1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rearely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boudaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9820, 0x983c,
1383 		0x9850, 0x9864,
1384 		0x9c00, 0x9c6c,
1385 		0x9c80, 0x9cec,
1386 		0x9d00, 0x9d6c,
1387 		0x9d80, 0x9dec,
1388 		0x9e00, 0x9e6c,
1389 		0x9e80, 0x9eec,
1390 		0x9f00, 0x9f6c,
1391 		0x9f80, 0xa020,
1392 		0xd004, 0xd004,
1393 		0xd010, 0xd03c,
1394 		0xdfc0, 0xdfe0,
1395 		0xe000, 0x1106c,
1396 		0x11074, 0x11088,
1397 		0x1109c, 0x1117c,
1398 		0x11190, 0x11204,
1399 		0x19040, 0x1906c,
1400 		0x19078, 0x19080,
1401 		0x1908c, 0x190e8,
1402 		0x190f0, 0x190f8,
1403 		0x19100, 0x19110,
1404 		0x19120, 0x19124,
1405 		0x19150, 0x19194,
1406 		0x1919c, 0x191b0,
1407 		0x191d0, 0x191e8,
1408 		0x19238, 0x19290,
1409 		0x193f8, 0x19428,
1410 		0x19430, 0x19444,
1411 		0x1944c, 0x1946c,
1412 		0x19474, 0x19474,
1413 		0x19490, 0x194cc,
1414 		0x194f0, 0x194f8,
1415 		0x19c00, 0x19c08,
1416 		0x19c10, 0x19c60,
1417 		0x19c94, 0x19ce4,
1418 		0x19cf0, 0x19d40,
1419 		0x19d50, 0x19d94,
1420 		0x19da0, 0x19de8,
1421 		0x19df0, 0x19e10,
1422 		0x19e50, 0x19e90,
1423 		0x19ea0, 0x19f24,
1424 		0x19f34, 0x19f34,
1425 		0x19f40, 0x19f50,
1426 		0x19f90, 0x19fb4,
1427 		0x19fc4, 0x19fe4,
1428 		0x1a000, 0x1a004,
1429 		0x1a010, 0x1a06c,
1430 		0x1a0b0, 0x1a0e4,
1431 		0x1a0ec, 0x1a0f8,
1432 		0x1a100, 0x1a108,
1433 		0x1a114, 0x1a120,
1434 		0x1a128, 0x1a130,
1435 		0x1a138, 0x1a138,
1436 		0x1a190, 0x1a1c4,
1437 		0x1a1fc, 0x1a1fc,
1438 		0x1e008, 0x1e00c,
1439 		0x1e040, 0x1e044,
1440 		0x1e04c, 0x1e04c,
1441 		0x1e284, 0x1e290,
1442 		0x1e2c0, 0x1e2c0,
1443 		0x1e2e0, 0x1e2e0,
1444 		0x1e300, 0x1e384,
1445 		0x1e3c0, 0x1e3c8,
1446 		0x1e408, 0x1e40c,
1447 		0x1e440, 0x1e444,
1448 		0x1e44c, 0x1e44c,
1449 		0x1e684, 0x1e690,
1450 		0x1e6c0, 0x1e6c0,
1451 		0x1e6e0, 0x1e6e0,
1452 		0x1e700, 0x1e784,
1453 		0x1e7c0, 0x1e7c8,
1454 		0x1e808, 0x1e80c,
1455 		0x1e840, 0x1e844,
1456 		0x1e84c, 0x1e84c,
1457 		0x1ea84, 0x1ea90,
1458 		0x1eac0, 0x1eac0,
1459 		0x1eae0, 0x1eae0,
1460 		0x1eb00, 0x1eb84,
1461 		0x1ebc0, 0x1ebc8,
1462 		0x1ec08, 0x1ec0c,
1463 		0x1ec40, 0x1ec44,
1464 		0x1ec4c, 0x1ec4c,
1465 		0x1ee84, 0x1ee90,
1466 		0x1eec0, 0x1eec0,
1467 		0x1eee0, 0x1eee0,
1468 		0x1ef00, 0x1ef84,
1469 		0x1efc0, 0x1efc8,
1470 		0x1f008, 0x1f00c,
1471 		0x1f040, 0x1f044,
1472 		0x1f04c, 0x1f04c,
1473 		0x1f284, 0x1f290,
1474 		0x1f2c0, 0x1f2c0,
1475 		0x1f2e0, 0x1f2e0,
1476 		0x1f300, 0x1f384,
1477 		0x1f3c0, 0x1f3c8,
1478 		0x1f408, 0x1f40c,
1479 		0x1f440, 0x1f444,
1480 		0x1f44c, 0x1f44c,
1481 		0x1f684, 0x1f690,
1482 		0x1f6c0, 0x1f6c0,
1483 		0x1f6e0, 0x1f6e0,
1484 		0x1f700, 0x1f784,
1485 		0x1f7c0, 0x1f7c8,
1486 		0x1f808, 0x1f80c,
1487 		0x1f840, 0x1f844,
1488 		0x1f84c, 0x1f84c,
1489 		0x1fa84, 0x1fa90,
1490 		0x1fac0, 0x1fac0,
1491 		0x1fae0, 0x1fae0,
1492 		0x1fb00, 0x1fb84,
1493 		0x1fbc0, 0x1fbc8,
1494 		0x1fc08, 0x1fc0c,
1495 		0x1fc40, 0x1fc44,
1496 		0x1fc4c, 0x1fc4c,
1497 		0x1fe84, 0x1fe90,
1498 		0x1fec0, 0x1fec0,
1499 		0x1fee0, 0x1fee0,
1500 		0x1ff00, 0x1ff84,
1501 		0x1ffc0, 0x1ffc8,
1502 		0x30000, 0x30030,
1503 		0x30100, 0x30144,
1504 		0x30190, 0x301a0,
1505 		0x301a8, 0x301b8,
1506 		0x301c4, 0x301c8,
1507 		0x301d0, 0x301d0,
1508 		0x30200, 0x30318,
1509 		0x30400, 0x304b4,
1510 		0x304c0, 0x3052c,
1511 		0x30540, 0x3061c,
1512 		0x30800, 0x30828,
1513 		0x30834, 0x30834,
1514 		0x308c0, 0x30908,
1515 		0x30910, 0x309ac,
1516 		0x30a00, 0x30a14,
1517 		0x30a1c, 0x30a2c,
1518 		0x30a44, 0x30a50,
1519 		0x30a74, 0x30a74,
1520 		0x30a7c, 0x30afc,
1521 		0x30b08, 0x30c24,
1522 		0x30d00, 0x30d00,
1523 		0x30d08, 0x30d14,
1524 		0x30d1c, 0x30d20,
1525 		0x30d3c, 0x30d3c,
1526 		0x30d48, 0x30d50,
1527 		0x31200, 0x3120c,
1528 		0x31220, 0x31220,
1529 		0x31240, 0x31240,
1530 		0x31600, 0x3160c,
1531 		0x31a00, 0x31a1c,
1532 		0x31e00, 0x31e20,
1533 		0x31e38, 0x31e3c,
1534 		0x31e80, 0x31e80,
1535 		0x31e88, 0x31ea8,
1536 		0x31eb0, 0x31eb4,
1537 		0x31ec8, 0x31ed4,
1538 		0x31fb8, 0x32004,
1539 		0x32200, 0x32200,
1540 		0x32208, 0x32240,
1541 		0x32248, 0x32280,
1542 		0x32288, 0x322c0,
1543 		0x322c8, 0x322fc,
1544 		0x32600, 0x32630,
1545 		0x32a00, 0x32abc,
1546 		0x32b00, 0x32b10,
1547 		0x32b20, 0x32b30,
1548 		0x32b40, 0x32b50,
1549 		0x32b60, 0x32b70,
1550 		0x33000, 0x33028,
1551 		0x33030, 0x33048,
1552 		0x33060, 0x33068,
1553 		0x33070, 0x3309c,
1554 		0x330f0, 0x33128,
1555 		0x33130, 0x33148,
1556 		0x33160, 0x33168,
1557 		0x33170, 0x3319c,
1558 		0x331f0, 0x33238,
1559 		0x33240, 0x33240,
1560 		0x33248, 0x33250,
1561 		0x3325c, 0x33264,
1562 		0x33270, 0x332b8,
1563 		0x332c0, 0x332e4,
1564 		0x332f8, 0x33338,
1565 		0x33340, 0x33340,
1566 		0x33348, 0x33350,
1567 		0x3335c, 0x33364,
1568 		0x33370, 0x333b8,
1569 		0x333c0, 0x333e4,
1570 		0x333f8, 0x33428,
1571 		0x33430, 0x33448,
1572 		0x33460, 0x33468,
1573 		0x33470, 0x3349c,
1574 		0x334f0, 0x33528,
1575 		0x33530, 0x33548,
1576 		0x33560, 0x33568,
1577 		0x33570, 0x3359c,
1578 		0x335f0, 0x33638,
1579 		0x33640, 0x33640,
1580 		0x33648, 0x33650,
1581 		0x3365c, 0x33664,
1582 		0x33670, 0x336b8,
1583 		0x336c0, 0x336e4,
1584 		0x336f8, 0x33738,
1585 		0x33740, 0x33740,
1586 		0x33748, 0x33750,
1587 		0x3375c, 0x33764,
1588 		0x33770, 0x337b8,
1589 		0x337c0, 0x337e4,
1590 		0x337f8, 0x337fc,
1591 		0x33814, 0x33814,
1592 		0x3382c, 0x3382c,
1593 		0x33880, 0x3388c,
1594 		0x338e8, 0x338ec,
1595 		0x33900, 0x33928,
1596 		0x33930, 0x33948,
1597 		0x33960, 0x33968,
1598 		0x33970, 0x3399c,
1599 		0x339f0, 0x33a38,
1600 		0x33a40, 0x33a40,
1601 		0x33a48, 0x33a50,
1602 		0x33a5c, 0x33a64,
1603 		0x33a70, 0x33ab8,
1604 		0x33ac0, 0x33ae4,
1605 		0x33af8, 0x33b10,
1606 		0x33b28, 0x33b28,
1607 		0x33b3c, 0x33b50,
1608 		0x33bf0, 0x33c10,
1609 		0x33c28, 0x33c28,
1610 		0x33c3c, 0x33c50,
1611 		0x33cf0, 0x33cfc,
1612 		0x34000, 0x34030,
1613 		0x34100, 0x34144,
1614 		0x34190, 0x341a0,
1615 		0x341a8, 0x341b8,
1616 		0x341c4, 0x341c8,
1617 		0x341d0, 0x341d0,
1618 		0x34200, 0x34318,
1619 		0x34400, 0x344b4,
1620 		0x344c0, 0x3452c,
1621 		0x34540, 0x3461c,
1622 		0x34800, 0x34828,
1623 		0x34834, 0x34834,
1624 		0x348c0, 0x34908,
1625 		0x34910, 0x349ac,
1626 		0x34a00, 0x34a14,
1627 		0x34a1c, 0x34a2c,
1628 		0x34a44, 0x34a50,
1629 		0x34a74, 0x34a74,
1630 		0x34a7c, 0x34afc,
1631 		0x34b08, 0x34c24,
1632 		0x34d00, 0x34d00,
1633 		0x34d08, 0x34d14,
1634 		0x34d1c, 0x34d20,
1635 		0x34d3c, 0x34d3c,
1636 		0x34d48, 0x34d50,
1637 		0x35200, 0x3520c,
1638 		0x35220, 0x35220,
1639 		0x35240, 0x35240,
1640 		0x35600, 0x3560c,
1641 		0x35a00, 0x35a1c,
1642 		0x35e00, 0x35e20,
1643 		0x35e38, 0x35e3c,
1644 		0x35e80, 0x35e80,
1645 		0x35e88, 0x35ea8,
1646 		0x35eb0, 0x35eb4,
1647 		0x35ec8, 0x35ed4,
1648 		0x35fb8, 0x36004,
1649 		0x36200, 0x36200,
1650 		0x36208, 0x36240,
1651 		0x36248, 0x36280,
1652 		0x36288, 0x362c0,
1653 		0x362c8, 0x362fc,
1654 		0x36600, 0x36630,
1655 		0x36a00, 0x36abc,
1656 		0x36b00, 0x36b10,
1657 		0x36b20, 0x36b30,
1658 		0x36b40, 0x36b50,
1659 		0x36b60, 0x36b70,
1660 		0x37000, 0x37028,
1661 		0x37030, 0x37048,
1662 		0x37060, 0x37068,
1663 		0x37070, 0x3709c,
1664 		0x370f0, 0x37128,
1665 		0x37130, 0x37148,
1666 		0x37160, 0x37168,
1667 		0x37170, 0x3719c,
1668 		0x371f0, 0x37238,
1669 		0x37240, 0x37240,
1670 		0x37248, 0x37250,
1671 		0x3725c, 0x37264,
1672 		0x37270, 0x372b8,
1673 		0x372c0, 0x372e4,
1674 		0x372f8, 0x37338,
1675 		0x37340, 0x37340,
1676 		0x37348, 0x37350,
1677 		0x3735c, 0x37364,
1678 		0x37370, 0x373b8,
1679 		0x373c0, 0x373e4,
1680 		0x373f8, 0x37428,
1681 		0x37430, 0x37448,
1682 		0x37460, 0x37468,
1683 		0x37470, 0x3749c,
1684 		0x374f0, 0x37528,
1685 		0x37530, 0x37548,
1686 		0x37560, 0x37568,
1687 		0x37570, 0x3759c,
1688 		0x375f0, 0x37638,
1689 		0x37640, 0x37640,
1690 		0x37648, 0x37650,
1691 		0x3765c, 0x37664,
1692 		0x37670, 0x376b8,
1693 		0x376c0, 0x376e4,
1694 		0x376f8, 0x37738,
1695 		0x37740, 0x37740,
1696 		0x37748, 0x37750,
1697 		0x3775c, 0x37764,
1698 		0x37770, 0x377b8,
1699 		0x377c0, 0x377e4,
1700 		0x377f8, 0x377fc,
1701 		0x37814, 0x37814,
1702 		0x3782c, 0x3782c,
1703 		0x37880, 0x3788c,
1704 		0x378e8, 0x378ec,
1705 		0x37900, 0x37928,
1706 		0x37930, 0x37948,
1707 		0x37960, 0x37968,
1708 		0x37970, 0x3799c,
1709 		0x379f0, 0x37a38,
1710 		0x37a40, 0x37a40,
1711 		0x37a48, 0x37a50,
1712 		0x37a5c, 0x37a64,
1713 		0x37a70, 0x37ab8,
1714 		0x37ac0, 0x37ae4,
1715 		0x37af8, 0x37b10,
1716 		0x37b28, 0x37b28,
1717 		0x37b3c, 0x37b50,
1718 		0x37bf0, 0x37c10,
1719 		0x37c28, 0x37c28,
1720 		0x37c3c, 0x37c50,
1721 		0x37cf0, 0x37cfc,
1722 		0x38000, 0x38030,
1723 		0x38100, 0x38144,
1724 		0x38190, 0x381a0,
1725 		0x381a8, 0x381b8,
1726 		0x381c4, 0x381c8,
1727 		0x381d0, 0x381d0,
1728 		0x38200, 0x38318,
1729 		0x38400, 0x384b4,
1730 		0x384c0, 0x3852c,
1731 		0x38540, 0x3861c,
1732 		0x38800, 0x38828,
1733 		0x38834, 0x38834,
1734 		0x388c0, 0x38908,
1735 		0x38910, 0x389ac,
1736 		0x38a00, 0x38a14,
1737 		0x38a1c, 0x38a2c,
1738 		0x38a44, 0x38a50,
1739 		0x38a74, 0x38a74,
1740 		0x38a7c, 0x38afc,
1741 		0x38b08, 0x38c24,
1742 		0x38d00, 0x38d00,
1743 		0x38d08, 0x38d14,
1744 		0x38d1c, 0x38d20,
1745 		0x38d3c, 0x38d3c,
1746 		0x38d48, 0x38d50,
1747 		0x39200, 0x3920c,
1748 		0x39220, 0x39220,
1749 		0x39240, 0x39240,
1750 		0x39600, 0x3960c,
1751 		0x39a00, 0x39a1c,
1752 		0x39e00, 0x39e20,
1753 		0x39e38, 0x39e3c,
1754 		0x39e80, 0x39e80,
1755 		0x39e88, 0x39ea8,
1756 		0x39eb0, 0x39eb4,
1757 		0x39ec8, 0x39ed4,
1758 		0x39fb8, 0x3a004,
1759 		0x3a200, 0x3a200,
1760 		0x3a208, 0x3a240,
1761 		0x3a248, 0x3a280,
1762 		0x3a288, 0x3a2c0,
1763 		0x3a2c8, 0x3a2fc,
1764 		0x3a600, 0x3a630,
1765 		0x3aa00, 0x3aabc,
1766 		0x3ab00, 0x3ab10,
1767 		0x3ab20, 0x3ab30,
1768 		0x3ab40, 0x3ab50,
1769 		0x3ab60, 0x3ab70,
1770 		0x3b000, 0x3b028,
1771 		0x3b030, 0x3b048,
1772 		0x3b060, 0x3b068,
1773 		0x3b070, 0x3b09c,
1774 		0x3b0f0, 0x3b128,
1775 		0x3b130, 0x3b148,
1776 		0x3b160, 0x3b168,
1777 		0x3b170, 0x3b19c,
1778 		0x3b1f0, 0x3b238,
1779 		0x3b240, 0x3b240,
1780 		0x3b248, 0x3b250,
1781 		0x3b25c, 0x3b264,
1782 		0x3b270, 0x3b2b8,
1783 		0x3b2c0, 0x3b2e4,
1784 		0x3b2f8, 0x3b338,
1785 		0x3b340, 0x3b340,
1786 		0x3b348, 0x3b350,
1787 		0x3b35c, 0x3b364,
1788 		0x3b370, 0x3b3b8,
1789 		0x3b3c0, 0x3b3e4,
1790 		0x3b3f8, 0x3b428,
1791 		0x3b430, 0x3b448,
1792 		0x3b460, 0x3b468,
1793 		0x3b470, 0x3b49c,
1794 		0x3b4f0, 0x3b528,
1795 		0x3b530, 0x3b548,
1796 		0x3b560, 0x3b568,
1797 		0x3b570, 0x3b59c,
1798 		0x3b5f0, 0x3b638,
1799 		0x3b640, 0x3b640,
1800 		0x3b648, 0x3b650,
1801 		0x3b65c, 0x3b664,
1802 		0x3b670, 0x3b6b8,
1803 		0x3b6c0, 0x3b6e4,
1804 		0x3b6f8, 0x3b738,
1805 		0x3b740, 0x3b740,
1806 		0x3b748, 0x3b750,
1807 		0x3b75c, 0x3b764,
1808 		0x3b770, 0x3b7b8,
1809 		0x3b7c0, 0x3b7e4,
1810 		0x3b7f8, 0x3b7fc,
1811 		0x3b814, 0x3b814,
1812 		0x3b82c, 0x3b82c,
1813 		0x3b880, 0x3b88c,
1814 		0x3b8e8, 0x3b8ec,
1815 		0x3b900, 0x3b928,
1816 		0x3b930, 0x3b948,
1817 		0x3b960, 0x3b968,
1818 		0x3b970, 0x3b99c,
1819 		0x3b9f0, 0x3ba38,
1820 		0x3ba40, 0x3ba40,
1821 		0x3ba48, 0x3ba50,
1822 		0x3ba5c, 0x3ba64,
1823 		0x3ba70, 0x3bab8,
1824 		0x3bac0, 0x3bae4,
1825 		0x3baf8, 0x3bb10,
1826 		0x3bb28, 0x3bb28,
1827 		0x3bb3c, 0x3bb50,
1828 		0x3bbf0, 0x3bc10,
1829 		0x3bc28, 0x3bc28,
1830 		0x3bc3c, 0x3bc50,
1831 		0x3bcf0, 0x3bcfc,
1832 		0x3c000, 0x3c030,
1833 		0x3c100, 0x3c144,
1834 		0x3c190, 0x3c1a0,
1835 		0x3c1a8, 0x3c1b8,
1836 		0x3c1c4, 0x3c1c8,
1837 		0x3c1d0, 0x3c1d0,
1838 		0x3c200, 0x3c318,
1839 		0x3c400, 0x3c4b4,
1840 		0x3c4c0, 0x3c52c,
1841 		0x3c540, 0x3c61c,
1842 		0x3c800, 0x3c828,
1843 		0x3c834, 0x3c834,
1844 		0x3c8c0, 0x3c908,
1845 		0x3c910, 0x3c9ac,
1846 		0x3ca00, 0x3ca14,
1847 		0x3ca1c, 0x3ca2c,
1848 		0x3ca44, 0x3ca50,
1849 		0x3ca74, 0x3ca74,
1850 		0x3ca7c, 0x3cafc,
1851 		0x3cb08, 0x3cc24,
1852 		0x3cd00, 0x3cd00,
1853 		0x3cd08, 0x3cd14,
1854 		0x3cd1c, 0x3cd20,
1855 		0x3cd3c, 0x3cd3c,
1856 		0x3cd48, 0x3cd50,
1857 		0x3d200, 0x3d20c,
1858 		0x3d220, 0x3d220,
1859 		0x3d240, 0x3d240,
1860 		0x3d600, 0x3d60c,
1861 		0x3da00, 0x3da1c,
1862 		0x3de00, 0x3de20,
1863 		0x3de38, 0x3de3c,
1864 		0x3de80, 0x3de80,
1865 		0x3de88, 0x3dea8,
1866 		0x3deb0, 0x3deb4,
1867 		0x3dec8, 0x3ded4,
1868 		0x3dfb8, 0x3e004,
1869 		0x3e200, 0x3e200,
1870 		0x3e208, 0x3e240,
1871 		0x3e248, 0x3e280,
1872 		0x3e288, 0x3e2c0,
1873 		0x3e2c8, 0x3e2fc,
1874 		0x3e600, 0x3e630,
1875 		0x3ea00, 0x3eabc,
1876 		0x3eb00, 0x3eb10,
1877 		0x3eb20, 0x3eb30,
1878 		0x3eb40, 0x3eb50,
1879 		0x3eb60, 0x3eb70,
1880 		0x3f000, 0x3f028,
1881 		0x3f030, 0x3f048,
1882 		0x3f060, 0x3f068,
1883 		0x3f070, 0x3f09c,
1884 		0x3f0f0, 0x3f128,
1885 		0x3f130, 0x3f148,
1886 		0x3f160, 0x3f168,
1887 		0x3f170, 0x3f19c,
1888 		0x3f1f0, 0x3f238,
1889 		0x3f240, 0x3f240,
1890 		0x3f248, 0x3f250,
1891 		0x3f25c, 0x3f264,
1892 		0x3f270, 0x3f2b8,
1893 		0x3f2c0, 0x3f2e4,
1894 		0x3f2f8, 0x3f338,
1895 		0x3f340, 0x3f340,
1896 		0x3f348, 0x3f350,
1897 		0x3f35c, 0x3f364,
1898 		0x3f370, 0x3f3b8,
1899 		0x3f3c0, 0x3f3e4,
1900 		0x3f3f8, 0x3f428,
1901 		0x3f430, 0x3f448,
1902 		0x3f460, 0x3f468,
1903 		0x3f470, 0x3f49c,
1904 		0x3f4f0, 0x3f528,
1905 		0x3f530, 0x3f548,
1906 		0x3f560, 0x3f568,
1907 		0x3f570, 0x3f59c,
1908 		0x3f5f0, 0x3f638,
1909 		0x3f640, 0x3f640,
1910 		0x3f648, 0x3f650,
1911 		0x3f65c, 0x3f664,
1912 		0x3f670, 0x3f6b8,
1913 		0x3f6c0, 0x3f6e4,
1914 		0x3f6f8, 0x3f738,
1915 		0x3f740, 0x3f740,
1916 		0x3f748, 0x3f750,
1917 		0x3f75c, 0x3f764,
1918 		0x3f770, 0x3f7b8,
1919 		0x3f7c0, 0x3f7e4,
1920 		0x3f7f8, 0x3f7fc,
1921 		0x3f814, 0x3f814,
1922 		0x3f82c, 0x3f82c,
1923 		0x3f880, 0x3f88c,
1924 		0x3f8e8, 0x3f8ec,
1925 		0x3f900, 0x3f928,
1926 		0x3f930, 0x3f948,
1927 		0x3f960, 0x3f968,
1928 		0x3f970, 0x3f99c,
1929 		0x3f9f0, 0x3fa38,
1930 		0x3fa40, 0x3fa40,
1931 		0x3fa48, 0x3fa50,
1932 		0x3fa5c, 0x3fa64,
1933 		0x3fa70, 0x3fab8,
1934 		0x3fac0, 0x3fae4,
1935 		0x3faf8, 0x3fb10,
1936 		0x3fb28, 0x3fb28,
1937 		0x3fb3c, 0x3fb50,
1938 		0x3fbf0, 0x3fc10,
1939 		0x3fc28, 0x3fc28,
1940 		0x3fc3c, 0x3fc50,
1941 		0x3fcf0, 0x3fcfc,
1942 		0x40000, 0x4000c,
1943 		0x40040, 0x40050,
1944 		0x40060, 0x40068,
1945 		0x4007c, 0x4008c,
1946 		0x40094, 0x400b0,
1947 		0x400c0, 0x40144,
1948 		0x40180, 0x4018c,
1949 		0x40200, 0x40254,
1950 		0x40260, 0x40264,
1951 		0x40270, 0x40288,
1952 		0x40290, 0x40298,
1953 		0x402ac, 0x402c8,
1954 		0x402d0, 0x402e0,
1955 		0x402f0, 0x402f0,
1956 		0x40300, 0x4033c,
1957 		0x403f8, 0x403fc,
1958 		0x41304, 0x413c4,
1959 		0x41400, 0x4140c,
1960 		0x41414, 0x4141c,
1961 		0x41480, 0x414d0,
1962 		0x44000, 0x44054,
1963 		0x4405c, 0x44078,
1964 		0x440c0, 0x44174,
1965 		0x44180, 0x441ac,
1966 		0x441b4, 0x441b8,
1967 		0x441c0, 0x44254,
1968 		0x4425c, 0x44278,
1969 		0x442c0, 0x44374,
1970 		0x44380, 0x443ac,
1971 		0x443b4, 0x443b8,
1972 		0x443c0, 0x44454,
1973 		0x4445c, 0x44478,
1974 		0x444c0, 0x44574,
1975 		0x44580, 0x445ac,
1976 		0x445b4, 0x445b8,
1977 		0x445c0, 0x44654,
1978 		0x4465c, 0x44678,
1979 		0x446c0, 0x44774,
1980 		0x44780, 0x447ac,
1981 		0x447b4, 0x447b8,
1982 		0x447c0, 0x44854,
1983 		0x4485c, 0x44878,
1984 		0x448c0, 0x44974,
1985 		0x44980, 0x449ac,
1986 		0x449b4, 0x449b8,
1987 		0x449c0, 0x449fc,
1988 		0x45000, 0x45004,
1989 		0x45010, 0x45030,
1990 		0x45040, 0x45060,
1991 		0x45068, 0x45068,
1992 		0x45080, 0x45084,
1993 		0x450a0, 0x450b0,
1994 		0x45200, 0x45204,
1995 		0x45210, 0x45230,
1996 		0x45240, 0x45260,
1997 		0x45268, 0x45268,
1998 		0x45280, 0x45284,
1999 		0x452a0, 0x452b0,
2000 		0x460c0, 0x460e4,
2001 		0x47000, 0x4703c,
2002 		0x47044, 0x4708c,
2003 		0x47200, 0x47250,
2004 		0x47400, 0x47408,
2005 		0x47414, 0x47420,
2006 		0x47600, 0x47618,
2007 		0x47800, 0x47814,
2008 		0x48000, 0x4800c,
2009 		0x48040, 0x48050,
2010 		0x48060, 0x48068,
2011 		0x4807c, 0x4808c,
2012 		0x48094, 0x480b0,
2013 		0x480c0, 0x48144,
2014 		0x48180, 0x4818c,
2015 		0x48200, 0x48254,
2016 		0x48260, 0x48264,
2017 		0x48270, 0x48288,
2018 		0x48290, 0x48298,
2019 		0x482ac, 0x482c8,
2020 		0x482d0, 0x482e0,
2021 		0x482f0, 0x482f0,
2022 		0x48300, 0x4833c,
2023 		0x483f8, 0x483fc,
2024 		0x49304, 0x493c4,
2025 		0x49400, 0x4940c,
2026 		0x49414, 0x4941c,
2027 		0x49480, 0x494d0,
2028 		0x4c000, 0x4c054,
2029 		0x4c05c, 0x4c078,
2030 		0x4c0c0, 0x4c174,
2031 		0x4c180, 0x4c1ac,
2032 		0x4c1b4, 0x4c1b8,
2033 		0x4c1c0, 0x4c254,
2034 		0x4c25c, 0x4c278,
2035 		0x4c2c0, 0x4c374,
2036 		0x4c380, 0x4c3ac,
2037 		0x4c3b4, 0x4c3b8,
2038 		0x4c3c0, 0x4c454,
2039 		0x4c45c, 0x4c478,
2040 		0x4c4c0, 0x4c574,
2041 		0x4c580, 0x4c5ac,
2042 		0x4c5b4, 0x4c5b8,
2043 		0x4c5c0, 0x4c654,
2044 		0x4c65c, 0x4c678,
2045 		0x4c6c0, 0x4c774,
2046 		0x4c780, 0x4c7ac,
2047 		0x4c7b4, 0x4c7b8,
2048 		0x4c7c0, 0x4c854,
2049 		0x4c85c, 0x4c878,
2050 		0x4c8c0, 0x4c974,
2051 		0x4c980, 0x4c9ac,
2052 		0x4c9b4, 0x4c9b8,
2053 		0x4c9c0, 0x4c9fc,
2054 		0x4d000, 0x4d004,
2055 		0x4d010, 0x4d030,
2056 		0x4d040, 0x4d060,
2057 		0x4d068, 0x4d068,
2058 		0x4d080, 0x4d084,
2059 		0x4d0a0, 0x4d0b0,
2060 		0x4d200, 0x4d204,
2061 		0x4d210, 0x4d230,
2062 		0x4d240, 0x4d260,
2063 		0x4d268, 0x4d268,
2064 		0x4d280, 0x4d284,
2065 		0x4d2a0, 0x4d2b0,
2066 		0x4e0c0, 0x4e0e4,
2067 		0x4f000, 0x4f03c,
2068 		0x4f044, 0x4f08c,
2069 		0x4f200, 0x4f250,
2070 		0x4f400, 0x4f408,
2071 		0x4f414, 0x4f420,
2072 		0x4f600, 0x4f618,
2073 		0x4f800, 0x4f814,
2074 		0x50000, 0x50084,
2075 		0x50090, 0x500cc,
2076 		0x50400, 0x50400,
2077 		0x50800, 0x50884,
2078 		0x50890, 0x508cc,
2079 		0x50c00, 0x50c00,
2080 		0x51000, 0x5101c,
2081 		0x51300, 0x51308,
2082 	};
2083 
2084 	static const unsigned int t6_reg_ranges[] = {
2085 		0x1008, 0x101c,
2086 		0x1024, 0x10a8,
2087 		0x10b4, 0x10f8,
2088 		0x1100, 0x1114,
2089 		0x111c, 0x112c,
2090 		0x1138, 0x113c,
2091 		0x1144, 0x114c,
2092 		0x1180, 0x1184,
2093 		0x1190, 0x1194,
2094 		0x11a0, 0x11a4,
2095 		0x11b0, 0x11b4,
2096 		0x11fc, 0x1274,
2097 		0x1280, 0x133c,
2098 		0x1800, 0x18fc,
2099 		0x3000, 0x302c,
2100 		0x3060, 0x30b0,
2101 		0x30b8, 0x30d8,
2102 		0x30e0, 0x30fc,
2103 		0x3140, 0x357c,
2104 		0x35a8, 0x35cc,
2105 		0x35ec, 0x35ec,
2106 		0x3600, 0x5624,
2107 		0x56cc, 0x56ec,
2108 		0x56f4, 0x5720,
2109 		0x5728, 0x575c,
2110 		0x580c, 0x5814,
2111 		0x5890, 0x589c,
2112 		0x58a4, 0x58ac,
2113 		0x58b8, 0x58bc,
2114 		0x5940, 0x595c,
2115 		0x5980, 0x598c,
2116 		0x59b0, 0x59c8,
2117 		0x59d0, 0x59dc,
2118 		0x59fc, 0x5a18,
2119 		0x5a60, 0x5a6c,
2120 		0x5a80, 0x5a8c,
2121 		0x5a94, 0x5a9c,
2122 		0x5b94, 0x5bfc,
2123 		0x5c10, 0x5e48,
2124 		0x5e50, 0x5e94,
2125 		0x5ea0, 0x5eb0,
2126 		0x5ec0, 0x5ec0,
2127 		0x5ec8, 0x5ed0,
2128 		0x5ee0, 0x5ee0,
2129 		0x5ef0, 0x5ef0,
2130 		0x5f00, 0x5f00,
2131 		0x6000, 0x6020,
2132 		0x6028, 0x6040,
2133 		0x6058, 0x609c,
2134 		0x60a8, 0x619c,
2135 		0x7700, 0x7798,
2136 		0x77c0, 0x7880,
2137 		0x78cc, 0x78fc,
2138 		0x7b00, 0x7b58,
2139 		0x7b60, 0x7b84,
2140 		0x7b8c, 0x7c54,
2141 		0x7d00, 0x7d38,
2142 		0x7d40, 0x7d84,
2143 		0x7d8c, 0x7ddc,
2144 		0x7de4, 0x7e04,
2145 		0x7e10, 0x7e1c,
2146 		0x7e24, 0x7e38,
2147 		0x7e40, 0x7e44,
2148 		0x7e4c, 0x7e78,
2149 		0x7e80, 0x7edc,
2150 		0x7ee8, 0x7efc,
2151 		0x8dc0, 0x8de4,
2152 		0x8df8, 0x8e04,
2153 		0x8e10, 0x8e84,
2154 		0x8ea0, 0x8f88,
2155 		0x8fb8, 0x9058,
2156 		0x9060, 0x9060,
2157 		0x9068, 0x90f8,
2158 		0x9100, 0x9124,
2159 		0x9400, 0x9470,
2160 		0x9600, 0x9600,
2161 		0x9608, 0x9638,
2162 		0x9640, 0x9704,
2163 		0x9710, 0x971c,
2164 		0x9800, 0x9808,
2165 		0x9820, 0x983c,
2166 		0x9850, 0x9864,
2167 		0x9c00, 0x9c6c,
2168 		0x9c80, 0x9cec,
2169 		0x9d00, 0x9d6c,
2170 		0x9d80, 0x9dec,
2171 		0x9e00, 0x9e6c,
2172 		0x9e80, 0x9eec,
2173 		0x9f00, 0x9f6c,
2174 		0x9f80, 0xa020,
2175 		0xd004, 0xd03c,
2176 		0xd100, 0xd118,
2177 		0xd200, 0xd214,
2178 		0xd220, 0xd234,
2179 		0xd240, 0xd254,
2180 		0xd260, 0xd274,
2181 		0xd280, 0xd294,
2182 		0xd2a0, 0xd2b4,
2183 		0xd2c0, 0xd2d4,
2184 		0xd2e0, 0xd2f4,
2185 		0xd300, 0xd31c,
2186 		0xdfc0, 0xdfe0,
2187 		0xe000, 0xf008,
2188 		0xf010, 0xf018,
2189 		0xf020, 0xf028,
2190 		0x11000, 0x11014,
2191 		0x11048, 0x1106c,
2192 		0x11074, 0x11088,
2193 		0x11098, 0x11120,
2194 		0x1112c, 0x1117c,
2195 		0x11190, 0x112e0,
2196 		0x11300, 0x1130c,
2197 		0x12000, 0x1206c,
2198 		0x19040, 0x1906c,
2199 		0x19078, 0x19080,
2200 		0x1908c, 0x190e8,
2201 		0x190f0, 0x190f8,
2202 		0x19100, 0x19110,
2203 		0x19120, 0x19124,
2204 		0x19150, 0x19194,
2205 		0x1919c, 0x191b0,
2206 		0x191d0, 0x191e8,
2207 		0x19238, 0x19290,
2208 		0x192a4, 0x192b0,
2209 		0x192bc, 0x192bc,
2210 		0x19348, 0x1934c,
2211 		0x193f8, 0x19418,
2212 		0x19420, 0x19428,
2213 		0x19430, 0x19444,
2214 		0x1944c, 0x1946c,
2215 		0x19474, 0x19474,
2216 		0x19490, 0x194cc,
2217 		0x194f0, 0x194f8,
2218 		0x19c00, 0x19c48,
2219 		0x19c50, 0x19c80,
2220 		0x19c94, 0x19c98,
2221 		0x19ca0, 0x19cbc,
2222 		0x19ce4, 0x19ce4,
2223 		0x19cf0, 0x19cf8,
2224 		0x19d00, 0x19d28,
2225 		0x19d50, 0x19d78,
2226 		0x19d94, 0x19d98,
2227 		0x19da0, 0x19dc8,
2228 		0x19df0, 0x19e10,
2229 		0x19e50, 0x19e6c,
2230 		0x19ea0, 0x19ebc,
2231 		0x19ec4, 0x19ef4,
2232 		0x19f04, 0x19f2c,
2233 		0x19f34, 0x19f34,
2234 		0x19f40, 0x19f50,
2235 		0x19f90, 0x19fac,
2236 		0x19fc4, 0x19fc8,
2237 		0x19fd0, 0x19fe4,
2238 		0x1a000, 0x1a004,
2239 		0x1a010, 0x1a06c,
2240 		0x1a0b0, 0x1a0e4,
2241 		0x1a0ec, 0x1a0f8,
2242 		0x1a100, 0x1a108,
2243 		0x1a114, 0x1a120,
2244 		0x1a128, 0x1a130,
2245 		0x1a138, 0x1a138,
2246 		0x1a190, 0x1a1c4,
2247 		0x1a1fc, 0x1a1fc,
2248 		0x1e008, 0x1e00c,
2249 		0x1e040, 0x1e044,
2250 		0x1e04c, 0x1e04c,
2251 		0x1e284, 0x1e290,
2252 		0x1e2c0, 0x1e2c0,
2253 		0x1e2e0, 0x1e2e0,
2254 		0x1e300, 0x1e384,
2255 		0x1e3c0, 0x1e3c8,
2256 		0x1e408, 0x1e40c,
2257 		0x1e440, 0x1e444,
2258 		0x1e44c, 0x1e44c,
2259 		0x1e684, 0x1e690,
2260 		0x1e6c0, 0x1e6c0,
2261 		0x1e6e0, 0x1e6e0,
2262 		0x1e700, 0x1e784,
2263 		0x1e7c0, 0x1e7c8,
2264 		0x1e808, 0x1e80c,
2265 		0x1e840, 0x1e844,
2266 		0x1e84c, 0x1e84c,
2267 		0x1ea84, 0x1ea90,
2268 		0x1eac0, 0x1eac0,
2269 		0x1eae0, 0x1eae0,
2270 		0x1eb00, 0x1eb84,
2271 		0x1ebc0, 0x1ebc8,
2272 		0x1ec08, 0x1ec0c,
2273 		0x1ec40, 0x1ec44,
2274 		0x1ec4c, 0x1ec4c,
2275 		0x1ee84, 0x1ee90,
2276 		0x1eec0, 0x1eec0,
2277 		0x1eee0, 0x1eee0,
2278 		0x1ef00, 0x1ef84,
2279 		0x1efc0, 0x1efc8,
2280 		0x1f008, 0x1f00c,
2281 		0x1f040, 0x1f044,
2282 		0x1f04c, 0x1f04c,
2283 		0x1f284, 0x1f290,
2284 		0x1f2c0, 0x1f2c0,
2285 		0x1f2e0, 0x1f2e0,
2286 		0x1f300, 0x1f384,
2287 		0x1f3c0, 0x1f3c8,
2288 		0x1f408, 0x1f40c,
2289 		0x1f440, 0x1f444,
2290 		0x1f44c, 0x1f44c,
2291 		0x1f684, 0x1f690,
2292 		0x1f6c0, 0x1f6c0,
2293 		0x1f6e0, 0x1f6e0,
2294 		0x1f700, 0x1f784,
2295 		0x1f7c0, 0x1f7c8,
2296 		0x1f808, 0x1f80c,
2297 		0x1f840, 0x1f844,
2298 		0x1f84c, 0x1f84c,
2299 		0x1fa84, 0x1fa90,
2300 		0x1fac0, 0x1fac0,
2301 		0x1fae0, 0x1fae0,
2302 		0x1fb00, 0x1fb84,
2303 		0x1fbc0, 0x1fbc8,
2304 		0x1fc08, 0x1fc0c,
2305 		0x1fc40, 0x1fc44,
2306 		0x1fc4c, 0x1fc4c,
2307 		0x1fe84, 0x1fe90,
