1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) { 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 adap->flags &= ~FW_OK; 202 } 203 } 204 205 /* 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 207 */ 208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 209 u32 mbox_addr) 210 { 211 for ( ; nflit; nflit--, mbox_addr += 8) 212 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 213 } 214 215 /* 216 * Handle a FW assertion reported in a mailbox. 217 */ 218 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 219 { 220 struct fw_debug_cmd asrt; 221 222 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 223 dev_alert(adap->pdev_dev, 224 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 225 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 226 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 227 } 228 229 /** 230 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 231 * @adapter: the adapter 232 * @cmd: the Firmware Mailbox Command or Reply 233 * @size: command length in bytes 234 * @access: the time (ms) needed to access the Firmware Mailbox 235 * @execute: the time (ms) the command spent being executed 236 */ 237 static void t4_record_mbox(struct adapter *adapter, 238 const __be64 *cmd, unsigned int size, 239 int access, int execute) 240 { 241 struct mbox_cmd_log *log = adapter->mbox_log; 242 struct mbox_cmd *entry; 243 int i; 244 245 entry = mbox_cmd_log_entry(log, log->cursor++); 246 if (log->cursor == log->size) 247 log->cursor = 0; 248 249 for (i = 0; i < size / 8; i++) 250 entry->cmd[i] = be64_to_cpu(cmd[i]); 251 while (i < MBOX_LEN / 8) 252 entry->cmd[i++] = 0; 253 entry->timestamp = jiffies; 254 entry->seqno = log->seqno++; 255 entry->access = access; 256 entry->execute = execute; 257 } 258 259 /** 260 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 261 * @adap: the adapter 262 * @mbox: index of the mailbox to use 263 * @cmd: the command to write 264 * @size: command length in bytes 265 * @rpl: where to optionally store the reply 266 * @sleep_ok: if true we may sleep while awaiting command completion 267 * @timeout: time to wait for command to finish before timing out 268 * 269 * Sends the given command to FW through the selected mailbox and waits 270 * for the FW to execute the command. If @rpl is not %NULL it is used to 271 * store the FW's reply to the command. The command and its optional 272 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 273 * to respond. @sleep_ok determines whether we may sleep while awaiting 274 * the response. If sleeping is allowed we use progressive backoff 275 * otherwise we spin. 276 * 277 * The return value is 0 on success or a negative errno on failure. A 278 * failure can happen either because we are not able to execute the 279 * command or FW executes it but signals an error. In the latter case 280 * the return value is the error code indicated by FW (negated). 281 */ 282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 283 int size, void *rpl, bool sleep_ok, int timeout) 284 { 285 static const int delay[] = { 286 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 287 }; 288 289 struct mbox_list entry; 290 u16 access = 0; 291 u16 execute = 0; 292 u32 v; 293 u64 res; 294 int i, ms, delay_idx, ret; 295 const __be64 *p = cmd; 296 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 297 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 298 __be64 cmd_rpl[MBOX_LEN / 8]; 299 u32 pcie_fw; 300 301 if ((size & 15) || size > MBOX_LEN) 302 return -EINVAL; 303 304 /* 305 * If the device is off-line, as in EEH, commands will time out. 306 * Fail them early so we don't waste time waiting. 307 */ 308 if (adap->pdev->error_state != pci_channel_io_normal) 309 return -EIO; 310 311 /* If we have a negative timeout, that implies that we can't sleep. */ 312 if (timeout < 0) { 313 sleep_ok = false; 314 timeout = -timeout; 315 } 316 317 /* Queue ourselves onto the mailbox access list. When our entry is at 318 * the front of the list, we have rights to access the mailbox. So we 319 * wait [for a while] till we're at the front [or bail out with an 320 * EBUSY] ... 321 */ 322 spin_lock_bh(&adap->mbox_lock); 323 list_add_tail(&entry.list, &adap->mlist.list); 324 spin_unlock_bh(&adap->mbox_lock); 325 326 delay_idx = 0; 327 ms = delay[0]; 328 329 for (i = 0; ; i += ms) { 330 /* If we've waited too long, return a busy indication. This 331 * really ought to be based on our initial position in the 332 * mailbox access list but this is a start. We very rearely 333 * contend on access to the mailbox ... 334 */ 335 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 336 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 337 spin_lock_bh(&adap->mbox_lock); 338 list_del(&entry.list); 339 spin_unlock_bh(&adap->mbox_lock); 340 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 341 t4_record_mbox(adap, cmd, size, access, ret); 342 return ret; 343 } 344 345 /* If we're at the head, break out and start the mailbox 346 * protocol. 347 */ 348 if (list_first_entry(&adap->mlist.list, struct mbox_list, 349 list) == &entry) 350 break; 351 352 /* Delay for a bit before checking again ... */ 353 if (sleep_ok) { 354 ms = delay[delay_idx]; /* last element may repeat */ 355 if (delay_idx < ARRAY_SIZE(delay) - 1) 356 delay_idx++; 357 msleep(ms); 358 } else { 359 mdelay(ms); 360 } 361 } 362 363 /* Loop trying to get ownership of the mailbox. Return an error 364 * if we can't gain ownership. 365 */ 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 368 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 369 if (v != MBOX_OWNER_DRV) { 370 spin_lock_bh(&adap->mbox_lock); 371 list_del(&entry.list); 372 spin_unlock_bh(&adap->mbox_lock); 373 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 374 t4_record_mbox(adap, cmd, size, access, ret); 375 return ret; 376 } 377 378 /* Copy in the new mailbox command and send it on its way ... */ 379 t4_record_mbox(adap, cmd, size, access, 0); 380 for (i = 0; i < size; i += 8) 381 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 382 383 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 384 t4_read_reg(adap, ctl_reg); /* flush write */ 385 386 delay_idx = 0; 387 ms = delay[0]; 388 389 for (i = 0; 390 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 391 i < timeout; 392 i += ms) { 393 if (sleep_ok) { 394 ms = delay[delay_idx]; /* last element may repeat */ 395 if (delay_idx < ARRAY_SIZE(delay) - 1) 396 delay_idx++; 397 msleep(ms); 398 } else 399 mdelay(ms); 400 401 v = t4_read_reg(adap, ctl_reg); 402 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 403 if (!(v & MBMSGVALID_F)) { 404 t4_write_reg(adap, ctl_reg, 0); 405 continue; 406 } 407 408 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 409 res = be64_to_cpu(cmd_rpl[0]); 410 411 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 412 fw_asrt(adap, data_reg); 413 res = FW_CMD_RETVAL_V(EIO); 414 } else if (rpl) { 415 memcpy(rpl, cmd_rpl, size); 416 } 417 418 t4_write_reg(adap, ctl_reg, 0); 419 420 execute = i + ms; 421 t4_record_mbox(adap, cmd_rpl, 422 MBOX_LEN, access, execute); 423 spin_lock_bh(&adap->mbox_lock); 424 list_del(&entry.list); 425 spin_unlock_bh(&adap->mbox_lock); 426 return -FW_CMD_RETVAL_G((int)res); 427 } 428 } 429 430 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 431 t4_record_mbox(adap, cmd, size, access, ret); 432 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 433 *(const u8 *)cmd, mbox); 434 t4_report_fw_error(adap); 435 spin_lock_bh(&adap->mbox_lock); 436 list_del(&entry.list); 437 spin_unlock_bh(&adap->mbox_lock); 438 t4_fatal_err(adap); 439 return ret; 440 } 441 442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 443 void *rpl, bool sleep_ok) 444 { 445 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 446 FW_CMD_MAX_TIMEOUT); 447 } 448 449 static int t4_edc_err_read(struct adapter *adap, int idx) 450 { 451 u32 edc_ecc_err_addr_reg; 452 u32 rdata_reg; 453 454 if (is_t4(adap->params.chip)) { 455 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 456 return 0; 457 } 458 if (idx != 0 && idx != 1) { 459 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 460 return 0; 461 } 462 463 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 464 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 465 466 CH_WARN(adap, 467 "edc%d err addr 0x%x: 0x%x.\n", 468 idx, edc_ecc_err_addr_reg, 469 t4_read_reg(adap, edc_ecc_err_addr_reg)); 470 CH_WARN(adap, 471 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 472 rdata_reg, 473 (unsigned long long)t4_read_reg64(adap, rdata_reg), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 480 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 481 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 482 483 return 0; 484 } 485 486 /** 487 * t4_memory_rw_init - Get memory window relative offset, base, and size. 488 * @adap: the adapter 489 * @win: PCI-E Memory Window to use 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC 491 * @mem_off: memory relative offset with respect to @mtype. 492 * @mem_base: configured memory base address. 493 * @mem_aperture: configured memory window aperture. 494 * 495 * Get the configured memory window's relative offset, base, and size. 496 */ 497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off, 498 u32 *mem_base, u32 *mem_aperture) 499 { 500 u32 edc_size, mc_size, mem_reg; 501 502 /* Offset into the region of memory which is being accessed 503 * MEM_EDC0 = 0 504 * MEM_EDC1 = 1 505 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 506 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 507 * MEM_HMA = 4 508 */ 509 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 510 if (mtype == MEM_HMA) { 511 *mem_off = 2 * (edc_size * 1024 * 1024); 512 } else if (mtype != MEM_MC1) { 513 *mem_off = (mtype * (edc_size * 1024 * 1024)); 514 } else { 515 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 516 MA_EXT_MEMORY0_BAR_A)); 517 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 518 } 519 520 /* Each PCI-E Memory Window is programmed with a window size -- or 521 * "aperture" -- which controls the granularity of its mapping onto 522 * adapter memory. We need to grab that aperture in order to know 523 * how to use the specified window. The window is also programmed 524 * with the base address of the Memory Window in BAR0's address 525 * space. For T4 this is an absolute PCI-E Bus Address. For T5 526 * the address is relative to BAR0. 527 */ 528 mem_reg = t4_read_reg(adap, 529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 530 win)); 531 /* a dead adapter will return 0xffffffff for PIO reads */ 532 if (mem_reg == 0xffffffff) 533 return -ENXIO; 534 535 *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 536 *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 537 if (is_t4(adap->params.chip)) 538 *mem_base -= adap->t4_bar0; 539 540 return 0; 541 } 542 543 /** 544 * t4_memory_update_win - Move memory window to specified address. 545 * @adap: the adapter 546 * @win: PCI-E Memory Window to use 547 * @addr: location to move. 548 * 549 * Move memory window to specified address. 550 */ 551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr) 552 { 553 t4_write_reg(adap, 554 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 555 addr); 556 /* Read it back to ensure that changes propagate before we 557 * attempt to use the new value. 558 */ 559 t4_read_reg(adap, 560 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 561 } 562 563 /** 564 * t4_memory_rw_residual - Read/Write residual data. 565 * @adap: the adapter 566 * @off: relative offset within residual to start read/write. 567 * @addr: address within indicated memory type. 568 * @buf: host memory buffer 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 570 * 571 * Read/Write residual data less than 32-bits. 572 */ 573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf, 574 int dir) 575 { 576 union { 577 u32 word; 578 char byte[4]; 579 } last; 580 unsigned char *bp; 581 int i; 582 583 if (dir == T4_MEMORY_READ) { 584 last.word = le32_to_cpu((__force __le32) 585 t4_read_reg(adap, addr)); 586 for (bp = (unsigned char *)buf, i = off; i < 4; i++) 587 bp[i] = last.byte[i]; 588 } else { 589 last.word = *buf; 590 for (i = off; i < 4; i++) 591 last.byte[i] = 0; 592 t4_write_reg(adap, addr, 593 (__force u32)cpu_to_le32(last.word)); 594 } 595 } 596 597 /** 598 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 599 * @adap: the adapter 600 * @win: PCI-E Memory Window to use 601 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 602 * @addr: address within indicated memory type 603 * @len: amount of memory to transfer 604 * @hbuf: host memory buffer 605 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 606 * 607 * Reads/writes an [almost] arbitrary memory region in the firmware: the 608 * firmware memory address and host buffer must be aligned on 32-bit 609 * boudaries; the length may be arbitrary. The memory is transferred as 610 * a raw byte sequence from/to the firmware's memory. If this memory 611 * contains data structures which contain multi-byte integers, it's the 612 * caller's responsibility to perform appropriate byte order conversions. 613 */ 614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 615 u32 len, void *hbuf, int dir) 616 { 617 u32 pos, offset, resid, memoffset; 618 u32 win_pf, mem_aperture, mem_base; 619 u32 *buf; 620 int ret; 621 622 /* Argument sanity checks ... 623 */ 624 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 625 return -EINVAL; 626 buf = (u32 *)hbuf; 627 628 /* It's convenient to be able to handle lengths which aren't a 629 * multiple of 32-bits because we often end up transferring files to 630 * the firmware. So we'll handle that by normalizing the length here 631 * and then handling any residual transfer at the end. 632 */ 633 resid = len & 0x3; 634 len -= resid; 635 636 ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base, 637 &mem_aperture); 638 if (ret) 639 return ret; 640 641 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 642 addr = addr + memoffset; 643 644 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 645 646 /* Calculate our initial PCI-E Memory Window Position and Offset into 647 * that Window. 648 */ 649 pos = addr & ~(mem_aperture - 1); 650 offset = addr - pos; 651 652 /* Set up initial PCI-E Memory Window to cover the start of our 653 * transfer. 654 */ 655 t4_memory_update_win(adap, win, pos | win_pf); 656 657 /* Transfer data to/from the adapter as long as there's an integral 658 * number of 32-bit transfers to complete. 659 * 660 * A note on Endianness issues: 661 * 662 * The "register" reads and writes below from/to the PCI-E Memory 663 * Window invoke the standard adapter Big-Endian to PCI-E Link 664 * Little-Endian "swizzel." As a result, if we have the following 665 * data in adapter memory: 666 * 667 * Memory: ... | b0 | b1 | b2 | b3 | ... 668 * Address: i+0 i+1 i+2 i+3 669 * 670 * Then a read of the adapter memory via the PCI-E Memory Window 671 * will yield: 672 * 673 * x = readl(i) 674 * 31 0 675 * [ b3 | b2 | b1 | b0 ] 676 * 677 * If this value is stored into local memory on a Little-Endian system 678 * it will show up correctly in local memory as: 679 * 680 * ( ..., b0, b1, b2, b3, ... ) 681 * 682 * But on a Big-Endian system, the store will show up in memory 683 * incorrectly swizzled as: 684 * 685 * ( ..., b3, b2, b1, b0, ... ) 686 * 687 * So we need to account for this in the reads and writes to the 688 * PCI-E Memory Window below by undoing the register read/write 689 * swizzels. 690 */ 691 while (len > 0) { 692 if (dir == T4_MEMORY_READ) 693 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 694 mem_base + offset)); 695 else 696 t4_write_reg(adap, mem_base + offset, 697 (__force u32)cpu_to_le32(*buf++)); 698 offset += sizeof(__be32); 699 len -= sizeof(__be32); 700 701 /* If we've reached the end of our current window aperture, 702 * move the PCI-E Memory Window on to the next. Note that 703 * doing this here after "len" may be 0 allows us to set up 704 * the PCI-E Memory Window for a possible final residual 705 * transfer below ... 706 */ 707 if (offset == mem_aperture) { 708 pos += mem_aperture; 709 offset = 0; 710 t4_memory_update_win(adap, win, pos | win_pf); 711 } 712 } 713 714 /* If the original transfer had a length which wasn't a multiple of 715 * 32-bits, now's where we need to finish off the transfer of the 716 * residual amount. The PCI-E Memory Window has already been moved 717 * above (if necessary) to cover this final transfer. 718 */ 719 if (resid) 720 t4_memory_rw_residual(adap, resid, mem_base + offset, 721 (u8 *)buf, dir); 722 723 return 0; 724 } 725 726 /* Return the specified PCI-E Configuration Space register from our Physical 727 * Function. We try first via a Firmware LDST Command since we prefer to let 728 * the firmware own all of these registers, but if that fails we go for it 729 * directly ourselves. 730 */ 731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 732 { 733 u32 val, ldst_addrspace; 734 735 /* If fw_attach != 0, construct and send the Firmware LDST Command to 736 * retrieve the specified PCI-E Configuration Space register. 737 */ 738 struct fw_ldst_cmd ldst_cmd; 739 int ret; 740 741 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 742 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 743 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 744 FW_CMD_REQUEST_F | 745 FW_CMD_READ_F | 746 ldst_addrspace); 747 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 748 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 749 ldst_cmd.u.pcie.ctrl_to_fn = 750 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 751 ldst_cmd.u.pcie.r = reg; 752 753 /* If the LDST Command succeeds, return the result, otherwise 754 * fall through to reading it directly ourselves ... 755 */ 756 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 757 &ldst_cmd); 758 if (ret == 0) 759 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 760 else 761 /* Read the desired Configuration Space register via the PCI-E 762 * Backdoor mechanism. 763 */ 764 t4_hw_pci_read_cfg4(adap, reg, &val); 765 return val; 766 } 767 768 /* Get the window based on base passed to it. 769 * Window aperture is currently unhandled, but there is no use case for it 770 * right now 771 */ 772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 773 u32 memwin_base) 774 { 775 u32 ret; 776 777 if (is_t4(adap->params.chip)) { 778 u32 bar0; 779 780 /* Truncation intentional: we only read the bottom 32-bits of 781 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 782 * mechanism to read BAR0 instead of using 783 * pci_resource_start() because we could be operating from 784 * within a Virtual Machine which is trapping our accesses to 785 * our Configuration Space and we need to set up the PCI-E 786 * Memory Window decoders with the actual addresses which will 787 * be coming across the PCI-E link. 788 */ 789 bar0 = t4_read_pcie_cfg4(adap, pci_base); 790 bar0 &= pci_mask; 791 adap->t4_bar0 = bar0; 792 793 ret = bar0 + memwin_base; 794 } else { 795 /* For T5, only relative offset inside the PCIe BAR is passed */ 796 ret = memwin_base; 797 } 798 return ret; 799 } 800 801 /* Get the default utility window (win0) used by everyone */ 802 u32 t4_get_util_window(struct adapter *adap) 803 { 804 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 805 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 806 } 807 808 /* Set up memory window for accessing adapter memory ranges. (Read 809 * back MA register to ensure that changes propagate before we attempt 810 * to use the new values.) 811 */ 812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 813 { 814 t4_write_reg(adap, 815 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 816 memwin_base | BIR_V(0) | 817 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 818 t4_read_reg(adap, 819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 820 } 821 822 /** 823 * t4_get_regs_len - return the size of the chips register set 824 * @adapter: the adapter 825 * 826 * Returns the size of the chip's BAR0 register space. 827 */ 828 unsigned int t4_get_regs_len(struct adapter *adapter) 829 { 830 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 831 832 switch (chip_version) { 833 case CHELSIO_T4: 834 return T4_REGMAP_SIZE; 835 836 case CHELSIO_T5: 837 case CHELSIO_T6: 838 return T5_REGMAP_SIZE; 839 } 840 841 dev_err(adapter->pdev_dev, 842 "Unsupported chip version %d\n", chip_version); 843 return 0; 844 } 845 846 /** 847 * t4_get_regs - read chip registers into provided buffer 848 * @adap: the adapter 849 * @buf: register buffer 850 * @buf_size: size (in bytes) of register buffer 851 * 852 * If the provided register buffer isn't large enough for the chip's 853 * full register range, the register dump will be truncated to the 854 * register buffer's size. 855 */ 856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 857 { 858 static const unsigned int t4_reg_ranges[] = { 859 0x1008, 0x1108, 860 0x1180, 0x1184, 861 0x1190, 0x1194, 862 0x11a0, 0x11a4, 863 0x11b0, 0x11b4, 864 0x11fc, 0x123c, 865 0x1300, 0x173c, 866 0x1800, 0x18fc, 867 0x3000, 0x30d8, 868 0x30e0, 0x30e4, 869 0x30ec, 0x5910, 870 0x5920, 0x5924, 871 0x5960, 0x5960, 872 0x5968, 0x5968, 873 0x5970, 0x5970, 874 0x5978, 0x5978, 875 0x5980, 0x5980, 876 0x5988, 0x5988, 877 0x5990, 0x5990, 878 0x5998, 0x5998, 879 0x59a0, 0x59d4, 880 0x5a00, 0x5ae0, 881 0x5ae8, 0x5ae8, 882 0x5af0, 0x5af0, 883 0x5af8, 0x5af8, 884 0x6000, 0x6098, 885 0x6100, 0x6150, 886 0x6200, 0x6208, 887 0x6240, 0x6248, 888 0x6280, 0x62b0, 889 0x62c0, 0x6338, 890 0x6370, 0x638c, 891 0x6400, 0x643c, 892 0x6500, 0x6524, 893 0x6a00, 0x6a04, 894 0x6a14, 0x6a38, 895 0x6a60, 0x6a70, 896 0x6a78, 0x6a78, 897 0x6b00, 0x6b0c, 898 0x6b1c, 0x6b84, 899 0x6bf0, 0x6bf8, 900 0x6c00, 0x6c0c, 901 0x6c1c, 0x6c84, 902 0x6cf0, 0x6cf8, 903 0x6d00, 0x6d0c, 904 0x6d1c, 0x6d84, 905 0x6df0, 0x6df8, 906 0x6e00, 0x6e0c, 907 0x6e1c, 0x6e84, 908 0x6ef0, 0x6ef8, 909 0x6f00, 0x6f0c, 910 0x6f1c, 0x6f84, 911 0x6ff0, 0x6ff8, 912 0x7000, 0x700c, 913 0x701c, 0x7084, 914 0x70f0, 0x70f8, 915 0x7100, 0x710c, 916 0x711c, 0x7184, 917 0x71f0, 0x71f8, 918 0x7200, 0x720c, 919 0x721c, 0x7284, 920 0x72f0, 0x72f8, 921 0x7300, 0x730c, 922 0x731c, 0x7384, 923 0x73f0, 0x73f8, 924 0x7400, 0x7450, 925 0x7500, 0x7530, 926 0x7600, 0x760c, 927 0x7614, 0x761c, 928 0x7680, 0x76cc, 929 0x7700, 0x7798, 930 0x77c0, 0x77fc, 931 0x7900, 0x79fc, 932 0x7b00, 0x7b58, 933 0x7b60, 0x7b84, 934 0x7b8c, 0x7c38, 935 0x7d00, 0x7d38, 936 0x7d40, 0x7d80, 937 0x7d8c, 0x7ddc, 938 0x7de4, 0x7e04, 939 0x7e10, 0x7e1c, 940 0x7e24, 0x7e38, 941 0x7e40, 0x7e44, 942 0x7e4c, 0x7e78, 943 0x7e80, 0x7ea4, 944 0x7eac, 0x7edc, 945 0x7ee8, 0x7efc, 946 0x8dc0, 0x8e04, 947 0x8e10, 0x8e1c, 948 0x8e30, 0x8e78, 949 0x8ea0, 0x8eb8, 950 0x8ec0, 0x8f6c, 951 0x8fc0, 0x9008, 952 0x9010, 0x9058, 953 0x9060, 0x9060, 954 0x9068, 0x9074, 955 0x90fc, 0x90fc, 956 0x9400, 0x9408, 957 0x9410, 0x9458, 958 0x9600, 0x9600, 959 0x9608, 0x9638, 960 0x9640, 0x96bc, 961 0x9800, 0x9808, 962 0x9820, 0x983c, 963 0x9850, 0x9864, 964 0x9c00, 0x9c6c, 965 0x9c80, 0x9cec, 966 0x9d00, 0x9d6c, 967 0x9d80, 0x9dec, 968 0x9e00, 0x9e6c, 969 0x9e80, 0x9eec, 970 0x9f00, 0x9f6c, 971 0x9f80, 0x9fec, 972 0xd004, 0xd004, 973 0xd010, 0xd03c, 974 0xdfc0, 0xdfe0, 975 0xe000, 0xea7c, 976 0xf000, 0x11110, 977 0x11118, 0x11190, 978 0x19040, 0x1906c, 979 0x19078, 0x19080, 980 0x1908c, 0x190e4, 981 0x190f0, 0x190f8, 982 0x19100, 0x19110, 983 0x19120, 0x19124, 984 0x19150, 0x19194, 985 0x1919c, 0x191b0, 986 0x191d0, 0x191e8, 987 0x19238, 0x1924c, 988 0x193f8, 0x1943c, 989 0x1944c, 0x19474, 990 0x19490, 0x194e0, 991 0x194f0, 0x194f8, 992 0x19800, 0x19c08, 993 0x19c10, 0x19c90, 994 0x19ca0, 0x19ce4, 995 0x19cf0, 0x19d40, 996 0x19d50, 0x19d94, 997 0x19da0, 0x19de8, 998 0x19df0, 0x19e40, 999 0x19e50, 0x19e90, 1000 0x19ea0, 0x19f4c, 1001 0x1a000, 0x1a004, 1002 0x1a010, 0x1a06c, 1003 0x1a0b0, 0x1a0e4, 1004 0x1a0ec, 0x1a0f4, 1005 0x1a100, 0x1a108, 1006 0x1a114, 0x1a120, 1007 0x1a128, 0x1a130, 1008 0x1a138, 0x1a138, 1009 0x1a190, 0x1a1c4, 1010 0x1a1fc, 0x1a1fc, 1011 0x1e040, 0x1e04c, 1012 0x1e284, 0x1e28c, 1013 0x1e2c0, 0x1e2c0, 1014 0x1e2e0, 0x1e2e0, 1015 0x1e300, 0x1e384, 1016 0x1e3c0, 0x1e3c8, 1017 0x1e440, 0x1e44c, 1018 0x1e684, 0x1e68c, 1019 0x1e6c0, 0x1e6c0, 1020 0x1e6e0, 0x1e6e0, 1021 0x1e700, 0x1e784, 1022 0x1e7c0, 0x1e7c8, 1023 0x1e840, 0x1e84c, 1024 0x1ea84, 0x1ea8c, 1025 0x1eac0, 0x1eac0, 1026 0x1eae0, 0x1eae0, 1027 0x1eb00, 0x1eb84, 1028 0x1ebc0, 0x1ebc8, 1029 0x1ec40, 0x1ec4c, 1030 0x1ee84, 0x1ee8c, 1031 0x1eec0, 0x1eec0, 1032 0x1eee0, 0x1eee0, 1033 0x1ef00, 0x1ef84, 1034 0x1efc0, 0x1efc8, 1035 0x1f040, 0x1f04c, 1036 0x1f284, 0x1f28c, 1037 0x1f2c0, 0x1f2c0, 1038 0x1f2e0, 0x1f2e0, 1039 0x1f300, 0x1f384, 1040 0x1f3c0, 0x1f3c8, 1041 0x1f440, 0x1f44c, 1042 0x1f684, 0x1f68c, 1043 0x1f6c0, 0x1f6c0, 1044 0x1f6e0, 0x1f6e0, 1045 0x1f700, 0x1f784, 1046 0x1f7c0, 0x1f7c8, 1047 0x1f840, 0x1f84c, 1048 0x1fa84, 0x1fa8c, 1049 0x1fac0, 0x1fac0, 1050 0x1fae0, 0x1fae0, 1051 0x1fb00, 0x1fb84, 1052 0x1fbc0, 0x1fbc8, 1053 0x1fc40, 0x1fc4c, 1054 0x1fe84, 0x1fe8c, 1055 0x1fec0, 0x1fec0, 1056 0x1fee0, 0x1fee0, 1057 0x1ff00, 0x1ff84, 1058 0x1ffc0, 0x1ffc8, 1059 0x20000, 0x2002c, 1060 0x20100, 0x2013c, 1061 0x20190, 0x201a0, 1062 0x201a8, 0x201b8, 1063 0x201c4, 0x201c8, 1064 0x20200, 0x20318, 1065 0x20400, 0x204b4, 1066 0x204c0, 0x20528, 1067 0x20540, 0x20614, 1068 0x21000, 0x21040, 1069 0x2104c, 0x21060, 1070 0x210c0, 0x210ec, 1071 0x21200, 0x21268, 1072 0x21270, 0x21284, 1073 0x212fc, 0x21388, 1074 0x21400, 0x21404, 1075 0x21500, 0x21500, 1076 0x21510, 0x21518, 1077 0x2152c, 0x21530, 1078 0x2153c, 0x2153c, 1079 0x21550, 0x21554, 1080 0x21600, 0x21600, 1081 0x21608, 0x2161c, 1082 0x21624, 0x21628, 1083 0x21630, 0x21634, 1084 0x2163c, 0x2163c, 1085 0x21700, 0x2171c, 1086 0x21780, 0x2178c, 1087 0x21800, 0x21818, 1088 0x21820, 0x21828, 1089 0x21830, 0x21848, 1090 0x21850, 0x21854, 1091 0x21860, 0x21868, 1092 0x21870, 0x21870, 1093 0x21878, 0x21898, 1094 0x218a0, 0x218a8, 1095 0x218b0, 0x218c8, 1096 0x218d0, 0x218d4, 1097 0x218e0, 0x218e8, 1098 0x218f0, 0x218f0, 1099 0x218f8, 0x21a18, 1100 0x21a20, 0x21a28, 1101 0x21a30, 0x21a48, 1102 0x21a50, 0x21a54, 1103 0x21a60, 0x21a68, 1104 0x21a70, 0x21a70, 1105 0x21a78, 0x21a98, 1106 0x21aa0, 0x21aa8, 1107 0x21ab0, 0x21ac8, 1108 0x21ad0, 0x21ad4, 1109 0x21ae0, 0x21ae8, 1110 0x21af0, 0x21af0, 1111 0x21af8, 0x21c18, 1112 0x21c20, 0x21c20, 1113 0x21c28, 0x21c30, 1114 0x21c38, 0x21c38, 1115 0x21c80, 0x21c98, 1116 0x21ca0, 0x21ca8, 1117 0x21cb0, 0x21cc8, 1118 0x21cd0, 0x21cd4, 1119 0x21ce0, 0x21ce8, 1120 0x21cf0, 0x21cf0, 1121 0x21cf8, 0x21d7c, 1122 0x21e00, 0x21e04, 1123 0x22000, 0x2202c, 1124 0x22100, 0x2213c, 1125 0x22190, 0x221a0, 1126 0x221a8, 0x221b8, 1127 0x221c4, 0x221c8, 1128 0x22200, 0x22318, 1129 0x22400, 0x224b4, 1130 0x224c0, 0x22528, 1131 0x22540, 0x22614, 1132 0x23000, 0x23040, 1133 0x2304c, 0x23060, 1134 0x230c0, 0x230ec, 1135 0x23200, 0x23268, 1136 0x23270, 0x23284, 1137 0x232fc, 0x23388, 1138 0x23400, 0x23404, 1139 0x23500, 0x23500, 1140 0x23510, 0x23518, 1141 0x2352c, 0x23530, 1142 0x2353c, 0x2353c, 1143 0x23550, 0x23554, 1144 0x23600, 0x23600, 1145 0x23608, 0x2361c, 1146 0x23624, 0x23628, 1147 0x23630, 0x23634, 1148 0x2363c, 0x2363c, 1149 0x23700, 0x2371c, 1150 0x23780, 0x2378c, 1151 0x23800, 0x23818, 1152 0x23820, 0x23828, 1153 0x23830, 0x23848, 1154 0x23850, 0x23854, 1155 0x23860, 0x23868, 1156 0x23870, 0x23870, 1157 0x23878, 0x23898, 1158 0x238a0, 0x238a8, 1159 0x238b0, 0x238c8, 1160 0x238d0, 0x238d4, 1161 0x238e0, 0x238e8, 1162 0x238f0, 0x238f0, 1163 0x238f8, 0x23a18, 1164 0x23a20, 0x23a28, 1165 0x23a30, 0x23a48, 1166 0x23a50, 0x23a54, 1167 0x23a60, 0x23a68, 1168 0x23a70, 0x23a70, 1169 0x23a78, 0x23a98, 1170 0x23aa0, 0x23aa8, 1171 0x23ab0, 0x23ac8, 1172 0x23ad0, 0x23ad4, 1173 0x23ae0, 0x23ae8, 1174 0x23af0, 0x23af0, 1175 0x23af8, 0x23c18, 1176 0x23c20, 0x23c20, 1177 0x23c28, 0x23c30, 1178 0x23c38, 0x23c38, 1179 0x23c80, 0x23c98, 1180 0x23ca0, 0x23ca8, 1181 0x23cb0, 0x23cc8, 1182 0x23cd0, 0x23cd4, 1183 0x23ce0, 0x23ce8, 1184 0x23cf0, 0x23cf0, 1185 0x23cf8, 0x23d7c, 1186 0x23e00, 0x23e04, 1187 0x24000, 0x2402c, 1188 0x24100, 0x2413c, 1189 0x24190, 0x241a0, 1190 0x241a8, 0x241b8, 1191 0x241c4, 0x241c8, 1192 0x24200, 0x24318, 1193 0x24400, 0x244b4, 1194 0x244c0, 0x24528, 1195 0x24540, 0x24614, 1196 0x25000, 0x25040, 1197 0x2504c, 0x25060, 1198 0x250c0, 0x250ec, 1199 0x25200, 0x25268, 1200 0x25270, 0x25284, 1201 0x252fc, 0x25388, 1202 0x25400, 0x25404, 1203 0x25500, 0x25500, 1204 0x25510, 0x25518, 1205 0x2552c, 0x25530, 1206 0x2553c, 0x2553c, 1207 0x25550, 0x25554, 1208 0x25600, 0x25600, 1209 0x25608, 0x2561c, 1210 0x25624, 0x25628, 1211 0x25630, 0x25634, 1212 0x2563c, 0x2563c, 1213 0x25700, 0x2571c, 1214 0x25780, 0x2578c, 1215 0x25800, 0x25818, 1216 0x25820, 0x25828, 1217 0x25830, 0x25848, 1218 0x25850, 0x25854, 1219 0x25860, 0x25868, 1220 0x25870, 0x25870, 1221 0x25878, 0x25898, 1222 0x258a0, 0x258a8, 1223 0x258b0, 0x258c8, 1224 0x258d0, 0x258d4, 1225 0x258e0, 0x258e8, 1226 0x258f0, 0x258f0, 1227 0x258f8, 0x25a18, 1228 0x25a20, 0x25a28, 1229 0x25a30, 0x25a48, 1230 0x25a50, 0x25a54, 1231 0x25a60, 0x25a68, 1232 0x25a70, 0x25a70, 1233 0x25a78, 0x25a98, 1234 0x25aa0, 0x25aa8, 1235 0x25ab0, 0x25ac8, 1236 0x25ad0, 0x25ad4, 1237 0x25ae0, 0x25ae8, 1238 0x25af0, 0x25af0, 1239 0x25af8, 0x25c18, 1240 0x25c20, 0x25c20, 1241 0x25c28, 0x25c30, 1242 0x25c38, 0x25c38, 1243 0x25c80, 0x25c98, 1244 0x25ca0, 0x25ca8, 1245 0x25cb0, 0x25cc8, 1246 0x25cd0, 0x25cd4, 1247 0x25ce0, 0x25ce8, 1248 0x25cf0, 0x25cf0, 1249 0x25cf8, 0x25d7c, 1250 0x25e00, 0x25e04, 1251 0x26000, 0x2602c, 1252 0x26100, 0x2613c, 1253 0x26190, 0x261a0, 1254 0x261a8, 0x261b8, 1255 0x261c4, 0x261c8, 1256 0x26200, 0x26318, 1257 0x26400, 0x264b4, 1258 0x264c0, 0x26528, 1259 0x26540, 0x26614, 1260 0x27000, 0x27040, 1261 0x2704c, 0x27060, 1262 0x270c0, 0x270ec, 1263 0x27200, 0x27268, 1264 0x27270, 0x27284, 1265 0x272fc, 0x27388, 1266 0x27400, 0x27404, 1267 0x27500, 0x27500, 1268 0x27510, 0x27518, 1269 0x2752c, 0x27530, 1270 0x2753c, 0x2753c, 1271 0x27550, 0x27554, 1272 0x27600, 0x27600, 1273 0x27608, 0x2761c, 1274 0x27624, 0x27628, 1275 0x27630, 0x27634, 1276 0x2763c, 0x2763c, 1277 0x27700, 0x2771c, 1278 0x27780, 0x2778c, 1279 0x27800, 0x27818, 1280 0x27820, 0x27828, 1281 0x27830, 0x27848, 1282 0x27850, 0x27854, 1283 0x27860, 0x27868, 1284 0x27870, 0x27870, 1285 0x27878, 0x27898, 1286 0x278a0, 0x278a8, 1287 0x278b0, 0x278c8, 1288 0x278d0, 0x278d4, 1289 0x278e0, 0x278e8, 1290 0x278f0, 0x278f0, 1291 0x278f8, 0x27a18, 1292 0x27a20, 0x27a28, 1293 0x27a30, 0x27a48, 1294 0x27a50, 0x27a54, 1295 0x27a60, 0x27a68, 1296 0x27a70, 0x27a70, 1297 0x27a78, 0x27a98, 1298 0x27aa0, 0x27aa8, 1299 0x27ab0, 0x27ac8, 1300 0x27ad0, 0x27ad4, 1301 0x27ae0, 0x27ae8, 1302 0x27af0, 0x27af0, 1303 0x27af8, 0x27c18, 1304 0x27c20, 0x27c20, 1305 0x27c28, 0x27c30, 1306 0x27c38, 0x27c38, 1307 0x27c80, 0x27c98, 1308 0x27ca0, 0x27ca8, 1309 0x27cb0, 0x27cc8, 1310 0x27cd0, 0x27cd4, 1311 0x27ce0, 0x27ce8, 1312 0x27cf0, 0x27cf0, 1313 0x27cf8, 0x27d7c, 1314 0x27e00, 0x27e04, 1315 }; 1316 1317 static const unsigned int t5_reg_ranges[] = { 1318 0x1008, 0x10c0, 1319 0x10cc, 0x10f8, 1320 0x1100, 0x1100, 1321 0x110c, 0x1148, 1322 0x1180, 0x1184, 1323 0x1190, 0x1194, 1324 0x11a0, 0x11a4, 1325 0x11b0, 0x11b4, 1326 0x11fc, 0x123c, 1327 0x1280, 0x173c, 1328 0x1800, 0x18fc, 1329 0x3000, 0x3028, 1330 0x3060, 0x30b0, 1331 0x30b8, 0x30d8, 1332 0x30e0, 0x30fc, 1333 0x3140, 0x357c, 1334 0x35a8, 0x35cc, 1335 0x35ec, 0x35ec, 1336 0x3600, 0x5624, 1337 0x56cc, 0x56ec, 1338 0x56f4, 0x5720, 1339 0x5728, 0x575c, 1340 0x580c, 0x5814, 1341 0x5890, 0x589c, 1342 0x58a4, 0x58ac, 1343 0x58b8, 0x58bc, 1344 0x5940, 0x59c8, 1345 0x59d0, 0x59dc, 1346 0x59fc, 0x5a18, 1347 0x5a60, 0x5a70, 1348 0x5a80, 0x5a9c, 1349 0x5b94, 0x5bfc, 1350 0x6000, 0x6020, 1351 0x6028, 0x6040, 1352 0x6058, 0x609c, 1353 0x60a8, 0x614c, 1354 0x7700, 0x7798, 1355 0x77c0, 0x78fc, 1356 0x7b00, 0x7b58, 1357 0x7b60, 0x7b84, 1358 0x7b8c, 0x7c54, 1359 0x7d00, 0x7d38, 1360 0x7d40, 0x7d80, 1361 0x7d8c, 0x7ddc, 1362 0x7de4, 0x7e04, 1363 0x7e10, 0x7e1c, 1364 0x7e24, 0x7e38, 1365 0x7e40, 0x7e44, 1366 0x7e4c, 0x7e78, 1367 0x7e80, 0x7edc, 1368 0x7ee8, 0x7efc, 1369 0x8dc0, 0x8de0, 1370 0x8df8, 0x8e04, 1371 0x8e10, 0x8e84, 1372 0x8ea0, 0x8f84, 1373 0x8fc0, 0x9058, 1374 0x9060, 0x9060, 1375 0x9068, 0x90f8, 1376 0x9400, 0x9408, 1377 0x9410, 0x9470, 1378 0x9600, 0x9600, 1379 0x9608, 0x9638, 1380 0x9640, 0x96f4, 1381 0x9800, 0x9808, 1382 0x9820, 0x983c, 1383 0x9850, 0x9864, 1384 0x9c00, 0x9c6c, 1385 0x9c80, 0x9cec, 1386 0x9d00, 0x9d6c, 1387 0x9d80, 0x9dec, 1388 0x9e00, 0x9e6c, 1389 0x9e80, 0x9eec, 1390 0x9f00, 0x9f6c, 1391 0x9f80, 0xa020, 1392 0xd004, 0xd004, 1393 0xd010, 0xd03c, 1394 0xdfc0, 0xdfe0, 1395 0xe000, 0x1106c, 1396 0x11074, 0x11088, 1397 0x1109c, 0x1117c, 1398 0x11190, 0x11204, 1399 0x19040, 0x1906c, 1400 0x19078, 0x19080, 1401 0x1908c, 0x190e8, 1402 0x190f0, 0x190f8, 1403 0x19100, 0x19110, 1404 0x19120, 0x19124, 1405 0x19150, 0x19194, 1406 0x1919c, 0x191b0, 1407 0x191d0, 0x191e8, 1408 0x19238, 0x19290, 1409 0x193f8, 0x19428, 1410 0x19430, 0x19444, 1411 0x1944c, 0x1946c, 1412 0x19474, 0x19474, 1413 0x19490, 0x194cc, 1414 0x194f0, 0x194f8, 1415 0x19c00, 0x19c08, 1416 0x19c10, 0x19c60, 1417 0x19c94, 0x19ce4, 1418 0x19cf0, 0x19d40, 1419 0x19d50, 0x19d94, 1420 0x19da0, 0x19de8, 1421 0x19df0, 0x19e10, 1422 0x19e50, 0x19e90, 1423 0x19ea0, 0x19f24, 1424 0x19f34, 0x19f34, 1425 0x19f40, 0x19f50, 1426 0x19f90, 0x19fb4, 1427 0x19fc4, 0x19fe4, 1428 0x1a000, 0x1a004, 1429 0x1a010, 0x1a06c, 1430 0x1a0b0, 0x1a0e4, 1431 0x1a0ec, 0x1a0f8, 1432 0x1a100, 0x1a108, 1433 0x1a114, 0x1a120, 1434 0x1a128, 0x1a130, 1435 0x1a138, 0x1a138, 1436 0x1a190, 0x1a1c4, 1437 0x1a1fc, 0x1a1fc, 1438 0x1e008, 0x1e00c, 1439 0x1e040, 0x1e044, 1440 0x1e04c, 0x1e04c, 1441 0x1e284, 0x1e290, 1442 0x1e2c0, 0x1e2c0, 1443 0x1e2e0, 0x1e2e0, 1444 0x1e300, 0x1e384, 1445 0x1e3c0, 0x1e3c8, 1446 0x1e408, 0x1e40c, 1447 0x1e440, 0x1e444, 1448 0x1e44c, 0x1e44c, 1449 0x1e684, 0x1e690, 1450 0x1e6c0, 0x1e6c0, 1451 0x1e6e0, 0x1e6e0, 1452 0x1e700, 0x1e784, 1453 0x1e7c0, 0x1e7c8, 1454 0x1e808, 0x1e80c, 1455 0x1e840, 0x1e844, 1456 0x1e84c, 0x1e84c, 1457 0x1ea84, 0x1ea90, 1458 0x1eac0, 0x1eac0, 1459 0x1eae0, 0x1eae0, 1460 0x1eb00, 0x1eb84, 1461 0x1ebc0, 0x1ebc8, 1462 0x1ec08, 0x1ec0c, 1463 0x1ec40, 0x1ec44, 1464 0x1ec4c, 0x1ec4c, 1465 0x1ee84, 0x1ee90, 1466 0x1eec0, 0x1eec0, 1467 0x1eee0, 0x1eee0, 1468 0x1ef00, 0x1ef84, 1469 0x1efc0, 0x1efc8, 1470 0x1f008, 0x1f00c, 1471 0x1f040, 0x1f044, 1472 0x1f04c, 0x1f04c, 1473 0x1f284, 0x1f290, 1474 0x1f2c0, 0x1f2c0, 1475 0x1f2e0, 0x1f2e0, 1476 0x1f300, 0x1f384, 1477 0x1f3c0, 0x1f3c8, 1478 0x1f408, 0x1f40c, 1479 0x1f440, 0x1f444, 1480 0x1f44c, 0x1f44c, 1481 0x1f684, 0x1f690, 1482 0x1f6c0, 0x1f6c0, 1483 0x1f6e0, 0x1f6e0, 1484 0x1f700, 0x1f784, 1485 0x1f7c0, 0x1f7c8, 1486 0x1f808, 0x1f80c, 1487 0x1f840, 0x1f844, 1488 0x1f84c, 0x1f84c, 1489 0x1fa84, 0x1fa90, 1490 0x1fac0, 0x1fac0, 1491 0x1fae0, 0x1fae0, 1492 0x1fb00, 0x1fb84, 1493 0x1fbc0, 0x1fbc8, 1494 0x1fc08, 0x1fc0c, 1495 0x1fc40, 0x1fc44, 1496 0x1fc4c, 0x1fc4c, 1497 0x1fe84, 0x1fe90, 1498 0x1fec0, 0x1fec0, 1499 0x1fee0, 0x1fee0, 1500 0x1ff00, 0x1ff84, 1501 0x1ffc0, 0x1ffc8, 1502 0x30000, 0x30030, 1503 0x30100, 0x30144, 1504 0x30190, 0x301a0, 1505 0x301a8, 0x301b8, 1506 0x301c4, 0x301c8, 1507 0x301d0, 0x301d0, 1508 0x30200, 0x30318, 1509 0x30400, 0x304b4, 1510 0x304c0, 0x3052c, 1511 0x30540, 0x3061c, 1512 0x30800, 0x30828, 1513 0x30834, 0x30834, 1514 0x308c0, 0x30908, 1515 0x30910, 0x309ac, 1516 0x30a00, 0x30a14, 1517 0x30a1c, 0x30a2c, 1518 0x30a44, 0x30a50, 1519 0x30a74, 0x30a74, 1520 0x30a7c, 0x30afc, 1521 0x30b08, 0x30c24, 1522 0x30d00, 0x30d00, 1523 0x30d08, 0x30d14, 1524 0x30d1c, 0x30d20, 1525 0x30d3c, 0x30d3c, 1526 0x30d48, 0x30d50, 1527 0x31200, 0x3120c, 1528 0x31220, 0x31220, 1529 0x31240, 0x31240, 1530 0x31600, 0x3160c, 1531 0x31a00, 0x31a1c, 1532 0x31e00, 0x31e20, 1533 0x31e38, 0x31e3c, 1534 0x31e80, 0x31e80, 1535 0x31e88, 0x31ea8, 1536 0x31eb0, 0x31eb4, 1537 0x31ec8, 0x31ed4, 1538 0x31fb8, 0x32004, 1539 0x32200, 0x32200, 1540 0x32208, 0x32240, 1541 0x32248, 0x32280, 1542 0x32288, 0x322c0, 1543 0x322c8, 0x322fc, 1544 0x32600, 0x32630, 1545 0x32a00, 0x32abc, 1546 0x32b00, 0x32b10, 1547 0x32b20, 0x32b30, 1548 0x32b40, 0x32b50, 1549 0x32b60, 0x32b70, 1550 0x33000, 0x33028, 1551 0x33030, 0x33048, 1552 0x33060, 0x33068, 1553 0x33070, 0x3309c, 1554 0x330f0, 0x33128, 1555 0x33130, 0x33148, 1556 0x33160, 0x33168, 1557 0x33170, 0x3319c, 1558 0x331f0, 0x33238, 1559 0x33240, 0x33240, 1560 0x33248, 0x33250, 1561 0x3325c, 0x33264, 1562 0x33270, 0x332b8, 1563 0x332c0, 0x332e4, 1564 0x332f8, 0x33338, 1565 0x33340, 0x33340, 1566 0x33348, 0x33350, 1567 0x3335c, 0x33364, 1568 0x33370, 0x333b8, 1569 0x333c0, 0x333e4, 1570 0x333f8, 0x33428, 1571 0x33430, 0x33448, 1572 0x33460, 0x33468, 1573 0x33470, 0x3349c, 1574 0x334f0, 0x33528, 1575 0x33530, 0x33548, 1576 0x33560, 0x33568, 1577 0x33570, 0x3359c, 1578 0x335f0, 0x33638, 1579 0x33640, 0x33640, 1580 0x33648, 0x33650, 1581 0x3365c, 0x33664, 1582 0x33670, 0x336b8, 1583 0x336c0, 0x336e4, 1584 0x336f8, 0x33738, 1585 0x33740, 0x33740, 1586 0x33748, 0x33750, 1587 0x3375c, 0x33764, 1588 0x33770, 0x337b8, 1589 0x337c0, 0x337e4, 1590 0x337f8, 0x337fc, 1591 0x33814, 0x33814, 1592 0x3382c, 0x3382c, 1593 0x33880, 0x3388c, 1594 0x338e8, 0x338ec, 1595 0x33900, 0x33928, 1596 0x33930, 0x33948, 1597 0x33960, 0x33968, 1598 0x33970, 0x3399c, 1599 0x339f0, 0x33a38, 1600 0x33a40, 0x33a40, 1601 0x33a48, 0x33a50, 1602 0x33a5c, 0x33a64, 1603 0x33a70, 0x33ab8, 1604 0x33ac0, 0x33ae4, 1605 0x33af8, 0x33b10, 1606 0x33b28, 0x33b28, 1607 0x33b3c, 0x33b50, 1608 0x33bf0, 0x33c10, 1609 0x33c28, 0x33c28, 1610 0x33c3c, 0x33c50, 1611 0x33cf0, 0x33cfc, 1612 0x34000, 0x34030, 1613 0x34100, 0x34144, 1614 0x34190, 0x341a0, 1615 0x341a8, 0x341b8, 1616 0x341c4, 0x341c8, 1617 0x341d0, 0x341d0, 1618 0x34200, 0x34318, 1619 0x34400, 0x344b4, 1620 0x344c0, 0x3452c, 1621 0x34540, 0x3461c, 1622 0x34800, 0x34828, 1623 0x34834, 0x34834, 1624 0x348c0, 0x34908, 1625 0x34910, 0x349ac, 1626 0x34a00, 0x34a14, 1627 0x34a1c, 0x34a2c, 1628 0x34a44, 0x34a50, 1629 0x34a74, 0x34a74, 1630 0x34a7c, 0x34afc, 1631 0x34b08, 0x34c24, 1632 0x34d00, 0x34d00, 1633 0x34d08, 0x34d14, 1634 0x34d1c, 0x34d20, 1635 0x34d3c, 0x34d3c, 1636 0x34d48, 0x34d50, 1637 0x35200, 0x3520c, 1638 0x35220, 0x35220, 1639 0x35240, 0x35240, 1640 0x35600, 0x3560c, 1641 0x35a00, 0x35a1c, 1642 0x35e00, 0x35e20, 1643 0x35e38, 0x35e3c, 1644 0x35e80, 0x35e80, 1645 0x35e88, 0x35ea8, 1646 0x35eb0, 0x35eb4, 1647 0x35ec8, 0x35ed4, 1648 0x35fb8, 0x36004, 1649 0x36200, 0x36200, 1650 0x36208, 0x36240, 1651 0x36248, 0x36280, 1652 0x36288, 0x362c0, 1653 0x362c8, 0x362fc, 1654 0x36600, 0x36630, 1655 0x36a00, 0x36abc, 1656 0x36b00, 0x36b10, 1657 0x36b20, 0x36b30, 1658 0x36b40, 0x36b50, 1659 0x36b60, 0x36b70, 1660 0x37000, 0x37028, 1661 0x37030, 0x37048, 1662 0x37060, 0x37068, 1663 0x37070, 0x3709c, 1664 0x370f0, 0x37128, 1665 0x37130, 0x37148, 1666 0x37160, 0x37168, 1667 0x37170, 0x3719c, 1668 0x371f0, 0x37238, 1669 0x37240, 0x37240, 1670 0x37248, 0x37250, 1671 0x3725c, 0x37264, 1672 0x37270, 0x372b8, 1673 0x372c0, 0x372e4, 1674 0x372f8, 0x37338, 1675 0x37340, 0x37340, 1676 0x37348, 0x37350, 1677 0x3735c, 0x37364, 1678 0x37370, 0x373b8, 1679 0x373c0, 0x373e4, 1680 0x373f8, 0x37428, 1681 0x37430, 0x37448, 1682 0x37460, 0x37468, 1683 0x37470, 0x3749c, 