5251 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5252 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5253 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5254 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5255 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5256 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5257 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5258 }
5259 
5260 /* Read an RSS table row */
5261 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5262 {
5263 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5264 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5265 				   5, 0, val);
5266 }
5267 
5268 /**
5269  *	t4_read_rss - read the contents of the RSS mapping table
5270  *	@adapter: the adapter
5271  *	@map: holds the contents of the RSS mapping table
5272  *
5273  *	Reads the contents of the RSS hash->queue mapping table.
5274  */
5275 int t4_read_rss(struct adapter *adapter, u16 *map)
5276 {
5277 	int i, ret, nentries;
5278 	u32 val;
5279 
5280 	nentries = t4_chip_rss_size(adapter);
5281 	for (i = 0; i < nentries / 2; ++i) {
5282 		ret = rd_rss_row(adapter, i, &val);
5283 		if (ret)
5284 			return ret;
5285 		*map++ = LKPTBLQUEUE0_G(val);
5286 		*map++ = LKPTBLQUEUE1_G(val);
5287 	}
5288 	return 0;
5289 }
5290 
5291 static unsigned int t4_use_ldst(struct adapter *adap)
5292 {
5293 	return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5294 }
5295 
5296 /**
5297  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5298  * @adap: the adapter
5299  * @cmd: TP fw ldst address space type
5300  * @vals: where the indirect register values are stored/written
5301  * @nregs: how many indirect registers to read/write
5302  * @start_idx: index of first indirect register to read/write
5303  * @rw: Read (1) or Write (0)
5304  * @sleep_ok: if true we may sleep while awaiting command completion
5305  *
5306  * Access TP indirect registers through LDST
5307  */
5308 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5309 			    unsigned int nregs, unsigned int start_index,
5310 			    unsigned int rw, bool sleep_ok)
5311 {
5312 	int ret = 0;
5313 	unsigned int i;
5314 	struct fw_ldst_cmd c;
5315 
5316 	for (i = 0; i < nregs; i++) {
5317 		memset(&c, 0, sizeof(c));
5318 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5319 						FW_CMD_REQUEST_F |
5320 						(rw ? FW_CMD_READ_F :
5321 						      FW_CMD_WRITE_F) |
5322 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5323 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5324 
5325 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5326 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5327 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5328 				      sleep_ok);
5329 		if (ret)
5330 			return ret;
5331 
5332 		if (rw)
5333 			vals[i] = be32_to_cpu(c.u.addrval.val);
5334 	}
5335 	return 0;
5336 }
5337 
5338 /**
5339  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5340  * @adap: the adapter
5341  * @reg_addr: Address Register
5342  * @reg_data: Data register
5343  * @buff: where the indirect register values are stored/written
5344  * @nregs: how many indirect registers to read/write
5345  * @start_index: index of first indirect register to read/write
5346  * @rw: READ(1) or WRITE(0)
5347  * @sleep_ok: if true we may sleep while awaiting command completion
5348  *
5349  * Read/Write TP indirect registers through LDST if possible.
5350  * Else, use backdoor access
5351  **/
5352 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5353 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5354 			      bool sleep_ok)
5355 {
5356 	int rc = -EINVAL;
5357 	int cmd;
5358 
5359 	switch (reg_addr) {
5360 	case TP_PIO_ADDR_A:
5361 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5362 		break;
5363 	case TP_TM_PIO_ADDR_A:
5364 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5365 		break;
5366 	case TP_MIB_INDEX_A:
5367 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5368 		break;
5369 	default:
5370 		goto indirect_access;
5371 	}
5372 
5373 	if (t4_use_ldst(adap))
5374 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5375 				      sleep_ok);
5376 
5377 indirect_access:
5378 
5379 	if (rc) {
5380 		if (rw)
5381 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5382 					 start_index);
5383 		else
5384 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5385 					  start_index);
5386 	}
5387 }
5388 
5389 /**
5390  * t4_tp_pio_read - Read TP PIO registers
5391  * @adap: the adapter
5392  * @buff: where the indirect register values are written
5393  * @nregs: how many indirect registers to read
5394  * @start_index: index of first indirect register to read
5395  * @sleep_ok: if true we may sleep while awaiting command completion
5396  *
5397  * Read TP PIO Registers
5398  **/
5399 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5400 		    u32 start_index, bool sleep_ok)
5401 {
5402 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5403 			  start_index, 1, sleep_ok);
5404 }
5405 
5406 /**
5407  * t4_tp_pio_write - Write TP PIO registers
5408  * @adap: the adapter
5409  * @buff: where the indirect register values are stored
5410  * @nregs: how many indirect registers to write
5411  * @start_index: index of first indirect register to write
5412  * @sleep_ok: if true we may sleep while awaiting command completion
5413  *
5414  * Write TP PIO Registers
5415  **/
5416 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5417 			    u32 start_index, bool sleep_ok)
5418 {
5419 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5420 			  start_index, 0, sleep_ok);
5421 }
5422 
5423 /**
5424  * t4_tp_tm_pio_read - Read TP TM PIO registers
5425  * @adap: the adapter
5426  * @buff: where the indirect register values are written
5427  * @nregs: how many indirect registers to read
5428  * @start_index: index of first indirect register to read
5429  * @sleep_ok: if true we may sleep while awaiting command completion
5430  *
5431  * Read TP TM PIO Registers
5432  **/
5433 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5434 		       u32 start_index, bool sleep_ok)
5435 {
5436 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5437 			  nregs, start_index, 1, sleep_ok);
5438 }
5439 
5440 /**
5441  * t4_tp_mib_read - Read TP MIB registers
5442  * @adap: the adapter
5443  * @buff: where the indirect register values are written
5444  * @nregs: how many indirect registers to read
5445  * @start_index: index of first indirect register to read
5446  * @sleep_ok: if true we may sleep while awaiting command completion
5447  *
5448  * Read TP MIB Registers
5449  **/
5450 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5451 		    bool sleep_ok)
5452 {
5453 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5454 			  start_index, 1, sleep_ok);
5455 }
5456 
5457 /**
5458  *	t4_read_rss_key - read the global RSS key
5459  *	@adap: the adapter
5460  *	@key: 10-entry array holding the 320-bit RSS key
5461  *      @sleep_ok: if true we may sleep while awaiting command completion
5462  *
5463  *	Reads the global 320-bit RSS key.
5464  */
5465 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5466 {
5467 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5468 }
5469 
5470 /**
5471  *	t4_write_rss_key - program one of the RSS keys
5472  *	@adap: the adapter
5473  *	@key: 10-entry array holding the 320-bit RSS key
5474  *	@idx: which RSS key to write
5475  *      @sleep_ok: if true we may sleep while awaiting command completion
5476  *
5477  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5478  *	0..15 the corresponding entry in the RSS key table is written,
5479  *	otherwise the global RSS key is written.
5480  */
5481 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5482 		      bool sleep_ok)
5483 {
5484 	u8 rss_key_addr_cnt = 16;
5485 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5486 
5487 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5488 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5489 	 * as index[5:4](upper 2) into key table
5490 	 */
5491 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5492 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5493 		rss_key_addr_cnt = 32;
5494 
5495 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5496 
5497 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5498 		if (rss_key_addr_cnt > 16)
5499 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5500 				     KEYWRADDRX_V(idx >> 4) |
5501 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5502 		else
5503 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5504 				     KEYWRADDR_V(idx) | KEYWREN_F);
5505 	}
5506 }
5507 
5508 /**
5509  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5510  *	@adapter: the adapter
5511  *	@index: the entry in the PF RSS table to read
5512  *	@valp: where to store the returned value
5513  *      @sleep_ok: if true we may sleep while awaiting command completion
5514  *
5515  *	Reads the PF RSS Configuration Table at the specified index and returns
5516  *	the value found there.
5517  */
5518 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5519 			   u32 *valp, bool sleep_ok)
5520 {
5521 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5522 }
5523 
5524 /**
5525  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5526  *	@adapter: the adapter
5527  *	@index: the entry in the VF RSS table to read
5528  *	@vfl: where to store the returned VFL
5529  *	@vfh: where to store the returned VFH
5530  *      @sleep_ok: if true we may sleep while awaiting command completion
5531  *
5532  *	Reads the VF RSS Configuration Table at the specified index and returns
5533  *	the (VFL, VFH) values found there.
5534  */
5535 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5536 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5537 {
5538 	u32 vrt, mask, data;
5539 
5540 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5541 		mask = VFWRADDR_V(VFWRADDR_M);
5542 		data = VFWRADDR_V(index);
5543 	} else {
5544 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5545 		 data = T6_VFWRADDR_V(index);
5546 	}
5547 
5548 	/* Request that the index'th VF Table values be read into VFL/VFH.
5549 	 */
5550 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5551 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5552 	vrt |= data | VFRDEN_F;
5553 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5554 
5555 	/* Grab the VFL/VFH values ...
5556 	 */
5557 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5558 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5559 }
5560 
5561 /**
5562  *	t4_read_rss_pf_map - read PF RSS Map
5563  *	@adapter: the adapter
5564  *      @sleep_ok: if true we may sleep while awaiting command completion
5565  *
5566  *	Reads the PF RSS Map register and returns its value.
5567  */
5568 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5569 {
5570 	u32 pfmap;
5571 
5572 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5573 	return pfmap;
5574 }
5575 
5576 /**
5577  *	t4_read_rss_pf_mask - read PF RSS Mask
5578  *	@adapter: the adapter
5579  *      @sleep_ok: if true we may sleep while awaiting command completion
5580  *
5581  *	Reads the PF RSS Mask register and returns its value.
5582  */
5583 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5584 {
5585 	u32 pfmask;
5586 
5587 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5588 	return pfmask;
5589 }
5590 
5591 /**
5592  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5593  *	@adap: the adapter
5594  *	@v4: holds the TCP/IP counter values
5595  *	@v6: holds the TCP/IPv6 counter values
5596  *      @sleep_ok: if true we may sleep while awaiting command completion
5597  *
5598  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5599  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5600  */
5601 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5602 			 struct tp_tcp_stats *v6, bool sleep_ok)
5603 {
5604 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5605 
5606 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5607 #define STAT(x)     val[STAT_IDX(x)]
5608 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5609 
5610 	if (v4) {
5611 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5612 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5613 		v4->tcp_out_rsts = STAT(OUT_RST);
5614 		v4->tcp_in_segs  = STAT64(IN_SEG);
5615 		v4->tcp_out_segs = STAT64(OUT_SEG);
5616 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5617 	}
5618 	if (v6) {
5619 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5620 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5621 		v6->tcp_out_rsts = STAT(OUT_RST);
5622 		v6->tcp_in_segs  = STAT64(IN_SEG);
5623 		v6->tcp_out_segs = STAT64(OUT_SEG);
5624 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5625 	}
5626 #undef STAT64
5627 #undef STAT
5628 #undef STAT_IDX
5629 }
5630 
5631 /**
5632  *	t4_tp_get_err_stats - read TP's error MIB counters
5633  *	@adap: the adapter
5634  *	@st: holds the counter values
5635  *      @sleep_ok: if true we may sleep while awaiting command completion
5636  *
5637  *	Returns the values of TP's error counters.
5638  */
5639 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5640 			 bool sleep_ok)
5641 {
5642 	int nchan = adap->params.arch.nchan;
5643 
5644 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5645 		       sleep_ok);
5646 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5647 		       sleep_ok);
5648 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5649 		       sleep_ok);
5650 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5651 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5652 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5653 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5654 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5655 		       sleep_ok);
5656 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5657 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5658 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5659 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5660 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5661 		       sleep_ok);
5662 }
5663 
5664 /**
5665  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5666  *	@adap: the adapter
5667  *	@st: holds the counter values
5668  *      @sleep_ok: if true we may sleep while awaiting command completion
5669  *
5670  *	Returns the values of TP's CPL counters.
5671  */
5672 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5673 			 bool sleep_ok)
5674 {
5675 	int nchan = adap->params.arch.nchan;
5676 
5677 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5678 
5679 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5680 }
5681 
5682 /**
5683  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5684  *	@adap: the adapter
5685  *	@st: holds the counter values
5686  *      @sleep_ok: if true we may sleep while awaiting command completion
5687  *
5688  *	Returns the values of TP's RDMA counters.
5689  */
5690 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5691 			  bool sleep_ok)
5692 {
5693 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5694 		       sleep_ok);
5695 }
5696 
5697 /**
5698  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5699  *	@adap: the adapter
5700  *	@idx: the port index
5701  *	@st: holds the counter values
5702  *      @sleep_ok: if true we may sleep while awaiting command completion
5703  *
5704  *	Returns the values of TP's FCoE counters for the selected port.
5705  */
5706 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5707 		       struct tp_fcoe_stats *st, bool sleep_ok)
5708 {
5709 	u32 val[2];
5710 
5711 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5712 		       sleep_ok);
5713 
5714 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5715 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5716 
5717 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5718 		       sleep_ok);
5719 
5720 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5721 }
5722 
5723 /**
5724  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5725  *	@adap: the adapter
5726  *	@st: holds the counter values
5727  *      @sleep_ok: if true we may sleep while awaiting command completion
5728  *
5729  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5730  */
5731 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5732 		      bool sleep_ok)
5733 {
5734 	u32 val[4];
5735 
5736 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5737 	st->frames = val[0];
5738 	st->drops = val[1];
5739 	st->octets = ((u64)val[2] << 32) | val[3];
5740 }
5741 
5742 /**
5743  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5744  *	@adap: the adapter
5745  *	@mtus: where to store the MTU values
5746  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5747  *
5748  *	Reads the HW path MTU table.
5749  */
5750 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5751 {
5752 	u32 v;
5753 	int i;
5754 
5755 	for (i = 0; i < NMTUS; ++i) {
5756 		t4_write_reg(adap, TP_MTU_TABLE_A,
5757 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5758 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5759 		mtus[i] = MTUVALUE_G(v);
5760 		if (mtu_log)
5761 			mtu_log[i] = MTUWIDTH_G(v);
5762 	}
5763 }
5764 
5765 /**
5766  *	t4_read_cong_tbl - reads the congestion control table
5767  *	@adap: the adapter
5768  *	@incr: where to store the alpha values
5769  *
5770  *	Reads the additive increments programmed into the HW congestion
5771  *	control table.
5772  */
5773 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5774 {
5775 	unsigned int mtu, w;
5776 
5777 	for (mtu = 0; mtu < NMTUS; ++mtu)
5778 		for (w = 0; w < NCCTRL_WIN; ++w) {
5779 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5780 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5781 			incr[mtu][w] = (u16)t4_read_reg(adap,
5782 						TP_CCTRL_TABLE_A) & 0x1fff;
5783 		}
5784 }
5785 
5786 /**
5787  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5788  *	@adap: the adapter
5789  *	@addr: the indirect TP register address
5790  *	@mask: specifies the field within the register to modify
5791  *	@val: new value for the field
5792  *
5793  *	Sets a field of an indirect TP register to the given value.
5794  */
5795 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5796 			    unsigned int mask, unsigned int val)
5797 {
5798 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5799 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5800 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5801 }
5802 
5803 /**
5804  *	init_cong_ctrl - initialize congestion control parameters
5805  *	@a: the alpha values for congestion control
5806  *	@b: the beta values for congestion control
5807  *
5808  *	Initialize the congestion control parameters.
5809  */
5810 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5811 {
5812 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5813 	a[9] = 2;
5814 	a[10] = 3;
5815 	a[11] = 4;
5816 	a[12] = 5;
5817 	a[13] = 6;
5818 	a[14] = 7;
5819 	a[15] = 8;
5820 	a[16] = 9;
5821 	a[17] = 10;
5822 	a[18] = 14;
5823 	a[19] = 17;
5824 	a[20] = 21;
5825 	a[21] = 25;
5826 	a[22] = 30;
5827 	a[23] = 35;
5828 	a[24] = 45;
5829 	a[25] = 60;
5830 	a[26] = 80;
5831 	a[27] = 100;
5832 	a[28] = 200;
5833 	a[29] = 300;
5834 	a[30] = 400;
5835 	a[31] = 500;
5836 
5837 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5838 	b[9] = b[10] = 1;
5839 	b[11] = b[12] = 2;
5840 	b[13] = b[14] = b[15] = b[16] = 3;
5841 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5842 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5843 	b[28] = b[29] = 6;
5844 	b[30] = b[31] = 7;
5845 }
5846 
5847 /* The minimum additive increment value for the congestion control table */
5848 #define CC_MIN_INCR 2U
5849 
5850 /**
5851  *	t4_load_mtus - write the MTU and congestion control HW tables
5852  *	@adap: the adapter
5853  *	@mtus: the values for the MTU table
5854  *	@alpha: the values for the congestion control alpha parameter
5855  *	@beta: the values for the congestion control beta parameter
5856  *
5857  *	Write the HW MTU table with the supplied MTUs and the high-speed
5858  *	congestion control table with the supplied alpha, beta, and MTUs.
5859  *	We write the two tables together because the additive increments
5860  *	depend on the MTUs.
5861  */
5862 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5863 		  const unsigned short *alpha, const unsigned short *beta)
5864 {
5865 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5866 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5867 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5868 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5869 	};
5870 
5871 	unsigned int i, w;
5872 
5873 	for (i = 0; i < NMTUS; ++i) {
5874 		unsigned int mtu = mtus[i];
5875 		unsigned int log2 = fls(mtu);
5876 
5877 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5878 			log2--;
5879 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5880 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5881 
5882 		for (w = 0; w < NCCTRL_WIN; ++w) {
5883 			unsigned int inc;
5884 
5885 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5886 				  CC_MIN_INCR);
5887 
5888 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5889 				     (w << 16) | (beta[w] << 13) | inc);
5890 		}
5891 	}
5892 }
5893 
5894 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5895  * clocks.  The formula is
5896  *
5897  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5898  *
5899  * which is equivalent to
5900  *
5901  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5902  */
5903 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5904 {
5905 	u64 v = bytes256 * adap->params.vpd.cclk;
5906 
5907 	return v * 62 + v / 2;
5908 }
5909 
5910 /**
5911  *	t4_get_chan_txrate - get the current per channel Tx rates
5912  *	@adap: the adapter
5913  *	@nic_rate: rates for NIC traffic
5914  *	@ofld_rate: rates for offloaded traffic
5915  *
5916  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5917  *	for each channel.
5918  */
5919 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5920 {
5921 	u32 v;
5922 
5923 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5924 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5925 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5926 	if (adap->params.arch.nchan == NCHAN) {
5927 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5928 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5929 	}
5930 
5931 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5932 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5933 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5934 	if (adap->params.arch.nchan == NCHAN) {
5935 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5936 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5937 	}
5938 }
5939 
5940 /**
5941  *	t4_set_trace_filter - configure one of the tracing filters
5942  *	@adap: the adapter
5943  *	@tp: the desired trace filter parameters
5944  *	@idx: which filter to configure
5945  *	@enable: whether to enable or disable the filter
5946  *
5947  *	Configures one of the tracing filters available in HW.  If @enable is
5948  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5949  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5950  */
5951 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5952 			int idx, int enable)
5953 {
5954 	int i, ofst = idx * 4;
5955 	u32 data_reg, mask_reg, cfg;
5956 
5957 	if (!enable) {
5958 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5959 		return 0;
5960 	}
5961 
5962 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5963 	if (cfg & TRCMULTIFILTER_F) {
5964 		/* If multiple tracers are enabled, then maximum
5965 		 * capture size is 2.5KB (FIFO size of a single channel)
5966 		 * minus 2 flits for CPL_TRACE_PKT header.