2308 		0x1fec0, 0x1fec0,
2309 		0x1fee0, 0x1fee0,
2310 		0x1ff00, 0x1ff84,
2311 		0x1ffc0, 0x1ffc8,
2312 		0x30000, 0x30030,
2313 		0x30100, 0x30168,
2314 		0x30190, 0x301a0,
2315 		0x301a8, 0x301b8,
2316 		0x301c4, 0x301c8,
2317 		0x301d0, 0x301d0,
2318 		0x30200, 0x30320,
2319 		0x30400, 0x304b4,
2320 		0x304c0, 0x3052c,
2321 		0x30540, 0x3061c,
2322 		0x30800, 0x308a0,
2323 		0x308c0, 0x30908,
2324 		0x30910, 0x309b8,
2325 		0x30a00, 0x30a04,
2326 		0x30a0c, 0x30a14,
2327 		0x30a1c, 0x30a2c,
2328 		0x30a44, 0x30a50,
2329 		0x30a74, 0x30a74,
2330 		0x30a7c, 0x30afc,
2331 		0x30b08, 0x30c24,
2332 		0x30d00, 0x30d14,
2333 		0x30d1c, 0x30d3c,
2334 		0x30d44, 0x30d4c,
2335 		0x30d54, 0x30d74,
2336 		0x30d7c, 0x30d7c,
2337 		0x30de0, 0x30de0,
2338 		0x30e00, 0x30ed4,
2339 		0x30f00, 0x30fa4,
2340 		0x30fc0, 0x30fc4,
2341 		0x31000, 0x31004,
2342 		0x31080, 0x310fc,
2343 		0x31208, 0x31220,
2344 		0x3123c, 0x31254,
2345 		0x31300, 0x31300,
2346 		0x31308, 0x3131c,
2347 		0x31338, 0x3133c,
2348 		0x31380, 0x31380,
2349 		0x31388, 0x313a8,
2350 		0x313b4, 0x313b4,
2351 		0x31400, 0x31420,
2352 		0x31438, 0x3143c,
2353 		0x31480, 0x31480,
2354 		0x314a8, 0x314a8,
2355 		0x314b0, 0x314b4,
2356 		0x314c8, 0x314d4,
2357 		0x31a40, 0x31a4c,
2358 		0x31af0, 0x31b20,
2359 		0x31b38, 0x31b3c,
2360 		0x31b80, 0x31b80,
2361 		0x31ba8, 0x31ba8,
2362 		0x31bb0, 0x31bb4,
2363 		0x31bc8, 0x31bd4,
2364 		0x32140, 0x3218c,
2365 		0x321f0, 0x321f4,
2366 		0x32200, 0x32200,
2367 		0x32218, 0x32218,
2368 		0x32400, 0x32400,
2369 		0x32408, 0x3241c,
2370 		0x32618, 0x32620,
2371 		0x32664, 0x32664,
2372 		0x326a8, 0x326a8,
2373 		0x326ec, 0x326ec,
2374 		0x32a00, 0x32abc,
2375 		0x32b00, 0x32b18,
2376 		0x32b20, 0x32b38,
2377 		0x32b40, 0x32b58,
2378 		0x32b60, 0x32b78,
2379 		0x32c00, 0x32c00,
2380 		0x32c08, 0x32c3c,
2381 		0x33000, 0x3302c,
2382 		0x33034, 0x33050,
2383 		0x33058, 0x33058,
2384 		0x33060, 0x3308c,
2385 		0x3309c, 0x330ac,
2386 		0x330c0, 0x330c0,
2387 		0x330c8, 0x330d0,
2388 		0x330d8, 0x330e0,
2389 		0x330ec, 0x3312c,
2390 		0x33134, 0x33150,
2391 		0x33158, 0x33158,
2392 		0x33160, 0x3318c,
2393 		0x3319c, 0x331ac,
2394 		0x331c0, 0x331c0,
2395 		0x331c8, 0x331d0,
2396 		0x331d8, 0x331e0,
2397 		0x331ec, 0x33290,
2398 		0x33298, 0x332c4,
2399 		0x332e4, 0x33390,
2400 		0x33398, 0x333c4,
2401 		0x333e4, 0x3342c,
2402 		0x33434, 0x33450,
2403 		0x33458, 0x33458,
2404 		0x33460, 0x3348c,
2405 		0x3349c, 0x334ac,
2406 		0x334c0, 0x334c0,
2407 		0x334c8, 0x334d0,
2408 		0x334d8, 0x334e0,
2409 		0x334ec, 0x3352c,
2410 		0x33534, 0x33550,
2411 		0x33558, 0x33558,
2412 		0x33560, 0x3358c,
2413 		0x3359c, 0x335ac,
2414 		0x335c0, 0x335c0,
2415 		0x335c8, 0x335d0,
2416 		0x335d8, 0x335e0,
2417 		0x335ec, 0x33690,
2418 		0x33698, 0x336c4,
2419 		0x336e4, 0x33790,
2420 		0x33798, 0x337c4,
2421 		0x337e4, 0x337fc,
2422 		0x33814, 0x33814,
2423 		0x33854, 0x33868,
2424 		0x33880, 0x3388c,
2425 		0x338c0, 0x338d0,
2426 		0x338e8, 0x338ec,
2427 		0x33900, 0x3392c,
2428 		0x33934, 0x33950,
2429 		0x33958, 0x33958,
2430 		0x33960, 0x3398c,
2431 		0x3399c, 0x339ac,
2432 		0x339c0, 0x339c0,
2433 		0x339c8, 0x339d0,
2434 		0x339d8, 0x339e0,
2435 		0x339ec, 0x33a90,
2436 		0x33a98, 0x33ac4,
2437 		0x33ae4, 0x33b10,
2438 		0x33b24, 0x33b28,
2439 		0x33b38, 0x33b50,
2440 		0x33bf0, 0x33c10,
2441 		0x33c24, 0x33c28,
2442 		0x33c38, 0x33c50,
2443 		0x33cf0, 0x33cfc,
2444 		0x34000, 0x34030,
2445 		0x34100, 0x34168,
2446 		0x34190, 0x341a0,
2447 		0x341a8, 0x341b8,
2448 		0x341c4, 0x341c8,
2449 		0x341d0, 0x341d0,
2450 		0x34200, 0x34320,
2451 		0x34400, 0x344b4,
2452 		0x344c0, 0x3452c,
2453 		0x34540, 0x3461c,
2454 		0x34800, 0x348a0,
2455 		0x348c0, 0x34908,
2456 		0x34910, 0x349b8,
2457 		0x34a00, 0x34a04,
2458 		0x34a0c, 0x34a14,
2459 		0x34a1c, 0x34a2c,
2460 		0x34a44, 0x34a50,
2461 		0x34a74, 0x34a74,
2462 		0x34a7c, 0x34afc,
2463 		0x34b08, 0x34c24,
2464 		0x34d00, 0x34d14,
2465 		0x34d1c, 0x34d3c,
2466 		0x34d44, 0x34d4c,
2467 		0x34d54, 0x34d74,
2468 		0x34d7c, 0x34d7c,
2469 		0x34de0, 0x34de0,
2470 		0x34e00, 0x34ed4,
2471 		0x34f00, 0x34fa4,
2472 		0x34fc0, 0x34fc4,
2473 		0x35000, 0x35004,
2474 		0x35080, 0x350fc,
2475 		0x35208, 0x35220,
2476 		0x3523c, 0x35254,
2477 		0x35300, 0x35300,
2478 		0x35308, 0x3531c,
2479 		0x35338, 0x3533c,
2480 		0x35380, 0x35380,
2481 		0x35388, 0x353a8,
2482 		0x353b4, 0x353b4,
2483 		0x35400, 0x35420,
2484 		0x35438, 0x3543c,
2485 		0x35480, 0x35480,
2486 		0x354a8, 0x354a8,
2487 		0x354b0, 0x354b4,
2488 		0x354c8, 0x354d4,
2489 		0x35a40, 0x35a4c,
2490 		0x35af0, 0x35b20,
2491 		0x35b38, 0x35b3c,
2492 		0x35b80, 0x35b80,
2493 		0x35ba8, 0x35ba8,
2494 		0x35bb0, 0x35bb4,
2495 		0x35bc8, 0x35bd4,
2496 		0x36140, 0x3618c,
2497 		0x361f0, 0x361f4,
2498 		0x36200, 0x36200,
2499 		0x36218, 0x36218,
2500 		0x36400, 0x36400,
2501 		0x36408, 0x3641c,
2502 		0x36618, 0x36620,
2503 		0x36664, 0x36664,
2504 		0x366a8, 0x366a8,
2505 		0x366ec, 0x366ec,
2506 		0x36a00, 0x36abc,
2507 		0x36b00, 0x36b18,
2508 		0x36b20, 0x36b38,
2509 		0x36b40, 0x36b58,
2510 		0x36b60, 0x36b78,
2511 		0x36c00, 0x36c00,
2512 		0x36c08, 0x36c3c,
2513 		0x37000, 0x3702c,
2514 		0x37034, 0x37050,
2515 		0x37058, 0x37058,
2516 		0x37060, 0x3708c,
2517 		0x3709c, 0x370ac,
2518 		0x370c0, 0x370c0,
2519 		0x370c8, 0x370d0,
2520 		0x370d8, 0x370e0,
2521 		0x370ec, 0x3712c,
2522 		0x37134, 0x37150,
2523 		0x37158, 0x37158,
2524 		0x37160, 0x3718c,
2525 		0x3719c, 0x371ac,
2526 		0x371c0, 0x371c0,
2527 		0x371c8, 0x371d0,
2528 		0x371d8, 0x371e0,
2529 		0x371ec, 0x37290,
2530 		0x37298, 0x372c4,
2531 		0x372e4, 0x37390,
2532 		0x37398, 0x373c4,
2533 		0x373e4, 0x3742c,
2534 		0x37434, 0x37450,
2535 		0x37458, 0x37458,
2536 		0x37460, 0x3748c,
2537 		0x3749c, 0x374ac,
2538 		0x374c0, 0x374c0,
2539 		0x374c8, 0x374d0,
2540 		0x374d8, 0x374e0,
2541 		0x374ec, 0x3752c,
2542 		0x37534, 0x37550,
2543 		0x37558, 0x37558,
2544 		0x37560, 0x3758c,
2545 		0x3759c, 0x375ac,
2546 		0x375c0, 0x375c0,
2547 		0x375c8, 0x375d0,
2548 		0x375d8, 0x375e0,
2549 		0x375ec, 0x37690,
2550 		0x37698, 0x376c4,
2551 		0x376e4, 0x37790,
2552 		0x37798, 0x377c4,
2553 		0x377e4, 0x377fc,
2554 		0x37814, 0x37814,
2555 		0x37854, 0x37868,
2556 		0x37880, 0x3788c,
2557 		0x378c0, 0x378d0,
2558 		0x378e8, 0x378ec,
2559 		0x37900, 0x3792c,
2560 		0x37934, 0x37950,
2561 		0x37958, 0x37958,
2562 		0x37960, 0x3798c,
2563 		0x3799c, 0x379ac,
2564 		0x379c0, 0x379c0,
2565 		0x379c8, 0x379d0,
2566 		0x379d8, 0x379e0,
2567 		0x379ec, 0x37a90,
2568 		0x37a98, 0x37ac4,
2569 		0x37ae4, 0x37b10,
2570 		0x37b24, 0x37b28,
2571 		0x37b38, 0x37b50,
2572 		0x37bf0, 0x37c10,
2573 		0x37c24, 0x37c28,
2574 		0x37c38, 0x37c50,
2575 		0x37cf0, 0x37cfc,
2576 		0x40040, 0x40040,
2577 		0x40080, 0x40084,
2578 		0x40100, 0x40100,
2579 		0x40140, 0x401bc,
2580 		0x40200, 0x40214,
2581 		0x40228, 0x40228,
2582 		0x40240, 0x40258,
2583 		0x40280, 0x40280,
2584 		0x40304, 0x40304,
2585 		0x40330, 0x4033c,
2586 		0x41304, 0x413c8,
2587 		0x413d0, 0x413dc,
2588 		0x413f0, 0x413f0,
2589 		0x41400, 0x4140c,
2590 		0x41414, 0x4141c,
2591 		0x41480, 0x414d0,
2592 		0x44000, 0x4407c,
2593 		0x440c0, 0x441ac,
2594 		0x441b4, 0x4427c,
2595 		0x442c0, 0x443ac,
2596 		0x443b4, 0x4447c,
2597 		0x444c0, 0x445ac,
2598 		0x445b4, 0x4467c,
2599 		0x446c0, 0x447ac,
2600 		0x447b4, 0x4487c,
2601 		0x448c0, 0x449ac,
2602 		0x449b4, 0x44a7c,
2603 		0x44ac0, 0x44bac,
2604 		0x44bb4, 0x44c7c,
2605 		0x44cc0, 0x44dac,
2606 		0x44db4, 0x44e7c,
2607 		0x44ec0, 0x44fac,
2608 		0x44fb4, 0x4507c,
2609 		0x450c0, 0x451ac,
2610 		0x451b4, 0x451fc,
2611 		0x45800, 0x45804,
2612 		0x45810, 0x45830,
2613 		0x45840, 0x45860,
2614 		0x45868, 0x45868,
2615 		0x45880, 0x45884,
2616 		0x458a0, 0x458b0,
2617 		0x45a00, 0x45a04,
2618 		0x45a10, 0x45a30,
2619 		0x45a40, 0x45a60,
2620 		0x45a68, 0x45a68,
2621 		0x45a80, 0x45a84,
2622 		0x45aa0, 0x45ab0,
2623 		0x460c0, 0x460e4,
2624 		0x47000, 0x4703c,
2625 		0x47044, 0x4708c,
2626 		0x47200, 0x47250,
2627 		0x47400, 0x47408,
2628 		0x47414, 0x47420,
2629 		0x47600, 0x47618,
2630 		0x47800, 0x47814,
2631 		0x47820, 0x4782c,
2632 		0x50000, 0x50084,
2633 		0x50090, 0x500cc,
2634 		0x50300, 0x50384,
2635 		0x50400, 0x50400,
2636 		0x50800, 0x50884,
2637 		0x50890, 0x508cc,
2638 		0x50b00, 0x50b84,
2639 		0x50c00, 0x50c00,
2640 		0x51000, 0x51020,
2641 		0x51028, 0x510b0,
2642 		0x51300, 0x51324,
2643 	};
2644 
2645 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2646 	const unsigned int *reg_ranges;
2647 	int reg_ranges_size, range;
2648 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2649 
2650 	/* Select the right set of register ranges to dump depending on the
2651 	 * adapter chip type.
2652 	 */
2653 	switch (chip_version) {
2654 	case CHELSIO_T4:
2655 		reg_ranges = t4_reg_ranges;
2656 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2657 		break;
2658 
2659 	case CHELSIO_T5:
2660 		reg_ranges = t5_reg_ranges;
2661 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2662 		break;
2663 
2664 	case CHELSIO_T6:
2665 		reg_ranges = t6_reg_ranges;
2666 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2667 		break;
2668 
2669 	default:
2670 		dev_err(adap->pdev_dev,
2671 			"Unsupported chip version %d\n", chip_version);
2672 		return;
2673 	}
2674 
2675 	/* Clear the register buffer and insert the appropriate register
2676 	 * values selected by the above register ranges.
2677 	 */
2678 	memset(buf, 0, buf_size);
2679 	for (range = 0; range < reg_ranges_size; range += 2) {
2680 		unsigned int reg = reg_ranges[range];
2681 		unsigned int last_reg = reg_ranges[range + 1];
2682 		u32 *bufp = (u32 *)((char *)buf + reg);
2683 
2684 		/* Iterate across the register range filling in the register
2685 		 * buffer but don't write past the end of the register buffer.
2686 		 */
2687 		while (reg <= last_reg && bufp < buf_end) {
2688 			*bufp++ = t4_read_reg(adap, reg);
2689 			reg += sizeof(u32);
2690 		}
2691 	}
2692 }
2693 
2694 #define EEPROM_STAT_ADDR   0x7bfc
2695 #define VPD_BASE           0x400
2696 #define VPD_BASE_OLD       0
2697 #define VPD_LEN            1024
2698 #define CHELSIO_VPD_UNIQUE_ID 0x82
2699 
2700 /**
2701  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2702  * @phys_addr: the physical EEPROM address
2703  * @fn: the PCI function number
2704  * @sz: size of function-specific area
2705  *
2706  * Translate a physical EEPROM address to virtual.  The first 1K is
2707  * accessed through virtual addresses starting at 31K, the rest is
2708  * accessed through virtual addresses starting at 0.
2709  *
2710  * The mapping is as follows:
2711  * [0..1K) -> [31K..32K)
2712  * [1K..1K+A) -> [31K-A..31K)
2713  * [1K+A..ES) -> [0..ES-A-1K)
2714  *
2715  * where A = @fn * @sz, and ES = EEPROM size.
2716  */
2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2718 {
2719 	fn *= sz;
2720 	if (phys_addr < 1024)
2721 		return phys_addr + (31 << 10);
2722 	if (phys_addr < 1024 + fn)
2723 		return 31744 - fn + phys_addr - 1024;
2724 	if (phys_addr < EEPROMSIZE)
2725 		return phys_addr - 1024 - fn;
2726 	return -EINVAL;
2727 }
2728 
2729 /**
2730  *	t4_seeprom_wp - enable/disable EEPROM write protection
2731  *	@adapter: the adapter
2732  *	@enable: whether to enable or disable write protection
2733  *
2734  *	Enables or disables write protection on the serial EEPROM.
2735  */
2736 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2737 {
2738 	unsigned int v = enable ? 0xc : 0;
2739 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2740 	return ret < 0 ? ret : 0;
2741 }
2742 
2743 /**
2744  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2745  *	@adapter: adapter to read
2746  *	@p: where to store the parameters
2747  *
2748  *	Reads card parameters stored in VPD EEPROM.
2749  */
2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2751 {
2752 	int i, ret = 0, addr;
2753 	int ec, sn, pn, na;
2754 	u8 *vpd, csum;
2755 	unsigned int vpdr_len, kw_offset, id_len;
2756 
2757 	vpd = vmalloc(VPD_LEN);
2758 	if (!vpd)
2759 		return -ENOMEM;
2760 
2761 	/* Card information normally starts at VPD_BASE but early cards had
2762 	 * it at 0.
2763 	 */
2764 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2765 	if (ret < 0)
2766 		goto out;
2767 
2768 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2769 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2770 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2771 	 * is expected to automatically put this entry at the
2772 	 * beginning of the VPD.
2773 	 */
2774 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2775 
2776 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2777 	if (ret < 0)
2778 		goto out;
2779 
2780 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2781 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2782 		ret = -EINVAL;
2783 		goto out;
2784 	}
2785 
2786 	id_len = pci_vpd_lrdt_size(vpd);
2787 	if (id_len > ID_LEN)
2788 		id_len = ID_LEN;
2789 
2790 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2791 	if (i < 0) {
2792 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2793 		ret = -EINVAL;
2794 		goto out;
2795 	}
2796 
2797 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2798 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2799 	if (vpdr_len + kw_offset > VPD_LEN) {
2800 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2801 		ret = -EINVAL;
2802 		goto out;
2803 	}
2804 
2805 #define FIND_VPD_KW(var, name) do { \
2806 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2807 	if (var < 0) { \
2808 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2809 		ret = -EINVAL; \
2810 		goto out; \
2811 	} \
2812 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2813 } while (0)
2814 
2815 	FIND_VPD_KW(i, "RV");
2816 	for (csum = 0; i >= 0; i--)
2817 		csum += vpd[i];
2818 
2819 	if (csum) {
2820 		dev_err(adapter->pdev_dev,
2821 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2822 		ret = -EINVAL;
2823 		goto out;
2824 	}
2825 
2826 	FIND_VPD_KW(ec, "EC");
2827 	FIND_VPD_KW(sn, "SN");
2828 	FIND_VPD_KW(pn, "PN");
2829 	FIND_VPD_KW(na, "NA");
2830 #undef FIND_VPD_KW
2831 
2832 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2833 	strim(p->id);
2834 	memcpy(p->ec, vpd + ec, EC_LEN);
2835 	strim(p->ec);
2836 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2837 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2838 	strim(p->sn);
2839 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2840 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2841 	strim(p->pn);
2842 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2843 	strim((char *)p->na);
2844 
2845 out:
2846 	vfree(vpd);
2847 	return ret < 0 ? ret : 0;
2848 }
2849 
2850 /**
2851  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2852  *	@adapter: adapter to read
2853  *	@p: where to store the parameters
2854  *
2855  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2856  *	Clock.  This can only be called after a connection to the firmware
2857  *	is established.
2858  */
2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2860 {
2861 	u32 cclk_param, cclk_val;
2862 	int ret;
2863 
2864 	/* Grab the raw VPD parameters.
2865 	 */
2866 	ret = t4_get_raw_vpd_params(adapter, p);
2867 	if (ret)
2868 		return ret;
2869 
2870 	/* Ask firmware for the Core Clock since it knows how to translate the
2871 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2872 	 */
2873 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2874 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2875 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2876 			      1, &cclk_param, &cclk_val);
2877 
2878 	if (ret)
2879 		return ret;
2880 	p->cclk = cclk_val;
2881 
2882 	return 0;
2883 }
2884 
2885 /* serial flash and firmware constants */
2886 enum {
2887 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2888 
2889 	/* flash command opcodes */
2890 	SF_PROG_PAGE    = 2,          /* program page */
2891 	SF_WR_DISABLE   = 4,          /* disable writes */
2892 	SF_RD_STATUS    = 5,          /* read status register */
2893 	SF_WR_ENABLE    = 6,          /* enable writes */
2894 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2895 	SF_RD_ID        = 0x9f,       /* read ID */
2896 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2897 };
2898 
2899 /**
2900  *	sf1_read - read data from the serial flash
2901  *	@adapter: the adapter
2902  *	@byte_cnt: number of bytes to read
2903  *	@cont: whether another operation will be chained
2904  *	@lock: whether to lock SF for PL access only
2905  *	@valp: where to store the read data
2906  *
2907  *	Reads up to 4 bytes of data from the serial flash.  The location of
2908  *	the read needs to be specified prior to calling this by issuing the
2909  *	appropriate commands to the serial flash.
2910  */
2911 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2912 		    int lock, u32 *valp)
2913 {
2914 	int ret;
2915 
2916 	if (!byte_cnt || byte_cnt > 4)
2917 		return -EINVAL;
2918 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2919 		return -EBUSY;
2920 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2921 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2922 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2923 	if (!ret)
2924 		*valp = t4_read_reg(adapter, SF_DATA_A);
2925 	return ret;
2926 }
2927 
2928 /**
2929  *	sf1_write - write data to the serial flash
2930  *	@adapter: the adapter
2931  *	@byte_cnt: number of bytes to write
2932  *	@cont: whether another operation will be chained
2933  *	@lock: whether to lock SF for PL access only
2934  *	@val: value to write
2935  *
2936  *	Writes up to 4 bytes of data to the serial flash.  The location of
2937  *	the write needs to be specified prior to calling this by issuing the
2938  *	appropriate commands to the serial flash.
2939  */
2940 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2941 		     int lock, u32 val)
2942 {
2943 	if (!byte_cnt || byte_cnt > 4)
2944 		return -EINVAL;
2945 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2946 		return -EBUSY;
2947 	t4_write_reg(adapter, SF_DATA_A, val);
2948 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2949 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2950 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2951 }
2952 
2953 /**
2954  *	flash_wait_op - wait for a flash operation to complete
2955  *	@adapter: the adapter
2956  *	@attempts: max number of polls of the status register
2957  *	@delay: delay between polls in ms
2958  *
2959  *	Wait for a flash operation to complete by polling the status register.
2960  */
2961 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2962 {
2963 	int ret;
2964 	u32 status;
2965 
2966 	while (1) {
2967 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2968 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2969 			return ret;
2970 		if (!(status & 1))
2971 			return 0;
2972 		if (--attempts == 0)
2973 			return -EAGAIN;
2974 		if (delay)
2975 			msleep(delay);
2976 	}
2977 }
2978 
2979 /**
2980  *	t4_read_flash - read words from serial flash
2981  *	@adapter: the adapter
2982  *	@addr: the start address for the read
2983  *	@nwords: how many 32-bit words to read
2984  *	@data: where to store the read data
2985  *	@byte_oriented: whether to store data as bytes or as words
2986  *
2987  *	Read the specified number of 32-bit words from the serial flash.
2988  *	If @byte_oriented is set the read data is stored as a byte array
2989  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2990  *	natural endianness.
2991  */
2992 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2993 		  unsigned int nwords, u32 *data, int byte_oriented)
2994 {
2995 	int ret;
2996 
2997 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2998 		return -EINVAL;
2999 
3000 	addr = swab32(addr) | SF_RD_DATA_FAST;
3001 
3002 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3003 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3004 		return ret;
3005 
3006 	for ( ; nwords; nwords--, data++) {
3007 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3008 		if (nwords == 1)
3009 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3010 		if (ret)
3011 			return ret;
3012 		if (byte_oriented)
3013 			*data = (__force __u32)(cpu_to_be32(*data));
3014 	}
3015 	return 0;
3016 }
3017 
3018 /**
3019  *	t4_write_flash - write up to a page of data to the serial flash
3020  *	@adapter: the adapter
3021  *	@addr: the start address to write
3022  *	@n: length of data to write in bytes
3023  *	@data: the data to write
3024  *
3025  *	Writes up to a page of data (256 bytes) to the serial flash starting
3026  *	at the given address.  All the data must be written to the same page.
3027  */
3028 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3029 			  unsigned int n, const u8 *data)
3030 {
3031 	int ret;
3032 	u32 buf[64];
3033 	unsigned int i, c, left, val, offset = addr & 0xff;
3034 
3035 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3036 		return -EINVAL;
3037 
3038 	val = swab32(addr) | SF_PROG_PAGE;
3039 
3040 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3041 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3042 		goto unlock;
3043 
3044 	for (left = n; left; left -= c) {
3045 		c = min(left, 4U);
3046 		for (val = 0, i = 0; i < c; ++i)
3047 			val = (val << 8) + *data++;
3048 
3049 		ret = sf1_write(adapter, c, c != left, 1, val);
3050 		if (ret)
3051 			goto unlock;
3052 	}
3053 	ret = flash_wait_op(adapter, 8, 1);
3054 	if (ret)
3055 		goto unlock;
3056 
3057 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3058 
3059 	/* Read the page to verify the write succeeded */
3060 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3061 	if (ret)
3062 		return ret;
3063 
3064 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3065 		dev_err(adapter->pdev_dev,
3066 			"failed to correctly write the flash page at %#x\n",
3067 			addr);
3068 		return -EIO;
3069 	}
3070 	return 0;
3071 
3072 unlock:
3073 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3074 	return ret;
3075 }
3076 
3077 /**
3078  *	t4_get_fw_version - read the firmware version
3079  *	@adapter: the adapter
3080  *	@vers: where to place the version
3081  *
3082  *	Reads the FW version from flash.
3083  */
3084 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3085 {
3086 	return t4_read_flash(adapter, FLASH_FW_START +
3087 			     offsetof(struct fw_hdr, fw_ver), 1,
3088 			     vers, 0);
3089 }
3090 
3091 /**
3092  *	t4_get_bs_version - read the firmware bootstrap version
3093  *	@adapter: the adapter
3094  *	@vers: where to place the version
3095  *
3096  *	Reads the FW Bootstrap version from flash.
3097  */
3098 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3099 {
3100 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3101 			     offsetof(struct fw_hdr, fw_ver), 1,
3102 			     vers, 0);
3103 }
3104 
3105 /**
3106  *	t4_get_tp_version - read the TP microcode version
3107  *	@adapter: the adapter
3108  *	@vers: where to place the version
3109  *
3110  *	Reads the TP microcode version from flash.