1684 0x374f0, 0x37528, 1685 0x37530, 0x37548, 1686 0x37560, 0x37568, 1687 0x37570, 0x3759c, 1688 0x375f0, 0x37638, 1689 0x37640, 0x37640, 1690 0x37648, 0x37650, 1691 0x3765c, 0x37664, 1692 0x37670, 0x376b8, 1693 0x376c0, 0x376e4, 1694 0x376f8, 0x37738, 1695 0x37740, 0x37740, 1696 0x37748, 0x37750, 1697 0x3775c, 0x37764, 1698 0x37770, 0x377b8, 1699 0x377c0, 0x377e4, 1700 0x377f8, 0x377fc, 1701 0x37814, 0x37814, 1702 0x3782c, 0x3782c, 1703 0x37880, 0x3788c, 1704 0x378e8, 0x378ec, 1705 0x37900, 0x37928, 1706 0x37930, 0x37948, 1707 0x37960, 0x37968, 1708 0x37970, 0x3799c, 1709 0x379f0, 0x37a38, 1710 0x37a40, 0x37a40, 1711 0x37a48, 0x37a50, 1712 0x37a5c, 0x37a64, 1713 0x37a70, 0x37ab8, 1714 0x37ac0, 0x37ae4, 1715 0x37af8, 0x37b10, 1716 0x37b28, 0x37b28, 1717 0x37b3c, 0x37b50, 1718 0x37bf0, 0x37c10, 1719 0x37c28, 0x37c28, 1720 0x37c3c, 0x37c50, 1721 0x37cf0, 0x37cfc, 1722 0x38000, 0x38030, 1723 0x38100, 0x38144, 1724 0x38190, 0x381a0, 1725 0x381a8, 0x381b8, 1726 0x381c4, 0x381c8, 1727 0x381d0, 0x381d0, 1728 0x38200, 0x38318, 1729 0x38400, 0x384b4, 1730 0x384c0, 0x3852c, 1731 0x38540, 0x3861c, 1732 0x38800, 0x38828, 1733 0x38834, 0x38834, 1734 0x388c0, 0x38908, 1735 0x38910, 0x389ac, 1736 0x38a00, 0x38a14, 1737 0x38a1c, 0x38a2c, 1738 0x38a44, 0x38a50, 1739 0x38a74, 0x38a74, 1740 0x38a7c, 0x38afc, 1741 0x38b08, 0x38c24, 1742 0x38d00, 0x38d00, 1743 0x38d08, 0x38d14, 1744 0x38d1c, 0x38d20, 1745 0x38d3c, 0x38d3c, 1746 0x38d48, 0x38d50, 1747 0x39200, 0x3920c, 1748 0x39220, 0x39220, 1749 0x39240, 0x39240, 1750 0x39600, 0x3960c, 1751 0x39a00, 0x39a1c, 1752 0x39e00, 0x39e20, 1753 0x39e38, 0x39e3c, 1754 0x39e80, 0x39e80, 1755 0x39e88, 0x39ea8, 1756 0x39eb0, 0x39eb4, 1757 0x39ec8, 0x39ed4, 1758 0x39fb8, 0x3a004, 1759 0x3a200, 0x3a200, 1760 0x3a208, 0x3a240, 1761 0x3a248, 0x3a280, 1762 0x3a288, 0x3a2c0, 1763 0x3a2c8, 0x3a2fc, 1764 0x3a600, 0x3a630, 1765 0x3aa00, 0x3aabc, 1766 0x3ab00, 0x3ab10, 1767 0x3ab20, 0x3ab30, 1768 0x3ab40, 0x3ab50, 1769 0x3ab60, 0x3ab70, 1770 0x3b000, 0x3b028, 1771 0x3b030, 0x3b048, 1772 0x3b060, 0x3b068, 1773 0x3b070, 0x3b09c, 1774 0x3b0f0, 0x3b128, 1775 0x3b130, 0x3b148, 1776 0x3b160, 0x3b168, 1777 0x3b170, 0x3b19c, 1778 0x3b1f0, 0x3b238, 1779 0x3b240, 0x3b240, 1780 0x3b248, 0x3b250, 1781 0x3b25c, 0x3b264, 1782 0x3b270, 0x3b2b8, 1783 0x3b2c0, 0x3b2e4, 1784 0x3b2f8, 0x3b338, 1785 0x3b340, 0x3b340, 1786 0x3b348, 0x3b350, 1787 0x3b35c, 0x3b364, 1788 0x3b370, 0x3b3b8, 1789 0x3b3c0, 0x3b3e4, 1790 0x3b3f8, 0x3b428, 1791 0x3b430, 0x3b448, 1792 0x3b460, 0x3b468, 1793 0x3b470, 0x3b49c, 1794 0x3b4f0, 0x3b528, 1795 0x3b530, 0x3b548, 1796 0x3b560, 0x3b568, 1797 0x3b570, 0x3b59c, 1798 0x3b5f0, 0x3b638, 1799 0x3b640, 0x3b640, 1800 0x3b648, 0x3b650, 1801 0x3b65c, 0x3b664, 1802 0x3b670, 0x3b6b8, 1803 0x3b6c0, 0x3b6e4, 1804 0x3b6f8, 0x3b738, 1805 0x3b740, 0x3b740, 1806 0x3b748, 0x3b750, 1807 0x3b75c, 0x3b764, 1808 0x3b770, 0x3b7b8, 1809 0x3b7c0, 0x3b7e4, 1810 0x3b7f8, 0x3b7fc, 1811 0x3b814, 0x3b814, 1812 0x3b82c, 0x3b82c, 1813 0x3b880, 0x3b88c, 1814 0x3b8e8, 0x3b8ec, 1815 0x3b900, 0x3b928, 1816 0x3b930, 0x3b948, 1817 0x3b960, 0x3b968, 1818 0x3b970, 0x3b99c, 1819 0x3b9f0, 0x3ba38, 1820 0x3ba40, 0x3ba40, 1821 0x3ba48, 0x3ba50, 1822 0x3ba5c, 0x3ba64, 1823 0x3ba70, 0x3bab8, 1824 0x3bac0, 0x3bae4, 1825 0x3baf8, 0x3bb10, 1826 0x3bb28, 0x3bb28, 1827 0x3bb3c, 0x3bb50, 1828 0x3bbf0, 0x3bc10, 1829 0x3bc28, 0x3bc28, 1830 0x3bc3c, 0x3bc50, 1831 0x3bcf0, 0x3bcfc, 1832 0x3c000, 0x3c030, 1833 0x3c100, 0x3c144, 1834 0x3c190, 0x3c1a0, 1835 0x3c1a8, 0x3c1b8, 1836 0x3c1c4, 0x3c1c8, 1837 0x3c1d0, 0x3c1d0, 1838 0x3c200, 0x3c318, 1839 0x3c400, 0x3c4b4, 1840 0x3c4c0, 0x3c52c, 1841 0x3c540, 0x3c61c, 1842 0x3c800, 0x3c828, 1843 0x3c834, 0x3c834, 1844 0x3c8c0, 0x3c908, 1845 0x3c910, 0x3c9ac, 1846 0x3ca00, 0x3ca14, 1847 0x3ca1c, 0x3ca2c, 1848 0x3ca44, 0x3ca50, 1849 0x3ca74, 0x3ca74, 1850 0x3ca7c, 0x3cafc, 1851 0x3cb08, 0x3cc24, 1852 0x3cd00, 0x3cd00, 1853 0x3cd08, 0x3cd14, 1854 0x3cd1c, 0x3cd20, 1855 0x3cd3c, 0x3cd3c, 1856 0x3cd48, 0x3cd50, 1857 0x3d200, 0x3d20c, 1858 0x3d220, 0x3d220, 1859 0x3d240, 0x3d240, 1860 0x3d600, 0x3d60c, 1861 0x3da00, 0x3da1c, 1862 0x3de00, 0x3de20, 1863 0x3de38, 0x3de3c, 1864 0x3de80, 0x3de80, 1865 0x3de88, 0x3dea8, 1866 0x3deb0, 0x3deb4, 1867 0x3dec8, 0x3ded4, 1868 0x3dfb8, 0x3e004, 1869 0x3e200, 0x3e200, 1870 0x3e208, 0x3e240, 1871 0x3e248, 0x3e280, 1872 0x3e288, 0x3e2c0, 1873 0x3e2c8, 0x3e2fc, 1874 0x3e600, 0x3e630, 1875 0x3ea00, 0x3eabc, 1876 0x3eb00, 0x3eb10, 1877 0x3eb20, 0x3eb30, 1878 0x3eb40, 0x3eb50, 1879 0x3eb60, 0x3eb70, 1880 0x3f000, 0x3f028, 1881 0x3f030, 0x3f048, 1882 0x3f060, 0x3f068, 1883 0x3f070, 0x3f09c, 1884 0x3f0f0, 0x3f128, 1885 0x3f130, 0x3f148, 1886 0x3f160, 0x3f168, 1887 0x3f170, 0x3f19c, 1888 0x3f1f0, 0x3f238, 1889 0x3f240, 0x3f240, 1890 0x3f248, 0x3f250, 1891 0x3f25c, 0x3f264, 1892 0x3f270, 0x3f2b8, 1893 0x3f2c0, 0x3f2e4, 1894 0x3f2f8, 0x3f338, 1895 0x3f340, 0x3f340, 1896 0x3f348, 0x3f350, 1897 0x3f35c, 0x3f364, 1898 0x3f370, 0x3f3b8, 1899 0x3f3c0, 0x3f3e4, 1900 0x3f3f8, 0x3f428, 1901 0x3f430, 0x3f448, 1902 0x3f460, 0x3f468, 1903 0x3f470, 0x3f49c, 1904 0x3f4f0, 0x3f528, 1905 0x3f530, 0x3f548, 1906 0x3f560, 0x3f568, 1907 0x3f570, 0x3f59c, 1908 0x3f5f0, 0x3f638, 1909 0x3f640, 0x3f640, 1910 0x3f648, 0x3f650, 1911 0x3f65c, 0x3f664, 1912 0x3f670, 0x3f6b8, 1913 0x3f6c0, 0x3f6e4, 1914 0x3f6f8, 0x3f738, 1915 0x3f740, 0x3f740, 1916 0x3f748, 0x3f750, 1917 0x3f75c, 0x3f764, 1918 0x3f770, 0x3f7b8, 1919 0x3f7c0, 0x3f7e4, 1920 0x3f7f8, 0x3f7fc, 1921 0x3f814, 0x3f814, 1922 0x3f82c, 0x3f82c, 1923 0x3f880, 0x3f88c, 1924 0x3f8e8, 0x3f8ec, 1925 0x3f900, 0x3f928, 1926 0x3f930, 0x3f948, 1927 0x3f960, 0x3f968, 1928 0x3f970, 0x3f99c, 1929 0x3f9f0, 0x3fa38, 1930 0x3fa40, 0x3fa40, 1931 0x3fa48, 0x3fa50, 1932 0x3fa5c, 0x3fa64, 1933 0x3fa70, 0x3fab8, 1934 0x3fac0, 0x3fae4, 1935 0x3faf8, 0x3fb10, 1936 0x3fb28, 0x3fb28, 1937 0x3fb3c, 0x3fb50, 1938 0x3fbf0, 0x3fc10, 1939 0x3fc28, 0x3fc28, 1940 0x3fc3c, 0x3fc50, 1941 0x3fcf0, 0x3fcfc, 1942 0x40000, 0x4000c, 1943 0x40040, 0x40050, 1944 0x40060, 0x40068, 1945 0x4007c, 0x4008c, 1946 0x40094, 0x400b0, 1947 0x400c0, 0x40144, 1948 0x40180, 0x4018c, 1949 0x40200, 0x40254, 1950 0x40260, 0x40264, 1951 0x40270, 0x40288, 1952 0x40290, 0x40298, 1953 0x402ac, 0x402c8, 1954 0x402d0, 0x402e0, 1955 0x402f0, 0x402f0, 1956 0x40300, 0x4033c, 1957 0x403f8, 0x403fc, 1958 0x41304, 0x413c4, 1959 0x41400, 0x4140c, 1960 0x41414, 0x4141c, 1961 0x41480, 0x414d0, 1962 0x44000, 0x44054, 1963 0x4405c, 0x44078, 1964 0x440c0, 0x44174, 1965 0x44180, 0x441ac, 1966 0x441b4, 0x441b8, 1967 0x441c0, 0x44254, 1968 0x4425c, 0x44278, 1969 0x442c0, 0x44374, 1970 0x44380, 0x443ac, 1971 0x443b4, 0x443b8, 1972 0x443c0, 0x44454, 1973 0x4445c, 0x44478, 1974 0x444c0, 0x44574, 1975 0x44580, 0x445ac, 1976 0x445b4, 0x445b8, 1977 0x445c0, 0x44654, 1978 0x4465c, 0x44678, 1979 0x446c0, 0x44774, 1980 0x44780, 0x447ac, 1981 0x447b4, 0x447b8, 1982 0x447c0, 0x44854, 1983 0x4485c, 0x44878, 1984 0x448c0, 0x44974, 1985 0x44980, 0x449ac, 1986 0x449b4, 0x449b8, 1987 0x449c0, 0x449fc, 1988 0x45000, 0x45004, 1989 0x45010, 0x45030, 1990 0x45040, 0x45060, 1991 0x45068, 0x45068, 1992 0x45080, 0x45084, 1993 0x450a0, 0x450b0, 1994 0x45200, 0x45204, 1995 0x45210, 0x45230, 1996 0x45240, 0x45260, 1997 0x45268, 0x45268, 1998 0x45280, 0x45284, 1999 0x452a0, 0x452b0, 2000 0x460c0, 0x460e4, 2001 0x47000, 0x4703c, 2002 0x47044, 0x4708c, 2003 0x47200, 0x47250, 2004 0x47400, 0x47408, 2005 0x47414, 0x47420, 2006 0x47600, 0x47618, 2007 0x47800, 0x47814, 2008 0x48000, 0x4800c, 2009 0x48040, 0x48050, 2010 0x48060, 0x48068, 2011 0x4807c, 0x4808c, 2012 0x48094, 0x480b0, 2013 0x480c0, 0x48144, 2014 0x48180, 0x4818c, 2015 0x48200, 0x48254, 2016 0x48260, 0x48264, 2017 0x48270, 0x48288, 2018 0x48290, 0x48298, 2019 0x482ac, 0x482c8, 2020 0x482d0, 0x482e0, 2021 0x482f0, 0x482f0, 2022 0x48300, 0x4833c, 2023 0x483f8, 0x483fc, 2024 0x49304, 0x493c4, 2025 0x49400, 0x4940c, 2026 0x49414, 0x4941c, 2027 0x49480, 0x494d0, 2028 0x4c000, 0x4c054, 2029 0x4c05c, 0x4c078, 2030 0x4c0c0, 0x4c174, 2031 0x4c180, 0x4c1ac, 2032 0x4c1b4, 0x4c1b8, 2033 0x4c1c0, 0x4c254, 2034 0x4c25c, 0x4c278, 2035 0x4c2c0, 0x4c374, 2036 0x4c380, 0x4c3ac, 2037 0x4c3b4, 0x4c3b8, 2038 0x4c3c0, 0x4c454, 2039 0x4c45c, 0x4c478, 2040 0x4c4c0, 0x4c574, 2041 0x4c580, 0x4c5ac, 2042 0x4c5b4, 0x4c5b8, 2043 0x4c5c0, 0x4c654, 2044 0x4c65c, 0x4c678, 2045 0x4c6c0, 0x4c774, 2046 0x4c780, 0x4c7ac, 2047 0x4c7b4, 0x4c7b8, 2048 0x4c7c0, 0x4c854, 2049 0x4c85c, 0x4c878, 2050 0x4c8c0, 0x4c974, 2051 0x4c980, 0x4c9ac, 2052 0x4c9b4, 0x4c9b8, 2053 0x4c9c0, 0x4c9fc, 2054 0x4d000, 0x4d004, 2055 0x4d010, 0x4d030, 2056 0x4d040, 0x4d060, 2057 0x4d068, 0x4d068, 2058 0x4d080, 0x4d084, 2059 0x4d0a0, 0x4d0b0, 2060 0x4d200, 0x4d204, 2061 0x4d210, 0x4d230, 2062 0x4d240, 0x4d260, 2063 0x4d268, 0x4d268, 2064 0x4d280, 0x4d284, 2065 0x4d2a0, 0x4d2b0, 2066 0x4e0c0, 0x4e0e4, 2067 0x4f000, 0x4f03c, 2068 0x4f044, 0x4f08c, 2069 0x4f200, 0x4f250, 2070 0x4f400, 0x4f408, 2071 0x4f414, 0x4f420, 2072 0x4f600, 0x4f618, 2073 0x4f800, 0x4f814, 2074 0x50000, 0x50084, 2075 0x50090, 0x500cc, 2076 0x50400, 0x50400, 2077 0x50800, 0x50884, 2078 0x50890, 0x508cc, 2079 0x50c00, 0x50c00, 2080 0x51000, 0x5101c, 2081 0x51300, 0x51308, 2082 }; 2083 2084 static const unsigned int t6_reg_ranges[] = { 2085 0x1008, 0x101c, 2086 0x1024, 0x10a8, 2087 0x10b4, 0x10f8, 2088 0x1100, 0x1114, 2089 0x111c, 0x112c, 2090 0x1138, 0x113c, 2091 0x1144, 0x114c, 2092 0x1180, 0x1184, 2093 0x1190, 0x1194, 2094 0x11a0, 0x11a4, 2095 0x11b0, 0x11b4, 2096 0x11fc, 0x1274, 2097 0x1280, 0x133c, 2098 0x1800, 0x18fc, 2099 0x3000, 0x302c, 2100 0x3060, 0x30b0, 2101 0x30b8, 0x30d8, 2102 0x30e0, 0x30fc, 2103 0x3140, 0x357c, 2104 0x35a8, 0x35cc, 2105 0x35ec, 0x35ec, 2106 0x3600, 0x5624, 2107 0x56cc, 0x56ec, 2108 0x56f4, 0x5720, 2109 0x5728, 0x575c, 2110 0x580c, 0x5814, 2111 0x5890, 0x589c, 2112 0x58a4, 0x58ac, 2113 0x58b8, 0x58bc, 2114 0x5940, 0x595c, 2115 0x5980, 0x598c, 2116 0x59b0, 0x59c8, 2117 0x59d0, 0x59dc, 2118 0x59fc, 0x5a18, 2119 0x5a60, 0x5a6c, 2120 0x5a80, 0x5a8c, 2121 0x5a94, 0x5a9c, 2122 0x5b94, 0x5bfc, 2123 0x5c10, 0x5e48, 2124 0x5e50, 0x5e94, 2125 0x5ea0, 0x5eb0, 2126 0x5ec0, 0x5ec0, 2127 0x5ec8, 0x5ed0, 2128 0x5ee0, 0x5ee0, 2129 0x5ef0, 0x5ef0, 2130 0x5f00, 0x5f00, 2131 0x6000, 0x6020, 2132 0x6028, 0x6040, 2133 0x6058, 0x609c, 2134 0x60a8, 0x619c, 2135 0x7700, 0x7798, 2136 0x77c0, 0x7880, 2137 0x78cc, 0x78fc, 2138 0x7b00, 0x7b58, 2139 0x7b60, 0x7b84, 2140 0x7b8c, 0x7c54, 2141 0x7d00, 0x7d38, 2142 0x7d40, 0x7d84, 2143 0x7d8c, 0x7ddc, 2144 0x7de4, 0x7e04, 2145 0x7e10, 0x7e1c, 2146 0x7e24, 0x7e38, 2147 0x7e40, 0x7e44, 2148 0x7e4c, 0x7e78, 2149 0x7e80, 0x7edc, 2150 0x7ee8, 0x7efc, 2151 0x8dc0, 0x8de4, 2152 0x8df8, 0x8e04, 2153 0x8e10, 0x8e84, 2154 0x8ea0, 0x8f88, 2155 0x8fb8, 0x9058, 2156 0x9060, 0x9060, 2157 0x9068, 0x90f8, 2158 0x9100, 0x9124, 2159 0x9400, 0x9470, 2160 0x9600, 0x9600, 2161 0x9608, 0x9638, 2162 0x9640, 0x9704, 2163 0x9710, 0x971c, 2164 0x9800, 0x9808, 2165 0x9820, 0x983c, 2166 0x9850, 0x9864, 2167 0x9c00, 0x9c6c, 2168 0x9c80, 0x9cec, 2169 0x9d00, 0x9d6c, 2170 0x9d80, 0x9dec, 2171 0x9e00, 0x9e6c, 2172 0x9e80, 0x9eec, 2173 0x9f00, 0x9f6c, 2174 0x9f80, 0xa020, 2175 0xd004, 0xd03c, 2176 0xd100, 0xd118, 2177 0xd200, 0xd214, 2178 0xd220, 0xd234, 2179 0xd240, 0xd254, 2180 0xd260, 0xd274, 2181 0xd280, 0xd294, 2182 0xd2a0, 0xd2b4, 2183 0xd2c0, 0xd2d4, 2184 0xd2e0, 0xd2f4, 2185 0xd300, 0xd31c, 2186 0xdfc0, 0xdfe0, 2187 0xe000, 0xf008, 2188 0xf010, 0xf018, 2189 0xf020, 0xf028, 2190 0x11000, 0x11014, 2191 0x11048, 0x1106c, 2192 0x11074, 0x11088, 2193 0x11098, 0x11120, 2194 0x1112c, 0x1117c, 2195 0x11190, 0x112e0, 2196 0x11300, 0x1130c, 2197 0x12000, 0x1206c, 2198 0x19040, 0x1906c, 2199 0x19078, 0x19080, 2200 0x1908c, 0x190e8, 2201 0x190f0, 0x190f8, 2202 0x19100, 0x19110, 2203 0x19120, 0x19124, 2204 0x19150, 0x19194, 2205 0x1919c, 0x191b0, 2206 0x191d0, 0x191e8, 2207 0x19238, 0x19290, 2208 0x192a4, 0x192b0, 2209 0x192bc, 0x192bc, 2210 0x19348, 0x1934c, 2211 0x193f8, 0x19418, 2212 0x19420, 0x19428, 2213 0x19430, 0x19444, 2214 0x1944c, 0x1946c, 2215 0x19474, 0x19474, 2216 0x19490, 0x194cc, 2217 0x194f0, 0x194f8, 2218 0x19c00, 0x19c48, 2219 0x19c50, 0x19c80, 2220 0x19c94, 0x19c98, 2221 0x19ca0, 0x19cbc, 2222 0x19ce4, 0x19ce4, 2223 0x19cf0, 0x19cf8, 2224 0x19d00, 0x19d28, 2225 0x19d50, 0x19d78, 2226 0x19d94, 0x19d98, 2227 0x19da0, 0x19dc8, 2228 0x19df0, 0x19e10, 2229 0x19e50, 0x19e6c, 2230 0x19ea0, 0x19ebc, 2231 0x19ec4, 0x19ef4, 2232 0x19f04, 0x19f2c, 2233 0x19f34, 0x19f34, 2234 0x19f40, 0x19f50, 2235 0x19f90, 0x19fac, 2236 0x19fc4, 0x19fc8, 2237 0x19fd0, 0x19fe4, 2238 0x1a000, 0x1a004, 2239 0x1a010, 0x1a06c, 2240 0x1a0b0, 0x1a0e4, 2241 0x1a0ec, 0x1a0f8, 2242 0x1a100, 0x1a108, 2243 0x1a114, 0x1a120, 2244 0x1a128, 0x1a130, 2245 0x1a138, 0x1a138, 2246 0x1a190, 0x1a1c4, 2247 0x1a1fc, 0x1a1fc, 2248 0x1e008, 0x1e00c, 2249 0x1e040, 0x1e044, 2250 0x1e04c, 0x1e04c, 2251 0x1e284, 0x1e290, 2252 0x1e2c0, 0x1e2c0, 2253 0x1e2e0, 0x1e2e0, 2254 0x1e300, 0x1e384, 2255 0x1e3c0, 0x1e3c8, 2256 0x1e408, 0x1e40c, 2257 0x1e440, 0x1e444, 2258 0x1e44c, 0x1e44c, 2259 0x1e684, 0x1e690, 2260 0x1e6c0, 0x1e6c0, 2261 0x1e6e0, 0x1e6e0, 2262 0x1e700, 0x1e784, 2263 0x1e7c0, 0x1e7c8, 2264 0x1e808, 0x1e80c, 2265 0x1e840, 0x1e844, 2266 0x1e84c, 0x1e84c, 2267 0x1ea84, 0x1ea90, 2268 0x1eac0, 0x1eac0, 2269 0x1eae0, 0x1eae0, 2270 0x1eb00, 0x1eb84, 2271 0x1ebc0, 0x1ebc8, 2272 0x1ec08, 0x1ec0c, 2273 0x1ec40, 0x1ec44, 2274 0x1ec4c, 0x1ec4c, 2275 0x1ee84, 0x1ee90, 2276 0x1eec0, 0x1eec0, 2277 0x1eee0, 0x1eee0, 2278 0x1ef00, 0x1ef84, 2279 0x1efc0, 0x1efc8, 2280 0x1f008, 0x1f00c, 2281 0x1f040, 0x1f044, 2282 0x1f04c, 0x1f04c, 2283 0x1f284, 0x1f290, 2284 0x1f2c0, 0x1f2c0, 2285 0x1f2e0, 0x1f2e0, 2286 0x1f300, 0x1f384, 2287 0x1f3c0, 0x1f3c8, 2288 0x1f408, 0x1f40c, 2289 0x1f440, 0x1f444, 2290 0x1f44c, 0x1f44c, 2291 0x1f684, 0x1f690, 2292 0x1f6c0, 0x1f6c0, 2293 0x1f6e0, 0x1f6e0, 2294 0x1f700, 0x1f784, 2295 0x1f7c0, 0x1f7c8, 2296 0x1f808, 0x1f80c, 2297 0x1f840, 0x1f844, 2298 0x1f84c, 0x1f84c, 2299 0x1fa84, 0x1fa90, 2300 0x1fac0, 0x1fac0, 2301 0x1fae0, 0x1fae0, 2302 0x1fb00, 0x1fb84, 2303 0x1fbc0, 0x1fbc8, 2304 0x1fc08, 0x1fc0c, 2305 0x1fc40, 0x1fc44, 2306 0x1fc4c, 0x1fc4c, 2307 0x1fe84, 0x1fe90, 2308 0x1fec0, 0x1fec0, 2309 0x1fee0, 0x1fee0, 2310 0x1ff00, 0x1ff84, 2311 0x1ffc0, 0x1ffc8, 2312 0x30000, 0x30030, 2313 0x30100, 0x30168, 2314 0x30190, 0x301a0, 2315 0x301a8, 0x301b8, 2316 0x301c4, 0x301c8, 2317 0x301d0, 0x301d0, 2318 0x30200, 0x30320, 2319 0x30400, 0x304b4, 2320 0x304c0, 0x3052c, 2321 0x30540, 0x3061c, 2322 0x30800, 0x308a0, 2323 0x308c0, 0x30908, 2324 0x30910, 0x309b8, 2325 0x30a00, 0x30a04, 2326 0x30a0c, 0x30a14, 2327 0x30a1c, 0x30a2c, 2328 0x30a44, 0x30a50, 2329 0x30a74, 0x30a74, 2330 0x30a7c, 0x30afc, 2331 0x30b08, 0x30c24, 2332 0x30d00, 0x30d14, 2333 0x30d1c, 0x30d3c, 2334 0x30d44, 0x30d4c, 2335 0x30d54, 0x30d74, 2336 0x30d7c, 0x30d7c, 2337 0x30de0, 0x30de0, 2338 0x30e00, 0x30ed4, 2339 0x30f00, 0x30fa4, 2340 0x30fc0, 0x30fc4, 2341 0x31000, 0x31004, 2342 0x31080, 0x310fc, 2343 0x31208, 0x31220, 2344 0x3123c, 0x31254, 2345 0x31300, 0x31300, 2346 0x31308, 0x3131c, 2347 0x31338, 0x3133c, 2348 0x31380, 0x31380, 2349 0x31388, 0x313a8, 2350 0x313b4, 0x313b4, 2351 0x31400, 0x31420, 2352 0x31438, 0x3143c, 2353 0x31480, 0x31480, 2354 0x314a8, 0x314a8, 2355 0x314b0, 0x314b4, 2356 0x314c8, 0x314d4, 2357 0x31a40, 0x31a4c, 2358 0x31af0, 0x31b20, 2359 0x31b38, 0x31b3c, 2360 0x31b80, 0x31b80, 2361 0x31ba8, 0x31ba8, 2362 0x31bb0, 0x31bb4, 2363 0x31bc8, 0x31bd4, 2364 0x32140, 0x3218c, 2365 0x321f0, 0x321f4, 2366 0x32200, 0x32200, 2367 0x32218, 0x32218, 2368 0x32400, 0x32400, 2369 0x32408, 0x3241c, 2370 0x32618, 0x32620, 2371 0x32664, 0x32664, 2372 0x326a8, 0x326a8, 2373 0x326ec, 0x326ec, 2374 0x32a00, 0x32abc, 2375 0x32b00, 0x32b18, 2376 0x32b20, 0x32b38, 2377 0x32b40, 0x32b58, 2378 0x32b60, 0x32b78, 2379 0x32c00, 0x32c00, 2380 0x32c08, 0x32c3c, 2381 0x33000, 0x3302c, 2382 0x33034, 0x33050, 2383 0x33058, 0x33058, 2384 0x33060, 0x3308c, 2385 0x3309c, 0x330ac, 2386 0x330c0, 0x330c0, 2387 0x330c8, 0x330d0, 2388 0x330d8, 0x330e0, 2389 0x330ec, 0x3312c, 2390 0x33134, 0x33150, 2391 0x33158, 0x33158, 2392 0x33160, 0x3318c, 2393 0x3319c, 0x331ac, 2394 0x331c0, 0x331c0, 2395 0x331c8, 0x331d0, 2396 0x331d8, 0x331e0, 2397 0x331ec, 0x33290, 2398 0x33298, 0x332c4, 2399 0x332e4, 0x33390, 2400 0x33398, 0x333c4, 2401 0x333e4, 0x3342c, 2402 0x33434, 0x33450, 2403 0x33458, 0x33458, 2404 0x33460, 0x3348c, 2405 0x3349c, 0x334ac, 2406 0x334c0, 0x334c0, 2407 0x334c8, 0x334d0, 2408 0x334d8, 0x334e0, 2409 0x334ec, 0x3352c, 2410 0x33534, 0x33550, 2411 0x33558, 0x33558, 2412 0x33560, 0x3358c, 2413 0x3359c, 0x335ac, 2414 0x335c0, 0x335c0, 2415 0x335c8, 0x335d0, 2416 0x335d8, 0x335e0, 2417 0x335ec, 0x33690, 2418 0x33698, 0x336c4, 2419 0x336e4, 0x33790, 2420 0x33798, 0x337c4, 2421 0x337e4, 0x337fc, 2422 0x33814, 0x33814, 2423 0x33854, 0x33868, 2424 0x33880, 0x3388c, 2425 0x338c0, 0x338d0, 2426 0x338e8, 0x338ec, 2427 0x33900, 0x3392c, 2428 0x33934, 0x33950, 2429 0x33958, 0x33958, 2430 0x33960, 0x3398c, 2431 0x3399c, 0x339ac, 2432 0x339c0, 0x339c0, 2433 0x339c8, 0x339d0, 2434 0x339d8, 0x339e0, 2435 0x339ec, 0x33a90, 2436 0x33a98, 0x33ac4, 2437 0x33ae4, 0x33b10, 2438 0x33b24, 0x33b28, 2439 0x33b38, 0x33b50, 2440 0x33bf0, 0x33c10, 2441 0x33c24, 0x33c28, 2442 0x33c38, 0x33c50, 2443 0x33cf0, 0x33cfc, 2444 0x34000, 0x34030, 2445 0x34100, 0x34168, 2446 0x34190, 0x341a0, 2447 0x341a8, 0x341b8, 2448 0x341c4, 0x341c8, 2449 0x341d0, 0x341d0, 2450 0x34200, 0x34320, 2451 0x34400, 0x344b4, 2452 0x344c0, 0x3452c, 2453 0x34540, 0x3461c, 2454 0x34800, 0x348a0, 2455 0x348c0, 0x34908, 2456 0x34910, 0x349b8, 2457 0x34a00, 0x34a04, 2458 0x34a0c, 0x34a14, 2459 0x34a1c, 0x34a2c, 2460 0x34a44, 0x34a50, 2461 0x34a74, 0x34a74, 2462 0x34a7c, 0x34afc, 2463 0x34b08, 0x34c24, 2464 0x34d00, 0x34d14, 2465 0x34d1c, 0x34d3c, 2466 0x34d44, 0x34d4c, 2467 0x34d54, 0x34d74, 2468 0x34d7c, 0x34d7c, 2469 0x34de0, 0x34de0, 2470 0x34e00, 0x34ed4, 2471 0x34f00, 0x34fa4, 2472 0x34fc0, 0x34fc4, 2473 0x35000, 0x35004, 2474 0x35080, 0x350fc, 2475 0x35208, 0x35220, 2476 0x3523c, 0x35254, 2477 0x35300, 0x35300, 2478 0x35308, 0x3531c, 2479 0x35338, 0x3533c, 2480 0x35380, 0x35380, 2481 0x35388, 0x353a8, 2482 0x353b4, 0x353b4, 2483 0x35400, 0x35420, 2484 0x35438, 0x3543c, 2485 0x35480, 0x35480, 2486 0x354a8, 0x354a8, 2487 0x354b0, 0x354b4, 2488 0x354c8, 0x354d4, 2489 0x35a40, 0x35a4c, 2490 0x35af0, 0x35b20, 2491 0x35b38, 0x35b3c, 2492 0x35b80, 0x35b80, 2493 0x35ba8, 0x35ba8, 2494 0x35bb0, 0x35bb4, 2495 0x35bc8, 0x35bd4, 2496 0x36140, 0x3618c, 2497 0x361f0, 0x361f4, 2498 0x36200, 0x36200, 2499 0x36218, 0x36218, 2500 0x36400, 0x36400, 2501 0x36408, 0x3641c, 2502 0x36618, 0x36620, 2503 0x36664, 0x36664, 2504 0x366a8, 0x366a8, 2505 0x366ec, 0x366ec, 2506 0x36a00, 0x36abc, 2507 0x36b00, 0x36b18, 2508 0x36b20, 0x36b38, 2509 0x36b40, 0x36b58, 2510 0x36b60, 0x36b78, 2511 0x36c00, 0x36c00, 2512 0x36c08, 0x36c3c, 2513 0x37000, 0x3702c, 2514 0x37034, 0x37050, 2515 0x37058, 0x37058, 2516 0x37060, 0x3708c, 2517 0x3709c, 0x370ac, 2518 0x370c0, 0x370c0, 2519 0x370c8, 0x370d0, 2520 0x370d8, 0x370e0, 2521 0x370ec, 0x3712c, 2522 0x37134, 0x37150, 2523 0x37158, 0x37158, 2524 0x37160, 0x3718c, 2525 0x3719c, 0x371ac, 2526 0x371c0, 0x371c0, 2527 0x371c8, 0x371d0, 2528 0x371d8, 0x371e0, 2529 0x371ec, 0x37290, 2530 0x37298, 0x372c4, 2531 0x372e4, 0x37390, 2532 0x37398, 0x373c4, 2533 0x373e4, 0x3742c, 2534 0x37434, 0x37450, 2535 0x37458, 0x37458, 2536 0x37460, 0x3748c, 2537 0x3749c, 0x374ac, 2538 0x374c0, 0x374c0, 2539 0x374c8, 0x374d0, 2540 0x374d8, 0x374e0, 2541 0x374ec, 0x3752c, 2542 0x37534, 0x37550, 2543 0x37558, 0x37558, 2544 0x37560, 0x3758c, 2545 0x3759c, 0x375ac, 2546 0x375c0, 0x375c0, 2547 0x375c8, 0x375d0, 2548 0x375d8, 0x375e0, 2549 0x375ec, 0x37690, 2550 0x37698, 0x376c4, 2551 0x376e4, 0x37790, 2552 0x37798, 0x377c4, 2553 0x377e4, 0x377fc, 2554 0x37814, 0x37814, 2555 0x37854, 0x37868, 2556 0x37880, 0x3788c, 2557 0x378c0, 0x378d0, 2558 0x378e8, 0x378ec, 2559 0x37900, 0x3792c, 2560 0x37934, 0x37950, 2561 0x37958, 0x37958, 2562 0x37960, 0x3798c, 2563 0x3799c, 0x379ac, 2564 0x379c0, 0x379c0, 2565 0x379c8, 0x379d0, 2566 0x379d8, 0x379e0, 2567 0x379ec, 0x37a90, 2568 0x37a98, 0x37ac4, 2569 0x37ae4, 0x37b10, 2570 0x37b24, 0x37b28, 2571 0x37b38, 0x37b50, 2572 0x37bf0, 0x37c10, 2573 0x37c24, 0x37c28, 2574 0x37c38, 0x37c50, 2575 0x37cf0, 0x37cfc, 2576 0x40040, 0x40040, 2577 0x40080, 0x40084, 2578 0x40100, 0x40100, 2579 0x40140, 0x401bc, 2580 0x40200, 0x40214, 2581 0x40228, 0x40228, 2582 0x40240, 0x40258, 2583 0x40280, 0x40280, 2584 0x40304, 0x40304, 2585 0x40330, 0x4033c, 2586 0x41304, 0x413c8, 2587 0x413d0, 0x413dc, 2588 0x413f0, 0x413f0, 2589 0x41400, 0x4140c, 2590 0x41414, 0x4141c, 2591 0x41480, 0x414d0, 2592 0x44000, 0x4407c, 2593 0x440c0, 0x441ac, 2594 0x441b4, 0x4427c, 2595 0x442c0, 0x443ac, 2596 0x443b4, 0x4447c, 2597 0x444c0, 0x445ac, 2598 0x445b4, 0x4467c, 2599 0x446c0, 0x447ac, 2600 0x447b4, 0x4487c, 2601 0x448c0, 0x449ac, 2602 0x449b4, 0x44a7c, 2603 0x44ac0, 0x44bac, 2604 0x44bb4, 0x44c7c, 2605 0x44cc0, 0x44dac, 2606 0x44db4, 0x44e7c, 2607 0x44ec0, 0x44fac, 2608 0x44fb4, 0x4507c, 2609 0x450c0, 0x451ac, 2610 0x451b4, 0x451fc, 2611 0x45800, 0x45804, 2612 0x45810, 0x45830, 2613 0x45840, 0x45860, 2614 0x45868, 0x45868, 2615 0x45880, 0x45884, 2616 0x458a0, 0x458b0, 2617 0x45a00, 0x45a04, 2618 0x45a10, 0x45a30, 2619 0x45a40, 0x45a60, 2620 0x45a68, 0x45a68, 2621 0x45a80, 0x45a84, 2622 0x45aa0, 0x45ab0, 2623 0x460c0, 0x460e4, 2624 0x47000, 0x4703c, 2625 0x47044, 0x4708c, 2626 0x47200, 0x47250, 2627 0x47400, 0x47408, 2628 0x47414, 0x47420, 2629 0x47600, 0x47618, 2630 0x47800, 0x47814, 2631 0x47820, 0x4782c, 2632 0x50000, 0x50084, 2633 0x50090, 0x500cc, 2634 0x50300, 0x50384, 2635 0x50400, 0x50400, 2636 0x50800, 0x50884, 2637 0x50890, 0x508cc, 2638 0x50b00, 0x50b84, 2639 0x50c00, 0x50c00, 2640 0x51000, 0x51020, 2641 0x51028, 0x510b0, 2642 0x51300, 0x51324, 2643 }; 2644 2645 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2646 const unsigned int *reg_ranges; 2647 int reg_ranges_size, range; 2648 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2649 2650 /* Select the right set of register ranges to dump depending on the 2651 * adapter chip type. 2652 */ 2653 switch (chip_version) { 2654 case CHELSIO_T4: 2655 reg_ranges = t4_reg_ranges; 2656 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2657 break; 2658 2659 case CHELSIO_T5: 2660 reg_ranges = t5_reg_ranges; 2661 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2662 break; 2663 2664 case CHELSIO_T6: 2665 reg_ranges = t6_reg_ranges; 2666 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2667 break; 2668 2669 default: 2670 dev_err(adap->pdev_dev, 2671 "Unsupported chip version %d\n", chip_version); 2672 return; 2673 } 2674 2675 /* Clear the register buffer and insert the appropriate register 2676 * values selected by the above register ranges. 2677 */ 2678 memset(buf, 0, buf_size); 2679 for (range = 0; range < reg_ranges_size; range += 2) { 2680 unsigned int reg = reg_ranges[range]; 2681 unsigned int last_reg = reg_ranges[range + 1]; 2682 u32 *bufp = (u32 *)((char *)buf + reg); 2683 2684 /* Iterate across the register range filling in the register 2685 * buffer but don't write past the end of the register buffer. 2686 */ 2687 while (reg <= last_reg && bufp < buf_end) { 2688 *bufp++ = t4_read_reg(adap, reg); 2689 reg += sizeof(u32); 2690 } 2691 } 2692 } 2693 2694 #define EEPROM_STAT_ADDR 0x7bfc 2695 #define VPD_BASE 0x400 2696 #define VPD_BASE_OLD 0 2697 #define VPD_LEN 1024 2698 #define CHELSIO_VPD_UNIQUE_ID 0x82 2699 2700 /** 2701 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2702 * @phys_addr: the physical EEPROM address 2703 * @fn: the PCI function number 2704 * @sz: size of function-specific area 2705 * 2706 * Translate a physical EEPROM address to virtual. The first 1K is 2707 * accessed through virtual addresses starting at 31K, the rest is 2708 * accessed through virtual addresses starting at 0. 2709 * 2710 * The mapping is as follows: 2711 * [0..1K) -> [31K..32K) 2712 * [1K..1K+A) -> [31K-A..31K) 2713 * [1K+A..ES) -> [0..ES-A-1K) 2714 * 2715 * where A = @fn * @sz, and ES = EEPROM size. 2716 */ 2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2718 { 2719 fn *= sz; 2720 if (phys_addr < 1024) 2721 return phys_addr + (31 << 10); 2722 if (phys_addr < 1024 + fn) 2723 return 31744 - fn + phys_addr - 1024; 2724 if (phys_addr < EEPROMSIZE) 2725 return phys_addr - 1024 - fn; 2726 return -EINVAL; 2727 } 2728 2729 /** 2730 * t4_seeprom_wp - enable/disable EEPROM write protection 2731 * @adapter: the adapter 2732 * @enable: whether to enable or disable write protection 2733 * 2734 * Enables or disables write protection on the serial EEPROM. 2735 */ 2736 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2737 { 2738 unsigned int v = enable ? 0xc : 0; 2739 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2740 return ret < 0 ? ret : 0; 2741 } 2742 2743 /** 2744 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2745 * @adapter: adapter to read 2746 * @p: where to store the parameters 2747 * 2748 * Reads card parameters stored in VPD EEPROM. 2749 */ 2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2751 { 2752 int i, ret = 0, addr; 2753 int ec, sn, pn, na; 2754 u8 *vpd, csum; 2755 unsigned int vpdr_len, kw_offset, id_len; 2756 2757 vpd = vmalloc(VPD_LEN); 2758 if (!vpd) 2759 return -ENOMEM; 2760 2761 /* Card information normally starts at VPD_BASE but early cards had 2762 * it at 0. 2763 */ 2764 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2765 if (ret < 0) 2766 goto out; 2767 2768 /* The VPD shall have a unique identifier specified by the PCI SIG. 2769 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2770 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2771 * is expected to automatically put this entry at the 2772 * beginning of the VPD. 2773 */ 2774 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2775 2776 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2777 if (ret < 0) 2778 goto out; 2779 2780 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2781 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2782 ret = -EINVAL; 2783 goto out; 2784 } 2785 2786 id_len = pci_vpd_lrdt_size(vpd); 2787 if (id_len > ID_LEN) 2788 id_len = ID_LEN; 2789 2790 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2791 if (i < 0) { 2792 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2793 ret = -EINVAL; 2794 goto out; 2795 } 2796 2797 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2798 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2799 if (vpdr_len + kw_offset > VPD_LEN) { 2800 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2801 ret = -EINVAL; 2802 goto out; 2803 } 2804 2805 #define FIND_VPD_KW(var, name) do { \ 2806 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2807 if (var < 0) { \ 2808 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2809 ret = -EINVAL; \ 2810 goto out; \ 2811 } \ 2812 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2813 } while (0) 2814 2815 FIND_VPD_KW(i, "RV"); 2816 for (csum = 0; i >= 0; i--) 2817 csum += vpd[i]; 2818 2819 if (csum) { 2820 dev_err(adapter->pdev_dev, 2821 "corrupted VPD EEPROM, actual csum %u\n", csum); 2822 ret = -EINVAL; 2823 goto out; 2824 } 2825 2826 FIND_VPD_KW(ec, "EC"); 2827 FIND_VPD_KW(sn, "SN"); 2828 FIND_VPD_KW(pn, "PN"); 2829 FIND_VPD_KW(na, "NA"); 2830 #undef FIND_VPD_KW 2831 2832 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2833 strim(p->id); 2834 memcpy(p->ec, vpd + ec, EC_LEN); 2835 strim(p->ec); 2836 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2837 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2838 strim(p->sn); 2839 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2840 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2841 strim(p->pn); 2842 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2843 strim((char *)p->na); 2844 2845 out: 2846 vfree(vpd); 2847 return ret < 0 ? ret : 0; 2848 } 2849 2850 /** 2851 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2852 * @adapter: adapter to read 2853 * @p: where to store the parameters 2854 * 2855 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2856 * Clock. This can only be called after a connection to the firmware 2857 * is established. 2858 */ 2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2860 { 2861 u32 cclk_param, cclk_val; 2862 int ret; 2863 2864 /* Grab the raw VPD parameters. 2865 */ 2866 ret = t4_get_raw_vpd_params(adapter, p); 2867 if (ret) 2868 return ret; 2869 2870 /* Ask firmware for the Core Clock since it knows how to translate the 2871 * Reference Clock ('V2') VPD field into a Core Clock value ... 2872 */ 2873 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2874 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2875 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2876 1, &cclk_param, &cclk_val); 2877 2878 if (ret) 2879 return ret; 2880 p->cclk = cclk_val; 2881 2882 return 0; 2883 } 2884 2885 /* serial flash and firmware constants */ 2886 enum { 2887 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2888 2889 /* flash command opcodes */ 2890 SF_PROG_PAGE = 2, /* program page */ 2891 SF_WR_DISABLE = 4, /* disable writes */ 2892 SF_RD_STATUS = 5, /* read status register */ 2893 SF_WR_ENABLE = 6, /* enable writes */ 2894 SF_RD_DATA_FAST = 0xb, /* read flash */ 2895 SF_RD_ID = 0x9f, /* read ID */ 2896 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2897 }; 2898 2899 /** 2900 * sf1_read - read data from the serial flash 2901 * @adapter: the adapter 2902 * @byte_cnt: number of bytes to read 2903 * @cont: whether another operation will be chained 2904 * @lock: whether to lock SF for PL access only 2905 * @valp: where to store the read data 2906 * 2907 * Reads up to 4 bytes of data from the serial flash. The location of 2908 * the read needs to be specified prior to calling this by issuing the 2909 * appropriate commands to the serial flash. 2910 */ 2911 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2912 int lock, u32 *valp) 2913 { 2914 int ret; 2915 2916 if (!byte_cnt || byte_cnt > 4) 2917 return -EINVAL; 2918 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2919 return -EBUSY; 2920 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2921 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2922 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2923 if (!ret) 2924 *valp = t4_read_reg(adapter, SF_DATA_A); 2925 return ret; 2926 } 2927 2928 /** 2929 * sf1_write - write data to the serial flash 2930 * @adapter: the adapter 2931 * @byte_cnt: number of bytes to write 2932 * @cont: whether another operation will be chained 2933 * @lock: whether to lock SF for PL access only 2934 * @val: value to write 2935 * 2936 * Writes up to 4 bytes of data to the serial flash. The location of 2937 * the write needs to be specified prior to calling this by issuing the 2938 * appropriate commands to the serial flash. 2939 */ 2940 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2941 int lock, u32 val) 2942 { 2943 if (!byte_cnt || byte_cnt > 4) 2944 return -EINVAL; 2945 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2946 return -EBUSY; 2947 t4_write_reg(adapter, SF_DATA_A, val); 2948 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2949 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2950 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2951 } 2952 2953 /** 2954 * flash_wait_op - wait for a flash operation to complete 2955 * @adapter: the adapter 2956 * @attempts: max number of polls of the status register 2957 * @delay: delay between polls in ms 2958 * 2959 * Wait for a flash operation to complete by polling the status register. 2960 */ 2961 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 2962 { 2963 int ret; 2964 u32 status; 2965 2966 while (1) { 2967 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 2968 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 2969 return ret; 2970 if (!(status & 1)) 2971 return 0; 2972 if (--attempts == 0) 2973 return -EAGAIN; 2974 if (delay) 2975 msleep(delay); 2976 } 2977 } 2978 2979 /** 2980 * t4_read_flash - read words from serial flash 2981 * @adapter: the adapter 2982 * @addr: the start address for the read 2983 * @nwords: how many 32-bit words to read 2984 * @data: where to store the read data 2985 * @byte_oriented: whether to store data as bytes or as words 2986 * 2987 * Read the specified number of 32-bit words from the serial flash. 2988 * If @byte_oriented is set the read data is stored as a byte array 2989 * (i.e., big-endian), otherwise as 32-bit words in the platform's 2990 * natural endianness. 2991 */ 2992 int t4_read_flash(struct adapter *adapter, unsigned int addr, 2993 unsigned int nwords, u32 *data, int byte_oriented) 2994 { 2995 int ret; 2996 2997 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 2998 return -EINVAL; 2999 3000 addr = swab32(addr) | SF_RD_DATA_FAST; 3001 3002 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3003 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3004 return ret; 3005 3006 for ( ; nwords; nwords--, data++) { 3007 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3008 if (nwords == 1) 3009 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3010 if (ret) 3011 return ret; 3012 if (byte_oriented) 3013 *data = (__force __u32)(cpu_to_be32(*data)); 3014 } 3015 return 0; 3016 } 3017 3018 /** 3019 * t4_write_flash - write up to a page of data to the serial flash 3020 * @adapter: the adapter 3021 * @addr: the start address to write 3022 * @n: length of data to write in bytes 3023 * @data: the data to write 3024 * 3025 * Writes up to a page of data (256 bytes) to the serial flash starting 3026 * at the given address. All the data must be written to the same page. 3027 */ 3028 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 3029 unsigned int n, const u8 *data) 3030 { 3031 int ret; 3032 u32 buf[64]; 3033 unsigned int i, c, left, val, offset = addr & 0xff; 3034 3035 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3036 return -EINVAL; 3037 3038 val = swab32(addr) | SF_PROG_PAGE; 3039 3040 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3041 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3042 goto unlock; 3043 3044 for (left = n; left; left -= c) { 3045 c = min(left, 4U); 3046 for (val = 0, i = 0; i < c; ++i) 3047 val = (val << 8) + *data++; 3048 3049 ret = sf1_write(adapter, c, c != left, 1, val); 3050 if (ret) 3051 goto unlock; 3052 } 3053 ret = flash_wait_op(adapter, 8, 1); 3054 if (ret) 3055 goto unlock; 3056 3057 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3058 3059 /* Read the page to verify the write succeeded */ 3060 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 3061 if (ret) 3062 return ret; 3063 3064 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3065 dev_err(adapter->pdev_dev, 3066 "failed to correctly write the flash page at %#x\n", 3067 addr); 3068 return -EIO; 3069 } 3070 return 0; 3071 3072 unlock: 3073 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3074 return ret; 3075 } 3076 3077 /** 3078 * t4_get_fw_version - read the firmware version 3079 * @adapter: the adapter 3080 * @vers: where to place the version 3081 * 3082 * Reads the FW version from flash. 3083 */ 3084 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3085 { 3086 return t4_read_flash(adapter, FLASH_FW_START + 3087 offsetof(struct fw_hdr, fw_ver), 1, 3088 vers, 0); 3089 } 3090 3091 /** 3092 * t4_get_bs_version - read the firmware bootstrap version 3093 * @adapter: the adapter 3094 * @vers: where to place the version 3095 * 3096 * Reads the FW Bootstrap version from flash. 3097 */ 3098 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3099 { 3100 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3101 offsetof(struct fw_hdr, fw_ver), 1, 3102 vers, 0); 3103 } 3104 3105 /** 3106 * t4_get_tp_version - read the TP microcode version 3107 * @adapter: the adapter 3108 * @vers: where to place the version 3109 * 3110 * Reads the TP microcode version from flash. 3111 */ 3112 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3113 { 3114 return t4_read_flash(adapter, FLASH_FW_START + 3115 offsetof(struct fw_hdr, tp_microcode_ver), 3116 1, vers, 0); 3117 } 3118 3119 /** 3120 * t4_get_exprom_version - return the Expansion ROM version (if any) 3121 * @adapter: the adapter 3122 * @vers: where to place the version 3123 * 3124 * Reads the Expansion ROM header from FLASH and returns the version 3125 * number (if present) through the @vers return value pointer. We return 3126 * this in the Firmware Version Format since it's convenient. Return 3127 * 0 on success, -ENOENT if no Expansion ROM is present. 3128 */ 3129 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3130 { 3131 struct exprom_header { 3132 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3133 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3134 } *hdr; 3135 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3136 sizeof(u32))]; 3137 int ret; 3138 3139 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3140 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3141 0); 3142 if (ret) 3143 return ret; 3144 3145 hdr = (struct exprom_header *)exprom_header_buf; 3146 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3147 return -ENOENT; 3148 3149 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3150 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3151 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3152 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3153 return 0; 3154 } 3155 3156 /** 3157 * t4_get_vpd_version - return the VPD version 3158 * @adapter: the adapter 3159 * @vers: where to place the version 3160 * 3161 * Reads the VPD via the Firmware interface (thus this can only be called 3162 * once we're ready to issue Firmware commands). The format of the 3163 * VPD version is adapter specific. Returns 0 on success, an error on 3164 * failure. 3165 * 3166 * Note that early versions of the Firmware didn't include the ability 3167 * to retrieve the VPD version, so we zero-out the return-value parameter 3168 * in that case to avoid leaving it with garbage in it. 3169 * 3170 * Also note that the Firmware will return its cached copy of the VPD 3171 * Revision ID, not the actual Revision ID as written in the Serial 3172 * EEPROM. This is only an issue if a new VPD has been written and the 3173 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3174 * to defer calling this routine till after a FW_RESET_CMD has been issued 3175 * if the Host Driver will be performing a full adapter initialization. 3176 */ 3177 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3178 { 3179 u32 vpdrev_param; 3180 int ret; 3181 3182 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3183 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3184 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3185 1, &vpdrev_param, vers); 3186 if (ret) 3187 *vers = 0; 3188 return ret; 3189 } 3190 3191 /** 3192 * t4_get_scfg_version - return the Serial Configuration version 3193 * @adapter: the adapter 3194 * @vers: where to place the version 3195 * 3196 * Reads the Serial Configuration Version via the Firmware interface 3197 * (thus this can only be called once we're ready to issue Firmware 3198 * commands). The format of the Serial Configuration version is 3199 * adapter specific. Returns 0 on success, an error on failure. 