5967 		 */
5968 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5969 			return -EINVAL;
5970 	} else {
5971 		/* If multiple tracers are disabled, to avoid deadlocks
5972 		 * maximum packet capture size of 9600 bytes is recommended.
5973 		 * Also in this mode, only trace0 can be enabled and running.
5974 		 */
5975 		if (tp->snap_len > 9600 || idx)
5976 			return -EINVAL;
5977 	}
5978 
5979 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5980 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5981 	    tp->min_len > TFMINPKTSIZE_M)
5982 		return -EINVAL;
5983 
5984 	/* stop the tracer we'll be changing */
5985 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5986 
5987 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5988 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5989 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5990 
5991 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5992 		t4_write_reg(adap, data_reg, tp->data[i]);
5993 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5994 	}
5995 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5996 		     TFCAPTUREMAX_V(tp->snap_len) |
5997 		     TFMINPKTSIZE_V(tp->min_len));
5998 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5999 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
6000 		     (is_t4(adap->params.chip) ?
6001 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
6002 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
6003 		     T5_TFINVERTMATCH_V(tp->invert)));
6004 
6005 	return 0;
6006 }
6007 
6008 /**
6009  *	t4_get_trace_filter - query one of the tracing filters
6010  *	@adap: the adapter
6011  *	@tp: the current trace filter parameters
6012  *	@idx: which trace filter to query
6013  *	@enabled: non-zero if the filter is enabled
6014  *
6015  *	Returns the current settings of one of the HW tracing filters.
6016  */
6017 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6018 			 int *enabled)
6019 {
6020 	u32 ctla, ctlb;
6021 	int i, ofst = idx * 4;
6022 	u32 data_reg, mask_reg;
6023 
6024 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6025 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6026 
6027 	if (is_t4(adap->params.chip)) {
6028 		*enabled = !!(ctla & TFEN_F);
6029 		tp->port =  TFPORT_G(ctla);
6030 		tp->invert = !!(ctla & TFINVERTMATCH_F);
6031 	} else {
6032 		*enabled = !!(ctla & T5_TFEN_F);
6033 		tp->port = T5_TFPORT_G(ctla);
6034 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6035 	}
6036 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
6037 	tp->min_len = TFMINPKTSIZE_G(ctlb);
6038 	tp->skip_ofst = TFOFFSET_G(ctla);
6039 	tp->skip_len = TFLENGTH_G(ctla);
6040 
6041 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6042 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6043 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6044 
6045 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6046 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6047 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6048 	}
6049 }
6050 
6051 /**
6052  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6053  *	@adap: the adapter
6054  *	@cnt: where to store the count statistics
6055  *	@cycles: where to store the cycle statistics
6056  *
6057  *	Returns performance statistics from PMTX.
6058  */
6059 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6060 {
6061 	int i;
6062 	u32 data[2];
6063 
6064 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6065 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6066 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6067 		if (is_t4(adap->params.chip)) {
6068 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6069 		} else {
6070 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6071 					 PM_TX_DBG_DATA_A, data, 2,
6072 					 PM_TX_DBG_STAT_MSB_A);
6073 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6074 		}
6075 	}
6076 }
6077 
6078 /**
6079  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6080  *	@adap: the adapter
6081  *	@cnt: where to store the count statistics
6082  *	@cycles: where to store the cycle statistics
6083  *
6084  *	Returns performance statistics from PMRX.
6085  */
6086 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6087 {
6088 	int i;
6089 	u32 data[2];
6090 
6091 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6092 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6093 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6094 		if (is_t4(adap->params.chip)) {
6095 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6096 		} else {
6097 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6098 					 PM_RX_DBG_DATA_A, data, 2,
6099 					 PM_RX_DBG_STAT_MSB_A);
6100 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6101 		}
6102 	}
6103 }
6104 
6105 /**
6106  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6107  *	@adap: the adapter
6108  *	@pidx: the port index
6109  *
6110  *	Computes and returns a bitmap indicating which MPS buffer groups are
6111  *	associated with the given Port.  Bit i is set if buffer group i is
6112  *	used by the Port.
6113  */
6114 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6115 					      int pidx)
6116 {
6117 	unsigned int chip_version, nports;
6118 
6119 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6120 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6121 
6122 	switch (chip_version) {
6123 	case CHELSIO_T4:
6124 	case CHELSIO_T5:
6125 		switch (nports) {
6126 		case 1: return 0xf;
6127 		case 2: return 3 << (2 * pidx);
6128 		case 4: return 1 << pidx;
6129 		}
6130 		break;
6131 
6132 	case CHELSIO_T6:
6133 		switch (nports) {
6134 		case 2: return 1 << (2 * pidx);
6135 		}
6136 		break;
6137 	}
6138 
6139 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6140 		chip_version, nports);
6141 
6142 	return 0;
6143 }
6144 
6145 /**
6146  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6147  *	@adapter: the adapter
6148  *	@pidx: the port index
6149  *
6150  *	Returns a bitmap indicating which MPS buffer groups are associated
6151  *	with the given Port.  Bit i is set if buffer group i is used by the
6152  *	Port.
6153  */
6154 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6155 {
6156 	u8 *mps_bg_map;
6157 	unsigned int nports;
6158 
6159 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6160 	if (pidx >= nports) {
6161 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6162 			pidx, nports);
6163 		return 0;
6164 	}
6165 
6166 	/* If we've already retrieved/computed this, just return the result.
6167 	 */
6168 	mps_bg_map = adapter->params.mps_bg_map;
6169 	if (mps_bg_map[pidx])
6170 		return mps_bg_map[pidx];
6171 
6172 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6173 	 * If we're talking to such Firmware, let it tell us.  If the new
6174 	 * API isn't supported, revert back to old hardcoded way.  The value
6175 	 * obtained from Firmware is encoded in below format:
6176 	 *
6177 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6178 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6179 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6180 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6181 	 */
6182 	if (adapter->flags & CXGB4_FW_OK) {
6183 		u32 param, val;
6184 		int ret;
6185 
6186 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6187 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6188 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6189 					 0, 1, &param, &val);
6190 		if (!ret) {
6191 			int p;
6192 
6193 			/* Store the BG Map for all of the Ports in order to
6194 			 * avoid more calls to the Firmware in the future.
6195 			 */
6196 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6197 				mps_bg_map[p] = val & 0xff;
6198 
6199 			return mps_bg_map[pidx];
6200 		}
6201 	}
6202 
6203 	/* Either we're not talking to the Firmware or we're dealing with
6204 	 * older Firmware which doesn't support the new API to get the MPS
6205 	 * Buffer Group Map.  Fall back to computing it ourselves.
6206 	 */
6207 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6208 	return mps_bg_map[pidx];
6209 }
6210 
6211 /**
6212  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6213  *	@adapter: the adapter
6214  *	@pidx: the port index
6215  *
6216  *	Returns a bitmap indicating which TP Ingress Channels are associated
6217  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6218  *	the Port.
6219  */
6220 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6221 {
6222 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6223 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6224 
6225 	if (pidx >= nports) {
6226 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6227 			 pidx, nports);
6228 		return 0;
6229 	}
6230 
6231 	switch (chip_version) {
6232 	case CHELSIO_T4:
6233 	case CHELSIO_T5:
6234 		/* Note that this happens to be the same values as the MPS
6235 		 * Buffer Group Map for these Chips.  But we replicate the code
6236 		 * here because they're really separate concepts.
6237 		 */
6238 		switch (nports) {
6239 		case 1: return 0xf;
6240 		case 2: return 3 << (2 * pidx);
6241 		case 4: return 1 << pidx;
6242 		}
6243 		break;
6244 
6245 	case CHELSIO_T6:
6246 		switch (nports) {
6247 		case 1:
6248 		case 2: return 1 << pidx;
6249 		}
6250 		break;
6251 	}
6252 
6253 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6254 		chip_version, nports);
6255 	return 0;
6256 }
6257 
6258 /**
6259  *      t4_get_port_type_description - return Port Type string description
6260  *      @port_type: firmware Port Type enumeration
6261  */
6262 const char *t4_get_port_type_description(enum fw_port_type port_type)
6263 {
6264 	static const char *const port_type_description[] = {
6265 		"Fiber_XFI",
6266 		"Fiber_XAUI",
6267 		"BT_SGMII",
6268 		"BT_XFI",
6269 		"BT_XAUI",
6270 		"KX4",
6271 		"CX4",
6272 		"KX",
6273 		"KR",
6274 		"SFP",
6275 		"BP_AP",
6276 		"BP4_AP",
6277 		"QSFP_10G",
6278 		"QSA",
6279 		"QSFP",
6280 		"BP40_BA",
6281 		"KR4_100G",
6282 		"CR4_QSFP",
6283 		"CR_QSFP",
6284 		"CR2_QSFP",
6285 		"SFP28",
6286 		"KR_SFP28",
6287 		"KR_XLAUI"
6288 	};
6289 
6290 	if (port_type < ARRAY_SIZE(port_type_description))
6291 		return port_type_description[port_type];
6292 	return "UNKNOWN";
6293 }
6294 
6295 /**
6296  *      t4_get_port_stats_offset - collect port stats relative to a previous
6297  *                                 snapshot
6298  *      @adap: The adapter
6299  *      @idx: The port
6300  *      @stats: Current stats to fill
6301  *      @offset: Previous stats snapshot
6302  */
6303 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6304 			      struct port_stats *stats,
6305 			      struct port_stats *offset)
6306 {
6307 	u64 *s, *o;
6308 	int i;
6309 
6310 	t4_get_port_stats(adap, idx, stats);
6311 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6312 			i < (sizeof(struct port_stats) / sizeof(u64));
6313 			i++, s++, o++)
6314 		*s -= *o;
6315 }
6316 
6317 /**
6318  *	t4_get_port_stats - collect port statistics
6319  *	@adap: the adapter
6320  *	@idx: the port index
6321  *	@p: the stats structure to fill
6322  *
6323  *	Collect statistics related to the given port from HW.
6324  */
6325 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6326 {
6327 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6328 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6329 
6330 #define GET_STAT(name) \
6331 	t4_read_reg64(adap, \
6332 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6333 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6334 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6335 
6336 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6337 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6338 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6339 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6340 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6341 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6342 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6343 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6344 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6345 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6346 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6347 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6348 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6349 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6350 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6351 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6352 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6353 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6354 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6355 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6356 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6357 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6358 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6359 
6360 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6361 		if (stat_ctl & COUNTPAUSESTATTX_F)
6362 			p->tx_frames_64 -= p->tx_pause;
6363 		if (stat_ctl & COUNTPAUSEMCTX_F)
6364 			p->tx_mcast_frames -= p->tx_pause;
6365 	}
6366 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6367 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6368 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6369 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6370 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6371 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6372 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6373 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6374 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6375 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6376 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6377 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6378 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6379 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6380 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6381 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6382 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6383 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6384 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6385 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6386 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6387 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6388 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6389 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6390 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6391 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6392 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6393 
6394 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6395 		if (stat_ctl & COUNTPAUSESTATRX_F)
6396 			p->rx_frames_64 -= p->rx_pause;
6397 		if (stat_ctl & COUNTPAUSEMCRX_F)
6398 			p->rx_mcast_frames -= p->rx_pause;
6399 	}
6400 
6401 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6402 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6403 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6404 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6405 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6406 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6407 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6408 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6409 
6410 #undef GET_STAT
6411 #undef GET_STAT_COM
6412 }
6413 
6414 /**
6415  *	t4_get_lb_stats - collect loopback port statistics
6416  *	@adap: the adapter
6417  *	@idx: the loopback port index
6418  *	@p: the stats structure to fill
6419  *
6420  *	Return HW statistics for the given loopback port.
6421  */
6422 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6423 {
6424 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6425 
6426 #define GET_STAT(name) \
6427 	t4_read_reg64(adap, \
6428 	(is_t4(adap->params.chip) ? \
6429 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6430 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6431 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6432 
6433 	p->octets           = GET_STAT(BYTES);
6434 	p->frames           = GET_STAT(FRAMES);
6435 	p->bcast_frames     = GET_STAT(BCAST);
6436 	p->mcast_frames     = GET_STAT(MCAST);
6437 	p->ucast_frames     = GET_STAT(UCAST);
6438 	p->error_frames     = GET_STAT(ERROR);
6439 
6440 	p->frames_64        = GET_STAT(64B);
6441 	p->frames_65_127    = GET_STAT(65B_127B);
6442 	p->frames_128_255   = GET_STAT(128B_255B);
6443 	p->frames_256_511   = GET_STAT(256B_511B);
6444 	p->frames_512_1023  = GET_STAT(512B_1023B);
6445 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6446 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6447 	p->drop             = GET_STAT(DROP_FRAMES);
6448 
6449 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6450 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6451 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6452 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6453 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6454 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6455 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6456 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6457 
6458 #undef GET_STAT
6459 #undef GET_STAT_COM
6460 }
6461 
6462 /*     t4_mk_filtdelwr - create a delete filter WR
6463  *     @ftid: the filter ID
6464  *     @wr: the filter work request to populate
6465  *     @qid: ingress queue to receive the delete notification
6466  *
6467  *     Creates a filter work request to delete the supplied filter.  If @qid is
6468  *     negative the delete notification is suppressed.
6469  */
6470 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6471 {
6472 	memset(wr, 0, sizeof(*wr));
6473 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6474 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6475 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6476 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6477 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6478 	if (qid >= 0)
6479 		wr->rx_chan_rx_rpl_iq =
6480 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6481 }
6482 
6483 #define INIT_CMD(var, cmd, rd_wr) do { \
6484 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6485 					FW_CMD_REQUEST_F | \
6486 					FW_CMD_##rd_wr##_F); \
6487 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6488 } while (0)
6489 
6490 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6491 			  u32 addr, u32 val)
6492 {
6493 	u32 ldst_addrspace;
6494 	struct fw_ldst_cmd c;
6495 
6496 	memset(&c, 0, sizeof(c));
6497 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6498 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6499 					FW_CMD_REQUEST_F |
6500 					FW_CMD_WRITE_F |
6501 					ldst_addrspace);
6502 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6503 	c.u.addrval.addr = cpu_to_be32(addr);
6504 	c.u.addrval.val = cpu_to_be32(val);
6505 
6506 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6507 }
6508 
6509 /**
6510  *	t4_mdio_rd - read a PHY register through MDIO
6511  *	@adap: the adapter
6512  *	@mbox: mailbox to use for the FW command
6513  *	@phy_addr: the PHY address
6514  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6515  *	@reg: the register to read
6516  *	@valp: where to store the value
6517  *
6518  *	Issues a FW command through the given mailbox to read a PHY register.
6519  */
6520 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6521 	       unsigned int mmd, unsigned int reg, u16 *valp)
6522 {
6523 	int ret;
6524 	u32 ldst_addrspace;
6525 	struct fw_ldst_cmd c;
6526 
6527 	memset(&c, 0, sizeof(c));
6528 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6529 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6530 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6531 					ldst_addrspace);
6532 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6533 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6534 					 FW_LDST_CMD_MMD_V(mmd));
6535 	c.u.mdio.raddr = cpu_to_be16(reg);
6536 
6537 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6538 	if (ret == 0)
6539 		*valp = be16_to_cpu(c.u.mdio.rval);
6540 	return ret;
6541 }
6542 
6543 /**
6544  *	t4_mdio_wr - write a PHY register through MDIO
6545  *	@adap: the adapter
6546  *	@mbox: mailbox to use for the FW command
6547  *	@phy_addr: the PHY address
6548  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6549  *	@reg: the register to write
6550  *	@valp: value to write
6551  *
6552  *	Issues a FW command through the given mailbox to write a PHY register.
6553  */
6554 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6555 	       unsigned int mmd, unsigned int reg, u16 val)
6556 {
6557 	u32 ldst_addrspace;
6558 	struct fw_ldst_cmd c;
6559 
6560 	memset(&c, 0, sizeof(c));
6561 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6562 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6563 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6564 					ldst_addrspace);
6565 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6566 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6567 					 FW_LDST_CMD_MMD_V(mmd));
6568 	c.u.mdio.raddr = cpu_to_be16(reg);
6569 	c.u.mdio.rval = cpu_to_be16(val);
6570 
6571 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6572 }
6573 
6574 /**
6575  *	t4_sge_decode_idma_state - decode the idma state
6576  *	@adap: the adapter
6577  *	@state: the state idma is stuck in
6578  */
6579 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6580 {
6581 	static const char * const t4_decode[] = {
6582 		"IDMA_IDLE",
6583 		"IDMA_PUSH_MORE_CPL_FIFO",
6584 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6585 		"Not used",
6586 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6587 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6588 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6589 		"IDMA_SEND_FIFO_TO_IMSG",
6590 		"IDMA_FL_REQ_DATA_FL_PREP",
6591 		"IDMA_FL_REQ_DATA_FL",
6592 		"IDMA_FL_DROP",
6593 		"IDMA_FL_H_REQ_HEADER_FL",
6594 		"IDMA_FL_H_SEND_PCIEHDR",
6595 		"IDMA_FL_H_PUSH_CPL_FIFO",
6596 		"IDMA_FL_H_SEND_CPL",
6597 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6598 		"IDMA_FL_H_SEND_IP_HDR",
6599 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6600 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6601 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6602 		"IDMA_FL_D_SEND_PCIEHDR",
6603 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6604 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6605 		"IDMA_FL_SEND_PCIEHDR",
6606 		"IDMA_FL_PUSH_CPL_FIFO",
6607 		"IDMA_FL_SEND_CPL",
6608 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6609 		"IDMA_FL_SEND_PAYLOAD",
6610 		"IDMA_FL_REQ_NEXT_DATA_FL",
6611 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6612 		"IDMA_FL_SEND_PADDING",
6613 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6614 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6615 		"IDMA_FL_REQ_DATAFL_DONE",
6616 		"IDMA_FL_REQ_HEADERFL_DONE",
6617 	};
6618 	static const char * const t5_decode[] = {
6619 		"IDMA_IDLE",
6620 		"IDMA_ALMOST_IDLE",
6621 		"IDMA_PUSH_MORE_CPL_FIFO",
6622 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6623 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6624 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6625 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6626 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6627 		"IDMA_SEND_FIFO_TO_IMSG",
6628 		"IDMA_FL_REQ_DATA_FL",
6629 		"IDMA_FL_DROP",
6630 		"IDMA_FL_DROP_SEND_INC",
6631 		"IDMA_FL_H_REQ_HEADER_FL",
6632 		"IDMA_FL_H_SEND_PCIEHDR",
6633 		"IDMA_FL_H_PUSH_CPL_FIFO",
6634 		"IDMA_FL_H_SEND_CPL",
6635 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6636 		"IDMA_FL_H_SEND_IP_HDR",
6637 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6638 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6639 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6640 		"IDMA_FL_D_SEND_PCIEHDR",
6641 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6642 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6643 		"IDMA_FL_SEND_PCIEHDR",
6644 		"IDMA_FL_PUSH_CPL_FIFO",
6645 		"IDMA_FL_SEND_CPL",
6646 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6647 		"IDMA_FL_SEND_PAYLOAD",
6648 		"IDMA_FL_REQ_NEXT_DATA_FL",
6649 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6650 		"IDMA_FL_SEND_PADDING",
6651 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6652 	};
6653 	static const char * const t6_decode[] = {
6654 		"IDMA_IDLE",
6655 		"IDMA_PUSH_MORE_CPL_FIFO",
6656 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6657 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6658 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6659 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6660 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6661 		"IDMA_FL_REQ_DATA_FL",
6662 		"IDMA_FL_DROP",
6663 		"IDMA_FL_DROP_SEND_INC",
6664 		"IDMA_FL_H_REQ_HEADER_FL",
6665 		"IDMA_FL_H_SEND_PCIEHDR",
6666 		"IDMA_FL_H_PUSH_CPL_FIFO",
6667 		"IDMA_FL_H_SEND_CPL",
6668 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6669 		"IDMA_FL_H_SEND_IP_HDR",
6670 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6671 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6672 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6673 		"IDMA_FL_D_SEND_PCIEHDR",
6674 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6675 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6676 		"IDMA_FL_SEND_PCIEHDR",
6677 		"IDMA_FL_PUSH_CPL_FIFO",
6678 		"IDMA_FL_SEND_CPL",
6679 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6680 		"IDMA_FL_SEND_PAYLOAD",
6681 		"IDMA_FL_REQ_NEXT_DATA_FL",
6682 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6683 		"IDMA_FL_SEND_PADDING",
6684 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6685 	};
6686 	static const u32 sge_regs[] = {
6687 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6688 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6689 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6690 	};
6691 	const char **sge_idma_decode;
6692 	int sge_idma_decode_nstates;
6693 	int i;
6694 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6695 
6696 	/* Select the right set of decode strings to dump depending on the
6697 	 * adapter chip type.