3111  */
3112 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3113 {
3114 	return t4_read_flash(adapter, FLASH_FW_START +
3115 			     offsetof(struct fw_hdr, tp_microcode_ver),
3116 			     1, vers, 0);
3117 }
3118 
3119 /**
3120  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3121  *	@adapter: the adapter
3122  *	@vers: where to place the version
3123  *
3124  *	Reads the Expansion ROM header from FLASH and returns the version
3125  *	number (if present) through the @vers return value pointer.  We return
3126  *	this in the Firmware Version Format since it's convenient.  Return
3127  *	0 on success, -ENOENT if no Expansion ROM is present.
3128  */
3129 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3130 {
3131 	struct exprom_header {
3132 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3133 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3134 	} *hdr;
3135 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3136 					   sizeof(u32))];
3137 	int ret;
3138 
3139 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3140 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3141 			    0);
3142 	if (ret)
3143 		return ret;
3144 
3145 	hdr = (struct exprom_header *)exprom_header_buf;
3146 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3147 		return -ENOENT;
3148 
3149 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3150 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3151 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3152 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3153 	return 0;
3154 }
3155 
3156 /**
3157  *      t4_get_vpd_version - return the VPD version
3158  *      @adapter: the adapter
3159  *      @vers: where to place the version
3160  *
3161  *      Reads the VPD via the Firmware interface (thus this can only be called
3162  *      once we're ready to issue Firmware commands).  The format of the
3163  *      VPD version is adapter specific.  Returns 0 on success, an error on
3164  *      failure.
3165  *
3166  *      Note that early versions of the Firmware didn't include the ability
3167  *      to retrieve the VPD version, so we zero-out the return-value parameter
3168  *      in that case to avoid leaving it with garbage in it.
3169  *
3170  *      Also note that the Firmware will return its cached copy of the VPD
3171  *      Revision ID, not the actual Revision ID as written in the Serial
3172  *      EEPROM.  This is only an issue if a new VPD has been written and the
3173  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3174  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3175  *      if the Host Driver will be performing a full adapter initialization.
3176  */
3177 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3178 {
3179 	u32 vpdrev_param;
3180 	int ret;
3181 
3182 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3183 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3184 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3185 			      1, &vpdrev_param, vers);
3186 	if (ret)
3187 		*vers = 0;
3188 	return ret;
3189 }
3190 
3191 /**
3192  *      t4_get_scfg_version - return the Serial Configuration version
3193  *      @adapter: the adapter
3194  *      @vers: where to place the version
3195  *
3196  *      Reads the Serial Configuration Version via the Firmware interface
3197  *      (thus this can only be called once we're ready to issue Firmware
3198  *      commands).  The format of the Serial Configuration version is
3199  *      adapter specific.  Returns 0 on success, an error on failure.
3200  *
3201  *      Note that early versions of the Firmware didn't include the ability
3202  *      to retrieve the Serial Configuration version, so we zero-out the
3203  *      return-value parameter in that case to avoid leaving it with
3204  *      garbage in it.
3205  *
3206  *      Also note that the Firmware will return its cached copy of the Serial
3207  *      Initialization Revision ID, not the actual Revision ID as written in
3208  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3209  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3210  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3211  *      been issued if the Host Driver will be performing a full adapter
3212  *      initialization.
3213  */
3214 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3215 {
3216 	u32 scfgrev_param;
3217 	int ret;
3218 
3219 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3220 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3221 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3222 			      1, &scfgrev_param, vers);
3223 	if (ret)
3224 		*vers = 0;
3225 	return ret;
3226 }
3227 
3228 /**
3229  *      t4_get_version_info - extract various chip/firmware version information
3230  *      @adapter: the adapter
3231  *
3232  *      Reads various chip/firmware version numbers and stores them into the
3233  *      adapter Adapter Parameters structure.  If any of the efforts fails
3234  *      the first failure will be returned, but all of the version numbers
3235  *      will be read.
3236  */
3237 int t4_get_version_info(struct adapter *adapter)
3238 {
3239 	int ret = 0;
3240 
3241 	#define FIRST_RET(__getvinfo) \
3242 	do { \
3243 		int __ret = __getvinfo; \
3244 		if (__ret && !ret) \
3245 			ret = __ret; \
3246 	} while (0)
3247 
3248 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3249 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3250 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3251 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3252 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3253 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3254 
3255 	#undef FIRST_RET
3256 	return ret;
3257 }
3258 
3259 /**
3260  *      t4_dump_version_info - dump all of the adapter configuration IDs
3261  *      @adapter: the adapter
3262  *
3263  *      Dumps all of the various bits of adapter configuration version/revision
3264  *      IDs information.  This is typically called at some point after
3265  *      t4_get_version_info() has been called.
3266  */
3267 void t4_dump_version_info(struct adapter *adapter)
3268 {
3269 	/* Device information */
3270 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3271 		 adapter->params.vpd.id,
3272 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3273 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3274 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3275 
3276 	/* Firmware Version */
3277 	if (!adapter->params.fw_vers)
3278 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3279 	else
3280 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3281 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3282 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3283 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3284 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3285 
3286 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3287 	 * Firmware, so dev_info() is more appropriate here.)
3288 	 */
3289 	if (!adapter->params.bs_vers)
3290 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3291 	else
3292 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3293 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3294 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3295 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3296 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3297 
3298 	/* TP Microcode Version */
3299 	if (!adapter->params.tp_vers)
3300 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3301 	else
3302 		dev_info(adapter->pdev_dev,
3303 			 "TP Microcode version: %u.%u.%u.%u\n",
3304 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3305 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3306 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3307 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3308 
3309 	/* Expansion ROM version */
3310 	if (!adapter->params.er_vers)
3311 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3312 	else
3313 		dev_info(adapter->pdev_dev,
3314 			 "Expansion ROM version: %u.%u.%u.%u\n",
3315 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3316 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3317 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3318 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3319 
3320 	/* Serial Configuration version */
3321 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3322 		 adapter->params.scfg_vers);
3323 
3324 	/* VPD Version */
3325 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3326 		 adapter->params.vpd_vers);
3327 }
3328 
3329 /**
3330  *	t4_check_fw_version - check if the FW is supported with this driver
3331  *	@adap: the adapter
3332  *
3333  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3334  *	if there's exact match, a negative error if the version could not be
3335  *	read or there's a major version mismatch
3336  */
3337 int t4_check_fw_version(struct adapter *adap)
3338 {
3339 	int i, ret, major, minor, micro;
3340 	int exp_major, exp_minor, exp_micro;
3341 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3342 
3343 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3344 	/* Try multiple times before returning error */
3345 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3346 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3347 
3348 	if (ret)
3349 		return ret;
3350 
3351 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3352 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3353 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3354 
3355 	switch (chip_version) {
3356 	case CHELSIO_T4:
3357 		exp_major = T4FW_MIN_VERSION_MAJOR;
3358 		exp_minor = T4FW_MIN_VERSION_MINOR;
3359 		exp_micro = T4FW_MIN_VERSION_MICRO;
3360 		break;
3361 	case CHELSIO_T5:
3362 		exp_major = T5FW_MIN_VERSION_MAJOR;
3363 		exp_minor = T5FW_MIN_VERSION_MINOR;
3364 		exp_micro = T5FW_MIN_VERSION_MICRO;
3365 		break;
3366 	case CHELSIO_T6:
3367 		exp_major = T6FW_MIN_VERSION_MAJOR;
3368 		exp_minor = T6FW_MIN_VERSION_MINOR;
3369 		exp_micro = T6FW_MIN_VERSION_MICRO;
3370 		break;
3371 	default:
3372 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3373 			adap->chip);
3374 		return -EINVAL;
3375 	}
3376 
3377 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3378 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3379 		dev_err(adap->pdev_dev,
3380 			"Card has firmware version %u.%u.%u, minimum "
3381 			"supported firmware is %u.%u.%u.\n", major, minor,
3382 			micro, exp_major, exp_minor, exp_micro);
3383 		return -EFAULT;
3384 	}
3385 	return 0;
3386 }
3387 
3388 /* Is the given firmware API compatible with the one the driver was compiled
3389  * with?
3390  */
3391 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3392 {
3393 
3394 	/* short circuit if it's the exact same firmware version */
3395 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3396 		return 1;
3397 
3398 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3399 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3400 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3401 		return 1;
3402 #undef SAME_INTF
3403 
3404 	return 0;
3405 }
3406 
3407 /* The firmware in the filesystem is usable, but should it be installed?
3408  * This routine explains itself in detail if it indicates the filesystem
3409  * firmware should be installed.
3410  */
3411 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3412 				int k, int c)
3413 {
3414 	const char *reason;
3415 
3416 	if (!card_fw_usable) {
3417 		reason = "incompatible or unusable";
3418 		goto install;
3419 	}
3420 
3421 	if (k > c) {
3422 		reason = "older than the version supported with this driver";
3423 		goto install;
3424 	}
3425 
3426 	return 0;
3427 
3428 install:
3429 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3430 		"installing firmware %u.%u.%u.%u on card.\n",
3431 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3432 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3433 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3434 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3435 
3436 	return 1;
3437 }
3438 
3439 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3440 	       const u8 *fw_data, unsigned int fw_size,
3441 	       struct fw_hdr *card_fw, enum dev_state state,
3442 	       int *reset)
3443 {
3444 	int ret, card_fw_usable, fs_fw_usable;
3445 	const struct fw_hdr *fs_fw;
3446 	const struct fw_hdr *drv_fw;
3447 
3448 	drv_fw = &fw_info->fw_hdr;
3449 
3450 	/* Read the header of the firmware on the card */
3451 	ret = -t4_read_flash(adap, FLASH_FW_START,
3452 			    sizeof(*card_fw) / sizeof(uint32_t),
3453 			    (uint32_t *)card_fw, 1);
3454 	if (ret == 0) {
3455 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3456 	} else {
3457 		dev_err(adap->pdev_dev,
3458 			"Unable to read card's firmware header: %d\n", ret);
3459 		card_fw_usable = 0;
3460 	}
3461 
3462 	if (fw_data != NULL) {
3463 		fs_fw = (const void *)fw_data;
3464 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3465 	} else {
3466 		fs_fw = NULL;
3467 		fs_fw_usable = 0;
3468 	}
3469 
3470 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3471 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3472 		/* Common case: the firmware on the card is an exact match and
3473 		 * the filesystem one is an exact match too, or the filesystem
3474 		 * one is absent/incompatible.
3475 		 */
3476 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3477 		   should_install_fs_fw(adap, card_fw_usable,
3478 					be32_to_cpu(fs_fw->fw_ver),
3479 					be32_to_cpu(card_fw->fw_ver))) {
3480 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3481 				     fw_size, 0);
3482 		if (ret != 0) {
3483 			dev_err(adap->pdev_dev,
3484 				"failed to install firmware: %d\n", ret);
3485 			goto bye;
3486 		}
3487 
3488 		/* Installed successfully, update the cached header too. */
3489 		*card_fw = *fs_fw;
3490 		card_fw_usable = 1;
3491 		*reset = 0;	/* already reset as part of load_fw */
3492 	}
3493 
3494 	if (!card_fw_usable) {
3495 		uint32_t d, c, k;
3496 
3497 		d = be32_to_cpu(drv_fw->fw_ver);
3498 		c = be32_to_cpu(card_fw->fw_ver);
3499 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3500 
3501 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3502 			"chip state %d, "
3503 			"driver compiled with %d.%d.%d.%d, "
3504 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3505 			state,
3506 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3507 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3508 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3509 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3510 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3511 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3512 		ret = EINVAL;
3513 		goto bye;
3514 	}
3515 
3516 	/* We're using whatever's on the card and it's known to be good. */
3517 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3518 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3519 
3520 bye:
3521 	return ret;
3522 }
3523 
3524 /**
3525  *	t4_flash_erase_sectors - erase a range of flash sectors
3526  *	@adapter: the adapter
3527  *	@start: the first sector to erase
3528  *	@end: the last sector to erase
3529  *
3530  *	Erases the sectors in the given inclusive range.
3531  */
3532 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3533 {
3534 	int ret = 0;
3535 
3536 	if (end >= adapter->params.sf_nsec)
3537 		return -EINVAL;
3538 
3539 	while (start <= end) {
3540 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3541 		    (ret = sf1_write(adapter, 4, 0, 1,
3542 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3543 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3544 			dev_err(adapter->pdev_dev,
3545 				"erase of flash sector %d failed, error %d\n",
3546 				start, ret);
3547 			break;
3548 		}
3549 		start++;
3550 	}
3551 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3552 	return ret;
3553 }
3554 
3555 /**
3556  *	t4_flash_cfg_addr - return the address of the flash configuration file
3557  *	@adapter: the adapter
3558  *
3559  *	Return the address within the flash where the Firmware Configuration
3560  *	File is stored.
3561  */
3562 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3563 {
3564 	if (adapter->params.sf_size == 0x100000)
3565 		return FLASH_FPGA_CFG_START;
3566 	else
3567 		return FLASH_CFG_START;
3568 }
3569 
3570 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3571  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3572  * and emit an error message for mismatched firmware to save our caller the
3573  * effort ...
3574  */
3575 static bool t4_fw_matches_chip(const struct adapter *adap,
3576 			       const struct fw_hdr *hdr)
3577 {
3578 	/* The expression below will return FALSE for any unsupported adapter
3579 	 * which will keep us "honest" in the future ...
3580 	 */
3581 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3582 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3583 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3584 		return true;
3585 
3586 	dev_err(adap->pdev_dev,
3587 		"FW image (%d) is not suitable for this adapter (%d)\n",
3588 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3589 	return false;
3590 }
3591 
3592 /**
3593  *	t4_load_fw - download firmware
3594  *	@adap: the adapter
3595  *	@fw_data: the firmware image to write
3596  *	@size: image size
3597  *
3598  *	Write the supplied firmware image to the card's serial flash.
3599  */
3600 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3601 {
3602 	u32 csum;
3603 	int ret, addr;
3604 	unsigned int i;
3605 	u8 first_page[SF_PAGE_SIZE];
3606 	const __be32 *p = (const __be32 *)fw_data;
3607 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3608 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3609 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3610 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3611 	unsigned int fw_start = FLASH_FW_START;
3612 
3613 	if (!size) {
3614 		dev_err(adap->pdev_dev, "FW image has no data\n");
3615 		return -EINVAL;
3616 	}
3617 	if (size & 511) {
3618 		dev_err(adap->pdev_dev,
3619 			"FW image size not multiple of 512 bytes\n");
3620 		return -EINVAL;
3621 	}
3622 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3623 		dev_err(adap->pdev_dev,
3624 			"FW image size differs from size in FW header\n");
3625 		return -EINVAL;
3626 	}
3627 	if (size > fw_size) {
3628 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3629 			fw_size);
3630 		return -EFBIG;
3631 	}
3632 	if (!t4_fw_matches_chip(adap, hdr))
3633 		return -EINVAL;
3634 
3635 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3636 		csum += be32_to_cpu(p[i]);
3637 
3638 	if (csum != 0xffffffff) {
3639 		dev_err(adap->pdev_dev,
3640 			"corrupted firmware image, checksum %#x\n", csum);
3641 		return -EINVAL;
3642 	}
3643 
3644 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3645 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3646 	if (ret)
3647 		goto out;
3648 
3649 	/*
3650 	 * We write the correct version at the end so the driver can see a bad
3651 	 * version if the FW write fails.  Start by writing a copy of the
3652 	 * first page with a bad version.
3653 	 */
3654 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3655 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3656 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3657 	if (ret)
3658 		goto out;
3659 
3660 	addr = fw_start;
3661 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3662 		addr += SF_PAGE_SIZE;
3663 		fw_data += SF_PAGE_SIZE;
3664 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3665 		if (ret)
3666 			goto out;
3667 	}
3668 
3669 	ret = t4_write_flash(adap,
3670 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3671 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3672 out:
3673 	if (ret)
3674 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3675 			ret);
3676 	else
3677 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3678 	return ret;
3679 }
3680 
3681 /**
3682  *	t4_phy_fw_ver - return current PHY firmware version
3683  *	@adap: the adapter
3684  *	@phy_fw_ver: return value buffer for PHY firmware version
3685  *
3686  *	Returns the current version of external PHY firmware on the
3687  *	adapter.
3688  */
3689 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3690 {
3691 	u32 param, val;
3692 	int ret;
3693 
3694 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3695 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3696 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3697 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3698 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3699 			      &param, &val);
3700 	if (ret < 0)
3701 		return ret;
3702 	*phy_fw_ver = val;
3703 	return 0;
3704 }
3705 
3706 /**
3707  *	t4_load_phy_fw - download port PHY firmware
3708  *	@adap: the adapter
3709  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3710  *	@win_lock: the lock to use to guard the memory copy
3711  *	@phy_fw_version: function to check PHY firmware versions
3712  *	@phy_fw_data: the PHY firmware image to write
3713  *	@phy_fw_size: image size
3714  *
3715  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3716  *	@phy_fw_version is supplied, then it will be used to determine if
3717  *	it's necessary to perform the transfer by comparing the version
3718  *	of any existing adapter PHY firmware with that of the passed in
3719  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3720  *	around the call to t4_memory_rw() which transfers the PHY firmware
3721  *	to the adapter.
3722  *
3723  *	A negative error number will be returned if an error occurs.  If
3724  *	version number support is available and there's no need to upgrade
3725  *	the firmware, 0 will be returned.  If firmware is successfully
3726  *	transferred to the adapter, 1 will be retured.
3727  *
3728  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3729  *	a result, a RESET of the adapter would cause that RAM to lose its
3730  *	contents.  Thus, loading PHY firmware on such adapters must happen
3731  *	after any FW_RESET_CMDs ...
3732  */
3733 int t4_load_phy_fw(struct adapter *adap,
3734 		   int win, spinlock_t *win_lock,
3735 		   int (*phy_fw_version)(const u8 *, size_t),
3736 		   const u8 *phy_fw_data, size_t phy_fw_size)
3737 {
3738 	unsigned long mtype = 0, maddr = 0;
3739 	u32 param, val;
3740 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3741 	int ret;
3742 
3743 	/* If we have version number support, then check to see if the adapter
3744 	 * already has up-to-date PHY firmware loaded.
3745 	 */
3746 	 if (phy_fw_version) {
3747 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3748 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3749 		if (ret < 0)
3750 			return ret;
3751 
3752 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3753 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3754 				"version %#x\n", cur_phy_fw_ver);
3755 			return 0;
3756 		}
3757 	}
3758 
3759 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3760 	 * The size of the file requires a special version of the READ coommand
3761 	 * which will pass the file size via the values field in PARAMS_CMD and
3762 	 * retrieve the return value from firmware and place it in the same
3763 	 * buffer values
3764 	 */
3765 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3766 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3767 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3768 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3769 	val = phy_fw_size;
3770 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3771 				 &param, &val, 1, true);
3772 	if (ret < 0)
3773 		return ret;
3774 	mtype = val >> 8;
3775 	maddr = (val & 0xff) << 16;
3776 
3777 	/* Copy the supplied PHY Firmware image to the adapter memory location
3778 	 * allocated by the adapter firmware.
3779 	 */
3780 	if (win_lock)
3781 		spin_lock_bh(win_lock);
3782 	ret = t4_memory_rw(adap, win, mtype, maddr,
3783 			   phy_fw_size, (__be32 *)phy_fw_data,
3784 			   T4_MEMORY_WRITE);
3785 	if (win_lock)
3786 		spin_unlock_bh(win_lock);
3787 	if (ret)
3788 		return ret;
3789 
3790 	/* Tell the firmware that the PHY firmware image has been written to
3791 	 * RAM and it can now start copying it over to the PHYs.  The chip
3792 	 * firmware will RESET the affected PHYs as part of this operation
3793 	 * leaving them running the new PHY firmware image.
3794 	 */
3795 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3796 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3797 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3798 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3799 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3800 				    &param, &val, 30000);
3801 
3802 	/* If we have version number support, then check to see that the new
3803 	 * firmware got loaded properly.
3804 	 */
3805 	if (phy_fw_version) {
3806 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3807 		if (ret < 0)
3808 			return ret;
3809 
3810 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3811 			CH_WARN(adap, "PHY Firmware did not update: "
3812 				"version on adapter %#x, "
3813 				"version flashed %#x\n",
3814 				cur_phy_fw_ver, new_phy_fw_vers);
3815 			return -ENXIO;
3816 		}
3817 	}
3818 
3819 	return 1;
3820 }
3821 
3822 /**
3823  *	t4_fwcache - firmware cache operation
3824  *	@adap: the adapter
3825  *	@op  : the operation (flush or flush and invalidate)
3826  */
3827 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3828 {
3829 	struct fw_params_cmd c;
3830 
3831 	memset(&c, 0, sizeof(c));
3832 	c.op_to_vfn =
3833 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3834 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3835 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3836 			    FW_PARAMS_CMD_VFN_V(0));
3837 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3838 	c.param[0].mnem =
3839 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3840 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3841 	c.param[0].val = (__force __be32)op;
3842 
3843 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3844 }
3845 
3846 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3847 			unsigned int *pif_req_wrptr,
3848 			unsigned int *pif_rsp_wrptr)
3849 {
3850 	int i, j;
3851 	u32 cfg, val, req, rsp;
3852 
3853 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3854 	if (cfg & LADBGEN_F)
3855 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3856 
3857 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3858 	req = POLADBGWRPTR_G(val);
3859 	rsp = PILADBGWRPTR_G(val);
3860 	if (pif_req_wrptr)
3861 		*pif_req_wrptr = req;
3862 	if (pif_rsp_wrptr)
3863 		*pif_rsp_wrptr = rsp;
3864 
3865 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3866 		for (j = 0; j < 6; j++) {
3867 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3868 				     PILADBGRDPTR_V(rsp));
3869 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3870 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3871 			req++;
3872 			rsp++;
3873 		}
3874 		req = (req + 2) & POLADBGRDPTR_M;
3875 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3876 	}
3877 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3878 }
3879 
3880 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3881 {
3882 	u32 cfg;
3883 	int i, j, idx;
3884 
3885 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3886 	if (cfg & LADBGEN_F)
3887 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3888 
3889 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3890 		for (j = 0; j < 5; j++) {
3891 			idx = 8 * i + j;
3892 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3893 				     PILADBGRDPTR_V(idx));
3894 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3895 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3896 		}
3897 	}
3898 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3899 }
3900 
3901 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3902 {
3903 	unsigned int i, j;
3904 
3905 	for (i = 0; i < 8; i++) {
3906 		u32 *p = la_buf + i;
3907 
3908 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3909 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3910 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3911 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3912 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3913 	}
3914 }
3915 
3916 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3917 		     FW_PORT_CAP32_ANEG)
3918 
3919 /**
3920  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3921  *	@caps16: a 16-bit Port Capabilities value
3922  *
3923  *	Returns the equivalent 32-bit Port Capabilities value.
3924  */
3925 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3926 {
3927 	fw_port_cap32_t caps32 = 0;
3928 
3929 	#define CAP16_TO_CAP32(__cap) \
3930 		do { \
3931 			if (caps16 & FW_PORT_CAP_##__cap) \
3932 				caps32 |= FW_PORT_CAP32_##__cap; \
3933 		} while (0)
3934 
3935 	CAP16_TO_CAP32(SPEED_100M);
3936 	CAP16_TO_CAP32(SPEED_1G);
3937 	CAP16_TO_CAP32(SPEED_25G);
3938 	CAP16_TO_CAP32(SPEED_10G);
3939 	CAP16_TO_CAP32(SPEED_40G);
3940 	CAP16_TO_CAP32(SPEED_100G);
3941 	CAP16_TO_CAP32(FC_RX);
3942 	CAP16_TO_CAP32(FC_TX);
3943 	CAP16_TO_CAP32(ANEG);
3944 	CAP16_TO_CAP32(FORCE_PAUSE);
3945 	CAP16_TO_CAP32(MDIAUTO);
3946 	CAP16_TO_CAP32(MDISTRAIGHT);
3947 	CAP16_TO_CAP32(FEC_RS);
3948 	CAP16_TO_CAP32(FEC_BASER_RS);
3949 	CAP16_TO_CAP32(802_3_PAUSE);
3950 	CAP16_TO_CAP32(802_3_ASM_DIR);
3951 
3952 	#undef CAP16_TO_CAP32
3953 
3954 	return caps32;
3955 }
3956 
3957 /**
3958  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3959  *	@caps32: a 32-bit Port Capabilities value
3960  *
3961  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3962  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3963  *	Port Capabilities and some fields/values may not make it.
3964  */
3965 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
3966 {
3967 	fw_port_cap16_t caps16 = 0;
3968 
3969 	#define CAP32_TO_CAP16(__cap) \
3970 		do { \
3971 			if (caps32 & FW_PORT_CAP32_##__cap) \
3972 				caps16 |= FW_PORT_CAP_##__cap; \
3973 		} while (0)
3974 
3975 	CAP32_TO_CAP16(SPEED_100M);
3976 	CAP32_TO_CAP16(SPEED_1G);
3977 	CAP32_TO_CAP16(SPEED_10G);
3978 	CAP32_TO_CAP16(SPEED_25G);
3979 	CAP32_TO_CAP16(SPEED_40G);
3980 	CAP32_TO_CAP16(SPEED_100G);
3981 	CAP32_TO_CAP16(FC_RX);
3982 	CAP32_TO_CAP16(FC_TX);
3983 	CAP32_TO_CAP16(802_3_PAUSE);
3984 	CAP32_TO_CAP16(802_3_ASM_DIR);
3985 	CAP32_TO_CAP16(ANEG);
3986 	CAP32_TO_CAP16(FORCE_PAUSE);
3987 	CAP32_TO_CAP16(MDIAUTO);
3988 	CAP32_TO_CAP16(MDISTRAIGHT);
3989 	CAP32_TO_CAP16(FEC_RS);
3990 	CAP32_TO_CAP16(FEC_BASER_RS);
3991 
3992 	#undef CAP32_TO_CAP16
3993 
3994 	return caps16;
3995 }
3996 
3997 /* Translate Firmware Port Capabilities Pause specification to Common Code */
3998 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
3999 {
4000 	enum cc_pause cc_pause = 0;
4001 
4002 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4003 		cc_pause |= PAUSE_RX;
4004 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4005 		cc_pause |= PAUSE_TX;
4006 
4007 	return cc_pause;
4008 }
4009 
4010 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4011 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4012 {
4013 	fw_port_cap32_t fw_pause = 0;
4014 
4015 	if (cc_pause & PAUSE_RX)
4016 		fw_pause |= FW_PORT_CAP32_FC_RX;
4017 	if (cc_pause & PAUSE_TX)
4018 		fw_pause |= FW_PORT_CAP32_FC_TX;
4019 	if (!(cc_pause & PAUSE_AUTONEG))
4020 		fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4021 
4022 	return fw_pause;
4023 }
4024 
4025 /* Translate Firmware Forward Error Correction specification to Common Code */
4026 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4027 {
4028 	enum cc_fec cc_fec = 0;
4029 
4030 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4031 		cc_fec |= FEC_RS;
4032 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4033 		cc_fec |= FEC_BASER_RS;
4034 
4035 	return cc_fec;
4036 }
4037 
4038 /* Translate Common Code Forward Error Correction specification to Firmware */
4039 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4040 {
4041 	fw_port_cap32_t fw_fec = 0;
4042 
4043 	if (cc_fec & FEC_RS)
4044 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4045 	if (cc_fec & FEC_BASER_RS)
4046 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4047 
4048 	return fw_fec;
4049 }
4050 
4051 /**
4052  *	t4_link_l1cfg - apply link configuration to MAC/PHY
4053  *	@adapter: the adapter
4054  *	@mbox: the Firmware Mailbox to use
4055  *	@port: the Port ID
4056  *	@lc: the Port's Link Configuration
4057  *
4058  *	Set up a port's MAC and PHY according to a desired link configuration.
4059  *	- If the PHY can auto-negotiate first decide what to advertise, then
4060  *	  enable/disable auto-negotiation as desired, and reset.
4061  *	- If the PHY does not auto-negotiate just reset it.
4062  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4063  *	  otherwise do it later based on the outcome of auto-negotiation.
4064  */
4065 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4066 		       unsigned int port, struct link_config *lc,
4067 		       bool sleep_ok, int timeout)
4068 {
4069 	unsigned int fw_caps = adapter->params.fw_caps_support;
4070 	fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap;
4071 	struct fw_port_cmd cmd;
4072 	unsigned int fw_mdi;
4073 	int ret;
4074 
4075 	fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4076 	/* Convert driver coding of Pause Frame Flow Control settings into the
4077 	 * Firmware's API.
4078 	 */
4079 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4080 
4081 	/* Convert Common Code Forward Error Control settings into the
4082 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4083 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4084 	 * sent us as part of it's IEEE 802.3-based interpratation of
4085 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4086 	 * use whatever is in the current Requested FEC settings.
4087 	 */
4088 	if (lc->requested_fec & FEC_AUTO)
4089 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4090 	else
4091 		cc_fec = lc->requested_fec;
4092 	fw_fec = cc_to_fwcap_fec(cc_fec);
4093 
4094 	/* Figure out what our Requested Port Capabilities are going to be.
4095 	 */
4096 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4097 		rcap = lc->acaps | fw_fc | fw_fec;
4098 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4099 		lc->fec = cc_fec;
4100 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4101 		rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4102 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4103 		lc->fec = cc_fec;
4104 	} else {
4105 		rcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
4106 	}
4107 
4108 	/* Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4109 	 * we need to exclude this from this check in order to maintain
4110 	 * compatibility ...
4111 	 */
4112 	if ((rcap & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4113 		dev_err(adapter->pdev_dev,
4114 			"Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4115 			rcap, lc->pcaps);
4116 		return -EINVAL;
4117 	}
4118 
4119 	/* And send that on to the Firmware ...
4120 	 */
4121 	memset(&cmd, 0, sizeof(cmd));
4122 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4123 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4124 				       FW_PORT_CMD_PORTID_V(port));
4125 	cmd.action_to_len16 =
4126 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4127 						 ? FW_PORT_ACTION_L1_CFG
4128 						 : FW_PORT_ACTION_L1_CFG32) |
4129 						 FW_LEN16(cmd));
4130 	if (fw_caps == FW_CAPS16)
4131 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4132 	else
4133 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4134 
4135 	ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4136 				      sleep_ok, timeout);
4137 	if (ret) {
4138 		dev_err(adapter->pdev_dev,
4139 			"Requested Port Capabilities %#x rejected, error %d\n",
4140 			rcap, -ret);
4141 		return ret;
4142 	}
4143 	return ret;
4144 }
4145 
4146 /**
4147  *	t4_restart_aneg - restart autonegotiation
4148  *	@adap: the adapter
4149  *	@mbox: mbox to use for the FW command
4150  *	@port: the port id
4151  *
4152  *	Restarts autonegotiation for the selected port.
4153  */
4154 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4155 {
4156 	struct fw_port_cmd c;
4157 
4158 	memset(&c, 0, sizeof(c));
4159 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4160 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4161 				     FW_PORT_CMD_PORTID_V(port));
4162 	c.action_to_len16 =
4163 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
4164 			    FW_LEN16(c));
4165 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG);
4166 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4167 }
4168 
4169 typedef void (*int_handler_t)(struct adapter *adap);
4170 
4171 struct intr_info {
4172 	unsigned int mask;       /* bits to check in interrupt status */
4173 	const char *msg;         /* message to print or NULL */
4174 	short stat_idx;          /* stat counter to increment or -1 */
4175 	unsigned short fatal;    /* whether the condition reported is fatal */
4176 	int_handler_t int_handler; /* platform-specific int handler */
4177 };
4178 
4179 /**
4180  *	t4_handle_intr_status - table driven interrupt handler
4181  *	@adapter: the adapter that generated the interrupt
4182  *	@reg: the interrupt status register to process
4183  *	@acts: table of interrupt actions
4184  *
4185  *	A table driven interrupt handler that applies a set of masks to an
4186  *	interrupt status word and performs the corresponding actions if the
4187  *	interrupts described by the mask have occurred.  The actions include
4188  *	optionally emitting a warning or alert message.  The table is terminated
4189  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4190  *	conditions.
4191  */
4192 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4193 				 const struct intr_info *acts)
4194 {
4195 	int fatal = 0;
4196 	unsigned int mask = 0;
4197 	unsigned int status = t4_read_reg(adapter, reg);
4198 
4199 	for ( ; acts->mask; ++acts) {
4200 		if (!(status & acts->mask))
4201 			continue;
4202 		if (acts->fatal) {
4203 			fatal++;
4204 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4205 				  status & acts->mask);
4206 		} else if (acts->msg && printk_ratelimit())
4207 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4208 				 status & acts->mask);
4209 		if (acts->int_handler)
4210 			acts->int_handler(adapter);
4211 		mask |= acts->mask;
4212 	}
4213 	status &= mask;
4214 	if (status)                           /* clear processed interrupts */
4215 		t4_write_reg(adapter, reg, status);
4216 	return fatal;
4217 }
4218 
4219 /*
4220  * Interrupt handler for the PCIE module.
4221  */
4222 static void pcie_intr_handler(struct adapter *adapter)
4223 {
4224 	static const struct intr_info sysbus_intr_info[] = {
4225 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4226 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4227 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4228 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4229 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4230 		{ 0 }
4231 	};
4232 	static const struct intr_info pcie_port_intr_info[] = {
4233 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4234 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4235 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4236 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4237 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4238 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4239 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4240 		{ RDPE_F, "Rx data parity error", -1, 1 },
4241 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4242 		{ 0 }
4243 	};
4244 	static const struct intr_info pcie_intr_info[] = {
4245 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4246 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4247 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4248 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4249 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4250 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4251 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4252 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4253 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4254 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4255 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4256 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4257 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4258 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4259 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4260 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4261 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4262 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4263 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4264 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4265 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4266 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4267 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4268 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4269 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4270 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4271 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4272 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4273 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4274 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4275 		  -1, 0 },
4276 		{ 0 }
4277 	};
4278 
4279 	static struct intr_info t5_pcie_intr_info[] = {
4280 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4281 		  -1, 1 },
4282 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4283 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4284 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4285 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4286 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4287 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4288 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4289 		  -1, 1 },
4290 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4291 		  -1, 1 },
4292 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4293 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4294 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4295 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4296 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4297 		  -1, 1 },
4298 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4299 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4300 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4301 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4302 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4303 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4304 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4305 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4306 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4307 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4308 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4309 		  -1, 1 },
4310 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4311 		  -1, 1 },
4312 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4313 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4314 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4315 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4316 		{ 0 }
4317 	};
4318 
4319 	int fat;
4320 
4321 	if (is_t4(adapter->params.chip))
4322 		fat = t4_handle_intr_status(adapter,
4323 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4324 				sysbus_intr_info) +
4325 			t4_handle_intr_status(adapter,
4326 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4327 					pcie_port_intr_info) +
4328 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4329 					      pcie_intr_info);
4330 	else
4331 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4332 					    t5_pcie_intr_info);
4333 
4334 	if (fat)
4335 		t4_fatal_err(adapter);
4336 }
4337 
4338 /*
4339  * TP interrupt handler.