3200 * 3201 * Note that early versions of the Firmware didn't include the ability 3202 * to retrieve the Serial Configuration version, so we zero-out the 3203 * return-value parameter in that case to avoid leaving it with 3204 * garbage in it. 3205 * 3206 * Also note that the Firmware will return its cached copy of the Serial 3207 * Initialization Revision ID, not the actual Revision ID as written in 3208 * the Serial EEPROM. This is only an issue if a new VPD has been written 3209 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3210 * it's best to defer calling this routine till after a FW_RESET_CMD has 3211 * been issued if the Host Driver will be performing a full adapter 3212 * initialization. 3213 */ 3214 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3215 { 3216 u32 scfgrev_param; 3217 int ret; 3218 3219 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3220 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3221 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3222 1, &scfgrev_param, vers); 3223 if (ret) 3224 *vers = 0; 3225 return ret; 3226 } 3227 3228 /** 3229 * t4_get_version_info - extract various chip/firmware version information 3230 * @adapter: the adapter 3231 * 3232 * Reads various chip/firmware version numbers and stores them into the 3233 * adapter Adapter Parameters structure. If any of the efforts fails 3234 * the first failure will be returned, but all of the version numbers 3235 * will be read. 3236 */ 3237 int t4_get_version_info(struct adapter *adapter) 3238 { 3239 int ret = 0; 3240 3241 #define FIRST_RET(__getvinfo) \ 3242 do { \ 3243 int __ret = __getvinfo; \ 3244 if (__ret && !ret) \ 3245 ret = __ret; \ 3246 } while (0) 3247 3248 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3249 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3250 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3251 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3252 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3253 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3254 3255 #undef FIRST_RET 3256 return ret; 3257 } 3258 3259 /** 3260 * t4_dump_version_info - dump all of the adapter configuration IDs 3261 * @adapter: the adapter 3262 * 3263 * Dumps all of the various bits of adapter configuration version/revision 3264 * IDs information. This is typically called at some point after 3265 * t4_get_version_info() has been called. 3266 */ 3267 void t4_dump_version_info(struct adapter *adapter) 3268 { 3269 /* Device information */ 3270 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3271 adapter->params.vpd.id, 3272 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3273 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3274 adapter->params.vpd.sn, adapter->params.vpd.pn); 3275 3276 /* Firmware Version */ 3277 if (!adapter->params.fw_vers) 3278 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3279 else 3280 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3281 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3282 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3283 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3284 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3285 3286 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3287 * Firmware, so dev_info() is more appropriate here.) 3288 */ 3289 if (!adapter->params.bs_vers) 3290 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3291 else 3292 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3293 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3294 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3295 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3296 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3297 3298 /* TP Microcode Version */ 3299 if (!adapter->params.tp_vers) 3300 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3301 else 3302 dev_info(adapter->pdev_dev, 3303 "TP Microcode version: %u.%u.%u.%u\n", 3304 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3305 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3306 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3307 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3308 3309 /* Expansion ROM version */ 3310 if (!adapter->params.er_vers) 3311 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3312 else 3313 dev_info(adapter->pdev_dev, 3314 "Expansion ROM version: %u.%u.%u.%u\n", 3315 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3316 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3317 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3318 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3319 3320 /* Serial Configuration version */ 3321 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3322 adapter->params.scfg_vers); 3323 3324 /* VPD Version */ 3325 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3326 adapter->params.vpd_vers); 3327 } 3328 3329 /** 3330 * t4_check_fw_version - check if the FW is supported with this driver 3331 * @adap: the adapter 3332 * 3333 * Checks if an adapter's FW is compatible with the driver. Returns 0 3334 * if there's exact match, a negative error if the version could not be 3335 * read or there's a major version mismatch 3336 */ 3337 int t4_check_fw_version(struct adapter *adap) 3338 { 3339 int i, ret, major, minor, micro; 3340 int exp_major, exp_minor, exp_micro; 3341 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3342 3343 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3344 /* Try multiple times before returning error */ 3345 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3346 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3347 3348 if (ret) 3349 return ret; 3350 3351 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3352 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3353 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3354 3355 switch (chip_version) { 3356 case CHELSIO_T4: 3357 exp_major = T4FW_MIN_VERSION_MAJOR; 3358 exp_minor = T4FW_MIN_VERSION_MINOR; 3359 exp_micro = T4FW_MIN_VERSION_MICRO; 3360 break; 3361 case CHELSIO_T5: 3362 exp_major = T5FW_MIN_VERSION_MAJOR; 3363 exp_minor = T5FW_MIN_VERSION_MINOR; 3364 exp_micro = T5FW_MIN_VERSION_MICRO; 3365 break; 3366 case CHELSIO_T6: 3367 exp_major = T6FW_MIN_VERSION_MAJOR; 3368 exp_minor = T6FW_MIN_VERSION_MINOR; 3369 exp_micro = T6FW_MIN_VERSION_MICRO; 3370 break; 3371 default: 3372 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3373 adap->chip); 3374 return -EINVAL; 3375 } 3376 3377 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3378 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3379 dev_err(adap->pdev_dev, 3380 "Card has firmware version %u.%u.%u, minimum " 3381 "supported firmware is %u.%u.%u.\n", major, minor, 3382 micro, exp_major, exp_minor, exp_micro); 3383 return -EFAULT; 3384 } 3385 return 0; 3386 } 3387 3388 /* Is the given firmware API compatible with the one the driver was compiled 3389 * with? 3390 */ 3391 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3392 { 3393 3394 /* short circuit if it's the exact same firmware version */ 3395 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3396 return 1; 3397 3398 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3399 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3400 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3401 return 1; 3402 #undef SAME_INTF 3403 3404 return 0; 3405 } 3406 3407 /* The firmware in the filesystem is usable, but should it be installed? 3408 * This routine explains itself in detail if it indicates the filesystem 3409 * firmware should be installed. 3410 */ 3411 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3412 int k, int c) 3413 { 3414 const char *reason; 3415 3416 if (!card_fw_usable) { 3417 reason = "incompatible or unusable"; 3418 goto install; 3419 } 3420 3421 if (k > c) { 3422 reason = "older than the version supported with this driver"; 3423 goto install; 3424 } 3425 3426 return 0; 3427 3428 install: 3429 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3430 "installing firmware %u.%u.%u.%u on card.\n", 3431 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3432 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3433 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3434 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3435 3436 return 1; 3437 } 3438 3439 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3440 const u8 *fw_data, unsigned int fw_size, 3441 struct fw_hdr *card_fw, enum dev_state state, 3442 int *reset) 3443 { 3444 int ret, card_fw_usable, fs_fw_usable; 3445 const struct fw_hdr *fs_fw; 3446 const struct fw_hdr *drv_fw; 3447 3448 drv_fw = &fw_info->fw_hdr; 3449 3450 /* Read the header of the firmware on the card */ 3451 ret = -t4_read_flash(adap, FLASH_FW_START, 3452 sizeof(*card_fw) / sizeof(uint32_t), 3453 (uint32_t *)card_fw, 1); 3454 if (ret == 0) { 3455 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3456 } else { 3457 dev_err(adap->pdev_dev, 3458 "Unable to read card's firmware header: %d\n", ret); 3459 card_fw_usable = 0; 3460 } 3461 3462 if (fw_data != NULL) { 3463 fs_fw = (const void *)fw_data; 3464 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3465 } else { 3466 fs_fw = NULL; 3467 fs_fw_usable = 0; 3468 } 3469 3470 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3471 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3472 /* Common case: the firmware on the card is an exact match and 3473 * the filesystem one is an exact match too, or the filesystem 3474 * one is absent/incompatible. 3475 */ 3476 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3477 should_install_fs_fw(adap, card_fw_usable, 3478 be32_to_cpu(fs_fw->fw_ver), 3479 be32_to_cpu(card_fw->fw_ver))) { 3480 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 3481 fw_size, 0); 3482 if (ret != 0) { 3483 dev_err(adap->pdev_dev, 3484 "failed to install firmware: %d\n", ret); 3485 goto bye; 3486 } 3487 3488 /* Installed successfully, update the cached header too. */ 3489 *card_fw = *fs_fw; 3490 card_fw_usable = 1; 3491 *reset = 0; /* already reset as part of load_fw */ 3492 } 3493 3494 if (!card_fw_usable) { 3495 uint32_t d, c, k; 3496 3497 d = be32_to_cpu(drv_fw->fw_ver); 3498 c = be32_to_cpu(card_fw->fw_ver); 3499 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3500 3501 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3502 "chip state %d, " 3503 "driver compiled with %d.%d.%d.%d, " 3504 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3505 state, 3506 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3507 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3508 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3509 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3510 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3511 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3512 ret = EINVAL; 3513 goto bye; 3514 } 3515 3516 /* We're using whatever's on the card and it's known to be good. */ 3517 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3518 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3519 3520 bye: 3521 return ret; 3522 } 3523 3524 /** 3525 * t4_flash_erase_sectors - erase a range of flash sectors 3526 * @adapter: the adapter 3527 * @start: the first sector to erase 3528 * @end: the last sector to erase 3529 * 3530 * Erases the sectors in the given inclusive range. 3531 */ 3532 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3533 { 3534 int ret = 0; 3535 3536 if (end >= adapter->params.sf_nsec) 3537 return -EINVAL; 3538 3539 while (start <= end) { 3540 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3541 (ret = sf1_write(adapter, 4, 0, 1, 3542 SF_ERASE_SECTOR | (start << 8))) != 0 || 3543 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3544 dev_err(adapter->pdev_dev, 3545 "erase of flash sector %d failed, error %d\n", 3546 start, ret); 3547 break; 3548 } 3549 start++; 3550 } 3551 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3552 return ret; 3553 } 3554 3555 /** 3556 * t4_flash_cfg_addr - return the address of the flash configuration file 3557 * @adapter: the adapter 3558 * 3559 * Return the address within the flash where the Firmware Configuration 3560 * File is stored. 3561 */ 3562 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3563 { 3564 if (adapter->params.sf_size == 0x100000) 3565 return FLASH_FPGA_CFG_START; 3566 else 3567 return FLASH_CFG_START; 3568 } 3569 3570 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3571 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3572 * and emit an error message for mismatched firmware to save our caller the 3573 * effort ... 3574 */ 3575 static bool t4_fw_matches_chip(const struct adapter *adap, 3576 const struct fw_hdr *hdr) 3577 { 3578 /* The expression below will return FALSE for any unsupported adapter 3579 * which will keep us "honest" in the future ... 3580 */ 3581 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3582 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3583 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3584 return true; 3585 3586 dev_err(adap->pdev_dev, 3587 "FW image (%d) is not suitable for this adapter (%d)\n", 3588 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3589 return false; 3590 } 3591 3592 /** 3593 * t4_load_fw - download firmware 3594 * @adap: the adapter 3595 * @fw_data: the firmware image to write 3596 * @size: image size 3597 * 3598 * Write the supplied firmware image to the card's serial flash. 3599 */ 3600 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3601 { 3602 u32 csum; 3603 int ret, addr; 3604 unsigned int i; 3605 u8 first_page[SF_PAGE_SIZE]; 3606 const __be32 *p = (const __be32 *)fw_data; 3607 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3608 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3609 unsigned int fw_start_sec = FLASH_FW_START_SEC; 3610 unsigned int fw_size = FLASH_FW_MAX_SIZE; 3611 unsigned int fw_start = FLASH_FW_START; 3612 3613 if (!size) { 3614 dev_err(adap->pdev_dev, "FW image has no data\n"); 3615 return -EINVAL; 3616 } 3617 if (size & 511) { 3618 dev_err(adap->pdev_dev, 3619 "FW image size not multiple of 512 bytes\n"); 3620 return -EINVAL; 3621 } 3622 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3623 dev_err(adap->pdev_dev, 3624 "FW image size differs from size in FW header\n"); 3625 return -EINVAL; 3626 } 3627 if (size > fw_size) { 3628 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3629 fw_size); 3630 return -EFBIG; 3631 } 3632 if (!t4_fw_matches_chip(adap, hdr)) 3633 return -EINVAL; 3634 3635 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3636 csum += be32_to_cpu(p[i]); 3637 3638 if (csum != 0xffffffff) { 3639 dev_err(adap->pdev_dev, 3640 "corrupted firmware image, checksum %#x\n", csum); 3641 return -EINVAL; 3642 } 3643 3644 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3645 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3646 if (ret) 3647 goto out; 3648 3649 /* 3650 * We write the correct version at the end so the driver can see a bad 3651 * version if the FW write fails. Start by writing a copy of the 3652 * first page with a bad version. 3653 */ 3654 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3655 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3656 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page); 3657 if (ret) 3658 goto out; 3659 3660 addr = fw_start; 3661 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3662 addr += SF_PAGE_SIZE; 3663 fw_data += SF_PAGE_SIZE; 3664 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3665 if (ret) 3666 goto out; 3667 } 3668 3669 ret = t4_write_flash(adap, 3670 fw_start + offsetof(struct fw_hdr, fw_ver), 3671 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3672 out: 3673 if (ret) 3674 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3675 ret); 3676 else 3677 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3678 return ret; 3679 } 3680 3681 /** 3682 * t4_phy_fw_ver - return current PHY firmware version 3683 * @adap: the adapter 3684 * @phy_fw_ver: return value buffer for PHY firmware version 3685 * 3686 * Returns the current version of external PHY firmware on the 3687 * adapter. 3688 */ 3689 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3690 { 3691 u32 param, val; 3692 int ret; 3693 3694 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3695 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3696 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3697 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3698 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3699 ¶m, &val); 3700 if (ret < 0) 3701 return ret; 3702 *phy_fw_ver = val; 3703 return 0; 3704 } 3705 3706 /** 3707 * t4_load_phy_fw - download port PHY firmware 3708 * @adap: the adapter 3709 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3710 * @win_lock: the lock to use to guard the memory copy 3711 * @phy_fw_version: function to check PHY firmware versions 3712 * @phy_fw_data: the PHY firmware image to write 3713 * @phy_fw_size: image size 3714 * 3715 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3716 * @phy_fw_version is supplied, then it will be used to determine if 3717 * it's necessary to perform the transfer by comparing the version 3718 * of any existing adapter PHY firmware with that of the passed in 3719 * PHY firmware image. If @win_lock is non-NULL then it will be used 3720 * around the call to t4_memory_rw() which transfers the PHY firmware 3721 * to the adapter. 3722 * 3723 * A negative error number will be returned if an error occurs. If 3724 * version number support is available and there's no need to upgrade 3725 * the firmware, 0 will be returned. If firmware is successfully 3726 * transferred to the adapter, 1 will be retured. 3727 * 3728 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3729 * a result, a RESET of the adapter would cause that RAM to lose its 3730 * contents. Thus, loading PHY firmware on such adapters must happen 3731 * after any FW_RESET_CMDs ... 3732 */ 3733 int t4_load_phy_fw(struct adapter *adap, 3734 int win, spinlock_t *win_lock, 3735 int (*phy_fw_version)(const u8 *, size_t), 3736 const u8 *phy_fw_data, size_t phy_fw_size) 3737 { 3738 unsigned long mtype = 0, maddr = 0; 3739 u32 param, val; 3740 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3741 int ret; 3742 3743 /* If we have version number support, then check to see if the adapter 3744 * already has up-to-date PHY firmware loaded. 3745 */ 3746 if (phy_fw_version) { 3747 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3748 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3749 if (ret < 0) 3750 return ret; 3751 3752 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3753 CH_WARN(adap, "PHY Firmware already up-to-date, " 3754 "version %#x\n", cur_phy_fw_ver); 3755 return 0; 3756 } 3757 } 3758 3759 /* Ask the firmware where it wants us to copy the PHY firmware image. 3760 * The size of the file requires a special version of the READ coommand 3761 * which will pass the file size via the values field in PARAMS_CMD and 3762 * retrieve the return value from firmware and place it in the same 3763 * buffer values 3764 */ 3765 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3766 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3767 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3768 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3769 val = phy_fw_size; 3770 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3771 ¶m, &val, 1, true); 3772 if (ret < 0) 3773 return ret; 3774 mtype = val >> 8; 3775 maddr = (val & 0xff) << 16; 3776 3777 /* Copy the supplied PHY Firmware image to the adapter memory location 3778 * allocated by the adapter firmware. 3779 */ 3780 if (win_lock) 3781 spin_lock_bh(win_lock); 3782 ret = t4_memory_rw(adap, win, mtype, maddr, 3783 phy_fw_size, (__be32 *)phy_fw_data, 3784 T4_MEMORY_WRITE); 3785 if (win_lock) 3786 spin_unlock_bh(win_lock); 3787 if (ret) 3788 return ret; 3789 3790 /* Tell the firmware that the PHY firmware image has been written to 3791 * RAM and it can now start copying it over to the PHYs. The chip 3792 * firmware will RESET the affected PHYs as part of this operation 3793 * leaving them running the new PHY firmware image. 3794 */ 3795 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3796 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3797 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3798 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3799 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3800 ¶m, &val, 30000); 3801 3802 /* If we have version number support, then check to see that the new 3803 * firmware got loaded properly. 3804 */ 3805 if (phy_fw_version) { 3806 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3807 if (ret < 0) 3808 return ret; 3809 3810 if (cur_phy_fw_ver != new_phy_fw_vers) { 3811 CH_WARN(adap, "PHY Firmware did not update: " 3812 "version on adapter %#x, " 3813 "version flashed %#x\n", 3814 cur_phy_fw_ver, new_phy_fw_vers); 3815 return -ENXIO; 3816 } 3817 } 3818 3819 return 1; 3820 } 3821 3822 /** 3823 * t4_fwcache - firmware cache operation 3824 * @adap: the adapter 3825 * @op : the operation (flush or flush and invalidate) 3826 */ 3827 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3828 { 3829 struct fw_params_cmd c; 3830 3831 memset(&c, 0, sizeof(c)); 3832 c.op_to_vfn = 3833 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3834 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3835 FW_PARAMS_CMD_PFN_V(adap->pf) | 3836 FW_PARAMS_CMD_VFN_V(0)); 3837 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3838 c.param[0].mnem = 3839 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3840 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3841 c.param[0].val = (__force __be32)op; 3842 3843 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3844 } 3845 3846 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3847 unsigned int *pif_req_wrptr, 3848 unsigned int *pif_rsp_wrptr) 3849 { 3850 int i, j; 3851 u32 cfg, val, req, rsp; 3852 3853 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3854 if (cfg & LADBGEN_F) 3855 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3856 3857 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3858 req = POLADBGWRPTR_G(val); 3859 rsp = PILADBGWRPTR_G(val); 3860 if (pif_req_wrptr) 3861 *pif_req_wrptr = req; 3862 if (pif_rsp_wrptr) 3863 *pif_rsp_wrptr = rsp; 3864 3865 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3866 for (j = 0; j < 6; j++) { 3867 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3868 PILADBGRDPTR_V(rsp)); 3869 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3870 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3871 req++; 3872 rsp++; 3873 } 3874 req = (req + 2) & POLADBGRDPTR_M; 3875 rsp = (rsp + 2) & PILADBGRDPTR_M; 3876 } 3877 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3878 } 3879 3880 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3881 { 3882 u32 cfg; 3883 int i, j, idx; 3884 3885 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3886 if (cfg & LADBGEN_F) 3887 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3888 3889 for (i = 0; i < CIM_MALA_SIZE; i++) { 3890 for (j = 0; j < 5; j++) { 3891 idx = 8 * i + j; 3892 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3893 PILADBGRDPTR_V(idx)); 3894 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3895 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3896 } 3897 } 3898 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3899 } 3900 3901 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3902 { 3903 unsigned int i, j; 3904 3905 for (i = 0; i < 8; i++) { 3906 u32 *p = la_buf + i; 3907 3908 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3909 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3910 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3911 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3912 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3913 } 3914 } 3915 3916 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3917 FW_PORT_CAP32_ANEG) 3918 3919 /** 3920 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3921 * @caps16: a 16-bit Port Capabilities value 3922 * 3923 * Returns the equivalent 32-bit Port Capabilities value. 3924 */ 3925 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3926 { 3927 fw_port_cap32_t caps32 = 0; 3928 3929 #define CAP16_TO_CAP32(__cap) \ 3930 do { \ 3931 if (caps16 & FW_PORT_CAP_##__cap) \ 3932 caps32 |= FW_PORT_CAP32_##__cap; \ 3933 } while (0) 3934 3935 CAP16_TO_CAP32(SPEED_100M); 3936 CAP16_TO_CAP32(SPEED_1G); 3937 CAP16_TO_CAP32(SPEED_25G); 3938 CAP16_TO_CAP32(SPEED_10G); 3939 CAP16_TO_CAP32(SPEED_40G); 3940 CAP16_TO_CAP32(SPEED_100G); 3941 CAP16_TO_CAP32(FC_RX); 3942 CAP16_TO_CAP32(FC_TX); 3943 CAP16_TO_CAP32(ANEG); 3944 CAP16_TO_CAP32(FORCE_PAUSE); 3945 CAP16_TO_CAP32(MDIAUTO); 3946 CAP16_TO_CAP32(MDISTRAIGHT); 3947 CAP16_TO_CAP32(FEC_RS); 3948 CAP16_TO_CAP32(FEC_BASER_RS); 3949 CAP16_TO_CAP32(802_3_PAUSE); 3950 CAP16_TO_CAP32(802_3_ASM_DIR); 3951 3952 #undef CAP16_TO_CAP32 3953 3954 return caps32; 3955 } 3956 3957 /** 3958 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 3959 * @caps32: a 32-bit Port Capabilities value 3960 * 3961 * Returns the equivalent 16-bit Port Capabilities value. Note that 3962 * not all 32-bit Port Capabilities can be represented in the 16-bit 3963 * Port Capabilities and some fields/values may not make it. 3964 */ 3965 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 3966 { 3967 fw_port_cap16_t caps16 = 0; 3968 3969 #define CAP32_TO_CAP16(__cap) \ 3970 do { \ 3971 if (caps32 & FW_PORT_CAP32_##__cap) \ 3972 caps16 |= FW_PORT_CAP_##__cap; \ 3973 } while (0) 3974 3975 CAP32_TO_CAP16(SPEED_100M); 3976 CAP32_TO_CAP16(SPEED_1G); 3977 CAP32_TO_CAP16(SPEED_10G); 3978 CAP32_TO_CAP16(SPEED_25G); 3979 CAP32_TO_CAP16(SPEED_40G); 3980 CAP32_TO_CAP16(SPEED_100G); 3981 CAP32_TO_CAP16(FC_RX); 3982 CAP32_TO_CAP16(FC_TX); 3983 CAP32_TO_CAP16(802_3_PAUSE); 3984 CAP32_TO_CAP16(802_3_ASM_DIR); 3985 CAP32_TO_CAP16(ANEG); 3986 CAP32_TO_CAP16(FORCE_PAUSE); 3987 CAP32_TO_CAP16(MDIAUTO); 3988 CAP32_TO_CAP16(MDISTRAIGHT); 3989 CAP32_TO_CAP16(FEC_RS); 3990 CAP32_TO_CAP16(FEC_BASER_RS); 3991 3992 #undef CAP32_TO_CAP16 3993 3994 return caps16; 3995 } 3996 3997 /* Translate Firmware Port Capabilities Pause specification to Common Code */ 3998 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 3999 { 4000 enum cc_pause cc_pause = 0; 4001 4002 if (fw_pause & FW_PORT_CAP32_FC_RX) 4003 cc_pause |= PAUSE_RX; 4004 if (fw_pause & FW_PORT_CAP32_FC_TX) 4005 cc_pause |= PAUSE_TX; 4006 4007 return cc_pause; 4008 } 4009 4010 /* Translate Common Code Pause specification into Firmware Port Capabilities */ 4011 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 4012 { 4013 fw_port_cap32_t fw_pause = 0; 4014 4015 if (cc_pause & PAUSE_RX) 4016 fw_pause |= FW_PORT_CAP32_FC_RX; 4017 if (cc_pause & PAUSE_TX) 4018 fw_pause |= FW_PORT_CAP32_FC_TX; 4019 if (!(cc_pause & PAUSE_AUTONEG)) 4020 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE; 4021 4022 return fw_pause; 4023 } 4024 4025 /* Translate Firmware Forward Error Correction specification to Common Code */ 4026 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 4027 { 4028 enum cc_fec cc_fec = 0; 4029 4030 if (fw_fec & FW_PORT_CAP32_FEC_RS) 4031 cc_fec |= FEC_RS; 4032 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 4033 cc_fec |= FEC_BASER_RS; 4034 4035 return cc_fec; 4036 } 4037 4038 /* Translate Common Code Forward Error Correction specification to Firmware */ 4039 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 4040 { 4041 fw_port_cap32_t fw_fec = 0; 4042 4043 if (cc_fec & FEC_RS) 4044 fw_fec |= FW_PORT_CAP32_FEC_RS; 4045 if (cc_fec & FEC_BASER_RS) 4046 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 4047 4048 return fw_fec; 4049 } 4050 4051 /** 4052 * t4_link_l1cfg - apply link configuration to MAC/PHY 4053 * @adapter: the adapter 4054 * @mbox: the Firmware Mailbox to use 4055 * @port: the Port ID 4056 * @lc: the Port's Link Configuration 4057 * 4058 * Set up a port's MAC and PHY according to a desired link configuration. 4059 * - If the PHY can auto-negotiate first decide what to advertise, then 4060 * enable/disable auto-negotiation as desired, and reset. 4061 * - If the PHY does not auto-negotiate just reset it. 4062 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4063 * otherwise do it later based on the outcome of auto-negotiation. 4064 */ 4065 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox, 4066 unsigned int port, struct link_config *lc, 4067 bool sleep_ok, int timeout) 4068 { 4069 unsigned int fw_caps = adapter->params.fw_caps_support; 4070 fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap; 4071 struct fw_port_cmd cmd; 4072 unsigned int fw_mdi; 4073 int ret; 4074 4075 fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps); 4076 /* Convert driver coding of Pause Frame Flow Control settings into the 4077 * Firmware's API. 4078 */ 4079 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4080 4081 /* Convert Common Code Forward Error Control settings into the 4082 * Firmware's API. If the current Requested FEC has "Automatic" 4083 * (IEEE 802.3) specified, then we use whatever the Firmware 4084 * sent us as part of it's IEEE 802.3-based interpratation of 4085 * the Transceiver Module EPROM FEC parameters. Otherwise we 4086 * use whatever is in the current Requested FEC settings. 4087 */ 4088 if (lc->requested_fec & FEC_AUTO) 4089 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4090 else 4091 cc_fec = lc->requested_fec; 4092 fw_fec = cc_to_fwcap_fec(cc_fec); 4093 4094 /* Figure out what our Requested Port Capabilities are going to be. 4095 */ 4096 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4097 rcap = lc->acaps | fw_fc | fw_fec; 4098 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4099 lc->fec = cc_fec; 4100 } else if (lc->autoneg == AUTONEG_DISABLE) { 4101 rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4102 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4103 lc->fec = cc_fec; 4104 } else { 4105 rcap = lc->acaps | fw_fc | fw_fec | fw_mdi; 4106 } 4107 4108 /* Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so 4109 * we need to exclude this from this check in order to maintain 4110 * compatibility ... 4111 */ 4112 if ((rcap & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) { 4113 dev_err(adapter->pdev_dev, 4114 "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n", 4115 rcap, lc->pcaps); 4116 return -EINVAL; 4117 } 4118 4119 /* And send that on to the Firmware ... 4120 */ 4121 memset(&cmd, 0, sizeof(cmd)); 4122 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4123 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4124 FW_PORT_CMD_PORTID_V(port)); 4125 cmd.action_to_len16 = 4126 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4127 ? FW_PORT_ACTION_L1_CFG 4128 : FW_PORT_ACTION_L1_CFG32) | 4129 FW_LEN16(cmd)); 4130 if (fw_caps == FW_CAPS16) 4131 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4132 else 4133 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4134 4135 ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL, 4136 sleep_ok, timeout); 4137 if (ret) { 4138 dev_err(adapter->pdev_dev, 4139 "Requested Port Capabilities %#x rejected, error %d\n", 4140 rcap, -ret); 4141 return ret; 4142 } 4143 return ret; 4144 } 4145 4146 /** 4147 * t4_restart_aneg - restart autonegotiation 4148 * @adap: the adapter 4149 * @mbox: mbox to use for the FW command 4150 * @port: the port id 4151 * 4152 * Restarts autonegotiation for the selected port. 4153 */ 4154 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4155 { 4156 struct fw_port_cmd c; 4157 4158 memset(&c, 0, sizeof(c)); 4159 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4160 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4161 FW_PORT_CMD_PORTID_V(port)); 4162 c.action_to_len16 = 4163 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | 4164 FW_LEN16(c)); 4165 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG); 4166 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4167 } 4168 4169 typedef void (*int_handler_t)(struct adapter *adap); 4170 4171 struct intr_info { 4172 unsigned int mask; /* bits to check in interrupt status */ 4173 const char *msg; /* message to print or NULL */ 4174 short stat_idx; /* stat counter to increment or -1 */ 4175 unsigned short fatal; /* whether the condition reported is fatal */ 4176 int_handler_t int_handler; /* platform-specific int handler */ 4177 }; 4178 4179 /** 4180 * t4_handle_intr_status - table driven interrupt handler 4181 * @adapter: the adapter that generated the interrupt 4182 * @reg: the interrupt status register to process 4183 * @acts: table of interrupt actions 4184 * 4185 * A table driven interrupt handler that applies a set of masks to an 4186 * interrupt status word and performs the corresponding actions if the 4187 * interrupts described by the mask have occurred. The actions include 4188 * optionally emitting a warning or alert message. The table is terminated 4189 * by an entry specifying mask 0. Returns the number of fatal interrupt 4190 * conditions. 4191 */ 4192 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4193 const struct intr_info *acts) 4194 { 4195 int fatal = 0; 4196 unsigned int mask = 0; 4197 unsigned int status = t4_read_reg(adapter, reg); 4198 4199 for ( ; acts->mask; ++acts) { 4200 if (!(status & acts->mask)) 4201 continue; 4202 if (acts->fatal) { 4203 fatal++; 4204 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4205 status & acts->mask); 4206 } else if (acts->msg && printk_ratelimit()) 4207 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4208 status & acts->mask); 4209 if (acts->int_handler) 4210 acts->int_handler(adapter); 4211 mask |= acts->mask; 4212 } 4213 status &= mask; 4214 if (status) /* clear processed interrupts */ 4215 t4_write_reg(adapter, reg, status); 4216 return fatal; 4217 } 4218 4219 /* 4220 * Interrupt handler for the PCIE module. 4221 */ 4222 static void pcie_intr_handler(struct adapter *adapter) 4223 { 4224 static const struct intr_info sysbus_intr_info[] = { 4225 { RNPP_F, "RXNP array parity error", -1, 1 }, 4226 { RPCP_F, "RXPC array parity error", -1, 1 }, 4227 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4228 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4229 { RFTP_F, "RXFT array parity error", -1, 1 }, 4230 { 0 } 4231 }; 4232 static const struct intr_info pcie_port_intr_info[] = { 4233 { TPCP_F, "TXPC array parity error", -1, 1 }, 4234 { TNPP_F, "TXNP array parity error", -1, 1 }, 4235 { TFTP_F, "TXFT array parity error", -1, 1 }, 4236 { TCAP_F, "TXCA array parity error", -1, 1 }, 4237 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4238 { RCAP_F, "RXCA array parity error", -1, 1 }, 4239 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4240 { RDPE_F, "Rx data parity error", -1, 1 }, 4241 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4242 { 0 } 4243 }; 4244 static const struct intr_info pcie_intr_info[] = { 4245 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4246 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4247 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4248 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4249 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4250 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4251 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4252 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4253 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4254 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4255 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4256 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4257 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4258 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4259 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4260 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4261 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4262 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4263 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4264 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4265 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4266 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4267 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4268 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4269 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4270 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4271 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4272 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4273 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4274 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4275 -1, 0 }, 4276 { 0 } 4277 }; 4278 4279 static struct intr_info t5_pcie_intr_info[] = { 4280 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4281 -1, 1 }, 4282 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4283 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4284 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4285 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4286 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4287 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4288 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4289 -1, 1 }, 4290 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4291 -1, 1 }, 4292 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4293 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4294 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4295 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4296 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4297 -1, 1 }, 4298 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4299 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4300 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4301 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4302 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4303 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4304 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4305 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4306 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4307 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4308 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4309 -1, 1 }, 4310 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4311 -1, 1 }, 4312 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4313 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4314 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4315 { READRSPERR_F, "Outbound read error", -1, 0 }, 4316 { 0 } 4317 }; 4318 4319 int fat; 4320 4321 if (is_t4(adapter->params.chip)) 4322 fat = t4_handle_intr_status(adapter, 4323 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4324 sysbus_intr_info) + 4325 t4_handle_intr_status(adapter, 4326 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4327 pcie_port_intr_info) + 4328 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4329 pcie_intr_info); 4330 else 4331 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4332 t5_pcie_intr_info); 4333 4334 if (fat) 4335 t4_fatal_err(adapter); 4336 } 4337 4338 /* 4339 * TP interrupt handler. 