6698 	 */
6699 	switch (chip_version) {
6700 	case CHELSIO_T4:
6701 		sge_idma_decode = (const char **)t4_decode;
6702 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6703 		break;
6704 
6705 	case CHELSIO_T5:
6706 		sge_idma_decode = (const char **)t5_decode;
6707 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6708 		break;
6709 
6710 	case CHELSIO_T6:
6711 		sge_idma_decode = (const char **)t6_decode;
6712 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6713 		break;
6714 
6715 	default:
6716 		dev_err(adapter->pdev_dev,
6717 			"Unsupported chip version %d\n", chip_version);
6718 		return;
6719 	}
6720 
6721 	if (is_t4(adapter->params.chip)) {
6722 		sge_idma_decode = (const char **)t4_decode;
6723 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6724 	} else {
6725 		sge_idma_decode = (const char **)t5_decode;
6726 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6727 	}
6728 
6729 	if (state < sge_idma_decode_nstates)
6730 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6731 	else
6732 		CH_WARN(adapter, "idma state %d unknown\n", state);
6733 
6734 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6735 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6736 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6737 }
6738 
6739 /**
6740  *      t4_sge_ctxt_flush - flush the SGE context cache
6741  *      @adap: the adapter
6742  *      @mbox: mailbox to use for the FW command
6743  *      @ctx_type: Egress or Ingress
6744  *
6745  *      Issues a FW command through the given mailbox to flush the
6746  *      SGE context cache.
6747  */
6748 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6749 {
6750 	int ret;
6751 	u32 ldst_addrspace;
6752 	struct fw_ldst_cmd c;
6753 
6754 	memset(&c, 0, sizeof(c));
6755 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6756 						 FW_LDST_ADDRSPC_SGE_EGRC :
6757 						 FW_LDST_ADDRSPC_SGE_INGC);
6758 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6759 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6760 					ldst_addrspace);
6761 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6762 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6763 
6764 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6765 	return ret;
6766 }
6767 
6768 /**
6769  *	t4_read_sge_dbqtimers - reag SGE Doorbell Queue Timer values
6770  *	@adap - the adapter
6771  *	@ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6772  *	@dbqtimers: SGE Doorbell Queue Timer table
6773  *
6774  *	Reads the SGE Doorbell Queue Timer values into the provided table.
6775  *	Returns 0 on success (Firmware and Hardware support this feature),
6776  *	an error on failure.
6777  */
6778 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6779 			  u16 *dbqtimers)
6780 {
6781 	int ret, dbqtimerix;
6782 
6783 	ret = 0;
6784 	dbqtimerix = 0;
6785 	while (dbqtimerix < ndbqtimers) {
6786 		int nparams, param;
6787 		u32 params[7], vals[7];
6788 
6789 		nparams = ndbqtimers - dbqtimerix;
6790 		if (nparams > ARRAY_SIZE(params))
6791 			nparams = ARRAY_SIZE(params);
6792 
6793 		for (param = 0; param < nparams; param++)
6794 			params[param] =
6795 			  (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6796 			   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6797 			   FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6798 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6799 				      nparams, params, vals);
6800 		if (ret)
6801 			break;
6802 
6803 		for (param = 0; param < nparams; param++)
6804 			dbqtimers[dbqtimerix++] = vals[param];
6805 	}
6806 	return ret;
6807 }
6808 
6809 /**
6810  *      t4_fw_hello - establish communication with FW
6811  *      @adap: the adapter
6812  *      @mbox: mailbox to use for the FW command
6813  *      @evt_mbox: mailbox to receive async FW events
6814  *      @master: specifies the caller's willingness to be the device master
6815  *	@state: returns the current device state (if non-NULL)
6816  *
6817  *	Issues a command to establish communication with FW.  Returns either
6818  *	an error (negative integer) or the mailbox of the Master PF.
6819  */
6820 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6821 		enum dev_master master, enum dev_state *state)
6822 {
6823 	int ret;
6824 	struct fw_hello_cmd c;
6825 	u32 v;
6826 	unsigned int master_mbox;
6827 	int retries = FW_CMD_HELLO_RETRIES;
6828 
6829 retry:
6830 	memset(&c, 0, sizeof(c));
6831 	INIT_CMD(c, HELLO, WRITE);
6832 	c.err_to_clearinit = cpu_to_be32(
6833 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6834 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6835 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6836 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6837 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6838 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6839 		FW_HELLO_CMD_CLEARINIT_F);
6840 
6841 	/*
6842 	 * Issue the HELLO command to the firmware.  If it's not successful
6843 	 * but indicates that we got a "busy" or "timeout" condition, retry
6844 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6845 	 * retry limit, check to see if the firmware left us any error
6846 	 * information and report that if so.
6847 	 */
6848 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6849 	if (ret < 0) {
6850 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6851 			goto retry;
6852 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6853 			t4_report_fw_error(adap);
6854 		return ret;
6855 	}
6856 
6857 	v = be32_to_cpu(c.err_to_clearinit);
6858 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6859 	if (state) {
6860 		if (v & FW_HELLO_CMD_ERR_F)
6861 			*state = DEV_STATE_ERR;
6862 		else if (v & FW_HELLO_CMD_INIT_F)
6863 			*state = DEV_STATE_INIT;
6864 		else
6865 			*state = DEV_STATE_UNINIT;
6866 	}
6867 
6868 	/*
6869 	 * If we're not the Master PF then we need to wait around for the
6870 	 * Master PF Driver to finish setting up the adapter.
6871 	 *
6872 	 * Note that we also do this wait if we're a non-Master-capable PF and
6873 	 * there is no current Master PF; a Master PF may show up momentarily
6874 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6875 	 * OS loads lots of different drivers rapidly at the same time).  In
6876 	 * this case, the Master PF returned by the firmware will be
6877 	 * PCIE_FW_MASTER_M so the test below will work ...
6878 	 */
6879 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6880 	    master_mbox != mbox) {
6881 		int waiting = FW_CMD_HELLO_TIMEOUT;
6882 
6883 		/*
6884 		 * Wait for the firmware to either indicate an error or
6885 		 * initialized state.  If we see either of these we bail out
6886 		 * and report the issue to the caller.  If we exhaust the
6887 		 * "hello timeout" and we haven't exhausted our retries, try
6888 		 * again.  Otherwise bail with a timeout error.
6889 		 */
6890 		for (;;) {
6891 			u32 pcie_fw;
6892 
6893 			msleep(50);
6894 			waiting -= 50;
6895 
6896 			/*
6897 			 * If neither Error nor Initialialized are indicated
6898 			 * by the firmware keep waiting till we exaust our
6899 			 * timeout ... and then retry if we haven't exhausted
6900 			 * our retries ...
6901 			 */
6902 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6903 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6904 				if (waiting <= 0) {
6905 					if (retries-- > 0)
6906 						goto retry;
6907 
6908 					return -ETIMEDOUT;
6909 				}
6910 				continue;
6911 			}
6912 
6913 			/*
6914 			 * We either have an Error or Initialized condition
6915 			 * report errors preferentially.
6916 			 */
6917 			if (state) {
6918 				if (pcie_fw & PCIE_FW_ERR_F)
6919 					*state = DEV_STATE_ERR;
6920 				else if (pcie_fw & PCIE_FW_INIT_F)
6921 					*state = DEV_STATE_INIT;
6922 			}
6923 
6924 			/*
6925 			 * If we arrived before a Master PF was selected and
6926 			 * there's not a valid Master PF, grab its identity
6927 			 * for our caller.
6928 			 */
6929 			if (master_mbox == PCIE_FW_MASTER_M &&
6930 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6931 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6932 			break;
6933 		}
6934 	}
6935 
6936 	return master_mbox;
6937 }
6938 
6939 /**
6940  *	t4_fw_bye - end communication with FW
6941  *	@adap: the adapter
6942  *	@mbox: mailbox to use for the FW command
6943  *
6944  *	Issues a command to terminate communication with FW.
6945  */
6946 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6947 {
6948 	struct fw_bye_cmd c;
6949 
6950 	memset(&c, 0, sizeof(c));
6951 	INIT_CMD(c, BYE, WRITE);
6952 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6953 }
6954 
6955 /**
6956  *	t4_init_cmd - ask FW to initialize the device
6957  *	@adap: the adapter
6958  *	@mbox: mailbox to use for the FW command
6959  *
6960  *	Issues a command to FW to partially initialize the device.  This
6961  *	performs initialization that generally doesn't depend on user input.
6962  */
6963 int t4_early_init(struct adapter *adap, unsigned int mbox)
6964 {
6965 	struct fw_initialize_cmd c;
6966 
6967 	memset(&c, 0, sizeof(c));
6968 	INIT_CMD(c, INITIALIZE, WRITE);
6969 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6970 }
6971 
6972 /**
6973  *	t4_fw_reset - issue a reset to FW
6974  *	@adap: the adapter
6975  *	@mbox: mailbox to use for the FW command
6976  *	@reset: specifies the type of reset to perform
6977  *
6978  *	Issues a reset command of the specified type to FW.
6979  */
6980 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6981 {
6982 	struct fw_reset_cmd c;
6983 
6984 	memset(&c, 0, sizeof(c));
6985 	INIT_CMD(c, RESET, WRITE);
6986 	c.val = cpu_to_be32(reset);
6987 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6988 }
6989 
6990 /**
6991  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6992  *	@adap: the adapter
6993  *	@mbox: mailbox to use for the FW RESET command (if desired)
6994  *	@force: force uP into RESET even if FW RESET command fails
6995  *
6996  *	Issues a RESET command to firmware (if desired) with a HALT indication
6997  *	and then puts the microprocessor into RESET state.  The RESET command
6998  *	will only be issued if a legitimate mailbox is provided (mbox <=
6999  *	PCIE_FW_MASTER_M).
7000  *
7001  *	This is generally used in order for the host to safely manipulate the
7002  *	adapter without fear of conflicting with whatever the firmware might
7003  *	be doing.  The only way out of this state is to RESTART the firmware
7004  *	...
7005  */
7006 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7007 {
7008 	int ret = 0;
7009 
7010 	/*
7011 	 * If a legitimate mailbox is provided, issue a RESET command
7012 	 * with a HALT indication.
7013 	 */
7014 	if (mbox <= PCIE_FW_MASTER_M) {
7015 		struct fw_reset_cmd c;
7016 
7017 		memset(&c, 0, sizeof(c));
7018 		INIT_CMD(c, RESET, WRITE);
7019 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7020 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7021 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7022 	}
7023 
7024 	/*
7025 	 * Normally we won't complete the operation if the firmware RESET
7026 	 * command fails but if our caller insists we'll go ahead and put the
7027 	 * uP into RESET.  This can be useful if the firmware is hung or even
7028 	 * missing ...  We'll have to take the risk of putting the uP into
7029 	 * RESET without the cooperation of firmware in that case.
7030 	 *
7031 	 * We also force the firmware's HALT flag to be on in case we bypassed
7032 	 * the firmware RESET command above or we're dealing with old firmware
7033 	 * which doesn't have the HALT capability.  This will serve as a flag
7034 	 * for the incoming firmware to know that it's coming out of a HALT
7035 	 * rather than a RESET ... if it's new enough to understand that ...
7036 	 */
7037 	if (ret == 0 || force) {
7038 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7039 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7040 				 PCIE_FW_HALT_F);
7041 	}
7042 
7043 	/*
7044 	 * And we always return the result of the firmware RESET command
7045 	 * even when we force the uP into RESET ...
7046 	 */
7047 	return ret;
7048 }
7049 
7050 /**
7051  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7052  *	@adap: the adapter
7053  *	@reset: if we want to do a RESET to restart things
7054  *
7055  *	Restart firmware previously halted by t4_fw_halt().  On successful
7056  *	return the previous PF Master remains as the new PF Master and there
7057  *	is no need to issue a new HELLO command, etc.
7058  *
7059  *	We do this in two ways:
7060  *
7061  *	 1. If we're dealing with newer firmware we'll simply want to take
7062  *	    the chip's microprocessor out of RESET.  This will cause the
7063  *	    firmware to start up from its start vector.  And then we'll loop
7064  *	    until the firmware indicates it's started again (PCIE_FW.HALT
7065  *	    reset to 0) or we timeout.
7066  *
7067  *	 2. If we're dealing with older firmware then we'll need to RESET
7068  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
7069  *	    flag and automatically RESET itself on startup.
7070  */
7071 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7072 {
7073 	if (reset) {
7074 		/*
7075 		 * Since we're directing the RESET instead of the firmware
7076 		 * doing it automatically, we need to clear the PCIE_FW.HALT
7077 		 * bit.
7078 		 */
7079 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7080 
7081 		/*
7082 		 * If we've been given a valid mailbox, first try to get the
7083 		 * firmware to do the RESET.  If that works, great and we can
7084 		 * return success.  Otherwise, if we haven't been given a
7085 		 * valid mailbox or the RESET command failed, fall back to
7086 		 * hitting the chip with a hammer.
7087 		 */
7088 		if (mbox <= PCIE_FW_MASTER_M) {
7089 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7090 			msleep(100);
7091 			if (t4_fw_reset(adap, mbox,
7092 					PIORST_F | PIORSTMODE_F) == 0)
7093 				return 0;
7094 		}
7095 
7096 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7097 		msleep(2000);
7098 	} else {
7099 		int ms;
7100 
7101 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7102 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7103 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7104 				return 0;
7105 			msleep(100);
7106 			ms += 100;
7107 		}
7108 		return -ETIMEDOUT;
7109 	}
7110 	return 0;
7111 }
7112 
7113 /**
7114  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7115  *	@adap: the adapter
7116  *	@mbox: mailbox to use for the FW RESET command (if desired)
7117  *	@fw_data: the firmware image to write
7118  *	@size: image size
7119  *	@force: force upgrade even if firmware doesn't cooperate
7120  *
7121  *	Perform all of the steps necessary for upgrading an adapter's
7122  *	firmware image.  Normally this requires the cooperation of the
7123  *	existing firmware in order to halt all existing activities
7124  *	but if an invalid mailbox token is passed in we skip that step
7125  *	(though we'll still put the adapter microprocessor into RESET in
7126  *	that case).
7127  *
7128  *	On successful return the new firmware will have been loaded and
7129  *	the adapter will have been fully RESET losing all previous setup
7130  *	state.  On unsuccessful return the adapter may be completely hosed ...
7131  *	positive errno indicates that the adapter is ~probably~ intact, a
7132  *	negative errno indicates that things are looking bad ...
7133  */
7134 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7135 		  const u8 *fw_data, unsigned int size, int force)
7136 {
7137 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7138 	int reset, ret;
7139 
7140 	if (!t4_fw_matches_chip(adap, fw_hdr))
7141 		return -EINVAL;
7142 
7143 	/* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7144 	 * set wont be sent when we are flashing FW.
7145 	 */
7146 	adap->flags &= ~CXGB4_FW_OK;
7147 
7148 	ret = t4_fw_halt(adap, mbox, force);
7149 	if (ret < 0 && !force)
7150 		goto out;
7151 
7152 	ret = t4_load_fw(adap, fw_data, size);
7153 	if (ret < 0)
7154 		goto out;
7155 
7156 	/*
7157 	 * If there was a Firmware Configuration File stored in FLASH,
7158 	 * there's a good chance that it won't be compatible with the new
7159 	 * Firmware.  In order to prevent difficult to diagnose adapter
7160 	 * initialization issues, we clear out the Firmware Configuration File
7161 	 * portion of the FLASH .  The user will need to re-FLASH a new
7162 	 * Firmware Configuration File which is compatible with the new
7163 	 * Firmware if that's desired.
7164 	 */
7165 	(void)t4_load_cfg(adap, NULL, 0);
7166 
7167 	/*
7168 	 * Older versions of the firmware don't understand the new
7169 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7170 	 * restart.  So for newly loaded older firmware we'll have to do the
7171 	 * RESET for it so it starts up on a clean slate.  We can tell if
7172 	 * the newly loaded firmware will handle this right by checking
7173 	 * its header flags to see if it advertises the capability.
7174 	 */
7175 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7176 	ret = t4_fw_restart(adap, mbox, reset);
7177 
7178 	/* Grab potentially new Firmware Device Log parameters so we can see
7179 	 * how healthy the new Firmware is.  It's okay to contact the new
7180 	 * Firmware for these parameters even though, as far as it's
7181 	 * concerned, we've never said "HELLO" to it ...
7182 	 */
7183 	(void)t4_init_devlog_params(adap);
7184 out:
7185 	adap->flags |= CXGB4_FW_OK;
7186 	return ret;
7187 }
7188 
7189 /**
7190  *	t4_fl_pkt_align - return the fl packet alignment
7191  *	@adap: the adapter
7192  *
7193  *	T4 has a single field to specify the packing and padding boundary.
7194  *	T5 onwards has separate fields for this and hence the alignment for
7195  *	next packet offset is maximum of these two.
7196  *
7197  */
7198 int t4_fl_pkt_align(struct adapter *adap)
7199 {
7200 	u32 sge_control, sge_control2;
7201 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7202 
7203 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7204 
7205 	/* T4 uses a single control field to specify both the PCIe Padding and
7206 	 * Packing Boundary.  T5 introduced the ability to specify these
7207 	 * separately.  The actual Ingress Packet Data alignment boundary
7208 	 * within Packed Buffer Mode is the maximum of these two
7209 	 * specifications.  (Note that it makes no real practical sense to
7210 	 * have the Pading Boudary be larger than the Packing Boundary but you
7211 	 * could set the chip up that way and, in fact, legacy T4 code would
7212 	 * end doing this because it would initialize the Padding Boundary and
7213 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7214 	 * Padding Boundary values in T6 starts from 8B,
7215 	 * where as it is 32B for T4 and T5.