4340  */
4341 static void tp_intr_handler(struct adapter *adapter)
4342 {
4343 	static const struct intr_info tp_intr_info[] = {
4344 		{ 0x3fffffff, "TP parity error", -1, 1 },
4345 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4346 		{ 0 }
4347 	};
4348 
4349 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4350 		t4_fatal_err(adapter);
4351 }
4352 
4353 /*
4354  * SGE interrupt handler.
4355  */
4356 static void sge_intr_handler(struct adapter *adapter)
4357 {
4358 	u64 v;
4359 	u32 err;
4360 
4361 	static const struct intr_info sge_intr_info[] = {
4362 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4363 		  "SGE received CPL exceeding IQE size", -1, 1 },
4364 		{ ERR_INVALID_CIDX_INC_F,
4365 		  "SGE GTS CIDX increment too large", -1, 0 },
4366 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4367 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4368 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4369 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4370 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4371 		  0 },
4372 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4373 		  0 },
4374 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4375 		  0 },
4376 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4377 		  0 },
4378 		{ ERR_ING_CTXT_PRIO_F,
4379 		  "SGE too many priority ingress contexts", -1, 0 },
4380 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4381 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4382 		{ 0 }
4383 	};
4384 
4385 	static struct intr_info t4t5_sge_intr_info[] = {
4386 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4387 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4388 		{ ERR_EGR_CTXT_PRIO_F,
4389 		  "SGE too many priority egress contexts", -1, 0 },
4390 		{ 0 }
4391 	};
4392 
4393 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4394 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
4395 	if (v) {
4396 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4397 				(unsigned long long)v);
4398 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4399 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4400 	}
4401 
4402 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4403 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4404 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4405 					   t4t5_sge_intr_info);
4406 
4407 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4408 	if (err & ERROR_QID_VALID_F) {
4409 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4410 			ERROR_QID_G(err));
4411 		if (err & UNCAPTURED_ERROR_F)
4412 			dev_err(adapter->pdev_dev,
4413 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4414 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4415 			     UNCAPTURED_ERROR_F);
4416 	}
4417 
4418 	if (v != 0)
4419 		t4_fatal_err(adapter);
4420 }
4421 
4422 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4423 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4424 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4425 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4426 
4427 /*
4428  * CIM interrupt handler.
4429  */
4430 static void cim_intr_handler(struct adapter *adapter)
4431 {
4432 	static const struct intr_info cim_intr_info[] = {
4433 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4434 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4435 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4436 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4437 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4438 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4439 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4440 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4441 		{ 0 }
4442 	};
4443 	static const struct intr_info cim_upintr_info[] = {
4444 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4445 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4446 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4447 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4448 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4449 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4450 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4451 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4452 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4453 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4454 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4455 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4456 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4457 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4458 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4459 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4460 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4461 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4462 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4463 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4464 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4465 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4466 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4467 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4468 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4469 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4470 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4471 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4472 		{ 0 }
4473 	};
4474 
4475 	u32 val, fw_err;
4476 	int fat;
4477 
4478 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4479 	if (fw_err & PCIE_FW_ERR_F)
4480 		t4_report_fw_error(adapter);
4481 
4482 	/* When the Firmware detects an internal error which normally
4483 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4484 	 * in order to make sure the Host sees the Firmware Crash.  So
4485 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4486 	 * ignore the Timer0 interrupt.
4487 	 */
4488 
4489 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4490 	if (val & TIMER0INT_F)
4491 		if (!(fw_err & PCIE_FW_ERR_F) ||
4492 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4493 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4494 				     TIMER0INT_F);
4495 
4496 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4497 				    cim_intr_info) +
4498 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4499 				    cim_upintr_info);
4500 	if (fat)
4501 		t4_fatal_err(adapter);
4502 }
4503 
4504 /*
4505  * ULP RX interrupt handler.
4506  */
4507 static void ulprx_intr_handler(struct adapter *adapter)
4508 {
4509 	static const struct intr_info ulprx_intr_info[] = {
4510 		{ 0x1800000, "ULPRX context error", -1, 1 },
4511 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4512 		{ 0 }
4513 	};
4514 
4515 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4516 		t4_fatal_err(adapter);
4517 }
4518 
4519 /*
4520  * ULP TX interrupt handler.
4521  */
4522 static void ulptx_intr_handler(struct adapter *adapter)
4523 {
4524 	static const struct intr_info ulptx_intr_info[] = {
4525 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4526 		  0 },
4527 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4528 		  0 },
4529 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4530 		  0 },
4531 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4532 		  0 },
4533 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4534 		{ 0 }
4535 	};
4536 
4537 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4538 		t4_fatal_err(adapter);
4539 }
4540 
4541 /*
4542  * PM TX interrupt handler.
4543  */
4544 static void pmtx_intr_handler(struct adapter *adapter)
4545 {
4546 	static const struct intr_info pmtx_intr_info[] = {
4547 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4548 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4549 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4550 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4551 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4552 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4553 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4554 		  -1, 1 },
4555 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4556 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4557 		{ 0 }
4558 	};
4559 
4560 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4561 		t4_fatal_err(adapter);
4562 }
4563 
4564 /*
4565  * PM RX interrupt handler.
4566  */
4567 static void pmrx_intr_handler(struct adapter *adapter)
4568 {
4569 	static const struct intr_info pmrx_intr_info[] = {
4570 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4571 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4572 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4573 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4574 		  -1, 1 },
4575 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4576 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4577 		{ 0 }
4578 	};
4579 
4580 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4581 		t4_fatal_err(adapter);
4582 }
4583 
4584 /*
4585  * CPL switch interrupt handler.
4586  */
4587 static void cplsw_intr_handler(struct adapter *adapter)
4588 {
4589 	static const struct intr_info cplsw_intr_info[] = {
4590 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4591 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4592 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4593 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4594 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4595 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4596 		{ 0 }
4597 	};
4598 
4599 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4600 		t4_fatal_err(adapter);
4601 }
4602 
4603 /*
4604  * LE interrupt handler.
4605  */
4606 static void le_intr_handler(struct adapter *adap)
4607 {
4608 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4609 	static const struct intr_info le_intr_info[] = {
4610 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4611 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4612 		{ PARITYERR_F, "LE parity error", -1, 1 },
4613 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4614 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4615 		{ 0 }
4616 	};
4617 
4618 	static struct intr_info t6_le_intr_info[] = {
4619 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4620 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4621 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4622 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4623 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4624 		{ 0 }
4625 	};
4626 
4627 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4628 				  (chip <= CHELSIO_T5) ?
4629 				  le_intr_info : t6_le_intr_info))
4630 		t4_fatal_err(adap);
4631 }
4632 
4633 /*
4634  * MPS interrupt handler.
4635  */
4636 static void mps_intr_handler(struct adapter *adapter)
4637 {
4638 	static const struct intr_info mps_rx_intr_info[] = {
4639 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4640 		{ 0 }
4641 	};
4642 	static const struct intr_info mps_tx_intr_info[] = {
4643 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4644 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4645 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4646 		  -1, 1 },
4647 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4648 		  -1, 1 },
4649 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4650 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4651 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4652 		{ 0 }
4653 	};
4654 	static const struct intr_info t6_mps_tx_intr_info[] = {
4655 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4656 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4657 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4658 		  -1, 1 },
4659 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4660 		  -1, 1 },
4661 		/* MPS Tx Bubble is normal for T6 */
4662 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4663 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4664 		{ 0 }
4665 	};
4666 	static const struct intr_info mps_trc_intr_info[] = {
4667 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4668 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4669 		  -1, 1 },
4670 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4671 		{ 0 }
4672 	};
4673 	static const struct intr_info mps_stat_sram_intr_info[] = {
4674 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4675 		{ 0 }
4676 	};
4677 	static const struct intr_info mps_stat_tx_intr_info[] = {
4678 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4679 		{ 0 }
4680 	};
4681 	static const struct intr_info mps_stat_rx_intr_info[] = {
4682 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4683 		{ 0 }
4684 	};
4685 	static const struct intr_info mps_cls_intr_info[] = {
4686 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4687 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4688 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4689 		{ 0 }
4690 	};
4691 
4692 	int fat;
4693 
4694 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4695 				    mps_rx_intr_info) +
4696 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4697 				    is_t6(adapter->params.chip)
4698 				    ? t6_mps_tx_intr_info
4699 				    : mps_tx_intr_info) +
4700 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4701 				    mps_trc_intr_info) +
4702 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4703 				    mps_stat_sram_intr_info) +
4704 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4705 				    mps_stat_tx_intr_info) +
4706 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4707 				    mps_stat_rx_intr_info) +
4708 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4709 				    mps_cls_intr_info);
4710 
4711 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4712 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4713 	if (fat)
4714 		t4_fatal_err(adapter);
4715 }
4716 
4717 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4718 		      ECC_UE_INT_CAUSE_F)
4719 
4720 /*
4721  * EDC/MC interrupt handler.
4722  */
4723 static void mem_intr_handler(struct adapter *adapter, int idx)
4724 {
4725 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4726 
4727 	unsigned int addr, cnt_addr, v;
4728 
4729 	if (idx <= MEM_EDC1) {
4730 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4731 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4732 	} else if (idx == MEM_MC) {
4733 		if (is_t4(adapter->params.chip)) {
4734 			addr = MC_INT_CAUSE_A;
4735 			cnt_addr = MC_ECC_STATUS_A;
4736 		} else {
4737 			addr = MC_P_INT_CAUSE_A;
4738 			cnt_addr = MC_P_ECC_STATUS_A;
4739 		}
4740 	} else {
4741 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4742 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4743 	}
4744 
4745 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4746 	if (v & PERR_INT_CAUSE_F)
4747 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4748 			  name[idx]);
4749 	if (v & ECC_CE_INT_CAUSE_F) {
4750 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4751 
4752 		t4_edc_err_read(adapter, idx);
4753 
4754 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4755 		if (printk_ratelimit())
4756 			dev_warn(adapter->pdev_dev,
4757 				 "%u %s correctable ECC data error%s\n",
4758 				 cnt, name[idx], cnt > 1 ? "s" : "");
4759 	}
4760 	if (v & ECC_UE_INT_CAUSE_F)
4761 		dev_alert(adapter->pdev_dev,
4762 			  "%s uncorrectable ECC data error\n", name[idx]);
4763 
4764 	t4_write_reg(adapter, addr, v);
4765 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4766 		t4_fatal_err(adapter);
4767 }
4768 
4769 /*
4770  * MA interrupt handler.
4771  */
4772 static void ma_intr_handler(struct adapter *adap)
4773 {
4774 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4775 
4776 	if (status & MEM_PERR_INT_CAUSE_F) {
4777 		dev_alert(adap->pdev_dev,
4778 			  "MA parity error, parity status %#x\n",
4779 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4780 		if (is_t5(adap->params.chip))
4781 			dev_alert(adap->pdev_dev,
4782 				  "MA parity error, parity status %#x\n",
4783 				  t4_read_reg(adap,
4784 					      MA_PARITY_ERROR_STATUS2_A));
4785 	}
4786 	if (status & MEM_WRAP_INT_CAUSE_F) {
4787 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4788 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4789 			  "client %u to address %#x\n",
4790 			  MEM_WRAP_CLIENT_NUM_G(v),
4791 			  MEM_WRAP_ADDRESS_G(v) << 4);
4792 	}
4793 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4794 	t4_fatal_err(adap);
4795 }
4796 
4797 /*
4798  * SMB interrupt handler.
4799  */
4800 static void smb_intr_handler(struct adapter *adap)
4801 {
4802 	static const struct intr_info smb_intr_info[] = {
4803 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4804 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4805 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4806 		{ 0 }
4807 	};
4808 
4809 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4810 		t4_fatal_err(adap);
4811 }
4812 
4813 /*
4814  * NC-SI interrupt handler.
4815  */
4816 static void ncsi_intr_handler(struct adapter *adap)
4817 {
4818 	static const struct intr_info ncsi_intr_info[] = {
4819 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4820 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4821 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4822 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4823 		{ 0 }
4824 	};
4825 
4826 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4827 		t4_fatal_err(adap);
4828 }
4829 
4830 /*
4831  * XGMAC interrupt handler.
4832  */
4833 static void xgmac_intr_handler(struct adapter *adap, int port)
4834 {
4835 	u32 v, int_cause_reg;
4836 
4837 	if (is_t4(adap->params.chip))
4838 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4839 	else
4840 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4841 
4842 	v = t4_read_reg(adap, int_cause_reg);
4843 
4844 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4845 	if (!v)
4846 		return;
4847 
4848 	if (v & TXFIFO_PRTY_ERR_F)
4849 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4850 			  port);
4851 	if (v & RXFIFO_PRTY_ERR_F)
4852 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4853 			  port);
4854 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4855 	t4_fatal_err(adap);
4856 }
4857 
4858 /*
4859  * PL interrupt handler.
4860  */
4861 static void pl_intr_handler(struct adapter *adap)
4862 {
4863 	static const struct intr_info pl_intr_info[] = {
4864 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4865 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4866 		{ 0 }
4867 	};
4868 
4869 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4870 		t4_fatal_err(adap);
4871 }
4872 
4873 #define PF_INTR_MASK (PFSW_F)
4874 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4875 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4876 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4877 
4878 /**
4879  *	t4_slow_intr_handler - control path interrupt handler
4880  *	@adapter: the adapter
4881  *
4882  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4883  *	The designation 'slow' is because it involves register reads, while
4884  *	data interrupts typically don't involve any MMIOs.
4885  */
4886 int t4_slow_intr_handler(struct adapter *adapter)
4887 {
4888 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4889 
4890 	if (!(cause & GLBL_INTR_MASK))
4891 		return 0;
4892 	if (cause & CIM_F)
4893 		cim_intr_handler(adapter);
4894 	if (cause & MPS_F)
4895 		mps_intr_handler(adapter);
4896 	if (cause & NCSI_F)
4897 		ncsi_intr_handler(adapter);
4898 	if (cause & PL_F)
4899 		pl_intr_handler(adapter);
4900 	if (cause & SMB_F)
4901 		smb_intr_handler(adapter);
4902 	if (cause & XGMAC0_F)
4903 		xgmac_intr_handler(adapter, 0);
4904 	if (cause & XGMAC1_F)
4905 		xgmac_intr_handler(adapter, 1);
4906 	if (cause & XGMAC_KR0_F)
4907 		xgmac_intr_handler(adapter, 2);
4908 	if (cause & XGMAC_KR1_F)
4909 		xgmac_intr_handler(adapter, 3);
4910 	if (cause & PCIE_F)
4911 		pcie_intr_handler(adapter);
4912 	if (cause & MC_F)
4913 		mem_intr_handler(adapter, MEM_MC);
4914 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4915 		mem_intr_handler(adapter, MEM_MC1);
4916 	if (cause & EDC0_F)
4917 		mem_intr_handler(adapter, MEM_EDC0);
4918 	if (cause & EDC1_F)
4919 		mem_intr_handler(adapter, MEM_EDC1);
4920 	if (cause & LE_F)
4921 		le_intr_handler(adapter);
4922 	if (cause & TP_F)
4923 		tp_intr_handler(adapter);
4924 	if (cause & MA_F)
4925 		ma_intr_handler(adapter);
4926 	if (cause & PM_TX_F)
4927 		pmtx_intr_handler(adapter);
4928 	if (cause & PM_RX_F)
4929 		pmrx_intr_handler(adapter);
4930 	if (cause & ULP_RX_F)
4931 		ulprx_intr_handler(adapter);
4932 	if (cause & CPL_SWITCH_F)
4933 		cplsw_intr_handler(adapter);
4934 	if (cause & SGE_F)
4935 		sge_intr_handler(adapter);
4936 	if (cause & ULP_TX_F)
4937 		ulptx_intr_handler(adapter);
4938 
4939 	/* Clear the interrupts just processed for which we are the master. */
4940 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4941 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4942 	return 1;
4943 }
4944 
4945 /**
4946  *	t4_intr_enable - enable interrupts
4947  *	@adapter: the adapter whose interrupts should be enabled
4948  *
4949  *	Enable PF-specific interrupts for the calling function and the top-level
4950  *	interrupt concentrator for global interrupts.  Interrupts are already
4951  *	enabled at each module,	here we just enable the roots of the interrupt
4952  *	hierarchies.
4953  *
4954  *	Note: this function should be called only when the driver manages
4955  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4956  *	function at a time should be doing this.
4957  */
4958 void t4_intr_enable(struct adapter *adapter)
4959 {
4960 	u32 val = 0;
4961 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4962 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4963 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4964 
4965 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4966 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4967 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4968 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4969 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4970 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4971 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4972 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4973 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4974 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4975 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4976 }
4977 
4978 /**
4979  *	t4_intr_disable - disable interrupts
4980  *	@adapter: the adapter whose interrupts should be disabled
4981  *
4982  *	Disable interrupts.  We only disable the top-level interrupt
4983  *	concentrators.  The caller must be a PCI function managing global
4984  *	interrupts.
4985  */
4986 void t4_intr_disable(struct adapter *adapter)
4987 {
4988 	u32 whoami, pf;
4989 
4990 	if (pci_channel_offline(adapter->pdev))
4991 		return;
4992 
4993 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4994 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4995 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4996 
4997 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4998 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4999 }
5000 
5001 unsigned int t4_chip_rss_size(struct adapter *adap)
5002 {
5003 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5004 		return RSS_NENTRIES;
5005 	else
5006 		return T6_RSS_NENTRIES;
5007 }
5008 
5009 /**
5010  *	t4_config_rss_range - configure a portion of the RSS mapping table
5011  *	@adapter: the adapter
5012  *	@mbox: mbox to use for the FW command
5013  *	@viid: virtual interface whose RSS subtable is to be written
5014  *	@start: start entry in the table to write
5015  *	@n: how many table entries to write
5016  *	@rspq: values for the response queue lookup table
5017  *	@nrspq: number of values in @rspq
5018  *
5019  *	Programs the selected part of the VI's RSS mapping table with the
5020  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5021  *	until the full table range is populated.
5022  *
5023  *	The caller must ensure the values in @rspq are in the range allowed for
5024  *	@viid.
5025  */
5026 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5027 			int start, int n, const u16 *rspq, unsigned int nrspq)
5028 {
5029 	int ret;
5030 	const u16 *rsp = rspq;
5031 	const u16 *rsp_end = rspq + nrspq;
5032 	struct fw_rss_ind_tbl_cmd cmd;
5033 
5034 	memset(&cmd, 0, sizeof(cmd));
5035 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5036 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5037 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5038 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5039 
5040 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5041 	while (n > 0) {
5042 		int nq = min(n, 32);
5043 		__be32 *qp = &cmd.iq0_to_iq2;
5044 
5045 		cmd.niqid = cpu_to_be16(nq);
5046 		cmd.startidx = cpu_to_be16(start);
5047 
5048 		start += nq;
5049 		n -= nq;
5050 
5051 		while (nq > 0) {
5052 			unsigned int v;
5053 
5054 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5055 			if (++rsp >= rsp_end)
5056 				rsp = rspq;
5057 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5058 			if (++rsp >= rsp_end)
5059 				rsp = rspq;
5060 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5061 			if (++rsp >= rsp_end)
5062 				rsp = rspq;
5063 
5064 			*qp++ = cpu_to_be32(v);
5065 			nq -= 3;
5066 		}
5067 
5068 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5069 		if (ret)
5070 			return ret;
5071 	}
5072 	return 0;
5073 }
5074 
5075 /**
5076  *	t4_config_glbl_rss - configure the global RSS mode
5077  *	@adapter: the adapter
5078  *	@mbox: mbox to use for the FW command
5079  *	@mode: global RSS mode
5080  *	@flags: mode-specific flags
5081  *
5082  *	Sets the global RSS mode.
5083  */
5084 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5085 		       unsigned int flags)
5086 {
5087 	struct fw_rss_glb_config_cmd c;
5088 
5089 	memset(&c, 0, sizeof(c));
5090 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5091 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5092 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5093 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5094 		c.u.manual.mode_pkd =
5095 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5096 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5097 		c.u.basicvirtual.mode_pkd =
5098 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5099 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5100 	} else
5101 		return -EINVAL;
5102 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5103 }
5104 
5105 /**
5106  *	t4_config_vi_rss - configure per VI RSS settings
5107  *	@adapter: the adapter
5108  *	@mbox: mbox to use for the FW command
5109  *	@viid: the VI id
5110  *	@flags: RSS flags
5111  *	@defq: id of the default RSS queue for the VI.
5112  *
5113  *	Configures VI-specific RSS properties.
5114  */
5115 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5116 		     unsigned int flags, unsigned int defq)
5117 {
5118 	struct fw_rss_vi_config_cmd c;
5119 
5120 	memset(&c, 0, sizeof(c));
5121 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5122 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5123 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5124 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5125 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5126 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5127 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5128 }
5129 
5130 /* Read an RSS table row */
5131 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5132 {
5133 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5134 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5135 				   5, 0, val);
5136 }
5137 
5138 /**
5139  *	t4_read_rss - read the contents of the RSS mapping table
5140  *	@adapter: the adapter
5141  *	@map: holds the contents of the RSS mapping table
5142  *
5143  *	Reads the contents of the RSS hash->queue mapping table.
5144  */
5145 int t4_read_rss(struct adapter *adapter, u16 *map)
5146 {
5147 	int i, ret, nentries;
5148 	u32 val;
5149 
5150 	nentries = t4_chip_rss_size(adapter);
5151 	for (i = 0; i < nentries / 2; ++i) {
5152 		ret = rd_rss_row(adapter, i, &val);
5153 		if (ret)
5154 			return ret;
5155 		*map++ = LKPTBLQUEUE0_G(val);
5156 		*map++ = LKPTBLQUEUE1_G(val);
5157 	}
5158 	return 0;
5159 }
5160 
5161 static unsigned int t4_use_ldst(struct adapter *adap)
5162 {
5163 	return (adap->flags & FW_OK) && !adap->use_bd;
5164 }
5165 
5166 /**
5167  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5168  * @adap: the adapter
5169  * @cmd: TP fw ldst address space type
5170  * @vals: where the indirect register values are stored/written
5171  * @nregs: how many indirect registers to read/write
5172  * @start_idx: index of first indirect register to read/write
5173  * @rw: Read (1) or Write (0)
5174  * @sleep_ok: if true we may sleep while awaiting command completion
5175  *
5176  * Access TP indirect registers through LDST
5177  */
5178 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5179 			    unsigned int nregs, unsigned int start_index,
5180 			    unsigned int rw, bool sleep_ok)
5181 {
5182 	int ret = 0;
5183 	unsigned int i;
5184 	struct fw_ldst_cmd c;
5185 
5186 	for (i = 0; i < nregs; i++) {
5187 		memset(&c, 0, sizeof(c));
5188 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5189 						FW_CMD_REQUEST_F |
5190 						(rw ? FW_CMD_READ_F :
5191 						      FW_CMD_WRITE_F) |
5192 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5193 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5194 
5195 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5196 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5197 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5198 				      sleep_ok);
5199 		if (ret)
5200 			return ret;
5201 
5202 		if (rw)
5203 			vals[i] = be32_to_cpu(c.u.addrval.val);
5204 	}
5205 	return 0;
5206 }
5207 
5208 /**
5209  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5210  * @adap: the adapter
5211  * @reg_addr: Address Register
5212  * @reg_data: Data register
5213  * @buff: where the indirect register values are stored/written
5214  * @nregs: how many indirect registers to read/write
5215  * @start_index: index of first indirect register to read/write
5216  * @rw: READ(1) or WRITE(0)
5217  * @sleep_ok: if true we may sleep while awaiting command completion
5218  *
5219  * Read/Write TP indirect registers through LDST if possible.
5220  * Else, use backdoor access
5221  **/
5222 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5223 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5224 			      bool sleep_ok)
5225 {
5226 	int rc = -EINVAL;
5227 	int cmd;
5228 
5229 	switch (reg_addr) {
5230 	case TP_PIO_ADDR_A:
5231 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5232 		break;
5233 	case TP_TM_PIO_ADDR_A:
5234 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5235 		break;
5236 	case TP_MIB_INDEX_A:
5237 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5238 		break;
5239 	default:
5240 		goto indirect_access;
5241 	}
5242 
5243 	if (t4_use_ldst(adap))
5244 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5245 				      sleep_ok);
5246 
5247 indirect_access:
5248 
5249 	if (rc) {
5250 		if (rw)
5251 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5252 					 start_index);
5253 		else
5254 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5255 					  start_index);
5256 	}
5257 }
5258 
5259 /**
5260  * t4_tp_pio_read - Read TP PIO registers
5261  * @adap: the adapter
5262  * @buff: where the indirect register values are written
5263  * @nregs: how many indirect registers to read
5264  * @start_index: index of first indirect register to read
5265  * @sleep_ok: if true we may sleep while awaiting command completion
5266  *
5267  * Read TP PIO Registers
5268  **/
5269 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5270 		    u32 start_index, bool sleep_ok)
5271 {
5272 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5273 			  start_index, 1, sleep_ok);
5274 }
5275 
5276 /**
5277  * t4_tp_pio_write - Write TP PIO registers
5278  * @adap: the adapter
5279  * @buff: where the indirect register values are stored
5280  * @nregs: how many indirect registers to write
5281  * @start_index: index of first indirect register to write
5282  * @sleep_ok: if true we may sleep while awaiting command completion
5283  *
5284  * Write TP PIO Registers
5285  **/
5286 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5287 			    u32 start_index, bool sleep_ok)
5288 {
5289 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5290 			  start_index, 0, sleep_ok);
5291 }
5292 
5293 /**
5294  * t4_tp_tm_pio_read - Read TP TM PIO registers
5295  * @adap: the adapter
5296  * @buff: where the indirect register values are written
5297  * @nregs: how many indirect registers to read
5298  * @start_index: index of first indirect register to read
5299  * @sleep_ok: if true we may sleep while awaiting command completion
5300  *
5301  * Read TP TM PIO Registers
5302  **/
5303 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5304 		       u32 start_index, bool sleep_ok)
5305 {
5306 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5307 			  nregs, start_index, 1, sleep_ok);
5308 }
5309 
5310 /**
5311  * t4_tp_mib_read - Read TP MIB registers
5312  * @adap: the adapter
5313  * @buff: where the indirect register values are written
5314  * @nregs: how many indirect registers to read
5315  * @start_index: index of first indirect register to read
5316  * @sleep_ok: if true we may sleep while awaiting command completion
5317  *
5318  * Read TP MIB Registers
5319  **/
5320 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5321 		    bool sleep_ok)
5322 {
5323 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5324 			  start_index, 1, sleep_ok);
5325 }
5326 
5327 /**
5328  *	t4_read_rss_key - read the global RSS key
5329  *	@adap: the adapter
5330  *	@key: 10-entry array holding the 320-bit RSS key
5331  *      @sleep_ok: if true we may sleep while awaiting command completion
5332  *
5333  *	Reads the global 320-bit RSS key.
5334  */
5335 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5336 {
5337 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5338 }
5339 
5340 /**
5341  *	t4_write_rss_key - program one of the RSS keys
5342  *	@adap: the adapter
5343  *	@key: 10-entry array holding the 320-bit RSS key
5344  *	@idx: which RSS key to write
5345  *      @sleep_ok: if true we may sleep while awaiting command completion
5346  *
5347  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5348  *	0..15 the corresponding entry in the RSS key table is written,
5349  *	otherwise the global RSS key is written.
5350  */
5351 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5352 		      bool sleep_ok)
5353 {
5354 	u8 rss_key_addr_cnt = 16;
5355 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5356 
5357 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5358 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5359 	 * as index[5:4](upper 2) into key table
5360 	 */
5361 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5362 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5363 		rss_key_addr_cnt = 32;
5364 
5365 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5366 
5367 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5368 		if (rss_key_addr_cnt > 16)
5369 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5370 				     KEYWRADDRX_V(idx >> 4) |
5371 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5372 		else
5373 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5374 				     KEYWRADDR_V(idx) | KEYWREN_F);
5375 	}
5376 }
5377 
5378 /**
5379  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5380  *	@adapter: the adapter
5381  *	@index: the entry in the PF RSS table to read
5382  *	@valp: where to store the returned value
5383  *      @sleep_ok: if true we may sleep while awaiting command completion
5384  *
5385  *	Reads the PF RSS Configuration Table at the specified index and returns
5386  *	the value found there.
5387  */
5388 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5389 			   u32 *valp, bool sleep_ok)
5390 {
5391 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5392 }
5393 
5394 /**
5395  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5396  *	@adapter: the adapter
5397  *	@index: the entry in the VF RSS table to read
5398  *	@vfl: where to store the returned VFL
5399  *	@vfh: where to store the returned VFH
5400  *      @sleep_ok: if true we may sleep while awaiting command completion
5401  *
5402  *	Reads the VF RSS Configuration Table at the specified index and returns
5403  *	the (VFL, VFH) values found there.
5404  */
5405 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5406 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5407 {
5408 	u32 vrt, mask, data;
5409 
5410 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5411 		mask = VFWRADDR_V(VFWRADDR_M);
5412 		data = VFWRADDR_V(index);
5413 	} else {
5414 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5415 		 data = T6_VFWRADDR_V(index);
5416 	}
5417 
5418 	/* Request that the index'th VF Table values be read into VFL/VFH.
5419 	 */
5420 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5421 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5422 	vrt |= data | VFRDEN_F;
5423 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5424 
5425 	/* Grab the VFL/VFH values ...
5426 	 */
5427 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5428 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5429 }
5430 
5431 /**
5432  *	t4_read_rss_pf_map - read PF RSS Map
5433  *	@adapter: the adapter
5434  *      @sleep_ok: if true we may sleep while awaiting command completion
5435  *
5436  *	Reads the PF RSS Map register and returns its value.
5437  */
5438 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5439 {
5440 	u32 pfmap;
5441 
5442 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5443 	return pfmap;
5444 }
5445 
5446 /**
5447  *	t4_read_rss_pf_mask - read PF RSS Mask
5448  *	@adapter: the adapter
5449  *      @sleep_ok: if true we may sleep while awaiting command completion
5450  *
5451  *	Reads the PF RSS Mask register and returns its value.
5452  */
5453 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5454 {
5455 	u32 pfmask;
5456 
5457 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5458 	return pfmask;
5459 }
5460 
5461 /**
5462  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5463  *	@adap: the adapter
5464  *	@v4: holds the TCP/IP counter values
5465  *	@v6: holds the TCP/IPv6 counter values
5466  *      @sleep_ok: if true we may sleep while awaiting command completion
5467  *
5468  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5469  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5470  */
5471 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5472 			 struct tp_tcp_stats *v6, bool sleep_ok)
5473 {
5474 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5475 
5476 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5477 #define STAT(x)     val[STAT_IDX(x)]
5478 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5479 
5480 	if (v4) {
5481 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5482 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5483 		v4->tcp_out_rsts = STAT(OUT_RST);
5484 		v4->tcp_in_segs  = STAT64(IN_SEG);
5485 		v4->tcp_out_segs = STAT64(OUT_SEG);
5486 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5487 	}
5488 	if (v6) {
5489 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5490 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5491 		v6->tcp_out_rsts = STAT(OUT_RST);
5492 		v6->tcp_in_segs  = STAT64(IN_SEG);
5493 		v6->tcp_out_segs = STAT64(OUT_SEG);
5494 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5495 	}
5496 #undef STAT64
5497 #undef STAT
5498 #undef STAT_IDX
5499 }
5500 
5501 /**
5502  *	t4_tp_get_err_stats - read TP's error MIB counters
5503  *	@adap: the adapter
5504  *	@st: holds the counter values
5505  *      @sleep_ok: if true we may sleep while awaiting command completion
5506  *
5507  *	Returns the values of TP's error counters.
5508  */
5509 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5510 			 bool sleep_ok)
5511 {
5512 	int nchan = adap->params.arch.nchan;
5513 
5514 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5515 		       sleep_ok);
5516 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5517 		       sleep_ok);
5518 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5519 		       sleep_ok);
5520 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5521 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5522 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5523 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5524 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5525 		       sleep_ok);
5526 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5527 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5528 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5529 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5530 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5531 		       sleep_ok);
5532 }
5533 
5534 /**
5535  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5536  *	@adap: the adapter
5537  *	@st: holds the counter values
5538  *      @sleep_ok: if true we may sleep while awaiting command completion
5539  *
5540  *	Returns the values of TP's CPL counters.
5541  */
5542 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5543 			 bool sleep_ok)
5544 {
5545 	int nchan = adap->params.arch.nchan;
5546 
5547 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5548 
5549 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5550 }
5551 
5552 /**
5553  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5554  *	@adap: the adapter
5555  *	@st: holds the counter values
5556  *      @sleep_ok: if true we may sleep while awaiting command completion
5557  *
5558  *	Returns the values of TP's RDMA counters.
5559  */
5560 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5561 			  bool sleep_ok)
5562 {
5563 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5564 		       sleep_ok);
5565 }
5566 
5567 /**
5568  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5569  *	@adap: the adapter
5570  *	@idx: the port index
5571  *	@st: holds the counter values
5572  *      @sleep_ok: if true we may sleep while awaiting command completion
5573  *
5574  *	Returns the values of TP's FCoE counters for the selected port.
5575  */
5576 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5577 		       struct tp_fcoe_stats *st, bool sleep_ok)
5578 {
5579 	u32 val[2];
5580 
5581 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5582 		       sleep_ok);
5583 
5584 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5585 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5586 
5587 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5588 		       sleep_ok);
5589 
5590 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5591 }
5592 
5593 /**
5594  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5595  *	@adap: the adapter
5596  *	@st: holds the counter values
5597  *      @sleep_ok: if true we may sleep while awaiting command completion
5598  *
5599  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5600  */
5601 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5602 		      bool sleep_ok)
5603 {
5604 	u32 val[4];
5605 
5606 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5607 	st->frames = val[0];
5608 	st->drops = val[1];
5609 	st->octets = ((u64)val[2] << 32) | val[3];
5610 }
5611 
5612 /**
5613  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5614  *	@adap: the adapter
5615  *	@mtus: where to store the MTU values
5616  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5617  *
5618  *	Reads the HW path MTU table.