4340 */ 4341 static void tp_intr_handler(struct adapter *adapter) 4342 { 4343 static const struct intr_info tp_intr_info[] = { 4344 { 0x3fffffff, "TP parity error", -1, 1 }, 4345 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4346 { 0 } 4347 }; 4348 4349 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4350 t4_fatal_err(adapter); 4351 } 4352 4353 /* 4354 * SGE interrupt handler. 4355 */ 4356 static void sge_intr_handler(struct adapter *adapter) 4357 { 4358 u64 v; 4359 u32 err; 4360 4361 static const struct intr_info sge_intr_info[] = { 4362 { ERR_CPL_EXCEED_IQE_SIZE_F, 4363 "SGE received CPL exceeding IQE size", -1, 1 }, 4364 { ERR_INVALID_CIDX_INC_F, 4365 "SGE GTS CIDX increment too large", -1, 0 }, 4366 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4367 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4368 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4369 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4370 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4371 0 }, 4372 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4373 0 }, 4374 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4375 0 }, 4376 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4377 0 }, 4378 { ERR_ING_CTXT_PRIO_F, 4379 "SGE too many priority ingress contexts", -1, 0 }, 4380 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4381 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4382 { 0 } 4383 }; 4384 4385 static struct intr_info t4t5_sge_intr_info[] = { 4386 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4387 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4388 { ERR_EGR_CTXT_PRIO_F, 4389 "SGE too many priority egress contexts", -1, 0 }, 4390 { 0 } 4391 }; 4392 4393 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | 4394 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); 4395 if (v) { 4396 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 4397 (unsigned long long)v); 4398 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); 4399 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); 4400 } 4401 4402 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4403 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4404 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4405 t4t5_sge_intr_info); 4406 4407 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4408 if (err & ERROR_QID_VALID_F) { 4409 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4410 ERROR_QID_G(err)); 4411 if (err & UNCAPTURED_ERROR_F) 4412 dev_err(adapter->pdev_dev, 4413 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4414 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4415 UNCAPTURED_ERROR_F); 4416 } 4417 4418 if (v != 0) 4419 t4_fatal_err(adapter); 4420 } 4421 4422 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4423 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4424 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4425 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4426 4427 /* 4428 * CIM interrupt handler. 4429 */ 4430 static void cim_intr_handler(struct adapter *adapter) 4431 { 4432 static const struct intr_info cim_intr_info[] = { 4433 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4434 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4435 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4436 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4437 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4438 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4439 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4440 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4441 { 0 } 4442 }; 4443 static const struct intr_info cim_upintr_info[] = { 4444 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4445 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4446 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4447 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4448 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4449 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4450 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4451 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4452 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4453 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4454 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4455 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4456 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4457 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4458 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4459 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4460 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4461 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4462 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4463 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4464 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4465 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4466 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4467 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4468 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4469 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4470 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4471 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4472 { 0 } 4473 }; 4474 4475 u32 val, fw_err; 4476 int fat; 4477 4478 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4479 if (fw_err & PCIE_FW_ERR_F) 4480 t4_report_fw_error(adapter); 4481 4482 /* When the Firmware detects an internal error which normally 4483 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4484 * in order to make sure the Host sees the Firmware Crash. So 4485 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4486 * ignore the Timer0 interrupt. 4487 */ 4488 4489 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4490 if (val & TIMER0INT_F) 4491 if (!(fw_err & PCIE_FW_ERR_F) || 4492 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4493 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4494 TIMER0INT_F); 4495 4496 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4497 cim_intr_info) + 4498 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4499 cim_upintr_info); 4500 if (fat) 4501 t4_fatal_err(adapter); 4502 } 4503 4504 /* 4505 * ULP RX interrupt handler. 4506 */ 4507 static void ulprx_intr_handler(struct adapter *adapter) 4508 { 4509 static const struct intr_info ulprx_intr_info[] = { 4510 { 0x1800000, "ULPRX context error", -1, 1 }, 4511 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4512 { 0 } 4513 }; 4514 4515 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4516 t4_fatal_err(adapter); 4517 } 4518 4519 /* 4520 * ULP TX interrupt handler. 4521 */ 4522 static void ulptx_intr_handler(struct adapter *adapter) 4523 { 4524 static const struct intr_info ulptx_intr_info[] = { 4525 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4526 0 }, 4527 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4528 0 }, 4529 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4530 0 }, 4531 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4532 0 }, 4533 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4534 { 0 } 4535 }; 4536 4537 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4538 t4_fatal_err(adapter); 4539 } 4540 4541 /* 4542 * PM TX interrupt handler. 4543 */ 4544 static void pmtx_intr_handler(struct adapter *adapter) 4545 { 4546 static const struct intr_info pmtx_intr_info[] = { 4547 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4548 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4549 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4550 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4551 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4552 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4553 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4554 -1, 1 }, 4555 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4556 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4557 { 0 } 4558 }; 4559 4560 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4561 t4_fatal_err(adapter); 4562 } 4563 4564 /* 4565 * PM RX interrupt handler. 4566 */ 4567 static void pmrx_intr_handler(struct adapter *adapter) 4568 { 4569 static const struct intr_info pmrx_intr_info[] = { 4570 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4571 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4572 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4573 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4574 -1, 1 }, 4575 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4576 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4577 { 0 } 4578 }; 4579 4580 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4581 t4_fatal_err(adapter); 4582 } 4583 4584 /* 4585 * CPL switch interrupt handler. 4586 */ 4587 static void cplsw_intr_handler(struct adapter *adapter) 4588 { 4589 static const struct intr_info cplsw_intr_info[] = { 4590 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4591 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4592 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4593 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4594 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4595 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4596 { 0 } 4597 }; 4598 4599 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4600 t4_fatal_err(adapter); 4601 } 4602 4603 /* 4604 * LE interrupt handler. 4605 */ 4606 static void le_intr_handler(struct adapter *adap) 4607 { 4608 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4609 static const struct intr_info le_intr_info[] = { 4610 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4611 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4612 { PARITYERR_F, "LE parity error", -1, 1 }, 4613 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4614 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4615 { 0 } 4616 }; 4617 4618 static struct intr_info t6_le_intr_info[] = { 4619 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4620 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4621 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4622 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4623 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4624 { 0 } 4625 }; 4626 4627 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4628 (chip <= CHELSIO_T5) ? 4629 le_intr_info : t6_le_intr_info)) 4630 t4_fatal_err(adap); 4631 } 4632 4633 /* 4634 * MPS interrupt handler. 4635 */ 4636 static void mps_intr_handler(struct adapter *adapter) 4637 { 4638 static const struct intr_info mps_rx_intr_info[] = { 4639 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4640 { 0 } 4641 }; 4642 static const struct intr_info mps_tx_intr_info[] = { 4643 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4644 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4645 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4646 -1, 1 }, 4647 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4648 -1, 1 }, 4649 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4650 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4651 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4652 { 0 } 4653 }; 4654 static const struct intr_info t6_mps_tx_intr_info[] = { 4655 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4656 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4657 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4658 -1, 1 }, 4659 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4660 -1, 1 }, 4661 /* MPS Tx Bubble is normal for T6 */ 4662 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4663 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4664 { 0 } 4665 }; 4666 static const struct intr_info mps_trc_intr_info[] = { 4667 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4668 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4669 -1, 1 }, 4670 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4671 { 0 } 4672 }; 4673 static const struct intr_info mps_stat_sram_intr_info[] = { 4674 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4675 { 0 } 4676 }; 4677 static const struct intr_info mps_stat_tx_intr_info[] = { 4678 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4679 { 0 } 4680 }; 4681 static const struct intr_info mps_stat_rx_intr_info[] = { 4682 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4683 { 0 } 4684 }; 4685 static const struct intr_info mps_cls_intr_info[] = { 4686 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4687 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4688 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4689 { 0 } 4690 }; 4691 4692 int fat; 4693 4694 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4695 mps_rx_intr_info) + 4696 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4697 is_t6(adapter->params.chip) 4698 ? t6_mps_tx_intr_info 4699 : mps_tx_intr_info) + 4700 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4701 mps_trc_intr_info) + 4702 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4703 mps_stat_sram_intr_info) + 4704 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4705 mps_stat_tx_intr_info) + 4706 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4707 mps_stat_rx_intr_info) + 4708 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4709 mps_cls_intr_info); 4710 4711 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4712 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4713 if (fat) 4714 t4_fatal_err(adapter); 4715 } 4716 4717 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4718 ECC_UE_INT_CAUSE_F) 4719 4720 /* 4721 * EDC/MC interrupt handler. 4722 */ 4723 static void mem_intr_handler(struct adapter *adapter, int idx) 4724 { 4725 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4726 4727 unsigned int addr, cnt_addr, v; 4728 4729 if (idx <= MEM_EDC1) { 4730 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4731 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4732 } else if (idx == MEM_MC) { 4733 if (is_t4(adapter->params.chip)) { 4734 addr = MC_INT_CAUSE_A; 4735 cnt_addr = MC_ECC_STATUS_A; 4736 } else { 4737 addr = MC_P_INT_CAUSE_A; 4738 cnt_addr = MC_P_ECC_STATUS_A; 4739 } 4740 } else { 4741 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4742 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4743 } 4744 4745 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4746 if (v & PERR_INT_CAUSE_F) 4747 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4748 name[idx]); 4749 if (v & ECC_CE_INT_CAUSE_F) { 4750 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4751 4752 t4_edc_err_read(adapter, idx); 4753 4754 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4755 if (printk_ratelimit()) 4756 dev_warn(adapter->pdev_dev, 4757 "%u %s correctable ECC data error%s\n", 4758 cnt, name[idx], cnt > 1 ? "s" : ""); 4759 } 4760 if (v & ECC_UE_INT_CAUSE_F) 4761 dev_alert(adapter->pdev_dev, 4762 "%s uncorrectable ECC data error\n", name[idx]); 4763 4764 t4_write_reg(adapter, addr, v); 4765 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4766 t4_fatal_err(adapter); 4767 } 4768 4769 /* 4770 * MA interrupt handler. 4771 */ 4772 static void ma_intr_handler(struct adapter *adap) 4773 { 4774 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4775 4776 if (status & MEM_PERR_INT_CAUSE_F) { 4777 dev_alert(adap->pdev_dev, 4778 "MA parity error, parity status %#x\n", 4779 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4780 if (is_t5(adap->params.chip)) 4781 dev_alert(adap->pdev_dev, 4782 "MA parity error, parity status %#x\n", 4783 t4_read_reg(adap, 4784 MA_PARITY_ERROR_STATUS2_A)); 4785 } 4786 if (status & MEM_WRAP_INT_CAUSE_F) { 4787 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4788 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4789 "client %u to address %#x\n", 4790 MEM_WRAP_CLIENT_NUM_G(v), 4791 MEM_WRAP_ADDRESS_G(v) << 4); 4792 } 4793 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4794 t4_fatal_err(adap); 4795 } 4796 4797 /* 4798 * SMB interrupt handler. 4799 */ 4800 static void smb_intr_handler(struct adapter *adap) 4801 { 4802 static const struct intr_info smb_intr_info[] = { 4803 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4804 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4805 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4806 { 0 } 4807 }; 4808 4809 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4810 t4_fatal_err(adap); 4811 } 4812 4813 /* 4814 * NC-SI interrupt handler. 4815 */ 4816 static void ncsi_intr_handler(struct adapter *adap) 4817 { 4818 static const struct intr_info ncsi_intr_info[] = { 4819 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4820 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4821 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4822 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4823 { 0 } 4824 }; 4825 4826 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4827 t4_fatal_err(adap); 4828 } 4829 4830 /* 4831 * XGMAC interrupt handler. 4832 */ 4833 static void xgmac_intr_handler(struct adapter *adap, int port) 4834 { 4835 u32 v, int_cause_reg; 4836 4837 if (is_t4(adap->params.chip)) 4838 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4839 else 4840 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4841 4842 v = t4_read_reg(adap, int_cause_reg); 4843 4844 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4845 if (!v) 4846 return; 4847 4848 if (v & TXFIFO_PRTY_ERR_F) 4849 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4850 port); 4851 if (v & RXFIFO_PRTY_ERR_F) 4852 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4853 port); 4854 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4855 t4_fatal_err(adap); 4856 } 4857 4858 /* 4859 * PL interrupt handler. 4860 */ 4861 static void pl_intr_handler(struct adapter *adap) 4862 { 4863 static const struct intr_info pl_intr_info[] = { 4864 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4865 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4866 { 0 } 4867 }; 4868 4869 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4870 t4_fatal_err(adap); 4871 } 4872 4873 #define PF_INTR_MASK (PFSW_F) 4874 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4875 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4876 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 4877 4878 /** 4879 * t4_slow_intr_handler - control path interrupt handler 4880 * @adapter: the adapter 4881 * 4882 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 4883 * The designation 'slow' is because it involves register reads, while 4884 * data interrupts typically don't involve any MMIOs. 4885 */ 4886 int t4_slow_intr_handler(struct adapter *adapter) 4887 { 4888 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 4889 4890 if (!(cause & GLBL_INTR_MASK)) 4891 return 0; 4892 if (cause & CIM_F) 4893 cim_intr_handler(adapter); 4894 if (cause & MPS_F) 4895 mps_intr_handler(adapter); 4896 if (cause & NCSI_F) 4897 ncsi_intr_handler(adapter); 4898 if (cause & PL_F) 4899 pl_intr_handler(adapter); 4900 if (cause & SMB_F) 4901 smb_intr_handler(adapter); 4902 if (cause & XGMAC0_F) 4903 xgmac_intr_handler(adapter, 0); 4904 if (cause & XGMAC1_F) 4905 xgmac_intr_handler(adapter, 1); 4906 if (cause & XGMAC_KR0_F) 4907 xgmac_intr_handler(adapter, 2); 4908 if (cause & XGMAC_KR1_F) 4909 xgmac_intr_handler(adapter, 3); 4910 if (cause & PCIE_F) 4911 pcie_intr_handler(adapter); 4912 if (cause & MC_F) 4913 mem_intr_handler(adapter, MEM_MC); 4914 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 4915 mem_intr_handler(adapter, MEM_MC1); 4916 if (cause & EDC0_F) 4917 mem_intr_handler(adapter, MEM_EDC0); 4918 if (cause & EDC1_F) 4919 mem_intr_handler(adapter, MEM_EDC1); 4920 if (cause & LE_F) 4921 le_intr_handler(adapter); 4922 if (cause & TP_F) 4923 tp_intr_handler(adapter); 4924 if (cause & MA_F) 4925 ma_intr_handler(adapter); 4926 if (cause & PM_TX_F) 4927 pmtx_intr_handler(adapter); 4928 if (cause & PM_RX_F) 4929 pmrx_intr_handler(adapter); 4930 if (cause & ULP_RX_F) 4931 ulprx_intr_handler(adapter); 4932 if (cause & CPL_SWITCH_F) 4933 cplsw_intr_handler(adapter); 4934 if (cause & SGE_F) 4935 sge_intr_handler(adapter); 4936 if (cause & ULP_TX_F) 4937 ulptx_intr_handler(adapter); 4938 4939 /* Clear the interrupts just processed for which we are the master. */ 4940 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK); 4941 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 4942 return 1; 4943 } 4944 4945 /** 4946 * t4_intr_enable - enable interrupts 4947 * @adapter: the adapter whose interrupts should be enabled 4948 * 4949 * Enable PF-specific interrupts for the calling function and the top-level 4950 * interrupt concentrator for global interrupts. Interrupts are already 4951 * enabled at each module, here we just enable the roots of the interrupt 4952 * hierarchies. 4953 * 4954 * Note: this function should be called only when the driver manages 4955 * non PF-specific interrupts from the various HW modules. Only one PCI 4956 * function at a time should be doing this. 4957 */ 4958 void t4_intr_enable(struct adapter *adapter) 4959 { 4960 u32 val = 0; 4961 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4962 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4963 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4964 4965 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4966 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 4967 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 4968 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 4969 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 4970 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 4971 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 4972 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 4973 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 4974 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 4975 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 4976 } 4977 4978 /** 4979 * t4_intr_disable - disable interrupts 4980 * @adapter: the adapter whose interrupts should be disabled 4981 * 4982 * Disable interrupts. We only disable the top-level interrupt 4983 * concentrators. The caller must be a PCI function managing global 4984 * interrupts. 4985 */ 4986 void t4_intr_disable(struct adapter *adapter) 4987 { 4988 u32 whoami, pf; 4989 4990 if (pci_channel_offline(adapter->pdev)) 4991 return; 4992 4993 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4994 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4995 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4996 4997 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 4998 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 4999 } 5000 5001 unsigned int t4_chip_rss_size(struct adapter *adap) 5002 { 5003 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 5004 return RSS_NENTRIES; 5005 else 5006 return T6_RSS_NENTRIES; 5007 } 5008 5009 /** 5010 * t4_config_rss_range - configure a portion of the RSS mapping table 5011 * @adapter: the adapter 5012 * @mbox: mbox to use for the FW command 5013 * @viid: virtual interface whose RSS subtable is to be written 5014 * @start: start entry in the table to write 5015 * @n: how many table entries to write 5016 * @rspq: values for the response queue lookup table 5017 * @nrspq: number of values in @rspq 5018 * 5019 * Programs the selected part of the VI's RSS mapping table with the 5020 * provided values. If @nrspq < @n the supplied values are used repeatedly 5021 * until the full table range is populated. 5022 * 5023 * The caller must ensure the values in @rspq are in the range allowed for 5024 * @viid. 5025 */ 5026 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5027 int start, int n, const u16 *rspq, unsigned int nrspq) 5028 { 5029 int ret; 5030 const u16 *rsp = rspq; 5031 const u16 *rsp_end = rspq + nrspq; 5032 struct fw_rss_ind_tbl_cmd cmd; 5033 5034 memset(&cmd, 0, sizeof(cmd)); 5035 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 5036 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5037 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 5038 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5039 5040 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 5041 while (n > 0) { 5042 int nq = min(n, 32); 5043 __be32 *qp = &cmd.iq0_to_iq2; 5044 5045 cmd.niqid = cpu_to_be16(nq); 5046 cmd.startidx = cpu_to_be16(start); 5047 5048 start += nq; 5049 n -= nq; 5050 5051 while (nq > 0) { 5052 unsigned int v; 5053 5054 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 5055 if (++rsp >= rsp_end) 5056 rsp = rspq; 5057 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 5058 if (++rsp >= rsp_end) 5059 rsp = rspq; 5060 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 5061 if (++rsp >= rsp_end) 5062 rsp = rspq; 5063 5064 *qp++ = cpu_to_be32(v); 5065 nq -= 3; 5066 } 5067 5068 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5069 if (ret) 5070 return ret; 5071 } 5072 return 0; 5073 } 5074 5075 /** 5076 * t4_config_glbl_rss - configure the global RSS mode 5077 * @adapter: the adapter 5078 * @mbox: mbox to use for the FW command 5079 * @mode: global RSS mode 5080 * @flags: mode-specific flags 5081 * 5082 * Sets the global RSS mode. 5083 */ 5084 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5085 unsigned int flags) 5086 { 5087 struct fw_rss_glb_config_cmd c; 5088 5089 memset(&c, 0, sizeof(c)); 5090 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5091 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5092 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5093 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5094 c.u.manual.mode_pkd = 5095 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5096 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5097 c.u.basicvirtual.mode_pkd = 5098 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5099 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5100 } else 5101 return -EINVAL; 5102 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5103 } 5104 5105 /** 5106 * t4_config_vi_rss - configure per VI RSS settings 5107 * @adapter: the adapter 5108 * @mbox: mbox to use for the FW command 5109 * @viid: the VI id 5110 * @flags: RSS flags 5111 * @defq: id of the default RSS queue for the VI. 5112 * 5113 * Configures VI-specific RSS properties. 5114 */ 5115 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5116 unsigned int flags, unsigned int defq) 5117 { 5118 struct fw_rss_vi_config_cmd c; 5119 5120 memset(&c, 0, sizeof(c)); 5121 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5122 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5123 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5124 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5125 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5126 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5127 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5128 } 5129 5130 /* Read an RSS table row */ 5131 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5132 { 5133 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5134 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5135 5, 0, val); 5136 } 5137 5138 /** 5139 * t4_read_rss - read the contents of the RSS mapping table 5140 * @adapter: the adapter 5141 * @map: holds the contents of the RSS mapping table 5142 * 5143 * Reads the contents of the RSS hash->queue mapping table. 5144 */ 5145 int t4_read_rss(struct adapter *adapter, u16 *map) 5146 { 5147 int i, ret, nentries; 5148 u32 val; 5149 5150 nentries = t4_chip_rss_size(adapter); 5151 for (i = 0; i < nentries / 2; ++i) { 5152 ret = rd_rss_row(adapter, i, &val); 5153 if (ret) 5154 return ret; 5155 *map++ = LKPTBLQUEUE0_G(val); 5156 *map++ = LKPTBLQUEUE1_G(val); 5157 } 5158 return 0; 5159 } 5160 5161 static unsigned int t4_use_ldst(struct adapter *adap) 5162 { 5163 return (adap->flags & FW_OK) && !adap->use_bd; 5164 } 5165 5166 /** 5167 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5168 * @adap: the adapter 5169 * @cmd: TP fw ldst address space type 5170 * @vals: where the indirect register values are stored/written 5171 * @nregs: how many indirect registers to read/write 5172 * @start_idx: index of first indirect register to read/write 5173 * @rw: Read (1) or Write (0) 5174 * @sleep_ok: if true we may sleep while awaiting command completion 5175 * 5176 * Access TP indirect registers through LDST 5177 */ 5178 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5179 unsigned int nregs, unsigned int start_index, 5180 unsigned int rw, bool sleep_ok) 5181 { 5182 int ret = 0; 5183 unsigned int i; 5184 struct fw_ldst_cmd c; 5185 5186 for (i = 0; i < nregs; i++) { 5187 memset(&c, 0, sizeof(c)); 5188 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5189 FW_CMD_REQUEST_F | 5190 (rw ? FW_CMD_READ_F : 5191 FW_CMD_WRITE_F) | 5192 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5193 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5194 5195 c.u.addrval.addr = cpu_to_be32(start_index + i); 5196 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5197 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5198 sleep_ok); 5199 if (ret) 5200 return ret; 5201 5202 if (rw) 5203 vals[i] = be32_to_cpu(c.u.addrval.val); 5204 } 5205 return 0; 5206 } 5207 5208 /** 5209 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5210 * @adap: the adapter 5211 * @reg_addr: Address Register 5212 * @reg_data: Data register 5213 * @buff: where the indirect register values are stored/written 5214 * @nregs: how many indirect registers to read/write 5215 * @start_index: index of first indirect register to read/write 5216 * @rw: READ(1) or WRITE(0) 5217 * @sleep_ok: if true we may sleep while awaiting command completion 5218 * 5219 * Read/Write TP indirect registers through LDST if possible. 5220 * Else, use backdoor access 5221 **/ 5222 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5223 u32 *buff, u32 nregs, u32 start_index, int rw, 5224 bool sleep_ok) 5225 { 5226 int rc = -EINVAL; 5227 int cmd; 5228 5229 switch (reg_addr) { 5230 case TP_PIO_ADDR_A: 5231 cmd = FW_LDST_ADDRSPC_TP_PIO; 5232 break; 5233 case TP_TM_PIO_ADDR_A: 5234 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5235 break; 5236 case TP_MIB_INDEX_A: 5237 cmd = FW_LDST_ADDRSPC_TP_MIB; 5238 break; 5239 default: 5240 goto indirect_access; 5241 } 5242 5243 if (t4_use_ldst(adap)) 5244 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5245 sleep_ok); 5246 5247 indirect_access: 5248 5249 if (rc) { 5250 if (rw) 5251 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5252 start_index); 5253 else 5254 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5255 start_index); 5256 } 5257 } 5258 5259 /** 5260 * t4_tp_pio_read - Read TP PIO registers 5261 * @adap: the adapter 5262 * @buff: where the indirect register values are written 5263 * @nregs: how many indirect registers to read 5264 * @start_index: index of first indirect register to read 5265 * @sleep_ok: if true we may sleep while awaiting command completion 5266 * 5267 * Read TP PIO Registers 5268 **/ 5269 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5270 u32 start_index, bool sleep_ok) 5271 { 5272 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5273 start_index, 1, sleep_ok); 5274 } 5275 5276 /** 5277 * t4_tp_pio_write - Write TP PIO registers 5278 * @adap: the adapter 5279 * @buff: where the indirect register values are stored 5280 * @nregs: how many indirect registers to write 5281 * @start_index: index of first indirect register to write 5282 * @sleep_ok: if true we may sleep while awaiting command completion 5283 * 5284 * Write TP PIO Registers 5285 **/ 5286 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5287 u32 start_index, bool sleep_ok) 5288 { 5289 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5290 start_index, 0, sleep_ok); 5291 } 5292 5293 /** 5294 * t4_tp_tm_pio_read - Read TP TM PIO registers 5295 * @adap: the adapter 5296 * @buff: where the indirect register values are written 5297 * @nregs: how many indirect registers to read 5298 * @start_index: index of first indirect register to read 5299 * @sleep_ok: if true we may sleep while awaiting command completion 5300 * 5301 * Read TP TM PIO Registers 5302 **/ 5303 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5304 u32 start_index, bool sleep_ok) 5305 { 5306 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5307 nregs, start_index, 1, sleep_ok); 5308 } 5309 5310 /** 5311 * t4_tp_mib_read - Read TP MIB registers 5312 * @adap: the adapter 5313 * @buff: where the indirect register values are written 5314 * @nregs: how many indirect registers to read 5315 * @start_index: index of first indirect register to read 5316 * @sleep_ok: if true we may sleep while awaiting command completion 5317 * 5318 * Read TP MIB Registers 5319 **/ 5320 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5321 bool sleep_ok) 5322 { 5323 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5324 start_index, 1, sleep_ok); 5325 } 5326 5327 /** 5328 * t4_read_rss_key - read the global RSS key 5329 * @adap: the adapter 5330 * @key: 10-entry array holding the 320-bit RSS key 5331 * @sleep_ok: if true we may sleep while awaiting command completion 5332 * 5333 * Reads the global 320-bit RSS key. 5334 */ 5335 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5336 { 5337 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5338 } 5339 5340 /** 5341 * t4_write_rss_key - program one of the RSS keys 5342 * @adap: the adapter 5343 * @key: 10-entry array holding the 320-bit RSS key 5344 * @idx: which RSS key to write 5345 * @sleep_ok: if true we may sleep while awaiting command completion 5346 * 5347 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5348 * 0..15 the corresponding entry in the RSS key table is written, 5349 * otherwise the global RSS key is written. 5350 */ 5351 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5352 bool sleep_ok) 5353 { 5354 u8 rss_key_addr_cnt = 16; 5355 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5356 5357 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5358 * allows access to key addresses 16-63 by using KeyWrAddrX 5359 * as index[5:4](upper 2) into key table 5360 */ 5361 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5362 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5363 rss_key_addr_cnt = 32; 5364 5365 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5366 5367 if (idx >= 0 && idx < rss_key_addr_cnt) { 5368 if (rss_key_addr_cnt > 16) 5369 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5370 KEYWRADDRX_V(idx >> 4) | 5371 T6_VFWRADDR_V(idx) | KEYWREN_F); 5372 else 5373 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5374 KEYWRADDR_V(idx) | KEYWREN_F); 5375 } 5376 } 5377 5378 /** 5379 * t4_read_rss_pf_config - read PF RSS Configuration Table 5380 * @adapter: the adapter 5381 * @index: the entry in the PF RSS table to read 5382 * @valp: where to store the returned value 5383 * @sleep_ok: if true we may sleep while awaiting command completion 5384 * 5385 * Reads the PF RSS Configuration Table at the specified index and returns 5386 * the value found there. 5387 */ 5388 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5389 u32 *valp, bool sleep_ok) 5390 { 5391 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5392 } 5393 5394 /** 5395 * t4_read_rss_vf_config - read VF RSS Configuration Table 5396 * @adapter: the adapter 5397 * @index: the entry in the VF RSS table to read 5398 * @vfl: where to store the returned VFL 5399 * @vfh: where to store the returned VFH 5400 * @sleep_ok: if true we may sleep while awaiting command completion 5401 * 5402 * Reads the VF RSS Configuration Table at the specified index and returns 5403 * the (VFL, VFH) values found there. 5404 */ 5405 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5406 u32 *vfl, u32 *vfh, bool sleep_ok) 5407 { 5408 u32 vrt, mask, data; 5409 5410 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5411 mask = VFWRADDR_V(VFWRADDR_M); 5412 data = VFWRADDR_V(index); 5413 } else { 5414 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5415 data = T6_VFWRADDR_V(index); 5416 } 5417 5418 /* Request that the index'th VF Table values be read into VFL/VFH. 5419 */ 5420 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5421 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5422 vrt |= data | VFRDEN_F; 5423 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5424 5425 /* Grab the VFL/VFH values ... 5426 */ 5427 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5428 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5429 } 5430 5431 /** 5432 * t4_read_rss_pf_map - read PF RSS Map 5433 * @adapter: the adapter 5434 * @sleep_ok: if true we may sleep while awaiting command completion 5435 * 5436 * Reads the PF RSS Map register and returns its value. 5437 */ 5438 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5439 { 5440 u32 pfmap; 5441 5442 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5443 return pfmap; 5444 } 5445 5446 /** 5447 * t4_read_rss_pf_mask - read PF RSS Mask 5448 * @adapter: the adapter 5449 * @sleep_ok: if true we may sleep while awaiting command completion 5450 * 5451 * Reads the PF RSS Mask register and returns its value. 5452 */ 5453 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5454 { 5455 u32 pfmask; 5456 5457 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5458 return pfmask; 5459 } 5460 5461 /** 5462 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5463 * @adap: the adapter 5464 * @v4: holds the TCP/IP counter values 5465 * @v6: holds the TCP/IPv6 counter values 5466 * @sleep_ok: if true we may sleep while awaiting command completion 5467 * 5468 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5469 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5470 */ 5471 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5472 struct tp_tcp_stats *v6, bool sleep_ok) 5473 { 5474 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5475 5476 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5477 #define STAT(x) val[STAT_IDX(x)] 5478 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5479 5480 if (v4) { 5481 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5482 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5483 v4->tcp_out_rsts = STAT(OUT_RST); 5484 v4->tcp_in_segs = STAT64(IN_SEG); 5485 v4->tcp_out_segs = STAT64(OUT_SEG); 5486 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5487 } 5488 if (v6) { 5489 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5490 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5491 v6->tcp_out_rsts = STAT(OUT_RST); 5492 v6->tcp_in_segs = STAT64(IN_SEG); 5493 v6->tcp_out_segs = STAT64(OUT_SEG); 5494 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5495 } 5496 #undef STAT64 5497 #undef STAT 5498 #undef STAT_IDX 5499 } 5500 5501 /** 5502 * t4_tp_get_err_stats - read TP's error MIB counters 5503 * @adap: the adapter 5504 * @st: holds the counter values 5505 * @sleep_ok: if true we may sleep while awaiting command completion 5506 * 5507 * Returns the values of TP's error counters. 