7216 	 */
7217 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7218 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7219 	else
7220 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7221 
7222 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7223 
7224 	fl_align = ingpadboundary;
7225 	if (!is_t4(adap->params.chip)) {
7226 		/* T5 has a weird interpretation of one of the PCIe Packing
7227 		 * Boundary values.  No idea why ...
7228 		 */
7229 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7230 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7231 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7232 			ingpackboundary = 16;
7233 		else
7234 			ingpackboundary = 1 << (ingpackboundary +
7235 						INGPACKBOUNDARY_SHIFT_X);
7236 
7237 		fl_align = max(ingpadboundary, ingpackboundary);
7238 	}
7239 	return fl_align;
7240 }
7241 
7242 /**
7243  *	t4_fixup_host_params - fix up host-dependent parameters
7244  *	@adap: the adapter
7245  *	@page_size: the host's Base Page Size
7246  *	@cache_line_size: the host's Cache Line Size
7247  *
7248  *	Various registers in T4 contain values which are dependent on the
7249  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7250  *	those registers with the appropriate values as passed in ...
7251  */
7252 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7253 			 unsigned int cache_line_size)
7254 {
7255 	unsigned int page_shift = fls(page_size) - 1;
7256 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7257 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7258 	unsigned int fl_align_log = fls(fl_align) - 1;
7259 
7260 	if (is_t4(adap->params.chip)) {
7261 		t4_set_reg_field(adap, SGE_CONTROL_A,
7262 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7263 				 EGRSTATUSPAGESIZE_F,
7264 				 INGPADBOUNDARY_V(fl_align_log -
7265 						  INGPADBOUNDARY_SHIFT_X) |
7266 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7267 	} else {
7268 		unsigned int pack_align;
7269 		unsigned int ingpad, ingpack;
7270 		unsigned int pcie_cap;
7271 
7272 		/* T5 introduced the separation of the Free List Padding and
7273 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7274 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7275 		 * Bandwidth, and use a Packing Boundary which is large enough
7276 		 * to avoid false sharing between CPUs, etc.
7277 		 *
7278 		 * For the PCI Link, the smaller the Padding Boundary the
7279 		 * better.  For the Memory Controller, a smaller Padding
7280 		 * Boundary is better until we cross under the Memory Line
7281 		 * Size (the minimum unit of transfer to/from Memory).  If we
7282 		 * have a Padding Boundary which is smaller than the Memory
7283 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7284 		 * Memory Controller which is never good.
7285 		 */
7286 
7287 		/* We want the Packing Boundary to be based on the Cache Line
7288 		 * Size in order to help avoid False Sharing performance
7289 		 * issues between CPUs, etc.  We also want the Packing
7290 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7291 		 * get best performance when the Packing Boundary is a
7292 		 * multiple of the Maximum Payload Size.
7293 		 */
7294 		pack_align = fl_align;
7295 		pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
7296 		if (pcie_cap) {
7297 			unsigned int mps, mps_log;
7298 			u16 devctl;
7299 
7300 			/* The PCIe Device Control Maximum Payload Size field
7301 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7302 			 * 128 bytes.
7303 			 */
7304 			pci_read_config_word(adap->pdev,
7305 					     pcie_cap + PCI_EXP_DEVCTL,
7306 					     &devctl);
7307 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7308 			mps = 1 << mps_log;
7309 			if (mps > pack_align)
7310 				pack_align = mps;
7311 		}
7312 
7313 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7314 		 * value for the Packing Boundary.  This corresponds to 16
7315 		 * bytes instead of the expected 32 bytes.  So if we want 32
7316 		 * bytes, the best we can really do is 64 bytes ...
7317 		 */
7318 		if (pack_align <= 16) {
7319 			ingpack = INGPACKBOUNDARY_16B_X;
7320 			fl_align = 16;
7321 		} else if (pack_align == 32) {
7322 			ingpack = INGPACKBOUNDARY_64B_X;
7323 			fl_align = 64;
7324 		} else {
7325 			unsigned int pack_align_log = fls(pack_align) - 1;
7326 
7327 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7328 			fl_align = pack_align;
7329 		}
7330 
7331 		/* Use the smallest Ingress Padding which isn't smaller than
7332 		 * the Memory Controller Read/Write Size.  We'll take that as
7333 		 * being 8 bytes since we don't know of any system with a
7334 		 * wider Memory Controller Bus Width.
7335 		 */
7336 		if (is_t5(adap->params.chip))
7337 			ingpad = INGPADBOUNDARY_32B_X;
7338 		else
7339 			ingpad = T6_INGPADBOUNDARY_8B_X;
7340 
7341 		t4_set_reg_field(adap, SGE_CONTROL_A,
7342 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7343 				 EGRSTATUSPAGESIZE_F,
7344 				 INGPADBOUNDARY_V(ingpad) |
7345 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7346 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7347 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7348 				 INGPACKBOUNDARY_V(ingpack));
7349 	}
7350 	/*
7351 	 * Adjust various SGE Free List Host Buffer Sizes.
7352 	 *
7353 	 * This is something of a crock since we're using fixed indices into
7354 	 * the array which are also known by the sge.c code and the T4
7355 	 * Firmware Configuration File.  We need to come up with a much better
7356 	 * approach to managing this array.  For now, the first four entries
7357 	 * are:
7358 	 *
7359 	 *   0: Host Page Size
7360 	 *   1: 64KB
7361 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7362 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7363 	 *
7364 	 * For the single-MTU buffers in unpacked mode we need to include
7365 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7366 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7367 	 * Padding boundary.  All of these are accommodated in the Factory
7368 	 * Default Firmware Configuration File but we need to adjust it for
7369 	 * this host's cache line size.
7370 	 */
7371 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7372 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7373 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7374 		     & ~(fl_align-1));
7375 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7376 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7377 		     & ~(fl_align-1));
7378 
7379 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7380 
7381 	return 0;
7382 }
7383 
7384 /**
7385  *	t4_fw_initialize - ask FW to initialize the device
7386  *	@adap: the adapter
7387  *	@mbox: mailbox to use for the FW command
7388  *
7389  *	Issues a command to FW to partially initialize the device.  This
7390  *	performs initialization that generally doesn't depend on user input.
7391  */
7392 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7393 {
7394 	struct fw_initialize_cmd c;
7395 
7396 	memset(&c, 0, sizeof(c));
7397 	INIT_CMD(c, INITIALIZE, WRITE);
7398 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7399 }
7400 
7401 /**
7402  *	t4_query_params_rw - query FW or device parameters
7403  *	@adap: the adapter
7404  *	@mbox: mailbox to use for the FW command
7405  *	@pf: the PF
7406  *	@vf: the VF
7407  *	@nparams: the number of parameters
7408  *	@params: the parameter names
7409  *	@val: the parameter values
7410  *	@rw: Write and read flag
7411  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7412  *
7413  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7414  *	queried at once.
7415  */
7416 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7417 		       unsigned int vf, unsigned int nparams, const u32 *params,
7418 		       u32 *val, int rw, bool sleep_ok)
7419 {
7420 	int i, ret;
7421 	struct fw_params_cmd c;
7422 	__be32 *p = &c.param[0].mnem;
7423 
7424 	if (nparams > 7)
7425 		return -EINVAL;
7426 
7427 	memset(&c, 0, sizeof(c));
7428 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7429 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7430 				  FW_PARAMS_CMD_PFN_V(pf) |
7431 				  FW_PARAMS_CMD_VFN_V(vf));
7432 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7433 
7434 	for (i = 0; i < nparams; i++) {
7435 		*p++ = cpu_to_be32(*params++);
7436 		if (rw)
7437 			*p = cpu_to_be32(*(val + i));
7438 		p++;
7439 	}
7440 
7441 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7442 	if (ret == 0)
7443 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7444 			*val++ = be32_to_cpu(*p);
7445 	return ret;
7446 }
7447 
7448 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7449 		    unsigned int vf, unsigned int nparams, const u32 *params,
7450 		    u32 *val)
7451 {
7452 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7453 				  true);
7454 }
7455 
7456 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7457 		       unsigned int vf, unsigned int nparams, const u32 *params,
7458 		       u32 *val)
7459 {
7460 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7461 				  false);
7462 }
7463 
7464 /**
7465  *      t4_set_params_timeout - sets FW or device parameters
7466  *      @adap: the adapter
7467  *      @mbox: mailbox to use for the FW command
7468  *      @pf: the PF
7469  *      @vf: the VF
7470  *      @nparams: the number of parameters
7471  *      @params: the parameter names
7472  *      @val: the parameter values
7473  *      @timeout: the timeout time
7474  *
7475  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7476  *      specified at once.
7477  */
7478 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7479 			  unsigned int pf, unsigned int vf,
7480 			  unsigned int nparams, const u32 *params,
7481 			  const u32 *val, int timeout)
7482 {
7483 	struct fw_params_cmd c;
7484 	__be32 *p = &c.param[0].mnem;
7485 
7486 	if (nparams > 7)
7487 		return -EINVAL;
7488 
7489 	memset(&c, 0, sizeof(c));
7490 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7491 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7492 				  FW_PARAMS_CMD_PFN_V(pf) |
7493 				  FW_PARAMS_CMD_VFN_V(vf));
7494 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7495 
7496 	while (nparams--) {
7497 		*p++ = cpu_to_be32(*params++);
7498 		*p++ = cpu_to_be32(*val++);
7499 	}
7500 
7501 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7502 }
7503 
7504 /**
7505  *	t4_set_params - sets FW or device parameters
7506  *	@adap: the adapter
7507  *	@mbox: mailbox to use for the FW command
7508  *	@pf: the PF
7509  *	@vf: the VF
7510  *	@nparams: the number of parameters
7511  *	@params: the parameter names
7512  *	@val: the parameter values
7513  *
7514  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7515  *	specified at once.
7516  */
7517 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7518 		  unsigned int vf, unsigned int nparams, const u32 *params,
7519 		  const u32 *val)
7520 {
7521 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7522 				     FW_CMD_MAX_TIMEOUT);
7523 }
7524 
7525 /**
7526  *	t4_cfg_pfvf - configure PF/VF resource limits
7527  *	@adap: the adapter
7528  *	@mbox: mailbox to use for the FW command
7529  *	@pf: the PF being configured
7530  *	@vf: the VF being configured
7531  *	@txq: the max number of egress queues
7532  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7533  *	@rxqi: the max number of interrupt-capable ingress queues
7534  *	@rxq: the max number of interruptless ingress queues
7535  *	@tc: the PCI traffic class
7536  *	@vi: the max number of virtual interfaces
7537  *	@cmask: the channel access rights mask for the PF/VF
7538  *	@pmask: the port access rights mask for the PF/VF
7539  *	@nexact: the maximum number of exact MPS filters
7540  *	@rcaps: read capabilities
7541  *	@wxcaps: write/execute capabilities
7542  *
7543  *	Configures resource limits and capabilities for a physical or virtual
7544  *	function.
7545  */
7546 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7547 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7548 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7549 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7550 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7551 {
7552 	struct fw_pfvf_cmd c;
7553 
7554 	memset(&c, 0, sizeof(c));
7555 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7556 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7557 				  FW_PFVF_CMD_VFN_V(vf));
7558 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7559 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7560 				     FW_PFVF_CMD_NIQ_V(rxq));
7561 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7562 				    FW_PFVF_CMD_PMASK_V(pmask) |
7563 				    FW_PFVF_CMD_NEQ_V(txq));
7564 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7565 				      FW_PFVF_CMD_NVI_V(vi) |
7566 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7567 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7568 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7569 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7570 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7571 }
7572 
7573 /**
7574  *	t4_alloc_vi - allocate a virtual interface
7575  *	@adap: the adapter
7576  *	@mbox: mailbox to use for the FW command
7577  *	@port: physical port associated with the VI
7578  *	@pf: the PF owning the VI
7579  *	@vf: the VF owning the VI
7580  *	@nmac: number of MAC addresses needed (1 to 5)
7581  *	@mac: the MAC addresses of the VI
7582  *	@rss_size: size of RSS table slice associated with this VI
7583  *
7584  *	Allocates a virtual interface for the given physical port.  If @mac is
7585  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7586  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7587  *	stored consecutively so the space needed is @nmac * 6 bytes.
7588  *	Returns a negative error number or the non-negative VI id.
7589  */
7590 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7591 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7592 		unsigned int *rss_size, u8 *vivld, u8 *vin)
7593 {
7594 	int ret;
7595 	struct fw_vi_cmd c;
7596 
7597 	memset(&c, 0, sizeof(c));
7598 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7599 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7600 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7601 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7602 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7603 	c.nmac = nmac - 1;
7604 
7605 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7606 	if (ret)
7607 		return ret;
7608 
7609 	if (mac) {
7610 		memcpy(mac, c.mac, sizeof(c.mac));
7611 		switch (nmac) {
7612 		case 5:
7613 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7614 			/* Fall through */
7615 		case 4:
7616 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7617 			/* Fall through */
7618 		case 3:
7619 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7620 			/* Fall through */
7621 		case 2:
7622 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7623 		}
7624 	}
7625 	if (rss_size)
7626 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7627 
7628 	if (vivld)
7629 		*vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7630 
7631 	if (vin)
7632 		*vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7633 
7634 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7635 }
7636 
7637 /**
7638  *	t4_free_vi - free a virtual interface
7639  *	@adap: the adapter
7640  *	@mbox: mailbox to use for the FW command
7641  *	@pf: the PF owning the VI
7642  *	@vf: the VF owning the VI
7643  *	@viid: virtual interface identifiler
7644  *
7645  *	Free a previously allocated virtual interface.
7646  */
7647 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7648 	       unsigned int vf, unsigned int viid)
7649 {
7650 	struct fw_vi_cmd c;
7651 
7652 	memset(&c, 0, sizeof(c));
7653 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7654 				  FW_CMD_REQUEST_F |
7655 				  FW_CMD_EXEC_F |
7656 				  FW_VI_CMD_PFN_V(pf) |
7657 				  FW_VI_CMD_VFN_V(vf));
7658 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7659 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7660 
7661 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7662 }
7663 
7664 /**
7665  *	t4_set_rxmode - set Rx properties of a virtual interface
7666  *	@adap: the adapter
7667  *	@mbox: mailbox to use for the FW command
7668  *	@viid: the VI id
7669  *	@mtu: the new MTU or -1
7670  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7671  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7672  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7673  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7674  *	@sleep_ok: if true we may sleep while awaiting command completion
7675  *
7676  *	Sets Rx properties of a virtual interface.
7677  */
7678 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7679 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7680 		  bool sleep_ok)
7681 {
7682 	struct fw_vi_rxmode_cmd c;
7683 
7684 	/* convert to FW values */
7685 	if (mtu < 0)
7686 		mtu = FW_RXMODE_MTU_NO_CHG;
7687 	if (promisc < 0)
7688 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7689 	if (all_multi < 0)
7690 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7691 	if (bcast < 0)
7692 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7693 	if (vlanex < 0)
7694 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7695 
7696 	memset(&c, 0, sizeof(c));
7697 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7698 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7699 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7700 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7701 	c.mtu_to_vlanexen =
7702 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7703 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7704 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7705 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7706 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7707 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7708 }
7709 
7710 /**
7711  *      t4_free_encap_mac_filt - frees MPS entry at given index
7712  *      @adap: the adapter
7713  *      @viid: the VI id
7714  *      @idx: index of MPS entry to be freed
7715  *      @sleep_ok: call is allowed to sleep
7716  *
7717  *      Frees the MPS entry at supplied index
7718  *
7719  *      Returns a negative error number or zero on success
7720  */
7721 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7722 			   int idx, bool sleep_ok)
7723 {
7724 	struct fw_vi_mac_exact *p;
7725 	u8 addr[] = {0, 0, 0, 0, 0, 0};
7726 	struct fw_vi_mac_cmd c;
7727 	int ret = 0;
7728 	u32 exact;
7729 
7730 	memset(&c, 0, sizeof(c));
7731 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7732 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7733 				   FW_CMD_EXEC_V(0) |
7734 				   FW_VI_MAC_CMD_VIID_V(viid));
7735 	exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7736 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7737 					  exact |
7738 					  FW_CMD_LEN16_V(1));
7739 	p = c.u.exact;
7740 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7741 				      FW_VI_MAC_CMD_IDX_V(idx));
7742 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7743 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7744 	return ret;
7745 }
7746 
7747 /**
7748  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7749  *	@adap: the adapter
7750  *	@viid: the VI id
7751  *	@addr: the MAC address
7752  *	@mask: the mask
7753  *	@idx: index of the entry in mps tcam
7754  *	@lookup_type: MAC address for inner (1) or outer (0) header
7755  *	@port_id: the port index
7756  *	@sleep_ok: call is allowed to sleep
7757  *
7758  *	Removes the mac entry at the specified index using raw mac interface.
7759  *
7760  *	Returns a negative error number on failure.
7761  */
7762 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7763 			 const u8 *addr, const u8 *mask, unsigned int idx,
7764 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7765 {
7766 	struct fw_vi_mac_cmd c;
7767 	struct fw_vi_mac_raw *p = &c.u.raw;
7768 	u32 val;
7769 
7770 	memset(&c, 0, sizeof(c));
7771 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7772 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7773 				   FW_CMD_EXEC_V(0) |
7774 				   FW_VI_MAC_CMD_VIID_V(viid));
7775 	val = FW_CMD_LEN16_V(1) |
7776 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7777 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7778 					  FW_CMD_LEN16_V(val));
7779 
7780 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7781 				     FW_VI_MAC_ID_BASED_FREE);
7782 
7783 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7784 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7785 				   DATAPORTNUM_V(port_id));
7786 	/* Lookup mask and port mask */
7787 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7788 				    DATAPORTNUM_V(DATAPORTNUM_M));
7789 
7790 	/* Copy the address and the mask */
7791 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7792 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7793 
7794 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7795 }
7796 
7797 /**
7798  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7799  *      @adap: the adapter
7800  *      @viid: the VI id
7801  *      @mac: the MAC address
7802  *      @mask: the mask
7803  *      @vni: the VNI id for the tunnel protocol
7804  *      @vni_mask: mask for the VNI id
7805  *      @dip_hit: to enable DIP match for the MPS entry
7806  *      @lookup_type: MAC address for inner (1) or outer (0) header
7807  *      @sleep_ok: call is allowed to sleep
7808  *
7809  *      Allocates an MPS entry with specified MAC address and VNI value.
7810  *
7811  *      Returns a negative error number or the allocated index for this mac.
7812  */
7813 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7814 			    const u8 *addr, const u8 *mask, unsigned int vni,
7815 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7816 			    bool sleep_ok)
7817 {
7818 	struct fw_vi_mac_cmd c;
7819 	struct fw_vi_mac_vni *p = c.u.exact_vni;
7820 	int ret = 0;
7821 	u32 val;
7822 
7823 	memset(&c, 0, sizeof(c));
7824 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7825 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7826 				   FW_VI_MAC_CMD_VIID_V(viid));
7827 	val = FW_CMD_LEN16_V(1) |
7828 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7829 	c.freemacs_to_len16 = cpu_to_be32(val);
7830 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7831 				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7832 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7833 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7834 
7835 	p->lookup_type_to_vni =
7836 		cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7837 			    FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7838 			    FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7839 	p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7840 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7841 	if (ret == 0)
7842 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7843 	return ret;
7844 }
7845 
7846 /**
7847  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7848  *	@adap: the adapter
7849  *	@viid: the VI id
7850  *	@mac: the MAC address
7851  *	@mask: the mask
7852  *	@idx: index at which to add this entry
7853  *	@port_id: the port index
7854  *	@lookup_type: MAC address for inner (1) or outer (0) header
7855  *	@sleep_ok: call is allowed to sleep
7856  *
7857  *	Adds the mac entry at the specified index using raw mac interface.