5619  */
5620 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5621 {
5622 	u32 v;
5623 	int i;
5624 
5625 	for (i = 0; i < NMTUS; ++i) {
5626 		t4_write_reg(adap, TP_MTU_TABLE_A,
5627 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5628 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5629 		mtus[i] = MTUVALUE_G(v);
5630 		if (mtu_log)
5631 			mtu_log[i] = MTUWIDTH_G(v);
5632 	}
5633 }
5634 
5635 /**
5636  *	t4_read_cong_tbl - reads the congestion control table
5637  *	@adap: the adapter
5638  *	@incr: where to store the alpha values
5639  *
5640  *	Reads the additive increments programmed into the HW congestion
5641  *	control table.
5642  */
5643 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5644 {
5645 	unsigned int mtu, w;
5646 
5647 	for (mtu = 0; mtu < NMTUS; ++mtu)
5648 		for (w = 0; w < NCCTRL_WIN; ++w) {
5649 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5650 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5651 			incr[mtu][w] = (u16)t4_read_reg(adap,
5652 						TP_CCTRL_TABLE_A) & 0x1fff;
5653 		}
5654 }
5655 
5656 /**
5657  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5658  *	@adap: the adapter
5659  *	@addr: the indirect TP register address
5660  *	@mask: specifies the field within the register to modify
5661  *	@val: new value for the field
5662  *
5663  *	Sets a field of an indirect TP register to the given value.
5664  */
5665 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5666 			    unsigned int mask, unsigned int val)
5667 {
5668 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5669 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5670 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5671 }
5672 
5673 /**
5674  *	init_cong_ctrl - initialize congestion control parameters
5675  *	@a: the alpha values for congestion control
5676  *	@b: the beta values for congestion control
5677  *
5678  *	Initialize the congestion control parameters.
5679  */
5680 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5681 {
5682 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5683 	a[9] = 2;
5684 	a[10] = 3;
5685 	a[11] = 4;
5686 	a[12] = 5;
5687 	a[13] = 6;
5688 	a[14] = 7;
5689 	a[15] = 8;
5690 	a[16] = 9;
5691 	a[17] = 10;
5692 	a[18] = 14;
5693 	a[19] = 17;
5694 	a[20] = 21;
5695 	a[21] = 25;
5696 	a[22] = 30;
5697 	a[23] = 35;
5698 	a[24] = 45;
5699 	a[25] = 60;
5700 	a[26] = 80;
5701 	a[27] = 100;
5702 	a[28] = 200;
5703 	a[29] = 300;
5704 	a[30] = 400;
5705 	a[31] = 500;
5706 
5707 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5708 	b[9] = b[10] = 1;
5709 	b[11] = b[12] = 2;
5710 	b[13] = b[14] = b[15] = b[16] = 3;
5711 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5712 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5713 	b[28] = b[29] = 6;
5714 	b[30] = b[31] = 7;
5715 }
5716 
5717 /* The minimum additive increment value for the congestion control table */
5718 #define CC_MIN_INCR 2U
5719 
5720 /**
5721  *	t4_load_mtus - write the MTU and congestion control HW tables
5722  *	@adap: the adapter
5723  *	@mtus: the values for the MTU table
5724  *	@alpha: the values for the congestion control alpha parameter
5725  *	@beta: the values for the congestion control beta parameter
5726  *
5727  *	Write the HW MTU table with the supplied MTUs and the high-speed
5728  *	congestion control table with the supplied alpha, beta, and MTUs.
5729  *	We write the two tables together because the additive increments
5730  *	depend on the MTUs.
5731  */
5732 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5733 		  const unsigned short *alpha, const unsigned short *beta)
5734 {
5735 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5736 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5737 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5738 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5739 	};
5740 
5741 	unsigned int i, w;
5742 
5743 	for (i = 0; i < NMTUS; ++i) {
5744 		unsigned int mtu = mtus[i];
5745 		unsigned int log2 = fls(mtu);
5746 
5747 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5748 			log2--;
5749 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5750 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5751 
5752 		for (w = 0; w < NCCTRL_WIN; ++w) {
5753 			unsigned int inc;
5754 
5755 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5756 				  CC_MIN_INCR);
5757 
5758 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5759 				     (w << 16) | (beta[w] << 13) | inc);
5760 		}
5761 	}
5762 }
5763 
5764 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5765  * clocks.  The formula is
5766  *
5767  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5768  *
5769  * which is equivalent to
5770  *
5771  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5772  */
5773 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5774 {
5775 	u64 v = bytes256 * adap->params.vpd.cclk;
5776 
5777 	return v * 62 + v / 2;
5778 }
5779 
5780 /**
5781  *	t4_get_chan_txrate - get the current per channel Tx rates
5782  *	@adap: the adapter
5783  *	@nic_rate: rates for NIC traffic
5784  *	@ofld_rate: rates for offloaded traffic
5785  *
5786  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5787  *	for each channel.
5788  */
5789 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5790 {
5791 	u32 v;
5792 
5793 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5794 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5795 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5796 	if (adap->params.arch.nchan == NCHAN) {
5797 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5798 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5799 	}
5800 
5801 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5802 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5803 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5804 	if (adap->params.arch.nchan == NCHAN) {
5805 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5806 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5807 	}
5808 }
5809 
5810 /**
5811  *	t4_set_trace_filter - configure one of the tracing filters
5812  *	@adap: the adapter
5813  *	@tp: the desired trace filter parameters
5814  *	@idx: which filter to configure
5815  *	@enable: whether to enable or disable the filter
5816  *
5817  *	Configures one of the tracing filters available in HW.  If @enable is
5818  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5819  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5820  */
5821 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5822 			int idx, int enable)
5823 {
5824 	int i, ofst = idx * 4;
5825 	u32 data_reg, mask_reg, cfg;
5826 	u32 multitrc = TRCMULTIFILTER_F;
5827 
5828 	if (!enable) {
5829 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5830 		return 0;
5831 	}
5832 
5833 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5834 	if (cfg & TRCMULTIFILTER_F) {
5835 		/* If multiple tracers are enabled, then maximum
5836 		 * capture size is 2.5KB (FIFO size of a single channel)
5837 		 * minus 2 flits for CPL_TRACE_PKT header.
5838 		 */
5839 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5840 			return -EINVAL;
5841 	} else {
5842 		/* If multiple tracers are disabled, to avoid deadlocks
5843 		 * maximum packet capture size of 9600 bytes is recommended.
5844 		 * Also in this mode, only trace0 can be enabled and running.
5845 		 */
5846 		multitrc = 0;
5847 		if (tp->snap_len > 9600 || idx)
5848 			return -EINVAL;
5849 	}
5850 
5851 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5852 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5853 	    tp->min_len > TFMINPKTSIZE_M)
5854 		return -EINVAL;
5855 
5856 	/* stop the tracer we'll be changing */
5857 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5858 
5859 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5860 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5861 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5862 
5863 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5864 		t4_write_reg(adap, data_reg, tp->data[i]);
5865 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5866 	}
5867 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5868 		     TFCAPTUREMAX_V(tp->snap_len) |
5869 		     TFMINPKTSIZE_V(tp->min_len));
5870 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5871 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5872 		     (is_t4(adap->params.chip) ?
5873 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5874 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5875 		     T5_TFINVERTMATCH_V(tp->invert)));
5876 
5877 	return 0;
5878 }
5879 
5880 /**
5881  *	t4_get_trace_filter - query one of the tracing filters
5882  *	@adap: the adapter
5883  *	@tp: the current trace filter parameters
5884  *	@idx: which trace filter to query
5885  *	@enabled: non-zero if the filter is enabled
5886  *
5887  *	Returns the current settings of one of the HW tracing filters.
5888  */
5889 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5890 			 int *enabled)
5891 {
5892 	u32 ctla, ctlb;
5893 	int i, ofst = idx * 4;
5894 	u32 data_reg, mask_reg;
5895 
5896 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5897 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5898 
5899 	if (is_t4(adap->params.chip)) {
5900 		*enabled = !!(ctla & TFEN_F);
5901 		tp->port =  TFPORT_G(ctla);
5902 		tp->invert = !!(ctla & TFINVERTMATCH_F);
5903 	} else {
5904 		*enabled = !!(ctla & T5_TFEN_F);
5905 		tp->port = T5_TFPORT_G(ctla);
5906 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5907 	}
5908 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5909 	tp->min_len = TFMINPKTSIZE_G(ctlb);
5910 	tp->skip_ofst = TFOFFSET_G(ctla);
5911 	tp->skip_len = TFLENGTH_G(ctla);
5912 
5913 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5914 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5915 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5916 
5917 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5918 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5919 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5920 	}
5921 }
5922 
5923 /**
5924  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5925  *	@adap: the adapter
5926  *	@cnt: where to store the count statistics
5927  *	@cycles: where to store the cycle statistics
5928  *
5929  *	Returns performance statistics from PMTX.
5930  */
5931 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5932 {
5933 	int i;
5934 	u32 data[2];
5935 
5936 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5937 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5938 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5939 		if (is_t4(adap->params.chip)) {
5940 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5941 		} else {
5942 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5943 					 PM_TX_DBG_DATA_A, data, 2,
5944 					 PM_TX_DBG_STAT_MSB_A);
5945 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5946 		}
5947 	}
5948 }
5949 
5950 /**
5951  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5952  *	@adap: the adapter
5953  *	@cnt: where to store the count statistics
5954  *	@cycles: where to store the cycle statistics
5955  *
5956  *	Returns performance statistics from PMRX.
5957  */
5958 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5959 {
5960 	int i;
5961 	u32 data[2];
5962 
5963 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5964 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5965 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5966 		if (is_t4(adap->params.chip)) {
5967 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5968 		} else {
5969 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5970 					 PM_RX_DBG_DATA_A, data, 2,
5971 					 PM_RX_DBG_STAT_MSB_A);
5972 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5973 		}
5974 	}
5975 }
5976 
5977 /**
5978  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
5979  *	@adap: the adapter
5980  *	@pidx: the port index
5981  *
5982  *	Computes and returns a bitmap indicating which MPS buffer groups are
5983  *	associated with the given Port.  Bit i is set if buffer group i is
5984  *	used by the Port.
5985  */
5986 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
5987 					      int pidx)
5988 {
5989 	unsigned int chip_version, nports;
5990 
5991 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5992 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5993 
5994 	switch (chip_version) {
5995 	case CHELSIO_T4:
5996 	case CHELSIO_T5:
5997 		switch (nports) {
5998 		case 1: return 0xf;
5999 		case 2: return 3 << (2 * pidx);
6000 		case 4: return 1 << pidx;
6001 		}
6002 		break;
6003 
6004 	case CHELSIO_T6:
6005 		switch (nports) {
6006 		case 2: return 1 << (2 * pidx);
6007 		}
6008 		break;
6009 	}
6010 
6011 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6012 		chip_version, nports);
6013 
6014 	return 0;
6015 }
6016 
6017 /**
6018  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6019  *	@adapter: the adapter
6020  *	@pidx: the port index
6021  *
6022  *	Returns a bitmap indicating which MPS buffer groups are associated
6023  *	with the given Port.  Bit i is set if buffer group i is used by the
6024  *	Port.
6025  */
6026 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6027 {
6028 	u8 *mps_bg_map;
6029 	unsigned int nports;
6030 
6031 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6032 	if (pidx >= nports) {
6033 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6034 			pidx, nports);
6035 		return 0;
6036 	}
6037 
6038 	/* If we've already retrieved/computed this, just return the result.
6039 	 */
6040 	mps_bg_map = adapter->params.mps_bg_map;
6041 	if (mps_bg_map[pidx])
6042 		return mps_bg_map[pidx];
6043 
6044 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6045 	 * If we're talking to such Firmware, let it tell us.  If the new
6046 	 * API isn't supported, revert back to old hardcoded way.  The value
6047 	 * obtained from Firmware is encoded in below format:
6048 	 *
6049 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6050 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6051 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6052 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6053 	 */
6054 	if (adapter->flags & FW_OK) {
6055 		u32 param, val;
6056 		int ret;
6057 
6058 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6059 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6060 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6061 					 0, 1, &param, &val);
6062 		if (!ret) {
6063 			int p;
6064 
6065 			/* Store the BG Map for all of the Ports in order to
6066 			 * avoid more calls to the Firmware in the future.
6067 			 */
6068 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6069 				mps_bg_map[p] = val & 0xff;
6070 
6071 			return mps_bg_map[pidx];
6072 		}
6073 	}
6074 
6075 	/* Either we're not talking to the Firmware or we're dealing with
6076 	 * older Firmware which doesn't support the new API to get the MPS
6077 	 * Buffer Group Map.  Fall back to computing it ourselves.
6078 	 */
6079 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6080 	return mps_bg_map[pidx];
6081 }
6082 
6083 /**
6084  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6085  *	@adapter: the adapter
6086  *	@pidx: the port index
6087  *
6088  *	Returns a bitmap indicating which TP Ingress Channels are associated
6089  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6090  *	the Port.
6091  */
6092 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6093 {
6094 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6095 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6096 
6097 	if (pidx >= nports) {
6098 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6099 			 pidx, nports);
6100 		return 0;
6101 	}
6102 
6103 	switch (chip_version) {
6104 	case CHELSIO_T4:
6105 	case CHELSIO_T5:
6106 		/* Note that this happens to be the same values as the MPS
6107 		 * Buffer Group Map for these Chips.  But we replicate the code
6108 		 * here because they're really separate concepts.
6109 		 */
6110 		switch (nports) {
6111 		case 1: return 0xf;
6112 		case 2: return 3 << (2 * pidx);
6113 		case 4: return 1 << pidx;
6114 		}
6115 		break;
6116 
6117 	case CHELSIO_T6:
6118 		switch (nports) {
6119 		case 1:
6120 		case 2: return 1 << pidx;
6121 		}
6122 		break;
6123 	}
6124 
6125 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6126 		chip_version, nports);
6127 	return 0;
6128 }
6129 
6130 /**
6131  *      t4_get_port_type_description - return Port Type string description
6132  *      @port_type: firmware Port Type enumeration
6133  */
6134 const char *t4_get_port_type_description(enum fw_port_type port_type)
6135 {
6136 	static const char *const port_type_description[] = {
6137 		"Fiber_XFI",
6138 		"Fiber_XAUI",
6139 		"BT_SGMII",
6140 		"BT_XFI",
6141 		"BT_XAUI",
6142 		"KX4",
6143 		"CX4",
6144 		"KX",
6145 		"KR",
6146 		"SFP",
6147 		"BP_AP",
6148 		"BP4_AP",
6149 		"QSFP_10G",
6150 		"QSA",
6151 		"QSFP",
6152 		"BP40_BA",
6153 		"KR4_100G",
6154 		"CR4_QSFP",
6155 		"CR_QSFP",
6156 		"CR2_QSFP",
6157 		"SFP28",
6158 		"KR_SFP28",
6159 		"KR_XLAUI"
6160 	};
6161 
6162 	if (port_type < ARRAY_SIZE(port_type_description))
6163 		return port_type_description[port_type];
6164 	return "UNKNOWN";
6165 }
6166 
6167 /**
6168  *      t4_get_port_stats_offset - collect port stats relative to a previous
6169  *                                 snapshot
6170  *      @adap: The adapter
6171  *      @idx: The port
6172  *      @stats: Current stats to fill
6173  *      @offset: Previous stats snapshot
6174  */
6175 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6176 			      struct port_stats *stats,
6177 			      struct port_stats *offset)
6178 {
6179 	u64 *s, *o;
6180 	int i;
6181 
6182 	t4_get_port_stats(adap, idx, stats);
6183 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6184 			i < (sizeof(struct port_stats) / sizeof(u64));
6185 			i++, s++, o++)
6186 		*s -= *o;
6187 }
6188 
6189 /**
6190  *	t4_get_port_stats - collect port statistics
6191  *	@adap: the adapter
6192  *	@idx: the port index
6193  *	@p: the stats structure to fill
6194  *
6195  *	Collect statistics related to the given port from HW.
6196  */
6197 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6198 {
6199 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6200 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6201 
6202 #define GET_STAT(name) \
6203 	t4_read_reg64(adap, \
6204 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6205 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6206 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6207 
6208 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6209 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6210 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6211 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6212 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6213 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6214 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6215 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6216 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6217 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6218 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6219 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6220 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6221 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6222 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6223 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6224 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6225 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6226 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6227 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6228 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6229 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6230 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6231 
6232 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6233 		if (stat_ctl & COUNTPAUSESTATTX_F)
6234 			p->tx_frames_64 -= p->tx_pause;
6235 		if (stat_ctl & COUNTPAUSEMCTX_F)
6236 			p->tx_mcast_frames -= p->tx_pause;
6237 	}
6238 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6239 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6240 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6241 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6242 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6243 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6244 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6245 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6246 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6247 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6248 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6249 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6250 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6251 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6252 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6253 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6254 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6255 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6256 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6257 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6258 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6259 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6260 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6261 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6262 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6263 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6264 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6265 
6266 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6267 		if (stat_ctl & COUNTPAUSESTATRX_F)
6268 			p->rx_frames_64 -= p->rx_pause;
6269 		if (stat_ctl & COUNTPAUSEMCRX_F)
6270 			p->rx_mcast_frames -= p->rx_pause;
6271 	}
6272 
6273 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6274 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6275 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6276 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6277 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6278 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6279 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6280 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6281 
6282 #undef GET_STAT
6283 #undef GET_STAT_COM
6284 }
6285 
6286 /**
6287  *	t4_get_lb_stats - collect loopback port statistics
6288  *	@adap: the adapter
6289  *	@idx: the loopback port index
6290  *	@p: the stats structure to fill
6291  *
6292  *	Return HW statistics for the given loopback port.
6293  */
6294 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6295 {
6296 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6297 
6298 #define GET_STAT(name) \
6299 	t4_read_reg64(adap, \
6300 	(is_t4(adap->params.chip) ? \
6301 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6302 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6303 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6304 
6305 	p->octets           = GET_STAT(BYTES);
6306 	p->frames           = GET_STAT(FRAMES);
6307 	p->bcast_frames     = GET_STAT(BCAST);
6308 	p->mcast_frames     = GET_STAT(MCAST);
6309 	p->ucast_frames     = GET_STAT(UCAST);
6310 	p->error_frames     = GET_STAT(ERROR);
6311 
6312 	p->frames_64        = GET_STAT(64B);
6313 	p->frames_65_127    = GET_STAT(65B_127B);
6314 	p->frames_128_255   = GET_STAT(128B_255B);
6315 	p->frames_256_511   = GET_STAT(256B_511B);
6316 	p->frames_512_1023  = GET_STAT(512B_1023B);
6317 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6318 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6319 	p->drop             = GET_STAT(DROP_FRAMES);
6320 
6321 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6322 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6323 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6324 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6325 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6326 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6327 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6328 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6329 
6330 #undef GET_STAT
6331 #undef GET_STAT_COM
6332 }
6333 
6334 /*     t4_mk_filtdelwr - create a delete filter WR
6335  *     @ftid: the filter ID
6336  *     @wr: the filter work request to populate
6337  *     @qid: ingress queue to receive the delete notification
6338  *
6339  *     Creates a filter work request to delete the supplied filter.  If @qid is
6340  *     negative the delete notification is suppressed.
6341  */
6342 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6343 {
6344 	memset(wr, 0, sizeof(*wr));
6345 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6346 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6347 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6348 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6349 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6350 	if (qid >= 0)
6351 		wr->rx_chan_rx_rpl_iq =
6352 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6353 }
6354 
6355 #define INIT_CMD(var, cmd, rd_wr) do { \
6356 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6357 					FW_CMD_REQUEST_F | \
6358 					FW_CMD_##rd_wr##_F); \
6359 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6360 } while (0)
6361 
6362 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6363 			  u32 addr, u32 val)
6364 {
6365 	u32 ldst_addrspace;
6366 	struct fw_ldst_cmd c;
6367 
6368 	memset(&c, 0, sizeof(c));
6369 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6370 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6371 					FW_CMD_REQUEST_F |
6372 					FW_CMD_WRITE_F |
6373 					ldst_addrspace);
6374 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6375 	c.u.addrval.addr = cpu_to_be32(addr);
6376 	c.u.addrval.val = cpu_to_be32(val);
6377 
6378 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6379 }
6380 
6381 /**
6382  *	t4_mdio_rd - read a PHY register through MDIO
6383  *	@adap: the adapter
6384  *	@mbox: mailbox to use for the FW command
6385  *	@phy_addr: the PHY address
6386  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6387  *	@reg: the register to read
6388  *	@valp: where to store the value
6389  *
6390  *	Issues a FW command through the given mailbox to read a PHY register.
6391  */
6392 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6393 	       unsigned int mmd, unsigned int reg, u16 *valp)
6394 {
6395 	int ret;
6396 	u32 ldst_addrspace;
6397 	struct fw_ldst_cmd c;
6398 
6399 	memset(&c, 0, sizeof(c));
6400 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6401 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6402 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6403 					ldst_addrspace);
6404 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6405 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6406 					 FW_LDST_CMD_MMD_V(mmd));
6407 	c.u.mdio.raddr = cpu_to_be16(reg);
6408 
6409 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6410 	if (ret == 0)
6411 		*valp = be16_to_cpu(c.u.mdio.rval);
6412 	return ret;
6413 }
6414 
6415 /**
6416  *	t4_mdio_wr - write a PHY register through MDIO
6417  *	@adap: the adapter
6418  *	@mbox: mailbox to use for the FW command
6419  *	@phy_addr: the PHY address
6420  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6421  *	@reg: the register to write
6422  *	@valp: value to write
6423  *
6424  *	Issues a FW command through the given mailbox to write a PHY register.
6425  */
6426 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6427 	       unsigned int mmd, unsigned int reg, u16 val)
6428 {
6429 	u32 ldst_addrspace;
6430 	struct fw_ldst_cmd c;
6431 
6432 	memset(&c, 0, sizeof(c));
6433 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6434 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6435 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6436 					ldst_addrspace);
6437 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6438 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6439 					 FW_LDST_CMD_MMD_V(mmd));
6440 	c.u.mdio.raddr = cpu_to_be16(reg);
6441 	c.u.mdio.rval = cpu_to_be16(val);
6442 
6443 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6444 }
6445 
6446 /**
6447  *	t4_sge_decode_idma_state - decode the idma state
6448  *	@adap: the adapter
6449  *	@state: the state idma is stuck in
6450  */
6451 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6452 {
6453 	static const char * const t4_decode[] = {
6454 		"IDMA_IDLE",
6455 		"IDMA_PUSH_MORE_CPL_FIFO",
6456 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6457 		"Not used",
6458 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6459 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6460 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6461 		"IDMA_SEND_FIFO_TO_IMSG",
6462 		"IDMA_FL_REQ_DATA_FL_PREP",
6463 		"IDMA_FL_REQ_DATA_FL",
6464 		"IDMA_FL_DROP",
6465 		"IDMA_FL_H_REQ_HEADER_FL",
6466 		"IDMA_FL_H_SEND_PCIEHDR",
6467 		"IDMA_FL_H_PUSH_CPL_FIFO",
6468 		"IDMA_FL_H_SEND_CPL",
6469 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6470 		"IDMA_FL_H_SEND_IP_HDR",
6471 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6472 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6473 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6474 		"IDMA_FL_D_SEND_PCIEHDR",
6475 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6476 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6477 		"IDMA_FL_SEND_PCIEHDR",
6478 		"IDMA_FL_PUSH_CPL_FIFO",
6479 		"IDMA_FL_SEND_CPL",
6480 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6481 		"IDMA_FL_SEND_PAYLOAD",
6482 		"IDMA_FL_REQ_NEXT_DATA_FL",
6483 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6484 		"IDMA_FL_SEND_PADDING",
6485 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6486 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6487 		"IDMA_FL_REQ_DATAFL_DONE",
6488 		"IDMA_FL_REQ_HEADERFL_DONE",
6489 	};
6490 	static const char * const t5_decode[] = {
6491 		"IDMA_IDLE",
6492 		"IDMA_ALMOST_IDLE",
6493 		"IDMA_PUSH_MORE_CPL_FIFO",
6494 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6495 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6496 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6497 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6498 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6499 		"IDMA_SEND_FIFO_TO_IMSG",
6500 		"IDMA_FL_REQ_DATA_FL",
6501 		"IDMA_FL_DROP",
6502 		"IDMA_FL_DROP_SEND_INC",
6503 		"IDMA_FL_H_REQ_HEADER_FL",
6504 		"IDMA_FL_H_SEND_PCIEHDR",
6505 		"IDMA_FL_H_PUSH_CPL_FIFO",
6506 		"IDMA_FL_H_SEND_CPL",
6507 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6508 		"IDMA_FL_H_SEND_IP_HDR",
6509 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6510 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6511 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6512 		"IDMA_FL_D_SEND_PCIEHDR",
6513 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6514 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6515 		"IDMA_FL_SEND_PCIEHDR",
6516 		"IDMA_FL_PUSH_CPL_FIFO",
6517 		"IDMA_FL_SEND_CPL",
6518 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6519 		"IDMA_FL_SEND_PAYLOAD",
6520 		"IDMA_FL_REQ_NEXT_DATA_FL",
6521 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6522 		"IDMA_FL_SEND_PADDING",
6523 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6524 	};
6525 	static const char * const t6_decode[] = {
6526 		"IDMA_IDLE",
6527 		"IDMA_PUSH_MORE_CPL_FIFO",
6528 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6529 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6530 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6531 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6532 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6533 		"IDMA_FL_REQ_DATA_FL",
6534 		"IDMA_FL_DROP",
6535 		"IDMA_FL_DROP_SEND_INC",
6536 		"IDMA_FL_H_REQ_HEADER_FL",
6537 		"IDMA_FL_H_SEND_PCIEHDR",
6538 		"IDMA_FL_H_PUSH_CPL_FIFO",
6539 		"IDMA_FL_H_SEND_CPL",
6540 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6541 		"IDMA_FL_H_SEND_IP_HDR",
6542 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6543 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6544 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6545 		"IDMA_FL_D_SEND_PCIEHDR",
6546 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6547 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6548 		"IDMA_FL_SEND_PCIEHDR",
6549 		"IDMA_FL_PUSH_CPL_FIFO",
6550 		"IDMA_FL_SEND_CPL",
6551 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6552 		"IDMA_FL_SEND_PAYLOAD",
6553 		"IDMA_FL_REQ_NEXT_DATA_FL",
6554 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6555 		"IDMA_FL_SEND_PADDING",
6556 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6557 	};
6558 	static const u32 sge_regs[] = {
6559 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6560 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6561 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6562 	};
6563 	const char **sge_idma_decode;
6564 	int sge_idma_decode_nstates;
6565 	int i;
6566 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6567 
6568 	/* Select the right set of decode strings to dump depending on the
6569 	 * adapter chip type.
6570 	 */
6571 	switch (chip_version) {
6572 	case CHELSIO_T4:
6573 		sge_idma_decode = (const char **)t4_decode;
6574 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6575 		break;
6576 
6577 	case CHELSIO_T5:
6578 		sge_idma_decode = (const char **)t5_decode;
6579 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6580 		break;
6581 
6582 	case CHELSIO_T6:
6583 		sge_idma_decode = (const char **)t6_decode;
6584 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6585 		break;
6586 
6587 	default:
6588 		dev_err(adapter->pdev_dev,
6589 			"Unsupported chip version %d\n", chip_version);
6590 		return;
6591 	}
6592 
6593 	if (is_t4(adapter->params.chip)) {
6594 		sge_idma_decode = (const char **)t4_decode;
6595 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6596 	} else {
6597 		sge_idma_decode = (const char **)t5_decode;
6598 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6599 	}
6600 
6601 	if (state < sge_idma_decode_nstates)
6602 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6603 	else
6604 		CH_WARN(adapter, "idma state %d unknown\n", state);
6605 
6606 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6607 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6608 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6609 }
6610 
6611 /**
6612  *      t4_sge_ctxt_flush - flush the SGE context cache
6613  *      @adap: the adapter
6614  *      @mbox: mailbox to use for the FW command
6615  *      @ctx_type: Egress or Ingress
6616  *
6617  *      Issues a FW command through the given mailbox to flush the
6618  *      SGE context cache.
6619  */
6620 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6621 {
6622 	int ret;
6623 	u32 ldst_addrspace;
6624 	struct fw_ldst_cmd c;
6625 
6626 	memset(&c, 0, sizeof(c));
6627 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6628 						 FW_LDST_ADDRSPC_SGE_EGRC :
6629 						 FW_LDST_ADDRSPC_SGE_INGC);
6630 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6631 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6632 					ldst_addrspace);
6633 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6634 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6635 
6636 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6637 	return ret;
6638 }
6639 
6640 /**
6641  *      t4_fw_hello - establish communication with FW
6642  *      @adap: the adapter
6643  *      @mbox: mailbox to use for the FW command
6644  *      @evt_mbox: mailbox to receive async FW events
6645  *      @master: specifies the caller's willingness to be the device master
6646  *	@state: returns the current device state (if non-NULL)
6647  *
6648  *	Issues a command to establish communication with FW.  Returns either
6649  *	an error (negative integer) or the mailbox of the Master PF.
6650  */
6651 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6652 		enum dev_master master, enum dev_state *state)
6653 {
6654 	int ret;
6655 	struct fw_hello_cmd c;
6656 	u32 v;
6657 	unsigned int master_mbox;
6658 	int retries = FW_CMD_HELLO_RETRIES;
6659 
6660 retry:
6661 	memset(&c, 0, sizeof(c));
6662 	INIT_CMD(c, HELLO, WRITE);
6663 	c.err_to_clearinit = cpu_to_be32(
6664 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6665 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6666 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6667 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6668 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6669 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6670 		FW_HELLO_CMD_CLEARINIT_F);
6671 
6672 	/*
6673 	 * Issue the HELLO command to the firmware.  If it's not successful
6674 	 * but indicates that we got a "busy" or "timeout" condition, retry
6675 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6676 	 * retry limit, check to see if the firmware left us any error
6677 	 * information and report that if so.
6678 	 */
6679 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6680 	if (ret < 0) {
6681 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6682 			goto retry;
6683 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6684 			t4_report_fw_error(adap);
6685 		return ret;
6686 	}
6687 
6688 	v = be32_to_cpu(c.err_to_clearinit);
6689 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6690 	if (state) {
6691 		if (v & FW_HELLO_CMD_ERR_F)
6692 			*state = DEV_STATE_ERR;
6693 		else if (v & FW_HELLO_CMD_INIT_F)
6694 			*state = DEV_STATE_INIT;
6695 		else
6696 			*state = DEV_STATE_UNINIT;
6697 	}
6698 
6699 	/*
6700 	 * If we're not the Master PF then we need to wait around for the
6701 	 * Master PF Driver to finish setting up the adapter.
6702 	 *
6703 	 * Note that we also do this wait if we're a non-Master-capable PF and
6704 	 * there is no current Master PF; a Master PF may show up momentarily
6705 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6706 	 * OS loads lots of different drivers rapidly at the same time).  In
6707 	 * this case, the Master PF returned by the firmware will be
6708 	 * PCIE_FW_MASTER_M so the test below will work ...
6709 	 */
6710 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6711 	    master_mbox != mbox) {
6712 		int waiting = FW_CMD_HELLO_TIMEOUT;
6713 
6714 		/*
6715 		 * Wait for the firmware to either indicate an error or
6716 		 * initialized state.  If we see either of these we bail out
6717 		 * and report the issue to the caller.  If we exhaust the
6718 		 * "hello timeout" and we haven't exhausted our retries, try
6719 		 * again.  Otherwise bail with a timeout error.
6720 		 */
6721 		for (;;) {
6722 			u32 pcie_fw;
6723 
6724 			msleep(50);
6725 			waiting -= 50;
6726 
6727 			/*
6728 			 * If neither Error nor Initialialized are indicated
6729 			 * by the firmware keep waiting till we exaust our
6730 			 * timeout ... and then retry if we haven't exhausted
6731 			 * our retries ...
6732 			 */
6733 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6734 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6735 				if (waiting <= 0) {
6736 					if (retries-- > 0)
6737 						goto retry;
6738 
6739 					return -ETIMEDOUT;
6740 				}
6741 				continue;
6742 			}
6743 
6744 			/*
6745 			 * We either have an Error or Initialized condition
6746 			 * report errors preferentially.
6747 			 */
6748 			if (state) {
6749 				if (pcie_fw & PCIE_FW_ERR_F)
6750 					*state = DEV_STATE_ERR;
6751 				else if (pcie_fw & PCIE_FW_INIT_F)
6752 					*state = DEV_STATE_INIT;
6753 			}
6754 
6755 			/*
6756 			 * If we arrived before a Master PF was selected and
6757 			 * there's not a valid Master PF, grab its identity
6758 			 * for our caller.
6759 			 */
6760 			if (master_mbox == PCIE_FW_MASTER_M &&
6761 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6762 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6763 			break;
6764 		}
6765 	}
6766 
6767 	return master_mbox;
6768 }
6769 
6770 /**
6771  *	t4_fw_bye - end communication with FW
6772  *	@adap: the adapter
6773  *	@mbox: mailbox to use for the FW command
6774  *
6775  *	Issues a command to terminate communication with FW.
6776  */
6777 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6778 {
6779 	struct fw_bye_cmd c;
6780 
6781 	memset(&c, 0, sizeof(c));
6782 	INIT_CMD(c, BYE, WRITE);
6783 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6784 }
6785 
6786 /**
6787  *	t4_init_cmd - ask FW to initialize the device
6788  *	@adap: the adapter
6789  *	@mbox: mailbox to use for the FW command
6790  *
6791  *	Issues a command to FW to partially initialize the device.  This
6792  *	performs initialization that generally doesn't depend on user input.