5508 */ 5509 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5510 bool sleep_ok) 5511 { 5512 int nchan = adap->params.arch.nchan; 5513 5514 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5515 sleep_ok); 5516 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5517 sleep_ok); 5518 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5519 sleep_ok); 5520 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5521 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5522 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5523 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5524 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5525 sleep_ok); 5526 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5527 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5528 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5529 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5530 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5531 sleep_ok); 5532 } 5533 5534 /** 5535 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5536 * @adap: the adapter 5537 * @st: holds the counter values 5538 * @sleep_ok: if true we may sleep while awaiting command completion 5539 * 5540 * Returns the values of TP's CPL counters. 5541 */ 5542 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5543 bool sleep_ok) 5544 { 5545 int nchan = adap->params.arch.nchan; 5546 5547 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5548 5549 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5550 } 5551 5552 /** 5553 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5554 * @adap: the adapter 5555 * @st: holds the counter values 5556 * @sleep_ok: if true we may sleep while awaiting command completion 5557 * 5558 * Returns the values of TP's RDMA counters. 5559 */ 5560 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5561 bool sleep_ok) 5562 { 5563 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5564 sleep_ok); 5565 } 5566 5567 /** 5568 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5569 * @adap: the adapter 5570 * @idx: the port index 5571 * @st: holds the counter values 5572 * @sleep_ok: if true we may sleep while awaiting command completion 5573 * 5574 * Returns the values of TP's FCoE counters for the selected port. 5575 */ 5576 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5577 struct tp_fcoe_stats *st, bool sleep_ok) 5578 { 5579 u32 val[2]; 5580 5581 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5582 sleep_ok); 5583 5584 t4_tp_mib_read(adap, &st->frames_drop, 1, 5585 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5586 5587 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5588 sleep_ok); 5589 5590 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5591 } 5592 5593 /** 5594 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5595 * @adap: the adapter 5596 * @st: holds the counter values 5597 * @sleep_ok: if true we may sleep while awaiting command completion 5598 * 5599 * Returns the values of TP's counters for non-TCP directly-placed packets. 5600 */ 5601 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5602 bool sleep_ok) 5603 { 5604 u32 val[4]; 5605 5606 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5607 st->frames = val[0]; 5608 st->drops = val[1]; 5609 st->octets = ((u64)val[2] << 32) | val[3]; 5610 } 5611 5612 /** 5613 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5614 * @adap: the adapter 5615 * @mtus: where to store the MTU values 5616 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5617 * 5618 * Reads the HW path MTU table. 5619 */ 5620 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5621 { 5622 u32 v; 5623 int i; 5624 5625 for (i = 0; i < NMTUS; ++i) { 5626 t4_write_reg(adap, TP_MTU_TABLE_A, 5627 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5628 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5629 mtus[i] = MTUVALUE_G(v); 5630 if (mtu_log) 5631 mtu_log[i] = MTUWIDTH_G(v); 5632 } 5633 } 5634 5635 /** 5636 * t4_read_cong_tbl - reads the congestion control table 5637 * @adap: the adapter 5638 * @incr: where to store the alpha values 5639 * 5640 * Reads the additive increments programmed into the HW congestion 5641 * control table. 5642 */ 5643 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5644 { 5645 unsigned int mtu, w; 5646 5647 for (mtu = 0; mtu < NMTUS; ++mtu) 5648 for (w = 0; w < NCCTRL_WIN; ++w) { 5649 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5650 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5651 incr[mtu][w] = (u16)t4_read_reg(adap, 5652 TP_CCTRL_TABLE_A) & 0x1fff; 5653 } 5654 } 5655 5656 /** 5657 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5658 * @adap: the adapter 5659 * @addr: the indirect TP register address 5660 * @mask: specifies the field within the register to modify 5661 * @val: new value for the field 5662 * 5663 * Sets a field of an indirect TP register to the given value. 5664 */ 5665 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5666 unsigned int mask, unsigned int val) 5667 { 5668 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5669 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5670 t4_write_reg(adap, TP_PIO_DATA_A, val); 5671 } 5672 5673 /** 5674 * init_cong_ctrl - initialize congestion control parameters 5675 * @a: the alpha values for congestion control 5676 * @b: the beta values for congestion control 5677 * 5678 * Initialize the congestion control parameters. 5679 */ 5680 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5681 { 5682 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5683 a[9] = 2; 5684 a[10] = 3; 5685 a[11] = 4; 5686 a[12] = 5; 5687 a[13] = 6; 5688 a[14] = 7; 5689 a[15] = 8; 5690 a[16] = 9; 5691 a[17] = 10; 5692 a[18] = 14; 5693 a[19] = 17; 5694 a[20] = 21; 5695 a[21] = 25; 5696 a[22] = 30; 5697 a[23] = 35; 5698 a[24] = 45; 5699 a[25] = 60; 5700 a[26] = 80; 5701 a[27] = 100; 5702 a[28] = 200; 5703 a[29] = 300; 5704 a[30] = 400; 5705 a[31] = 500; 5706 5707 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5708 b[9] = b[10] = 1; 5709 b[11] = b[12] = 2; 5710 b[13] = b[14] = b[15] = b[16] = 3; 5711 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5712 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5713 b[28] = b[29] = 6; 5714 b[30] = b[31] = 7; 5715 } 5716 5717 /* The minimum additive increment value for the congestion control table */ 5718 #define CC_MIN_INCR 2U 5719 5720 /** 5721 * t4_load_mtus - write the MTU and congestion control HW tables 5722 * @adap: the adapter 5723 * @mtus: the values for the MTU table 5724 * @alpha: the values for the congestion control alpha parameter 5725 * @beta: the values for the congestion control beta parameter 5726 * 5727 * Write the HW MTU table with the supplied MTUs and the high-speed 5728 * congestion control table with the supplied alpha, beta, and MTUs. 5729 * We write the two tables together because the additive increments 5730 * depend on the MTUs. 5731 */ 5732 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5733 const unsigned short *alpha, const unsigned short *beta) 5734 { 5735 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5736 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5737 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5738 28672, 40960, 57344, 81920, 114688, 163840, 229376 5739 }; 5740 5741 unsigned int i, w; 5742 5743 for (i = 0; i < NMTUS; ++i) { 5744 unsigned int mtu = mtus[i]; 5745 unsigned int log2 = fls(mtu); 5746 5747 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5748 log2--; 5749 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5750 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5751 5752 for (w = 0; w < NCCTRL_WIN; ++w) { 5753 unsigned int inc; 5754 5755 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5756 CC_MIN_INCR); 5757 5758 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5759 (w << 16) | (beta[w] << 13) | inc); 5760 } 5761 } 5762 } 5763 5764 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5765 * clocks. The formula is 5766 * 5767 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5768 * 5769 * which is equivalent to 5770 * 5771 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5772 */ 5773 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5774 { 5775 u64 v = bytes256 * adap->params.vpd.cclk; 5776 5777 return v * 62 + v / 2; 5778 } 5779 5780 /** 5781 * t4_get_chan_txrate - get the current per channel Tx rates 5782 * @adap: the adapter 5783 * @nic_rate: rates for NIC traffic 5784 * @ofld_rate: rates for offloaded traffic 5785 * 5786 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5787 * for each channel. 5788 */ 5789 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5790 { 5791 u32 v; 5792 5793 v = t4_read_reg(adap, TP_TX_TRATE_A); 5794 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5795 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5796 if (adap->params.arch.nchan == NCHAN) { 5797 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5798 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5799 } 5800 5801 v = t4_read_reg(adap, TP_TX_ORATE_A); 5802 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5803 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5804 if (adap->params.arch.nchan == NCHAN) { 5805 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5806 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5807 } 5808 } 5809 5810 /** 5811 * t4_set_trace_filter - configure one of the tracing filters 5812 * @adap: the adapter 5813 * @tp: the desired trace filter parameters 5814 * @idx: which filter to configure 5815 * @enable: whether to enable or disable the filter 5816 * 5817 * Configures one of the tracing filters available in HW. If @enable is 5818 * %0 @tp is not examined and may be %NULL. The user is responsible to 5819 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5820 */ 5821 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5822 int idx, int enable) 5823 { 5824 int i, ofst = idx * 4; 5825 u32 data_reg, mask_reg, cfg; 5826 u32 multitrc = TRCMULTIFILTER_F; 5827 5828 if (!enable) { 5829 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5830 return 0; 5831 } 5832 5833 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5834 if (cfg & TRCMULTIFILTER_F) { 5835 /* If multiple tracers are enabled, then maximum 5836 * capture size is 2.5KB (FIFO size of a single channel) 5837 * minus 2 flits for CPL_TRACE_PKT header. 5838 */ 5839 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5840 return -EINVAL; 5841 } else { 5842 /* If multiple tracers are disabled, to avoid deadlocks 5843 * maximum packet capture size of 9600 bytes is recommended. 5844 * Also in this mode, only trace0 can be enabled and running. 5845 */ 5846 multitrc = 0; 5847 if (tp->snap_len > 9600 || idx) 5848 return -EINVAL; 5849 } 5850 5851 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5852 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5853 tp->min_len > TFMINPKTSIZE_M) 5854 return -EINVAL; 5855 5856 /* stop the tracer we'll be changing */ 5857 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5858 5859 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5860 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5861 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5862 5863 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5864 t4_write_reg(adap, data_reg, tp->data[i]); 5865 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5866 } 5867 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5868 TFCAPTUREMAX_V(tp->snap_len) | 5869 TFMINPKTSIZE_V(tp->min_len)); 5870 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5871 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5872 (is_t4(adap->params.chip) ? 5873 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 5874 T5_TFPORT_V(tp->port) | T5_TFEN_F | 5875 T5_TFINVERTMATCH_V(tp->invert))); 5876 5877 return 0; 5878 } 5879 5880 /** 5881 * t4_get_trace_filter - query one of the tracing filters 5882 * @adap: the adapter 5883 * @tp: the current trace filter parameters 5884 * @idx: which trace filter to query 5885 * @enabled: non-zero if the filter is enabled 5886 * 5887 * Returns the current settings of one of the HW tracing filters. 5888 */ 5889 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 5890 int *enabled) 5891 { 5892 u32 ctla, ctlb; 5893 int i, ofst = idx * 4; 5894 u32 data_reg, mask_reg; 5895 5896 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 5897 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 5898 5899 if (is_t4(adap->params.chip)) { 5900 *enabled = !!(ctla & TFEN_F); 5901 tp->port = TFPORT_G(ctla); 5902 tp->invert = !!(ctla & TFINVERTMATCH_F); 5903 } else { 5904 *enabled = !!(ctla & T5_TFEN_F); 5905 tp->port = T5_TFPORT_G(ctla); 5906 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 5907 } 5908 tp->snap_len = TFCAPTUREMAX_G(ctlb); 5909 tp->min_len = TFMINPKTSIZE_G(ctlb); 5910 tp->skip_ofst = TFOFFSET_G(ctla); 5911 tp->skip_len = TFLENGTH_G(ctla); 5912 5913 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 5914 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 5915 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 5916 5917 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5918 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 5919 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 5920 } 5921 } 5922 5923 /** 5924 * t4_pmtx_get_stats - returns the HW stats from PMTX 5925 * @adap: the adapter 5926 * @cnt: where to store the count statistics 5927 * @cycles: where to store the cycle statistics 5928 * 5929 * Returns performance statistics from PMTX. 5930 */ 5931 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5932 { 5933 int i; 5934 u32 data[2]; 5935 5936 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5937 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 5938 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 5939 if (is_t4(adap->params.chip)) { 5940 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 5941 } else { 5942 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 5943 PM_TX_DBG_DATA_A, data, 2, 5944 PM_TX_DBG_STAT_MSB_A); 5945 cycles[i] = (((u64)data[0] << 32) | data[1]); 5946 } 5947 } 5948 } 5949 5950 /** 5951 * t4_pmrx_get_stats - returns the HW stats from PMRX 5952 * @adap: the adapter 5953 * @cnt: where to store the count statistics 5954 * @cycles: where to store the cycle statistics 5955 * 5956 * Returns performance statistics from PMRX. 5957 */ 5958 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5959 { 5960 int i; 5961 u32 data[2]; 5962 5963 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5964 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 5965 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 5966 if (is_t4(adap->params.chip)) { 5967 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 5968 } else { 5969 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 5970 PM_RX_DBG_DATA_A, data, 2, 5971 PM_RX_DBG_STAT_MSB_A); 5972 cycles[i] = (((u64)data[0] << 32) | data[1]); 5973 } 5974 } 5975 } 5976 5977 /** 5978 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 5979 * @adap: the adapter 5980 * @pidx: the port index 5981 * 5982 * Computes and returns a bitmap indicating which MPS buffer groups are 5983 * associated with the given Port. Bit i is set if buffer group i is 5984 * used by the Port. 5985 */ 5986 static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 5987 int pidx) 5988 { 5989 unsigned int chip_version, nports; 5990 5991 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 5992 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 5993 5994 switch (chip_version) { 5995 case CHELSIO_T4: 5996 case CHELSIO_T5: 5997 switch (nports) { 5998 case 1: return 0xf; 5999 case 2: return 3 << (2 * pidx); 6000 case 4: return 1 << pidx; 6001 } 6002 break; 6003 6004 case CHELSIO_T6: 6005 switch (nports) { 6006 case 2: return 1 << (2 * pidx); 6007 } 6008 break; 6009 } 6010 6011 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 6012 chip_version, nports); 6013 6014 return 0; 6015 } 6016 6017 /** 6018 * t4_get_mps_bg_map - return the buffer groups associated with a port 6019 * @adapter: the adapter 6020 * @pidx: the port index 6021 * 6022 * Returns a bitmap indicating which MPS buffer groups are associated 6023 * with the given Port. Bit i is set if buffer group i is used by the 6024 * Port. 6025 */ 6026 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 6027 { 6028 u8 *mps_bg_map; 6029 unsigned int nports; 6030 6031 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6032 if (pidx >= nports) { 6033 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 6034 pidx, nports); 6035 return 0; 6036 } 6037 6038 /* If we've already retrieved/computed this, just return the result. 6039 */ 6040 mps_bg_map = adapter->params.mps_bg_map; 6041 if (mps_bg_map[pidx]) 6042 return mps_bg_map[pidx]; 6043 6044 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 6045 * If we're talking to such Firmware, let it tell us. If the new 6046 * API isn't supported, revert back to old hardcoded way. The value 6047 * obtained from Firmware is encoded in below format: 6048 * 6049 * val = (( MPSBGMAP[Port 3] << 24 ) | 6050 * ( MPSBGMAP[Port 2] << 16 ) | 6051 * ( MPSBGMAP[Port 1] << 8 ) | 6052 * ( MPSBGMAP[Port 0] << 0 )) 6053 */ 6054 if (adapter->flags & FW_OK) { 6055 u32 param, val; 6056 int ret; 6057 6058 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6059 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 6060 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6061 0, 1, ¶m, &val); 6062 if (!ret) { 6063 int p; 6064 6065 /* Store the BG Map for all of the Ports in order to 6066 * avoid more calls to the Firmware in the future. 6067 */ 6068 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 6069 mps_bg_map[p] = val & 0xff; 6070 6071 return mps_bg_map[pidx]; 6072 } 6073 } 6074 6075 /* Either we're not talking to the Firmware or we're dealing with 6076 * older Firmware which doesn't support the new API to get the MPS 6077 * Buffer Group Map. Fall back to computing it ourselves. 6078 */ 6079 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 6080 return mps_bg_map[pidx]; 6081 } 6082 6083 /** 6084 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6085 * @adapter: the adapter 6086 * @pidx: the port index 6087 * 6088 * Returns a bitmap indicating which TP Ingress Channels are associated 6089 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6090 * the Port. 6091 */ 6092 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6093 { 6094 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6095 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6096 6097 if (pidx >= nports) { 6098 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6099 pidx, nports); 6100 return 0; 6101 } 6102 6103 switch (chip_version) { 6104 case CHELSIO_T4: 6105 case CHELSIO_T5: 6106 /* Note that this happens to be the same values as the MPS 6107 * Buffer Group Map for these Chips. But we replicate the code 6108 * here because they're really separate concepts. 6109 */ 6110 switch (nports) { 6111 case 1: return 0xf; 6112 case 2: return 3 << (2 * pidx); 6113 case 4: return 1 << pidx; 6114 } 6115 break; 6116 6117 case CHELSIO_T6: 6118 switch (nports) { 6119 case 1: 6120 case 2: return 1 << pidx; 6121 } 6122 break; 6123 } 6124 6125 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6126 chip_version, nports); 6127 return 0; 6128 } 6129 6130 /** 6131 * t4_get_port_type_description - return Port Type string description 6132 * @port_type: firmware Port Type enumeration 6133 */ 6134 const char *t4_get_port_type_description(enum fw_port_type port_type) 6135 { 6136 static const char *const port_type_description[] = { 6137 "Fiber_XFI", 6138 "Fiber_XAUI", 6139 "BT_SGMII", 6140 "BT_XFI", 6141 "BT_XAUI", 6142 "KX4", 6143 "CX4", 6144 "KX", 6145 "KR", 6146 "SFP", 6147 "BP_AP", 6148 "BP4_AP", 6149 "QSFP_10G", 6150 "QSA", 6151 "QSFP", 6152 "BP40_BA", 6153 "KR4_100G", 6154 "CR4_QSFP", 6155 "CR_QSFP", 6156 "CR2_QSFP", 6157 "SFP28", 6158 "KR_SFP28", 6159 "KR_XLAUI" 6160 }; 6161 6162 if (port_type < ARRAY_SIZE(port_type_description)) 6163 return port_type_description[port_type]; 6164 return "UNKNOWN"; 6165 } 6166 6167 /** 6168 * t4_get_port_stats_offset - collect port stats relative to a previous 6169 * snapshot 6170 * @adap: The adapter 6171 * @idx: The port 6172 * @stats: Current stats to fill 6173 * @offset: Previous stats snapshot 6174 */ 6175 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6176 struct port_stats *stats, 6177 struct port_stats *offset) 6178 { 6179 u64 *s, *o; 6180 int i; 6181 6182 t4_get_port_stats(adap, idx, stats); 6183 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6184 i < (sizeof(struct port_stats) / sizeof(u64)); 6185 i++, s++, o++) 6186 *s -= *o; 6187 } 6188 6189 /** 6190 * t4_get_port_stats - collect port statistics 6191 * @adap: the adapter 6192 * @idx: the port index 6193 * @p: the stats structure to fill 6194 * 6195 * Collect statistics related to the given port from HW. 6196 */ 6197 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6198 { 6199 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6200 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6201 6202 #define GET_STAT(name) \ 6203 t4_read_reg64(adap, \ 6204 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6205 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6206 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6207 6208 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6209 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6210 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6211 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6212 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6213 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6214 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6215 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6216 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6217 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6218 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6219 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6220 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6221 p->tx_drop = GET_STAT(TX_PORT_DROP); 6222 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6223 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6224 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6225 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6226 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6227 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6228 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6229 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6230 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6231 6232 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6233 if (stat_ctl & COUNTPAUSESTATTX_F) 6234 p->tx_frames_64 -= p->tx_pause; 6235 if (stat_ctl & COUNTPAUSEMCTX_F) 6236 p->tx_mcast_frames -= p->tx_pause; 6237 } 6238 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6239 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6240 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6241 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6242 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6243 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6244 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6245 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6246 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6247 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6248 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6249 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6250 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6251 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6252 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6253 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6254 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6255 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6256 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6257 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6258 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6259 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6260 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6261 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6262 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6263 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6264 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6265 6266 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6267 if (stat_ctl & COUNTPAUSESTATRX_F) 6268 p->rx_frames_64 -= p->rx_pause; 6269 if (stat_ctl & COUNTPAUSEMCRX_F) 6270 p->rx_mcast_frames -= p->rx_pause; 6271 } 6272 6273 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6274 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6275 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6276 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6277 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6278 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6279 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6280 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6281 6282 #undef GET_STAT 6283 #undef GET_STAT_COM 6284 } 6285 6286 /** 6287 * t4_get_lb_stats - collect loopback port statistics 6288 * @adap: the adapter 6289 * @idx: the loopback port index 6290 * @p: the stats structure to fill 6291 * 6292 * Return HW statistics for the given loopback port. 6293 */ 6294 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6295 { 6296 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6297 6298 #define GET_STAT(name) \ 6299 t4_read_reg64(adap, \ 6300 (is_t4(adap->params.chip) ? \ 6301 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6302 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6303 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6304 6305 p->octets = GET_STAT(BYTES); 6306 p->frames = GET_STAT(FRAMES); 6307 p->bcast_frames = GET_STAT(BCAST); 6308 p->mcast_frames = GET_STAT(MCAST); 6309 p->ucast_frames = GET_STAT(UCAST); 6310 p->error_frames = GET_STAT(ERROR); 6311 6312 p->frames_64 = GET_STAT(64B); 6313 p->frames_65_127 = GET_STAT(65B_127B); 6314 p->frames_128_255 = GET_STAT(128B_255B); 6315 p->frames_256_511 = GET_STAT(256B_511B); 6316 p->frames_512_1023 = GET_STAT(512B_1023B); 6317 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6318 p->frames_1519_max = GET_STAT(1519B_MAX); 6319 p->drop = GET_STAT(DROP_FRAMES); 6320 6321 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6322 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6323 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6324 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6325 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6326 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6327 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6328 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6329 6330 #undef GET_STAT 6331 #undef GET_STAT_COM 6332 } 6333 6334 /* t4_mk_filtdelwr - create a delete filter WR 6335 * @ftid: the filter ID 6336 * @wr: the filter work request to populate 6337 * @qid: ingress queue to receive the delete notification 6338 * 6339 * Creates a filter work request to delete the supplied filter. If @qid is 6340 * negative the delete notification is suppressed. 6341 */ 6342 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6343 { 6344 memset(wr, 0, sizeof(*wr)); 6345 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6346 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6347 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6348 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6349 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6350 if (qid >= 0) 6351 wr->rx_chan_rx_rpl_iq = 6352 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6353 } 6354 6355 #define INIT_CMD(var, cmd, rd_wr) do { \ 6356 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6357 FW_CMD_REQUEST_F | \ 6358 FW_CMD_##rd_wr##_F); \ 6359 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6360 } while (0) 6361 6362 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6363 u32 addr, u32 val) 6364 { 6365 u32 ldst_addrspace; 6366 struct fw_ldst_cmd c; 6367 6368 memset(&c, 0, sizeof(c)); 6369 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6370 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6371 FW_CMD_REQUEST_F | 6372 FW_CMD_WRITE_F | 6373 ldst_addrspace); 6374 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6375 c.u.addrval.addr = cpu_to_be32(addr); 6376 c.u.addrval.val = cpu_to_be32(val); 6377 6378 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6379 } 6380 6381 /** 6382 * t4_mdio_rd - read a PHY register through MDIO 6383 * @adap: the adapter 6384 * @mbox: mailbox to use for the FW command 6385 * @phy_addr: the PHY address 6386 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6387 * @reg: the register to read 6388 * @valp: where to store the value 6389 * 6390 * Issues a FW command through the given mailbox to read a PHY register. 6391 */ 6392 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6393 unsigned int mmd, unsigned int reg, u16 *valp) 6394 { 6395 int ret; 6396 u32 ldst_addrspace; 6397 struct fw_ldst_cmd c; 6398 6399 memset(&c, 0, sizeof(c)); 6400 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6401 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6402 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6403 ldst_addrspace); 6404 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6405 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6406 FW_LDST_CMD_MMD_V(mmd)); 6407 c.u.mdio.raddr = cpu_to_be16(reg); 6408 6409 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6410 if (ret == 0) 6411 *valp = be16_to_cpu(c.u.mdio.rval); 6412 return ret; 6413 } 6414 6415 /** 6416 * t4_mdio_wr - write a PHY register through MDIO 6417 * @adap: the adapter 6418 * @mbox: mailbox to use for the FW command 6419 * @phy_addr: the PHY address 6420 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6421 * @reg: the register to write 6422 * @valp: value to write 6423 * 6424 * Issues a FW command through the given mailbox to write a PHY register. 6425 */ 6426 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6427 unsigned int mmd, unsigned int reg, u16 val) 6428 { 6429 u32 ldst_addrspace; 6430 struct fw_ldst_cmd c; 6431 6432 memset(&c, 0, sizeof(c)); 6433 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6434 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6435 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6436 ldst_addrspace); 6437 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6438 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6439 FW_LDST_CMD_MMD_V(mmd)); 6440 c.u.mdio.raddr = cpu_to_be16(reg); 6441 c.u.mdio.rval = cpu_to_be16(val); 6442 6443 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6444 } 6445 6446 /** 6447 * t4_sge_decode_idma_state - decode the idma state 6448 * @adap: the adapter 6449 * @state: the state idma is stuck in 6450 */ 6451 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6452 { 6453 static const char * const t4_decode[] = { 6454 "IDMA_IDLE", 6455 "IDMA_PUSH_MORE_CPL_FIFO", 6456 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6457 "Not used", 6458 "IDMA_PHYSADDR_SEND_PCIEHDR", 6459 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6460 "IDMA_PHYSADDR_SEND_PAYLOAD", 6461 "IDMA_SEND_FIFO_TO_IMSG", 6462 "IDMA_FL_REQ_DATA_FL_PREP", 6463 "IDMA_FL_REQ_DATA_FL", 6464 "IDMA_FL_DROP", 6465 "IDMA_FL_H_REQ_HEADER_FL", 6466 "IDMA_FL_H_SEND_PCIEHDR", 6467 "IDMA_FL_H_PUSH_CPL_FIFO", 6468 "IDMA_FL_H_SEND_CPL", 6469 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6470 "IDMA_FL_H_SEND_IP_HDR", 6471 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6472 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6473 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6474 "IDMA_FL_D_SEND_PCIEHDR", 6475 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6476 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6477 "IDMA_FL_SEND_PCIEHDR", 6478 "IDMA_FL_PUSH_CPL_FIFO", 6479 "IDMA_FL_SEND_CPL", 6480 "IDMA_FL_SEND_PAYLOAD_FIRST", 6481 "IDMA_FL_SEND_PAYLOAD", 6482 "IDMA_FL_REQ_NEXT_DATA_FL", 6483 "IDMA_FL_SEND_NEXT_PCIEHDR", 6484 "IDMA_FL_SEND_PADDING", 6485 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6486 "IDMA_FL_SEND_FIFO_TO_IMSG", 6487 "IDMA_FL_REQ_DATAFL_DONE", 6488 "IDMA_FL_REQ_HEADERFL_DONE", 6489 }; 6490 static const char * const t5_decode[] = { 6491 "IDMA_IDLE", 6492 "IDMA_ALMOST_IDLE", 6493 "IDMA_PUSH_MORE_CPL_FIFO", 6494 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6495 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6496 "IDMA_PHYSADDR_SEND_PCIEHDR", 6497 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6498 "IDMA_PHYSADDR_SEND_PAYLOAD", 6499 "IDMA_SEND_FIFO_TO_IMSG", 6500 "IDMA_FL_REQ_DATA_FL", 6501 "IDMA_FL_DROP", 6502 "IDMA_FL_DROP_SEND_INC", 6503 "IDMA_FL_H_REQ_HEADER_FL", 6504 "IDMA_FL_H_SEND_PCIEHDR", 6505 "IDMA_FL_H_PUSH_CPL_FIFO", 6506 "IDMA_FL_H_SEND_CPL", 6507 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6508 "IDMA_FL_H_SEND_IP_HDR", 6509 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6510 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6511 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6512 "IDMA_FL_D_SEND_PCIEHDR", 6513 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6514 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6515 "IDMA_FL_SEND_PCIEHDR", 6516 "IDMA_FL_PUSH_CPL_FIFO", 6517 "IDMA_FL_SEND_CPL", 6518 "IDMA_FL_SEND_PAYLOAD_FIRST", 6519 "IDMA_FL_SEND_PAYLOAD", 6520 "IDMA_FL_REQ_NEXT_DATA_FL", 6521 "IDMA_FL_SEND_NEXT_PCIEHDR", 6522 "IDMA_FL_SEND_PADDING", 6523 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6524 }; 6525 static const char * const t6_decode[] = { 6526 "IDMA_IDLE", 6527 "IDMA_PUSH_MORE_CPL_FIFO", 6528 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6529 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6530 "IDMA_PHYSADDR_SEND_PCIEHDR", 6531 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6532 "IDMA_PHYSADDR_SEND_PAYLOAD", 6533 "IDMA_FL_REQ_DATA_FL", 6534 "IDMA_FL_DROP", 6535 "IDMA_FL_DROP_SEND_INC", 6536 "IDMA_FL_H_REQ_HEADER_FL", 6537 "IDMA_FL_H_SEND_PCIEHDR", 6538 "IDMA_FL_H_PUSH_CPL_FIFO", 6539 "IDMA_FL_H_SEND_CPL", 6540 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6541 "IDMA_FL_H_SEND_IP_HDR", 6542 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6543 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6544 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6545 "IDMA_FL_D_SEND_PCIEHDR", 6546 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6547 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6548 "IDMA_FL_SEND_PCIEHDR", 6549 "IDMA_FL_PUSH_CPL_FIFO", 6550 "IDMA_FL_SEND_CPL", 6551 "IDMA_FL_SEND_PAYLOAD_FIRST", 6552 "IDMA_FL_SEND_PAYLOAD", 6553 "IDMA_FL_REQ_NEXT_DATA_FL", 6554 "IDMA_FL_SEND_NEXT_PCIEHDR", 6555 "IDMA_FL_SEND_PADDING", 6556 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6557 }; 6558 static const u32 sge_regs[] = { 6559 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6560 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6561 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6562 }; 6563 const char **sge_idma_decode; 6564 int sge_idma_decode_nstates; 6565 int i; 6566 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6567 6568 /* Select the right set of decode strings to dump depending on the 6569 * adapter chip type. 6570 */ 6571 switch (chip_version) { 6572 case CHELSIO_T4: 6573 sge_idma_decode = (const char **)t4_decode; 6574 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6575 break; 6576 6577 case CHELSIO_T5: 6578 sge_idma_decode = (const char **)t5_decode; 6579 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6580 break; 6581 6582 case CHELSIO_T6: 6583 sge_idma_decode = (const char **)t6_decode; 6584 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6585 break; 6586 6587 default: 6588 dev_err(adapter->pdev_dev, 6589 "Unsupported chip version %d\n", chip_version); 6590 return; 6591 } 6592 6593 if (is_t4(adapter->params.chip)) { 6594 sge_idma_decode = (const char **)t4_decode; 6595 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6596 } else { 6597 sge_idma_decode = (const char **)t5_decode; 6598 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6599 } 6600 6601 if (state < sge_idma_decode_nstates) 6602 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6603 else 6604 CH_WARN(adapter, "idma state %d unknown\n", state); 6605 6606 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6607 CH_WARN(adapter, "SGE register %#x value %#x\n", 6608 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6609 } 6610 6611 /** 6612 * t4_sge_ctxt_flush - flush the SGE context cache 6613 * @adap: the adapter 6614 * @mbox: mailbox to use for the FW command 6615 * @ctx_type: Egress or Ingress 6616 * 6617 * Issues a FW command through the given mailbox to flush the 6618 * SGE context cache. 6619 */ 6620 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 6621 { 6622 int ret; 6623 u32 ldst_addrspace; 6624 struct fw_ldst_cmd c; 6625 6626 memset(&c, 0, sizeof(c)); 6627 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ? 6628 FW_LDST_ADDRSPC_SGE_EGRC : 6629 FW_LDST_ADDRSPC_SGE_INGC); 6630 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6631 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6632 ldst_addrspace); 6633 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6634 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6635 6636 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6637 return ret; 6638 } 6639 6640 /** 6641 * t4_fw_hello - establish communication with FW 6642 * @adap: the adapter 6643 * @mbox: mailbox to use for the FW command 6644 * @evt_mbox: mailbox to receive async FW events 6645 * @master: specifies the caller's willingness to be the device master 6646 * @state: returns the current device state (if non-NULL) 6647 * 6648 * Issues a command to establish communication with FW. Returns either 6649 * an error (negative integer) or the mailbox of the Master PF. 6650 */ 6651 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6652 enum dev_master master, enum dev_state *state) 6653 { 6654 int ret; 6655 struct fw_hello_cmd c; 6656 u32 v; 6657 unsigned int master_mbox; 6658 int retries = FW_CMD_HELLO_RETRIES; 6659 6660 retry: 6661 memset(&c, 0, sizeof(c)); 6662 INIT_CMD(c, HELLO, WRITE); 6663 c.err_to_clearinit = cpu_to_be32( 6664 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6665 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6666 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6667 mbox : FW_HELLO_CMD_MBMASTER_M) | 6668 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6669 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6670 FW_HELLO_CMD_CLEARINIT_F); 6671 6672 /* 6673 * Issue the HELLO command to the firmware. If it's not successful 6674 * but indicates that we got a "busy" or "timeout" condition, retry 6675 * the HELLO until we exhaust our retry limit. If we do exceed our 6676 * retry limit, check to see if the firmware left us any error 6677 * information and report that if so. 6678 */ 6679 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6680 if (ret < 0) { 6681 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6682 goto retry; 6683 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6684 t4_report_fw_error(adap); 6685 return ret; 6686 } 6687 6688 v = be32_to_cpu(c.err_to_clearinit); 6689 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6690 if (state) { 6691 if (v & FW_HELLO_CMD_ERR_F) 6692 *state = DEV_STATE_ERR; 6693 else if (v & FW_HELLO_CMD_INIT_F) 6694 *state = DEV_STATE_INIT; 6695 else 6696 *state = DEV_STATE_UNINIT; 6697 } 6698 6699 /* 6700 * If we're not the Master PF then we need to wait around for the 6701 * Master PF Driver to finish setting up the adapter. 