7858  *
7859  *	Returns a negative error number or the allocated index for this mac.
7860  */
7861 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7862 			  const u8 *addr, const u8 *mask, unsigned int idx,
7863 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7864 {
7865 	int ret = 0;
7866 	struct fw_vi_mac_cmd c;
7867 	struct fw_vi_mac_raw *p = &c.u.raw;
7868 	u32 val;
7869 
7870 	memset(&c, 0, sizeof(c));
7871 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7872 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7873 				   FW_VI_MAC_CMD_VIID_V(viid));
7874 	val = FW_CMD_LEN16_V(1) |
7875 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7876 	c.freemacs_to_len16 = cpu_to_be32(val);
7877 
7878 	/* Specify that this is an inner mac address */
7879 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7880 
7881 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7882 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7883 				   DATAPORTNUM_V(port_id));
7884 	/* Lookup mask and port mask */
7885 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7886 				    DATAPORTNUM_V(DATAPORTNUM_M));
7887 
7888 	/* Copy the address and the mask */
7889 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7890 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7891 
7892 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7893 	if (ret == 0) {
7894 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7895 		if (ret != idx)
7896 			ret = -ENOMEM;
7897 	}
7898 
7899 	return ret;
7900 }
7901 
7902 /**
7903  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7904  *	@adap: the adapter
7905  *	@mbox: mailbox to use for the FW command
7906  *	@viid: the VI id
7907  *	@free: if true any existing filters for this VI id are first removed
7908  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7909  *	@addr: the MAC address(es)
7910  *	@idx: where to store the index of each allocated filter
7911  *	@hash: pointer to hash address filter bitmap
7912  *	@sleep_ok: call is allowed to sleep
7913  *
7914  *	Allocates an exact-match filter for each of the supplied addresses and
7915  *	sets it to the corresponding address.  If @idx is not %NULL it should
7916  *	have at least @naddr entries, each of which will be set to the index of
7917  *	the filter allocated for the corresponding MAC address.  If a filter
7918  *	could not be allocated for an address its index is set to 0xffff.
7919  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7920  *	are hashed and update the hash filter bitmap pointed at by @hash.
7921  *
7922  *	Returns a negative error number or the number of filters allocated.
7923  */
7924 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7925 		      unsigned int viid, bool free, unsigned int naddr,
7926 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7927 {
7928 	int offset, ret = 0;
7929 	struct fw_vi_mac_cmd c;
7930 	unsigned int nfilters = 0;
7931 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7932 	unsigned int rem = naddr;
7933 
7934 	if (naddr > max_naddr)
7935 		return -EINVAL;
7936 
7937 	for (offset = 0; offset < naddr ; /**/) {
7938 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7939 					 rem : ARRAY_SIZE(c.u.exact));
7940 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7941 						     u.exact[fw_naddr]), 16);
7942 		struct fw_vi_mac_exact *p;
7943 		int i;
7944 
7945 		memset(&c, 0, sizeof(c));
7946 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7947 					   FW_CMD_REQUEST_F |
7948 					   FW_CMD_WRITE_F |
7949 					   FW_CMD_EXEC_V(free) |
7950 					   FW_VI_MAC_CMD_VIID_V(viid));
7951 		c.freemacs_to_len16 =
7952 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7953 				    FW_CMD_LEN16_V(len16));
7954 
7955 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7956 			p->valid_to_idx =
7957 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7958 					    FW_VI_MAC_CMD_IDX_V(
7959 						    FW_VI_MAC_ADD_MAC));
7960 			memcpy(p->macaddr, addr[offset + i],
7961 			       sizeof(p->macaddr));
7962 		}
7963 
7964 		/* It's okay if we run out of space in our MAC address arena.
7965 		 * Some of the addresses we submit may get stored so we need
7966 		 * to run through the reply to see what the results were ...
7967 		 */
7968 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7969 		if (ret && ret != -FW_ENOMEM)
7970 			break;
7971 
7972 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7973 			u16 index = FW_VI_MAC_CMD_IDX_G(
7974 					be16_to_cpu(p->valid_to_idx));
7975 
7976 			if (idx)
7977 				idx[offset + i] = (index >= max_naddr ?
7978 						   0xffff : index);
7979 			if (index < max_naddr)
7980 				nfilters++;
7981 			else if (hash)
7982 				*hash |= (1ULL <<
7983 					  hash_mac_addr(addr[offset + i]));
7984 		}
7985 
7986 		free = false;
7987 		offset += fw_naddr;
7988 		rem -= fw_naddr;
7989 	}
7990 
7991 	if (ret == 0 || ret == -FW_ENOMEM)
7992 		ret = nfilters;
7993 	return ret;
7994 }
7995 
7996 /**
7997  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
7998  *	@adap: the adapter
7999  *	@mbox: mailbox to use for the FW command
8000  *	@viid: the VI id
8001  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8002  *	@addr: the MAC address(es)
8003  *	@sleep_ok: call is allowed to sleep
8004  *
8005  *	Frees the exact-match filter for each of the supplied addresses
8006  *
8007  *	Returns a negative error number or the number of filters freed.
8008  */
8009 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8010 		     unsigned int viid, unsigned int naddr,
8011 		     const u8 **addr, bool sleep_ok)
8012 {
8013 	int offset, ret = 0;
8014 	struct fw_vi_mac_cmd c;
8015 	unsigned int nfilters = 0;
8016 	unsigned int max_naddr = is_t4(adap->params.chip) ?
8017 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
8018 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8019 	unsigned int rem = naddr;
8020 
8021 	if (naddr > max_naddr)
8022 		return -EINVAL;
8023 
8024 	for (offset = 0; offset < (int)naddr ; /**/) {
8025 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8026 					 ? rem
8027 					 : ARRAY_SIZE(c.u.exact));
8028 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8029 						     u.exact[fw_naddr]), 16);
8030 		struct fw_vi_mac_exact *p;
8031 		int i;
8032 
8033 		memset(&c, 0, sizeof(c));
8034 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8035 				     FW_CMD_REQUEST_F |
8036 				     FW_CMD_WRITE_F |
8037 				     FW_CMD_EXEC_V(0) |
8038 				     FW_VI_MAC_CMD_VIID_V(viid));
8039 		c.freemacs_to_len16 =
8040 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8041 					    FW_CMD_LEN16_V(len16));
8042 
8043 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8044 			p->valid_to_idx = cpu_to_be16(
8045 				FW_VI_MAC_CMD_VALID_F |
8046 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8047 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8048 		}
8049 
8050 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8051 		if (ret)
8052 			break;
8053 
8054 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8055 			u16 index = FW_VI_MAC_CMD_IDX_G(
8056 						be16_to_cpu(p->valid_to_idx));
8057 
8058 			if (index < max_naddr)
8059 				nfilters++;
8060 		}
8061 
8062 		offset += fw_naddr;
8063 		rem -= fw_naddr;
8064 	}
8065 
8066 	if (ret == 0)
8067 		ret = nfilters;
8068 	return ret;
8069 }
8070 
8071 /**
8072  *	t4_change_mac - modifies the exact-match filter for a MAC address
8073  *	@adap: the adapter
8074  *	@mbox: mailbox to use for the FW command
8075  *	@viid: the VI id
8076  *	@idx: index of existing filter for old value of MAC address, or -1
8077  *	@addr: the new MAC address value
8078  *	@persist: whether a new MAC allocation should be persistent
8079  *	@add_smt: if true also add the address to the HW SMT
8080  *
8081  *	Modifies an exact-match filter and sets it to the new MAC address.
8082  *	Note that in general it is not possible to modify the value of a given
8083  *	filter so the generic way to modify an address filter is to free the one
8084  *	being used by the old address value and allocate a new filter for the
8085  *	new address value.  @idx can be -1 if the address is a new addition.
8086  *
8087  *	Returns a negative error number or the index of the filter with the new
8088  *	MAC value.
8089  */
8090 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8091 		  int idx, const u8 *addr, bool persist, u8 *smt_idx)
8092 {
8093 	int ret, mode;
8094 	struct fw_vi_mac_cmd c;
8095 	struct fw_vi_mac_exact *p = c.u.exact;
8096 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8097 
8098 	if (idx < 0)                             /* new allocation */
8099 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8100 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8101 
8102 	memset(&c, 0, sizeof(c));
8103 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8104 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8105 				   FW_VI_MAC_CMD_VIID_V(viid));
8106 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8107 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8108 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8109 				      FW_VI_MAC_CMD_IDX_V(idx));
8110 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8111 
8112 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8113 	if (ret == 0) {
8114 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8115 		if (ret >= max_mac_addr)
8116 			ret = -ENOMEM;
8117 		if (smt_idx) {
8118 			if (adap->params.viid_smt_extn_support) {
8119 				*smt_idx = FW_VI_MAC_CMD_SMTID_G
8120 						    (be32_to_cpu(c.op_to_viid));
8121 			} else {
8122 				/* In T4/T5, SMT contains 256 SMAC entries
8123 				 * organized in 128 rows of 2 entries each.
8124 				 * In T6, SMT contains 256 SMAC entries in
8125 				 * 256 rows.
8126 				 */
8127 				if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8128 								     CHELSIO_T5)
8129 					*smt_idx = (viid & FW_VIID_VIN_M) << 1;
8130 				else
8131 					*smt_idx = (viid & FW_VIID_VIN_M);
8132 			}
8133 		}
8134 	}
8135 	return ret;
8136 }
8137 
8138 /**
8139  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8140  *	@adap: the adapter
8141  *	@mbox: mailbox to use for the FW command
8142  *	@viid: the VI id
8143  *	@ucast: whether the hash filter should also match unicast addresses
8144  *	@vec: the value to be written to the hash filter
8145  *	@sleep_ok: call is allowed to sleep
8146  *
8147  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8148  */
8149 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8150 		     bool ucast, u64 vec, bool sleep_ok)
8151 {
8152 	struct fw_vi_mac_cmd c;
8153 
8154 	memset(&c, 0, sizeof(c));
8155 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8156 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8157 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8158 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8159 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8160 					  FW_CMD_LEN16_V(1));
8161 	c.u.hash.hashvec = cpu_to_be64(vec);
8162 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8163 }
8164 
8165 /**
8166  *      t4_enable_vi_params - enable/disable a virtual interface
8167  *      @adap: the adapter
8168  *      @mbox: mailbox to use for the FW command
8169  *      @viid: the VI id
8170  *      @rx_en: 1=enable Rx, 0=disable Rx
8171  *      @tx_en: 1=enable Tx, 0=disable Tx
8172  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8173  *
8174  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8175  *      only makes sense when enabling a Virtual Interface ...
8176  */
8177 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8178 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8179 {
8180 	struct fw_vi_enable_cmd c;
8181 
8182 	memset(&c, 0, sizeof(c));
8183 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8184 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8185 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8186 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8187 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8188 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8189 				     FW_LEN16(c));
8190 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8191 }
8192 
8193 /**
8194  *	t4_enable_vi - enable/disable a virtual interface
8195  *	@adap: the adapter
8196  *	@mbox: mailbox to use for the FW command
8197  *	@viid: the VI id
8198  *	@rx_en: 1=enable Rx, 0=disable Rx
8199  *	@tx_en: 1=enable Tx, 0=disable Tx
8200  *
8201  *	Enables/disables a virtual interface.
8202  */
8203 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8204 		 bool rx_en, bool tx_en)
8205 {
8206 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8207 }
8208 
8209 /**
8210  *	t4_enable_pi_params - enable/disable a Port's Virtual Interface
8211  *      @adap: the adapter
8212  *      @mbox: mailbox to use for the FW command
8213  *      @pi: the Port Information structure
8214  *      @rx_en: 1=enable Rx, 0=disable Rx
8215  *      @tx_en: 1=enable Tx, 0=disable Tx
8216  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8217  *
8218  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8219  *	Enable only makes sense when enabling a Virtual Interface ...
8220  *	If the Virtual Interface enable/disable operation is successful,
8221  *	we notify the OS-specific code of a potential Link Status change
8222  *	via the OS Contract API t4_os_link_changed().
8223  */
8224 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8225 			struct port_info *pi,
8226 			bool rx_en, bool tx_en, bool dcb_en)
8227 {
8228 	int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8229 				      rx_en, tx_en, dcb_en);
8230 	if (ret)
8231 		return ret;
8232 	t4_os_link_changed(adap, pi->port_id,
8233 			   rx_en && tx_en && pi->link_cfg.link_ok);
8234 	return 0;
8235 }
8236 
8237 /**
8238  *	t4_identify_port - identify a VI's port by blinking its LED
8239  *	@adap: the adapter
8240  *	@mbox: mailbox to use for the FW command
8241  *	@viid: the VI id
8242  *	@nblinks: how many times to blink LED at 2.5 Hz
8243  *
8244  *	Identifies a VI's port by blinking its LED.
8245  */
8246 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8247 		     unsigned int nblinks)
8248 {
8249 	struct fw_vi_enable_cmd c;
8250 
8251 	memset(&c, 0, sizeof(c));
8252 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8253 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8254 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8255 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8256 	c.blinkdur = cpu_to_be16(nblinks);
8257 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8258 }
8259 
8260 /**
8261  *	t4_iq_stop - stop an ingress queue and its FLs
8262  *	@adap: the adapter
8263  *	@mbox: mailbox to use for the FW command
8264  *	@pf: the PF owning the queues
8265  *	@vf: the VF owning the queues
8266  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8267  *	@iqid: ingress queue id
8268  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8269  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8270  *
8271  *	Stops an ingress queue and its associated FLs, if any.  This causes
8272  *	any current or future data/messages destined for these queues to be
8273  *	tossed.
8274  */
8275 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8276 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8277 	       unsigned int fl0id, unsigned int fl1id)
8278 {
8279 	struct fw_iq_cmd c;
8280 
8281 	memset(&c, 0, sizeof(c));
8282 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8283 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8284 				  FW_IQ_CMD_VFN_V(vf));
8285 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8286 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8287 	c.iqid = cpu_to_be16(iqid);
8288 	c.fl0id = cpu_to_be16(fl0id);
8289 	c.fl1id = cpu_to_be16(fl1id);
8290 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8291 }
8292 
8293 /**
8294  *	t4_iq_free - free an ingress queue and its FLs
8295  *	@adap: the adapter
8296  *	@mbox: mailbox to use for the FW command
8297  *	@pf: the PF owning the queues
8298  *	@vf: the VF owning the queues
8299  *	@iqtype: the ingress queue type
8300  *	@iqid: ingress queue id
8301  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8302  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8303  *
8304  *	Frees an ingress queue and its associated FLs, if any.
8305  */
8306 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8307 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8308 	       unsigned int fl0id, unsigned int fl1id)
8309 {
8310 	struct fw_iq_cmd c;
8311 
8312 	memset(&c, 0, sizeof(c));
8313 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8314 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8315 				  FW_IQ_CMD_VFN_V(vf));
8316 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8317 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8318 	c.iqid = cpu_to_be16(iqid);
8319 	c.fl0id = cpu_to_be16(fl0id);
8320 	c.fl1id = cpu_to_be16(fl1id);
8321 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8322 }
8323 
8324 /**
8325  *	t4_eth_eq_free - free an Ethernet egress queue
8326  *	@adap: the adapter
8327  *	@mbox: mailbox to use for the FW command
8328  *	@pf: the PF owning the queue
8329  *	@vf: the VF owning the queue
8330  *	@eqid: egress queue id
8331  *
8332  *	Frees an Ethernet egress queue.
8333  */
8334 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8335 		   unsigned int vf, unsigned int eqid)
8336 {
8337 	struct fw_eq_eth_cmd c;
8338 
8339 	memset(&c, 0, sizeof(c));
8340 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8341 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8342 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8343 				  FW_EQ_ETH_CMD_VFN_V(vf));
8344 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8345 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8346 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8347 }
8348 
8349 /**
8350  *	t4_ctrl_eq_free - free a control egress queue
8351  *	@adap: the adapter
8352  *	@mbox: mailbox to use for the FW command
8353  *	@pf: the PF owning the queue
8354  *	@vf: the VF owning the queue
8355  *	@eqid: egress queue id
8356  *
8357  *	Frees a control egress queue.
8358  */
8359 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8360 		    unsigned int vf, unsigned int eqid)
8361 {
8362 	struct fw_eq_ctrl_cmd c;
8363 
8364 	memset(&c, 0, sizeof(c));
8365 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8366 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8367 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8368 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8369 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8370 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8371 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8372 }
8373 
8374 /**
8375  *	t4_ofld_eq_free - free an offload egress queue
8376  *	@adap: the adapter
8377  *	@mbox: mailbox to use for the FW command
8378  *	@pf: the PF owning the queue
8379  *	@vf: the VF owning the queue
8380  *	@eqid: egress queue id
8381  *
8382  *	Frees a control egress queue.
8383  */
8384 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8385 		    unsigned int vf, unsigned int eqid)
8386 {
8387 	struct fw_eq_ofld_cmd c;
8388 
8389 	memset(&c, 0, sizeof(c));
8390 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8391 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8392 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8393 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8394 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8395 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8396 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8397 }
8398 
8399 /**
8400  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8401  *	@adap: the adapter
8402  *	@link_down_rc: Link Down Reason Code
8403  *
8404  *	Returns a string representation of the Link Down Reason Code.
8405  */
8406 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8407 {
8408 	static const char * const reason[] = {
8409 		"Link Down",
8410 		"Remote Fault",
8411 		"Auto-negotiation Failure",
8412 		"Reserved",
8413 		"Insufficient Airflow",
8414 		"Unable To Determine Reason",
8415 		"No RX Signal Detected",
8416 		"Reserved",
8417 	};
8418 
8419 	if (link_down_rc >= ARRAY_SIZE(reason))
8420 		return "Bad Reason Code";
8421 
8422 	return reason[link_down_rc];
8423 }
8424 
8425 /**
8426  * Return the highest speed set in the port capabilities, in Mb/s.
8427  */
8428 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8429 {
8430 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8431 		do { \
8432 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8433 				return __speed; \
8434 		} while (0)
8435 
8436 	TEST_SPEED_RETURN(400G, 400000);
8437 	TEST_SPEED_RETURN(200G, 200000);
8438 	TEST_SPEED_RETURN(100G, 100000);
8439 	TEST_SPEED_RETURN(50G,   50000);
8440 	TEST_SPEED_RETURN(40G,   40000);
8441 	TEST_SPEED_RETURN(25G,   25000);
8442 	TEST_SPEED_RETURN(10G,   10000);
8443 	TEST_SPEED_RETURN(1G,     1000);
8444 	TEST_SPEED_RETURN(100M,    100);
8445 
8446 	#undef TEST_SPEED_RETURN
8447 
8448 	return 0;
8449 }
8450 
8451 /**
8452  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8453  *	@acaps: advertised Port Capabilities
8454  *
8455  *	Get the highest speed for the port from the advertised Port
8456  *	Capabilities.  It will be either the highest speed from the list of
8457  *	speeds or whatever user has set using ethtool.