6793  */
6794 int t4_early_init(struct adapter *adap, unsigned int mbox)
6795 {
6796 	struct fw_initialize_cmd c;
6797 
6798 	memset(&c, 0, sizeof(c));
6799 	INIT_CMD(c, INITIALIZE, WRITE);
6800 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6801 }
6802 
6803 /**
6804  *	t4_fw_reset - issue a reset to FW
6805  *	@adap: the adapter
6806  *	@mbox: mailbox to use for the FW command
6807  *	@reset: specifies the type of reset to perform
6808  *
6809  *	Issues a reset command of the specified type to FW.
6810  */
6811 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6812 {
6813 	struct fw_reset_cmd c;
6814 
6815 	memset(&c, 0, sizeof(c));
6816 	INIT_CMD(c, RESET, WRITE);
6817 	c.val = cpu_to_be32(reset);
6818 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6819 }
6820 
6821 /**
6822  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6823  *	@adap: the adapter
6824  *	@mbox: mailbox to use for the FW RESET command (if desired)
6825  *	@force: force uP into RESET even if FW RESET command fails
6826  *
6827  *	Issues a RESET command to firmware (if desired) with a HALT indication
6828  *	and then puts the microprocessor into RESET state.  The RESET command
6829  *	will only be issued if a legitimate mailbox is provided (mbox <=
6830  *	PCIE_FW_MASTER_M).
6831  *
6832  *	This is generally used in order for the host to safely manipulate the
6833  *	adapter without fear of conflicting with whatever the firmware might
6834  *	be doing.  The only way out of this state is to RESTART the firmware
6835  *	...
6836  */
6837 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6838 {
6839 	int ret = 0;
6840 
6841 	/*
6842 	 * If a legitimate mailbox is provided, issue a RESET command
6843 	 * with a HALT indication.
6844 	 */
6845 	if (mbox <= PCIE_FW_MASTER_M) {
6846 		struct fw_reset_cmd c;
6847 
6848 		memset(&c, 0, sizeof(c));
6849 		INIT_CMD(c, RESET, WRITE);
6850 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6851 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6852 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6853 	}
6854 
6855 	/*
6856 	 * Normally we won't complete the operation if the firmware RESET
6857 	 * command fails but if our caller insists we'll go ahead and put the
6858 	 * uP into RESET.  This can be useful if the firmware is hung or even
6859 	 * missing ...  We'll have to take the risk of putting the uP into
6860 	 * RESET without the cooperation of firmware in that case.
6861 	 *
6862 	 * We also force the firmware's HALT flag to be on in case we bypassed
6863 	 * the firmware RESET command above or we're dealing with old firmware
6864 	 * which doesn't have the HALT capability.  This will serve as a flag
6865 	 * for the incoming firmware to know that it's coming out of a HALT
6866 	 * rather than a RESET ... if it's new enough to understand that ...
6867 	 */
6868 	if (ret == 0 || force) {
6869 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6870 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6871 				 PCIE_FW_HALT_F);
6872 	}
6873 
6874 	/*
6875 	 * And we always return the result of the firmware RESET command
6876 	 * even when we force the uP into RESET ...
6877 	 */
6878 	return ret;
6879 }
6880 
6881 /**
6882  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6883  *	@adap: the adapter
6884  *	@reset: if we want to do a RESET to restart things
6885  *
6886  *	Restart firmware previously halted by t4_fw_halt().  On successful
6887  *	return the previous PF Master remains as the new PF Master and there
6888  *	is no need to issue a new HELLO command, etc.
6889  *
6890  *	We do this in two ways:
6891  *
6892  *	 1. If we're dealing with newer firmware we'll simply want to take
6893  *	    the chip's microprocessor out of RESET.  This will cause the
6894  *	    firmware to start up from its start vector.  And then we'll loop
6895  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6896  *	    reset to 0) or we timeout.
6897  *
6898  *	 2. If we're dealing with older firmware then we'll need to RESET
6899  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6900  *	    flag and automatically RESET itself on startup.
6901  */
6902 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6903 {
6904 	if (reset) {
6905 		/*
6906 		 * Since we're directing the RESET instead of the firmware
6907 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6908 		 * bit.
6909 		 */
6910 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6911 
6912 		/*
6913 		 * If we've been given a valid mailbox, first try to get the
6914 		 * firmware to do the RESET.  If that works, great and we can
6915 		 * return success.  Otherwise, if we haven't been given a
6916 		 * valid mailbox or the RESET command failed, fall back to
6917 		 * hitting the chip with a hammer.
6918 		 */
6919 		if (mbox <= PCIE_FW_MASTER_M) {
6920 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6921 			msleep(100);
6922 			if (t4_fw_reset(adap, mbox,
6923 					PIORST_F | PIORSTMODE_F) == 0)
6924 				return 0;
6925 		}
6926 
6927 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6928 		msleep(2000);
6929 	} else {
6930 		int ms;
6931 
6932 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6933 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6934 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6935 				return 0;
6936 			msleep(100);
6937 			ms += 100;
6938 		}
6939 		return -ETIMEDOUT;
6940 	}
6941 	return 0;
6942 }
6943 
6944 /**
6945  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6946  *	@adap: the adapter
6947  *	@mbox: mailbox to use for the FW RESET command (if desired)
6948  *	@fw_data: the firmware image to write
6949  *	@size: image size
6950  *	@force: force upgrade even if firmware doesn't cooperate
6951  *
6952  *	Perform all of the steps necessary for upgrading an adapter's
6953  *	firmware image.  Normally this requires the cooperation of the
6954  *	existing firmware in order to halt all existing activities
6955  *	but if an invalid mailbox token is passed in we skip that step
6956  *	(though we'll still put the adapter microprocessor into RESET in
6957  *	that case).
6958  *
6959  *	On successful return the new firmware will have been loaded and
6960  *	the adapter will have been fully RESET losing all previous setup
6961  *	state.  On unsuccessful return the adapter may be completely hosed ...
6962  *	positive errno indicates that the adapter is ~probably~ intact, a
6963  *	negative errno indicates that things are looking bad ...
6964  */
6965 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6966 		  const u8 *fw_data, unsigned int size, int force)
6967 {
6968 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6969 	int reset, ret;
6970 
6971 	if (!t4_fw_matches_chip(adap, fw_hdr))
6972 		return -EINVAL;
6973 
6974 	/* Disable FW_OK flag so that mbox commands with FW_OK flag set
6975 	 * wont be sent when we are flashing FW.
6976 	 */
6977 	adap->flags &= ~FW_OK;
6978 
6979 	ret = t4_fw_halt(adap, mbox, force);
6980 	if (ret < 0 && !force)
6981 		goto out;
6982 
6983 	ret = t4_load_fw(adap, fw_data, size);
6984 	if (ret < 0)
6985 		goto out;
6986 
6987 	/*
6988 	 * If there was a Firmware Configuration File stored in FLASH,
6989 	 * there's a good chance that it won't be compatible with the new
6990 	 * Firmware.  In order to prevent difficult to diagnose adapter
6991 	 * initialization issues, we clear out the Firmware Configuration File
6992 	 * portion of the FLASH .  The user will need to re-FLASH a new
6993 	 * Firmware Configuration File which is compatible with the new
6994 	 * Firmware if that's desired.
6995 	 */
6996 	(void)t4_load_cfg(adap, NULL, 0);
6997 
6998 	/*
6999 	 * Older versions of the firmware don't understand the new
7000 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7001 	 * restart.  So for newly loaded older firmware we'll have to do the
7002 	 * RESET for it so it starts up on a clean slate.  We can tell if
7003 	 * the newly loaded firmware will handle this right by checking
7004 	 * its header flags to see if it advertises the capability.
7005 	 */
7006 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7007 	ret = t4_fw_restart(adap, mbox, reset);
7008 
7009 	/* Grab potentially new Firmware Device Log parameters so we can see
7010 	 * how healthy the new Firmware is.  It's okay to contact the new
7011 	 * Firmware for these parameters even though, as far as it's
7012 	 * concerned, we've never said "HELLO" to it ...
7013 	 */
7014 	(void)t4_init_devlog_params(adap);
7015 out:
7016 	adap->flags |= FW_OK;
7017 	return ret;
7018 }
7019 
7020 /**
7021  *	t4_fl_pkt_align - return the fl packet alignment
7022  *	@adap: the adapter
7023  *
7024  *	T4 has a single field to specify the packing and padding boundary.
7025  *	T5 onwards has separate fields for this and hence the alignment for
7026  *	next packet offset is maximum of these two.
7027  *
7028  */
7029 int t4_fl_pkt_align(struct adapter *adap)
7030 {
7031 	u32 sge_control, sge_control2;
7032 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7033 
7034 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7035 
7036 	/* T4 uses a single control field to specify both the PCIe Padding and
7037 	 * Packing Boundary.  T5 introduced the ability to specify these
7038 	 * separately.  The actual Ingress Packet Data alignment boundary
7039 	 * within Packed Buffer Mode is the maximum of these two
7040 	 * specifications.  (Note that it makes no real practical sense to
7041 	 * have the Pading Boudary be larger than the Packing Boundary but you
7042 	 * could set the chip up that way and, in fact, legacy T4 code would
7043 	 * end doing this because it would initialize the Padding Boundary and
7044 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7045 	 * Padding Boundary values in T6 starts from 8B,
7046 	 * where as it is 32B for T4 and T5.
7047 	 */
7048 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7049 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7050 	else
7051 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7052 
7053 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7054 
7055 	fl_align = ingpadboundary;
7056 	if (!is_t4(adap->params.chip)) {
7057 		/* T5 has a weird interpretation of one of the PCIe Packing
7058 		 * Boundary values.  No idea why ...
7059 		 */
7060 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7061 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7062 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7063 			ingpackboundary = 16;
7064 		else
7065 			ingpackboundary = 1 << (ingpackboundary +
7066 						INGPACKBOUNDARY_SHIFT_X);
7067 
7068 		fl_align = max(ingpadboundary, ingpackboundary);
7069 	}
7070 	return fl_align;
7071 }
7072 
7073 /**
7074  *	t4_fixup_host_params - fix up host-dependent parameters
7075  *	@adap: the adapter
7076  *	@page_size: the host's Base Page Size
7077  *	@cache_line_size: the host's Cache Line Size
7078  *
7079  *	Various registers in T4 contain values which are dependent on the
7080  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7081  *	those registers with the appropriate values as passed in ...
7082  */
7083 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7084 			 unsigned int cache_line_size)
7085 {
7086 	unsigned int page_shift = fls(page_size) - 1;
7087 	unsigned int sge_hps = page_shift - 10;
7088 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7089 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7090 	unsigned int fl_align_log = fls(fl_align) - 1;
7091 
7092 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7093 		     HOSTPAGESIZEPF0_V(sge_hps) |
7094 		     HOSTPAGESIZEPF1_V(sge_hps) |
7095 		     HOSTPAGESIZEPF2_V(sge_hps) |
7096 		     HOSTPAGESIZEPF3_V(sge_hps) |
7097 		     HOSTPAGESIZEPF4_V(sge_hps) |
7098 		     HOSTPAGESIZEPF5_V(sge_hps) |
7099 		     HOSTPAGESIZEPF6_V(sge_hps) |
7100 		     HOSTPAGESIZEPF7_V(sge_hps));
7101 
7102 	if (is_t4(adap->params.chip)) {
7103 		t4_set_reg_field(adap, SGE_CONTROL_A,
7104 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7105 				 EGRSTATUSPAGESIZE_F,
7106 				 INGPADBOUNDARY_V(fl_align_log -
7107 						  INGPADBOUNDARY_SHIFT_X) |
7108 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7109 	} else {
7110 		unsigned int pack_align;
7111 		unsigned int ingpad, ingpack;
7112 		unsigned int pcie_cap;
7113 
7114 		/* T5 introduced the separation of the Free List Padding and
7115 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7116 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7117 		 * Bandwidth, and use a Packing Boundary which is large enough
7118 		 * to avoid false sharing between CPUs, etc.
7119 		 *
7120 		 * For the PCI Link, the smaller the Padding Boundary the
7121 		 * better.  For the Memory Controller, a smaller Padding
7122 		 * Boundary is better until we cross under the Memory Line
7123 		 * Size (the minimum unit of transfer to/from Memory).  If we
7124 		 * have a Padding Boundary which is smaller than the Memory
7125 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7126 		 * Memory Controller which is never good.
7127 		 */
7128 
7129 		/* We want the Packing Boundary to be based on the Cache Line
7130 		 * Size in order to help avoid False Sharing performance
7131 		 * issues between CPUs, etc.  We also want the Packing
7132 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7133 		 * get best performance when the Packing Boundary is a
7134 		 * multiple of the Maximum Payload Size.
7135 		 */
7136 		pack_align = fl_align;
7137 		pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
7138 		if (pcie_cap) {
7139 			unsigned int mps, mps_log;
7140 			u16 devctl;
7141 
7142 			/* The PCIe Device Control Maximum Payload Size field
7143 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7144 			 * 128 bytes.
7145 			 */
7146 			pci_read_config_word(adap->pdev,
7147 					     pcie_cap + PCI_EXP_DEVCTL,
7148 					     &devctl);
7149 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7150 			mps = 1 << mps_log;
7151 			if (mps > pack_align)
7152 				pack_align = mps;
7153 		}
7154 
7155 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7156 		 * value for the Packing Boundary.  This corresponds to 16
7157 		 * bytes instead of the expected 32 bytes.  So if we want 32
7158 		 * bytes, the best we can really do is 64 bytes ...
7159 		 */
7160 		if (pack_align <= 16) {
7161 			ingpack = INGPACKBOUNDARY_16B_X;
7162 			fl_align = 16;
7163 		} else if (pack_align == 32) {
7164 			ingpack = INGPACKBOUNDARY_64B_X;
7165 			fl_align = 64;
7166 		} else {
7167 			unsigned int pack_align_log = fls(pack_align) - 1;
7168 
7169 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7170 			fl_align = pack_align;
7171 		}
7172 
7173 		/* Use the smallest Ingress Padding which isn't smaller than
7174 		 * the Memory Controller Read/Write Size.  We'll take that as
7175 		 * being 8 bytes since we don't know of any system with a
7176 		 * wider Memory Controller Bus Width.
7177 		 */
7178 		if (is_t5(adap->params.chip))
7179 			ingpad = INGPADBOUNDARY_32B_X;
7180 		else
7181 			ingpad = T6_INGPADBOUNDARY_8B_X;
7182 
7183 		t4_set_reg_field(adap, SGE_CONTROL_A,
7184 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7185 				 EGRSTATUSPAGESIZE_F,
7186 				 INGPADBOUNDARY_V(ingpad) |
7187 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7188 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7189 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7190 				 INGPACKBOUNDARY_V(ingpack));
7191 	}
7192 	/*
7193 	 * Adjust various SGE Free List Host Buffer Sizes.
7194 	 *
7195 	 * This is something of a crock since we're using fixed indices into
7196 	 * the array which are also known by the sge.c code and the T4
7197 	 * Firmware Configuration File.  We need to come up with a much better
7198 	 * approach to managing this array.  For now, the first four entries
7199 	 * are:
7200 	 *
7201 	 *   0: Host Page Size
7202 	 *   1: 64KB
7203 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7204 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7205 	 *
7206 	 * For the single-MTU buffers in unpacked mode we need to include
7207 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7208 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7209 	 * Padding boundary.  All of these are accommodated in the Factory
7210 	 * Default Firmware Configuration File but we need to adjust it for
7211 	 * this host's cache line size.
7212 	 */
7213 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7214 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7215 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7216 		     & ~(fl_align-1));
7217 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7218 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7219 		     & ~(fl_align-1));
7220 
7221 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7222 
7223 	return 0;
7224 }
7225 
7226 /**
7227  *	t4_fw_initialize - ask FW to initialize the device
7228  *	@adap: the adapter
7229  *	@mbox: mailbox to use for the FW command
7230  *
7231  *	Issues a command to FW to partially initialize the device.  This
7232  *	performs initialization that generally doesn't depend on user input.
7233  */
7234 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7235 {
7236 	struct fw_initialize_cmd c;
7237 
7238 	memset(&c, 0, sizeof(c));
7239 	INIT_CMD(c, INITIALIZE, WRITE);
7240 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7241 }
7242 
7243 /**
7244  *	t4_query_params_rw - query FW or device parameters
7245  *	@adap: the adapter
7246  *	@mbox: mailbox to use for the FW command
7247  *	@pf: the PF
7248  *	@vf: the VF
7249  *	@nparams: the number of parameters
7250  *	@params: the parameter names
7251  *	@val: the parameter values
7252  *	@rw: Write and read flag
7253  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7254  *
7255  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7256  *	queried at once.
7257  */
7258 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7259 		       unsigned int vf, unsigned int nparams, const u32 *params,
7260 		       u32 *val, int rw, bool sleep_ok)
7261 {
7262 	int i, ret;
7263 	struct fw_params_cmd c;
7264 	__be32 *p = &c.param[0].mnem;
7265 
7266 	if (nparams > 7)
7267 		return -EINVAL;
7268 
7269 	memset(&c, 0, sizeof(c));
7270 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7271 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7272 				  FW_PARAMS_CMD_PFN_V(pf) |
7273 				  FW_PARAMS_CMD_VFN_V(vf));
7274 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7275 
7276 	for (i = 0; i < nparams; i++) {
7277 		*p++ = cpu_to_be32(*params++);
7278 		if (rw)
7279 			*p = cpu_to_be32(*(val + i));
7280 		p++;
7281 	}
7282 
7283 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7284 	if (ret == 0)
7285 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7286 			*val++ = be32_to_cpu(*p);
7287 	return ret;
7288 }
7289 
7290 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7291 		    unsigned int vf, unsigned int nparams, const u32 *params,
7292 		    u32 *val)
7293 {
7294 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7295 				  true);
7296 }
7297 
7298 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7299 		       unsigned int vf, unsigned int nparams, const u32 *params,
7300 		       u32 *val)
7301 {
7302 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7303 				  false);
7304 }
7305 
7306 /**
7307  *      t4_set_params_timeout - sets FW or device parameters
7308  *      @adap: the adapter
7309  *      @mbox: mailbox to use for the FW command
7310  *      @pf: the PF
7311  *      @vf: the VF
7312  *      @nparams: the number of parameters
7313  *      @params: the parameter names
7314  *      @val: the parameter values
7315  *      @timeout: the timeout time
7316  *
7317  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7318  *      specified at once.
7319  */
7320 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7321 			  unsigned int pf, unsigned int vf,
7322 			  unsigned int nparams, const u32 *params,
7323 			  const u32 *val, int timeout)
7324 {
7325 	struct fw_params_cmd c;
7326 	__be32 *p = &c.param[0].mnem;
7327 
7328 	if (nparams > 7)
7329 		return -EINVAL;
7330 
7331 	memset(&c, 0, sizeof(c));
7332 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7333 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7334 				  FW_PARAMS_CMD_PFN_V(pf) |
7335 				  FW_PARAMS_CMD_VFN_V(vf));
7336 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7337 
7338 	while (nparams--) {
7339 		*p++ = cpu_to_be32(*params++);
7340 		*p++ = cpu_to_be32(*val++);
7341 	}
7342 
7343 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7344 }
7345 
7346 /**
7347  *	t4_set_params - sets FW or device parameters
7348  *	@adap: the adapter
7349  *	@mbox: mailbox to use for the FW command
7350  *	@pf: the PF
7351  *	@vf: the VF
7352  *	@nparams: the number of parameters
7353  *	@params: the parameter names
7354  *	@val: the parameter values
7355  *
7356  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7357  *	specified at once.
7358  */
7359 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7360 		  unsigned int vf, unsigned int nparams, const u32 *params,
7361 		  const u32 *val)
7362 {
7363 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7364 				     FW_CMD_MAX_TIMEOUT);
7365 }
7366 
7367 /**
7368  *	t4_cfg_pfvf - configure PF/VF resource limits
7369  *	@adap: the adapter
7370  *	@mbox: mailbox to use for the FW command
7371  *	@pf: the PF being configured
7372  *	@vf: the VF being configured
7373  *	@txq: the max number of egress queues
7374  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7375  *	@rxqi: the max number of interrupt-capable ingress queues
7376  *	@rxq: the max number of interruptless ingress queues
7377  *	@tc: the PCI traffic class
7378  *	@vi: the max number of virtual interfaces
7379  *	@cmask: the channel access rights mask for the PF/VF
7380  *	@pmask: the port access rights mask for the PF/VF
7381  *	@nexact: the maximum number of exact MPS filters
7382  *	@rcaps: read capabilities
7383  *	@wxcaps: write/execute capabilities
7384  *
7385  *	Configures resource limits and capabilities for a physical or virtual
7386  *	function.
7387  */
7388 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7389 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7390 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7391 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7392 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7393 {
7394 	struct fw_pfvf_cmd c;
7395 
7396 	memset(&c, 0, sizeof(c));
7397 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7398 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7399 				  FW_PFVF_CMD_VFN_V(vf));
7400 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7401 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7402 				     FW_PFVF_CMD_NIQ_V(rxq));
7403 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7404 				    FW_PFVF_CMD_PMASK_V(pmask) |
7405 				    FW_PFVF_CMD_NEQ_V(txq));
7406 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7407 				      FW_PFVF_CMD_NVI_V(vi) |
7408 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7409 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7410 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7411 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7412 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7413 }
7414 
7415 /**
7416  *	t4_alloc_vi - allocate a virtual interface
7417  *	@adap: the adapter
7418  *	@mbox: mailbox to use for the FW command
7419  *	@port: physical port associated with the VI
7420  *	@pf: the PF owning the VI
7421  *	@vf: the VF owning the VI
7422  *	@nmac: number of MAC addresses needed (1 to 5)
7423  *	@mac: the MAC addresses of the VI
7424  *	@rss_size: size of RSS table slice associated with this VI
7425  *
7426  *	Allocates a virtual interface for the given physical port.  If @mac is
7427  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7428  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7429  *	stored consecutively so the space needed is @nmac * 6 bytes.
7430  *	Returns a negative error number or the non-negative VI id.
7431  */
7432 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7433 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7434 		unsigned int *rss_size)
7435 {
7436 	int ret;
7437 	struct fw_vi_cmd c;
7438 
7439 	memset(&c, 0, sizeof(c));
7440 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7441 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7442 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7443 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7444 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7445 	c.nmac = nmac - 1;
7446 
7447 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7448 	if (ret)
7449 		return ret;
7450 
7451 	if (mac) {
7452 		memcpy(mac, c.mac, sizeof(c.mac));
7453 		switch (nmac) {
7454 		case 5:
7455 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7456 		case 4:
7457 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7458 		case 3:
7459 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7460 		case 2:
7461 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7462 		}
7463 	}
7464 	if (rss_size)
7465 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7466 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7467 }
7468 
7469 /**
7470  *	t4_free_vi - free a virtual interface
7471  *	@adap: the adapter
7472  *	@mbox: mailbox to use for the FW command
7473  *	@pf: the PF owning the VI
7474  *	@vf: the VF owning the VI
7475  *	@viid: virtual interface identifiler
7476  *
7477  *	Free a previously allocated virtual interface.
7478  */
7479 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7480 	       unsigned int vf, unsigned int viid)
7481 {
7482 	struct fw_vi_cmd c;
7483 
7484 	memset(&c, 0, sizeof(c));
7485 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7486 				  FW_CMD_REQUEST_F |
7487 				  FW_CMD_EXEC_F |
7488 				  FW_VI_CMD_PFN_V(pf) |
7489 				  FW_VI_CMD_VFN_V(vf));
7490 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7491 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7492 
7493 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7494 }
7495 
7496 /**
7497  *	t4_set_rxmode - set Rx properties of a virtual interface
7498  *	@adap: the adapter
7499  *	@mbox: mailbox to use for the FW command
7500  *	@viid: the VI id
7501  *	@mtu: the new MTU or -1
7502  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7503  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7504  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7505  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7506  *	@sleep_ok: if true we may sleep while awaiting command completion
7507  *
7508  *	Sets Rx properties of a virtual interface.
7509  */
7510 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7511 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7512 		  bool sleep_ok)
7513 {
7514 	struct fw_vi_rxmode_cmd c;
7515 
7516 	/* convert to FW values */
7517 	if (mtu < 0)
7518 		mtu = FW_RXMODE_MTU_NO_CHG;
7519 	if (promisc < 0)
7520 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7521 	if (all_multi < 0)
7522 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7523 	if (bcast < 0)
7524 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7525 	if (vlanex < 0)
7526 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7527 
7528 	memset(&c, 0, sizeof(c));
7529 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7530 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7531 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7532 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7533 	c.mtu_to_vlanexen =
7534 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7535 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7536 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7537 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7538 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7539 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7540 }
7541 
7542 /**
7543  *      t4_free_encap_mac_filt - frees MPS entry at given index
7544  *      @adap: the adapter
7545  *      @viid: the VI id
7546  *      @idx: index of MPS entry to be freed
7547  *      @sleep_ok: call is allowed to sleep
7548  *
7549  *      Frees the MPS entry at supplied index
7550  *
7551  *      Returns a negative error number or zero on success
7552  */
7553 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7554 			   int idx, bool sleep_ok)
7555 {
7556 	struct fw_vi_mac_exact *p;
7557 	u8 addr[] = {0, 0, 0, 0, 0, 0};
7558 	struct fw_vi_mac_cmd c;
7559 	int ret = 0;
7560 	u32 exact;
7561 
7562 	memset(&c, 0, sizeof(c));
7563 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7564 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7565 				   FW_CMD_EXEC_V(0) |
7566 				   FW_VI_MAC_CMD_VIID_V(viid));
7567 	exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7568 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7569 					  exact |
7570 					  FW_CMD_LEN16_V(1));
7571 	p = c.u.exact;
7572 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7573 				      FW_VI_MAC_CMD_IDX_V(idx));
7574 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7575 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7576 	return ret;
7577 }
7578 
7579 /**
7580  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7581  *	@adap: the adapter
7582  *	@viid: the VI id
7583  *	@addr: the MAC address
7584  *	@mask: the mask
7585  *	@idx: index of the entry in mps tcam
7586  *	@lookup_type: MAC address for inner (1) or outer (0) header
7587  *	@port_id: the port index
7588  *	@sleep_ok: call is allowed to sleep
7589  *
7590  *	Removes the mac entry at the specified index using raw mac interface.
7591  *
7592  *	Returns a negative error number on failure.
7593  */
7594 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7595 			 const u8 *addr, const u8 *mask, unsigned int idx,
7596 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7597 {
7598 	struct fw_vi_mac_cmd c;
7599 	struct fw_vi_mac_raw *p = &c.u.raw;
7600 	u32 val;
7601 
7602 	memset(&c, 0, sizeof(c));
7603 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7604 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7605 				   FW_CMD_EXEC_V(0) |
7606 				   FW_VI_MAC_CMD_VIID_V(viid));
7607 	val = FW_CMD_LEN16_V(1) |
7608 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7609 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7610 					  FW_CMD_LEN16_V(val));
7611 
7612 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7613 				     FW_VI_MAC_ID_BASED_FREE);
7614 
7615 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7616 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7617 				   DATAPORTNUM_V(port_id));
7618 	/* Lookup mask and port mask */
7619 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7620 				    DATAPORTNUM_V(DATAPORTNUM_M));
7621 
7622 	/* Copy the address and the mask */
7623 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7624 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7625 
7626 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7627 }
7628 
7629 /**
7630  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7631  *      @adap: the adapter
7632  *      @viid: the VI id
7633  *      @mac: the MAC address
7634  *      @mask: the mask
7635  *      @vni: the VNI id for the tunnel protocol
7636  *      @vni_mask: mask for the VNI id
7637  *      @dip_hit: to enable DIP match for the MPS entry
7638  *      @lookup_type: MAC address for inner (1) or outer (0) header
7639  *      @sleep_ok: call is allowed to sleep
7640  *
7641  *      Allocates an MPS entry with specified MAC address and VNI value.
7642  *
7643  *      Returns a negative error number or the allocated index for this mac.
7644  */
7645 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7646 			    const u8 *addr, const u8 *mask, unsigned int vni,
7647 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7648 			    bool sleep_ok)
7649 {
7650 	struct fw_vi_mac_cmd c;
7651 	struct fw_vi_mac_vni *p = c.u.exact_vni;
7652 	int ret = 0;
7653 	u32 val;
7654 
7655 	memset(&c, 0, sizeof(c));
7656 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7657 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7658 				   FW_VI_MAC_CMD_VIID_V(viid));
7659 	val = FW_CMD_LEN16_V(1) |
7660 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7661 	c.freemacs_to_len16 = cpu_to_be32(val);
7662 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7663 				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7664 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7665 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7666 
7667 	p->lookup_type_to_vni =
7668 		cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7669 			    FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7670 			    FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7671 	p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7672 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7673 	if (ret == 0)
7674 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7675 	return ret;
7676 }
7677 
7678 /**
7679  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7680  *	@adap: the adapter
7681  *	@viid: the VI id
7682  *	@mac: the MAC address
7683  *	@mask: the mask
7684  *	@idx: index at which to add this entry
7685  *	@port_id: the port index
7686  *	@lookup_type: MAC address for inner (1) or outer (0) header
7687  *	@sleep_ok: call is allowed to sleep
7688  *
7689  *	Adds the mac entry at the specified index using raw mac interface.
7690  *
7691  *	Returns a negative error number or the allocated index for this mac.
7692  */
7693 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7694 			  const u8 *addr, const u8 *mask, unsigned int idx,
7695 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7696 {
7697 	int ret = 0;
7698 	struct fw_vi_mac_cmd c;
7699 	struct fw_vi_mac_raw *p = &c.u.raw;
7700 	u32 val;
7701 
7702 	memset(&c, 0, sizeof(c));
7703 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7704 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7705 				   FW_VI_MAC_CMD_VIID_V(viid));
7706 	val = FW_CMD_LEN16_V(1) |
7707 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7708 	c.freemacs_to_len16 = cpu_to_be32(val);
7709 
7710 	/* Specify that this is an inner mac address */
7711 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7712 
7713 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7714 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7715 				   DATAPORTNUM_V(port_id));
7716 	/* Lookup mask and port mask */
7717 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7718 				    DATAPORTNUM_V(DATAPORTNUM_M));
7719 
7720 	/* Copy the address and the mask */
7721 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7722 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7723 
7724 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7725 	if (ret == 0) {
7726 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7727 		if (ret != idx)
7728 			ret = -ENOMEM;
7729 	}
7730 
7731 	return ret;
7732 }
7733 
7734 /**
7735  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7736  *	@adap: the adapter
7737  *	@mbox: mailbox to use for the FW command
7738  *	@viid: the VI id
7739  *	@free: if true any existing filters for this VI id are first removed
7740  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7741  *	@addr: the MAC address(es)
7742  *	@idx: where to store the index of each allocated filter
7743  *	@hash: pointer to hash address filter bitmap
7744  *	@sleep_ok: call is allowed to sleep
7745  *
7746  *	Allocates an exact-match filter for each of the supplied addresses and
7747  *	sets it to the corresponding address.  If @idx is not %NULL it should
7748  *	have at least @naddr entries, each of which will be set to the index of
7749  *	the filter allocated for the corresponding MAC address.  If a filter
7750  *	could not be allocated for an address its index is set to 0xffff.
7751  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7752  *	are hashed and update the hash filter bitmap pointed at by @hash.
7753  *
7754  *	Returns a negative error number or the number of filters allocated.
7755  */
7756 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7757 		      unsigned int viid, bool free, unsigned int naddr,
7758 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7759 {
7760 	int offset, ret = 0;
7761 	struct fw_vi_mac_cmd c;
7762 	unsigned int nfilters = 0;
7763 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7764 	unsigned int rem = naddr;
7765 
7766 	if (naddr > max_naddr)
7767 		return -EINVAL;
7768 
7769 	for (offset = 0; offset < naddr ; /**/) {
7770 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7771 					 rem : ARRAY_SIZE(c.u.exact));
7772 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7773 						     u.exact[fw_naddr]), 16);
7774 		struct fw_vi_mac_exact *p;
7775 		int i;
7776 
7777 		memset(&c, 0, sizeof(c));
7778 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7779 					   FW_CMD_REQUEST_F |
7780 					   FW_CMD_WRITE_F |
7781 					   FW_CMD_EXEC_V(free) |
7782 					   FW_VI_MAC_CMD_VIID_V(viid));
7783 		c.freemacs_to_len16 =
7784 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7785 				    FW_CMD_LEN16_V(len16));
7786 
7787 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7788 			p->valid_to_idx =
7789 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7790 					    FW_VI_MAC_CMD_IDX_V(
7791 						    FW_VI_MAC_ADD_MAC));
7792 			memcpy(p->macaddr, addr[offset + i],
7793 			       sizeof(p->macaddr));
7794 		}
7795 
7796 		/* It's okay if we run out of space in our MAC address arena.
7797 		 * Some of the addresses we submit may get stored so we need
7798 		 * to run through the reply to see what the results were ...
7799 		 */
7800 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7801 		if (ret && ret != -FW_ENOMEM)
7802 			break;
7803 
7804 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7805 			u16 index = FW_VI_MAC_CMD_IDX_G(
7806 					be16_to_cpu(p->valid_to_idx));
7807 
7808 			if (idx)
7809 				idx[offset + i] = (index >= max_naddr ?
7810 						   0xffff : index);
7811 			if (index < max_naddr)
7812 				nfilters++;
7813 			else if (hash)
7814 				*hash |= (1ULL <<
7815 					  hash_mac_addr(addr[offset + i]));
7816 		}
7817 
7818 		free = false;
7819 		offset += fw_naddr;
7820 		rem -= fw_naddr;
7821 	}
7822 
7823 	if (ret == 0 || ret == -FW_ENOMEM)
7824 		ret = nfilters;
7825 	return ret;
7826 }
7827 
7828 /**
7829  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
7830  *	@adap: the adapter
7831  *	@mbox: mailbox to use for the FW command
7832  *	@viid: the VI id
7833  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7834  *	@addr: the MAC address(es)
7835  *	@sleep_ok: call is allowed to sleep
7836  *
7837  *	Frees the exact-match filter for each of the supplied addresses
7838  *
7839  *	Returns a negative error number or the number of filters freed.
7840  */
7841 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
7842 		     unsigned int viid, unsigned int naddr,
7843 		     const u8 **addr, bool sleep_ok)
7844 {
7845 	int offset, ret = 0;
7846 	struct fw_vi_mac_cmd c;
7847 	unsigned int nfilters = 0;
7848 	unsigned int max_naddr = is_t4(adap->params.chip) ?