6702 * 6703 * Note that we also do this wait if we're a non-Master-capable PF and 6704 * there is no current Master PF; a Master PF may show up momentarily 6705 * and we wouldn't want to fail pointlessly. (This can happen when an 6706 * OS loads lots of different drivers rapidly at the same time). In 6707 * this case, the Master PF returned by the firmware will be 6708 * PCIE_FW_MASTER_M so the test below will work ... 6709 */ 6710 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6711 master_mbox != mbox) { 6712 int waiting = FW_CMD_HELLO_TIMEOUT; 6713 6714 /* 6715 * Wait for the firmware to either indicate an error or 6716 * initialized state. If we see either of these we bail out 6717 * and report the issue to the caller. If we exhaust the 6718 * "hello timeout" and we haven't exhausted our retries, try 6719 * again. Otherwise bail with a timeout error. 6720 */ 6721 for (;;) { 6722 u32 pcie_fw; 6723 6724 msleep(50); 6725 waiting -= 50; 6726 6727 /* 6728 * If neither Error nor Initialialized are indicated 6729 * by the firmware keep waiting till we exaust our 6730 * timeout ... and then retry if we haven't exhausted 6731 * our retries ... 6732 */ 6733 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6734 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6735 if (waiting <= 0) { 6736 if (retries-- > 0) 6737 goto retry; 6738 6739 return -ETIMEDOUT; 6740 } 6741 continue; 6742 } 6743 6744 /* 6745 * We either have an Error or Initialized condition 6746 * report errors preferentially. 6747 */ 6748 if (state) { 6749 if (pcie_fw & PCIE_FW_ERR_F) 6750 *state = DEV_STATE_ERR; 6751 else if (pcie_fw & PCIE_FW_INIT_F) 6752 *state = DEV_STATE_INIT; 6753 } 6754 6755 /* 6756 * If we arrived before a Master PF was selected and 6757 * there's not a valid Master PF, grab its identity 6758 * for our caller. 6759 */ 6760 if (master_mbox == PCIE_FW_MASTER_M && 6761 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6762 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6763 break; 6764 } 6765 } 6766 6767 return master_mbox; 6768 } 6769 6770 /** 6771 * t4_fw_bye - end communication with FW 6772 * @adap: the adapter 6773 * @mbox: mailbox to use for the FW command 6774 * 6775 * Issues a command to terminate communication with FW. 6776 */ 6777 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6778 { 6779 struct fw_bye_cmd c; 6780 6781 memset(&c, 0, sizeof(c)); 6782 INIT_CMD(c, BYE, WRITE); 6783 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6784 } 6785 6786 /** 6787 * t4_init_cmd - ask FW to initialize the device 6788 * @adap: the adapter 6789 * @mbox: mailbox to use for the FW command 6790 * 6791 * Issues a command to FW to partially initialize the device. This 6792 * performs initialization that generally doesn't depend on user input. 6793 */ 6794 int t4_early_init(struct adapter *adap, unsigned int mbox) 6795 { 6796 struct fw_initialize_cmd c; 6797 6798 memset(&c, 0, sizeof(c)); 6799 INIT_CMD(c, INITIALIZE, WRITE); 6800 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6801 } 6802 6803 /** 6804 * t4_fw_reset - issue a reset to FW 6805 * @adap: the adapter 6806 * @mbox: mailbox to use for the FW command 6807 * @reset: specifies the type of reset to perform 6808 * 6809 * Issues a reset command of the specified type to FW. 6810 */ 6811 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 6812 { 6813 struct fw_reset_cmd c; 6814 6815 memset(&c, 0, sizeof(c)); 6816 INIT_CMD(c, RESET, WRITE); 6817 c.val = cpu_to_be32(reset); 6818 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6819 } 6820 6821 /** 6822 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 6823 * @adap: the adapter 6824 * @mbox: mailbox to use for the FW RESET command (if desired) 6825 * @force: force uP into RESET even if FW RESET command fails 6826 * 6827 * Issues a RESET command to firmware (if desired) with a HALT indication 6828 * and then puts the microprocessor into RESET state. The RESET command 6829 * will only be issued if a legitimate mailbox is provided (mbox <= 6830 * PCIE_FW_MASTER_M). 6831 * 6832 * This is generally used in order for the host to safely manipulate the 6833 * adapter without fear of conflicting with whatever the firmware might 6834 * be doing. The only way out of this state is to RESTART the firmware 6835 * ... 6836 */ 6837 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 6838 { 6839 int ret = 0; 6840 6841 /* 6842 * If a legitimate mailbox is provided, issue a RESET command 6843 * with a HALT indication. 6844 */ 6845 if (mbox <= PCIE_FW_MASTER_M) { 6846 struct fw_reset_cmd c; 6847 6848 memset(&c, 0, sizeof(c)); 6849 INIT_CMD(c, RESET, WRITE); 6850 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 6851 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 6852 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6853 } 6854 6855 /* 6856 * Normally we won't complete the operation if the firmware RESET 6857 * command fails but if our caller insists we'll go ahead and put the 6858 * uP into RESET. This can be useful if the firmware is hung or even 6859 * missing ... We'll have to take the risk of putting the uP into 6860 * RESET without the cooperation of firmware in that case. 6861 * 6862 * We also force the firmware's HALT flag to be on in case we bypassed 6863 * the firmware RESET command above or we're dealing with old firmware 6864 * which doesn't have the HALT capability. This will serve as a flag 6865 * for the incoming firmware to know that it's coming out of a HALT 6866 * rather than a RESET ... if it's new enough to understand that ... 6867 */ 6868 if (ret == 0 || force) { 6869 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 6870 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 6871 PCIE_FW_HALT_F); 6872 } 6873 6874 /* 6875 * And we always return the result of the firmware RESET command 6876 * even when we force the uP into RESET ... 6877 */ 6878 return ret; 6879 } 6880 6881 /** 6882 * t4_fw_restart - restart the firmware by taking the uP out of RESET 6883 * @adap: the adapter 6884 * @reset: if we want to do a RESET to restart things 6885 * 6886 * Restart firmware previously halted by t4_fw_halt(). On successful 6887 * return the previous PF Master remains as the new PF Master and there 6888 * is no need to issue a new HELLO command, etc. 6889 * 6890 * We do this in two ways: 6891 * 6892 * 1. If we're dealing with newer firmware we'll simply want to take 6893 * the chip's microprocessor out of RESET. This will cause the 6894 * firmware to start up from its start vector. And then we'll loop 6895 * until the firmware indicates it's started again (PCIE_FW.HALT 6896 * reset to 0) or we timeout. 6897 * 6898 * 2. If we're dealing with older firmware then we'll need to RESET 6899 * the chip since older firmware won't recognize the PCIE_FW.HALT 6900 * flag and automatically RESET itself on startup. 6901 */ 6902 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 6903 { 6904 if (reset) { 6905 /* 6906 * Since we're directing the RESET instead of the firmware 6907 * doing it automatically, we need to clear the PCIE_FW.HALT 6908 * bit. 6909 */ 6910 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 6911 6912 /* 6913 * If we've been given a valid mailbox, first try to get the 6914 * firmware to do the RESET. If that works, great and we can 6915 * return success. Otherwise, if we haven't been given a 6916 * valid mailbox or the RESET command failed, fall back to 6917 * hitting the chip with a hammer. 6918 */ 6919 if (mbox <= PCIE_FW_MASTER_M) { 6920 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6921 msleep(100); 6922 if (t4_fw_reset(adap, mbox, 6923 PIORST_F | PIORSTMODE_F) == 0) 6924 return 0; 6925 } 6926 6927 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 6928 msleep(2000); 6929 } else { 6930 int ms; 6931 6932 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6933 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 6934 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 6935 return 0; 6936 msleep(100); 6937 ms += 100; 6938 } 6939 return -ETIMEDOUT; 6940 } 6941 return 0; 6942 } 6943 6944 /** 6945 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 6946 * @adap: the adapter 6947 * @mbox: mailbox to use for the FW RESET command (if desired) 6948 * @fw_data: the firmware image to write 6949 * @size: image size 6950 * @force: force upgrade even if firmware doesn't cooperate 6951 * 6952 * Perform all of the steps necessary for upgrading an adapter's 6953 * firmware image. Normally this requires the cooperation of the 6954 * existing firmware in order to halt all existing activities 6955 * but if an invalid mailbox token is passed in we skip that step 6956 * (though we'll still put the adapter microprocessor into RESET in 6957 * that case). 6958 * 6959 * On successful return the new firmware will have been loaded and 6960 * the adapter will have been fully RESET losing all previous setup 6961 * state. On unsuccessful return the adapter may be completely hosed ... 6962 * positive errno indicates that the adapter is ~probably~ intact, a 6963 * negative errno indicates that things are looking bad ... 6964 */ 6965 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 6966 const u8 *fw_data, unsigned int size, int force) 6967 { 6968 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 6969 int reset, ret; 6970 6971 if (!t4_fw_matches_chip(adap, fw_hdr)) 6972 return -EINVAL; 6973 6974 /* Disable FW_OK flag so that mbox commands with FW_OK flag set 6975 * wont be sent when we are flashing FW. 6976 */ 6977 adap->flags &= ~FW_OK; 6978 6979 ret = t4_fw_halt(adap, mbox, force); 6980 if (ret < 0 && !force) 6981 goto out; 6982 6983 ret = t4_load_fw(adap, fw_data, size); 6984 if (ret < 0) 6985 goto out; 6986 6987 /* 6988 * If there was a Firmware Configuration File stored in FLASH, 6989 * there's a good chance that it won't be compatible with the new 6990 * Firmware. In order to prevent difficult to diagnose adapter 6991 * initialization issues, we clear out the Firmware Configuration File 6992 * portion of the FLASH . The user will need to re-FLASH a new 6993 * Firmware Configuration File which is compatible with the new 6994 * Firmware if that's desired. 6995 */ 6996 (void)t4_load_cfg(adap, NULL, 0); 6997 6998 /* 6999 * Older versions of the firmware don't understand the new 7000 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 7001 * restart. So for newly loaded older firmware we'll have to do the 7002 * RESET for it so it starts up on a clean slate. We can tell if 7003 * the newly loaded firmware will handle this right by checking 7004 * its header flags to see if it advertises the capability. 7005 */ 7006 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 7007 ret = t4_fw_restart(adap, mbox, reset); 7008 7009 /* Grab potentially new Firmware Device Log parameters so we can see 7010 * how healthy the new Firmware is. It's okay to contact the new 7011 * Firmware for these parameters even though, as far as it's 7012 * concerned, we've never said "HELLO" to it ... 7013 */ 7014 (void)t4_init_devlog_params(adap); 7015 out: 7016 adap->flags |= FW_OK; 7017 return ret; 7018 } 7019 7020 /** 7021 * t4_fl_pkt_align - return the fl packet alignment 7022 * @adap: the adapter 7023 * 7024 * T4 has a single field to specify the packing and padding boundary. 7025 * T5 onwards has separate fields for this and hence the alignment for 7026 * next packet offset is maximum of these two. 7027 * 7028 */ 7029 int t4_fl_pkt_align(struct adapter *adap) 7030 { 7031 u32 sge_control, sge_control2; 7032 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 7033 7034 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 7035 7036 /* T4 uses a single control field to specify both the PCIe Padding and 7037 * Packing Boundary. T5 introduced the ability to specify these 7038 * separately. The actual Ingress Packet Data alignment boundary 7039 * within Packed Buffer Mode is the maximum of these two 7040 * specifications. (Note that it makes no real practical sense to 7041 * have the Pading Boudary be larger than the Packing Boundary but you 7042 * could set the chip up that way and, in fact, legacy T4 code would 7043 * end doing this because it would initialize the Padding Boundary and 7044 * leave the Packing Boundary initialized to 0 (16 bytes).) 7045 * Padding Boundary values in T6 starts from 8B, 7046 * where as it is 32B for T4 and T5. 7047 */ 7048 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 7049 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 7050 else 7051 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 7052 7053 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 7054 7055 fl_align = ingpadboundary; 7056 if (!is_t4(adap->params.chip)) { 7057 /* T5 has a weird interpretation of one of the PCIe Packing 7058 * Boundary values. No idea why ... 7059 */ 7060 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 7061 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 7062 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 7063 ingpackboundary = 16; 7064 else 7065 ingpackboundary = 1 << (ingpackboundary + 7066 INGPACKBOUNDARY_SHIFT_X); 7067 7068 fl_align = max(ingpadboundary, ingpackboundary); 7069 } 7070 return fl_align; 7071 } 7072 7073 /** 7074 * t4_fixup_host_params - fix up host-dependent parameters 7075 * @adap: the adapter 7076 * @page_size: the host's Base Page Size 7077 * @cache_line_size: the host's Cache Line Size 7078 * 7079 * Various registers in T4 contain values which are dependent on the 7080 * host's Base Page and Cache Line Sizes. This function will fix all of 7081 * those registers with the appropriate values as passed in ... 7082 */ 7083 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 7084 unsigned int cache_line_size) 7085 { 7086 unsigned int page_shift = fls(page_size) - 1; 7087 unsigned int sge_hps = page_shift - 10; 7088 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7089 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7090 unsigned int fl_align_log = fls(fl_align) - 1; 7091 7092 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 7093 HOSTPAGESIZEPF0_V(sge_hps) | 7094 HOSTPAGESIZEPF1_V(sge_hps) | 7095 HOSTPAGESIZEPF2_V(sge_hps) | 7096 HOSTPAGESIZEPF3_V(sge_hps) | 7097 HOSTPAGESIZEPF4_V(sge_hps) | 7098 HOSTPAGESIZEPF5_V(sge_hps) | 7099 HOSTPAGESIZEPF6_V(sge_hps) | 7100 HOSTPAGESIZEPF7_V(sge_hps)); 7101 7102 if (is_t4(adap->params.chip)) { 7103 t4_set_reg_field(adap, SGE_CONTROL_A, 7104 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7105 EGRSTATUSPAGESIZE_F, 7106 INGPADBOUNDARY_V(fl_align_log - 7107 INGPADBOUNDARY_SHIFT_X) | 7108 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7109 } else { 7110 unsigned int pack_align; 7111 unsigned int ingpad, ingpack; 7112 unsigned int pcie_cap; 7113 7114 /* T5 introduced the separation of the Free List Padding and 7115 * Packing Boundaries. Thus, we can select a smaller Padding 7116 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7117 * Bandwidth, and use a Packing Boundary which is large enough 7118 * to avoid false sharing between CPUs, etc. 7119 * 7120 * For the PCI Link, the smaller the Padding Boundary the 7121 * better. For the Memory Controller, a smaller Padding 7122 * Boundary is better until we cross under the Memory Line 7123 * Size (the minimum unit of transfer to/from Memory). If we 7124 * have a Padding Boundary which is smaller than the Memory 7125 * Line Size, that'll involve a Read-Modify-Write cycle on the 7126 * Memory Controller which is never good. 7127 */ 7128 7129 /* We want the Packing Boundary to be based on the Cache Line 7130 * Size in order to help avoid False Sharing performance 7131 * issues between CPUs, etc. We also want the Packing 7132 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7133 * get best performance when the Packing Boundary is a 7134 * multiple of the Maximum Payload Size. 7135 */ 7136 pack_align = fl_align; 7137 pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP); 7138 if (pcie_cap) { 7139 unsigned int mps, mps_log; 7140 u16 devctl; 7141 7142 /* The PCIe Device Control Maximum Payload Size field 7143 * [bits 7:5] encodes sizes as powers of 2 starting at 7144 * 128 bytes. 7145 */ 7146 pci_read_config_word(adap->pdev, 7147 pcie_cap + PCI_EXP_DEVCTL, 7148 &devctl); 7149 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7150 mps = 1 << mps_log; 7151 if (mps > pack_align) 7152 pack_align = mps; 7153 } 7154 7155 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7156 * value for the Packing Boundary. This corresponds to 16 7157 * bytes instead of the expected 32 bytes. So if we want 32 7158 * bytes, the best we can really do is 64 bytes ... 7159 */ 7160 if (pack_align <= 16) { 7161 ingpack = INGPACKBOUNDARY_16B_X; 7162 fl_align = 16; 7163 } else if (pack_align == 32) { 7164 ingpack = INGPACKBOUNDARY_64B_X; 7165 fl_align = 64; 7166 } else { 7167 unsigned int pack_align_log = fls(pack_align) - 1; 7168 7169 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7170 fl_align = pack_align; 7171 } 7172 7173 /* Use the smallest Ingress Padding which isn't smaller than 7174 * the Memory Controller Read/Write Size. We'll take that as 7175 * being 8 bytes since we don't know of any system with a 7176 * wider Memory Controller Bus Width. 7177 */ 7178 if (is_t5(adap->params.chip)) 7179 ingpad = INGPADBOUNDARY_32B_X; 7180 else 7181 ingpad = T6_INGPADBOUNDARY_8B_X; 7182 7183 t4_set_reg_field(adap, SGE_CONTROL_A, 7184 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7185 EGRSTATUSPAGESIZE_F, 7186 INGPADBOUNDARY_V(ingpad) | 7187 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7188 t4_set_reg_field(adap, SGE_CONTROL2_A, 7189 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7190 INGPACKBOUNDARY_V(ingpack)); 7191 } 7192 /* 7193 * Adjust various SGE Free List Host Buffer Sizes. 7194 * 7195 * This is something of a crock since we're using fixed indices into 7196 * the array which are also known by the sge.c code and the T4 7197 * Firmware Configuration File. We need to come up with a much better 7198 * approach to managing this array. For now, the first four entries 7199 * are: 7200 * 7201 * 0: Host Page Size 7202 * 1: 64KB 7203 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7204 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7205 * 7206 * For the single-MTU buffers in unpacked mode we need to include 7207 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7208 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7209 * Padding boundary. All of these are accommodated in the Factory 7210 * Default Firmware Configuration File but we need to adjust it for 7211 * this host's cache line size. 7212 */ 7213 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7214 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7215 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7216 & ~(fl_align-1)); 7217 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7218 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7219 & ~(fl_align-1)); 7220 7221 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7222 7223 return 0; 7224 } 7225 7226 /** 7227 * t4_fw_initialize - ask FW to initialize the device 7228 * @adap: the adapter 7229 * @mbox: mailbox to use for the FW command 7230 * 7231 * Issues a command to FW to partially initialize the device. This 7232 * performs initialization that generally doesn't depend on user input. 7233 */ 7234 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7235 { 7236 struct fw_initialize_cmd c; 7237 7238 memset(&c, 0, sizeof(c)); 7239 INIT_CMD(c, INITIALIZE, WRITE); 7240 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7241 } 7242 7243 /** 7244 * t4_query_params_rw - query FW or device parameters 7245 * @adap: the adapter 7246 * @mbox: mailbox to use for the FW command 7247 * @pf: the PF 7248 * @vf: the VF 7249 * @nparams: the number of parameters 7250 * @params: the parameter names 7251 * @val: the parameter values 7252 * @rw: Write and read flag 7253 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7254 * 7255 * Reads the value of FW or device parameters. Up to 7 parameters can be 7256 * queried at once. 7257 */ 7258 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7259 unsigned int vf, unsigned int nparams, const u32 *params, 7260 u32 *val, int rw, bool sleep_ok) 7261 { 7262 int i, ret; 7263 struct fw_params_cmd c; 7264 __be32 *p = &c.param[0].mnem; 7265 7266 if (nparams > 7) 7267 return -EINVAL; 7268 7269 memset(&c, 0, sizeof(c)); 7270 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7271 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7272 FW_PARAMS_CMD_PFN_V(pf) | 7273 FW_PARAMS_CMD_VFN_V(vf)); 7274 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7275 7276 for (i = 0; i < nparams; i++) { 7277 *p++ = cpu_to_be32(*params++); 7278 if (rw) 7279 *p = cpu_to_be32(*(val + i)); 7280 p++; 7281 } 7282 7283 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7284 if (ret == 0) 7285 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7286 *val++ = be32_to_cpu(*p); 7287 return ret; 7288 } 7289 7290 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7291 unsigned int vf, unsigned int nparams, const u32 *params, 7292 u32 *val) 7293 { 7294 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7295 true); 7296 } 7297 7298 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7299 unsigned int vf, unsigned int nparams, const u32 *params, 7300 u32 *val) 7301 { 7302 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7303 false); 7304 } 7305 7306 /** 7307 * t4_set_params_timeout - sets FW or device parameters 7308 * @adap: the adapter 7309 * @mbox: mailbox to use for the FW command 7310 * @pf: the PF 7311 * @vf: the VF 7312 * @nparams: the number of parameters 7313 * @params: the parameter names 7314 * @val: the parameter values 7315 * @timeout: the timeout time 7316 * 7317 * Sets the value of FW or device parameters. Up to 7 parameters can be 7318 * specified at once. 7319 */ 7320 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7321 unsigned int pf, unsigned int vf, 7322 unsigned int nparams, const u32 *params, 7323 const u32 *val, int timeout) 7324 { 7325 struct fw_params_cmd c; 7326 __be32 *p = &c.param[0].mnem; 7327 7328 if (nparams > 7) 7329 return -EINVAL; 7330 7331 memset(&c, 0, sizeof(c)); 7332 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7333 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7334 FW_PARAMS_CMD_PFN_V(pf) | 7335 FW_PARAMS_CMD_VFN_V(vf)); 7336 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7337 7338 while (nparams--) { 7339 *p++ = cpu_to_be32(*params++); 7340 *p++ = cpu_to_be32(*val++); 7341 } 7342 7343 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7344 } 7345 7346 /** 7347 * t4_set_params - sets FW or device parameters 7348 * @adap: the adapter 7349 * @mbox: mailbox to use for the FW command 7350 * @pf: the PF 7351 * @vf: the VF 7352 * @nparams: the number of parameters 7353 * @params: the parameter names 7354 * @val: the parameter values 7355 * 7356 * Sets the value of FW or device parameters. Up to 7 parameters can be 7357 * specified at once. 7358 */ 7359 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7360 unsigned int vf, unsigned int nparams, const u32 *params, 7361 const u32 *val) 7362 { 7363 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7364 FW_CMD_MAX_TIMEOUT); 7365 } 7366 7367 /** 7368 * t4_cfg_pfvf - configure PF/VF resource limits 7369 * @adap: the adapter 7370 * @mbox: mailbox to use for the FW command 7371 * @pf: the PF being configured 7372 * @vf: the VF being configured 7373 * @txq: the max number of egress queues 7374 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7375 * @rxqi: the max number of interrupt-capable ingress queues 7376 * @rxq: the max number of interruptless ingress queues 7377 * @tc: the PCI traffic class 7378 * @vi: the max number of virtual interfaces 7379 * @cmask: the channel access rights mask for the PF/VF 7380 * @pmask: the port access rights mask for the PF/VF 7381 * @nexact: the maximum number of exact MPS filters 7382 * @rcaps: read capabilities 7383 * @wxcaps: write/execute capabilities 7384 * 7385 * Configures resource limits and capabilities for a physical or virtual 7386 * function. 7387 */ 7388 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7389 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7390 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7391 unsigned int vi, unsigned int cmask, unsigned int pmask, 7392 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7393 { 7394 struct fw_pfvf_cmd c; 7395 7396 memset(&c, 0, sizeof(c)); 7397 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7398 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7399 FW_PFVF_CMD_VFN_V(vf)); 7400 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7401 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7402 FW_PFVF_CMD_NIQ_V(rxq)); 7403 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7404 FW_PFVF_CMD_PMASK_V(pmask) | 7405 FW_PFVF_CMD_NEQ_V(txq)); 7406 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7407 FW_PFVF_CMD_NVI_V(vi) | 7408 FW_PFVF_CMD_NEXACTF_V(nexact)); 7409 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7410 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7411 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7412 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7413 } 7414 7415 /** 7416 * t4_alloc_vi - allocate a virtual interface 7417 * @adap: the adapter 7418 * @mbox: mailbox to use for the FW command 7419 * @port: physical port associated with the VI 7420 * @pf: the PF owning the VI 7421 * @vf: the VF owning the VI 7422 * @nmac: number of MAC addresses needed (1 to 5) 7423 * @mac: the MAC addresses of the VI 7424 * @rss_size: size of RSS table slice associated with this VI 7425 * 7426 * Allocates a virtual interface for the given physical port. If @mac is 7427 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7428 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7429 * stored consecutively so the space needed is @nmac * 6 bytes. 7430 * Returns a negative error number or the non-negative VI id. 7431 */ 7432 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7433 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7434 unsigned int *rss_size) 7435 { 7436 int ret; 7437 struct fw_vi_cmd c; 7438 7439 memset(&c, 0, sizeof(c)); 7440 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7441 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7442 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7443 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7444 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7445 c.nmac = nmac - 1; 7446 7447 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7448 if (ret) 7449 return ret; 7450 7451 if (mac) { 7452 memcpy(mac, c.mac, sizeof(c.mac)); 7453 switch (nmac) { 7454 case 5: 7455 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7456 case 4: 7457 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7458 case 3: 7459 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7460 case 2: 7461 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7462 } 7463 } 7464 if (rss_size) 7465 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7466 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7467 } 7468 7469 /** 7470 * t4_free_vi - free a virtual interface 7471 * @adap: the adapter 7472 * @mbox: mailbox to use for the FW command 7473 * @pf: the PF owning the VI 7474 * @vf: the VF owning the VI 7475 * @viid: virtual interface identifiler 7476 * 7477 * Free a previously allocated virtual interface. 7478 */ 7479 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7480 unsigned int vf, unsigned int viid) 7481 { 7482 struct fw_vi_cmd c; 7483 7484 memset(&c, 0, sizeof(c)); 7485 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7486 FW_CMD_REQUEST_F | 7487 FW_CMD_EXEC_F | 7488 FW_VI_CMD_PFN_V(pf) | 7489 FW_VI_CMD_VFN_V(vf)); 7490 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7491 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7492 7493 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7494 } 7495 7496 /** 7497 * t4_set_rxmode - set Rx properties of a virtual interface 7498 * @adap: the adapter 7499 * @mbox: mailbox to use for the FW command 7500 * @viid: the VI id 7501 * @mtu: the new MTU or -1 7502 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7503 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7504 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7505 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7506 * @sleep_ok: if true we may sleep while awaiting command completion 7507 * 7508 * Sets Rx properties of a virtual interface. 7509 */ 7510 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7511 int mtu, int promisc, int all_multi, int bcast, int vlanex, 7512 bool sleep_ok) 7513 { 7514 struct fw_vi_rxmode_cmd c; 7515 7516 /* convert to FW values */ 7517 if (mtu < 0) 7518 mtu = FW_RXMODE_MTU_NO_CHG; 7519 if (promisc < 0) 7520 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7521 if (all_multi < 0) 7522 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7523 if (bcast < 0) 7524 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7525 if (vlanex < 0) 7526 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7527 7528 memset(&c, 0, sizeof(c)); 7529 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7530 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7531 FW_VI_RXMODE_CMD_VIID_V(viid)); 7532 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7533 c.mtu_to_vlanexen = 7534 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7535 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7536 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7537 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7538 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7539 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7540 } 7541 7542 /** 7543 * t4_free_encap_mac_filt - frees MPS entry at given index 7544 * @adap: the adapter 7545 * @viid: the VI id 7546 * @idx: index of MPS entry to be freed 7547 * @sleep_ok: call is allowed to sleep 7548 * 7549 * Frees the MPS entry at supplied index 7550 * 7551 * Returns a negative error number or zero on success 7552 */ 7553 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, 7554 int idx, bool sleep_ok) 7555 { 7556 struct fw_vi_mac_exact *p; 7557 u8 addr[] = {0, 0, 0, 0, 0, 0}; 7558 struct fw_vi_mac_cmd c; 7559 int ret = 0; 7560 u32 exact; 7561 7562 memset(&c, 0, sizeof(c)); 7563 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7564 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7565 FW_CMD_EXEC_V(0) | 7566 FW_VI_MAC_CMD_VIID_V(viid)); 7567 exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC); 7568 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7569 exact | 7570 FW_CMD_LEN16_V(1)); 7571 p = c.u.exact; 7572 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7573 FW_VI_MAC_CMD_IDX_V(idx)); 7574 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7575 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7576 return ret; 7577 } 7578 7579 /** 7580 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam 7581 * @adap: the adapter 7582 * @viid: the VI id 7583 * @addr: the MAC address 7584 * @mask: the mask 7585 * @idx: index of the entry in mps tcam 7586 * @lookup_type: MAC address for inner (1) or outer (0) header 7587 * @port_id: the port index 7588 * @sleep_ok: call is allowed to sleep 7589 * 7590 * Removes the mac entry at the specified index using raw mac interface. 7591 * 7592 * Returns a negative error number on failure. 7593 */ 7594 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, 7595 const u8 *addr, const u8 *mask, unsigned int idx, 7596 u8 lookup_type, u8 port_id, bool sleep_ok) 7597 { 7598 struct fw_vi_mac_cmd c; 7599 struct fw_vi_mac_raw *p = &c.u.raw; 7600 u32 val; 7601 7602 memset(&c, 0, sizeof(c)); 7603 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7604 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7605 FW_CMD_EXEC_V(0) | 7606 FW_VI_MAC_CMD_VIID_V(viid)); 7607 val = FW_CMD_LEN16_V(1) | 7608 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7609 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7610 FW_CMD_LEN16_V(val)); 7611 7612 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) | 7613 FW_VI_MAC_ID_BASED_FREE); 7614 7615 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7616 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7617 DATAPORTNUM_V(port_id)); 7618 /* Lookup mask and port mask */ 7619 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7620 DATAPORTNUM_V(DATAPORTNUM_M)); 7621 7622 /* Copy the address and the mask */ 7623 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7624 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7625 7626 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7627 } 7628 7629 /** 7630 * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support 7631 * @adap: the adapter 7632 * @viid: the VI id 7633 * @mac: the MAC address 7634 * @mask: the mask 7635 * @vni: the VNI id for the tunnel protocol 7636 * @vni_mask: mask for the VNI id 7637 * @dip_hit: to enable DIP match for the MPS entry 7638 * @lookup_type: MAC address for inner (1) or outer (0) header 7639 * @sleep_ok: call is allowed to sleep 7640 * 7641 * Allocates an MPS entry with specified MAC address and VNI value. 7642 * 7643 * Returns a negative error number or the allocated index for this mac. 7644 */ 7645 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, 7646 const u8 *addr, const u8 *mask, unsigned int vni, 7647 unsigned int vni_mask, u8 dip_hit, u8 lookup_type, 7648 bool sleep_ok) 7649 { 7650 struct fw_vi_mac_cmd c; 7651 struct fw_vi_mac_vni *p = c.u.exact_vni; 7652 int ret = 0; 7653 u32 val; 7654 7655 memset(&c, 0, sizeof(c)); 7656 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7657 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7658 FW_VI_MAC_CMD_VIID_V(viid)); 7659 val = FW_CMD_LEN16_V(1) | 7660 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI); 7661 c.freemacs_to_len16 = cpu_to_be32(val); 7662 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7663 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 7664 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7665 memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); 7666 7667 p->lookup_type_to_vni = 7668 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) | 7669 FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) | 7670 FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type)); 7671 p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask)); 7672 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7673 if (ret == 0) 7674 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7675 return ret; 7676 } 7677 7678 /** 7679 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam 7680 * @adap: the adapter 7681 * @viid: the VI id 7682 * @mac: the MAC address 7683 * @mask: the mask 7684 * @idx: index at which to add this entry 7685 * @port_id: the port index 7686 * @lookup_type: MAC address for inner (1) or outer (0) header 7687 * @sleep_ok: call is allowed to sleep 7688 * 7689 * Adds the mac entry at the specified index using raw mac interface. 7690 * 7691 * Returns a negative error number or the allocated index for this mac. 7692 */ 7693 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, 7694 const u8 *addr, const u8 *mask, unsigned int idx, 7695 u8 lookup_type, u8 port_id, bool sleep_ok) 7696 { 7697 int ret = 0; 7698 struct fw_vi_mac_cmd c; 7699 struct fw_vi_mac_raw *p = &c.u.raw; 7700 u32 val; 7701 7702 memset(&c, 0, sizeof(c)); 7703 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7704 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7705 FW_VI_MAC_CMD_VIID_V(viid)); 7706 val = FW_CMD_LEN16_V(1) | 7707 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7708 c.freemacs_to_len16 = cpu_to_be32(val); 7709 7710 /* Specify that this is an inner mac address */ 7711 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx)); 7712 7713 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7714 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7715 DATAPORTNUM_V(port_id)); 7716 /* Lookup mask and port mask */ 7717 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7718 DATAPORTNUM_V(DATAPORTNUM_M)); 7719 7720 /* Copy the address and the mask */ 7721 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7722 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7723 7724 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7725 if (ret == 0) { 7726 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd)); 7727 if (ret != idx) 7728 ret = -ENOMEM; 7729 } 7730 7731 return ret; 7732 } 7733 7734 /** 7735 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7736 * @adap: the adapter 7737 * @mbox: mailbox to use for the FW command 7738 * @viid: the VI id 7739 * @free: if true any existing filters for this VI id are first removed 7740 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7741 * @addr: the MAC address(es) 7742 * @idx: where to store the index of each allocated filter 7743 * @hash: pointer to hash address filter bitmap 7744 * @sleep_ok: call is allowed to sleep 7745 * 7746 * Allocates an exact-match filter for each of the supplied addresses and 7747 * sets it to the corresponding address. If @idx is not %NULL it should 7748 * have at least @naddr entries, each of which will be set to the index of 7749 * the filter allocated for the corresponding MAC address. If a filter 7750 * could not be allocated for an address its index is set to 0xffff. 7751 * If @hash is not %NULL addresses that fail to allocate an exact filter 7752 * are hashed and update the hash filter bitmap pointed at by @hash. 7753 * 7754 * Returns a negative error number or the number of filters allocated. 7755 */ 7756 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7757 unsigned int viid, bool free, unsigned int naddr, 7758 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7759 { 7760 int offset, ret = 0; 7761 struct fw_vi_mac_cmd c; 7762 unsigned int nfilters = 0; 7763 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 7764 unsigned int rem = naddr; 7765 7766 if (naddr > max_naddr) 7767 return -EINVAL; 7768 7769 for (offset = 0; offset < naddr ; /**/) { 7770 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 7771 rem : ARRAY_SIZE(c.u.exact)); 7772 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7773 u.exact[fw_naddr]), 16); 7774 struct fw_vi_mac_exact *p; 7775 int i; 7776 7777 memset(&c, 0, sizeof(c)); 7778 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7779 FW_CMD_REQUEST_F | 7780 FW_CMD_WRITE_F | 7781 FW_CMD_EXEC_V(free) | 7782 FW_VI_MAC_CMD_VIID_V(viid)); 7783 c.freemacs_to_len16 = 7784 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 7785 FW_CMD_LEN16_V(len16)); 7786 7787 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7788 p->valid_to_idx = 7789 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7790 FW_VI_MAC_CMD_IDX_V( 7791 FW_VI_MAC_ADD_MAC)); 7792 memcpy(p->macaddr, addr[offset + i], 7793 sizeof(p->macaddr)); 7794 } 7795 7796 /* It's okay if we run out of space in our MAC address arena. 7797 * Some of the addresses we submit may get stored so we need 7798 * to run through the reply to see what the results were ... 