8458  */
8459 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8460 {
8461 	#define TEST_SPEED_RETURN(__caps_speed) \
8462 		do { \
8463 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8464 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8465 		} while (0)
8466 
8467 	TEST_SPEED_RETURN(400G);
8468 	TEST_SPEED_RETURN(200G);
8469 	TEST_SPEED_RETURN(100G);
8470 	TEST_SPEED_RETURN(50G);
8471 	TEST_SPEED_RETURN(40G);
8472 	TEST_SPEED_RETURN(25G);
8473 	TEST_SPEED_RETURN(10G);
8474 	TEST_SPEED_RETURN(1G);
8475 	TEST_SPEED_RETURN(100M);
8476 
8477 	#undef TEST_SPEED_RETURN
8478 
8479 	return 0;
8480 }
8481 
8482 /**
8483  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8484  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8485  *
8486  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8487  *	32-bit Port Capabilities value.
8488  */
8489 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8490 {
8491 	fw_port_cap32_t linkattr = 0;
8492 
8493 	/* Unfortunately the format of the Link Status in the old
8494 	 * 16-bit Port Information message isn't the same as the
8495 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8496 	 */
8497 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8498 		linkattr |= FW_PORT_CAP32_FC_RX;
8499 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8500 		linkattr |= FW_PORT_CAP32_FC_TX;
8501 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8502 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8503 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8504 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8505 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8506 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8507 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8508 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8509 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8510 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8511 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8512 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8513 
8514 	return linkattr;
8515 }
8516 
8517 /**
8518  *	t4_handle_get_port_info - process a FW reply message
8519  *	@pi: the port info
8520  *	@rpl: start of the FW message
8521  *
8522  *	Processes a GET_PORT_INFO FW reply message.
8523  */
8524 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8525 {
8526 	const struct fw_port_cmd *cmd = (const void *)rpl;
8527 	int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8528 	struct adapter *adapter = pi->adapter;
8529 	struct link_config *lc = &pi->link_cfg;
8530 	int link_ok, linkdnrc;
8531 	enum fw_port_type port_type;
8532 	enum fw_port_module_type mod_type;
8533 	unsigned int speed, fc, fec;
8534 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8535 
8536 	/* Extract the various fields from the Port Information message.
8537 	 */
8538 	switch (action) {
8539 	case FW_PORT_ACTION_GET_PORT_INFO: {
8540 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8541 
8542 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8543 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8544 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8545 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8546 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8547 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8548 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8549 		linkattr = lstatus_to_fwcap(lstatus);
8550 		break;
8551 	}
8552 
8553 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8554 		u32 lstatus32;
8555 
8556 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8557 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8558 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8559 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8560 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8561 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8562 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8563 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8564 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8565 		break;
8566 	}
8567 
8568 	default:
8569 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8570 			be32_to_cpu(cmd->action_to_len16));
8571 		return;
8572 	}
8573 
8574 	fec = fwcap_to_cc_fec(acaps);
8575 	fc = fwcap_to_cc_pause(linkattr);
8576 	speed = fwcap_to_speed(linkattr);
8577 
8578 	/* Reset state for communicating new Transceiver Module status and
8579 	 * whether the OS-dependent layer wants us to redo the current
8580 	 * "sticky" L1 Configure Link Parameters.
8581 	 */
8582 	lc->new_module = false;
8583 	lc->redo_l1cfg = false;
8584 
8585 	if (mod_type != pi->mod_type) {
8586 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8587 		 * various fundamental Port Capabilities which used to be
8588 		 * immutable can now change radically.  We can now have
8589 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8590 		 * all change based on what Transceiver Module is inserted.
8591 		 * So we need to record the Physical "Port" Capabilities on
8592 		 * every Transceiver Module change.
8593 		 */
8594 		lc->pcaps = pcaps;
8595 
8596 		/* When a new Transceiver Module is inserted, the Firmware
8597 		 * will examine its i2c EPROM to determine its type and
8598 		 * general operating parameters including things like Forward
8599 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8600 		 * how to interpret these i2c values to determine default
8601 		 * "sutomatic" settings.  We record these for future use when
8602 		 * the user explicitly requests these standards-based values.
8603 		 */
8604 		lc->def_acaps = acaps;
8605 
8606 		/* Some versions of the early T6 Firmware "cheated" when
8607 		 * handling different Transceiver Modules by changing the
8608 		 * underlaying Port Type reported to the Host Drivers.  As
8609 		 * such we need to capture whatever Port Type the Firmware
8610 		 * sends us and record it in case it's different from what we
8611 		 * were told earlier.  Unfortunately, since Firmware is
8612 		 * forever, we'll need to keep this code here forever, but in
8613 		 * later T6 Firmware it should just be an assignment of the
8614 		 * same value already recorded.
8615 		 */
8616 		pi->port_type = port_type;
8617 
8618 		/* Record new Module Type information.
8619 		 */
8620 		pi->mod_type = mod_type;
8621 
8622 		/* Let the OS-dependent layer know if we have a new
8623 		 * Transceiver Module inserted.
8624 		 */
8625 		lc->new_module = t4_is_inserted_mod_type(mod_type);
8626 
8627 		t4_os_portmod_changed(adapter, pi->port_id);
8628 	}
8629 
8630 	if (link_ok != lc->link_ok || speed != lc->speed ||
8631 	    fc != lc->fc || fec != lc->fec) {	/* something changed */
8632 		if (!link_ok && lc->link_ok) {
8633 			lc->link_down_rc = linkdnrc;
8634 			dev_warn_ratelimited(adapter->pdev_dev,
8635 					     "Port %d link down, reason: %s\n",
8636 					     pi->tx_chan,
8637 					     t4_link_down_rc_str(linkdnrc));
8638 		}
8639 		lc->link_ok = link_ok;
8640 		lc->speed = speed;
8641 		lc->fc = fc;
8642 		lc->fec = fec;
8643 
8644 		lc->lpacaps = lpacaps;
8645 		lc->acaps = acaps & ADVERT_MASK;
8646 
8647 		/* If we're not physically capable of Auto-Negotiation, note
8648 		 * this as Auto-Negotiation disabled.  Otherwise, we track
8649 		 * what Auto-Negotiation settings we have.  Note parallel
8650 		 * structure in t4_link_l1cfg_core() and init_link_config().
8651 		 */
8652 		if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8653 			lc->autoneg = AUTONEG_DISABLE;
8654 		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8655 			lc->autoneg = AUTONEG_ENABLE;
8656 		} else {
8657 			/* When Autoneg is disabled, user needs to set
8658 			 * single speed.
8659 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8660 			 */
8661 			lc->acaps = 0;
8662 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8663 			lc->autoneg = AUTONEG_DISABLE;
8664 		}
8665 
8666 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8667 	}
8668 
8669 	/* If we have a new Transceiver Module and the OS-dependent code has
8670 	 * told us that it wants us to redo whatever "sticky" L1 Configuration
8671 	 * Link Parameters are set, do that now.
8672 	 */
8673 	if (lc->new_module && lc->redo_l1cfg) {
8674 		struct link_config old_lc;
8675 		int ret;
8676 
8677 		/* Save the current L1 Configuration and restore it if an
8678 		 * error occurs.  We probably should fix the l1_cfg*()
8679 		 * routines not to change the link_config when an error
8680 		 * occurs ...
8681 		 */
8682 		old_lc = *lc;
8683 		ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8684 		if (ret) {
8685 			*lc = old_lc;
8686 			dev_warn(adapter->pdev_dev,
8687 				 "Attempt to update new Transceiver Module settings failed\n");
8688 		}
8689 	}
8690 	lc->new_module = false;
8691 	lc->redo_l1cfg = false;
8692 }
8693 
8694 /**
8695  *	t4_update_port_info - retrieve and update port information if changed
8696  *	@pi: the port_info
8697  *
8698  *	We issue a Get Port Information Command to the Firmware and, if
8699  *	successful, we check to see if anything is different from what we
8700  *	last recorded and update things accordingly.
8701  */
8702 int t4_update_port_info(struct port_info *pi)
8703 {
8704 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8705 	struct fw_port_cmd port_cmd;
8706 	int ret;
8707 
8708 	memset(&port_cmd, 0, sizeof(port_cmd));
8709 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8710 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8711 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8712 	port_cmd.action_to_len16 = cpu_to_be32(
8713 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8714 				     ? FW_PORT_ACTION_GET_PORT_INFO
8715 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8716 		FW_LEN16(port_cmd));
8717 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8718 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8719 	if (ret)
8720 		return ret;
8721 
8722 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8723 	return 0;
8724 }
8725 
8726 /**
8727  *	t4_get_link_params - retrieve basic link parameters for given port
8728  *	@pi: the port
8729  *	@link_okp: value return pointer for link up/down
8730  *	@speedp: value return pointer for speed (Mb/s)
8731  *	@mtup: value return pointer for mtu
8732  *
8733  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8734  *	and MTU for a specified port.  A negative error is returned on
8735  *	failure; 0 on success.
8736  */
8737 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8738 		       unsigned int *speedp, unsigned int *mtup)
8739 {
8740 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8741 	struct fw_port_cmd port_cmd;
8742 	unsigned int action, link_ok, mtu;
8743 	fw_port_cap32_t linkattr;
8744 	int ret;
8745 
8746 	memset(&port_cmd, 0, sizeof(port_cmd));
8747 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8748 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8749 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8750 	action = (fw_caps == FW_CAPS16
8751 		  ? FW_PORT_ACTION_GET_PORT_INFO
8752 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8753 	port_cmd.action_to_len16 = cpu_to_be32(
8754 		FW_PORT_CMD_ACTION_V(action) |
8755 		FW_LEN16(port_cmd));
8756 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8757 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8758 	if (ret)
8759 		return ret;
8760 
8761 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8762 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8763 
8764 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8765 		linkattr = lstatus_to_fwcap(lstatus);
8766 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8767 	} else {
8768 		u32 lstatus32 =
8769 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8770 
8771 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8772 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8773 		mtu = FW_PORT_CMD_MTU32_G(
8774 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8775 	}
8776 
8777 	*link_okp = link_ok;
8778 	*speedp = fwcap_to_speed(linkattr);
8779 	*mtup = mtu;
8780 
8781 	return 0;
8782 }
8783 
8784 /**
8785  *      t4_handle_fw_rpl - process a FW reply message
8786  *      @adap: the adapter
8787  *      @rpl: start of the FW message
8788  *
8789  *      Processes a FW message, such as link state change messages.
8790  */
8791 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8792 {
8793 	u8 opcode = *(const u8 *)rpl;
8794 
8795 	/* This might be a port command ... this simplifies the following
8796 	 * conditionals ...  We can get away with pre-dereferencing
8797 	 * action_to_len16 because it's in the first 16 bytes and all messages
8798 	 * will be at least that long.
8799 	 */
8800 	const struct fw_port_cmd *p = (const void *)rpl;
8801 	unsigned int action =
8802 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8803 
8804 	if (opcode == FW_PORT_CMD &&
8805 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8806 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8807 		int i;
8808 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8809 		struct port_info *pi = NULL;
8810 
8811 		for_each_port(adap, i) {
8812 			pi = adap2pinfo(adap, i);
8813 			if (pi->tx_chan == chan)
8814 				break;
8815 		}
8816 
8817 		t4_handle_get_port_info(pi, rpl);
8818 	} else {
8819 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8820 			 opcode);
8821 		return -EINVAL;
8822 	}
8823 	return 0;
8824 }
8825 
8826 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8827 {
8828 	u16 val;
8829 
8830 	if (pci_is_pcie(adapter->pdev)) {
8831 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8832 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8833 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8834 	}
8835 }
8836 
8837 /**
8838  *	init_link_config - initialize a link's SW state
8839  *	@lc: pointer to structure holding the link state
8840  *	@pcaps: link Port Capabilities
8841  *	@acaps: link current Advertised Port Capabilities
8842  *
8843  *	Initializes the SW state maintained for each link, including the link's
8844  *	capabilities and default speed/flow-control/autonegotiation settings.
8845  */
8846 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8847 			     fw_port_cap32_t acaps)
8848 {
8849 	lc->pcaps = pcaps;
8850 	lc->def_acaps = acaps;
8851 	lc->lpacaps = 0;
8852 	lc->speed_caps = 0;
8853 	lc->speed = 0;
8854 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8855 
8856 	/* For Forward Error Control, we default to whatever the Firmware
8857 	 * tells us the Link is currently advertising.
8858 	 */
8859 	lc->requested_fec = FEC_AUTO;
8860 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8861 
8862 	/* If the Port is capable of Auto-Negtotiation, initialize it as
8863 	 * "enabled" and copy over all of the Physical Port Capabilities
8864 	 * to the Advertised Port Capabilities.  Otherwise mark it as
8865 	 * Auto-Negotiate disabled and select the highest supported speed
8866 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
8867 	 * and t4_handle_get_port_info().
8868 	 */
8869 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8870 		lc->acaps = lc->pcaps & ADVERT_MASK;
8871 		lc->autoneg = AUTONEG_ENABLE;
8872 		lc->requested_fc |= PAUSE_AUTONEG;
8873 	} else {
8874 		lc->acaps = 0;
8875 		lc->autoneg = AUTONEG_DISABLE;
8876 		lc->speed_caps = fwcap_to_fwspeed(acaps);
8877 	}
8878 }
8879 
8880 #define CIM_PF_NOACCESS 0xeeeeeeee
8881 
8882 int t4_wait_dev_ready(void __iomem *regs)
8883 {
8884 	u32 whoami;
8885 
8886 	whoami = readl(regs + PL_WHOAMI_A);
8887 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8888 		return 0;
8889 
8890 	msleep(500);
8891 	whoami = readl(regs + PL_WHOAMI_A);
8892 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8893 }
8894 
8895 struct flash_desc {
8896 	u32 vendor_and_model_id;
8897 	u32 size_mb;
8898 };
8899 
8900 static int t4_get_flash_params(struct adapter *adap)
8901 {
8902 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8903 	 * to the preexisting code.  All flash parts have 64KB sectors.
8904 	 */
8905 	static struct flash_desc supported_flash[] = {
8906 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8907 	};
8908 
8909 	unsigned int part, manufacturer;
8910 	unsigned int density, size = 0;
8911 	u32 flashid = 0;
8912 	int ret;
8913 
8914 	/* Issue a Read ID Command to the Flash part.  We decode supported
8915 	 * Flash parts and their sizes from this.  There's a newer Query
8916 	 * Command which can retrieve detailed geometry information but many
8917 	 * Flash parts don't support it.
8918 	 */
8919 
8920 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8921 	if (!ret)
8922 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8923 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8924 	if (ret)
8925 		return ret;
8926 
8927 	/* Check to see if it's one of our non-standard supported Flash parts.
8928 	 */
8929 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8930 		if (supported_flash[part].vendor_and_model_id == flashid) {
8931 			adap->params.sf_size = supported_flash[part].size_mb;
8932 			adap->params.sf_nsec =
8933 				adap->params.sf_size / SF_SEC_SIZE;
8934 			goto found;
8935 		}
8936 
8937 	/* Decode Flash part size.  The code below looks repetative with
8938 	 * common encodings, but that's not guaranteed in the JEDEC
8939 	 * specification for the Read JADEC ID command.  The only thing that
8940 	 * we're guaranteed by the JADEC specification is where the
8941 	 * Manufacturer ID is in the returned result.  After that each
8942 	 * Manufacturer ~could~ encode things completely differently.
8943 	 * Note, all Flash parts must have 64KB sectors.
8944 	 */
8945 	manufacturer = flashid & 0xff;
8946 	switch (manufacturer) {
8947 	case 0x20: { /* Micron/Numonix */
8948 		/* This Density -> Size decoding table is taken from Micron
8949 		 * Data Sheets.
8950 		 */
8951 		density = (flashid >> 16) & 0xff;
8952 		switch (density) {
8953 		case 0x14: /* 1MB */
8954 			size = 1 << 20;
8955 			break;
8956 		case 0x15: /* 2MB */
8957 			size = 1 << 21;
8958 			break;
8959 		case 0x16: /* 4MB */
8960 			size = 1 << 22;
8961 			break;
8962 		case 0x17: /* 8MB */
8963 			size = 1 << 23;
8964 			break;
8965 		case 0x18: /* 16MB */
8966 			size = 1 << 24;
8967 			break;
8968 		case 0x19: /* 32MB */
8969 			size = 1 << 25;
8970 			break;
8971 		case 0x20: /* 64MB */
8972 			size = 1 << 26;
8973 			break;
8974 		case 0x21: /* 128MB */
8975 			size = 1 << 27;
8976 			break;
8977 		case 0x22: /* 256MB */
8978 			size = 1 << 28;
8979 			break;
8980 		}
8981 		break;
8982 	}
8983 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
8984 		/* This Density -> Size decoding table is taken from ISSI
8985 		 * Data Sheets.
8986 		 */
8987 		density = (flashid >> 16) & 0xff;
8988 		switch (density) {
8989 		case 0x16: /* 32 MB */
8990 			size = 1 << 25;
8991 			break;
8992 		case 0x17: /* 64MB */
8993 			size = 1 << 26;
8994 			break;
8995 		}
8996 		break;
8997 	}
8998 	case 0xc2: { /* Macronix */
8999 		/* This Density -> Size decoding table is taken from Macronix
9000 		 * Data Sheets.
9001 		 */
9002 		density = (flashid >> 16) & 0xff;
9003 		switch (density) {
9004 		case 0x17: /* 8MB */
9005 			size = 1 << 23;
9006 			break;
9007 		case 0x18: /* 16MB */
9008 			size = 1 << 24;
9009 			break;
9010 		}
9011 		break;
9012 	}
9013 	case 0xef: { /* Winbond */
9014 		/* This Density -> Size decoding table is taken from Winbond
9015 		 * Data Sheets.
9016 		 */
9017 		density = (flashid >> 16) & 0xff;
9018 		switch (density) {
9019 		case 0x17: /* 8MB */
9020 			size = 1 << 23;
9021 			break;
9022 		case 0x18: /* 16MB */
9023 			size = 1 << 24;
9024 			break;
9025 		}
9026 		break;
9027 	}
9028 	}
9029 
9030 	/* If we didn't recognize the FLASH part, that's no real issue: the
9031 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9032 	 * use a FLASH part which is at least 4MB in size and has 64KB
9033 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9034 	 * than 4MB, but that's all we really need.
9035 	 */
9036 	if (size == 0) {
9037 		dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9038 			 flashid);
9039 		size = 1 << 22;
9040 	}
9041 
9042 	/* Store decoded Flash size and fall through into vetting code. */
9043 	adap->params.sf_size = size;
9044 	adap->params.sf_nsec = size / SF_SEC_SIZE;
9045 
9046 found:
9047 	if (adap->params.sf_size < FLASH_MIN_SIZE)
9048 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9049 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9050 	return 0;
9051 }
9052 
9053 /**
9054  *	t4_prep_adapter - prepare SW and HW for operation
9055  *	@adapter: the adapter
9056  *	@reset: if true perform a HW reset
9057  *
9058  *	Initialize adapter SW state for the various HW modules, set initial
9059  *	values for some adapter tunables, take PHYs out of reset, and
9060  *	initialize the MDIO interface.