7849 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
7850 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7851 	unsigned int rem = naddr;
7852 
7853 	if (naddr > max_naddr)
7854 		return -EINVAL;
7855 
7856 	for (offset = 0; offset < (int)naddr ; /**/) {
7857 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7858 					 ? rem
7859 					 : ARRAY_SIZE(c.u.exact));
7860 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7861 						     u.exact[fw_naddr]), 16);
7862 		struct fw_vi_mac_exact *p;
7863 		int i;
7864 
7865 		memset(&c, 0, sizeof(c));
7866 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7867 				     FW_CMD_REQUEST_F |
7868 				     FW_CMD_WRITE_F |
7869 				     FW_CMD_EXEC_V(0) |
7870 				     FW_VI_MAC_CMD_VIID_V(viid));
7871 		c.freemacs_to_len16 =
7872 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7873 					    FW_CMD_LEN16_V(len16));
7874 
7875 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
7876 			p->valid_to_idx = cpu_to_be16(
7877 				FW_VI_MAC_CMD_VALID_F |
7878 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
7879 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7880 		}
7881 
7882 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7883 		if (ret)
7884 			break;
7885 
7886 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7887 			u16 index = FW_VI_MAC_CMD_IDX_G(
7888 						be16_to_cpu(p->valid_to_idx));
7889 
7890 			if (index < max_naddr)
7891 				nfilters++;
7892 		}
7893 
7894 		offset += fw_naddr;
7895 		rem -= fw_naddr;
7896 	}
7897 
7898 	if (ret == 0)
7899 		ret = nfilters;
7900 	return ret;
7901 }
7902 
7903 /**
7904  *	t4_change_mac - modifies the exact-match filter for a MAC address
7905  *	@adap: the adapter
7906  *	@mbox: mailbox to use for the FW command
7907  *	@viid: the VI id
7908  *	@idx: index of existing filter for old value of MAC address, or -1
7909  *	@addr: the new MAC address value
7910  *	@persist: whether a new MAC allocation should be persistent
7911  *	@add_smt: if true also add the address to the HW SMT
7912  *
7913  *	Modifies an exact-match filter and sets it to the new MAC address.
7914  *	Note that in general it is not possible to modify the value of a given
7915  *	filter so the generic way to modify an address filter is to free the one
7916  *	being used by the old address value and allocate a new filter for the
7917  *	new address value.  @idx can be -1 if the address is a new addition.
7918  *
7919  *	Returns a negative error number or the index of the filter with the new
7920  *	MAC value.
7921  */
7922 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7923 		  int idx, const u8 *addr, bool persist, bool add_smt)
7924 {
7925 	int ret, mode;
7926 	struct fw_vi_mac_cmd c;
7927 	struct fw_vi_mac_exact *p = c.u.exact;
7928 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
7929 
7930 	if (idx < 0)                             /* new allocation */
7931 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7932 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7933 
7934 	memset(&c, 0, sizeof(c));
7935 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7936 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7937 				   FW_VI_MAC_CMD_VIID_V(viid));
7938 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
7939 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7940 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
7941 				      FW_VI_MAC_CMD_IDX_V(idx));
7942 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7943 
7944 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7945 	if (ret == 0) {
7946 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7947 		if (ret >= max_mac_addr)
7948 			ret = -ENOMEM;
7949 	}
7950 	return ret;
7951 }
7952 
7953 /**
7954  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7955  *	@adap: the adapter
7956  *	@mbox: mailbox to use for the FW command
7957  *	@viid: the VI id
7958  *	@ucast: whether the hash filter should also match unicast addresses
7959  *	@vec: the value to be written to the hash filter
7960  *	@sleep_ok: call is allowed to sleep
7961  *
7962  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7963  */
7964 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7965 		     bool ucast, u64 vec, bool sleep_ok)
7966 {
7967 	struct fw_vi_mac_cmd c;
7968 
7969 	memset(&c, 0, sizeof(c));
7970 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7971 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7972 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7973 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
7974 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
7975 					  FW_CMD_LEN16_V(1));
7976 	c.u.hash.hashvec = cpu_to_be64(vec);
7977 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7978 }
7979 
7980 /**
7981  *      t4_enable_vi_params - enable/disable a virtual interface
7982  *      @adap: the adapter
7983  *      @mbox: mailbox to use for the FW command
7984  *      @viid: the VI id
7985  *      @rx_en: 1=enable Rx, 0=disable Rx
7986  *      @tx_en: 1=enable Tx, 0=disable Tx
7987  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7988  *
7989  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7990  *      only makes sense when enabling a Virtual Interface ...
7991  */
7992 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7993 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7994 {
7995 	struct fw_vi_enable_cmd c;
7996 
7997 	memset(&c, 0, sizeof(c));
7998 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7999 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8000 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8001 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8002 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8003 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8004 				     FW_LEN16(c));
8005 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8006 }
8007 
8008 /**
8009  *	t4_enable_vi - enable/disable a virtual interface
8010  *	@adap: the adapter
8011  *	@mbox: mailbox to use for the FW command
8012  *	@viid: the VI id
8013  *	@rx_en: 1=enable Rx, 0=disable Rx
8014  *	@tx_en: 1=enable Tx, 0=disable Tx
8015  *
8016  *	Enables/disables a virtual interface.
8017  */
8018 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8019 		 bool rx_en, bool tx_en)
8020 {
8021 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8022 }
8023 
8024 /**
8025  *	t4_enable_pi_params - enable/disable a Port's Virtual Interface
8026  *      @adap: the adapter
8027  *      @mbox: mailbox to use for the FW command
8028  *      @pi: the Port Information structure
8029  *      @rx_en: 1=enable Rx, 0=disable Rx
8030  *      @tx_en: 1=enable Tx, 0=disable Tx
8031  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8032  *
8033  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8034  *	Enable only makes sense when enabling a Virtual Interface ...
8035  *	If the Virtual Interface enable/disable operation is successful,
8036  *	we notify the OS-specific code of a potential Link Status change
8037  *	via the OS Contract API t4_os_link_changed().
8038  */
8039 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8040 			struct port_info *pi,
8041 			bool rx_en, bool tx_en, bool dcb_en)
8042 {
8043 	int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8044 				      rx_en, tx_en, dcb_en);
8045 	if (ret)
8046 		return ret;
8047 	t4_os_link_changed(adap, pi->port_id,
8048 			   rx_en && tx_en && pi->link_cfg.link_ok);
8049 	return 0;
8050 }
8051 
8052 /**
8053  *	t4_identify_port - identify a VI's port by blinking its LED
8054  *	@adap: the adapter
8055  *	@mbox: mailbox to use for the FW command
8056  *	@viid: the VI id
8057  *	@nblinks: how many times to blink LED at 2.5 Hz
8058  *
8059  *	Identifies a VI's port by blinking its LED.
8060  */
8061 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8062 		     unsigned int nblinks)
8063 {
8064 	struct fw_vi_enable_cmd c;
8065 
8066 	memset(&c, 0, sizeof(c));
8067 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8068 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8069 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8070 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8071 	c.blinkdur = cpu_to_be16(nblinks);
8072 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8073 }
8074 
8075 /**
8076  *	t4_iq_stop - stop an ingress queue and its FLs
8077  *	@adap: the adapter
8078  *	@mbox: mailbox to use for the FW command
8079  *	@pf: the PF owning the queues
8080  *	@vf: the VF owning the queues
8081  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8082  *	@iqid: ingress queue id
8083  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8084  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8085  *
8086  *	Stops an ingress queue and its associated FLs, if any.  This causes
8087  *	any current or future data/messages destined for these queues to be
8088  *	tossed.
8089  */
8090 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8091 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8092 	       unsigned int fl0id, unsigned int fl1id)
8093 {
8094 	struct fw_iq_cmd c;
8095 
8096 	memset(&c, 0, sizeof(c));
8097 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8098 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8099 				  FW_IQ_CMD_VFN_V(vf));
8100 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8101 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8102 	c.iqid = cpu_to_be16(iqid);
8103 	c.fl0id = cpu_to_be16(fl0id);
8104 	c.fl1id = cpu_to_be16(fl1id);
8105 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8106 }
8107 
8108 /**
8109  *	t4_iq_free - free an ingress queue and its FLs
8110  *	@adap: the adapter
8111  *	@mbox: mailbox to use for the FW command
8112  *	@pf: the PF owning the queues
8113  *	@vf: the VF owning the queues
8114  *	@iqtype: the ingress queue type
8115  *	@iqid: ingress queue id
8116  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8117  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8118  *
8119  *	Frees an ingress queue and its associated FLs, if any.
8120  */
8121 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8122 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8123 	       unsigned int fl0id, unsigned int fl1id)
8124 {
8125 	struct fw_iq_cmd c;
8126 
8127 	memset(&c, 0, sizeof(c));
8128 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8129 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8130 				  FW_IQ_CMD_VFN_V(vf));
8131 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8132 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8133 	c.iqid = cpu_to_be16(iqid);
8134 	c.fl0id = cpu_to_be16(fl0id);
8135 	c.fl1id = cpu_to_be16(fl1id);
8136 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8137 }
8138 
8139 /**
8140  *	t4_eth_eq_free - free an Ethernet egress queue
8141  *	@adap: the adapter
8142  *	@mbox: mailbox to use for the FW command
8143  *	@pf: the PF owning the queue
8144  *	@vf: the VF owning the queue
8145  *	@eqid: egress queue id
8146  *
8147  *	Frees an Ethernet egress queue.
8148  */
8149 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8150 		   unsigned int vf, unsigned int eqid)
8151 {
8152 	struct fw_eq_eth_cmd c;
8153 
8154 	memset(&c, 0, sizeof(c));
8155 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8156 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8157 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8158 				  FW_EQ_ETH_CMD_VFN_V(vf));
8159 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8160 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8161 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8162 }
8163 
8164 /**
8165  *	t4_ctrl_eq_free - free a control egress queue
8166  *	@adap: the adapter
8167  *	@mbox: mailbox to use for the FW command
8168  *	@pf: the PF owning the queue
8169  *	@vf: the VF owning the queue
8170  *	@eqid: egress queue id
8171  *
8172  *	Frees a control egress queue.
8173  */
8174 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8175 		    unsigned int vf, unsigned int eqid)
8176 {
8177 	struct fw_eq_ctrl_cmd c;
8178 
8179 	memset(&c, 0, sizeof(c));
8180 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8181 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8182 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8183 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8184 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8185 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8186 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8187 }
8188 
8189 /**
8190  *	t4_ofld_eq_free - free an offload egress queue
8191  *	@adap: the adapter
8192  *	@mbox: mailbox to use for the FW command
8193  *	@pf: the PF owning the queue
8194  *	@vf: the VF owning the queue
8195  *	@eqid: egress queue id
8196  *
8197  *	Frees a control egress queue.
8198  */
8199 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8200 		    unsigned int vf, unsigned int eqid)
8201 {
8202 	struct fw_eq_ofld_cmd c;
8203 
8204 	memset(&c, 0, sizeof(c));
8205 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8206 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8207 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8208 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8209 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8210 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8211 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8212 }
8213 
8214 /**
8215  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8216  *	@adap: the adapter
8217  *	@link_down_rc: Link Down Reason Code
8218  *
8219  *	Returns a string representation of the Link Down Reason Code.
8220  */
8221 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8222 {
8223 	static const char * const reason[] = {
8224 		"Link Down",
8225 		"Remote Fault",
8226 		"Auto-negotiation Failure",
8227 		"Reserved",
8228 		"Insufficient Airflow",
8229 		"Unable To Determine Reason",
8230 		"No RX Signal Detected",
8231 		"Reserved",
8232 	};
8233 
8234 	if (link_down_rc >= ARRAY_SIZE(reason))
8235 		return "Bad Reason Code";
8236 
8237 	return reason[link_down_rc];
8238 }
8239 
8240 /**
8241  * Return the highest speed set in the port capabilities, in Mb/s.
8242  */
8243 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8244 {
8245 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8246 		do { \
8247 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8248 				return __speed; \
8249 		} while (0)
8250 
8251 	TEST_SPEED_RETURN(400G, 400000);
8252 	TEST_SPEED_RETURN(200G, 200000);
8253 	TEST_SPEED_RETURN(100G, 100000);
8254 	TEST_SPEED_RETURN(50G,   50000);
8255 	TEST_SPEED_RETURN(40G,   40000);
8256 	TEST_SPEED_RETURN(25G,   25000);
8257 	TEST_SPEED_RETURN(10G,   10000);
8258 	TEST_SPEED_RETURN(1G,     1000);
8259 	TEST_SPEED_RETURN(100M,    100);
8260 
8261 	#undef TEST_SPEED_RETURN
8262 
8263 	return 0;
8264 }
8265 
8266 /**
8267  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8268  *	@acaps: advertised Port Capabilities
8269  *
8270  *	Get the highest speed for the port from the advertised Port
8271  *	Capabilities.  It will be either the highest speed from the list of
8272  *	speeds or whatever user has set using ethtool.
8273  */
8274 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8275 {
8276 	#define TEST_SPEED_RETURN(__caps_speed) \
8277 		do { \
8278 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8279 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8280 		} while (0)
8281 
8282 	TEST_SPEED_RETURN(400G);
8283 	TEST_SPEED_RETURN(200G);
8284 	TEST_SPEED_RETURN(100G);
8285 	TEST_SPEED_RETURN(50G);
8286 	TEST_SPEED_RETURN(40G);
8287 	TEST_SPEED_RETURN(25G);
8288 	TEST_SPEED_RETURN(10G);
8289 	TEST_SPEED_RETURN(1G);
8290 	TEST_SPEED_RETURN(100M);
8291 
8292 	#undef TEST_SPEED_RETURN
8293 
8294 	return 0;
8295 }
8296 
8297 /**
8298  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8299  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8300  *
8301  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8302  *	32-bit Port Capabilities value.
8303  */
8304 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8305 {
8306 	fw_port_cap32_t linkattr = 0;
8307 
8308 	/* Unfortunately the format of the Link Status in the old
8309 	 * 16-bit Port Information message isn't the same as the
8310 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8311 	 */
8312 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8313 		linkattr |= FW_PORT_CAP32_FC_RX;
8314 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8315 		linkattr |= FW_PORT_CAP32_FC_TX;
8316 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8317 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8318 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8319 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8320 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8321 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8322 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8323 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8324 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8325 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8326 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8327 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8328 
8329 	return linkattr;
8330 }
8331 
8332 /**
8333  *	t4_handle_get_port_info - process a FW reply message
8334  *	@pi: the port info
8335  *	@rpl: start of the FW message
8336  *
8337  *	Processes a GET_PORT_INFO FW reply message.
8338  */
8339 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8340 {
8341 	const struct fw_port_cmd *cmd = (const void *)rpl;
8342 	int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8343 	struct adapter *adapter = pi->adapter;
8344 	struct link_config *lc = &pi->link_cfg;
8345 	int link_ok, linkdnrc;
8346 	enum fw_port_type port_type;
8347 	enum fw_port_module_type mod_type;
8348 	unsigned int speed, fc, fec;
8349 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8350 
8351 	/* Extract the various fields from the Port Information message.
8352 	 */
8353 	switch (action) {
8354 	case FW_PORT_ACTION_GET_PORT_INFO: {
8355 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8356 
8357 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8358 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8359 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8360 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8361 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8362 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8363 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8364 		linkattr = lstatus_to_fwcap(lstatus);
8365 		break;
8366 	}
8367 
8368 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8369 		u32 lstatus32;
8370 
8371 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8372 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8373 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8374 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8375 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8376 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8377 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8378 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8379 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8380 		break;
8381 	}
8382 
8383 	default:
8384 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8385 			be32_to_cpu(cmd->action_to_len16));
8386 		return;
8387 	}
8388 
8389 	fec = fwcap_to_cc_fec(acaps);
8390 	fc = fwcap_to_cc_pause(linkattr);
8391 	speed = fwcap_to_speed(linkattr);
8392 
8393 	lc->new_module = false;
8394 	lc->redo_l1cfg = false;
8395 
8396 	if (mod_type != pi->mod_type) {
8397 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8398 		 * various fundamental Port Capabilities which used to be
8399 		 * immutable can now change radically.  We can now have
8400 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8401 		 * all change based on what Transceiver Module is inserted.
8402 		 * So we need to record the Physical "Port" Capabilities on
8403 		 * every Transceiver Module change.
8404 		 */
8405 		lc->pcaps = pcaps;
8406 
8407 		/* When a new Transceiver Module is inserted, the Firmware
8408 		 * will examine its i2c EPROM to determine its type and
8409 		 * general operating parameters including things like Forward
8410 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8411 		 * how to interpret these i2c values to determine default
8412 		 * "sutomatic" settings.  We record these for future use when
8413 		 * the user explicitly requests these standards-based values.
8414 		 */
8415 		lc->def_acaps = acaps;
8416 
8417 		/* Some versions of the early T6 Firmware "cheated" when
8418 		 * handling different Transceiver Modules by changing the
8419 		 * underlaying Port Type reported to the Host Drivers.  As
8420 		 * such we need to capture whatever Port Type the Firmware
8421 		 * sends us and record it in case it's different from what we
8422 		 * were told earlier.  Unfortunately, since Firmware is
8423 		 * forever, we'll need to keep this code here forever, but in
8424 		 * later T6 Firmware it should just be an assignment of the
8425 		 * same value already recorded.
8426 		 */
8427 		pi->port_type = port_type;
8428 
8429 		pi->mod_type = mod_type;
8430 
8431 		lc->new_module = t4_is_inserted_mod_type(mod_type);
8432 		t4_os_portmod_changed(adapter, pi->port_id);
8433 	}
8434 
8435 	if (link_ok != lc->link_ok || speed != lc->speed ||
8436 	    fc != lc->fc || fec != lc->fec) {	/* something changed */
8437 		if (!link_ok && lc->link_ok) {
8438 			lc->link_down_rc = linkdnrc;
8439 			dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
8440 				 pi->tx_chan, t4_link_down_rc_str(linkdnrc));
8441 		}
8442 		lc->link_ok = link_ok;
8443 		lc->speed = speed;
8444 		lc->fc = fc;
8445 		lc->fec = fec;
8446 
8447 		lc->lpacaps = lpacaps;
8448 		lc->acaps = acaps & ADVERT_MASK;
8449 
8450 		if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8451 			lc->autoneg = AUTONEG_DISABLE;
8452 		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8453 			lc->autoneg = AUTONEG_ENABLE;
8454 		} else {
8455 			/* When Autoneg is disabled, user needs to set
8456 			 * single speed.
8457 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8458 			 */
8459 			lc->acaps = 0;
8460 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8461 			lc->autoneg = AUTONEG_DISABLE;
8462 		}
8463 
8464 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8465 	}
8466 
8467 	if (lc->new_module && lc->redo_l1cfg) {
8468 		struct link_config old_lc;
8469 		int ret;
8470 
8471 		/* Save the current L1 Configuration and restore it if an
8472 		 * error occurs.  We probably should fix the l1_cfg*()
8473 		 * routines not to change the link_config when an error
8474 		 * occurs ...
8475 		 */
8476 		old_lc = *lc;
8477 		ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8478 		if (ret) {
8479 			*lc = old_lc;
8480 			dev_warn(adapter->pdev_dev,
8481 				 "Attempt to update new Transceiver Module settings failed\n");
8482 		}
8483 	}
8484 	lc->new_module = false;
8485 	lc->redo_l1cfg = false;
8486 }
8487 
8488 /**
8489  *	t4_update_port_info - retrieve and update port information if changed
8490  *	@pi: the port_info
8491  *
8492  *	We issue a Get Port Information Command to the Firmware and, if
8493  *	successful, we check to see if anything is different from what we
8494  *	last recorded and update things accordingly.
8495  */
8496 int t4_update_port_info(struct port_info *pi)
8497 {
8498 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8499 	struct fw_port_cmd port_cmd;
8500 	int ret;
8501 
8502 	memset(&port_cmd, 0, sizeof(port_cmd));
8503 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8504 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8505 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8506 	port_cmd.action_to_len16 = cpu_to_be32(
8507 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8508 				     ? FW_PORT_ACTION_GET_PORT_INFO
8509 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8510 		FW_LEN16(port_cmd));
8511 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8512 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8513 	if (ret)
8514 		return ret;
8515 
8516 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8517 	return 0;
8518 }
8519 
8520 /**
8521  *	t4_get_link_params - retrieve basic link parameters for given port
8522  *	@pi: the port
8523  *	@link_okp: value return pointer for link up/down
8524  *	@speedp: value return pointer for speed (Mb/s)
8525  *	@mtup: value return pointer for mtu
8526  *
8527  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8528  *	and MTU for a specified port.  A negative error is returned on
8529  *	failure; 0 on success.
8530  */
8531 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8532 		       unsigned int *speedp, unsigned int *mtup)
8533 {
8534 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8535 	struct fw_port_cmd port_cmd;
8536 	unsigned int action, link_ok, speed, mtu;
8537 	fw_port_cap32_t linkattr;
8538 	int ret;
8539 
8540 	memset(&port_cmd, 0, sizeof(port_cmd));
8541 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8542 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8543 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8544 	action = (fw_caps == FW_CAPS16
8545 		  ? FW_PORT_ACTION_GET_PORT_INFO
8546 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8547 	port_cmd.action_to_len16 = cpu_to_be32(
8548 		FW_PORT_CMD_ACTION_V(action) |
8549 		FW_LEN16(port_cmd));
8550 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8551 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8552 	if (ret)
8553 		return ret;
8554 
8555 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8556 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8557 
8558 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8559 		linkattr = lstatus_to_fwcap(lstatus);
8560 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8561 	} else {
8562 		u32 lstatus32 =
8563 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8564 
8565 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8566 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8567 		mtu = FW_PORT_CMD_MTU32_G(
8568 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8569 	}
8570 	speed = fwcap_to_speed(linkattr);
8571 
8572 	*link_okp = link_ok;
8573 	*speedp = fwcap_to_speed(linkattr);
8574 	*mtup = mtu;
8575 
8576 	return 0;
8577 }
8578 
8579 /**
8580  *      t4_handle_fw_rpl - process a FW reply message
8581  *      @adap: the adapter
8582  *      @rpl: start of the FW message
8583  *
8584  *      Processes a FW message, such as link state change messages.
8585  */
8586 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8587 {
8588 	u8 opcode = *(const u8 *)rpl;
8589 
8590 	/* This might be a port command ... this simplifies the following
8591 	 * conditionals ...  We can get away with pre-dereferencing
8592 	 * action_to_len16 because it's in the first 16 bytes and all messages
8593 	 * will be at least that long.
8594 	 */
8595 	const struct fw_port_cmd *p = (const void *)rpl;
8596 	unsigned int action =
8597 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8598 
8599 	if (opcode == FW_PORT_CMD &&
8600 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8601 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8602 		int i;
8603 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8604 		struct port_info *pi = NULL;
8605 
8606 		for_each_port(adap, i) {
8607 			pi = adap2pinfo(adap, i);
8608 			if (pi->tx_chan == chan)
8609 				break;
8610 		}
8611 
8612 		t4_handle_get_port_info(pi, rpl);
8613 	} else {
8614 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8615 			 opcode);
8616 		return -EINVAL;
8617 	}
8618 	return 0;
8619 }
8620 
8621 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8622 {
8623 	u16 val;
8624 
8625 	if (pci_is_pcie(adapter->pdev)) {
8626 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8627 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8628 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8629 	}
8630 }
8631 
8632 /**
8633  *	init_link_config - initialize a link's SW state
8634  *	@lc: pointer to structure holding the link state
8635  *	@pcaps: link Port Capabilities
8636  *	@acaps: link current Advertised Port Capabilities
8637  *
8638  *	Initializes the SW state maintained for each link, including the link's
8639  *	capabilities and default speed/flow-control/autonegotiation settings.
8640  */
8641 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8642 			     fw_port_cap32_t acaps)
8643 {
8644 	lc->pcaps = pcaps;
8645 	lc->def_acaps = acaps;
8646 	lc->lpacaps = 0;
8647 	lc->speed_caps = 0;
8648 	lc->speed = 0;
8649 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8650 
8651 	/* For Forward Error Control, we default to whatever the Firmware
8652 	 * tells us the Link is currently advertising.
8653 	 */
8654 	lc->requested_fec = FEC_AUTO;
8655 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8656 
8657 	/* If the Port is capable of Auto-Negtotiation, initialize it as
8658 	 * "enabled" and copy over all of the Physical Port Capabilities
8659 	 * to the Advertised Port Capabilities.  Otherwise mark it as
8660 	 * Auto-Negotiate disabled and select the highest supported speed
8661 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
8662 	 * and t4_handle_get_port_info().
8663 	 */
8664 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8665 		lc->acaps = lc->pcaps & ADVERT_MASK;
8666 		lc->autoneg = AUTONEG_ENABLE;
8667 		lc->requested_fc |= PAUSE_AUTONEG;
8668 	} else {
8669 		lc->acaps = 0;
8670 		lc->autoneg = AUTONEG_DISABLE;
8671 		lc->speed_caps = fwcap_to_fwspeed(acaps);
8672 	}
8673 }
8674 
8675 #define CIM_PF_NOACCESS 0xeeeeeeee
8676 
8677 int t4_wait_dev_ready(void __iomem *regs)
8678 {
8679 	u32 whoami;
8680 
8681 	whoami = readl(regs + PL_WHOAMI_A);
8682 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8683 		return 0;
8684 
8685 	msleep(500);
8686 	whoami = readl(regs + PL_WHOAMI_A);
8687 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8688 }
8689 
8690 struct flash_desc {
8691 	u32 vendor_and_model_id;
8692 	u32 size_mb;
8693 };
8694 
8695 static int t4_get_flash_params(struct adapter *adap)
8696 {
8697 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8698 	 * to the preexisting code.  All flash parts have 64KB sectors.
8699 	 */
8700 	static struct flash_desc supported_flash[] = {
8701 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8702 	};
8703 
8704 	unsigned int part, manufacturer;
8705 	unsigned int density, size = 0;
8706 	u32 flashid = 0;
8707 	int ret;
8708 
8709 	/* Issue a Read ID Command to the Flash part.  We decode supported
8710 	 * Flash parts and their sizes from this.  There's a newer Query
8711 	 * Command which can retrieve detailed geometry information but many
8712 	 * Flash parts don't support it.
8713 	 */
8714 
8715 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8716 	if (!ret)
8717 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8718 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8719 	if (ret)
8720 		return ret;
8721 
8722 	/* Check to see if it's one of our non-standard supported Flash parts.
8723 	 */
8724 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8725 		if (supported_flash[part].vendor_and_model_id == flashid) {
8726 			adap->params.sf_size = supported_flash[part].size_mb;
8727 			adap->params.sf_nsec =
8728 				adap->params.sf_size / SF_SEC_SIZE;
8729 			goto found;
8730 		}
8731 
8732 	/* Decode Flash part size.  The code below looks repetative with
8733 	 * common encodings, but that's not guaranteed in the JEDEC
8734 	 * specification for the Read JADEC ID command.  The only thing that
8735 	 * we're guaranteed by the JADEC specification is where the
8736 	 * Manufacturer ID is in the returned result.  After that each
8737 	 * Manufacturer ~could~ encode things completely differently.
8738 	 * Note, all Flash parts must have 64KB sectors.
8739 	 */
8740 	manufacturer = flashid & 0xff;
8741 	switch (manufacturer) {
8742 	case 0x20: { /* Micron/Numonix */
8743 		/* This Density -> Size decoding table is taken from Micron
8744 		 * Data Sheets.
8745 		 */
8746 		density = (flashid >> 16) & 0xff;
8747 		switch (density) {
8748 		case 0x14: /* 1MB */
8749 			size = 1 << 20;
8750 			break;
8751 		case 0x15: /* 2MB */
8752 			size = 1 << 21;
8753 			break;
8754 		case 0x16: /* 4MB */
8755 			size = 1 << 22;
8756 			break;
8757 		case 0x17: /* 8MB */
8758 			size = 1 << 23;
8759 			break;
8760 		case 0x18: /* 16MB */
8761 			size = 1 << 24;
8762 			break;
8763 		case 0x19: /* 32MB */
8764 			size = 1 << 25;
8765 			break;
8766 		case 0x20: /* 64MB */
8767 			size = 1 << 26;
8768 			break;
8769 		case 0x21: /* 128MB */
8770 			size = 1 << 27;
8771 			break;
8772 		case 0x22: /* 256MB */
8773 			size = 1 << 28;
8774 			break;
8775 		}
8776 		break;
8777 	}
8778 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
8779 		/* This Density -> Size decoding table is taken from ISSI
8780 		 * Data Sheets.
8781 		 */
8782 		density = (flashid >> 16) & 0xff;
8783 		switch (density) {
8784 		case 0x16: /* 32 MB */
8785 			size = 1 << 25;
8786 			break;
8787 		case 0x17: /* 64MB */
8788 			size = 1 << 26;
8789 			break;
8790 		}
8791 		break;
8792 	}
8793 	case 0xc2: { /* Macronix */
8794 		/* This Density -> Size decoding table is taken from Macronix
8795 		 * Data Sheets.
8796 		 */
8797 		density = (flashid >> 16) & 0xff;
8798 		switch (density) {
8799 		case 0x17: /* 8MB */
8800 			size = 1 << 23;
8801 			break;
8802 		case 0x18: /* 16MB */
8803 			size = 1 << 24;
8804 			break;
8805 		}
8806 		break;
8807 	}
8808 	case 0xef: { /* Winbond */
8809 		/* This Density -> Size decoding table is taken from Winbond
8810 		 * Data Sheets.
8811 		 */
8812 		density = (flashid >> 16) & 0xff;
8813 		switch (density) {
8814 		case 0x17: /* 8MB */
8815 			size = 1 << 23;
8816 			break;
8817 		case 0x18: /* 16MB */
8818 			size = 1 << 24;
8819 			break;
8820 		}
8821 		break;
8822 	}
8823 	}
8824 
8825 	/* If we didn't recognize the FLASH part, that's no real issue: the
8826 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
8827 	 * use a FLASH part which is at least 4MB in size and has 64KB
8828 	 * sectors.  The unrecognized FLASH part is likely to be much larger
8829 	 * than 4MB, but that's all we really need.
8830 	 */
8831 	if (size == 0) {
8832 		dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
8833 			 flashid);
8834 		size = 1 << 22;
8835 	}
8836 
8837 	/* Store decoded Flash size and fall through into vetting code. */
8838 	adap->params.sf_size = size;
8839 	adap->params.sf_nsec = size / SF_SEC_SIZE;
8840 
8841 found:
8842 	if (adap->params.sf_size < FLASH_MIN_SIZE)
8843 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8844 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
8845 	return 0;
8846 }
8847 
8848 /**
8849  *	t4_prep_adapter - prepare SW and HW for operation
8850  *	@adapter: the adapter
8851  *	@reset: if true perform a HW reset
8852  *
8853  *	Initialize adapter SW state for the various HW modules, set initial
8854  *	values for some adapter tunables, take PHYs out of reset, and
8855  *	initialize the MDIO interface.
8856  */
8857 int t4_prep_adapter(struct adapter *adapter)
8858 {
8859 	int ret, ver;
8860 	uint16_t device_id;
8861 	u32 pl_rev;
8862 
8863 	get_pci_mode(adapter, &adapter->params.pci);
8864 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
8865 
8866 	ret = t4_get_flash_params(adapter);
8867 	if (ret < 0) {
8868 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
8869 		return ret;
8870 	}
8871 
8872 	/* Retrieve adapter's device ID
8873 	 */
8874 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
8875 	ver = device_id >> 12;
8876 	adapter->params.chip = 0;
8877 	switch (ver) {
8878 	case CHELSIO_T4:
8879 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
8880 		adapter->params.arch.sge_fl_db = DBPRIO_F;
8881 		adapter->params.arch.mps_tcam_size =
8882 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
8883 		adapter->params.arch.mps_rplc_size = 128;
8884 		adapter->params.arch.nchan = NCHAN;
8885 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8886 		adapter->params.arch.vfcount = 128;
8887 		/* Congestion map is for 4 channels so that
8888 		 * MPS can have 4 priority per port.
8889 		 */
8890 		adapter->params.arch.cng_ch_bits_log = 2;
8891 		break;
8892 	case CHELSIO_T5:
8893 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
8894 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
8895 		adapter->params.arch.mps_tcam_size =
8896 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8897 		adapter->params.arch.mps_rplc_size = 128;
8898 		adapter->params.arch.nchan = NCHAN;
8899 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8900 		adapter->params.arch.vfcount = 128;
8901 		adapter->params.arch.cng_ch_bits_log = 2;
8902 		break;
8903 	case CHELSIO_T6:
8904 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
8905 		adapter->params.arch.sge_fl_db = 0;
8906 		adapter->params.arch.mps_tcam_size =
8907 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8908 		adapter->params.arch.mps_rplc_size = 256;
8909 		adapter->params.arch.nchan = 2;
8910 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
8911 		adapter->params.arch.vfcount = 256;
8912 		/* Congestion map will be for 2 channels so that
8913 		 * MPS can have 8 priority per port.
8914 		 */
8915 		adapter->params.arch.cng_ch_bits_log = 3;
8916 		break;
8917 	default:
8918 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
8919 			device_id);
8920 		return -EINVAL;
8921 	}
8922 
8923 	adapter->params.cim_la_size = CIMLA_SIZE;
8924 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8925 
8926 	/*
8927 	 * Default port for debugging in case we can't reach FW.
8928 	 */
8929 	adapter->params.nports = 1;
8930 	adapter->params.portvec = 1;
8931 	adapter->params.vpd.cclk = 50000;
8932 
8933 	/* Set PCIe completion timeout to 4 seconds. */
8934 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
8935 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
8936 	return 0;
8937 }
8938 
8939 /**
8940  *	t4_shutdown_adapter - shut down adapter, host & wire
8941  *	@adapter: the adapter
8942  *
8943  *	Perform an emergency shutdown of the adapter and stop it from
8944  *	continuing any further communication on the ports or DMA to the
8945  *	host.  This is typically used when the adapter and/or firmware
8946  *	have crashed and we want to prevent any further accidental
8947  *	communication with the rest of the world.  This will also force
8948  *	the port Link Status to go down -- if register writes work --
8949  *	which should help our peers figure out that we're down.