7799 */ 7800 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7801 if (ret && ret != -FW_ENOMEM) 7802 break; 7803 7804 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7805 u16 index = FW_VI_MAC_CMD_IDX_G( 7806 be16_to_cpu(p->valid_to_idx)); 7807 7808 if (idx) 7809 idx[offset + i] = (index >= max_naddr ? 7810 0xffff : index); 7811 if (index < max_naddr) 7812 nfilters++; 7813 else if (hash) 7814 *hash |= (1ULL << 7815 hash_mac_addr(addr[offset + i])); 7816 } 7817 7818 free = false; 7819 offset += fw_naddr; 7820 rem -= fw_naddr; 7821 } 7822 7823 if (ret == 0 || ret == -FW_ENOMEM) 7824 ret = nfilters; 7825 return ret; 7826 } 7827 7828 /** 7829 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 7830 * @adap: the adapter 7831 * @mbox: mailbox to use for the FW command 7832 * @viid: the VI id 7833 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7834 * @addr: the MAC address(es) 7835 * @sleep_ok: call is allowed to sleep 7836 * 7837 * Frees the exact-match filter for each of the supplied addresses 7838 * 7839 * Returns a negative error number or the number of filters freed. 7840 */ 7841 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 7842 unsigned int viid, unsigned int naddr, 7843 const u8 **addr, bool sleep_ok) 7844 { 7845 int offset, ret = 0; 7846 struct fw_vi_mac_cmd c; 7847 unsigned int nfilters = 0; 7848 unsigned int max_naddr = is_t4(adap->params.chip) ? 7849 NUM_MPS_CLS_SRAM_L_INSTANCES : 7850 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7851 unsigned int rem = naddr; 7852 7853 if (naddr > max_naddr) 7854 return -EINVAL; 7855 7856 for (offset = 0; offset < (int)naddr ; /**/) { 7857 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 7858 ? rem 7859 : ARRAY_SIZE(c.u.exact)); 7860 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7861 u.exact[fw_naddr]), 16); 7862 struct fw_vi_mac_exact *p; 7863 int i; 7864 7865 memset(&c, 0, sizeof(c)); 7866 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7867 FW_CMD_REQUEST_F | 7868 FW_CMD_WRITE_F | 7869 FW_CMD_EXEC_V(0) | 7870 FW_VI_MAC_CMD_VIID_V(viid)); 7871 c.freemacs_to_len16 = 7872 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7873 FW_CMD_LEN16_V(len16)); 7874 7875 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 7876 p->valid_to_idx = cpu_to_be16( 7877 FW_VI_MAC_CMD_VALID_F | 7878 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 7879 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 7880 } 7881 7882 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7883 if (ret) 7884 break; 7885 7886 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7887 u16 index = FW_VI_MAC_CMD_IDX_G( 7888 be16_to_cpu(p->valid_to_idx)); 7889 7890 if (index < max_naddr) 7891 nfilters++; 7892 } 7893 7894 offset += fw_naddr; 7895 rem -= fw_naddr; 7896 } 7897 7898 if (ret == 0) 7899 ret = nfilters; 7900 return ret; 7901 } 7902 7903 /** 7904 * t4_change_mac - modifies the exact-match filter for a MAC address 7905 * @adap: the adapter 7906 * @mbox: mailbox to use for the FW command 7907 * @viid: the VI id 7908 * @idx: index of existing filter for old value of MAC address, or -1 7909 * @addr: the new MAC address value 7910 * @persist: whether a new MAC allocation should be persistent 7911 * @add_smt: if true also add the address to the HW SMT 7912 * 7913 * Modifies an exact-match filter and sets it to the new MAC address. 7914 * Note that in general it is not possible to modify the value of a given 7915 * filter so the generic way to modify an address filter is to free the one 7916 * being used by the old address value and allocate a new filter for the 7917 * new address value. @idx can be -1 if the address is a new addition. 7918 * 7919 * Returns a negative error number or the index of the filter with the new 7920 * MAC value. 7921 */ 7922 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 7923 int idx, const u8 *addr, bool persist, bool add_smt) 7924 { 7925 int ret, mode; 7926 struct fw_vi_mac_cmd c; 7927 struct fw_vi_mac_exact *p = c.u.exact; 7928 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 7929 7930 if (idx < 0) /* new allocation */ 7931 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 7932 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 7933 7934 memset(&c, 0, sizeof(c)); 7935 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7936 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7937 FW_VI_MAC_CMD_VIID_V(viid)); 7938 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 7939 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7940 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 7941 FW_VI_MAC_CMD_IDX_V(idx)); 7942 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7943 7944 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7945 if (ret == 0) { 7946 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7947 if (ret >= max_mac_addr) 7948 ret = -ENOMEM; 7949 } 7950 return ret; 7951 } 7952 7953 /** 7954 * t4_set_addr_hash - program the MAC inexact-match hash filter 7955 * @adap: the adapter 7956 * @mbox: mailbox to use for the FW command 7957 * @viid: the VI id 7958 * @ucast: whether the hash filter should also match unicast addresses 7959 * @vec: the value to be written to the hash filter 7960 * @sleep_ok: call is allowed to sleep 7961 * 7962 * Sets the 64-bit inexact-match hash filter for a virtual interface. 7963 */ 7964 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 7965 bool ucast, u64 vec, bool sleep_ok) 7966 { 7967 struct fw_vi_mac_cmd c; 7968 7969 memset(&c, 0, sizeof(c)); 7970 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7971 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7972 FW_VI_ENABLE_CMD_VIID_V(viid)); 7973 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 7974 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 7975 FW_CMD_LEN16_V(1)); 7976 c.u.hash.hashvec = cpu_to_be64(vec); 7977 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7978 } 7979 7980 /** 7981 * t4_enable_vi_params - enable/disable a virtual interface 7982 * @adap: the adapter 7983 * @mbox: mailbox to use for the FW command 7984 * @viid: the VI id 7985 * @rx_en: 1=enable Rx, 0=disable Rx 7986 * @tx_en: 1=enable Tx, 0=disable Tx 7987 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 7988 * 7989 * Enables/disables a virtual interface. Note that setting DCB Enable 7990 * only makes sense when enabling a Virtual Interface ... 7991 */ 7992 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 7993 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 7994 { 7995 struct fw_vi_enable_cmd c; 7996 7997 memset(&c, 0, sizeof(c)); 7998 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 7999 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8000 FW_VI_ENABLE_CMD_VIID_V(viid)); 8001 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 8002 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 8003 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 8004 FW_LEN16(c)); 8005 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8006 } 8007 8008 /** 8009 * t4_enable_vi - enable/disable a virtual interface 8010 * @adap: the adapter 8011 * @mbox: mailbox to use for the FW command 8012 * @viid: the VI id 8013 * @rx_en: 1=enable Rx, 0=disable Rx 8014 * @tx_en: 1=enable Tx, 0=disable Tx 8015 * 8016 * Enables/disables a virtual interface. 8017 */ 8018 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8019 bool rx_en, bool tx_en) 8020 { 8021 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8022 } 8023 8024 /** 8025 * t4_enable_pi_params - enable/disable a Port's Virtual Interface 8026 * @adap: the adapter 8027 * @mbox: mailbox to use for the FW command 8028 * @pi: the Port Information structure 8029 * @rx_en: 1=enable Rx, 0=disable Rx 8030 * @tx_en: 1=enable Tx, 0=disable Tx 8031 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8032 * 8033 * Enables/disables a Port's Virtual Interface. Note that setting DCB 8034 * Enable only makes sense when enabling a Virtual Interface ... 8035 * If the Virtual Interface enable/disable operation is successful, 8036 * we notify the OS-specific code of a potential Link Status change 8037 * via the OS Contract API t4_os_link_changed(). 8038 */ 8039 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox, 8040 struct port_info *pi, 8041 bool rx_en, bool tx_en, bool dcb_en) 8042 { 8043 int ret = t4_enable_vi_params(adap, mbox, pi->viid, 8044 rx_en, tx_en, dcb_en); 8045 if (ret) 8046 return ret; 8047 t4_os_link_changed(adap, pi->port_id, 8048 rx_en && tx_en && pi->link_cfg.link_ok); 8049 return 0; 8050 } 8051 8052 /** 8053 * t4_identify_port - identify a VI's port by blinking its LED 8054 * @adap: the adapter 8055 * @mbox: mailbox to use for the FW command 8056 * @viid: the VI id 8057 * @nblinks: how many times to blink LED at 2.5 Hz 8058 * 8059 * Identifies a VI's port by blinking its LED. 8060 */ 8061 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8062 unsigned int nblinks) 8063 { 8064 struct fw_vi_enable_cmd c; 8065 8066 memset(&c, 0, sizeof(c)); 8067 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8068 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8069 FW_VI_ENABLE_CMD_VIID_V(viid)); 8070 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 8071 c.blinkdur = cpu_to_be16(nblinks); 8072 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8073 } 8074 8075 /** 8076 * t4_iq_stop - stop an ingress queue and its FLs 8077 * @adap: the adapter 8078 * @mbox: mailbox to use for the FW command 8079 * @pf: the PF owning the queues 8080 * @vf: the VF owning the queues 8081 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8082 * @iqid: ingress queue id 8083 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8084 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8085 * 8086 * Stops an ingress queue and its associated FLs, if any. This causes 8087 * any current or future data/messages destined for these queues to be 8088 * tossed. 8089 */ 8090 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8091 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8092 unsigned int fl0id, unsigned int fl1id) 8093 { 8094 struct fw_iq_cmd c; 8095 8096 memset(&c, 0, sizeof(c)); 8097 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8098 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8099 FW_IQ_CMD_VFN_V(vf)); 8100 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 8101 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8102 c.iqid = cpu_to_be16(iqid); 8103 c.fl0id = cpu_to_be16(fl0id); 8104 c.fl1id = cpu_to_be16(fl1id); 8105 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8106 } 8107 8108 /** 8109 * t4_iq_free - free an ingress queue and its FLs 8110 * @adap: the adapter 8111 * @mbox: mailbox to use for the FW command 8112 * @pf: the PF owning the queues 8113 * @vf: the VF owning the queues 8114 * @iqtype: the ingress queue type 8115 * @iqid: ingress queue id 8116 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8117 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8118 * 8119 * Frees an ingress queue and its associated FLs, if any. 8120 */ 8121 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8122 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8123 unsigned int fl0id, unsigned int fl1id) 8124 { 8125 struct fw_iq_cmd c; 8126 8127 memset(&c, 0, sizeof(c)); 8128 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8129 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8130 FW_IQ_CMD_VFN_V(vf)); 8131 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 8132 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8133 c.iqid = cpu_to_be16(iqid); 8134 c.fl0id = cpu_to_be16(fl0id); 8135 c.fl1id = cpu_to_be16(fl1id); 8136 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8137 } 8138 8139 /** 8140 * t4_eth_eq_free - free an Ethernet egress queue 8141 * @adap: the adapter 8142 * @mbox: mailbox to use for the FW command 8143 * @pf: the PF owning the queue 8144 * @vf: the VF owning the queue 8145 * @eqid: egress queue id 8146 * 8147 * Frees an Ethernet egress queue. 8148 */ 8149 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8150 unsigned int vf, unsigned int eqid) 8151 { 8152 struct fw_eq_eth_cmd c; 8153 8154 memset(&c, 0, sizeof(c)); 8155 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 8156 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8157 FW_EQ_ETH_CMD_PFN_V(pf) | 8158 FW_EQ_ETH_CMD_VFN_V(vf)); 8159 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 8160 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 8161 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8162 } 8163 8164 /** 8165 * t4_ctrl_eq_free - free a control egress queue 8166 * @adap: the adapter 8167 * @mbox: mailbox to use for the FW command 8168 * @pf: the PF owning the queue 8169 * @vf: the VF owning the queue 8170 * @eqid: egress queue id 8171 * 8172 * Frees a control egress queue. 8173 */ 8174 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8175 unsigned int vf, unsigned int eqid) 8176 { 8177 struct fw_eq_ctrl_cmd c; 8178 8179 memset(&c, 0, sizeof(c)); 8180 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 8181 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8182 FW_EQ_CTRL_CMD_PFN_V(pf) | 8183 FW_EQ_CTRL_CMD_VFN_V(vf)); 8184 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 8185 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 8186 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8187 } 8188 8189 /** 8190 * t4_ofld_eq_free - free an offload egress queue 8191 * @adap: the adapter 8192 * @mbox: mailbox to use for the FW command 8193 * @pf: the PF owning the queue 8194 * @vf: the VF owning the queue 8195 * @eqid: egress queue id 8196 * 8197 * Frees a control egress queue. 8198 */ 8199 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8200 unsigned int vf, unsigned int eqid) 8201 { 8202 struct fw_eq_ofld_cmd c; 8203 8204 memset(&c, 0, sizeof(c)); 8205 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 8206 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8207 FW_EQ_OFLD_CMD_PFN_V(pf) | 8208 FW_EQ_OFLD_CMD_VFN_V(vf)); 8209 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 8210 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 8211 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8212 } 8213 8214 /** 8215 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8216 * @adap: the adapter 8217 * @link_down_rc: Link Down Reason Code 8218 * 8219 * Returns a string representation of the Link Down Reason Code. 8220 */ 8221 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 8222 { 8223 static const char * const reason[] = { 8224 "Link Down", 8225 "Remote Fault", 8226 "Auto-negotiation Failure", 8227 "Reserved", 8228 "Insufficient Airflow", 8229 "Unable To Determine Reason", 8230 "No RX Signal Detected", 8231 "Reserved", 8232 }; 8233 8234 if (link_down_rc >= ARRAY_SIZE(reason)) 8235 return "Bad Reason Code"; 8236 8237 return reason[link_down_rc]; 8238 } 8239 8240 /** 8241 * Return the highest speed set in the port capabilities, in Mb/s. 8242 */ 8243 static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 8244 { 8245 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8246 do { \ 8247 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8248 return __speed; \ 8249 } while (0) 8250 8251 TEST_SPEED_RETURN(400G, 400000); 8252 TEST_SPEED_RETURN(200G, 200000); 8253 TEST_SPEED_RETURN(100G, 100000); 8254 TEST_SPEED_RETURN(50G, 50000); 8255 TEST_SPEED_RETURN(40G, 40000); 8256 TEST_SPEED_RETURN(25G, 25000); 8257 TEST_SPEED_RETURN(10G, 10000); 8258 TEST_SPEED_RETURN(1G, 1000); 8259 TEST_SPEED_RETURN(100M, 100); 8260 8261 #undef TEST_SPEED_RETURN 8262 8263 return 0; 8264 } 8265 8266 /** 8267 * fwcap_to_fwspeed - return highest speed in Port Capabilities 8268 * @acaps: advertised Port Capabilities 8269 * 8270 * Get the highest speed for the port from the advertised Port 8271 * Capabilities. It will be either the highest speed from the list of 8272 * speeds or whatever user has set using ethtool. 8273 */ 8274 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 8275 { 8276 #define TEST_SPEED_RETURN(__caps_speed) \ 8277 do { \ 8278 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8279 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8280 } while (0) 8281 8282 TEST_SPEED_RETURN(400G); 8283 TEST_SPEED_RETURN(200G); 8284 TEST_SPEED_RETURN(100G); 8285 TEST_SPEED_RETURN(50G); 8286 TEST_SPEED_RETURN(40G); 8287 TEST_SPEED_RETURN(25G); 8288 TEST_SPEED_RETURN(10G); 8289 TEST_SPEED_RETURN(1G); 8290 TEST_SPEED_RETURN(100M); 8291 8292 #undef TEST_SPEED_RETURN 8293 8294 return 0; 8295 } 8296 8297 /** 8298 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8299 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8300 * 8301 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8302 * 32-bit Port Capabilities value. 8303 */ 8304 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 8305 { 8306 fw_port_cap32_t linkattr = 0; 8307 8308 /* Unfortunately the format of the Link Status in the old 8309 * 16-bit Port Information message isn't the same as the 8310 * 16-bit Port Capabilities bitfield used everywhere else ... 8311 */ 8312 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8313 linkattr |= FW_PORT_CAP32_FC_RX; 8314 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8315 linkattr |= FW_PORT_CAP32_FC_TX; 8316 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8317 linkattr |= FW_PORT_CAP32_SPEED_100M; 8318 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8319 linkattr |= FW_PORT_CAP32_SPEED_1G; 8320 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8321 linkattr |= FW_PORT_CAP32_SPEED_10G; 8322 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8323 linkattr |= FW_PORT_CAP32_SPEED_25G; 8324 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8325 linkattr |= FW_PORT_CAP32_SPEED_40G; 8326 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8327 linkattr |= FW_PORT_CAP32_SPEED_100G; 8328 8329 return linkattr; 8330 } 8331 8332 /** 8333 * t4_handle_get_port_info - process a FW reply message 8334 * @pi: the port info 8335 * @rpl: start of the FW message 8336 * 8337 * Processes a GET_PORT_INFO FW reply message. 8338 */ 8339 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8340 { 8341 const struct fw_port_cmd *cmd = (const void *)rpl; 8342 int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8343 struct adapter *adapter = pi->adapter; 8344 struct link_config *lc = &pi->link_cfg; 8345 int link_ok, linkdnrc; 8346 enum fw_port_type port_type; 8347 enum fw_port_module_type mod_type; 8348 unsigned int speed, fc, fec; 8349 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8350 8351 /* Extract the various fields from the Port Information message. 8352 */ 8353 switch (action) { 8354 case FW_PORT_ACTION_GET_PORT_INFO: { 8355 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8356 8357 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8358 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8359 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8360 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8361 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8362 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8363 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8364 linkattr = lstatus_to_fwcap(lstatus); 8365 break; 8366 } 8367 8368 case FW_PORT_ACTION_GET_PORT_INFO32: { 8369 u32 lstatus32; 8370 8371 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8372 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8373 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8374 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8375 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8376 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8377 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8378 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8379 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8380 break; 8381 } 8382 8383 default: 8384 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8385 be32_to_cpu(cmd->action_to_len16)); 8386 return; 8387 } 8388 8389 fec = fwcap_to_cc_fec(acaps); 8390 fc = fwcap_to_cc_pause(linkattr); 8391 speed = fwcap_to_speed(linkattr); 8392 8393 lc->new_module = false; 8394 lc->redo_l1cfg = false; 8395 8396 if (mod_type != pi->mod_type) { 8397 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8398 * various fundamental Port Capabilities which used to be 8399 * immutable can now change radically. We can now have 8400 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8401 * all change based on what Transceiver Module is inserted. 8402 * So we need to record the Physical "Port" Capabilities on 8403 * every Transceiver Module change. 8404 */ 8405 lc->pcaps = pcaps; 8406 8407 /* When a new Transceiver Module is inserted, the Firmware 8408 * will examine its i2c EPROM to determine its type and 8409 * general operating parameters including things like Forward 8410 * Error Control, etc. Various IEEE 802.3 standards dictate 8411 * how to interpret these i2c values to determine default 8412 * "sutomatic" settings. We record these for future use when 8413 * the user explicitly requests these standards-based values. 8414 */ 8415 lc->def_acaps = acaps; 8416 8417 /* Some versions of the early T6 Firmware "cheated" when 8418 * handling different Transceiver Modules by changing the 8419 * underlaying Port Type reported to the Host Drivers. As 8420 * such we need to capture whatever Port Type the Firmware 8421 * sends us and record it in case it's different from what we 8422 * were told earlier. Unfortunately, since Firmware is 8423 * forever, we'll need to keep this code here forever, but in 8424 * later T6 Firmware it should just be an assignment of the 8425 * same value already recorded. 8426 */ 8427 pi->port_type = port_type; 8428 8429 pi->mod_type = mod_type; 8430 8431 lc->new_module = t4_is_inserted_mod_type(mod_type); 8432 t4_os_portmod_changed(adapter, pi->port_id); 8433 } 8434 8435 if (link_ok != lc->link_ok || speed != lc->speed || 8436 fc != lc->fc || fec != lc->fec) { /* something changed */ 8437 if (!link_ok && lc->link_ok) { 8438 lc->link_down_rc = linkdnrc; 8439 dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n", 8440 pi->tx_chan, t4_link_down_rc_str(linkdnrc)); 8441 } 8442 lc->link_ok = link_ok; 8443 lc->speed = speed; 8444 lc->fc = fc; 8445 lc->fec = fec; 8446 8447 lc->lpacaps = lpacaps; 8448 lc->acaps = acaps & ADVERT_MASK; 8449 8450 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) { 8451 lc->autoneg = AUTONEG_DISABLE; 8452 } else if (lc->acaps & FW_PORT_CAP32_ANEG) { 8453 lc->autoneg = AUTONEG_ENABLE; 8454 } else { 8455 /* When Autoneg is disabled, user needs to set 8456 * single speed. 8457 * Similar to cxgb4_ethtool.c: set_link_ksettings 8458 */ 8459 lc->acaps = 0; 8460 lc->speed_caps = fwcap_to_fwspeed(acaps); 8461 lc->autoneg = AUTONEG_DISABLE; 8462 } 8463 8464 t4_os_link_changed(adapter, pi->port_id, link_ok); 8465 } 8466 8467 if (lc->new_module && lc->redo_l1cfg) { 8468 struct link_config old_lc; 8469 int ret; 8470 8471 /* Save the current L1 Configuration and restore it if an 8472 * error occurs. We probably should fix the l1_cfg*() 8473 * routines not to change the link_config when an error 8474 * occurs ... 8475 */ 8476 old_lc = *lc; 8477 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc); 8478 if (ret) { 8479 *lc = old_lc; 8480 dev_warn(adapter->pdev_dev, 8481 "Attempt to update new Transceiver Module settings failed\n"); 8482 } 8483 } 8484 lc->new_module = false; 8485 lc->redo_l1cfg = false; 8486 } 8487 8488 /** 8489 * t4_update_port_info - retrieve and update port information if changed 8490 * @pi: the port_info 8491 * 8492 * We issue a Get Port Information Command to the Firmware and, if 8493 * successful, we check to see if anything is different from what we 8494 * last recorded and update things accordingly. 8495 */ 8496 int t4_update_port_info(struct port_info *pi) 8497 { 8498 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8499 struct fw_port_cmd port_cmd; 8500 int ret; 8501 8502 memset(&port_cmd, 0, sizeof(port_cmd)); 8503 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8504 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8505 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8506 port_cmd.action_to_len16 = cpu_to_be32( 8507 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8508 ? FW_PORT_ACTION_GET_PORT_INFO 8509 : FW_PORT_ACTION_GET_PORT_INFO32) | 8510 FW_LEN16(port_cmd)); 8511 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8512 &port_cmd, sizeof(port_cmd), &port_cmd); 8513 if (ret) 8514 return ret; 8515 8516 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8517 return 0; 8518 } 8519 8520 /** 8521 * t4_get_link_params - retrieve basic link parameters for given port 8522 * @pi: the port 8523 * @link_okp: value return pointer for link up/down 8524 * @speedp: value return pointer for speed (Mb/s) 8525 * @mtup: value return pointer for mtu 8526 * 8527 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8528 * and MTU for a specified port. A negative error is returned on 8529 * failure; 0 on success. 8530 */ 8531 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8532 unsigned int *speedp, unsigned int *mtup) 8533 { 8534 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8535 struct fw_port_cmd port_cmd; 8536 unsigned int action, link_ok, speed, mtu; 8537 fw_port_cap32_t linkattr; 8538 int ret; 8539 8540 memset(&port_cmd, 0, sizeof(port_cmd)); 8541 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8542 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8543 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8544 action = (fw_caps == FW_CAPS16 8545 ? FW_PORT_ACTION_GET_PORT_INFO 8546 : FW_PORT_ACTION_GET_PORT_INFO32); 8547 port_cmd.action_to_len16 = cpu_to_be32( 8548 FW_PORT_CMD_ACTION_V(action) | 8549 FW_LEN16(port_cmd)); 8550 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8551 &port_cmd, sizeof(port_cmd), &port_cmd); 8552 if (ret) 8553 return ret; 8554 8555 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8556 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8557 8558 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8559 linkattr = lstatus_to_fwcap(lstatus); 8560 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8561 } else { 8562 u32 lstatus32 = 8563 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8564 8565 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8566 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8567 mtu = FW_PORT_CMD_MTU32_G( 8568 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8569 } 8570 speed = fwcap_to_speed(linkattr); 8571 8572 *link_okp = link_ok; 8573 *speedp = fwcap_to_speed(linkattr); 8574 *mtup = mtu; 8575 8576 return 0; 8577 } 8578 8579 /** 8580 * t4_handle_fw_rpl - process a FW reply message 8581 * @adap: the adapter 8582 * @rpl: start of the FW message 8583 * 8584 * Processes a FW message, such as link state change messages. 8585 */ 8586 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8587 { 8588 u8 opcode = *(const u8 *)rpl; 8589 8590 /* This might be a port command ... this simplifies the following 8591 * conditionals ... We can get away with pre-dereferencing 8592 * action_to_len16 because it's in the first 16 bytes and all messages 8593 * will be at least that long. 8594 */ 8595 const struct fw_port_cmd *p = (const void *)rpl; 8596 unsigned int action = 8597 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8598 8599 if (opcode == FW_PORT_CMD && 8600 (action == FW_PORT_ACTION_GET_PORT_INFO || 8601 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8602 int i; 8603 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8604 struct port_info *pi = NULL; 8605 8606 for_each_port(adap, i) { 8607 pi = adap2pinfo(adap, i); 8608 if (pi->tx_chan == chan) 8609 break; 8610 } 8611 8612 t4_handle_get_port_info(pi, rpl); 8613 } else { 8614 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8615 opcode); 8616 return -EINVAL; 8617 } 8618 return 0; 8619 } 8620 8621 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8622 { 8623 u16 val; 8624 8625 if (pci_is_pcie(adapter->pdev)) { 8626 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8627 p->speed = val & PCI_EXP_LNKSTA_CLS; 8628 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8629 } 8630 } 8631 8632 /** 8633 * init_link_config - initialize a link's SW state 8634 * @lc: pointer to structure holding the link state 8635 * @pcaps: link Port Capabilities 8636 * @acaps: link current Advertised Port Capabilities 8637 * 8638 * Initializes the SW state maintained for each link, including the link's 8639 * capabilities and default speed/flow-control/autonegotiation settings. 8640 */ 8641 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8642 fw_port_cap32_t acaps) 8643 { 8644 lc->pcaps = pcaps; 8645 lc->def_acaps = acaps; 8646 lc->lpacaps = 0; 8647 lc->speed_caps = 0; 8648 lc->speed = 0; 8649 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8650 8651 /* For Forward Error Control, we default to whatever the Firmware 8652 * tells us the Link is currently advertising. 8653 */ 8654 lc->requested_fec = FEC_AUTO; 8655 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8656 8657 /* If the Port is capable of Auto-Negtotiation, initialize it as 8658 * "enabled" and copy over all of the Physical Port Capabilities 8659 * to the Advertised Port Capabilities. Otherwise mark it as 8660 * Auto-Negotiate disabled and select the highest supported speed 8661 * for the link. Note parallel structure in t4_link_l1cfg_core() 8662 * and t4_handle_get_port_info(). 8663 */ 8664 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8665 lc->acaps = lc->pcaps & ADVERT_MASK; 8666 lc->autoneg = AUTONEG_ENABLE; 8667 lc->requested_fc |= PAUSE_AUTONEG; 8668 } else { 8669 lc->acaps = 0; 8670 lc->autoneg = AUTONEG_DISABLE; 8671 lc->speed_caps = fwcap_to_fwspeed(acaps); 8672 } 8673 } 8674 8675 #define CIM_PF_NOACCESS 0xeeeeeeee 8676 8677 int t4_wait_dev_ready(void __iomem *regs) 8678 { 8679 u32 whoami; 8680 8681 whoami = readl(regs + PL_WHOAMI_A); 8682 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8683 return 0; 8684 8685 msleep(500); 8686 whoami = readl(regs + PL_WHOAMI_A); 8687 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8688 } 8689 8690 struct flash_desc { 8691 u32 vendor_and_model_id; 8692 u32 size_mb; 8693 }; 8694 8695 static int t4_get_flash_params(struct adapter *adap) 8696 { 8697 /* Table for non-Numonix supported flash parts. Numonix parts are left 8698 * to the preexisting code. All flash parts have 64KB sectors. 8699 */ 8700 static struct flash_desc supported_flash[] = { 8701 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8702 }; 8703 8704 unsigned int part, manufacturer; 8705 unsigned int density, size = 0; 8706 u32 flashid = 0; 8707 int ret; 8708 8709 /* Issue a Read ID Command to the Flash part. We decode supported 8710 * Flash parts and their sizes from this. There's a newer Query 8711 * Command which can retrieve detailed geometry information but many 8712 * Flash parts don't support it. 8713 */ 8714 8715 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8716 if (!ret) 8717 ret = sf1_read(adap, 3, 0, 1, &flashid); 8718 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8719 if (ret) 8720 return ret; 8721 8722 /* Check to see if it's one of our non-standard supported Flash parts. 8723 */ 8724 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8725 if (supported_flash[part].vendor_and_model_id == flashid) { 8726 adap->params.sf_size = supported_flash[part].size_mb; 8727 adap->params.sf_nsec = 8728 adap->params.sf_size / SF_SEC_SIZE; 8729 goto found; 8730 } 8731 8732 /* Decode Flash part size. The code below looks repetative with 8733 * common encodings, but that's not guaranteed in the JEDEC 8734 * specification for the Read JADEC ID command. The only thing that 8735 * we're guaranteed by the JADEC specification is where the 8736 * Manufacturer ID is in the returned result. After that each 8737 * Manufacturer ~could~ encode things completely differently. 8738 * Note, all Flash parts must have 64KB sectors. 8739 */ 8740 manufacturer = flashid & 0xff; 8741 switch (manufacturer) { 8742 case 0x20: { /* Micron/Numonix */ 8743 /* This Density -> Size decoding table is taken from Micron 8744 * Data Sheets. 8745 */ 8746 density = (flashid >> 16) & 0xff; 8747 switch (density) { 8748 case 0x14: /* 1MB */ 8749 size = 1 << 20; 8750 break; 8751 case 0x15: /* 2MB */ 8752 size = 1 << 21; 8753 break; 8754 case 0x16: /* 4MB */ 8755 size = 1 << 22; 8756 break; 8757 case 0x17: /* 8MB */ 8758 size = 1 << 23; 8759 break; 8760 case 0x18: /* 16MB */ 8761 size = 1 << 24; 8762 break; 8763 case 0x19: /* 32MB */ 8764 size = 1 << 25; 8765 break; 8766 case 0x20: /* 64MB */ 8767 size = 1 << 26; 8768 break; 8769 case 0x21: /* 128MB */ 8770 size = 1 << 27; 8771 break; 8772 case 0x22: /* 256MB */ 8773 size = 1 << 28; 8774 break; 8775 } 8776 break; 8777 } 8778 case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ 8779 /* This Density -> Size decoding table is taken from ISSI 8780 * Data Sheets. 8781 */ 8782 density = (flashid >> 16) & 0xff; 8783 switch (density) { 8784 case 0x16: /* 32 MB */ 8785 size = 1 << 25; 8786 break; 8787 case 0x17: /* 64MB */ 8788 size = 1 << 26; 8789 break; 8790 } 8791 break; 8792 } 8793 case 0xc2: { /* Macronix */ 8794 /* This Density -> Size decoding table is taken from Macronix 8795 * Data Sheets. 8796 */ 8797 density = (flashid >> 16) & 0xff; 8798 switch (density) { 8799 case 0x17: /* 8MB */ 8800 size = 1 << 23; 8801 break; 8802 case 0x18: /* 16MB */ 8803 size = 1 << 24; 8804 break; 8805 } 8806 break; 8807 } 8808 case 0xef: { /* Winbond */ 8809 /* This Density -> Size decoding table is taken from Winbond 8810 * Data Sheets. 8811 */ 8812 density = (flashid >> 16) & 0xff; 8813 switch (density) { 8814 case 0x17: /* 8MB */ 8815 size = 1 << 23; 8816 break; 8817 case 0x18: /* 16MB */ 8818 size = 1 << 24; 8819 break; 8820 } 8821 break; 8822 } 8823 } 8824 8825 /* If we didn't recognize the FLASH part, that's no real issue: the 8826 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 8827 * use a FLASH part which is at least 4MB in size and has 64KB 8828 * sectors. The unrecognized FLASH part is likely to be much larger 8829 * than 4MB, but that's all we really need. 8830 */ 8831 if (size == 0) { 8832 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n", 8833 flashid); 8834 size = 1 << 22; 8835 } 8836 8837 /* Store decoded Flash size and fall through into vetting code. */ 8838 adap->params.sf_size = size; 8839 adap->params.sf_nsec = size / SF_SEC_SIZE; 8840 8841 found: 8842 if (adap->params.sf_size < FLASH_MIN_SIZE) 8843 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 8844 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 8845 return 0; 8846 } 8847 8848 /** 8849 * t4_prep_adapter - prepare SW and HW for operation 8850 * @adapter: the adapter 8851 * @reset: if true perform a HW reset 8852 * 8853 * Initialize adapter SW state for the various HW modules, set initial 8854 * values for some adapter tunables, take PHYs out of reset, and 8855 * initialize the MDIO interface. 8856 */ 8857 int t4_prep_adapter(struct adapter *adapter) 8858 { 8859 int ret, ver; 8860 uint16_t device_id; 8861 u32 pl_rev; 8862 8863 get_pci_mode(adapter, &adapter->params.pci); 8864 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 8865 8866 ret = t4_get_flash_params(adapter); 8867 if (ret < 0) { 8868 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 8869 return ret; 8870 } 8871 8872 /* Retrieve adapter's device ID 8873 */ 8874 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 8875 ver = device_id >> 12; 8876 adapter->params.chip = 0; 8877 switch (ver) { 8878 case CHELSIO_T4: 8879 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 8880 adapter->params.arch.sge_fl_db = DBPRIO_F; 8881 adapter->params.arch.mps_tcam_size = 8882 NUM_MPS_CLS_SRAM_L_INSTANCES; 8883 adapter->params.arch.mps_rplc_size = 128; 8884 adapter->params.arch.nchan = NCHAN; 8885 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 8886 adapter->params.arch.vfcount = 128; 8887 /* Congestion map is for 4 channels so that 8888 * MPS can have 4 priority per port. 8889 */ 8890 adapter->params.arch.cng_ch_bits_log = 2; 8891 break; 8892 case CHELSIO_T5: 8893 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 8894 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 8895 adapter->params.arch.mps_tcam_size = 8896 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8897 adapter->params.arch.mps_rplc_size = 128; 8898 adapter->params.arch.nchan = NCHAN; 8899 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 8900 adapter->params.arch.vfcount = 128; 8901 adapter->params.arch.cng_ch_bits_log = 2; 8902 break; 8903 case CHELSIO_T6: 8904 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 8905 adapter->params.arch.sge_fl_db = 0; 8906 adapter->params.arch.mps_tcam_size = 8907 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8908 adapter->params.arch.mps_rplc_size = 256; 8909 adapter->params.arch.nchan = 2; 8910 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 8911 adapter->params.arch.vfcount = 256; 8912 /* Congestion map will be for 2 channels so that 8913 * MPS can have 8 priority per port. 8914 */ 8915 adapter->params.arch.cng_ch_bits_log = 3; 8916 break; 8917 default: 8918 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 8919 device_id); 8920 return -EINVAL; 8921 } 8922 8923 adapter->params.cim_la_size = CIMLA_SIZE; 8924 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 8925 8926 /* 8927 * Default port for debugging in case we can't reach FW. 8928 */ 8929 adapter->params.nports = 1; 8930 adapter->params.portvec = 1; 8931 adapter->params.vpd.cclk = 50000; 8932 8933 /* Set PCIe completion timeout to 4 seconds. */ 8934 pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2, 8935 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); 8936 return 0; 8937 } 8938 8939 /** 8940 * t4_shutdown_adapter - shut down adapter, host & wire 8941 * @adapter: the adapter 8942 * 8943 * Perform an emergency shutdown of the adapter and stop it from 8944 * continuing any further communication on the ports or DMA to the 8945 * host. This is typically used when the adapter and/or firmware 8946 * have crashed and we want to prevent any further accidental 8947 * communication with the rest of the world. This will also force 8948 * the port Link Status to go down -- if register writes work -- 8949 * which should help our peers figure out that we're down. 8950 */ 8951 int t4_shutdown_adapter(struct adapter *adapter) 8952 { 8953 int port; 8954 8955 t4_intr_disable(adapter); 8956 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 8957 for_each_port(adapter, port) { 8958 u32 a_port_cfg = is_t4(adapter->params.chip) ? 