9061  */
9062 int t4_prep_adapter(struct adapter *adapter)
9063 {
9064 	int ret, ver;
9065 	uint16_t device_id;
9066 	u32 pl_rev;
9067 
9068 	get_pci_mode(adapter, &adapter->params.pci);
9069 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9070 
9071 	ret = t4_get_flash_params(adapter);
9072 	if (ret < 0) {
9073 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9074 		return ret;
9075 	}
9076 
9077 	/* Retrieve adapter's device ID
9078 	 */
9079 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9080 	ver = device_id >> 12;
9081 	adapter->params.chip = 0;
9082 	switch (ver) {
9083 	case CHELSIO_T4:
9084 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9085 		adapter->params.arch.sge_fl_db = DBPRIO_F;
9086 		adapter->params.arch.mps_tcam_size =
9087 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
9088 		adapter->params.arch.mps_rplc_size = 128;
9089 		adapter->params.arch.nchan = NCHAN;
9090 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9091 		adapter->params.arch.vfcount = 128;
9092 		/* Congestion map is for 4 channels so that
9093 		 * MPS can have 4 priority per port.
9094 		 */
9095 		adapter->params.arch.cng_ch_bits_log = 2;
9096 		break;
9097 	case CHELSIO_T5:
9098 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9099 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9100 		adapter->params.arch.mps_tcam_size =
9101 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9102 		adapter->params.arch.mps_rplc_size = 128;
9103 		adapter->params.arch.nchan = NCHAN;
9104 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9105 		adapter->params.arch.vfcount = 128;
9106 		adapter->params.arch.cng_ch_bits_log = 2;
9107 		break;
9108 	case CHELSIO_T6:
9109 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9110 		adapter->params.arch.sge_fl_db = 0;
9111 		adapter->params.arch.mps_tcam_size =
9112 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9113 		adapter->params.arch.mps_rplc_size = 256;
9114 		adapter->params.arch.nchan = 2;
9115 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9116 		adapter->params.arch.vfcount = 256;
9117 		/* Congestion map will be for 2 channels so that
9118 		 * MPS can have 8 priority per port.
9119 		 */
9120 		adapter->params.arch.cng_ch_bits_log = 3;
9121 		break;
9122 	default:
9123 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9124 			device_id);
9125 		return -EINVAL;
9126 	}
9127 
9128 	adapter->params.cim_la_size = CIMLA_SIZE;
9129 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9130 
9131 	/*
9132 	 * Default port for debugging in case we can't reach FW.
9133 	 */
9134 	adapter->params.nports = 1;
9135 	adapter->params.portvec = 1;
9136 	adapter->params.vpd.cclk = 50000;
9137 
9138 	/* Set PCIe completion timeout to 4 seconds. */
9139 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9140 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9141 	return 0;
9142 }
9143 
9144 /**
9145  *	t4_shutdown_adapter - shut down adapter, host & wire
9146  *	@adapter: the adapter
9147  *
9148  *	Perform an emergency shutdown of the adapter and stop it from
9149  *	continuing any further communication on the ports or DMA to the
9150  *	host.  This is typically used when the adapter and/or firmware
9151  *	have crashed and we want to prevent any further accidental
9152  *	communication with the rest of the world.  This will also force
9153  *	the port Link Status to go down -- if register writes work --
9154  *	which should help our peers figure out that we're down.
9155  */
9156 int t4_shutdown_adapter(struct adapter *adapter)
9157 {
9158 	int port;
9159 
9160 	t4_intr_disable(adapter);
9161 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9162 	for_each_port(adapter, port) {
9163 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
9164 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
9165 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
9166 
9167 		t4_write_reg(adapter, a_port_cfg,
9168 			     t4_read_reg(adapter, a_port_cfg)
9169 			     & ~SIGNAL_DET_V(1));
9170 	}
9171 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9172 
9173 	return 0;
9174 }
9175 
9176 /**
9177  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9178  *	@adapter: the adapter
9179  *	@qid: the Queue ID
9180  *	@qtype: the Ingress or Egress type for @qid
9181  *	@user: true if this request is for a user mode queue
9182  *	@pbar2_qoffset: BAR2 Queue Offset
9183  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9184  *
9185  *	Returns the BAR2 SGE Queue Registers information associated with the
9186  *	indicated Absolute Queue ID.  These are passed back in return value
9187  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9188  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9189  *
9190  *	This may return an error which indicates that BAR2 SGE Queue
9191  *	registers aren't available.  If an error is not returned, then the
9192  *	following values are returned:
9193  *
9194  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9195  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9196  *
9197  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9198  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9199  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9200  *	then these "Inferred Queue ID" register may not be used.
9201  */
9202 int t4_bar2_sge_qregs(struct adapter *adapter,
9203 		      unsigned int qid,
9204 		      enum t4_bar2_qtype qtype,
9205 		      int user,
9206 		      u64 *pbar2_qoffset,
9207 		      unsigned int *pbar2_qid)
9208 {
9209 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9210 	u64 bar2_page_offset, bar2_qoffset;
9211 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9212 
9213 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9214 	if (!user && is_t4(adapter->params.chip))
9215 		return -EINVAL;
9216 
9217 	/* Get our SGE Page Size parameters.
9218 	 */
9219 	page_shift = adapter->params.sge.hps + 10;
9220 	page_size = 1 << page_shift;
9221 
9222 	/* Get the right Queues per Page parameters for our Queue.
9223 	 */
9224 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9225 		     ? adapter->params.sge.eq_qpp
9226 		     : adapter->params.sge.iq_qpp);
9227 	qpp_mask = (1 << qpp_shift) - 1;
9228 
9229 	/*  Calculate the basics of the BAR2 SGE Queue register area:
9230 	 *  o The BAR2 page the Queue registers will be in.
9231 	 *  o The BAR2 Queue ID.
9232 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9233 	 */
9234 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9235 	bar2_qid = qid & qpp_mask;
9236 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9237 
9238 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9239 	 * hardware will infer the Absolute Queue ID simply from the writes to
9240 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9241 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9242 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9243 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9244 	 * from the BAR2 Page and BAR2 Queue ID.
9245 	 *
9246 	 * One important censequence of this is that some BAR2 SGE registers
9247 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9248 	 * there.  But other registers synthesize the SGE Queue ID purely
9249 	 * from the writes to the registers -- the Write Combined Doorbell
9250 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9251 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9252 	 * Queue ID can be inferred from simple writes.
9253 	 */
9254 	bar2_qoffset = bar2_page_offset;
9255 	bar2_qinferred = (bar2_qid_offset < page_size);
9256 	if (bar2_qinferred) {
9257 		bar2_qoffset += bar2_qid_offset;
9258 		bar2_qid = 0;
9259 	}
9260 
9261 	*pbar2_qoffset = bar2_qoffset;
9262 	*pbar2_qid = bar2_qid;
9263 	return 0;
9264 }
9265 
9266 /**
9267  *	t4_init_devlog_params - initialize adapter->params.devlog
9268  *	@adap: the adapter
9269  *
9270  *	Initialize various fields of the adapter's Firmware Device Log
9271  *	Parameters structure.
9272  */
9273 int t4_init_devlog_params(struct adapter *adap)
9274 {
9275 	struct devlog_params *dparams = &adap->params.devlog;
9276 	u32 pf_dparams;
9277 	unsigned int devlog_meminfo;
9278 	struct fw_devlog_cmd devlog_cmd;
9279 	int ret;
9280 
9281 	/* If we're dealing with newer firmware, the Device Log Paramerters
9282 	 * are stored in a designated register which allows us to access the
9283 	 * Device Log even if we can't talk to the firmware.
9284 	 */
9285 	pf_dparams =
9286 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9287 	if (pf_dparams) {
9288 		unsigned int nentries, nentries128;
9289 
9290 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9291 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9292 
9293 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9294 		nentries = (nentries128 + 1) * 128;
9295 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9296 
9297 		return 0;
9298 	}
9299 
9300 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9301 	 */
9302 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9303 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9304 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
9305 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9306 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9307 			 &devlog_cmd);
9308 	if (ret)
9309 		return ret;
9310 
9311 	devlog_meminfo =
9312 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9313 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9314 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9315 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9316 
9317 	return 0;
9318 }
9319 
9320 /**
9321  *	t4_init_sge_params - initialize adap->params.sge
9322  *	@adapter: the adapter
9323  *
9324  *	Initialize various fields of the adapter's SGE Parameters structure.
9325  */
9326 int t4_init_sge_params(struct adapter *adapter)
9327 {
9328 	struct sge_params *sge_params = &adapter->params.sge;
9329 	u32 hps, qpp;
9330 	unsigned int s_hps, s_qpp;
9331 
9332 	/* Extract the SGE Page Size for our PF.
9333 	 */
9334 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9335 	s_hps = (HOSTPAGESIZEPF0_S +
9336 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9337 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9338 
9339 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9340 	 */
9341 	s_qpp = (QUEUESPERPAGEPF0_S +
9342 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9343 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9344 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9345 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9346 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9347 
9348 	return 0;
9349 }
9350 
9351 /**
9352  *      t4_init_tp_params - initialize adap->params.tp
9353  *      @adap: the adapter
9354  *      @sleep_ok: if true we may sleep while awaiting command completion
9355  *
9356  *      Initialize various fields of the adapter's TP Parameters structure.
9357  */
9358 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9359 {
9360 	int chan;
9361 	u32 v;
9362 
9363 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9364 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
9365 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9366 
9367 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9368 	for (chan = 0; chan < NCHAN; chan++)
9369 		adap->params.tp.tx_modq[chan] = chan;
9370 
9371 	/* Cache the adapter's Compressed Filter Mode and global Incress
9372 	 * Configuration.
9373 	 */
9374 	t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9375 		       TP_VLAN_PRI_MAP_A, sleep_ok);
9376 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9377 		       TP_INGRESS_CONFIG_A, sleep_ok);
9378 
9379 	/* For T6, cache the adapter's compressed error vector
9380 	 * and passing outer header info for encapsulated packets.
9381 	 */
9382 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9383 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9384 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9385 	}
9386 
9387 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9388 	 * shift positions of several elements of the Compressed Filter Tuple
9389 	 * for this adapter which we need frequently ...
9390 	 */
9391 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9392 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9393 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9394 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9395 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9396 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9397 							       PROTOCOL_F);
9398 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9399 								ETHERTYPE_F);
9400 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9401 							       MACMATCH_F);
9402 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9403 								MPSHITTYPE_F);
9404 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9405 							   FRAGMENTATION_F);
9406 
9407 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9408 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9409 	 */
9410 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9411 		adap->params.tp.vnic_shift = -1;
9412 
9413 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9414 	adap->params.tp.hash_filter_mask = v;
9415 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9416 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9417 	return 0;
9418 }
9419 
9420 /**
9421  *      t4_filter_field_shift - calculate filter field shift
9422  *      @adap: the adapter
9423  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9424  *
9425  *      Return the shift position of a filter field within the Compressed
9426  *      Filter Tuple.  The filter field is specified via its selection bit
9427  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9428  */
9429 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9430 {
9431 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9432 	unsigned int sel;
9433 	int field_shift;
9434 
9435 	if ((filter_mode & filter_sel) == 0)
9436 		return -1;
9437 
9438 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9439 		switch (filter_mode & sel) {
9440 		case FCOE_F:
9441 			field_shift += FT_FCOE_W;
9442 			break;
9443 		case PORT_F:
9444 			field_shift += FT_PORT_W;
9445 			break;
9446 		case VNIC_ID_F:
9447 			field_shift += FT_VNIC_ID_W;
9448 			break;
9449 		case VLAN_F:
9450 			field_shift += FT_VLAN_W;
9451 			break;
9452 		case TOS_F:
9453 			field_shift += FT_TOS_W;
9454 			break;
9455 		case PROTOCOL_F:
9456 			field_shift += FT_PROTOCOL_W;
9457 			break;
9458 		case ETHERTYPE_F:
9459 			field_shift += FT_ETHERTYPE_W;
9460 			break;
9461 		case MACMATCH_F:
9462 			field_shift += FT_MACMATCH_W;
9463 			break;
9464 		case MPSHITTYPE_F:
9465 			field_shift += FT_MPSHITTYPE_W;
9466 			break;
9467 		case FRAGMENTATION_F:
9468 			field_shift += FT_FRAGMENTATION_W;
9469 			break;
9470 		}
9471 	}
9472 	return field_shift;
9473 }
9474 
9475 int t4_init_rss_mode(struct adapter *adap, int mbox)
9476 {
9477 	int i, ret;
9478 	struct fw_rss_vi_config_cmd rvc;
9479 
9480 	memset(&rvc, 0, sizeof(rvc));
9481 
9482 	for_each_port(adap, i) {
9483 		struct port_info *p = adap2pinfo(adap, i);
9484 
9485 		rvc.op_to_viid =
9486 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9487 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9488 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9489 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9490 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9491 		if (ret)
9492 			return ret;
9493 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9494 	}
9495 	return 0;
9496 }
9497 
9498 /**
9499  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9500  *	@pi: the port_info
9501  *	@mbox: mailbox to use for the FW command
9502  *	@port: physical port associated with the VI
9503  *	@pf: the PF owning the VI
9504  *	@vf: the VF owning the VI
9505  *	@mac: the MAC address of the VI
9506  *
9507  *	Allocates a virtual interface for the given physical port.  If @mac is
9508  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9509  *	@mac should be large enough to hold an Ethernet address.
9510  *	Returns < 0 on error.
9511  */
9512 int t4_init_portinfo(struct port_info *pi, int mbox,
9513 		     int port, int pf, int vf, u8 mac[])
9514 {
9515 	struct adapter *adapter = pi->adapter;
9516 	unsigned int fw_caps = adapter->params.fw_caps_support;
9517 	struct fw_port_cmd cmd;
9518 	unsigned int rss_size;
9519 	enum fw_port_type port_type;
9520 	int mdio_addr;
9521 	fw_port_cap32_t pcaps, acaps;
9522 	u8 vivld = 0, vin = 0;
9523 	int ret;
9524 
9525 	/* If we haven't yet determined whether we're talking to Firmware
9526 	 * which knows the new 32-bit Port Capabilities, it's time to find
9527 	 * out now.  This will also tell new Firmware to send us Port Status
9528 	 * Updates using the new 32-bit Port Capabilities version of the
9529 	 * Port Information message.
9530 	 */
9531 	if (fw_caps == FW_CAPS_UNKNOWN) {
9532 		u32 param, val;
9533 
9534 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9535 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9536 		val = 1;
9537 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9538 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9539 		adapter->params.fw_caps_support = fw_caps;
9540 	}
9541 
9542 	memset(&cmd, 0, sizeof(cmd));
9543 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9544 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9545 				       FW_PORT_CMD_PORTID_V(port));
9546 	cmd.action_to_len16 = cpu_to_be32(
9547 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9548 				     ? FW_PORT_ACTION_GET_PORT_INFO
9549 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9550 		FW_LEN16(cmd));
9551 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9552 	if (ret)
9553 		return ret;
9554 
9555 	/* Extract the various fields from the Port Information message.
9556 	 */
9557 	if (fw_caps == FW_CAPS16) {
9558 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9559 
9560 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9561 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9562 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9563 			     : -1);
9564 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9565 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9566 	} else {
9567 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9568 
9569 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9570 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9571 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9572 			     : -1);
9573 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9574 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9575 	}
9576 
9577 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9578 			  &vivld, &vin);
9579 	if (ret < 0)
9580 		return ret;
9581 
9582 	pi->viid = ret;
9583 	pi->tx_chan = port;
9584 	pi->lport = port;
9585 	pi->rss_size = rss_size;
9586 
9587 	/* If fw supports returning the VIN as part of FW_VI_CMD,
9588 	 * save the returned values.
9589 	 */
9590 	if (adapter->params.viid_smt_extn_support) {
9591 		pi->vivld = vivld;
9592 		pi->vin = vin;
9593 	} else {
9594 		/* Retrieve the values from VIID */
9595 		pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9596 		pi->vin =  FW_VIID_VIN_G(pi->viid);
9597 	}
9598 
9599 	pi->port_type = port_type;
9600 	pi->mdio_addr = mdio_addr;
9601 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9602 
9603 	init_link_config(&pi->link_cfg, pcaps, acaps);
9604 	return 0;
9605 }
9606 
9607 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9608 {
9609 	u8 addr[6];
9610 	int ret, i, j = 0;
9611 
9612 	for_each_port(adap, i) {
9613 		struct port_info *pi = adap2pinfo(adap, i);
9614 
9615 		while ((adap->params.portvec & (1 << j)) == 0)
9616 			j++;
9617 
9618 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9619 		if (ret)
9620 			return ret;
9621 
9622 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9623 		j++;
9624 	}
9625 	return 0;
9626 }
9627 
9628 /**
9629  *	t4_read_cimq_cfg - read CIM queue configuration
9630  *	@adap: the adapter
9631  *	@base: holds the queue base addresses in bytes
9632  *	@size: holds the queue sizes in bytes
9633  *	@thres: holds the queue full thresholds in bytes
9634  *
9635  *	Returns the current configuration of the CIM queues, starting with
9636  *	the IBQs, then the OBQs.
9637  */
9638 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9639 {
9640 	unsigned int i, v;
9641 	int cim_num_obq = is_t4(adap->params.chip) ?
9642 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9643 
9644 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9645 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9646 			     QUENUMSELECT_V(i));
9647 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9648 		/* value is in 256-byte units */
9649 		*base++ = CIMQBASE_G(v) * 256;
9650 		*size++ = CIMQSIZE_G(v) * 256;
9651 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9652 	}
9653 	for (i = 0; i < cim_num_obq; i++) {
9654 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9655 			     QUENUMSELECT_V(i));
9656 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9657 		/* value is in 256-byte units */
9658 		*base++ = CIMQBASE_G(v) * 256;
9659 		*size++ = CIMQSIZE_G(v) * 256;
9660 	}
9661 }
9662 
9663 /**
9664  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9665  *	@adap: the adapter
9666  *	@qid: the queue index
9667  *	@data: where to store the queue contents
9668  *	@n: capacity of @data in 32-bit words
9669  *
9670  *	Reads the contents of the selected CIM queue starting at address 0 up
9671  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9672  *	error and the number of 32-bit words actually read on success.
9673  */
9674 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9675 {
9676 	int i, err, attempts;
9677 	unsigned int addr;
9678 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9679 
9680 	if (qid > 5 || (n & 3))
9681 		return -EINVAL;
9682 
9683 	addr = qid * nwords;
9684 	if (n > nwords)
9685 		n = nwords;
9686 
9687 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9688 	 * Wait for 1 Sec with a delay of 1 usec.
9689 	 */
9690 	attempts = 1000000;
9691 
9692 	for (i = 0; i < n; i++, addr++) {
9693 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9694 			     IBQDBGEN_F);
9695 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9696 				      attempts, 1);
9697 		if (err)
9698 			return err;
9699 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9700 	}
9701 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9702 	return i;
9703 }
9704 
9705 /**
9706  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9707  *	@adap: the adapter
9708  *	@qid: the queue index
9709  *	@data: where to store the queue contents
9710  *	@n: capacity of @data in 32-bit words
9711  *
9712  *	Reads the contents of the selected CIM queue starting at address 0 up
9713  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9714  *	error and the number of 32-bit words actually read on success.