8950  */
8951 int t4_shutdown_adapter(struct adapter *adapter)
8952 {
8953 	int port;
8954 
8955 	t4_intr_disable(adapter);
8956 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
8957 	for_each_port(adapter, port) {
8958 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
8959 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
8960 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
8961 
8962 		t4_write_reg(adapter, a_port_cfg,
8963 			     t4_read_reg(adapter, a_port_cfg)
8964 			     & ~SIGNAL_DET_V(1));
8965 	}
8966 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
8967 
8968 	return 0;
8969 }
8970 
8971 /**
8972  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8973  *	@adapter: the adapter
8974  *	@qid: the Queue ID
8975  *	@qtype: the Ingress or Egress type for @qid
8976  *	@user: true if this request is for a user mode queue
8977  *	@pbar2_qoffset: BAR2 Queue Offset
8978  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8979  *
8980  *	Returns the BAR2 SGE Queue Registers information associated with the
8981  *	indicated Absolute Queue ID.  These are passed back in return value
8982  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8983  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8984  *
8985  *	This may return an error which indicates that BAR2 SGE Queue
8986  *	registers aren't available.  If an error is not returned, then the
8987  *	following values are returned:
8988  *
8989  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8990  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8991  *
8992  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8993  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8994  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8995  *	then these "Inferred Queue ID" register may not be used.
8996  */
8997 int t4_bar2_sge_qregs(struct adapter *adapter,
8998 		      unsigned int qid,
8999 		      enum t4_bar2_qtype qtype,
9000 		      int user,
9001 		      u64 *pbar2_qoffset,
9002 		      unsigned int *pbar2_qid)
9003 {
9004 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9005 	u64 bar2_page_offset, bar2_qoffset;
9006 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9007 
9008 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9009 	if (!user && is_t4(adapter->params.chip))
9010 		return -EINVAL;
9011 
9012 	/* Get our SGE Page Size parameters.
9013 	 */
9014 	page_shift = adapter->params.sge.hps + 10;
9015 	page_size = 1 << page_shift;
9016 
9017 	/* Get the right Queues per Page parameters for our Queue.
9018 	 */
9019 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9020 		     ? adapter->params.sge.eq_qpp
9021 		     : adapter->params.sge.iq_qpp);
9022 	qpp_mask = (1 << qpp_shift) - 1;
9023 
9024 	/*  Calculate the basics of the BAR2 SGE Queue register area:
9025 	 *  o The BAR2 page the Queue registers will be in.
9026 	 *  o The BAR2 Queue ID.
9027 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9028 	 */
9029 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9030 	bar2_qid = qid & qpp_mask;
9031 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9032 
9033 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9034 	 * hardware will infer the Absolute Queue ID simply from the writes to
9035 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9036 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9037 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9038 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9039 	 * from the BAR2 Page and BAR2 Queue ID.
9040 	 *
9041 	 * One important censequence of this is that some BAR2 SGE registers
9042 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9043 	 * there.  But other registers synthesize the SGE Queue ID purely
9044 	 * from the writes to the registers -- the Write Combined Doorbell
9045 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9046 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9047 	 * Queue ID can be inferred from simple writes.
9048 	 */
9049 	bar2_qoffset = bar2_page_offset;
9050 	bar2_qinferred = (bar2_qid_offset < page_size);
9051 	if (bar2_qinferred) {
9052 		bar2_qoffset += bar2_qid_offset;
9053 		bar2_qid = 0;
9054 	}
9055 
9056 	*pbar2_qoffset = bar2_qoffset;
9057 	*pbar2_qid = bar2_qid;
9058 	return 0;
9059 }
9060 
9061 /**
9062  *	t4_init_devlog_params - initialize adapter->params.devlog
9063  *	@adap: the adapter
9064  *
9065  *	Initialize various fields of the adapter's Firmware Device Log
9066  *	Parameters structure.
9067  */
9068 int t4_init_devlog_params(struct adapter *adap)
9069 {
9070 	struct devlog_params *dparams = &adap->params.devlog;
9071 	u32 pf_dparams;
9072 	unsigned int devlog_meminfo;
9073 	struct fw_devlog_cmd devlog_cmd;
9074 	int ret;
9075 
9076 	/* If we're dealing with newer firmware, the Device Log Paramerters
9077 	 * are stored in a designated register which allows us to access the
9078 	 * Device Log even if we can't talk to the firmware.
9079 	 */
9080 	pf_dparams =
9081 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9082 	if (pf_dparams) {
9083 		unsigned int nentries, nentries128;
9084 
9085 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9086 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9087 
9088 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9089 		nentries = (nentries128 + 1) * 128;
9090 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9091 
9092 		return 0;
9093 	}
9094 
9095 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9096 	 */
9097 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9098 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9099 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
9100 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9101 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9102 			 &devlog_cmd);
9103 	if (ret)
9104 		return ret;
9105 
9106 	devlog_meminfo =
9107 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9108 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9109 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9110 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9111 
9112 	return 0;
9113 }
9114 
9115 /**
9116  *	t4_init_sge_params - initialize adap->params.sge
9117  *	@adapter: the adapter
9118  *
9119  *	Initialize various fields of the adapter's SGE Parameters structure.
9120  */
9121 int t4_init_sge_params(struct adapter *adapter)
9122 {
9123 	struct sge_params *sge_params = &adapter->params.sge;
9124 	u32 hps, qpp;
9125 	unsigned int s_hps, s_qpp;
9126 
9127 	/* Extract the SGE Page Size for our PF.
9128 	 */
9129 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9130 	s_hps = (HOSTPAGESIZEPF0_S +
9131 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9132 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9133 
9134 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9135 	 */
9136 	s_qpp = (QUEUESPERPAGEPF0_S +
9137 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9138 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9139 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9140 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9141 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9142 
9143 	return 0;
9144 }
9145 
9146 /**
9147  *      t4_init_tp_params - initialize adap->params.tp
9148  *      @adap: the adapter
9149  *      @sleep_ok: if true we may sleep while awaiting command completion
9150  *
9151  *      Initialize various fields of the adapter's TP Parameters structure.
9152  */
9153 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9154 {
9155 	int chan;
9156 	u32 v;
9157 
9158 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9159 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
9160 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9161 
9162 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9163 	for (chan = 0; chan < NCHAN; chan++)
9164 		adap->params.tp.tx_modq[chan] = chan;
9165 
9166 	/* Cache the adapter's Compressed Filter Mode and global Incress
9167 	 * Configuration.
9168 	 */
9169 	t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9170 		       TP_VLAN_PRI_MAP_A, sleep_ok);
9171 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9172 		       TP_INGRESS_CONFIG_A, sleep_ok);
9173 
9174 	/* For T6, cache the adapter's compressed error vector
9175 	 * and passing outer header info for encapsulated packets.
9176 	 */
9177 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9178 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9179 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9180 	}
9181 
9182 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9183 	 * shift positions of several elements of the Compressed Filter Tuple
9184 	 * for this adapter which we need frequently ...
9185 	 */
9186 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9187 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9188 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9189 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9190 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9191 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9192 							       PROTOCOL_F);
9193 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9194 								ETHERTYPE_F);
9195 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9196 							       MACMATCH_F);
9197 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9198 								MPSHITTYPE_F);
9199 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9200 							   FRAGMENTATION_F);
9201 
9202 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9203 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9204 	 */
9205 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9206 		adap->params.tp.vnic_shift = -1;
9207 
9208 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9209 	adap->params.tp.hash_filter_mask = v;
9210 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9211 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9212 	return 0;
9213 }
9214 
9215 /**
9216  *      t4_filter_field_shift - calculate filter field shift
9217  *      @adap: the adapter
9218  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9219  *
9220  *      Return the shift position of a filter field within the Compressed
9221  *      Filter Tuple.  The filter field is specified via its selection bit
9222  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9223  */
9224 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9225 {
9226 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9227 	unsigned int sel;
9228 	int field_shift;
9229 
9230 	if ((filter_mode & filter_sel) == 0)
9231 		return -1;
9232 
9233 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9234 		switch (filter_mode & sel) {
9235 		case FCOE_F:
9236 			field_shift += FT_FCOE_W;
9237 			break;
9238 		case PORT_F:
9239 			field_shift += FT_PORT_W;
9240 			break;
9241 		case VNIC_ID_F:
9242 			field_shift += FT_VNIC_ID_W;
9243 			break;
9244 		case VLAN_F:
9245 			field_shift += FT_VLAN_W;
9246 			break;
9247 		case TOS_F:
9248 			field_shift += FT_TOS_W;
9249 			break;
9250 		case PROTOCOL_F:
9251 			field_shift += FT_PROTOCOL_W;
9252 			break;
9253 		case ETHERTYPE_F:
9254 			field_shift += FT_ETHERTYPE_W;
9255 			break;
9256 		case MACMATCH_F:
9257 			field_shift += FT_MACMATCH_W;
9258 			break;
9259 		case MPSHITTYPE_F:
9260 			field_shift += FT_MPSHITTYPE_W;
9261 			break;
9262 		case FRAGMENTATION_F:
9263 			field_shift += FT_FRAGMENTATION_W;
9264 			break;
9265 		}
9266 	}
9267 	return field_shift;
9268 }
9269 
9270 int t4_init_rss_mode(struct adapter *adap, int mbox)
9271 {
9272 	int i, ret;
9273 	struct fw_rss_vi_config_cmd rvc;
9274 
9275 	memset(&rvc, 0, sizeof(rvc));
9276 
9277 	for_each_port(adap, i) {
9278 		struct port_info *p = adap2pinfo(adap, i);
9279 
9280 		rvc.op_to_viid =
9281 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9282 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9283 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9284 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9285 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9286 		if (ret)
9287 			return ret;
9288 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9289 	}
9290 	return 0;
9291 }
9292 
9293 /**
9294  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9295  *	@pi: the port_info
9296  *	@mbox: mailbox to use for the FW command
9297  *	@port: physical port associated with the VI
9298  *	@pf: the PF owning the VI
9299  *	@vf: the VF owning the VI
9300  *	@mac: the MAC address of the VI
9301  *
9302  *	Allocates a virtual interface for the given physical port.  If @mac is
9303  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9304  *	@mac should be large enough to hold an Ethernet address.
9305  *	Returns < 0 on error.
9306  */
9307 int t4_init_portinfo(struct port_info *pi, int mbox,
9308 		     int port, int pf, int vf, u8 mac[])
9309 {
9310 	struct adapter *adapter = pi->adapter;
9311 	unsigned int fw_caps = adapter->params.fw_caps_support;
9312 	struct fw_port_cmd cmd;
9313 	unsigned int rss_size;
9314 	enum fw_port_type port_type;
9315 	int mdio_addr;
9316 	fw_port_cap32_t pcaps, acaps;
9317 	int ret;
9318 
9319 	/* If we haven't yet determined whether we're talking to Firmware
9320 	 * which knows the new 32-bit Port Capabilities, it's time to find
9321 	 * out now.  This will also tell new Firmware to send us Port Status
9322 	 * Updates using the new 32-bit Port Capabilities version of the
9323 	 * Port Information message.
9324 	 */
9325 	if (fw_caps == FW_CAPS_UNKNOWN) {
9326 		u32 param, val;
9327 
9328 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9329 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9330 		val = 1;
9331 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9332 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9333 		adapter->params.fw_caps_support = fw_caps;
9334 	}
9335 
9336 	memset(&cmd, 0, sizeof(cmd));
9337 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9338 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9339 				       FW_PORT_CMD_PORTID_V(port));
9340 	cmd.action_to_len16 = cpu_to_be32(
9341 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9342 				     ? FW_PORT_ACTION_GET_PORT_INFO
9343 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9344 		FW_LEN16(cmd));
9345 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9346 	if (ret)
9347 		return ret;
9348 
9349 	/* Extract the various fields from the Port Information message.
9350 	 */
9351 	if (fw_caps == FW_CAPS16) {
9352 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9353 
9354 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9355 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9356 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9357 			     : -1);
9358 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9359 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9360 	} else {
9361 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9362 
9363 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9364 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9365 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9366 			     : -1);
9367 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9368 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9369 	}
9370 
9371 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
9372 	if (ret < 0)
9373 		return ret;
9374 
9375 	pi->viid = ret;
9376 	pi->tx_chan = port;
9377 	pi->lport = port;
9378 	pi->rss_size = rss_size;
9379 
9380 	pi->port_type = port_type;
9381 	pi->mdio_addr = mdio_addr;
9382 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9383 
9384 	init_link_config(&pi->link_cfg, pcaps, acaps);
9385 	return 0;
9386 }
9387 
9388 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9389 {
9390 	u8 addr[6];
9391 	int ret, i, j = 0;
9392 
9393 	for_each_port(adap, i) {
9394 		struct port_info *pi = adap2pinfo(adap, i);
9395 
9396 		while ((adap->params.portvec & (1 << j)) == 0)
9397 			j++;
9398 
9399 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9400 		if (ret)
9401 			return ret;
9402 
9403 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9404 		j++;
9405 	}
9406 	return 0;
9407 }
9408 
9409 /**
9410  *	t4_read_cimq_cfg - read CIM queue configuration
9411  *	@adap: the adapter
9412  *	@base: holds the queue base addresses in bytes
9413  *	@size: holds the queue sizes in bytes
9414  *	@thres: holds the queue full thresholds in bytes
9415  *
9416  *	Returns the current configuration of the CIM queues, starting with
9417  *	the IBQs, then the OBQs.
9418  */
9419 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9420 {
9421 	unsigned int i, v;
9422 	int cim_num_obq = is_t4(adap->params.chip) ?
9423 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9424 
9425 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9426 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9427 			     QUENUMSELECT_V(i));
9428 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9429 		/* value is in 256-byte units */
9430 		*base++ = CIMQBASE_G(v) * 256;
9431 		*size++ = CIMQSIZE_G(v) * 256;
9432 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9433 	}
9434 	for (i = 0; i < cim_num_obq; i++) {
9435 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9436 			     QUENUMSELECT_V(i));
9437 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9438 		/* value is in 256-byte units */
9439 		*base++ = CIMQBASE_G(v) * 256;
9440 		*size++ = CIMQSIZE_G(v) * 256;
9441 	}
9442 }
9443 
9444 /**
9445  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9446  *	@adap: the adapter
9447  *	@qid: the queue index
9448  *	@data: where to store the queue contents
9449  *	@n: capacity of @data in 32-bit words
9450  *
9451  *	Reads the contents of the selected CIM queue starting at address 0 up
9452  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9453  *	error and the number of 32-bit words actually read on success.
9454  */
9455 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9456 {
9457 	int i, err, attempts;
9458 	unsigned int addr;
9459 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9460 
9461 	if (qid > 5 || (n & 3))
9462 		return -EINVAL;
9463 
9464 	addr = qid * nwords;
9465 	if (n > nwords)
9466 		n = nwords;
9467 
9468 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9469 	 * Wait for 1 Sec with a delay of 1 usec.
9470 	 */
9471 	attempts = 1000000;
9472 
9473 	for (i = 0; i < n; i++, addr++) {
9474 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9475 			     IBQDBGEN_F);
9476 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9477 				      attempts, 1);
9478 		if (err)
9479 			return err;
9480 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9481 	}
9482 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9483 	return i;
9484 }
9485 
9486 /**
9487  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9488  *	@adap: the adapter
9489  *	@qid: the queue index
9490  *	@data: where to store the queue contents
9491  *	@n: capacity of @data in 32-bit words
9492  *
9493  *	Reads the contents of the selected CIM queue starting at address 0 up
9494  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9495  *	error and the number of 32-bit words actually read on success.
9496  */
9497 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9498 {
9499 	int i, err;
9500 	unsigned int addr, v, nwords;
9501 	int cim_num_obq = is_t4(adap->params.chip) ?
9502 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9503 
9504 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9505 		return -EINVAL;
9506 
9507 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9508 		     QUENUMSELECT_V(qid));
9509 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9510 
9511 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9512 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9513 	if (n > nwords)
9514 		n = nwords;
9515 
9516 	for (i = 0; i < n; i++, addr++) {
9517 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9518 			     OBQDBGEN_F);
9519 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9520 				      2, 1);
9521 		if (err)
9522 			return err;
9523 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9524 	}
9525 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9526 	return i;
9527 }
9528 
9529 /**
9530  *	t4_cim_read - read a block from CIM internal address space
9531  *	@adap: the adapter
9532  *	@addr: the start address within the CIM address space
9533  *	@n: number of words to read
9534  *	@valp: where to store the result
9535  *
9536  *	Reads a block of 4-byte words from the CIM intenal address space.
9537  */
9538 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9539 		unsigned int *valp)
9540 {
9541 	int ret = 0;
9542 
9543 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9544 		return -EBUSY;
9545 
9546 	for ( ; !ret && n--; addr += 4) {
9547 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9548 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9549 				      0, 5, 2);
9550 		if (!ret)
9551 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9552 	}
9553 	return ret;
9554 }
9555 
9556 /**
9557  *	t4_cim_write - write a block into CIM internal address space
9558  *	@adap: the adapter
9559  *	@addr: the start address within the CIM address space
9560  *	@n: number of words to write
9561  *	@valp: set of values to write
9562  *
9563  *	Writes a block of 4-byte words into the CIM intenal address space.
9564  */
9565 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9566 		 const unsigned int *valp)
9567 {
9568 	int ret = 0;
9569 
9570 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9571 		return -EBUSY;
9572 
9573 	for ( ; !ret && n--; addr += 4) {
9574 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9575 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9576 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9577 				      0, 5, 2);
9578 	}
9579 	return ret;
9580 }
9581 
9582 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9583 			 unsigned int val)
9584 {
9585 	return t4_cim_write(adap, addr, 1, &val);
9586 }
9587 
9588 /**
9589  *	t4_cim_read_la - read CIM LA capture buffer
9590  *	@adap: the adapter
9591  *	@la_buf: where to store the LA data
9592  *	@wrptr: the HW write pointer within the capture buffer
9593  *
9594  *	Reads the contents of the CIM LA buffer with the most recent entry at
9595  *	the end	of the returned data and with the entry at @wrptr first.
9596  *	We try to leave the LA in the running state we find it in.
9597  */
9598 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9599 {
9600 	int i, ret;
9601 	unsigned int cfg, val, idx;
9602 
9603 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9604 	if (ret)
9605 		return ret;
9606 
9607 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9608 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9609 		if (ret)
9610 			return ret;
9611 	}
9612 
9613 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9614 	if (ret)
9615 		goto restart;
9616 
9617 	idx = UPDBGLAWRPTR_G(val);
9618 	if (wrptr)
9619 		*wrptr = idx;
9620 
9621 	for (i = 0; i < adap->params.cim_la_size; i++) {
9622 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9623 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9624 		if (ret)
9625 			break;
9626 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9627 		if (ret)
9628 			break;
9629 		if (val & UPDBGLARDEN_F) {
9630 			ret = -ETIMEDOUT;
9631 			break;
9632 		}
9633 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9634 		if (ret)
9635 			break;
9636 
9637 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9638 		 * identify the 32-bit portion of the full 312-bit data
9639 		 */
9640 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9641 			idx = (idx & 0xff0) + 0x10;
9642 		else
9643 			idx++;
9644 		/* address can't exceed 0xfff */
9645 		idx &= UPDBGLARDPTR_M;
9646 	}
9647 restart:
9648 	if (cfg & UPDBGLAEN_F) {
9649 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9650 				      cfg & ~UPDBGLARDEN_F);
9651 		if (!ret)
9652 			ret = r;
9653 	}
9654 	return ret;
9655 }
9656 
9657 /**
9658  *	t4_tp_read_la - read TP LA capture buffer
9659  *	@adap: the adapter
9660  *	@la_buf: where to store the LA data
9661  *	@wrptr: the HW write pointer within the capture buffer
9662  *
9663  *	Reads the contents of the TP LA buffer with the most recent entry at
9664  *	the end	of the returned data and with the entry at @wrptr first.
9665  *	We leave the LA in the running state we find it in.
9666  */
9667 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9668 {
9669 	bool last_incomplete;
9670 	unsigned int i, cfg, val, idx;
9671 
9672 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9673 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9674 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9675 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9676 
9677 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9678 	idx = DBGLAWPTR_G(val);
9679 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9680 	if (last_incomplete)
9681 		idx = (idx + 1) & DBGLARPTR_M;
9682 	if (wrptr)
9683 		*wrptr = idx;
9684 
9685 	val &= 0xffff;
9686 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
9687 	val |= adap->params.tp.la_mask;
9688 
9689 	for (i = 0; i < TPLA_SIZE; i++) {
9690 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
9691 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
9692 		idx = (idx + 1) & DBGLARPTR_M;
9693 	}
9694 
9695 	/* Wipe out last entry if it isn't valid */
9696 	if (last_incomplete)
9697 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9698 
9699 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
9700 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9701 			     cfg | adap->params.tp.la_mask);
9702 }
9703 
9704 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9705  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9706  * state for more than the Warning Threshold then we'll issue a warning about
9707  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9708  * appears to be hung every Warning Repeat second till the situation clears.
9709  * If the situation clears, we'll note that as well.
9710  */
9711 #define SGE_IDMA_WARN_THRESH 1
9712 #define SGE_IDMA_WARN_REPEAT 300
9713 
9714 /**
9715  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9716  *	@adapter: the adapter
9717  *	@idma: the adapter IDMA Monitor state
9718  *
9719  *	Initialize the state of an SGE Ingress DMA Monitor.
9720  */
9721 void t4_idma_monitor_init(struct adapter *adapter,
9722 			  struct sge_idma_monitor_state *idma)
9723 {
9724 	/* Initialize the state variables for detecting an SGE Ingress DMA
9725 	 * hang.  The SGE has internal counters which count up on each clock
9726 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9727 	 * same state they were on the previous clock tick.  The clock used is
9728 	 * the Core Clock so we have a limit on the maximum "time" they can
9729 	 * record; typically a very small number of seconds.  For instance,
9730 	 * with a 600MHz Core Clock, we can only count up to a bit more than
9731 	 * 7s.  So we'll synthesize a larger counter in order to not run the
9732 	 * risk of having the "timers" overflow and give us the flexibility to
9733 	 * maintain a Hung SGE State Machine of our own which operates across
9734 	 * a longer time frame.
9735 	 */
9736 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9737 	idma->idma_stalled[0] = 0;
9738 	idma->idma_stalled[1] = 0;
9739 }
9740 
9741 /**
9742  *	t4_idma_monitor - monitor SGE Ingress DMA state
9743  *	@adapter: the adapter
9744  *	@idma: the adapter IDMA Monitor state
9745  *	@hz: number of ticks/second
9746  *	@ticks: number of ticks since the last IDMA Monitor call
9747  */
9748 void t4_idma_monitor(struct adapter *adapter,
9749 		     struct sge_idma_monitor_state *idma,
9750 		     int hz, int ticks)
9751 {
9752 	int i, idma_same_state_cnt[2];
9753 
9754 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9755 	  * are counters inside the SGE which count up on each clock when the
9756 	  * SGE finds its Ingress DMA State Engines in the same states they
9757 	  * were in the previous clock.  The counters will peg out at
9758 	  * 0xffffffff without wrapping around so once they pass the 1s
9759 	  * threshold they'll stay above that till the IDMA state changes.
9760 	  */
9761 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
9762 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
9763 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9764 
9765 	for (i = 0; i < 2; i++) {
9766 		u32 debug0, debug11;
9767 
9768 		/* If the Ingress DMA Same State Counter ("timer") is less
9769 		 * than 1s, then we can reset our synthesized Stall Timer and
9770 		 * continue.  If we have previously emitted warnings about a
9771 		 * potential stalled Ingress Queue, issue a note indicating
9772 		 * that the Ingress Queue has resumed forward progress.
9773 		 */
9774 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9775 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
9776 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
9777 					 "resumed after %d seconds\n",
9778 					 i, idma->idma_qid[i],
9779 					 idma->idma_stalled[i] / hz);
9780 			idma->idma_stalled[i] = 0;
9781 			continue;
9782 		}
9783 
9784 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9785 		 * domain.  The first time we get here it'll be because we
9786 		 * passed the 1s Threshold; each additional time it'll be
9787 		 * because the RX Timer Callback is being fired on its regular
9788 		 * schedule.
9789 		 *
9790 		 * If the stall is below our Potential Hung Ingress Queue
9791 		 * Warning Threshold, continue.
9792 		 */
9793 		if (idma->idma_stalled[i] == 0) {
9794 			idma->idma_stalled[i] = hz;
9795 			idma->idma_warn[i] = 0;
9796 		} else {
9797 			idma->idma_stalled[i] += ticks;
9798 			idma->idma_warn[i] -= ticks;
9799 		}
9800 
9801 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
9802 			continue;
9803 
9804 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9805 		 */
9806 		if (idma->idma_warn[i] > 0)
9807 			continue;
9808 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
9809 
9810 		/* Read and save the SGE IDMA State and Queue ID information.
9811 		 * We do this every time in case it changes across time ...
9812 		 * can't be too careful ...
9813 		 */
9814 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
9815 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9816 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9817 
9818 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
9819 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9820 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9821 
9822 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
9823 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9824 			 i, idma->idma_qid[i], idma->idma_state[i],
9825 			 idma->idma_stalled[i] / hz,
9826 			 debug0, debug11);
9827 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9828 	}
9829 }
9830 
9831 /**
9832  *	t4_load_cfg - download config file
9833  *	@adap: the adapter
9834  *	@cfg_data: the cfg text file to write
9835  *	@size: text file size
9836  *
9837  *	Write the supplied config text file to the card's serial flash.
9838  */
9839 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9840 {
9841 	int ret, i, n, cfg_addr;
9842 	unsigned int addr;
9843 	unsigned int flash_cfg_start_sec;
9844 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9845 
9846 	cfg_addr = t4_flash_cfg_addr(adap);
9847 	if (cfg_addr < 0)
9848 		return cfg_addr;
9849 
9850 	addr = cfg_addr;
9851 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9852 
9853 	if (size > FLASH_CFG_MAX_SIZE) {
9854 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
9855 			FLASH_CFG_MAX_SIZE);
9856 		return -EFBIG;
9857 	}
9858 
9859 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9860 			 sf_sec_size);
9861 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9862 				     flash_cfg_start_sec + i - 1);
9863 	/* If size == 0 then we're simply erasing the FLASH sectors associated
9864 	 * with the on-adapter Firmware Configuration File.
9865 	 */
9866 	if (ret || size == 0)
9867 		goto out;
9868 
9869 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9870 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
9871 		if ((size - i) <  SF_PAGE_SIZE)
9872 			n = size - i;
9873 		else
9874 			n = SF_PAGE_SIZE;
9875 		ret = t4_write_flash(adap, addr, n, cfg_data);
9876 		if (ret)
9877 			goto out;
9878 
9879 		addr += SF_PAGE_SIZE;
9880 		cfg_data += SF_PAGE_SIZE;
9881 	}
9882 
9883 out:
9884 	if (ret)
9885 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
9886 			(size == 0 ? "clear" : "download"), ret);
9887 	return ret;
9888 }
9889 
9890 /**
9891  *	t4_set_vf_mac - Set MAC address for the specified VF
9892  *	@adapter: The adapter
9893  *	@vf: one of the VFs instantiated by the specified PF
9894  *	@naddr: the number of MAC addresses
9895  *	@addr: the MAC address(es) to be set to the specified VF
9896  */
9897 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
9898 		      unsigned int naddr, u8 *addr)
9899 {
9900 	struct fw_acl_mac_cmd cmd;
9901 
9902 	memset(&cmd, 0, sizeof(cmd));
9903 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
9904 				    FW_CMD_REQUEST_F |
9905 				    FW_CMD_WRITE_F |
9906 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
9907 				    FW_ACL_MAC_CMD_VFN_V(vf));
9908 
9909 	/* Note: Do not enable the ACL */
9910 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
9911 	cmd.nmac = naddr;
9912 
9913 	switch (adapter->pf) {
9914 	case 3:
9915 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
9916 		break;
9917 	case 2:
9918 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
9919 		break;
9920 	case 1:
9921 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
9922 		break;
9923 	case 0:
9924 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
9925 		break;
9926 	}
9927 
9928 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
9929 }
9930 
9931 /**
9932  * t4_read_pace_tbl - read the pace table
9933  * @adap: the adapter
9934  * @pace_vals: holds the returned values
9935  *
9936  * Returns the values of TP's pace table in microseconds.
9937  */
9938 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9939 {
9940 	unsigned int i, v;
9941 
9942 	for (i = 0; i < NTX_SCHED; i++) {
9943 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
9944 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
9945 		pace_vals[i] = dack_ticks_to_usec(adap, v);
9946 	}
9947 }
9948 
9949 /**
9950  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9951  * @adap: the adapter
9952  * @sched: the scheduler index
9953  * @kbps: the byte rate in Kbps
9954  * @ipg: the interpacket delay in tenths of nanoseconds
9955  * @sleep_ok: if true we may sleep while awaiting command completion
9956  *
9957  * Return the current configuration of a HW Tx scheduler.
9958  */
9959 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
9960 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
9961 {
9962 	unsigned int v, addr, bpt, cpt;
9963 
9964 	if (kbps) {
9965 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
9966 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9967 		if (sched & 1)
9968 			v >>= 16;
9969 		bpt = (v >> 8) & 0xff;
9970 		cpt = v & 0xff;
9971 		if (!cpt) {
9972 			*kbps = 0;	/* scheduler disabled */
9973 		} else {
9974 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9975 			*kbps = (v * bpt) / 125;
9976 		}
9977 	}
9978 	if (ipg) {
9979 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
9980 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9981 		if (sched & 1)
9982 			v >>= 16;
9983 		v &= 0xffff;
9984 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9985 	}
9986 }
9987 
9988 /* t4_sge_ctxt_rd - read an SGE context through FW
9989  * @adap: the adapter
9990  * @mbox: mailbox to use for the FW command
9991  * @cid: the context id
9992  * @ctype: the context type
9993  * @data: where to store the context data
9994  *
9995  * Issues a FW command through the given mailbox to read an SGE context.
9996  */
9997 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9998 		   enum ctxt_type ctype, u32 *data)
9999 {
10000 	struct fw_ldst_cmd c;
10001 	int ret;
10002 
10003 	if (ctype == CTXT_FLM)
10004 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10005 	else
10006 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10007 
10008 	memset(&c, 0, sizeof(c));
10009 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10010 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
10011 					FW_LDST_CMD_ADDRSPACE_V(ret));
10012 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10013 	c.u.idctxt.physid = cpu_to_be32(cid);
10014 
10015 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10016 	if (ret == 0) {
10017 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10018 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10019 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10020 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10021 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10022 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10023 	}
10024 	return ret;
10025 }
10026 
10027 /**
10028  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10029  * @adap: the adapter
10030  * @cid: the context id
10031  * @ctype: the context type
10032  * @data: where to store the context data
10033  *
10034  * Reads an SGE context directly, bypassing FW.  This is only for
10035  * debugging when FW is unavailable.
10036  */
10037 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10038 		      enum ctxt_type ctype, u32 *data)
10039 {
10040 	int i, ret;
10041 
10042 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10043 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10044 	if (!ret)
10045 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10046 			*data++ = t4_read_reg(adap, i);
10047 	return ret;
10048 }
10049 
10050 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10051 		    int rateunit, int ratemode, int channel, int class,
10052 		    int minrate, int maxrate, int weight, int pktsize)
10053 {
10054 	struct fw_sched_cmd cmd;
10055 
10056 	memset(&cmd, 0, sizeof(cmd));
10057 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10058 				      FW_CMD_REQUEST_F |
10059 				      FW_CMD_WRITE_F);
10060 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10061 
10062 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10063 	cmd.u.params.type = type;
10064 	cmd.u.params.level = level;
10065 	cmd.u.params.mode = mode;
10066 	cmd.u.params.ch = channel;
10067 	cmd.u.params.cl = class;
10068 	cmd.u.params.unit = rateunit;
10069 	cmd.u.params.rate = ratemode;
10070 	cmd.u.params.min = cpu_to_be32(minrate);
10071 	cmd.u.params.max = cpu_to_be32(maxrate);
10072 	cmd.u.params.weight = cpu_to_be16(weight);
10073 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10074 
10075 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10076 			       NULL, 1);
10077 }
10078 
10079 /**
10080  *	t4_i2c_rd - read I2C data from adapter
10081  *	@adap: the adapter
10082  *	@port: Port number if per-port device; <0 if not
10083  *	@devid: per-port device ID or absolute device ID
10084  *	@offset: byte offset into device I2C space
10085  *	@len: byte length of I2C space data
10086  *	@buf: buffer in which to return I2C data
10087  *
10088  *	Reads the I2C data from the indicated device and location.
10089  */
10090 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10091 	      unsigned int devid, unsigned int offset,
10092 	      unsigned int len, u8 *buf)
10093 {
10094 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10095 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10096 	int ret = 0;
10097 
10098 	if (len > I2C_PAGE_SIZE)
10099 		return -EINVAL;
10100 
10101 	/* Dont allow reads that spans multiple pages */
10102 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10103 		return -EINVAL;
10104 
10105 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10106 	ldst_cmd.op_to_addrspace =
10107 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10108 			    FW_CMD_REQUEST_F |
10109 			    FW_CMD_READ_F |
10110 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10111 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10112 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10113 	ldst_cmd.u.i2c.did = devid;
10114 
10115 	while (len > 0) {
10116 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10117 
10118 		ldst_cmd.u.i2c.boffset = offset;
10119 		ldst_cmd.u.i2c.blen = i2c_len;
10120 
10121 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10122 				 &ldst_rpl);
10123 		if (ret)
10124 			break;
10125 
10126 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10127 		offset += i2c_len;
10128 		buf += i2c_len;
10129 		len -= i2c_len;
10130 	}
10131 
10132 	return ret;
10133 }
10134 
10135 /**
10136  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10137  *      @adapter: the adapter
10138  *      @mbox: mailbox to use for the FW command
10139  *      @vf: one of the VFs instantiated by the specified PF
10140  *      @vlan: The vlanid to be set
10141  */
10142 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10143 		    u16 vlan)
10144 {
10145 	struct fw_acl_vlan_cmd vlan_cmd;
10146 	unsigned int enable;
10147 
10148 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10149 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10150 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10151 					 FW_CMD_REQUEST_F |
10152 					 FW_CMD_WRITE_F |
10153 					 FW_CMD_EXEC_F |
10154 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10155 					 FW_ACL_VLAN_CMD_VFN_V(vf));
10156 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10157 	/* Drop all packets that donot match vlan id */
10158 	vlan_cmd.dropnovlan_fm = FW_ACL_VLAN_CMD_FM_F;
10159 	if (enable != 0) {
10160 		vlan_cmd.nvlan = 1;
10161 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10162 	}
10163 
10164 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10165 }
10166