8959 PORT_REG(port, XGMAC_PORT_CFG_A) : 8960 T5_PORT_REG(port, MAC_PORT_CFG_A); 8961 8962 t4_write_reg(adapter, a_port_cfg, 8963 t4_read_reg(adapter, a_port_cfg) 8964 & ~SIGNAL_DET_V(1)); 8965 } 8966 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 8967 8968 return 0; 8969 } 8970 8971 /** 8972 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 8973 * @adapter: the adapter 8974 * @qid: the Queue ID 8975 * @qtype: the Ingress or Egress type for @qid 8976 * @user: true if this request is for a user mode queue 8977 * @pbar2_qoffset: BAR2 Queue Offset 8978 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 8979 * 8980 * Returns the BAR2 SGE Queue Registers information associated with the 8981 * indicated Absolute Queue ID. These are passed back in return value 8982 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 8983 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 8984 * 8985 * This may return an error which indicates that BAR2 SGE Queue 8986 * registers aren't available. If an error is not returned, then the 8987 * following values are returned: 8988 * 8989 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 8990 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 8991 * 8992 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 8993 * require the "Inferred Queue ID" ability may be used. E.g. the 8994 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 8995 * then these "Inferred Queue ID" register may not be used. 8996 */ 8997 int t4_bar2_sge_qregs(struct adapter *adapter, 8998 unsigned int qid, 8999 enum t4_bar2_qtype qtype, 9000 int user, 9001 u64 *pbar2_qoffset, 9002 unsigned int *pbar2_qid) 9003 { 9004 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9005 u64 bar2_page_offset, bar2_qoffset; 9006 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9007 9008 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 9009 if (!user && is_t4(adapter->params.chip)) 9010 return -EINVAL; 9011 9012 /* Get our SGE Page Size parameters. 9013 */ 9014 page_shift = adapter->params.sge.hps + 10; 9015 page_size = 1 << page_shift; 9016 9017 /* Get the right Queues per Page parameters for our Queue. 9018 */ 9019 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9020 ? adapter->params.sge.eq_qpp 9021 : adapter->params.sge.iq_qpp); 9022 qpp_mask = (1 << qpp_shift) - 1; 9023 9024 /* Calculate the basics of the BAR2 SGE Queue register area: 9025 * o The BAR2 page the Queue registers will be in. 9026 * o The BAR2 Queue ID. 9027 * o The BAR2 Queue ID Offset into the BAR2 page. 9028 */ 9029 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9030 bar2_qid = qid & qpp_mask; 9031 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9032 9033 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9034 * hardware will infer the Absolute Queue ID simply from the writes to 9035 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9036 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9037 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9038 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9039 * from the BAR2 Page and BAR2 Queue ID. 9040 * 9041 * One important censequence of this is that some BAR2 SGE registers 9042 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9043 * there. But other registers synthesize the SGE Queue ID purely 9044 * from the writes to the registers -- the Write Combined Doorbell 9045 * Buffer is a good example. These BAR2 SGE Registers are only 9046 * available for those BAR2 SGE Register areas where the SGE Absolute 9047 * Queue ID can be inferred from simple writes. 9048 */ 9049 bar2_qoffset = bar2_page_offset; 9050 bar2_qinferred = (bar2_qid_offset < page_size); 9051 if (bar2_qinferred) { 9052 bar2_qoffset += bar2_qid_offset; 9053 bar2_qid = 0; 9054 } 9055 9056 *pbar2_qoffset = bar2_qoffset; 9057 *pbar2_qid = bar2_qid; 9058 return 0; 9059 } 9060 9061 /** 9062 * t4_init_devlog_params - initialize adapter->params.devlog 9063 * @adap: the adapter 9064 * 9065 * Initialize various fields of the adapter's Firmware Device Log 9066 * Parameters structure. 9067 */ 9068 int t4_init_devlog_params(struct adapter *adap) 9069 { 9070 struct devlog_params *dparams = &adap->params.devlog; 9071 u32 pf_dparams; 9072 unsigned int devlog_meminfo; 9073 struct fw_devlog_cmd devlog_cmd; 9074 int ret; 9075 9076 /* If we're dealing with newer firmware, the Device Log Paramerters 9077 * are stored in a designated register which allows us to access the 9078 * Device Log even if we can't talk to the firmware. 9079 */ 9080 pf_dparams = 9081 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 9082 if (pf_dparams) { 9083 unsigned int nentries, nentries128; 9084 9085 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 9086 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 9087 9088 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 9089 nentries = (nentries128 + 1) * 128; 9090 dparams->size = nentries * sizeof(struct fw_devlog_e); 9091 9092 return 0; 9093 } 9094 9095 /* Otherwise, ask the firmware for it's Device Log Parameters. 9096 */ 9097 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 9098 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 9099 FW_CMD_REQUEST_F | FW_CMD_READ_F); 9100 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9101 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9102 &devlog_cmd); 9103 if (ret) 9104 return ret; 9105 9106 devlog_meminfo = 9107 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9108 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 9109 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 9110 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9111 9112 return 0; 9113 } 9114 9115 /** 9116 * t4_init_sge_params - initialize adap->params.sge 9117 * @adapter: the adapter 9118 * 9119 * Initialize various fields of the adapter's SGE Parameters structure. 9120 */ 9121 int t4_init_sge_params(struct adapter *adapter) 9122 { 9123 struct sge_params *sge_params = &adapter->params.sge; 9124 u32 hps, qpp; 9125 unsigned int s_hps, s_qpp; 9126 9127 /* Extract the SGE Page Size for our PF. 9128 */ 9129 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 9130 s_hps = (HOSTPAGESIZEPF0_S + 9131 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 9132 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 9133 9134 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 9135 */ 9136 s_qpp = (QUEUESPERPAGEPF0_S + 9137 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 9138 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 9139 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9140 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 9141 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9142 9143 return 0; 9144 } 9145 9146 /** 9147 * t4_init_tp_params - initialize adap->params.tp 9148 * @adap: the adapter 9149 * @sleep_ok: if true we may sleep while awaiting command completion 9150 * 9151 * Initialize various fields of the adapter's TP Parameters structure. 9152 */ 9153 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9154 { 9155 int chan; 9156 u32 v; 9157 9158 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 9159 adap->params.tp.tre = TIMERRESOLUTION_G(v); 9160 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 9161 9162 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9163 for (chan = 0; chan < NCHAN; chan++) 9164 adap->params.tp.tx_modq[chan] = chan; 9165 9166 /* Cache the adapter's Compressed Filter Mode and global Incress 9167 * Configuration. 9168 */ 9169 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 9170 TP_VLAN_PRI_MAP_A, sleep_ok); 9171 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 9172 TP_INGRESS_CONFIG_A, sleep_ok); 9173 9174 /* For T6, cache the adapter's compressed error vector 9175 * and passing outer header info for encapsulated packets. 9176 */ 9177 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 9178 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 9179 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 9180 } 9181 9182 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9183 * shift positions of several elements of the Compressed Filter Tuple 9184 * for this adapter which we need frequently ... 9185 */ 9186 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 9187 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 9188 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 9189 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 9190 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 9191 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 9192 PROTOCOL_F); 9193 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 9194 ETHERTYPE_F); 9195 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 9196 MACMATCH_F); 9197 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 9198 MPSHITTYPE_F); 9199 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 9200 FRAGMENTATION_F); 9201 9202 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 9203 * represents the presence of an Outer VLAN instead of a VNIC ID. 9204 */ 9205 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 9206 adap->params.tp.vnic_shift = -1; 9207 9208 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 9209 adap->params.tp.hash_filter_mask = v; 9210 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 9211 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 9212 return 0; 9213 } 9214 9215 /** 9216 * t4_filter_field_shift - calculate filter field shift 9217 * @adap: the adapter 9218 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9219 * 9220 * Return the shift position of a filter field within the Compressed 9221 * Filter Tuple. The filter field is specified via its selection bit 9222 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9223 */ 9224 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9225 { 9226 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9227 unsigned int sel; 9228 int field_shift; 9229 9230 if ((filter_mode & filter_sel) == 0) 9231 return -1; 9232 9233 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9234 switch (filter_mode & sel) { 9235 case FCOE_F: 9236 field_shift += FT_FCOE_W; 9237 break; 9238 case PORT_F: 9239 field_shift += FT_PORT_W; 9240 break; 9241 case VNIC_ID_F: 9242 field_shift += FT_VNIC_ID_W; 9243 break; 9244 case VLAN_F: 9245 field_shift += FT_VLAN_W; 9246 break; 9247 case TOS_F: 9248 field_shift += FT_TOS_W; 9249 break; 9250 case PROTOCOL_F: 9251 field_shift += FT_PROTOCOL_W; 9252 break; 9253 case ETHERTYPE_F: 9254 field_shift += FT_ETHERTYPE_W; 9255 break; 9256 case MACMATCH_F: 9257 field_shift += FT_MACMATCH_W; 9258 break; 9259 case MPSHITTYPE_F: 9260 field_shift += FT_MPSHITTYPE_W; 9261 break; 9262 case FRAGMENTATION_F: 9263 field_shift += FT_FRAGMENTATION_W; 9264 break; 9265 } 9266 } 9267 return field_shift; 9268 } 9269 9270 int t4_init_rss_mode(struct adapter *adap, int mbox) 9271 { 9272 int i, ret; 9273 struct fw_rss_vi_config_cmd rvc; 9274 9275 memset(&rvc, 0, sizeof(rvc)); 9276 9277 for_each_port(adap, i) { 9278 struct port_info *p = adap2pinfo(adap, i); 9279 9280 rvc.op_to_viid = 9281 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 9282 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9283 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 9284 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 9285 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 9286 if (ret) 9287 return ret; 9288 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 9289 } 9290 return 0; 9291 } 9292 9293 /** 9294 * t4_init_portinfo - allocate a virtual interface and initialize port_info 9295 * @pi: the port_info 9296 * @mbox: mailbox to use for the FW command 9297 * @port: physical port associated with the VI 9298 * @pf: the PF owning the VI 9299 * @vf: the VF owning the VI 9300 * @mac: the MAC address of the VI 9301 * 9302 * Allocates a virtual interface for the given physical port. If @mac is 9303 * not %NULL it contains the MAC address of the VI as assigned by FW. 9304 * @mac should be large enough to hold an Ethernet address. 9305 * Returns < 0 on error. 9306 */ 9307 int t4_init_portinfo(struct port_info *pi, int mbox, 9308 int port, int pf, int vf, u8 mac[]) 9309 { 9310 struct adapter *adapter = pi->adapter; 9311 unsigned int fw_caps = adapter->params.fw_caps_support; 9312 struct fw_port_cmd cmd; 9313 unsigned int rss_size; 9314 enum fw_port_type port_type; 9315 int mdio_addr; 9316 fw_port_cap32_t pcaps, acaps; 9317 int ret; 9318 9319 /* If we haven't yet determined whether we're talking to Firmware 9320 * which knows the new 32-bit Port Capabilities, it's time to find 9321 * out now. This will also tell new Firmware to send us Port Status 9322 * Updates using the new 32-bit Port Capabilities version of the 9323 * Port Information message. 9324 */ 9325 if (fw_caps == FW_CAPS_UNKNOWN) { 9326 u32 param, val; 9327 9328 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 9329 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 9330 val = 1; 9331 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 9332 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 9333 adapter->params.fw_caps_support = fw_caps; 9334 } 9335 9336 memset(&cmd, 0, sizeof(cmd)); 9337 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 9338 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9339 FW_PORT_CMD_PORTID_V(port)); 9340 cmd.action_to_len16 = cpu_to_be32( 9341 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9342 ? FW_PORT_ACTION_GET_PORT_INFO 9343 : FW_PORT_ACTION_GET_PORT_INFO32) | 9344 FW_LEN16(cmd)); 9345 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9346 if (ret) 9347 return ret; 9348 9349 /* Extract the various fields from the Port Information message. 9350 */ 9351 if (fw_caps == FW_CAPS16) { 9352 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9353 9354 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9355 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9356 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9357 : -1); 9358 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9359 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9360 } else { 9361 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9362 9363 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9364 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9365 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9366 : -1); 9367 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9368 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9369 } 9370 9371 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size); 9372 if (ret < 0) 9373 return ret; 9374 9375 pi->viid = ret; 9376 pi->tx_chan = port; 9377 pi->lport = port; 9378 pi->rss_size = rss_size; 9379 9380 pi->port_type = port_type; 9381 pi->mdio_addr = mdio_addr; 9382 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9383 9384 init_link_config(&pi->link_cfg, pcaps, acaps); 9385 return 0; 9386 } 9387 9388 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9389 { 9390 u8 addr[6]; 9391 int ret, i, j = 0; 9392 9393 for_each_port(adap, i) { 9394 struct port_info *pi = adap2pinfo(adap, i); 9395 9396 while ((adap->params.portvec & (1 << j)) == 0) 9397 j++; 9398 9399 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9400 if (ret) 9401 return ret; 9402 9403 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 9404 j++; 9405 } 9406 return 0; 9407 } 9408 9409 /** 9410 * t4_read_cimq_cfg - read CIM queue configuration 9411 * @adap: the adapter 9412 * @base: holds the queue base addresses in bytes 9413 * @size: holds the queue sizes in bytes 9414 * @thres: holds the queue full thresholds in bytes 9415 * 9416 * Returns the current configuration of the CIM queues, starting with 9417 * the IBQs, then the OBQs. 9418 */ 9419 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9420 { 9421 unsigned int i, v; 9422 int cim_num_obq = is_t4(adap->params.chip) ? 9423 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9424 9425 for (i = 0; i < CIM_NUM_IBQ; i++) { 9426 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9427 QUENUMSELECT_V(i)); 9428 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9429 /* value is in 256-byte units */ 9430 *base++ = CIMQBASE_G(v) * 256; 9431 *size++ = CIMQSIZE_G(v) * 256; 9432 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9433 } 9434 for (i = 0; i < cim_num_obq; i++) { 9435 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9436 QUENUMSELECT_V(i)); 9437 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9438 /* value is in 256-byte units */ 9439 *base++ = CIMQBASE_G(v) * 256; 9440 *size++ = CIMQSIZE_G(v) * 256; 9441 } 9442 } 9443 9444 /** 9445 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9446 * @adap: the adapter 9447 * @qid: the queue index 9448 * @data: where to store the queue contents 9449 * @n: capacity of @data in 32-bit words 9450 * 9451 * Reads the contents of the selected CIM queue starting at address 0 up 9452 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9453 * error and the number of 32-bit words actually read on success. 9454 */ 9455 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9456 { 9457 int i, err, attempts; 9458 unsigned int addr; 9459 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9460 9461 if (qid > 5 || (n & 3)) 9462 return -EINVAL; 9463 9464 addr = qid * nwords; 9465 if (n > nwords) 9466 n = nwords; 9467 9468 /* It might take 3-10ms before the IBQ debug read access is allowed. 9469 * Wait for 1 Sec with a delay of 1 usec. 9470 */ 9471 attempts = 1000000; 9472 9473 for (i = 0; i < n; i++, addr++) { 9474 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9475 IBQDBGEN_F); 9476 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9477 attempts, 1); 9478 if (err) 9479 return err; 9480 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9481 } 9482 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9483 return i; 9484 } 9485 9486 /** 9487 * t4_read_cim_obq - read the contents of a CIM outbound queue 9488 * @adap: the adapter 9489 * @qid: the queue index 9490 * @data: where to store the queue contents 9491 * @n: capacity of @data in 32-bit words 9492 * 9493 * Reads the contents of the selected CIM queue starting at address 0 up 9494 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9495 * error and the number of 32-bit words actually read on success. 9496 */ 9497 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9498 { 9499 int i, err; 9500 unsigned int addr, v, nwords; 9501 int cim_num_obq = is_t4(adap->params.chip) ? 9502 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9503 9504 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9505 return -EINVAL; 9506 9507 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9508 QUENUMSELECT_V(qid)); 9509 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9510 9511 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9512 nwords = CIMQSIZE_G(v) * 64; /* same */ 9513 if (n > nwords) 9514 n = nwords; 9515 9516 for (i = 0; i < n; i++, addr++) { 9517 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9518 OBQDBGEN_F); 9519 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9520 2, 1); 9521 if (err) 9522 return err; 9523 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9524 } 9525 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9526 return i; 9527 } 9528 9529 /** 9530 * t4_cim_read - read a block from CIM internal address space 9531 * @adap: the adapter 9532 * @addr: the start address within the CIM address space 9533 * @n: number of words to read 9534 * @valp: where to store the result 9535 * 9536 * Reads a block of 4-byte words from the CIM intenal address space. 9537 */ 9538 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9539 unsigned int *valp) 9540 { 9541 int ret = 0; 9542 9543 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9544 return -EBUSY; 9545 9546 for ( ; !ret && n--; addr += 4) { 9547 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9548 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9549 0, 5, 2); 9550 if (!ret) 9551 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9552 } 9553 return ret; 9554 } 9555 9556 /** 9557 * t4_cim_write - write a block into CIM internal address space 9558 * @adap: the adapter 9559 * @addr: the start address within the CIM address space 9560 * @n: number of words to write 9561 * @valp: set of values to write 9562 * 9563 * Writes a block of 4-byte words into the CIM intenal address space. 9564 */ 9565 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9566 const unsigned int *valp) 9567 { 9568 int ret = 0; 9569 9570 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9571 return -EBUSY; 9572 9573 for ( ; !ret && n--; addr += 4) { 9574 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9575 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9576 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9577 0, 5, 2); 9578 } 9579 return ret; 9580 } 9581 9582 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9583 unsigned int val) 9584 { 9585 return t4_cim_write(adap, addr, 1, &val); 9586 } 9587 9588 /** 9589 * t4_cim_read_la - read CIM LA capture buffer 9590 * @adap: the adapter 9591 * @la_buf: where to store the LA data 9592 * @wrptr: the HW write pointer within the capture buffer 9593 * 9594 * Reads the contents of the CIM LA buffer with the most recent entry at 9595 * the end of the returned data and with the entry at @wrptr first. 9596 * We try to leave the LA in the running state we find it in. 9597 */ 9598 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9599 { 9600 int i, ret; 9601 unsigned int cfg, val, idx; 9602 9603 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9604 if (ret) 9605 return ret; 9606 9607 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9608 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9609 if (ret) 9610 return ret; 9611 } 9612 9613 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9614 if (ret) 9615 goto restart; 9616 9617 idx = UPDBGLAWRPTR_G(val); 9618 if (wrptr) 9619 *wrptr = idx; 9620 9621 for (i = 0; i < adap->params.cim_la_size; i++) { 9622 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9623 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9624 if (ret) 9625 break; 9626 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9627 if (ret) 9628 break; 9629 if (val & UPDBGLARDEN_F) { 9630 ret = -ETIMEDOUT; 9631 break; 9632 } 9633 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9634 if (ret) 9635 break; 9636 9637 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9638 * identify the 32-bit portion of the full 312-bit data 9639 */ 9640 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9641 idx = (idx & 0xff0) + 0x10; 9642 else 9643 idx++; 9644 /* address can't exceed 0xfff */ 9645 idx &= UPDBGLARDPTR_M; 9646 } 9647 restart: 9648 if (cfg & UPDBGLAEN_F) { 9649 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9650 cfg & ~UPDBGLARDEN_F); 9651 if (!ret) 9652 ret = r; 9653 } 9654 return ret; 9655 } 9656 9657 /** 9658 * t4_tp_read_la - read TP LA capture buffer 9659 * @adap: the adapter 9660 * @la_buf: where to store the LA data 9661 * @wrptr: the HW write pointer within the capture buffer 9662 * 9663 * Reads the contents of the TP LA buffer with the most recent entry at 9664 * the end of the returned data and with the entry at @wrptr first. 9665 * We leave the LA in the running state we find it in. 9666 */ 9667 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9668 { 9669 bool last_incomplete; 9670 unsigned int i, cfg, val, idx; 9671 9672 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 9673 if (cfg & DBGLAENABLE_F) /* freeze LA */ 9674 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9675 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 9676 9677 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 9678 idx = DBGLAWPTR_G(val); 9679 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 9680 if (last_incomplete) 9681 idx = (idx + 1) & DBGLARPTR_M; 9682 if (wrptr) 9683 *wrptr = idx; 9684 9685 val &= 0xffff; 9686 val &= ~DBGLARPTR_V(DBGLARPTR_M); 9687 val |= adap->params.tp.la_mask; 9688 9689 for (i = 0; i < TPLA_SIZE; i++) { 9690 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 9691 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 9692 idx = (idx + 1) & DBGLARPTR_M; 9693 } 9694 9695 /* Wipe out last entry if it isn't valid */ 9696 if (last_incomplete) 9697 la_buf[TPLA_SIZE - 1] = ~0ULL; 9698 9699 if (cfg & DBGLAENABLE_F) /* restore running state */ 9700 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9701 cfg | adap->params.tp.la_mask); 9702 } 9703 9704 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 9705 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 9706 * state for more than the Warning Threshold then we'll issue a warning about 9707 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 9708 * appears to be hung every Warning Repeat second till the situation clears. 9709 * If the situation clears, we'll note that as well. 9710 */ 9711 #define SGE_IDMA_WARN_THRESH 1 9712 #define SGE_IDMA_WARN_REPEAT 300 9713 9714 /** 9715 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 9716 * @adapter: the adapter 9717 * @idma: the adapter IDMA Monitor state 9718 * 9719 * Initialize the state of an SGE Ingress DMA Monitor. 9720 */ 9721 void t4_idma_monitor_init(struct adapter *adapter, 9722 struct sge_idma_monitor_state *idma) 9723 { 9724 /* Initialize the state variables for detecting an SGE Ingress DMA 9725 * hang. The SGE has internal counters which count up on each clock 9726 * tick whenever the SGE finds its Ingress DMA State Engines in the 9727 * same state they were on the previous clock tick. The clock used is 9728 * the Core Clock so we have a limit on the maximum "time" they can 9729 * record; typically a very small number of seconds. For instance, 9730 * with a 600MHz Core Clock, we can only count up to a bit more than 9731 * 7s. So we'll synthesize a larger counter in order to not run the 9732 * risk of having the "timers" overflow and give us the flexibility to 9733 * maintain a Hung SGE State Machine of our own which operates across 9734 * a longer time frame. 9735 */ 9736 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 9737 idma->idma_stalled[0] = 0; 9738 idma->idma_stalled[1] = 0; 9739 } 9740 9741 /** 9742 * t4_idma_monitor - monitor SGE Ingress DMA state 9743 * @adapter: the adapter 9744 * @idma: the adapter IDMA Monitor state 9745 * @hz: number of ticks/second 9746 * @ticks: number of ticks since the last IDMA Monitor call 9747 */ 9748 void t4_idma_monitor(struct adapter *adapter, 9749 struct sge_idma_monitor_state *idma, 9750 int hz, int ticks) 9751 { 9752 int i, idma_same_state_cnt[2]; 9753 9754 /* Read the SGE Debug Ingress DMA Same State Count registers. These 9755 * are counters inside the SGE which count up on each clock when the 9756 * SGE finds its Ingress DMA State Engines in the same states they 9757 * were in the previous clock. The counters will peg out at 9758 * 0xffffffff without wrapping around so once they pass the 1s 9759 * threshold they'll stay above that till the IDMA state changes. 9760 */ 9761 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 9762 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 9763 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9764 9765 for (i = 0; i < 2; i++) { 9766 u32 debug0, debug11; 9767 9768 /* If the Ingress DMA Same State Counter ("timer") is less 9769 * than 1s, then we can reset our synthesized Stall Timer and 9770 * continue. If we have previously emitted warnings about a 9771 * potential stalled Ingress Queue, issue a note indicating 9772 * that the Ingress Queue has resumed forward progress. 9773 */ 9774 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 9775 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 9776 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 9777 "resumed after %d seconds\n", 9778 i, idma->idma_qid[i], 9779 idma->idma_stalled[i] / hz); 9780 idma->idma_stalled[i] = 0; 9781 continue; 9782 } 9783 9784 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 9785 * domain. The first time we get here it'll be because we 9786 * passed the 1s Threshold; each additional time it'll be 9787 * because the RX Timer Callback is being fired on its regular 9788 * schedule. 9789 * 9790 * If the stall is below our Potential Hung Ingress Queue 9791 * Warning Threshold, continue. 9792 */ 9793 if (idma->idma_stalled[i] == 0) { 9794 idma->idma_stalled[i] = hz; 9795 idma->idma_warn[i] = 0; 9796 } else { 9797 idma->idma_stalled[i] += ticks; 9798 idma->idma_warn[i] -= ticks; 9799 } 9800 9801 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 9802 continue; 9803 9804 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 9805 */ 9806 if (idma->idma_warn[i] > 0) 9807 continue; 9808 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 9809 9810 /* Read and save the SGE IDMA State and Queue ID information. 9811 * We do this every time in case it changes across time ... 9812 * can't be too careful ... 9813 */ 9814 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 9815 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9816 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 9817 9818 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 9819 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9820 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 9821 9822 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 9823 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 9824 i, idma->idma_qid[i], idma->idma_state[i], 9825 idma->idma_stalled[i] / hz, 9826 debug0, debug11); 9827 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 9828 } 9829 } 9830 9831 /** 9832 * t4_load_cfg - download config file 9833 * @adap: the adapter 9834 * @cfg_data: the cfg text file to write 9835 * @size: text file size 9836 * 9837 * Write the supplied config text file to the card's serial flash. 9838 */ 9839 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 9840 { 9841 int ret, i, n, cfg_addr; 9842 unsigned int addr; 9843 unsigned int flash_cfg_start_sec; 9844 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 9845 9846 cfg_addr = t4_flash_cfg_addr(adap); 9847 if (cfg_addr < 0) 9848 return cfg_addr; 9849 9850 addr = cfg_addr; 9851 flash_cfg_start_sec = addr / SF_SEC_SIZE; 9852 9853 if (size > FLASH_CFG_MAX_SIZE) { 9854 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 9855 FLASH_CFG_MAX_SIZE); 9856 return -EFBIG; 9857 } 9858 9859 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 9860 sf_sec_size); 9861 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 9862 flash_cfg_start_sec + i - 1); 9863 /* If size == 0 then we're simply erasing the FLASH sectors associated 9864 * with the on-adapter Firmware Configuration File. 9865 */ 9866 if (ret || size == 0) 9867 goto out; 9868 9869 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 9870 for (i = 0; i < size; i += SF_PAGE_SIZE) { 9871 if ((size - i) < SF_PAGE_SIZE) 9872 n = size - i; 9873 else 9874 n = SF_PAGE_SIZE; 9875 ret = t4_write_flash(adap, addr, n, cfg_data); 9876 if (ret) 9877 goto out; 9878 9879 addr += SF_PAGE_SIZE; 9880 cfg_data += SF_PAGE_SIZE; 9881 } 9882 9883 out: 9884 if (ret) 9885 dev_err(adap->pdev_dev, "config file %s failed %d\n", 9886 (size == 0 ? "clear" : "download"), ret); 9887 return ret; 9888 } 9889 9890 /** 9891 * t4_set_vf_mac - Set MAC address for the specified VF 9892 * @adapter: The adapter 9893 * @vf: one of the VFs instantiated by the specified PF 9894 * @naddr: the number of MAC addresses 9895 * @addr: the MAC address(es) to be set to the specified VF 9896 */ 9897 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 9898 unsigned int naddr, u8 *addr) 9899 { 9900 struct fw_acl_mac_cmd cmd; 9901 9902 memset(&cmd, 0, sizeof(cmd)); 9903 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 9904 FW_CMD_REQUEST_F | 9905 FW_CMD_WRITE_F | 9906 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 9907 FW_ACL_MAC_CMD_VFN_V(vf)); 9908 9909 /* Note: Do not enable the ACL */ 9910 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 9911 cmd.nmac = naddr; 9912 9913 switch (adapter->pf) { 9914 case 3: 9915 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 9916 break; 9917 case 2: 9918 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 9919 break; 9920 case 1: 9921 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 9922 break; 9923 case 0: 9924 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 9925 break; 9926 } 9927 9928 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 9929 } 9930 9931 /** 9932 * t4_read_pace_tbl - read the pace table 9933 * @adap: the adapter 9934 * @pace_vals: holds the returned values 9935 * 9936 * Returns the values of TP's pace table in microseconds. 9937 */ 9938 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 9939 { 9940 unsigned int i, v; 9941 9942 for (i = 0; i < NTX_SCHED; i++) { 9943 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 9944 v = t4_read_reg(adap, TP_PACE_TABLE_A); 9945 pace_vals[i] = dack_ticks_to_usec(adap, v); 9946 } 9947 } 9948 9949 /** 9950 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 9951 * @adap: the adapter 9952 * @sched: the scheduler index 9953 * @kbps: the byte rate in Kbps 9954 * @ipg: the interpacket delay in tenths of nanoseconds 9955 * @sleep_ok: if true we may sleep while awaiting command completion 9956 * 9957 * Return the current configuration of a HW Tx scheduler. 9958 */ 9959 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 9960 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 9961 { 9962 unsigned int v, addr, bpt, cpt; 9963 9964 if (kbps) { 9965 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 9966 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9967 if (sched & 1) 9968 v >>= 16; 9969 bpt = (v >> 8) & 0xff; 9970 cpt = v & 0xff; 9971 if (!cpt) { 9972 *kbps = 0; /* scheduler disabled */ 9973 } else { 9974 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 9975 *kbps = (v * bpt) / 125; 9976 } 9977 } 9978 if (ipg) { 9979 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 9980 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9981 if (sched & 1) 9982 v >>= 16; 9983 v &= 0xffff; 9984 *ipg = (10000 * v) / core_ticks_per_usec(adap); 9985 } 9986 } 9987 9988 /* t4_sge_ctxt_rd - read an SGE context through FW 9989 * @adap: the adapter 9990 * @mbox: mailbox to use for the FW command 9991 * @cid: the context id 9992 * @ctype: the context type 9993 * @data: where to store the context data 9994 * 9995 * Issues a FW command through the given mailbox to read an SGE context. 9996 */ 9997 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 9998 enum ctxt_type ctype, u32 *data) 9999 { 10000 struct fw_ldst_cmd c; 10001 int ret; 10002 10003 if (ctype == CTXT_FLM) 10004 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10005 else 10006 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10007 10008 memset(&c, 0, sizeof(c)); 10009 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10010 FW_CMD_REQUEST_F | FW_CMD_READ_F | 10011 FW_LDST_CMD_ADDRSPACE_V(ret)); 10012 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10013 c.u.idctxt.physid = cpu_to_be32(cid); 10014 10015 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10016 if (ret == 0) { 10017 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10018 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10019 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10020 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10021 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10022 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10023 } 10024 return ret; 10025 } 10026 10027 /** 10028 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10029 * @adap: the adapter 10030 * @cid: the context id 10031 * @ctype: the context type 10032 * @data: where to store the context data 10033 * 10034 * Reads an SGE context directly, bypassing FW. This is only for 10035 * debugging when FW is unavailable. 10036 */ 10037 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 10038 enum ctxt_type ctype, u32 *data) 10039 { 10040 int i, ret; 10041 10042 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 10043 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 10044 if (!ret) 10045 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 10046 *data++ = t4_read_reg(adap, i); 10047 return ret; 10048 } 10049 10050 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 10051 int rateunit, int ratemode, int channel, int class, 10052 int minrate, int maxrate, int weight, int pktsize) 10053 { 10054 struct fw_sched_cmd cmd; 10055 10056 memset(&cmd, 0, sizeof(cmd)); 10057 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 10058 FW_CMD_REQUEST_F | 10059 FW_CMD_WRITE_F); 10060 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10061 10062 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10063 cmd.u.params.type = type; 10064 cmd.u.params.level = level; 10065 cmd.u.params.mode = mode; 10066 cmd.u.params.ch = channel; 10067 cmd.u.params.cl = class; 10068 cmd.u.params.unit = rateunit; 10069 cmd.u.params.rate = ratemode; 10070 cmd.u.params.min = cpu_to_be32(minrate); 10071 cmd.u.params.max = cpu_to_be32(maxrate); 10072 cmd.u.params.weight = cpu_to_be16(weight); 10073 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10074 10075 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 10076 NULL, 1); 10077 } 10078 10079 /** 10080 * t4_i2c_rd - read I2C data from adapter 10081 * @adap: the adapter 10082 * @port: Port number if per-port device; <0 if not 10083 * @devid: per-port device ID or absolute device ID 10084 * @offset: byte offset into device I2C space 10085 * @len: byte length of I2C space data 10086 * @buf: buffer in which to return I2C data 10087 * 10088 * Reads the I2C data from the indicated device and location. 10089 */ 10090 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, 10091 unsigned int devid, unsigned int offset, 10092 unsigned int len, u8 *buf) 10093 { 10094 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 10095 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 10096 int ret = 0; 10097 10098 if (len > I2C_PAGE_SIZE) 10099 return -EINVAL; 10100 10101 /* Dont allow reads that spans multiple pages */ 10102 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 10103 return -EINVAL; 10104 10105 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10106 ldst_cmd.op_to_addrspace = 10107 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10108 FW_CMD_REQUEST_F | 10109 FW_CMD_READ_F | 10110 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C)); 10111 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 10112 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 10113 ldst_cmd.u.i2c.did = devid; 10114 10115 while (len > 0) { 10116 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 10117 10118 ldst_cmd.u.i2c.boffset = offset; 10119 ldst_cmd.u.i2c.blen = i2c_len; 10120 10121 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 10122 &ldst_rpl); 10123 if (ret) 10124 break; 10125 10126 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 10127 offset += i2c_len; 10128 buf += i2c_len; 10129 len -= i2c_len; 10130 } 10131 10132 return ret; 10133 } 10134 10135 /** 10136 * t4_set_vlan_acl - Set a VLAN id for the specified VF 10137 * @adapter: the adapter 10138 * @mbox: mailbox to use for the FW command 10139 * @vf: one of the VFs instantiated by the specified PF 10140 * @vlan: The vlanid to be set 10141 */ 10142 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, 10143 u16 vlan) 10144 { 10145 struct fw_acl_vlan_cmd vlan_cmd; 10146 unsigned int enable; 10147 10148 enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0); 10149 memset(&vlan_cmd, 0, sizeof(vlan_cmd)); 10150 vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | 10151 FW_CMD_REQUEST_F | 10152 FW_CMD_WRITE_F | 10153 FW_CMD_EXEC_F | 10154 FW_ACL_VLAN_CMD_PFN_V(adap->pf) | 10155 FW_ACL_VLAN_CMD_VFN_V(vf)); 10156 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); 10157 /* Drop all packets that donot match vlan id */ 10158 vlan_cmd.dropnovlan_fm = FW_ACL_VLAN_CMD_FM_F; 10159 if (enable != 0) { 10160 vlan_cmd.nvlan = 1; 10161 vlan_cmd.vlanid[0] = cpu_to_be16(vlan); 10162 } 10163 10164 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); 10165 } 10166