9715  */
9716 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9717 {
9718 	int i, err;
9719 	unsigned int addr, v, nwords;
9720 	int cim_num_obq = is_t4(adap->params.chip) ?
9721 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9722 
9723 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9724 		return -EINVAL;
9725 
9726 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9727 		     QUENUMSELECT_V(qid));
9728 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9729 
9730 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9731 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9732 	if (n > nwords)
9733 		n = nwords;
9734 
9735 	for (i = 0; i < n; i++, addr++) {
9736 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9737 			     OBQDBGEN_F);
9738 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9739 				      2, 1);
9740 		if (err)
9741 			return err;
9742 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9743 	}
9744 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9745 	return i;
9746 }
9747 
9748 /**
9749  *	t4_cim_read - read a block from CIM internal address space
9750  *	@adap: the adapter
9751  *	@addr: the start address within the CIM address space
9752  *	@n: number of words to read
9753  *	@valp: where to store the result
9754  *
9755  *	Reads a block of 4-byte words from the CIM intenal address space.
9756  */
9757 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9758 		unsigned int *valp)
9759 {
9760 	int ret = 0;
9761 
9762 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9763 		return -EBUSY;
9764 
9765 	for ( ; !ret && n--; addr += 4) {
9766 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9767 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9768 				      0, 5, 2);
9769 		if (!ret)
9770 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9771 	}
9772 	return ret;
9773 }
9774 
9775 /**
9776  *	t4_cim_write - write a block into CIM internal address space
9777  *	@adap: the adapter
9778  *	@addr: the start address within the CIM address space
9779  *	@n: number of words to write
9780  *	@valp: set of values to write
9781  *
9782  *	Writes a block of 4-byte words into the CIM intenal address space.
9783  */
9784 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9785 		 const unsigned int *valp)
9786 {
9787 	int ret = 0;
9788 
9789 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9790 		return -EBUSY;
9791 
9792 	for ( ; !ret && n--; addr += 4) {
9793 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9794 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9795 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9796 				      0, 5, 2);
9797 	}
9798 	return ret;
9799 }
9800 
9801 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9802 			 unsigned int val)
9803 {
9804 	return t4_cim_write(adap, addr, 1, &val);
9805 }
9806 
9807 /**
9808  *	t4_cim_read_la - read CIM LA capture buffer
9809  *	@adap: the adapter
9810  *	@la_buf: where to store the LA data
9811  *	@wrptr: the HW write pointer within the capture buffer
9812  *
9813  *	Reads the contents of the CIM LA buffer with the most recent entry at
9814  *	the end	of the returned data and with the entry at @wrptr first.
9815  *	We try to leave the LA in the running state we find it in.
9816  */
9817 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9818 {
9819 	int i, ret;
9820 	unsigned int cfg, val, idx;
9821 
9822 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9823 	if (ret)
9824 		return ret;
9825 
9826 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9827 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9828 		if (ret)
9829 			return ret;
9830 	}
9831 
9832 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9833 	if (ret)
9834 		goto restart;
9835 
9836 	idx = UPDBGLAWRPTR_G(val);
9837 	if (wrptr)
9838 		*wrptr = idx;
9839 
9840 	for (i = 0; i < adap->params.cim_la_size; i++) {
9841 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9842 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9843 		if (ret)
9844 			break;
9845 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9846 		if (ret)
9847 			break;
9848 		if (val & UPDBGLARDEN_F) {
9849 			ret = -ETIMEDOUT;
9850 			break;
9851 		}
9852 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9853 		if (ret)
9854 			break;
9855 
9856 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9857 		 * identify the 32-bit portion of the full 312-bit data
9858 		 */
9859 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9860 			idx = (idx & 0xff0) + 0x10;
9861 		else
9862 			idx++;
9863 		/* address can't exceed 0xfff */
9864 		idx &= UPDBGLARDPTR_M;
9865 	}
9866 restart:
9867 	if (cfg & UPDBGLAEN_F) {
9868 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9869 				      cfg & ~UPDBGLARDEN_F);
9870 		if (!ret)
9871 			ret = r;
9872 	}
9873 	return ret;
9874 }
9875 
9876 /**
9877  *	t4_tp_read_la - read TP LA capture buffer
9878  *	@adap: the adapter
9879  *	@la_buf: where to store the LA data
9880  *	@wrptr: the HW write pointer within the capture buffer
9881  *
9882  *	Reads the contents of the TP LA buffer with the most recent entry at
9883  *	the end	of the returned data and with the entry at @wrptr first.
9884  *	We leave the LA in the running state we find it in.
9885  */
9886 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9887 {
9888 	bool last_incomplete;
9889 	unsigned int i, cfg, val, idx;
9890 
9891 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9892 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9893 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9894 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9895 
9896 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9897 	idx = DBGLAWPTR_G(val);
9898 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9899 	if (last_incomplete)
9900 		idx = (idx + 1) & DBGLARPTR_M;
9901 	if (wrptr)
9902 		*wrptr = idx;
9903 
9904 	val &= 0xffff;
9905 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
9906 	val |= adap->params.tp.la_mask;
9907 
9908 	for (i = 0; i < TPLA_SIZE; i++) {
9909 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
9910 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
9911 		idx = (idx + 1) & DBGLARPTR_M;
9912 	}
9913 
9914 	/* Wipe out last entry if it isn't valid */
9915 	if (last_incomplete)
9916 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9917 
9918 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
9919 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9920 			     cfg | adap->params.tp.la_mask);
9921 }
9922 
9923 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9924  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9925  * state for more than the Warning Threshold then we'll issue a warning about
9926  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9927  * appears to be hung every Warning Repeat second till the situation clears.
9928  * If the situation clears, we'll note that as well.
9929  */
9930 #define SGE_IDMA_WARN_THRESH 1
9931 #define SGE_IDMA_WARN_REPEAT 300
9932 
9933 /**
9934  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9935  *	@adapter: the adapter
9936  *	@idma: the adapter IDMA Monitor state
9937  *
9938  *	Initialize the state of an SGE Ingress DMA Monitor.
9939  */
9940 void t4_idma_monitor_init(struct adapter *adapter,
9941 			  struct sge_idma_monitor_state *idma)
9942 {
9943 	/* Initialize the state variables for detecting an SGE Ingress DMA
9944 	 * hang.  The SGE has internal counters which count up on each clock
9945 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9946 	 * same state they were on the previous clock tick.  The clock used is
9947 	 * the Core Clock so we have a limit on the maximum "time" they can
9948 	 * record; typically a very small number of seconds.  For instance,
9949 	 * with a 600MHz Core Clock, we can only count up to a bit more than
9950 	 * 7s.  So we'll synthesize a larger counter in order to not run the
9951 	 * risk of having the "timers" overflow and give us the flexibility to
9952 	 * maintain a Hung SGE State Machine of our own which operates across
9953 	 * a longer time frame.
9954 	 */
9955 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9956 	idma->idma_stalled[0] = 0;
9957 	idma->idma_stalled[1] = 0;
9958 }
9959 
9960 /**
9961  *	t4_idma_monitor - monitor SGE Ingress DMA state
9962  *	@adapter: the adapter
9963  *	@idma: the adapter IDMA Monitor state
9964  *	@hz: number of ticks/second
9965  *	@ticks: number of ticks since the last IDMA Monitor call
9966  */
9967 void t4_idma_monitor(struct adapter *adapter,
9968 		     struct sge_idma_monitor_state *idma,
9969 		     int hz, int ticks)
9970 {
9971 	int i, idma_same_state_cnt[2];
9972 
9973 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9974 	  * are counters inside the SGE which count up on each clock when the
9975 	  * SGE finds its Ingress DMA State Engines in the same states they
9976 	  * were in the previous clock.  The counters will peg out at
9977 	  * 0xffffffff without wrapping around so once they pass the 1s
9978 	  * threshold they'll stay above that till the IDMA state changes.
9979 	  */
9980 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
9981 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
9982 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9983 
9984 	for (i = 0; i < 2; i++) {
9985 		u32 debug0, debug11;
9986 
9987 		/* If the Ingress DMA Same State Counter ("timer") is less
9988 		 * than 1s, then we can reset our synthesized Stall Timer and
9989 		 * continue.  If we have previously emitted warnings about a
9990 		 * potential stalled Ingress Queue, issue a note indicating
9991 		 * that the Ingress Queue has resumed forward progress.
9992 		 */
9993 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9994 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
9995 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
9996 					 "resumed after %d seconds\n",
9997 					 i, idma->idma_qid[i],
9998 					 idma->idma_stalled[i] / hz);
9999 			idma->idma_stalled[i] = 0;
10000 			continue;
10001 		}
10002 
10003 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10004 		 * domain.  The first time we get here it'll be because we
10005 		 * passed the 1s Threshold; each additional time it'll be
10006 		 * because the RX Timer Callback is being fired on its regular
10007 		 * schedule.
10008 		 *
10009 		 * If the stall is below our Potential Hung Ingress Queue
10010 		 * Warning Threshold, continue.
10011 		 */
10012 		if (idma->idma_stalled[i] == 0) {
10013 			idma->idma_stalled[i] = hz;
10014 			idma->idma_warn[i] = 0;
10015 		} else {
10016 			idma->idma_stalled[i] += ticks;
10017 			idma->idma_warn[i] -= ticks;
10018 		}
10019 
10020 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10021 			continue;
10022 
10023 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10024 		 */
10025 		if (idma->idma_warn[i] > 0)
10026 			continue;
10027 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10028 
10029 		/* Read and save the SGE IDMA State and Queue ID information.
10030 		 * We do this every time in case it changes across time ...
10031 		 * can't be too careful ...
10032 		 */
10033 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10034 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10035 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10036 
10037 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10038 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10039 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10040 
10041 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10042 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10043 			 i, idma->idma_qid[i], idma->idma_state[i],
10044 			 idma->idma_stalled[i] / hz,
10045 			 debug0, debug11);
10046 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10047 	}
10048 }
10049 
10050 /**
10051  *	t4_load_cfg - download config file
10052  *	@adap: the adapter
10053  *	@cfg_data: the cfg text file to write
10054  *	@size: text file size
10055  *
10056  *	Write the supplied config text file to the card's serial flash.
10057  */
10058 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10059 {
10060 	int ret, i, n, cfg_addr;
10061 	unsigned int addr;
10062 	unsigned int flash_cfg_start_sec;
10063 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10064 
10065 	cfg_addr = t4_flash_cfg_addr(adap);
10066 	if (cfg_addr < 0)
10067 		return cfg_addr;
10068 
10069 	addr = cfg_addr;
10070 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10071 
10072 	if (size > FLASH_CFG_MAX_SIZE) {
10073 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10074 			FLASH_CFG_MAX_SIZE);
10075 		return -EFBIG;
10076 	}
10077 
10078 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10079 			 sf_sec_size);
10080 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10081 				     flash_cfg_start_sec + i - 1);
10082 	/* If size == 0 then we're simply erasing the FLASH sectors associated
10083 	 * with the on-adapter Firmware Configuration File.
10084 	 */
10085 	if (ret || size == 0)
10086 		goto out;
10087 
10088 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10089 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10090 		if ((size - i) <  SF_PAGE_SIZE)
10091 			n = size - i;
10092 		else
10093 			n = SF_PAGE_SIZE;
10094 		ret = t4_write_flash(adap, addr, n, cfg_data);
10095 		if (ret)
10096 			goto out;
10097 
10098 		addr += SF_PAGE_SIZE;
10099 		cfg_data += SF_PAGE_SIZE;
10100 	}
10101 
10102 out:
10103 	if (ret)
10104 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
10105 			(size == 0 ? "clear" : "download"), ret);
10106 	return ret;
10107 }
10108 
10109 /**
10110  *	t4_set_vf_mac - Set MAC address for the specified VF
10111  *	@adapter: The adapter
10112  *	@vf: one of the VFs instantiated by the specified PF
10113  *	@naddr: the number of MAC addresses
10114  *	@addr: the MAC address(es) to be set to the specified VF
10115  */
10116 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10117 		      unsigned int naddr, u8 *addr)
10118 {
10119 	struct fw_acl_mac_cmd cmd;
10120 
10121 	memset(&cmd, 0, sizeof(cmd));
10122 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10123 				    FW_CMD_REQUEST_F |
10124 				    FW_CMD_WRITE_F |
10125 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10126 				    FW_ACL_MAC_CMD_VFN_V(vf));
10127 
10128 	/* Note: Do not enable the ACL */
10129 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10130 	cmd.nmac = naddr;
10131 
10132 	switch (adapter->pf) {
10133 	case 3:
10134 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10135 		break;
10136 	case 2:
10137 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10138 		break;
10139 	case 1:
10140 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10141 		break;
10142 	case 0:
10143 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10144 		break;
10145 	}
10146 
10147 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10148 }
10149 
10150 /**
10151  * t4_read_pace_tbl - read the pace table
10152  * @adap: the adapter
10153  * @pace_vals: holds the returned values
10154  *
10155  * Returns the values of TP's pace table in microseconds.
10156  */
10157 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10158 {
10159 	unsigned int i, v;
10160 
10161 	for (i = 0; i < NTX_SCHED; i++) {
10162 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10163 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
10164 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10165 	}
10166 }
10167 
10168 /**
10169  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10170  * @adap: the adapter
10171  * @sched: the scheduler index
10172  * @kbps: the byte rate in Kbps
10173  * @ipg: the interpacket delay in tenths of nanoseconds
10174  * @sleep_ok: if true we may sleep while awaiting command completion
10175  *
10176  * Return the current configuration of a HW Tx scheduler.
10177  */
10178 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10179 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10180 {
10181 	unsigned int v, addr, bpt, cpt;
10182 
10183 	if (kbps) {
10184 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10185 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10186 		if (sched & 1)
10187 			v >>= 16;
10188 		bpt = (v >> 8) & 0xff;
10189 		cpt = v & 0xff;
10190 		if (!cpt) {
10191 			*kbps = 0;	/* scheduler disabled */
10192 		} else {
10193 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10194 			*kbps = (v * bpt) / 125;
10195 		}
10196 	}
10197 	if (ipg) {
10198 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10199 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10200 		if (sched & 1)
10201 			v >>= 16;
10202 		v &= 0xffff;
10203 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10204 	}
10205 }
10206 
10207 /* t4_sge_ctxt_rd - read an SGE context through FW
10208  * @adap: the adapter
10209  * @mbox: mailbox to use for the FW command
10210  * @cid: the context id
10211  * @ctype: the context type
10212  * @data: where to store the context data
10213  *
10214  * Issues a FW command through the given mailbox to read an SGE context.
10215  */
10216 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10217 		   enum ctxt_type ctype, u32 *data)
10218 {
10219 	struct fw_ldst_cmd c;
10220 	int ret;
10221 
10222 	if (ctype == CTXT_FLM)
10223 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10224 	else
10225 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10226 
10227 	memset(&c, 0, sizeof(c));
10228 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10229 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
10230 					FW_LDST_CMD_ADDRSPACE_V(ret));
10231 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10232 	c.u.idctxt.physid = cpu_to_be32(cid);
10233 
10234 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10235 	if (ret == 0) {
10236 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10237 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10238 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10239 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10240 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10241 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10242 	}
10243 	return ret;
10244 }
10245 
10246 /**
10247  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10248  * @adap: the adapter
10249  * @cid: the context id
10250  * @ctype: the context type
10251  * @data: where to store the context data
10252  *
10253  * Reads an SGE context directly, bypassing FW.  This is only for
10254  * debugging when FW is unavailable.
10255  */
10256 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10257 		      enum ctxt_type ctype, u32 *data)
10258 {
10259 	int i, ret;
10260 
10261 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10262 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10263 	if (!ret)
10264 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10265 			*data++ = t4_read_reg(adap, i);
10266 	return ret;
10267 }
10268 
10269 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10270 		    int rateunit, int ratemode, int channel, int class,
10271 		    int minrate, int maxrate, int weight, int pktsize)
10272 {
10273 	struct fw_sched_cmd cmd;
10274 
10275 	memset(&cmd, 0, sizeof(cmd));
10276 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10277 				      FW_CMD_REQUEST_F |
10278 				      FW_CMD_WRITE_F);
10279 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10280 
10281 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10282 	cmd.u.params.type = type;
10283 	cmd.u.params.level = level;
10284 	cmd.u.params.mode = mode;
10285 	cmd.u.params.ch = channel;
10286 	cmd.u.params.cl = class;
10287 	cmd.u.params.unit = rateunit;
10288 	cmd.u.params.rate = ratemode;
10289 	cmd.u.params.min = cpu_to_be32(minrate);
10290 	cmd.u.params.max = cpu_to_be32(maxrate);
10291 	cmd.u.params.weight = cpu_to_be16(weight);
10292 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10293 
10294 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10295 			       NULL, 1);
10296 }
10297 
10298 /**
10299  *	t4_i2c_rd - read I2C data from adapter
10300  *	@adap: the adapter
10301  *	@port: Port number if per-port device; <0 if not
10302  *	@devid: per-port device ID or absolute device ID
10303  *	@offset: byte offset into device I2C space
10304  *	@len: byte length of I2C space data
10305  *	@buf: buffer in which to return I2C data
10306  *
10307  *	Reads the I2C data from the indicated device and location.
10308  */
10309 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10310 	      unsigned int devid, unsigned int offset,
10311 	      unsigned int len, u8 *buf)
10312 {
10313 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10314 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10315 	int ret = 0;
10316 
10317 	if (len > I2C_PAGE_SIZE)
10318 		return -EINVAL;
10319 
10320 	/* Dont allow reads that spans multiple pages */
10321 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10322 		return -EINVAL;
10323 
10324 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10325 	ldst_cmd.op_to_addrspace =
10326 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10327 			    FW_CMD_REQUEST_F |
10328 			    FW_CMD_READ_F |
10329 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10330 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10331 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10332 	ldst_cmd.u.i2c.did = devid;
10333 
10334 	while (len > 0) {
10335 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10336 
10337 		ldst_cmd.u.i2c.boffset = offset;
10338 		ldst_cmd.u.i2c.blen = i2c_len;
10339 
10340 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10341 				 &ldst_rpl);
10342 		if (ret)
10343 			break;
10344 
10345 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10346 		offset += i2c_len;
10347 		buf += i2c_len;
10348 		len -= i2c_len;
10349 	}
10350 
10351 	return ret;
10352 }
10353 
10354 /**
10355  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10356  *      @adapter: the adapter
10357  *      @mbox: mailbox to use for the FW command
10358  *      @vf: one of the VFs instantiated by the specified PF
10359  *      @vlan: The vlanid to be set
10360  */
10361 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10362 		    u16 vlan)
10363 {
10364 	struct fw_acl_vlan_cmd vlan_cmd;
10365 	unsigned int enable;
10366 
10367 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10368 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10369 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10370 					 FW_CMD_REQUEST_F |
10371 					 FW_CMD_WRITE_F |
10372 					 FW_CMD_EXEC_F |
10373 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10374 					 FW_ACL_VLAN_CMD_VFN_V(vf));
10375 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10376 	/* Drop all packets that donot match vlan id */
10377 	vlan_cmd.dropnovlan_fm = (enable
10378 				  ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10379 				     FW_ACL_VLAN_CMD_FM_F) : 0);
10380 	if (enable != 0) {
10381 		vlan_cmd.nvlan = 1;
10382 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10383 	}
10384 
10385 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10386 }
10387